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statements (or propositions}

the negation of (statement) p: not p

the conjunction of p, g: p and q

the disjunctionof p, g. porg

the implication of ¢ by p: p implies g

the biconditional of p and ¢: p if and only if g
if and only if

logical implication: p logically implies g
logical equivalence: p is logically equivalent to q
tawology

contradiction

For all x (the universal quantifier)

For some x (the existential quantifier)

element x is a member of set A
element x is not a member of set A
the universal set
A is a subset of B
A is a proper subset of B
A is not a subset of B
A is not a proper subset of B
the cardinality, or size, of set A — that is, the number of elements in A
the empty, or null, set
the power set of A — that is, the collection of all subsets of A
the intersection of sets A, B: {x{x € A and x € B}
the union of sets A, B: {xjx € A or x € B}
the symmetric difference of sets A, B:
{xIxe Aorx € B,butx ¢ AN B}
the complement of set A: {x|x € U and x ¢ A}
the (relative) complement of set B in set A: {x|x € A and x ¢ B}
{x|x € A,, for at least one i € I}, where [ is an index set

{x|x € A,, forevery i € I}, where [ is an index set

the sample space for an experiment €

A is an event

the probability of event A

the probability of A given B; conditional probability
random variable

the expected value of X, a random variable

the variance of X, a random variable

the standard deviation of X, a random variable

adivides b, fora, beZ,a #0

a does not divide b, fora, be Z,a #0

the greatest common divisor of the integers a, b

the least common multiple of the integers a, b

Euler’s phi function for n € Z*

the greatest integer less than or equal to the real number x:
the greatest integer in x: the floor of x
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the smallest integer greater than or equal to the real number x:
the ceiling of x
a is congruent to b modulo n

the Cartesian, or cross, product of sets A, B:
{(a, b)lae A, b e B}

9 is a relation from A to B

a is related to b

a is not related to b

the converse of relation R: (a, b) € R iff (b, a) € R

the composite relation for R CA X B, ¥C B X C:
(a,0)eRoPFif(a, B)eR, (b,c) e Fforsomebec B

the least upper bound of ¢ and b

the greatest lower bound of a and b

the equivalence class of element a (relative to an
equivalence relation R on a set A): {x € Alx R a}

f is a function from A to B

for f: A — Band A C A, f(A;) is the image of A;
under f —thatis, { f(a)|a € A}

for f: A — B, f(A) is the range of f

f is a binary operation on A

f is a closed binary operation on A

the identity function on A: 1,(a) = a foreacha e A

the restriction of f: A — Bto A{ C A

the composite function for f: A — B, g: B — C:
(g° fla=g(f(a)),forac A

the inverse of function f

the preimage of By C Bfor f: A— B

f is “big Oh” of g; f is of order g

a finite set of symbols called an alphabet

the empty string

the length of string x

fxixz---xnlx, € E},neZt

{A}

U,,ez+ Z": the set of all strings of positive length

U,,zo Z": the set of all finite strings

A is a language

the concatenation of languages A, B C E*:
{abla € A, b€ B}

{aar - az|la; e ACE*) neZt

{A}

UnEZ“"An

Unzo A" the Kleene closure of language A

a finite state machine M with internal states S, input
alphabet ¥, output alphabet O, next state function
v: § X ¥ — S and output functionw: § X ¥ - 0
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Fundamental
Principles of
Counting

numeration, or counting, may strike one as an obvious process that a student learns

when first studying arithmetic. But then, it seems, very little attention is paid to further
development in counting as the student turns to “more difficult” areas in mathematics, such
as algebra, geometry, trigonometry, and calculus. Consequently, this first chapter should
provide some warning about the seriousness and difficulty of “mere” counting.

Enumeration does not end with arithmetic. It also has applications in such areas as coding
theory, probability and statistics, and in the analysis of algorithms. Later chapters will offer
some specific examples of these applications.

As we enter this fascinating field of mathematics, we shall come upon many problems that
are very simple to state but somewhat “sticky” to solve. Thus, be sure to learn and understand
the basic formulas — but do nor rely on them too heavily. For without an analysis of each
problem, a mere knowledge of formulas is next to useless. Instead, welcome the challenge
to solve unusual problems or those that are different from problems you have encountered
in the past. Seek solutions based on your own scrutiny, regardless of whether it reproduces
what the author provides. There are often several ways to solve a given problem,.

1.1
The Rules of Sum and Product

Our study of discrete and combinatorial mathematics begins with two basic principles of
counting: the rules of sum and product. The statements and initial applications of these
rules appear quite simple. In analyzing more complicated problems, one is often able to
break down such problems into parts that can be solved using these basic principles. We
want to develop the ability to “decompose” such problems and piece together our partial
solutions in order to arrive at the final answer. A good way to do this is to analyze and solve
many diverse enumeration problems, taking note of the principles being used. This is the
approach we shall follow here.
Our first principle of counting can be stated as follows:

f SUm: I a fiest task can be performed in m ways, while a second task can
ed in 1 ways, and the two tasks cannot be performed simuitaneously, then
‘either task can be accomplished in any one of m + r ways,
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| EXAMPLE 1.

EXAMPLE 1.2

EXAMPLE 1.3

EXAMPLE 1.4

EXAMPLE 1.5

EXAMPLE 1.6

Note that when we say that a particular occurrence, such as a first task, can come about in m
ways, these m ways are assumed to be distinct, unless a statement is made to the contrary.
This will be true throughout the entire text.

Acollege library has 40 textbooks on sociology and 50 textbooks dealing with anthropology.
By the rule of sum, a student at this college can select among 40 + 50 = 90 textbooks in
order to learn more about one or the other of these two subjects.

The rule can be extended beyond two tasks as long as no pair of tasks can occur simultane-
ously. For instance, a computer science instructor who has, say, seven different introductory
books each on C++, Java, and Perl can recommend any one of these 21 books to a student
who is interested in learning a first programming language.

The computer science instructor of Example 1.2 has two colleagues. One of these col-
leagues has three textbooks on the analysis of algorithms, and the other has five such
textbooks. If n denotes the maximum number of different books on this topic that this
instructor can borrow from them, then 5 < n < §, for here both colleagues may own copies
of the same textbook(s).

The following example introduces our second principle of counting.

Intrying to reach a decision on plant expansion, an administrator assigns 12 of her employees
to two committees. Committee A consists of five members and is to investigate possible
favorable results from such an expansion. The other seven employees, committee B, will
scrutinize possible unfavorable repercussions. Should the administrator decide to speak to
just one committee member before making her decision, then by the rule of sum there are
12 employees she can call upon for input. However, to be a bit more unbiased, she decides
to speak with a member of committee A on Monday, and then with a member of committee
B on Tuesday, before reaching a decision. Using the following principle, we find that she
can select two such employees to speak with in 5 X 7 = 35 ways.

The Rule of Product: It a procedure can be broken down into first and second stages,
and if there are m possible outcomes for the first stage and if, for each of these outcomes,
there are » possible outcomes for the second stage, then the total procedure can be carried
out, in the designated order, in mr ways.

The drama club of Central University is holding tryouts for a spring play. With six men and
eight women auditioning for the leading male and female roles, by the rule of product the
director can cast his leading couple in 6 X 8 = 48 ways.

Here various extensions of the rule are illustrated by considering the manufacture of license
plates consisting of two letters followed by four digits.
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EXAMPLE 1.8
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a) If no letter or digit can be repeated, there are 26 X 23 X 10 X9 X8 X T =
3,276,000 different possible plates.

b) With repetitions of letters and digits allowed, 26 X 26 X 10 X 10 X 10 X 10 =
6,760,000 different license plates are possible.

¢) If repetitions are allowed, as in part (b), how many of the plates have only vowels (A,
E, I, O, U) and even digits? (0 is an even integer.)

In order to store data, a computer’s main memory contains a large collection of circuits, each
of which is capable of storing a bir — that is, one of the binary digits O or 1. These storage
circuits are arranged in units called (memory) cells. To identify the cells in a computer’s
main memory, each is assigned a unique name called its address. For some computers,
such as embedded microcontrollers (as found in the ignition system for an automobile), an
address is represented by an ordered list of eight bits, collectively referred to as a byte. Using
the rule of product, there are 2 X 2 X 2 X 2 X 2 X 2 X2 X 2 = 2% = 256 such bytes. So
we have 256 addresses that may be used for cells where certain information may be stored.

A kitchen appliance, such as a microwave oven, incorporates an embedded microcon-
troller. These “small computers” (such as the PICmicro microcontroller) contain thousands
of memory cells and use two-byte addresses to identify these cells in their main memory.
Such addresses are made up of two consecutive bytes, or 16 consecutive bits. Thus there
are 256 X 256 = 28 x 28 = 216 = §5 536 available addresses that could be used to iden-
tify cells in the main memory. Other computers use addressing systems of four bytes. This
32-bit architecture is presently used in the Pentium® processor, where there are as many
as 28 X 28 x 28 x 28 =232 = 4,294 967,296 addresses for use in identifying the cells in
main memory. When a programmer deals with the UltraSPARC? or Itanium® processors, he
ot she considers memory cells with eight-byte addresses. Each of these addresses comprises
8 X 8 = 64 bits, and there are 2% = 18,446,744,073,709,551,616 possible addresses for
this architecture. (Of course, not all of these possibilities are actually used.)

At times it is necessary to combine several different counting principles in the solution of
one problem. Here we find that the rules of both sum and product are needed to attain the
answer.

At the AWL corporation Mrs. Foster operates the Quick Snack Coffee Shop. The menu
at her shop is limited: six kinds of muffins, eight kinds of sandwiches, and five beverages
(hot coffee, hot tea, iced tea, cola, and orange juice). Ms. Dodd, an editor at AWL,, sends
her assistant Carl to the shop to get her lunch— either a muffin and a hot beverage or a
sandwich and a cold beverage.

By the rule of product, there are 6 X 2 = 12 ways in which Carl can purchase a muffin and
hot beverage. A second application of this rule shows that there are 8 X 3 = 24 possibilities
for a sandwich and cold beverage. So by the rule of sum, there are 12 4 24 = 36 ways in
which Carl can purchase Ms. Dodd’s lunch.

" Pentium (R) is a registered trademark of the Intel Corporation.
*The UltraSPARC processor is manufactured by Sun (R) Microsystems, Inc.
$ltanium (TM) is a trademark of the Intel Corporation.
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1.2

Permutations

EXAMPLE 1.9

Definition 1.1

Continuing to examine applications of the rule of product, we turn now to counting linear
arrangements of objects. These arrangements are often called permutarions when the objects
are distinct, We shall develop some systematic methods for dealing with linear arrangements,
starting with a typical example.

In a class of 10 students, five are to be chosen and seated in a row for a picture. How many
such linear arrangements are possible?

The key word here is arrangement, which designates the importance of order. If A, B,
C, ..., I, I denote the 10 students, then BCEFI, CEFIB, and ABCFG are three such different
arrangements, even though the first two involve the same five students.

To answer this question, we consider the positions and possible numbers of students we
can choose from in order to fill each position. The filling of a position is a stage of our
procedure.

10 X 9 X 8 X 7 X 6

ist 2nd 3rd 4th sth
position position position position position

Each of the 10 students can occupy the 1st position in the row. Because repetitions are
not possible here, we can select only one of the nine remaining students to fill the 2nd
position. Continuing in this way, we find only six students to select from in order to fill the
Sth and final position. This yields a total of 30,240 possible arrangements of five students
selected from the class of 10.

Exactly the same answer is obtained if the positions are filled from right to left—
namely, 6 X 7 X 8 X 9 X 10. If the 3rd position is filled first, the 1st position second, the
4th position third, the 5th position fourth, and the 2nd position fifth, then the answer is
9 X 6 X 10 X8 X7, still the same value, 30,240.

As in Example 1.9, the product of certain consecutive positive integers often comes
into play in enumeration problems. Consequently, the following notation proves to be quite
useful when we are dealing with such counting problems. It will frequently allow us to
express our answers in a more convenient form.

For an integer n > 0, n factorial (denoted n!) is defined by
=1,
nt=m)n—Dn-2)--- 321, for n>1.

One findsthat 1! = 1,21 =2, 3! = 6, 4! = 24, and 5! = 120. In addition, foreach n > 0,
(n+ D=+ D).

Before we proceed any further, let us try to get a somewhat better appreciation for how
fast n! grows. We can calculate that 10! = 3,628,800, and it just so happens that this is
exactly the number of seconds in six weeks. Consequently, 11! exceeds the number of
seconds in one year, 12! exceeds the number in 12 years, and 13! surpasses the number of
seconds in a century.
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If we make use of the factorial notation, the answer in Example 1.9 can be expressed in
the following more compact form:

5X4X3x2x1 10!
SX4XIX2ZX] 51

IOX9IXEXTXOE=10XI9IXEXTXOX

Definition 1.2 Given a collection of n distinct objects, any (linear) arrangement of these objects is called
a permutation of the collection.

Starting with the letters a, b, c, there are six ways to arrange, or permute, all of the letters:
abc, acb, bac, bca, cab, cba. If we are interested in arranging only two of the letters at a
time, there are six such size-2 permutations: ab, ba, ac, ca, be, cb.

If there are n distinct objects and r is an integer, with 1 <r < n, then by the rule of
product, the number of permutations of size r for the » objects is

P,r)= n X a=DXn—-X-- X(m—r+1)

st it rd rh
position position position position
= DYy — m=rn—r—1--- )
T =D - ) X T T T OO0
n!
G

%

Forr =0,P(n,0)=1=n!/(n —0),s0 P(n,r) =n!/(n —r) holdsforall0 <+ <n.
A special case of this result is Example 1.9, where n = 10, r = 5, and P(10, 5) = 30,240.
When permuting all of the # objects in the collection, we have r = # and find that P(n, n) =
n!/0! = nt.

Note, for example, that if n > 2, then P(n, 2) = nl/(n - 2! =n(n — 1). When n > 3
one finds that P(n,n —3) =nl/[n — (n =) =n!/3! = (n)(n - 1Y(n - 2) - - - 5)(4).

The number of permutations of size r, where 0 <r <#, from a collection of n objects,
is P(n,r) =n!/(n —r)!. (Remember that P(n, r) counts (linear) arrangements in which
the objects cannot be repeated.) However, if repetitions are allowed, then by the rule of
product there are n” possible arrangements, with r > 0,

EXAMPLE 1.10 The number of permutations of the letters in the word COMPUTER is 8!. If only five of the
’ letters are used, the number of permutations (of size 5) is P(8, 5) = 8!/(8 — 5)! =8!/3! =

6720. If repetitions of letters are allowed, the number of possible 12-letter sequences is
812 = 6.872 X 10'0.7

EXAMPLE 1.11 Unlike Example 1.10, the number of (linear) arrangements of the four letters in BALL is

12, not 4! (= 24). The reason is that we do not have four distinct letters to arrange. To get
the 12 arrangements, we can list them as in Table 1.1(a).

The symbol “=""is read “is approximately equal to.”
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EXAMPLE 1.12

Table 1.1
A B L L A B L L A B L L
A L B L A 1, B L, A L, B L,
A L L B A L L B A 1, L B
B A L L B A L, 1, B A 1, 1,
B L A L B L A I, B L, A L
B L L A B L, L, A B L, L; A
L A B L L, A B L, L, A B L
L A L B L, A 1, B L, A L, B
L B A L LL, B A I, L, B A L
L B L A L, B L, A L, B L; A
L L A B L, I, A B I, L, A B
L L B A L, Lh, B A l, L, B A

aw
&

{b)

If the two L's are distinguished as L;, L, then we can use our previous ideas on per-
mutations of distinct objects; with the four distinct symbols B, A, L, L;, we have 4! = 24
permutations. These are listed in Table 1.1(b). Table 1.1 reveals that for each arrangement
in which the L’s are indistinguishable there corresponds a pair of permutations with distinct
L's. Consequently,

2 X (Number of arrangements of the letters B, A, L, L)
= (Number of permutations of the symbols B, A, L, L),

and the answer to the original problem of finding all the arrangements of the four letters in
BALLis4!/2 =12.

Using the idea developed in Example 1.11, we now consider the arrangements of all nine
letters in DATABASES.

There are 3! = 6 arrangements with the A’s distinguished for each arrangement in
which the A’s are not distinguished. For example, DA;TA;BA3SES, DA;TA3BASSES,
DA, TA;BA;SES, DA, TA3BASES, DA3;TA|BA,SES, and DA;TA;BA,; SES all correspond
to DATABASES, when we remove the subscripts on the A’s. In addition, to the arrange-
ment DA TA;BA3SES there corresponds the pair of permutations DA TA;BA;S,ES, and
DA TA;BA3S:ES |, when the S’s are distinguished. Consequently,

2H (3 (Number of arrangements of the letters in DATABASES)
= (Number of permutations of the symbols D, A;, T, Ay, B, A3, Sy, E, S»),

so the number of arrangements of the nine letters in DATABASES is 9!/(2! 3!) = 30,240.

Before stating a general principle for arrangements with repeated symbols, note that inour
prior two examples we solved a new type of problem by relating it to previous enumeration
principles. This practice is common in mathematics in general, and often occurs in the
derivations of discrete and combinatorial formulas.
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EXAMPLE 1.14

1.2 Permutations 9

If there ate # objects with r, indistinguishable objects of a first type, ny indistinguishable
objects of a second type, ..., and n, indistinguishable objects of an rth type, where
i

1 + nz + -+ - + B, = n,thenthere are : (linear) arrangements of the given
1

) mlm!--on
n objects.

The MASSASAUGA is a brown and white venomous snake indigenous to North America.
Arranging all of the letters in MASSASAUGA, we find that there are

10!

TR RTINS
possible arrangements. Among these are
7!
— =840
KINTR IR ERY

in which all four A’s are together. To get this last result, we considered all arrangements of
the seven symbols AAAA (one symbol), S, S, S, M, U, G.

Determine the number of (staircase) paths in the xy-plane from (2, 1) to (7, 4), where each
such path is made up of individual steps going one unit to the right (R) or one unit upward
(U). The blue lines in Fig. 1.1 show two of these paths.

y Y

1

AT T R 4

3 ’ ‘ 3 ——

2 i 2 —
et : |

\ |
i Ly | \ X
1 2 3 4 5 6 7 T2 3 4 5 6 7

(@) R.U,R.R,URRU {b) U,RRRUURR
Figure 1.1

Beneath each path in Fig. 1.1 we have listed the individual steps. For example, in part
(a) the list R, U, R, R, U, R, R, U indicates that starting at the point (2, 1), we first move
one unit to the right [to (3, 1}], then one unit upward [to (3, 2)], followed by two units to
the right [to (5, 2)], and so on, until we reach the point (7, 4). The path consists of five R’s
for moves to the right and three U’s for moves upward.

The path in part (b) of the figure is also made up of five R’s and three U’s. In general,
the overall trip from (2, 1) to (7, 4) requires 7 — 2 = 5 horizontal moves to the right and
4 — 1 = 3 vertical moves upward. Consequently, each path corresponds to a list of five
R’s and three U’s, and the solution for the number of paths emerges as the number of
arrangements of the five R’s and three U’s, which is 8!/(5! 3!) = 56.
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EXAMPLE 1.15

EXAMPLE 1.16

We now do something a bit more abstract and prove that if # and k are positive integers with
n = 2k, then n!/2* is an integer. Because our argument relies on counting, it is an example
of a combinatorial proof.

Consider the # symbols xy, xy, X2, X2, - . ., Xz, Xx. The number of ways in which we can
arrange all of these n = 2k symbols is an integer that equals

n! n!
2021020 2k
———

k factors of 2!

Finally, we will apply what has been developed so far to a situation in which the arrange-
ments are no longer linear.

If six people, designated as A, B, . . ., F, are seated about a round table, how many different
circular arrangements are possible, if arrangements are considered the same when one can
be obtained from the other by rotation? [In Fig. 1.2, arrangements (a) and (b) are considered
identical, whereas (b), (c), and (d) are three distinct arrangements.]

EXAMPLE 1.17

A C A D
D B F D B D E A
C E E A E C F C
F B F B
@ (o) @ (d)

Figure 1.2

We shall try to relate this problem to previous ones we have already encountered. Con-
sider Figs. 1.2(a) and (b). Starting at the top of the circle and moving clockwise, we list
the distinct linear arrangements ABEFCD and CDABEF, which correspond to the same
circular arrangement. In addition to these two, four other linear arrangements — BEFCDA,
DABEFC, EFCDAB, and FCDABE — are found to correspond to the same circular ar-
rangement as in (a) or (b). So inasmuch as each circular arrangement corresponds to six

linear arrangements, we have 6 X (Number of circular arrangements of A, B, ..., F) =
(Number of linear arrangements of A, B, ... ,F) = 6l

Consequently, there are 6! /6 = 5! = 120 arrangements of A, B, . . ., F around the circular
table.

Suppose now that the six people of Example 1.16 are three married couples and that A, B,
and C are the females. We want to arrange the six people around the table so that the sexes
alternate. (Once again, arrangements are considered identical if one can be obtained from
the other by rotation.)

Before we solve this problem, let us solve Example 1.16 by an alternative method,
which will assist us in solving our present problem. If we place A at the table as shown in
Fig. 1.3(a), five locations (clockwise from A) remain to be filled. Using B, C, .. ., Fto fill
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A
5 1 M3 M1
4 2 F3 F2
M2
(@ (b)
Figure 1.3
these five positions is the problem of permuting B, C, . . ., F in a linear manner, and this

can be done in 5! = 120 ways.

To solve the new problem of alternating the sexes, consider the method shown in
Fig. 1.3(b). A (a female) is placed as before. The next position, clockwise from A, is marked
M1 (Male 1) and can be filled in three ways. Continuing clockwise from A, position F2
(Female 2) can be filled in two ways. Proceeding in this manner, by the rule of product,
there are 3 X 2 X 2 X 1 X 1 = 12 ways in which these six people can be arranged with no
two men or women seated next to each other.

EXERCISES 1.1 AND 1.2

1. During a local campaign, eight Republican and five Demo-
cratic candidates are nominated for president of the school
board.

a) If the president is to be one of these candidates, how
many possibilities are there for the eventual winner?

b) How many possibilities exist for a pair of candidates
(one from each party) to oppose each other for the eventual
election?
¢) Which counting principle is used in part (a)? in
part (b)?

2. Answer part (¢) of Example 1.6.

3. Buick automobiles come in four models, 12 colors, three
engine sizes, and two transmission types. (a) How many distinct
Buicks can be manufactured? (b) If one of the available colors
is blue, how many different blue Buicks can be manufactured?

4. The board of directors of a pharmaceutical corporation has
10 members. An upcoming stockholders’ meeting is scheduled
to approve a new slate of company officers (chosen from the 10
board members).

a) How many different slates consisting of a president, vice
president, secretary, and treasurer can the board present to
the stockholders for their approval?

b) Three members of the board of directors are physicians.
How many slates from part (a) have (i) a physician nomi-
nated for the presidency? (ii) exactly one physician appear-

ing on the slate? (iii) at least one physician appearing on
the slate?

5. While on a Saturday shopping spree Jennifer and Tiffany
witnessed two men driving away from the front of a jewelry
shop, just before a burglar alarm started to sound. Although ev-
erything happened rather quickly, when the two young ladies
were questioned they were able to give the police the following
information about the license plate (which consisted of two let-
ters followed by four digits) on the get-away car. Tiffany was
sure that the second letter on the plate was either an O or a Q and
the last digit was either a 3 or an 8, Jennifer told the investigator
that the first letter on the plate was either 2 C or a G and that the
first digit was definitely a 7. How many different license plates
will the police have te check out?

6. To raise money for a new municipal pool, the chamber of
commerce in acertain city sponsors arace. Each participant pays
a $5 entrance fee and has a chance to win one of the different-
sized trophies that are to be awarded to the first eight runners
who finish.

a) If 30 people enter the race, in how many ways will it be
possibie to award the trophies?

b) If Roberta and Candice are two participants in the race,
in how many ways can the trophies be awarded with these
two runners among the top three?

7. Acertain “Burger Joint” advertises that a customer can have
his or her hamburger with or without any or all of the fol-
lowing: catsup, mustard, mayonnaise, iettuce, tomato, onion,
pickle, cheese, or mushrooms. How many different kinds of
hamburger orders are possible?
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8. Matthew works as a computer operator at a small univer-
sity. One evening he finds that 12 computer programs have been
submitted earlier that day for batch processing. In how many
ways can Matthew order the processing of these programs if
(a) there are no restrictions? (b) he considers four of the pro-
grams higher in priority than the other eight and wants to process
those four first? (¢) he first separates the programs into four of
top priority, five of lesser priority, and three of least priority,
and he wishes to process the 12 programs in such a way that the
top-priority programs are processed first and the three programs
of least priority are processed last?

9. Patter’s Pastry Parlor offers eight different kinds of pastry
and six different kinds of muffins. In addition to bakery items
one can purchase small, medium, or large containers of the fol-
lowing beverages: coffee (black, with cream, with sugar, or with
cream and sugar), tea (plain, with cream, with sugar, with cream
and sugar, with lemon, or with lemon and sugar), hot cocoa, and
orange juice. When Carol comes to Patter’s, in how many ways
can she order

a) one bakery item and one medium-sized beverage for
herself?

b) one bakery item and one container of coffee for herself
and one muffin and one container of tea for her boss, Ms.
Didio?

¢) one piece of pastry and one container of tea for herself,
one muffin and a container of orange juice for Ms. Didio,
and one bakery item and one container of coffee for each
of her two assistants, Mr. Talbot and Mrs. Gillis?

10, Pamela has 15 different books. In how many ways can she
place her books on two shelves so that there is at least one book
on each shelf? (Consider the books in each arrangement to be
stacked one next to the other, with the first book on each shelf
at the left of the shelf.)

11. Three small towns, designated by A, B, and C, are inter-
connected by a system of two-way roads, as shown in Fig. 1.4.

Figure 1.4

a) In how many ways can Linda travel from town A to
town C?

b) How many different round trips can Linda travel from
town A to town C and back to town A?

¢) How many of the round trips in part (b) are such that
the return trip (from town C to town A) is at least partially
different from the route Linda takes from town A to town
C? (For example, if Linda travels from town A to town C
along roads R, and Ry, then on her return she might take
roads Ry and Rs, or roads R; and Ry, or road Ry, among
other possibilities, but she does rnot travel on roads Rg
and R;.)

12. List all the permutations for the letters a, ¢, t.

13. a) How many permutations are there for the eight letters
a,cf,gitwx?

b) Consider the permutations in part (a). How many start
with the letter t? How many start with the letter t and end
with the letter ¢?

14. Evaluate each of the following.
a) P(7.2) b) P84 ¢ P(0,7) d) P(12,3)

15. In how many ways can the symbols a, b, ¢, d, e, e, e, e, ¢
be arranged so that no e is adjacent to another e?

16. Analphabet of 40 symbols is used for transmitting messages
in a communication system. How many distinct messages (lists
of symbols) of 25 symbols can the transmitter generate if sym-
bols can be repeated in the message? How many if 10 of the
40 symbols can appear only as the first and/or last symbols of
the message, the other 30 symbols can appear anywhere, and
repetitions of all symbols are allowed?

17. In the Internet each network interface of a computer is as-
signed one, or more, Internet addresses. The nature of these
Internet addresses is dependent on network size. For the In-
ternet Standard regarding reserved network numbers (STD 2),
each address is a 32-bit string which falls into one of the fol-
lowing three classes: (1) A class A address, used for the largest
networks, begins with a 0 which is then followed by a seven-bit
network number, and then a 23-bit local address. However, one
is restricted from using the network numbers of all 0’s or all
1’s and the local addresses of all 0’s or all 1’s. (2) The class
B address is meant for an intermediate-sized network. This ad-
dress starts with the two-bit string 10, which is followed by a
14-bit network number and then a 16-bit local address. But the
local addresses of all 0’s or all 1’s are not permitted. (3) Class C
addresses are used for the smallest networks. These addresses
consist of the three-bit string 110, followed by a 21-bit network
number, and then an eight-bit local address. Once again the local
addresses of all 0’s or all 1’s are excluded. How many different
addresses of each class are available on the Internet, for this
Internet Standard?

18. Morgan is considering the purchase of a low-end computer
systern. After some careful investigating, she finds that there are
seven basic systems (each consisting of a monitor, CPU, key-
board, and mouse) that meet her requirements. Furthermore, she



also plans to buy one of four modems, cne of three CD ROM
drives, and one of six printers. (Here each peripheral device of
a given type, such as the modem, is compatible with all seven
basic systems.) In how many ways can Morgan configure her
low-end computer system?

19. A computer science professor has seven different program-
ming books on a bookshelf. Three of the books deal with C++,
the other four with Java. In how many ways can the professor
arrange these books on the shelf (a) if there are no restrictions?
(b) if the languages should alternate? (c) if all the C++ books
must be next to each other? (d) if all the C++ books must be
next to each other and all the Java books must be next to each
other?

20. Over the Internet, data are transmitted in structured blocks
of bits called datagrams.

a) In how many ways can the letters in DATAGRAM be
arranged?

b) For the arrangements of part (a), how many have all
three A’s together?

21. a) How many arrangements are there of all the letters in
SOCIOLOGICAL?

b) In how many of the arrangements in part (a) are A and
G adjacent?

¢) In how many of the arrangements In part (a) are all the
vowels adjacent?

22. How many positive integers n can we form using the digits
3,4,4,5, 5,6, 7if we want n to exceed 5,000,000?

23. Twelve clay targets (identical in shape) are arranged in four
hanging columns, as shown in Fig. 1.5. There are four red tar-
gets in the first column, three white ones in the second column,
two green targets in the third column, and three blue ones in
the fourth colummn. To join her college drill team, Deborah must
break all 12 of these targets (using her pistol and only 12 bul-
lets) and in so doing must always break the existing target at
the bottom of a column. Under these conditions, in how many
different orders can Deborah shoot down (and break) the 12
targets?

12 Permutations 13

24. Show that for all integers n, r > 0, if n + 1 > r, then

1
Pn+1,r= (4’1 i_;__ r) Pn, r).

25. Find the value(s) of n in each of the following:
(a) P(n,2) =90, (b) P(n,3)=3P(n,2),and
(€)2P(n,2) +50= P(2n, 2).

26. How many different paths in the xy-plane are there from
(0, 0) to (7,7) if a path proceeds one step at a time by go-
ing either one space to the right (R) or one space upward (U)?
How many such paths are there from (2, 7) to (9, 14)? Can any
general statement be made that incorporates these two results?

27. a) How many distinct paths are there from (—1, 2, 0) to
(1, 3, 7) in Euclidean three-space if each move is one of
the following types?

H: Gy, o) x+ 1, y, 20

(V) (x,y,2) = (x, y+ 1, 2);

Ay, 0> &y, 2+ D
b) How many such paths are there from (1,0,5) to
(8,1, 7)7?
¢) Generalize the results in parts (a) and (b).

28. a) Determine the value of the integer variable counter af-
ter execution of the following program segment. (Here i,
J.and k are integer variables.)

counter :=0
fori:=1tol2do
counter := counter + 1
for j :=5to 10 de
counter := counter + 2
for k := 15 downto 8 do
counter := counter + 3

b} Which counting principle is at play in part (a)?

29. Consider the following program segment where {, j, and k
are integer variables.

fori:=1tol12do
for j :=5to 10 do
for k := 15 downto 8 do
print (i - j)*k

a) How many times is the print statement executed?

b) Which counting principle is used in part (a)?
30. A sequence of letters of the form abcba, where the expres-
sion is unchanged upon reversing order, is an example of a
palindrome (of five letters). (a) If a letter may appear more than
twice, how many palindromes of five letters are there? of six
letters? (b) Repeat part (a) under the condition that no letter
appears more than twice.
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A B G
H C F
G D E

F E D
(@) (b)

©

Figure 1.6

31. Determine the number of six-digit integers (no leading ze-
ros) in which (a) no digit may be repeated; (b) digits may be
repeated. Answer parts (a) and (b) with the extra condition that
the six-digit integer is (i) even; (ii) divisible by 3; (ii1) divisible
by 4.

32. a) Provide a combinatorial argument to show that if # and
k are positive integers with n = 3k, then n!/(3")* is an in-
teger.

b) Generalize the result of part (a).

33. a) In how many possible ways could a student answer a
10-question true-false test?

b) In how many ways can the student answer the test in
part (a) if it is possible to leave a question unanswered in
order to avoid an extra penalty for a wrong answer?

34. How many distinct four-digit integers can one make from
the digits 1, 3, 3,7, 7, and 87

35. a) In how many ways can seven people be arranged about
a ¢ircular table?

1.3
Combinations: The Binomial Theorem

b) If two of the people insist on sitting next to each other,
how many arrangements are possible?

36. a) In how many ways can eight people, denoted A,
B, ..., H be seated about the square table shown in Fig.
1.6, where Figs. 1.6(a) and 1.6(b) are considered the same
but are distinct from Fig. 1.6(c)?

b) If two of the eight people, say A and B, do not get along
well, how many different seatings are possible with A and
B not sitting next to each other?

37. Sixteen people are to be seated at two circular tables, one
of which seats 10 while the other seats six. How many different
seating arrangements are possible?

38. A committee of 15 —nine women and six men—is to be
seated at a circular table (with 15 seats). In how many ways can
the seats be assigned so that no two men are seated next to each
other?

3%9. Write a computer program (or develop an algorithm)
to determine whether there 1is a three-digit integer
abc (= 100a + 106 + ¢) where abc = a' + b' + c!.

The standard deck of playing cards consists of 52 cards comprising four suits; clubs, di-
amonds, hearts, and spades. Each suit has 13 cards: ace, 2, 3, ..., 9, 10, jack, queen,
king. If we are asked to draw three cards from a standard deck, in succession and without
replacement, then by the rule of product there are

52 X 51 XSO*SZ! = P(52,3

49! (32.3)
possibilities, one of which is AH (ace of hearts), 9C (nine of clubs), KD (king of dia-
monds). If instead we simply select three cards at one time from the deck so that the order
of selection of the cards is no longer important, then the six permutations AH-9C-KD,
AH-KD-9C, 9C-AH-KD, 9C-KD-AH, KD-9C-AH, and KD-AH-9C all correspond to
just one (unordered) selection. Consequently, each selection, or combination, of three cards,
with no reference to order, corresponds to 3! permutations of three cards. In equation form



EXAMPLE 1.18

EXAMPLE 1.19

EXAMPLE 1.20

1.3 Combinations: The Binomial Theorem 15

this translates into
(3") X {Number of selections of size 3 from a deck of 52)

= Number of permutations of size 3 for the 52 cards

521
= P(52,3)= —.
¢ ) 491
Consequently, three cards can be drawn, without replacement, from a standard deck in
521/(3149Y = 22,100 ways.

If we start with r distinct objects, each selection, or combination, of r of these objects,
with no reference to order, corresponds to r! permutations of size r from the n objects,
Thus the number of combinations of size r from a collection of size n is

Pin,r) n!

Con.ry= T =

Q<r=n

In addition to C{x, r) the symbol ('r’) is also frequently used. Both C(n, r) and (’r’) are
sometimes read “n choose r.” Note that for all n > 0, C(n, 0) = C(n, n) = 1. Further, for
ala>1,Cn, ) =Cn,n — 1) =n. When0<n <r,thenC(n, r) = (;‘) = 0.

A word to the wise! When dealing with any counting problem, we should ask ourselves
about the importance of order in the problem. When order is relevant, we think in terms
of permutations and arrangements and the rule of product. When order is not relevant,
combinations could play a key role in solving the problem.

A hostess is having a dinner party for some members of her charity committee. Because
of the size of her home, she can invite only 11 of the 20 committee members. Order is not
important, so she can invite “the lucky 117 in C(20, 11) = (%‘1}) =20!/(1119Y = 167,960
ways. However, once the 11 arrive, how she arranges them around her rectangular dining
table is an arrangement problem. Unfortunately, no part of the theory of combinations and
permutations can help our hostess deal with “the offended nine” who were not invited.

Lynn and Patti decide to buy a PowerBall ticket. To win the grand prize for PowerBall
one must match five numbers selected from 1 to 49 inclusive and then must also match
the powerball, an integer from 1 to 42 inclusive. Lynn selects the five numbers (between
1 and 49 inclusive). This she can do in (459) ways (since matching does not involve order).
Meanwhile Patti selects the powerball — here there are (%) possibilities. Consequently, by
the rule of product, Lynn and Patti can select the six numbers for their PowerBall ticket in
() (%) = 80,089,128 ways.

a) A student taking a history examination is directed to answer any seven of 10 essay
questions, There is no concern about order here, so the student can answer the examina-
tion in

(10) 100 10X9x8 _
7
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b} If the student must answer three questions from the first five and four questions from
the last five, three questions can be selected from the first five in (3) = 10 ways, and
the other four questions can be selected in (2) = 5 ways. Hence, by the rule of product,
the student can complete the examination in (3)(3) = 10 X 5 = 50 ways.

¢) Finally, should the directions on this examination indicate that the student must answer
seven of the 10 questions where at least three are selected from the first five, then there
are three cases to consider:
i) The student answers three of the first five questions and four of the last five: By
the rule of product this can happenin (3)(3} = 10 X 5 = 50 ways, as in part (b).
ii) Four of the first five questions and three of the last five questions are selected by
the student: This can come about in (i) (2) =5 X 10 = 50 ways—again by the
rule of product.
iii) The student decides to answer all five of the first five questions and two of the
last five: The rule of product tells us that this last case can occur in (g) (i) =
1 X 10 = 10 ways.

Combining the results for cases (i), (ii), and (iii), by the rule of sum we find that the
student can make (2) (Z) + (Z) (g) + (2) (g) =504 50 4+ 10 = 110 selections of seven (out
of 10) questions where each selection includes at least three of the first five questions.

EXAMPLE 1.21 a) At Rydell High School, the gym teacher must select nine girls from the junior and
. senior classes for a volleyball team. If there are 28 juniors and 25 seniors, she can
make the selection in (3) = 4,431,613,550 ways.

b) If two juniors and one senior are the best spikers and must be on the team, then the
rest of the team can be chosen in (Sc?) = 15,890,700 ways.

¢) For a certain tournament the team must comprise four juniors and five seniors. The
teacher can select the four juniors in (%') ways. For each of these selections she has
(255) ways to choose the five seniors. Consequently, by the rule of product, she can

select her team in (248) (2;) = 1,087,836,750 ways for this particular tournament.

Some problems can be treated from the viewpoint of either arrangements or combina-
tions, depending on how cone analyzes the situation. The following example demonstrates
this.

The gym teacher of Example 1.21 must make up four volleyball teams of nine girls each
from the 36 freshman girls in her PE. class. In how many ways can she select these four
teams? Call the teams A, B, C, and D.

EXAMPLE 1.22

a) To form team A, she can select any nine girls from the 36 enrolled in (3¢} ways. For
team B the selection process yields (%) possibilities. This leaves (') and (3) possible
ways to select teams C and D, respectively. So by the rule of product, the four teams
can be chosen in

BIEIE)6) () () (o) ()

— - 19
= 31019101 2.145 X 10" ways.
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b) For an alternative solution, consider the 36 students lined up as follows:

st 2nd 3rd - 35th 36th
student student student student student

To select the four teams, we must distribute nine A’s, nine B’s, nine C’s, and nine D’s in
the 36 spaces. The number of ways in which this can be done is the number of arrangements
of 36 letters comprising nine each of A, B, C, and D. This is now the familiar problem of
arrangements of nondistinct objects, and the answer is

36!

W, as in part (a)

Our next example points out how some problems require the concepts of both arrange-
ments and combinations for their solutions.

The number of arrangements of the letters in TALLAHASSEE is
11
ararrp
How many of these arrangements have no adjacent A’s?
When we disregard the A’s, there are

= §31,600.

!
———— = 5040
20220

ways to arrange the remaining letters. One of these 5040 ways is shown in the following
figure, where the arrows indicate nine possible locations for the three A's.

E,E,S.T L L .S H

T

Three of these locations can be selected in (g) = 84 ways, and because this is also possihle
for all the other 5039 arrangements of E, E, S, T, L, L, S, H, by the rule of product there
are 5040 X 84 = 423,360 arrangements of the letters in TALLAHASSEE with no consecu-
tive A’s.

Before proceeding we need to introduce a concise way of writing the sum of a list of
n + 1 terms like ap,, Gyy41, Gus2s « -« » Gmsn, Where m and # are integers and n > 0. This
notation is called the Sigma notation because it involves the capital Greek letter ¥; we use
it to represent a summation by writing

m-+n

A+ At +0mi2 + - -+ Qs = § a;.
1=m

Here, the letter i is called the index of the summation, and this index accounts for all
integers starting with the lower limit m and continuing on up to (and including) the upper
limit m + n.

‘We may use this notation as follows.

7 7
1) Z a, =a3+ a4 +as +ag+a; = Z a;, for there 1s nothing special about the
(=3 j=3
letter i.
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EXAMPLE 1.24

4 4
2) Y =17 +22+3 4+ 4 =30=" k% because 0> =0,

i=1 k=0
100 101 99
H Y P=1P 1213 441000 = Y -1 =D k+ 1
i=11 j=12 k=10
10 10
4) D2 =2(7) +28) +2(9) + 2(10) = 68 =2(34) = 2(7 +8+9+10) =2 > i.
i=7 i=7

3 4 2
5) 2 a =as = 2 a1 = E Ayl
i=3 =4 =2

5
6) Za=a+a+a+a+a=5a.
=1
Furthermore, using this summation notation, we see that one can express the answer to
part (c) of Example 1.20 as

BE+O6-06)-2062)-262)0)

We shall find use for this new notation in the following example and in many other places
throughout the remainder of this book.

In the studies of algebraic coding theory and the theory of computer languages, we consider
certain arrangements, called strings, made up from a prescribed alphabet of symbols. If the
prescribed alphabet consists of the symbols 0, 1, and 2, for example, then 01, 11, 21, 12,
and 20 are five of the nine strings of length 2. Among the 27 strings of length 3 are 000,
012, 202, and 110,

In general, if » is any positive integer, then by the rule of product there are 3" strings of
length n for the alphabet 0, 1,and 2. If x = x1x3x3 - - - x,, is one of these strings, we define the
weight of x, denoted wt(x), by wt{x) = x; + x2 + x3 + - - - + x,,. For example, wt(12) = 3
and wt(22) = 4 for the case where n = 2; wt(101) = 2, wt(210) = 3, and wt(222) = 6 for
n =3

Among the 3'° strings of length 10, we wish to determine how many have even weight.
Such a string has even weight precisely when the number of 1’s in the string is even.

There are six different cases to consider. If the string x contaifis no 1°s, then each of the
10 locations in x can be filled with either O or 2, and by the rule of product there are 2'° such
strings. When the string contains two 1’s, the locations for these two 1’s can be selected in
(%) ways. Once these two locations have been specified, there are 28 ways to place either 0
or 2 in the other eight positions. Hence there are (})2® strings of even weight that contain
two 1’s. The numbers of strings for the other four cases are given in Table 1.2.

Table 1.2
Number of 1’s  Number of Strings | Number of 1’'s Number of Strings
4 ()20 8 (9)2
6 ()2 10 (i0)
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Consequently, by the rule of sum, the number of strings of length 10 that have even
weight is 210 + (120)28 + (14?)26 + (160)24 + (130)22 + (}8) =Y, (;2)210—%‘

Often we must be careful of overcounting — a situation that seems to arise in what
may appear to be rather easy enumeration problems. The next example demonstrates how
overcounting may come about.

EXAMPLE 1.25 a) Suppose that Ellen draws five cards from a standard deck of 52 cards. In how many
’ ways can her selection result in a hand with no clubs? Here we are interested in counting

all five-card selections such as
i) ace of hearts, three of spades, four of spades, six of diamonds, and the jack of
diamonds.
ii) five of spades, seven of spades, ten of spades, seven of diamonds, and the king of
diamonds.
ifi) two of diamonds, three of diamonds, six of diamonds, ten of diamonds, and the
jack of diamonds.
If we examine this more closely we see that Ellen is restricted to selecting her five
cards from the 39 cards in the deck that are not clubs. Consequently, she can make her
selection in (359) ways.
b) Now suppose we want to count the number of Ellen’s five-card selections that contain
at least one club. These are precisely the selections that were not counted in part (a).
And since there are (552) possible five-card hands in total, we find that

52 39
(5 ) -~ (5 ) = 2,598,960 — 575,757 = 2,023,203

of all five-card hands contain at least one club.

¢) Can we obtain the result in part (b) in another way? For example, since Ellen wants to
have at least one club in the five-card hand, let her first select a club. This she can do in
(') ways. And now she doesn’t care what comes up for the other four cards. So after

she eliminates the one club chosen from her standard deck, she can then select the

other four cards in (%) ways. Therefore, by the rule of product, we count the number

of selections here as
13 1
( 1 )(54) = 13 X 249,900 = 3,248,700.

Something here is definitely wrong! This answer is larger than that in part (b) by more
than one million hands. Did we make a mistake in part (b)? Or is something wrong
with our present reasoning?

For example, suppose that Ellen first selects

the three of clubs

and then selects
the five of clubs,
king of clubs,
seven of hearts, and

Jjack of spades.
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If, however, she first selects
the five of clubs

and then selects

the three of clubs,
king of clubs,
seven of hearts, and

jack of spades,

is her selection here really different from the prior selection we mentioned? Unfortu-
nately, no! And the case where she first selects

the king of clubs
and then follows this by selecting

the three of clubs,
five of clubs,
seven of hearts, and

jack of spades

is not different from the other two selections mentioned earlier.
Consequently, this approach is wrong because we are overcounting — by consid-
ering like selections as if they were distinct.

d) But is there any other way to arrive at the answer in part (b)? Yes! Since the five-card
hands must each contain at least one club, there are five cases to consider. These are
given in Table 1.3. From the results in Table 1.3 we see, for example, that there are
(%) (%) five-card hands that contain exactly two clubs. If we are interested in having
exactly three clubs in the hand, then the results in the table indicate that there are
(*?)(¥) such hands.

Table 1.3
Number of Ways Number of Number of Ways
Number to Select This Cards That to Select This
of Clubs | Number of Clubs | Are Not Clubs | Number of Nonclubs
1 (%) 4 ()
2 (%) 3 (5)
3 (¥) 2 (%)
4 (i) ! (V)
; ) 0 (%)
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Since no two of the cases in Table 1.3 have any five-card hand in common, the number
of hands that Ellen can select with at least one club is

() ()G GIE) G- ()6)
2 (767

= (13)(82,251) + (78)(9139) + (286)(741) + (715)(39) + (1287)(1)
=2,023,203.

We shall close this section with three results related to the concept of combinations.

First we note that for integers n, , withn > r >0, (;’) = (n " r). This can be established
algebraically from the formula for (), but we prefer to observe that when dealing with
a selection of size r from a collection of n distinct objects, the selection process leaves
behind n — r objects. Consequently, (?) = (,, " ,} affirms the existence of a correspondence
between the selections of size r (objects chosen) and the selections of size n —  (objects
left behind). An example of this correspondence is shown in Table 1.4, wheren = 5,7 = 2,
and the distinct objects are 1, 2, 3, 4, and 5. This type of correspondence will be more
formally defined in Chapter 5 and used in other counting situations.

Table 1.4
Selections of Size r =2 Selections of Sizen —r =3
(Objects Chosen) (Objects Left Behind)
1. 1,2 6. 2,4 1. 3,4,5 6. 1,3,5
2. 1,3 72,5 2. 2,4,5 7. 1,3, 4
3. 1,4 3. 3,4 3. 2,35 8. L.,2,5
4. 1,5 9. 3,5 4. 2,3, 4 9. 1,2,4
5. 2,3 10. 4,5 5. 1,4,5 10. 1,2,3

Our second result is a theorem from our past experience in algebra.

THEOREM 1.1

The Binomial Theorem. If x and y are variables and » is a positive integer, then

(x + y)zt = (g)xﬂyn 4 (Y)x]yn—l + (;)XZ},H—Z 4.
n _ A " /n .
n (n " 1)xn NI (n)x =3 (k)xky ‘
k=0

Before considering the general proof, we examine a special case. If n = 4, the coefficient
of x2y? in the expansion of the product

X+y)x+y)x+y)x+y)

Ist 2nd 3rd ath
factor factor factor factor
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EXAMPLE 1.26

is the number of ways in which we can select two x’s from the four x’s, one of which is
available in each factor. (Although the x’s are the same in appearance, we distinguish them
as the x in the first factor, the x in the second factor, . .., and the x in the fourth factor.
Also, we note that when we select two x’s, we use two factors, leaving us with two other
factors from which we can select the two y’s that are needed.) For example, among the
possibilities, we can select (1) x from the first two factors and y from the last two or (2) x
from the first and third factors and y from the second and fourth. Table 1.5 summarizes the
six possible selections.

Table 1.5
Factors Selected for x Factors Selected for y
() 1,2 (H 3,4
2) 1,3 ) 2,4
(3) 1,4 (3) 2,3
) 2,3 4) 1,4
5) 2,4 &) 1,3
) 3,4 (0) 1,2

Consequently, the coefficient of x*y” in the expansion of (x + y)* is (3) = 6, the number
of ways to select two distinct objects from a collection of four distinct objects.
Now we turn to the proof of the general case.

Proof: In the expansion of the product

X+ o+ x+y)-(x+y)

1st 2nd 3rd mh
factor factor factor factor

the coefficient of x*y" %, where 0 < k < g, is the number of different ways in which we
can select k x’s [and consequently (n — k) y’s] from the n available factors. (One way, for
example, is to choose x from the first & factors and y from the last n — k factors.) The total
number of such selections of size k& from a collection of size n is C(n, k) = (z) and from
this the binomial theorem follows.

In view of this theorem, (’,;) is often referred to as a binomial coefficient. Notice that it
is also possible to express the result of Theorem 1.1 as

& n
()C + _)’)” — Z (n _ k)x’{ynk-

k=0

a) From the binomial theorem it follows that the coefficient of x°y? in the expansion of
x+»7is (D) =() =21

b) To obtain the coefficient of a*b? in the expansion of (2a — 3b)7, replace 2a by x and
—3b by y. From the binomial theorem the coefficient of x°y? in (x 4+ y)7 is ({), and
(Dx%y? = (D) (2a)(=3b)* = (1)(2)%(~3)?a’b? = 6048a°H°.
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COROLLARY 1.1

For each integer n > 0,

@+ +E) -+ +()=2"and

b) (5) = () +(G) -+ D) =0
Proof: Part (a) follows from the binomial theorem when we set x =y = 1, When x = —1
and y = 1, part (b) results.

Our third and final result generalizes the binomial theorem and is called the muitinomial
theorem.

THEOREM 1.2

EXAMPLE 1.27

ny M2 Ay

For positive integers #, f, the coefficient of x| x)*x* - - - x;
(g +x3+ 0+ x)" s

in the expansion of

nl

ny'nylngt---n,!
where each n; is an integer with O <n; <n,forall 1 <i <t,andn;+ny+n3+---+
H; =N,
Proof: As in the proof of the binomial theorem, the coefficient of xy"x;°x5* - - - x/" is the
number of ways we can select x| from x| of the i factors, x; from n, of the n — 5 remaining
factors, x3 from n; of the r — n| — 1y now remaining factors, . . ., and x, from n, of the
lastn —ny —ny; — 03 — - - - — n,_; = n, remaining factors. This can be carried out, as in
part (a) of Example 1.22, in

n\/m—n\/n—n —n Ho—Hy—Hy~ Ry~ —H_|
ny 12 n3 7y

ways. We leave to the reader the details of showing that this product is equal to
n!

¥

nlngtng! ooyl

n
Ry, g, B3, .., By

and is called a multinomial coefficient. (When ¢t = 2 this reduces to a binomial coefficient.)

which is also written as

a) In the expansion of (x + y + z)7 it follows from the multinomial theorem that the

coefficient of x?y2z% is (, 3 ;) = 54 = 210, while the coefficient of xyz*is (; | 5) =
3.4 I R

42 and that of x*z* is (3] ,) = 353 = 35.

b) Suppose we need to know the coefficient of a?h’c?d” in the expansion of
(a +2b — 3¢ + 2d + 5)'°. If we replace a by v, 2b by w, —3c¢ by x, 2d by y, and
5 by z, then we can apply the multinomial theorem to (v+w +x + y +2)'°
and determine the coefficient of v2w3xzysz‘1r as (2‘3_1265’4) = 302,702,400. But
(5395.4) (@220 (=30)22d) (5)* = (3555 ) (DI (=3 (2  (5)a?b c*d®) =
435,891,456,000,000 a*bc3d°.
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1. Calculate (S) and check your answer by listing all the se-
lections of size 2 that can be made from the letters a, b, ¢, d, e,
and f.

2. Facing a four-hour bus trip back to college, Diane decides to
take along five magazines from the 12 that her sister Ann Marie
has recently acquired. In how many ways can Diane make her
selection?

3. Evaluate each of the following.
a) C(10.4) b (¥ ocw 12 d ()

4. In the Braille system a symbol, such as a lowercase letter,
punctuation mark, suffix, and so on, is given by raising at least
one of the dots in the six-dot arrangement shown in part (a) of
Fig. 1.7. (The six Braille positions are labeled in this part of
the figure.) For example, in part (b) of the figure the dots in
positions 1 and 4 are raised and this six-dot arrangement repre-
sents the letter c. In parts (c¢) and (d) of the figure we have the
representations for the letters m and t, respectively. The definite
article “the” is shown in part (e) of the figure, while part (f)
contains the form for the suffix “ow.” Finally, the semicolon,
;» is given by the six-dot arrangement in part (g), where the dots
at positions 2 and 3 are raised.

1. o4 o O e o - @
2 .5 . . . . o o
3 ef . . o - e -
(@ {b) c © "m (d) t
. @ P Y . .
o - ® - ® -
® @ . [ ] e -
(e) the' (B “ow” |(g

Figure 1.7

a) How many different symbols can we represent in the
Braille system?

b) How many symbols have exactly three raised dots?
¢) How many symbols have an even number of raised dots?

5. a) How many permutations of size 3 can one produce with
the letters m, 1, a, f, and t?

b) List all the combinations of size 3 that result for the
lettersm, r, a, f, and t.

6. If n is a positive integer and n > 1, prove that (;) + (" > ')
is a perfect square.

7. A committee of 12 is to be selected from 10 men and 10
women. In how many ways can the selection be carried out if
(a) there are no restrictions? (b) there must be six men and six
women? (c) there must be an even number of women? (d) there
must be more women than men? (e) there must be at least eight
men?

8. In how many ways can a gambler draw five cards from a
standard deck and get (a) a flush (five cards of the same suit)?
(b) four aces? (c) four of a kind? (d) three aces and two jacks?
(e) three aces and a pair? (f) a full house (three of a kind and a
pair)? (g) three of a kind? (h) two pairs?

9. How many bytes contain (a) exactly two 1's; (b) exactly
four 1’s; (¢) exactly six 1’s; (d) at least six 17s?

10. How many ways are there to pick a five-person basketball

team from 12 possible players? How many selections include

the weakest and the strongest players?

11. Astudent is to answer seven out of 10 questions on an exam-

ination. In how many ways can he make his selection if (a) there

are no restrictions? (b) he must answer the first two questions?

(c) he must answer at least four of the first six questions?

12. In how many ways can 12 different books be distributed

among four children so that (a) each child gets three books?

(b) the two oldest children get four books each and the two

youngest get two books each?

13. How many arrangements of the letters in MISSISSIPPI

have no consecutive §’s?

14. A gym coach must select 11 seniors to play on a football

team. If he can make his selection in 12,376 ways, how many

seniors are eligible to play?

15. a) Fifteen points, no three of which are collinear, are given
on a plane. How many lines do they determine?

b) Twenty-five points, no four of which are coplanar, are
given in space. How many triangles do they determine?
How many planes? How many tetrahedra (pyramidlike
solids with four triangular faces)?

16. Determine the value of each of the following summations.

6 2 10
a Y @+ b)Y (-1 o) 11+
=1

J=-2 =0
2n

d) Z(—l)", where n is an odd positive integer

k=n

6
€ Zi(~1)’
=1
17. Express each of the following using the summation (or
Sigma) notation. In parts (a), (d), and (e), n denotes a positive
integer.

1 1 1 1
3)5!‘+§+1‘!'+"'+;—!, nx2



b} 1 +4+9+ 16 +25 + 36 +49
O =243 -4 45 -6+ 7

I Dt
n n+1 n+2 2n

n+1 w42 n+3
e)"_( 21 )+( 4l )_( 6! )+

2n
+(=D ((2@1)

18. For the strings of length 10 in Example 1.24, how many
have (a) four 0’s, three 1°s, and three 2°s; (b) at least eight 1’s;
(c) weight 47

+

19. Consider the collection of all strings of length 10 made up
from the alphabet 0, 1, 2, and 3. How many of these strings
have weight 37 How many have weight 4? How many have
even weight?

20. Inthe three parts of Fig. 1.8, eight points are equally spaced
and marked on the circumference of a given circle.

Figure 1.8

a) For parts (a) and (b) of Fig. 1.8 we have two different
(though congruent) triangles. These two triangies (distin-
guished by their vertices) result from two selections of size
3 from the vertices A, B, C, D, E, F, G, H. How many dif-
ferent (whether congruent or not) triangles can we inscribe
in the circle in this way?

b) How many different quadrilaterals can we inscribe in the
circle, using the marked vertices? [One such quadrilateral
appears in part (c) of Fig. 1.8.]

¢) How many different polygons of three or more sides can
we inscribe in the given circle by using three or more of the
marked vertices?
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21, How many triangles are determined by the vertices of a
regular polygon of n sides? How many if no side of the polygon
is to be a side of any triangle?

22. a) In the complete expansion of (a+b+c+d)-
e+ f+g+h)u+v+w+x+ v+ z)one obtains the
sum of terms such as agw, cfx, and dgv. How many such
terms appear in this complete expansion?

b) Which of the following terms do not appear in the com-
plete expansion from part (a)?
i) afx ii) bux

iv) cgw V) egu

iii) chz

vi) dfz

23. Determine the coefficient of x°y* in the expansions of
() (x + ¥)'2, (B) (x +2»)'%, and (c) (2x — 3y)"2.

24. Complete the details in the proof of the multinomial
theorem.

25. Determine the coefficient of
a) xyz2in (x + y + 2)*
b) xyz*in (w+x + y +2)*
©) xyz?in 2x —y — g)*
d) xyz™%in (x — 2y + 3z7 )¢
e) wixlyz?in Qw —x + 3y —22)*
26. Find the coefficient of w?x2y?z? in the expansion of

@ w+x+y+z+D0 0 QCw—-—x+3y+z-2", and
@D@w+w—-2x+y+352+3H

27. Determine the sum of all the coefficients in the expan-
sions of

a) (x+y)° b) (x + »)'"°
d (w+x+y+2)°
€ (25 ~ 3t +5u +6v— llw +3x +2y)°

28. For any positive integer n determine
n 1 n (‘ 1 )r
a _— b —
);i!(n—i)! );i!(ft—i)!
29, Show that for all positive integers m and n,

m+n m+n
n( ” )—(m+])(m+l).

30. With n a positive integer, evaluate the sum

VY22 (N )+ 2"
0 1 2 k n)
31. For x areal number and n a positive integer, show that

— n R 1 n-1
a)l={0+x)"— (l)x (1+x)

T (”)x2(1 +x)n-2 4 (*l)” (n)xn
2 n

b) 1=Q2+x) - ('l’)(x + D@ 40!

&) (x+y+2)°

+ (g)(x F QT = (L) (:)(x 1y
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€2 =@2+x" - (")x1(2 +x) b) Given a list—ap, a1, a2, ..., a,—of n+1 real
! numbers, where n is a positive integer, determine
+ (;)x2(2 +x) T () (n)x” Yoioia —a ).
8 ¢) Determine the value of 3 /%) (-5 — —-).

32. Determine x if Y50, (0)8' = x'® P O e B
' oA ) . 34. a) Write a computer program (or develop an algorithm)
3. g}f , 41, @, 4 is a list of four real numbers, what is that lists all selections of size 2 from the objects 1, 2, 3, 4,

;;l(az Aatfl)? 5’ 6.

b) Repeat part (a) for selections of size 3.

1.4

Combinations with Repetition

EXAMPLE 1.28

When repetitions are allowed, we have seen that for n distinct objects an arrangement of
size r of these objects can be obtained in n” ways, for an integer r > (0. We now turn to
the comparable problem for combinations and once again obtain a related problem whose
solution follows from our previous enumeration principles.

On their way home from track practice, seven high school freshmen stop at a restaurant,
where each of them has one of the following: a cheeseburger, a hot dog, a taco, or a fish sand-
wich. How many different purchases are possible (from the viewpoint of the restaurant)?

Let c, h, t, and f represent cheeseburger, hot dog, taco, and fish sandwich, respectively.
Here we are concerned with how many of each item are purchased, not with the order
in which they are purchased, so the problem is one of selections, or combinations, with
repetition.

In Table 1.6 we list some possible purchases in column (a) and another means of repre-
senting each purchase in column (b).

Table 1.6

1. ¢,¢.hhttf I. xx|xx|xx|x
2. ¢,cechtf 2. XXXX|x[x|x
3 c¢c0c0c0c0cf 3. xxxxxx|]||x
4. htt,ffff 4, |X|XX|XXXX
5. t,n,tf,f 50 |Pxxxxx|xx
6. tt Gttt 6. ||XXXXXXX]
7. £ 11 T | XXXXXXX
@ )

For a purchase in column (b) of Table 1.6 we realize that each x to the left of the first bar
(| ) represents a c, each x between the first and second bars represents an h, the x’s between
the second and third bars stand for t’s, and each x to the right of the third bar stands for
an f. The third purchase, for example, has three consecutive bars because no one bought
a hot dog or taco; the bar at the start of the fourth purchase indicates that there were no
cheeseburgers in that purchase.

Once again a correspondence has been established between two collections of objects,
where we know how to count the number in one collection. For the representations in
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EXAMPLE 1.30
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column (b) of Table 1.6, we are enumerating all arrangements of 10 symbols consisting
of seven x’s and three |’s, so by our correspondence the number of different purchases for

column (a) is
100 /10
713! 77

In this example we note that the seven x’s (one for each freshman) correspond to the size
of the selection and that the three bars are needed to separate the 3 4+ 1 = 4 possible food
items that can be chosen.

‘When we wish to select, with repetition, r of n distinct objects, we find (as in Table 1.6)
that we are considering all arrangements of r x’s and n — 1 {’s and that their number is

(n+r—1) z(n-i-r—-l)
rlitn — D! r ’

Consequently, the number of combinations of n objects taken r at a time, with repetition,
sCn+r—1,r).

(In Example 1.28, n =4, r = 7, so0 it is possible for r to exceed n when repetitions are
allowed.)

A donut shop offers 20 kinds of donuts. Assuming that there are at least a dozen of each kind
when we enter the shop, we can select adozen donutsin C(20+ 12 — 1, 12) = C(31, 12) =
141,120,525 ways. (Here n = 20, r = 12))

President Helen has four vice presidents: (1) Betty, (2) Goldie, (3) Mary Lou, and (4) Mona.
She wishes to distribute among them $1000 in Christmas bonus checks, where each check
will be written for a multiple of $100.

a) Allowing the situation in which one or more of the vice presidents get nothing,
President Helen is making a selection of size 10 (one for each unit of $100) from
a collection of size 4 (four vice presidents), with repetition. This can be done in
C(d+10—-1,10) = C(13, 10) = 286 ways.

b) Ifthere are to be no hard feelings, each vice president should receive at least $100. With
this restriction, President Helen is now faced with making a selection of size 6 (the
remaining six units of $100) from the same collection of size 4, and the choices now
number C(4 + 6 — 1, 6) = C(9, 6) = 84. [For example, here the selection 2, 3, 3, 4,
4, 4 is interpreted as follows: Betty does not get anything extra— for there is no 1 in
the selection. The one 2 in the selection indicates that Goldie gets an additional $100.
Mary Lou receives an additional $200 ($100 for each of the two 3’s in the selection).
Due to the three 4’s, Mona’s bonus check will total $100 + 3($100) = $400.]
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EXAMPLE 1.31

EXAMPLE 1.32

¢) If each vice president must get at least $100 and Mona, as executive vice president,
gets at least $500, then the number of ways President Helen can distribute the bonus
checks is

CR+2-1,)4+CE+1-1,D+C3B+0-1,00=10=C(4+2-1,2)
—

Mona gets
exactly $500

Mona gets
exactly $600

Mona gets
exactly $700

Using the
technique in part (b)

Having worked examples utilizing combinations with repetition, we now consider two
examples invelving other counting principles as well.

In how many ways can we distribute seven bananas and six oranges among four children
so that each child receives at least one banana?

After giving each child one banana, consider the number of ways the remaining three
bananas can be distributed among these four children. Table 1.7 shows four of the distri-
butions we are considering here. For example, the second distribution in part (a) of Ta-
ble 1.7 —namely, 1, 3, 3 —indicates that we have given the first child (designated by 1)
one additional banana and the third child (designated by 3) two additional bananas. The
corresponding arrangement in part (b) of Table 1.7 represents this distribution in terms of
three b’s and three bars. These six symbols — three of one type (the b’s) and three others of a
second type (the bars)—can be arranged in 6!/(3!3) = C®6,3)=C4+3-1,3)=20
ways. [Here n = 4, r = 3.] Consequently, there are 20 ways in which we can distribute
the three additional bananas among these four children. Table 1.8 provides the compa-
rable situation for distributing the six oranges. In this case we are arranging nine sym-
bols —six of one type (the o's) and three of a second type (the bars). So now we learn
that the number of ways we can distribute the six oranges among these four children is
N/6I3N) =CH,6)=C4d+6—1,6) =84 ways. [Heren = 4, r = 6.] Therefore, by the
rule of product, there are 20 X 84 = 1680 ways to distribute the fruit under the stated
conditions.

Table 1.7 Table 1.8

n 1,23 1y blb|b]| ) 1,2,2,3,3,4 1) olooloolo
2 1,3,3 2) b||bb] 2) 1,2,2,4,4,4 2) oleo|looo
3) 3,44 3) ||bl|bb 3) 2,2,2,3,3,3 3) tooolooo]|
4) 4,4,4 4) |||bbb 4) 4,4,4,4,4,4 4 flleooooo

@ {b) @ (b)

A message is made up of 12 different symbols and is to be transmitted through a com-
munication channel. In addition to the 12 symbols, the transmitter will also send a total
of 45 (blank) spaces between the symbols, with at least three spaces between each pair of
consecutive symbols. In how many ways can the transmitter send such a message?

There are 12! ways to arrange the 12 different symbols, and for each of these arrangements
there are 11 positions between the 12 symbols. Because there must be at least three spaces
between successive symbols, we use up 33 of the 45 spaces and must now locate the
remaining 12 spaces. This is now a selection, with repetition, of size 12 (the spaces) from a
collection of size 11 (the locations), and this can be accomplished in C(11 4+ 12 — 1, 12) =
646,646 ways.
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Consequently, by the rule of product the transmitter can send such messages with the
required spacing in (121)(33) = 3.097 X 10" ways.

In the next example an idea is introduced that appears to have more to do with number
theory than with combinations or arrangements. Nonetheless, the solution of this example
will turn out to be equivalent to counting combinations with repetitions.

Determine all integer solutions to the equation
X1+ xo+x34+x4 =17, where x, >0 foralll <i <4.

One solution of the equation is x; = 3, x» = 3, x3 = 0, x4 = 1. (This is different from a
solutionsuchas x; = 1,x3 = 0,x3 = 3, x4 = 3, even though the same four integers are being
used.) A possible interpretation for the solution x; = 3, x; = 3, x3 = 0, x4 = 11s that we are
distributing seven pennies (identical objects) among four children (distinct containers), and
here we have given three pennies to each of the first two children, nothing to the third child,
and the last penny to the fourth child. Continuing with this interpretation, we see that each
nonnegative integer solution of the equation corresponds to a selection, with repetition, of
size 7 (the identical pennies) from a collection of size 4 (the disrinct children), so there are
C@4+7—1,7) =120 solutions.

At this point it is crucial that we recognize the equivalence of the followin

#) The number of integer solutions of the equation
Xi+Xado+x, =1 x =0, igign. R

b) The number of selections, with repetition, of size r from a collection of size n.

¢) The number of ways r identical objects can be distributed among » distinet
containers.

In terms of distributions, part (c) is valid only when the r objects being distributed are
identical and the n containers are distinct. When both the » objects and the » containers
are distinct, we can select any of the n containers for each one of the objects and get n”
distributions by the rule of product.

When the objects are distinct but the containers are identical, we shall solve the problem
using the Stirling numbers of the second kind (Chapter 5). For the final case, in which both
objects and containers are identical, the theory of partitions of integers (Chapter 9) will
provide scme necessary results.

In how many ways can one distribute 10 (identical) white marbles among six distinct
containers?

Solving this problem is equivalent to finding the number of nonnegative integer solutions
tothe equation x; + x3 + - - - + x¢ = 10. That number is the number of selections of size 10,
with repetition, from a collection of size 6. Hence the answeris C(6 + 10 — 1, 10) = 3003.

We now examine two other examples related to the theme of this section.
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EXAMPLE 1.35

EXAMPLE 1.36

EXAMPLE 1.37

From Example 1.34 we know that there are 3003 nonnegative integer solutions to the
equation x| + xz + - - - + x¢ = 10. How many such solutions are there to the inequality
xi+ x4+ x5 < 10?

One approach that may seem feasible in dealing with this inequality is to determine
the number of such solutions to x; + x2 + - -+ + x¢ = k, where & is an integer and 0 <
k <9. Although feasible now, the technique becomes unrealistic if 10 is replaced by a
somewhat larger number, say 100. In Example 3.12 of Chapter 3, however, we shall estab-
lish a combinatorial identity that will help us obtain an alternative solution to the problem
by using this approach.

For the present we transform the problem by noting the correspondence between the
nonnegative integer solutions of

X1 +x2+---+x <10 (1
and the integer solutions of
x1+x+ -+ x5+ x7 =10, 0=<ux;, 1<i=<6, 0 < x7. (2)

The number of solutions of Eq. (2) is the same as the number of nonnegative integer
solutions of yy + y24+ - +ys +y7 =9, where y; = x, for 1 <i{ <6, and y; = x; — 1.
Thisis C(7+4+ 9 — 1, 9) = 5005.

Our next result takes us back to the binomial and multinomial expansions.

In the binomial expansion for (x + )", each term is of the form (}}x*y"~*, so the total
number of terms in the expansion is the number of nonnegative integer solutions of n; +
ng = n (n is the exponent for x, n, the exponent for ). This numberis C(2 +n — 1, n) =
n+1.

Perhaps it seems that we have used a rather long-winded argument to get this result.
Many of us would probably be willing to believe the result on the basis of our experiences
in expanding (x + y)" for various small values of n.

Although experience is worthwhile in pattern recognition, it is not always enough to find
a general principle. Here it would prove of little value if we wanted to know how many
terms there are in the expansion of (w + x + y 4+ 2)'°.

Each distinct term here is of the form (, ' . Jw"x"y"z™, where 0 <n, for
1 <i <4,and n| + ny + ny + ny = 10. This last equation can be solved in C(4 + 10 — 1,
10) = 286 ways, so there are 286 terms in the expansion of (w + x 4+ y 4 z)1°.

And now once again the binomial expansion will come into play, as we find ourselves
using part (a) of Corollary 1.1

a) Let us determine all the different ways in which we can write the number 4 as a sum
of positive integers, where the order of the summands is considered relevant. These
representations are called the compositions of 4 and may be listed as follows:

14 S) 24141
2)3+1 6)1+2+1
»H1+3 D1+4+142

4242 8 1+1+1+1
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Here we include the sum consisting of only one summand — namely, 4, We find that
for the number 4 there are eight compositions in total. (If we do not care about the order
of the summands, then the representations in (2) and (3) are no longer considered to be
different — nor are the representations in (3), (6), and (7). Under these circumstances
we find that there are five partitions for the number 4 —namely, 4; 3+ 1; 24 2;
2414 1;and 1 + 1 4+ 1 + 1. We shall learn more about partitions of positive integers
in Section 9.3.)

b) Now suppose that we wish to count the number of compositions for the number 7.
Here we do not want to list all of the possibilities — which include 7; 6 + 1; 1 + 6;
542,1+24+4;24+44+1;and 34+ 1 +2 + 1. To count all of these compositions,
let us consider the number of possible summands.

i) For one summand there is only one composition — namely, 7.
ii) If there are two (positive) summands, we want to count the number of integer
solutions for

wy +wy =7, where w, wy > 0.
This is equal to the number of integer solutions for
X, +xp =235, where x1, xp > 0.

The number of such solutions is (¥~ 1) = (§).
iii) Continuing with our next case, we examine the compositions with three (positive)
summands. So now we want to count the number of positive integer solutions for

yit+ynty=T1
This is equal to the number of nonnegative integer solutions for
1tz +23=4,

and that numberis (* 737 ") = (8).

We summarize cases (i), (ii), and (iii), and the other four cases in Table 1.9, where we
recall for case (i) that 1 = (§).

Table 1.9
n = The Number of Summands { The Number of Compesitions
in a Composition of 7 of 7 with 2 Summands
1 n=1 ) ¥

(ii) n=2 (ii) (
(iii) n=3 (iii) (
(iv) n=4d (iv) (S
) n=35 v) (
(vi) n==6 (vi) (
(vii) n=7 (vii) (
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EXAMPLE 1.38

EXAMPLE 1.39

EXAMPLE 1.40

Consequently, the results from the right-hand side of our table tell us that the (total)
number of compositions of 7 is

0+©+(+0-0 ()0 -20)

From part (a) of Corollary 1.1 this reduces to 2°.
In general, one finds that for each positive integer m, there are ) 7o) ("; ") =2m"1
compositions.

From Example 1.37 we know that there are 2'~! = 2! = 2048 compositions of 12. If
our interest is in those compositions where each summand is even, then we consider, for
instance, compositions such as

2+4+6=2(1+2+3) 2+842=2(14+4+1
8+2+2=24+1+1) 6+6=2(3+3).

In each of these four examples, the parenthesized expression is a composition of 6. This
observation indicates that the number of compositions of 12, where each summand is even,
equals the number of (all) compositions of 6, which is 26~ =25 = 32,

Our next two examples provide applications from the area of computer science. Further-
more, the second example will lead to an important summation formula that we shall use
in many later chapters.

Consider the following program segment, where i, j, and k are integer variables.

fori:=1to20do

for j :=1 to i do
fork :=1to jdo
print (i * j + k)

How many times is the print statement executed in this program segment?

Among the possible choices for i, j, and k (in the order i—first, j—second, k—third) that
will lead to execution of the print statement, we list (1) 1, 1, 15 (2) 2, 1, 1; (3) 15, 10, 1;
and (4) 15, 10, 7. We note that / = 10, ; = 12, kK = 5 is not one of the selections to be
considered, because j = 12 > 10 = i; this violates the condition set forth in the second
for loop. Each of the above four selections where the print statement is executed satisfies
the condition 1 <k < j <i < 20. In fact, any selection a, b, ¢ (a < b < ¢) of size 3, with
repetitions allowed, from the list 1,2, 3, ..., 20 results in one of the correct selections:
here, k = a, j = b, i = ¢. Consequently the print statement is executed

20 -
+3-1 = 22) = 1540 times.
3 3

If there had been (> 1) for loops instead of three, the print statement would have been
executed (2277~ 1) times.

Here we use a program segment to derive a summation formula. In this program segment,
the variables i, j, n, and counter are integer variables. Furthermore, we assume that the
value of 1 has been set prior to this segment.
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counter :=0
fori:=1tondo
for j :=1to ido
counter := counter +1

From the results in Example 1.39, after this segment is executed the value of (the variable)
counter will be (” +§ - 1) = (" ;“ 1). (This is also the number of times that the statement

(" counter := counter + 1

is executed.)

This result can also be obtained as follows: When i := 1, then j varies from 1 to 1 and
(*) is executed once; when i is assigned the value 2, then j varies from 1 to 2 and (*) is
executed twice; j varies from 1 to 3 when { is assigned the value 3, and (*) is executed three
times; in general, for 1 < k <n, wheni := k, then J varies from 1 to k and (*) is executed
k times. In total, the variable counter is incremented [and the statement (*) is executed]
1+2+34+. -4 ntimes.

Consequently,

r 1 1
Zi=1+2+3+~+n=(";r )="("27+)

i=1

The derivation of this summation formula, obtained by counting the same result in two
different ways, constitutes a combinatorial proof.

Our last example for this section introduces the idea of a run, a notion that arises in
statistics — in particular, in the detecting of trends in a statistical process.

The counter at Patti and Terri’s Bar has 15 bar stools. Upon entering the bar Darrell finds
the stools occupied as follows:

OOEOOOOEEEOGCGOOEDQO,

where O indicates an occupied stool and E an empty one. (Here we are not concerned with
the occupants of the stools, just whether or not a stool is occupied.) In this case we say that
the occupancy of the 15 stools determines seven runs, as shown:

00 E 0000 EEE 000 E O
R e e i S S S
Run  Run Run Run Run Run  Run
In general, a run is a consecutive list of identical entries that are preceded and followed by

different entries or no entries at all.
A second way in which five E’s and 10 O’s can be arranged to provide seven runs is

EOOOEEOOEOOOOGOE

We want to find the total number of ways five E’s and 10 O’s can determine seven runs.
If the first run starts with an E, then there must be four runs of E’s and three runs of O’s.
Consequently, the last run must end with an E.

Let x; count the number of E’s in the first run, x» the number of O’s in the second run,
x3 the number of E’s in the third run, . . . , and x7 the number of E’s in the seventh run. We
want to find the number of integer solutions for

X1+ x3+ x5 +x7 =35, X1, X3, X5, X7 >0 (3)
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and

X2 + x4 + x¢ = 10,

X2, X4, X6 > 0. 4)

The number of integer solutions for Eq. (3) equals the number of integer solutions for

yit+yit+tys+yr=1,

This number is (4+ L l) =

(3+7—1

1, ¥3, ¥s. y1 =0

(‘1‘) = 4. Similarly, for Eq. (4), the number of solutions is

57 ") = (3) = 36. Consequently, by the rule of product there are 4 - 36 = 144 arrange-
ments of five E’s and 10 O’s that determine seven runs, the first run starting with E.

The seven runs may also have the first run starting with an O and the last run ending

with an O. So now let wy count the number of O’s in the first run, w; the number of E’s in

the second run, w3 the number of O’s in the third run, . .

., and w7 the number of O’s in the

seventh run. Here we want the number of integer solutions for

wy + w3 + ws + wy = 10,

and

wy + ws + we = 5,

wy, wi, ws, w7 >0

wa, wy, we > 0.

Arguing as above, we find that the number of ways to arrange five E’s and 10 O’s, resulting

in seven runs where the first run starts with an O, is ( 6

4+671)(3+271)

2 ) =(5)(3) =504

Consequently, by the rule of sum, the five E’s and 10 O’s can be arranged in 144 4 504 =

648 ways to produce seven runs.

1. In how many ways can 10 (identical) dimes be distributed
among five children if (a) there are no restrictions? (b) each
child gets at least one dime? (c) the oldest child gets at feast two
dimes?

2. In how many ways can 15 (identical) candy bars be dis-
tributed among five children so that the youngest gets only one
or two of them?

3. Determine how many ways 20 coins can be selected from
four large containers filled with pennies, nickels, dimes, and
quarters. (Each container is filled with only one type of coin.)

4. A certain ice cream store has 31 flavors of ice cream avail-
able. In how many ways can we order a dozen ice cream cones
if (a) we do not want the same flaver more than once? (b) a
flavor may be ordered as many as 12 times? (¢) a flavor may be
ordered no more than 11 times?

5. a) In how many ways can we select five coins from a col-
lection of 10 consisting of one penny, one nickel, one dime,
one quarter, one half-dollar, and five (identical) Susan B.
Anthony dollars?

b) In how many ways can we select n objects from a col-
lecticn of size 2n that consists of » distinct and » identical
objects?

6. Answer Example 1.32, where the 12 symbols being trans-
mitted are four A’s, four B’s, and four C’s.

7. Determine the number of integer solutions of

Xy + X2+ x3 + x4 = 32,

where
a)x, >0, 1<i<4 b) x, >0, I=<i<4
€) ¥, X225, X3, %427
d)y x, >8, 1<i<4 e)x,>—-2, l<i<d

£ x, %2, x>0, 0<xy<25

8. In how many ways can a teacher distribute eight chocolate
donuts and seven jelly donuts among three student helpers if
each helper wants at least one donut of each kind?

9. Columba has two dozen each of » different colored beads.
If she can select 20 beads (with repetitions of colors allowed)
in 230,230 ways, what is the value of n?

10. In how many ways can Lisa toss 100 (identical) dice so that
at least three of each type of face will be showing?

11. Two n-digitintegers (leading zeros allowed) are considered
equivalent if one is a rearrangement of the other. (For example,
12033, 20331, and 01332 are considered equivalent five-digit
integers.) (a) How many five-digit integers are not equivalent?
(b) If the digits 1, 3, and 7 can appear at most once, how many
nonequivalent five-digit integers are there?



12, Determine the number of integer solutions for

X; 4 X2 4+ X3+ x4 + x5 < 40,

where
a) x, >0, I<i<5$
b) x, >-3, 1=<i<})

13. In how many ways can we distribute eight identical white

balls into four distinct containers so that (a) no container is

left empty? (b) the fourth container has an odd number of balls

in it?

14. a) Find the coefficient of v w*xz in the expansion of
Buv+2w+x+y+2)5

b) How many distinct terms arise in the expansion in
part (a)?
15. In how many ways can Beth place 24 different books on
four shelves so that there is at least one book on each shelf? (For
any of these arrangements consider the books on each shelf to
be placed one next to the other, with the first book at the left of
the shelf.)

16. For which positive integer n will the equations
(1) Xy t+x2+x3t+ -+ x9 =0, and
@D y+ytynt - +ya=n

have the same number of positive integer solutions?

17. How many ways are there to place 12 marbles of the same
size in five distinct jars if (a) the marbles are all black? (b) each
marble is a different color?

18. a) How many nonnegative integer solutions are there
to the pair of equations x; +x +x3+ -+ x7 =37,
X, + x5+ x3 =67
b) How many solutions in part (a) have xy, x, x3 > 0?
19. How many times is the print statement executed for the
following program segment? (Here, i, j, k, and m are integer
variables.)

fori:=1to20do
for j :=1to i do
fork :=1to jdo
form:=1 teo k do
print (i * j) + (k * m)

20. In the following program segment, i, j, k, and counter are
integer variables. Determine the value that the variable counter
will have after the segment is executed.

counter := 10
for 1 :=1 to 15 do
for j :=1tol5do
for k := j to 15 do
counter := counter + 1

21. Find the value of sum after the given program segment is
executed. (Here i, j, k, increment, and sum are integer vari-
ables.)
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increment :=0
sum :=0
fori:=1tol0do
for j :=1to ido
for k :=1 to jdo
begin
increment := increment + 1
sum := sum+ increment
end

22, Consider the following program segment, where /, j, &, n,
and counter are integer variables and the value of # (a positive
integer) is set prior to this segment.

counter :=0
for i :=1tondo
for j :=1toido
fork :=1to jdo

counter := counter + 1

‘We shall determine, in two different ways, the number of times
the statement

counter := counter +1

is executed. (This is also the value of counter after execution
of the program segment.) From the result in Example 1.39, we
know that the statement is executed ("3 ') = (*}°) times.
For a fixed value of /, the for loops involving j and k result
in (’ g 1) executions of the counter increment statement. Conse-
quently, ("3%) = 37, (' %'). Use this result to obtain a sum-

mation formula for
422434t =y 02
=1

23. a) Given positive integers m, n with m > n, show that the
number of ways to distribute m identical objects into n dis-
tinct containers with no container left empty is

Cm—1,m—-—n)=Cim-—1,n-1).

b) Show that the number of distributions in part (a) where
each container holds at least r objects (m > nr) is

Cm—14+(1—-r)n,n—1).
24, Write a computer program (or develop an algorithm) to list
the integer solutions for
a) x;+x+x:3=10, 0<x,
b) xi + s+ x5+ x4 =4,

25. Consider the 2" compositions of 20. {a) How many have
each summand even? (b) How many have each summand a
multiple of 47

1<i<3

~2<x, l1<i<4

26. Let n, m, k be positive integers with » = mk. How many
compositions of » have each summand a multiple of k?

27. Frannie tosses a coin 12 times and gets five heads and seven
tails. [n how many ways can these tosses result in (a) two runs
of heads and one run of tails; (b) three runs; (¢) four runs;
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(d) five runs; (e) six runs; and (f) equal numbers of runs of b) For n > 6, how many strings of n 0’s and 1’s contain
heads and runs of tails? (exactly) three occurrences of 01?
28. a) Forn = 4, consider the strings made up of » bits — that ¢) Provide a combinatorial proof for the following:
is, a total of n 0’s and 1’s. In particular, consider those Forn > 1,
strings where 'there are (exactly) {.wo occurre.:nces of 01. ntl ntl (n b 1)’ n odd
For example, if n = 6 we want to include strings such as 2" = { + 3 SRR K
010010 and 100101, but not 101111 or 010101. How many - (n+ l)» aeven.

such strings are there?

1.5
The Catalan Numbers (Optional)

In this section a very prominent sequence of numbers is introduced. This sequence arises in
a wide variety of combinatorial situations. We’'ll begin by examining one specific instance
where it is found.

EXAMPLE 1.42 Let us start at the point (0, 0) in the xy-plane and consider two kinds of moves:

Rix,VW—>(x+1,y Us(x, y) > (x, y+ 1.

We want to know how we can move from (0, 0) to (5, 5) using such moves — one unit to
the right or one unit up. So we’ll need five R’s and five U’s. At this point we have a situation
like that in Example 1.14, so we know there are 10!/(5!5!) = ('} such paths. But now
we'll add a twist! In going from (0, 0) to (5, 5) one may touch but never rise above the line
y = x. Consequently, we want to include paths such as those shown in parts (a) and (b) of
Fig. 1.9 but not the path shown in part (¢).

The first thing that is evident is that each such arrangement of five R’s and five U’s must
start with an R (and end with a U). Then as we move across this type of arrangement —
going from left to right — the number of R’s at any point must equal or exceed the number
of U’s. Note how this happens in parts (a) and (b) of Fig. 1.9 but not in part (c). Now we
can solve the problem at hand if we can count the paths [like the one in part (c)] that go
from (0, 0) to (5, 5) but rise above the line ¥y = x. Look again at the path in part (c) of
Fig. 1.9. Where does the situation there break down for the first time? After all, we start
with the requisite R — then follow it by a U. So far, so good! But then there is a second U
and, at this (first) time, the number of U’s exceeds the number of R’s.

Now let us consider the following transformation:

R, U, U, ! U RRRUUR < RUU ! RUUURR,U.

What have we done here? For the path on the left-hand side of the transformation, we
located the first move (the second U) where the path rose above the line y = x. The moves
up to and including this move (the second U) remain as is, but the moves that follow are
interchanged — each U is replaced by an R and each R by a U. The result is the path on
the right-hand side of the transformation — an arrangement of four R’s and six U’s, as seen
in part (d) of Fig. 1.9. Part (e) of that figure provides another path to be avoided; part (f)
shows what happens when this path is transformed by the method described above. Now
suppose we start with an arrangement of six U’s and four R’s, say

R,U,R,R,U,U,U, | U U,R.



1.5 The Catalan Numbers (Optional) 37

% — y = ! 4 =
. ¥ X// v X// | Y X//
> A | Ass | ° 1, 5
d e ‘ Ve
4 > 4 5 4
Ve e /s
Vs 7 /s
3 = 3 3
7 7
// //
2 2 - 2 P
Ve e
Vé 7
1 % 1 - 1 /
' 7 7/
rd rd Vd
X X X
3 4 5 12 3 4 5 1 2 3 4 5
R,U,R,R,U,R,R,U,U,U R,R,U,U,R,U,R,R,U,U R,U,U,U,R,R,RUUR
(a) (b) (©
y (4, 6) y (. 6)
6 _ - 6 -
y=x Y y=x =x
5 7 5 b 7 5 Vs
e 1605 L
7/ e Ve
4 7 4 4 -
’ ’ | /s
Id s rd
3 - 3 3 2
e | 7
rd Ve
2 2 4 2 %
Ve i Ve
// ‘ //
! y 1 - | 1 7
7 rd 7
rd v rd
X X X
3 4 5 12 3 4 5 1 2 3 4 5
RUURUUURRU UURURRRURU U,R,URU,U,URUR
(e) (
Figure 1.9

Focus on the first place where the number of U’s exceeds the number of R’s. Here it is in
the seventh position, the location of the fourth U. This arrangement is now transformed
as follows: The moves up to and including the fourth U remain as they are; the last three
moves are interchanged —each U is replaced by an R, each R by a U. This results in the
arrangement

R,U,R, R, U, U, U, : R,R,U.

—one of the bad arrangements (of five R’s and five U’s) we wish to avoid as we go from
(0, 0) to (5, 5). The correspondence established by these transformations gives us a way
to count the number of bad arrangements. We alternatively count the number of ways to
arrange four R’s and six U’s — this is 10!/(4! 6!} = ('?). Consequently, the number of ways
to go from (0, 0) to (5, 5) without rising above the line y = x is

10)‘ 10 _ 10! 10! __6(]0)!—5(10)!
(5 (4) -

T 515 46! 6! 5!

2(1 dory_ L g1y L 2e5\
8) (5!5!) ‘m(s) m( 5 )_ '
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The above result generalizes as follows. For any integer # > 0, the number of paths
(made up of n R’s and n U’s) going from (0, 0) to (n, n), without rising above the line

y=x,is
2n 2n 1 2n
b, = -~ = , n=1, by = 1.
7] n—1 n+1\n

Thenumbers by, by, b2, . . . are called the Catalan numbers, after the Belgian mathematician
Eugeéne Charles Catalan (1814-1894), who used them in determining the number of ways to
parenthesize the product x;x2x3x4 - - - x,. For instance, the five (= b3) ways to parenthesize
X1X2X3X4 are.

(((xixe)x)xa)  (Ca(xoxa))xs)  ((xo)(xaxa))  (x((xs)xs)) (o (e2(xsxs))).

The first seven Catalan numbers are by = 1, by = 1,6, =2, b3 = 5, by = 14, b5 = 42, and
be = 132,

r EXAMPLE 1.43 Here are some other situations where the Catalan numbers arise. Some of these examples
: are very much like the result in Example 1.42. A change in vocabulary is often the only
difference.

a) In how many ways can one arrange three 1’s and three —1’s so that all six partial
sums (starting with the first summand) are nonnegative? There are five (= b3) such
arrangements:

11,1, -1, -1, -1 1,1, -1,-1,1, -1 I, -1,1,1, -1, -1
L1, -11 -1,-1 1,-1,1,-1,1, -1
In general, for n > 0, one can arrange » 1’s and » —1’s, with all 2r partial sums
nonnegative, in b, ways.

b) Given four 1’s and four 0’s, there are 14 (= b,;) ways to list these eight symbols so
that in each list the number of 0’s never exceeds the number of 1’s (as a list is read
from left to right). The following shows these 14 lists:

10101010 11001010 11100010
10101100 11001100 11100100
10110010 11010010 11101000
10110100 11010100
10111000 11011000 11110000
For n > 0, there are b, such lists of n 1’s and n O’s.
c) Table 1.10
({((ab)c)d) (({(abc 111000
((a(bec)d) ({a(bc 110100
((ab)(cd)) ((ab(c 110010
(a((bo)d)) (a((bc 101100
{a(b(cd))) (a(b(c 101010

Consider the first column in Table 1.10. Here we find five ways to parenthesize the
product abed. The first of these is ({(ab)c)d). Reading left to right, we list the three
occurrences of the left parenthesis “(” and the letters a, b, c — maintaining the order
in which these six symbols occur. This results in (({abc, the first expression in col-
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umn 2 of Table 1.10. Likewise, ((a{bc))d) in column 1 corresponds to ((a{bc¢ in col-
umn 2 —and so on, for the other three entries in each of columns 1 and 2. Now one
can also go backward, from column 2 to column 1. Take an expression in column 2
and append “d)” to the right end. For instance, ((ab(c becomes ((ab(cd). Reading
this new expression from left to right, we now insert a right parenthesis )"’ whenever
a product of two results arises. So, for example, ((ab(cd) becomes

({ab)(cd))
For the ‘_T T_ For the
product of product of
aand b {ab) and (cd)

The correspondence between the entries in columns 2 and 3 is more immediate.
For an entry in column 2 replace each “(” by a “1” and each letter by a “0”. Reversing
this process, we replace each 17 by a “(”, the first O by a, the second by b, and the
third by c. This takes us from the entries in column 3 to those in column 2.

Now consider the correspondence between columns 1 and 3. (This correspondence
arises from the correspondence between columns | and 2 and the one between columns
2 and 3.) It shows us that the number of ways to parenthesize the product abcd equals
the number of ways to list three 1’s and three 0’s so that, as such a list is read from left
to right, the number of 1’s always equals or exceeds the number of 0’s. The number
of ways here is 5 (= b3).

In general, one can parenthesize the product x;xpx3 - - - x,, in b, _| ways.

d) Let us arrange the integers 1, 2, 3, 4, 5, 6 in two rows of three so that (1) the integers
increase in value as each row is read, from left to right, and (2) in any column the
smaller integer is on top. For example, one way to do this is

1 2 4
3 5 6

Now consider three 1’s and three ('s. Arrange these six symbols in a list so that
the 1’s are in positions 1, 2, 4 (the top row) and the 0’s are in positions 3, 5, 6 (the
bottom row). The result is 110100. Reversing the process, start with another list, say
101100 (where the number of 0’s never exceeds the number of 1°s, as the list is read
from left to right). The 1’s are in positions 1, 3, 4 and the 0’s are in positions 2, 3, 6.
This corresponds to the arrangement

1 3 4

2 5 6
which satisfies conditions (1) and (2), as stated above. From this correspondence we
learn that the number of ways to arrange 1, 2, 3, 4, 5, 6, so that conditions (1) and (2)
are satisfied, is the number of ways to arrange three 1’s and three 0’s in a list so that
as the six symbols are read, from left to right, the number of 0’s never exceeds the

number of 1’s. Consequently, one can arrange 1, 2, 3, 4, 5, 6 and satisfy conditions (1)
and (2) in by (= 5) ways.

In closing let us mention that the Catalan numbers will come up in other sections —in
particular, Section 5 of Chapter 10. Further examples can be found in reference [3] by
M. Gardner. For even more results about these numbers one should consult the references
for Chapter 10.
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EXERCISES 1.5

1. Verify that for each integern > 1,

(-0 0)

2. Determine the value of b5, by, be, and byy.

3. a} In how many ways can one travel in the xy-plane from
(0, 0)to (3, 3) usingthe movesR: (x, y) > (x + 1, y)and
U: (x, y) = (x, ¥y + 1), if the path taken may touch but
never fall below the line y = x? [n how many ways from
0,0 to 4, H?

b) Generalize the results in part (a).

¢) What can one say about the first and last moves of the
paths in parts (a) and (b)?

4. Consider the moves
R, y)=> (x+1,y) and Ulx,y) = (r,y+ 1),
as in Example 1.42. In how many ways can one go

a) from (0, 0) to (6, 6) and not rise above the line y = x?
b) from (2, 1) to (7, 6) and not rise above the line y =
x—17?

¢) from (3, 8) to (10, 15) and not rise above the line
y=x+157

5. Find the other three ways to arrange 1, 2, 3, 4, 5, 6 in two
rows of three so that the conditions in part (d) of Example 1.43
are satisfied.

6. There are by (= 14) ways to arrange 1, 2,3, ..., 8 in two
rows of four so that (1) the integers increase in value as each
row is read, from left to right, and (2) in any column the smaller
integer is on top. Find, as in part (d) of Example 1.43,

a) the arrangements that correspond to each of the fol-
lowing.
i) 10110010 ii) 11001010 iii) 11101000

b) the lists of four 1's and four O’s that correspond to each

of these arrangements of 1, 2, 3, ..., 8.
i) 1345 i1 237 i)1245
2678 4568 3678

7. In how many ways can one parenthesize the product
abedef?

8. There are 132 ways in which one can parenthesize the
product abcdefg.

a) Determine, as in part (c) of Example 1.43, the list of five
1's and five 0’s that corresponds to each of the following.

i) (((ab)e)(d(ef))
ii) (a(b(c(d(ef)))
i) ((((ab)(cd))e) [)

b) Find, as in Example 1.43, the way to parenthesize
abedef that corresponds to cach given list of five 1’s and
five s.

i) 1110010100

ii) 1100110010

iii) 1011100100

9. Consider drawing n semicircles on and above a horizontal
line, with no two semicircles intersecting. In parts (a) and (b)
of Fig. 1.10 we find the two ways this can be done for n = 2;
the results for n = 3 are shown in parts (¢)—(g).

Figure 1.10

i} How many different drawings are there for four semi-
circles?

il) How many for any # > 07 Explain why.
10. a) In how many ways can one go from (0, 0) to (7, 3) if
the only moves permitted are R: (x, y) — (x + 1, y) and

U: (x, y) — (x, y + 1), and the number of U’s may never
exceed the number of R’s along the path taken?

b) Let m, n be positive integers with m > n. Answer the

question posed in part (2), upon replacing 7 by m and 3

by n.
11. Twelve patrons, six each with a $5 bill and the other six
each with a $10 bill, are the first to arrive at a movie theater,
where the price of admission is five dollars. [n how many ways
can these 12 individuals (all loners) line up so that the number
with a $5 bill is never exceeded by the number with a $10 bill
(and, as a result, the ticket seller is always able to make any
necessary change from the bills taken in from the first 11 of
these 12 patrons)?
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1.6
Summary and Historical Review

In this first chapter we introduced the fundamentals for counting combinations, permuta-
tions, and arrangements in a large variety of problems. The breakdown of problems into
components requiring the same or different formulas for their solutions provided a key
insight into the areas of discrete and combinatorial mathematics. This is somewhat similar
to the top-down approach for developing algorithms in a structured programming lan-
guage. Here one develops the algorithm for the solution of a difficult problem by first
considering major subproblems that need to be solved. These subproblems are then further
refined — subdivided into more easily workable programming tasks. Each level of refine-
ment improves on the clarity, precision, and thoroughness of the algorithm until it is readily
translatable into the code of the programming language.

Table 1.11 summarizes the major counting formulas we have developed so far. Here
we are dealing with a collection of a distinct objects. The formulas count the number of
ways to select, or order, with or without repetitions, r of these n objects. The summaries of
Chapters 5 and 9 include other such charts that evolve as we extend our investigations into
other counting methods.

Table 1.11
OrderIs | Repetitions Location
Relevant | Are Allowed | Type of Result Formula in Text
Yes No Permutation Pn,ry=nl/(n —r),, Page 7
0<r<n
Yes Yes Arrangement n, nr=0 Page 7
n
No No Combination C(n,r)=nl/[rin —r)l] = ( ), Page 15
r
O<r=<n
. n+r—1
No Yes Combination , n,r=0 Page 27
with repetition 4

As we continue to investigate further principles of enumeration, as well as discrete
mathematical structures for applications in coding theory, enumeration, optimization, and
sorting schemes in computer science, we shall rely on the fundamental ideas introduced in
this chapter.

The notion of permutation can be found in the Hebrew work Sefer Yerzirah (The Book of
Creation), a manuscript written by a mystic sometime between 200 and 600. However, even
earlier, it is of interest to note that a result of Xenocrates of Chalcedon (396-314 B.C.) may
possibly contain “the first attempt on record to solve a difficult problem in permutations
and combinations.” For further details consult page 319 of the text by T. L. Heath [4],
as well as page 113 of the article by N. L. Biggs [1], a valuable source on the history
of enumeration. The first textbook dealing with some of the material we discussed in this
chapter was Ars Conjectandi by the Swiss mathematician Jakob Bernoulli (1654—1705). The
text was published posthumously in 1713 and contained a reprint of the first formal treatise
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on probability. This treatise had been written in 1657 by Christiaan Huygens (1629-1695),
the Dutch physicist, mathematician, and astronomer who discovered the rings of Saturn.

The binomial theorem for » = 2 appears in the work of Euclid (300 B.C.), but it was not
until the sixteenth century that the term “binomial coefficient” was actually introduced by
Michel Stifel (1486-1567). In his Arithmetica Integra (1544) he gives the binomial coeffi-
cients up to the order of n = 17. Blaise Pascal (1623-1662), in his research on probability,
published in the 1650s a treatise dealing with the relationships among binomial coefficients,
combinations, and polynomials. These results were used by Jakob Bernoulli in proving the
general form of the binomial theorem in a manner analogous to that presented in this chap-
ter. Actual use of the symbol (?) did not begin until the nineteenth century, when it was
used by Andreas von Ettinghausen (1796-1878).

Blaise Pascal (1623-1662)

It was not until the twentieth century, however, that the advent of the computer made
possible the systematic analysis of processes and algorithms used to generate permutations
and combinations. We shall examine one such algorithm in Section 10.1.

The first comprehensive textbook dealing with topics in combinations and permutations
was written by W. A, Whitworth [10]. Also dealing with the material of this chapter are
Chapter 2 of D. 1. Cohen (2], Chapter 1 of C. L. Liu [5], Chapter 2 of F. S. Roberts [6],
Chapter 4 of K. H. Rosen [7], Chapter 1 of H. J. Ryser [8], and Chapter 5 of A. Tucker [9].
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SUPPLEMENTARY EXERCISES

1. In the manufacture of a certain type of automobile, four
kinds of major defects and seven kinds of minor defects can
occur. For those situations in which defects do occur, in how
many ways can there be twice as many minor defects as there
are major ones?

2. A machine has nine different dials, each with five settings
labeled 0, 1, 2, 3, and 4.

a) In how many ways can all the dials on the machine be
set?

b) If the nine dials are arranged in a line at the top of the
machine, how many of the machine settings have ne two
adjacent dials with the same setting?

3. Twelve points are placed on the circumference of a circle
and all the chords connecting these points are drawn. What is
the largest number of points of intersection for these chords?

4. A choir director must select six hymns for a Sunday church
service. She has three hymn books, each containing 25 hymns
(there are 75 different hymns in all). In how many ways can
she select the hymns if she wishes to select (a) two hymns from
each book? (b) at least cne hymn from each book?

5. How many ways are there to place 25 different flags on
10 numbered flagpoles if the order of the flags on a flagpole is
(a) not relevant? (b) relevant? (c) relevant and every flagpole
flies at least one flag?

6. A penny is tossed 60 times yielding 45 heads and 15 tails.
In how many ways could this have happened so that there were
no consecutive tails?

7. There are 12 men at a dance. (a) In how many ways can
eight of them be selected to form a cleanup crew? (b) How
many ways are there to pair off eight women at the dance with
eight of these 12 men?

8. In how many ways can the letters in WONDERING be
arranged with exactly two consecutive vowels?

9. Dustin has a set of 180 distinct blocks. Each of these blocks
is made of either wood or plastic and comes in one of three sizes
(small, medium, large), tive colors (red, white, blue, yellow,
green), and six shapes (triangular, square, rectangular, hexag-
onal, octagonal, circular). How many of the blocks in this set
differ from

a) the small red wooden square block in exactly one way?
(Forexample, the small red plastic square block is one such
block.)

b) the large blue plastic hexagonal block in exactly two
ways? (For example, the small red plastic hexagonal block
is one such block.)

10. Mr. and Mrs. Richardson want to name their new daughter
so that her initials (first, middle, and last) will be in alphabetical
order with no repeated initial. How many such triples of initials
can occur under these circumstances?

11. In how many ways can the 11 identical horses on a carousel
be painted so that three are brown, three are white, and five are
black?

12. In how many ways can a teacher distribute 12 different sci-
ence books among 16 students if (a) no student gets more than
one book? (b) the oldest student gets two books but no other
student gets more than one book?

13. Four numbers are selected from the following list of num-
bers; -5, -4, =3, -2, -1,1,2,3,4. (a) In how many ways can
the selections be made so that the product of the four numbers
is positive and (i) the numbers are distinet? (ii) each number
may be selected as many as four times? (iii) each number may
be selected at most three times? (b) Answer part (a) with the
product of the four numbers negative.

14, Waterbury Hall, a university residence hall for men, is op-
erated under the supervision of Mr. Kelly. The residence has
three floors, each of which is divided into four sections. This
coming fall Mr. Kelly will have 12 resident assistants (one for
each of the 12 sections). Among these 12 assistants are the four
senior assistants — Mr. DiRocco, Mr. Fairbanks, Mr. Hyland,
and Mr. Thornhill. (The other eight assistants will be new this
fall and are designated as junior assistants.) In how many ways
can Mr. Kelly assign his 12 assistants if

a) there are no restrictions?

b) Mr. DiRocco and Mr. Fairbanks must both be assigned
to the first floor?

¢) Mr. Hyland and Mr. Thornhill must be assigned to dif-
ferent floors?

15. a) How many of the 9000 four-digit integers 1000, 1001,
1002, . .., 9998, 9999 have four distinct digits that are ei-
ther increasing (as in 1347 and 6789) or decreasing (as in
6421 and 8653)7
b) How many of the 9000 four-digit integers 1000, 1001,
1002, ..., 9998, 9999 have four digits that are cither non-
decreasing (as in 1347, 1226, and 7778) or nonincreasing
(as in 6421, 6622, and 9888)?

16. a) Find the coefficient of x?yz® in the expansion of
[(x/2) + y = 321°.
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b) How many distinct terms are there in the complete ex-

pansion of
x 5
= —3z) ?
(300-%)

¢} What is the sum of all coefficients in the complete ex-
pansion?

17. a) In how many ways can 10 people, denoted A, B, .. .,
I, J, be seated about the rectangular table shown in
Fig. 1.11, where Figs. 1.11(a) and 1.11(b) are considered
the same but are considered different from Fig. 1.11(c)?

b) In how many of the arrangements of part (a) arc A and B
seated on Jonger sides of the table across from each other?

18. a) Determine the number of nonnegative integer solutions
to the pair of equations
X+ X+ x3 =6,

x, =0,

XJ+XZ+"‘+X5:|5~
1 <i <5,

b) Answer part (a) with the pair of equations replaced by
the pair of inequalities

X +x+x <6, X;+ x4+ xs <185,

x =20, 1=<i<s.

19. For any given set in a tennis tournament, opponent A can
beat opponent B in seven different ways. (At 6-6 they play a
tie breaker.) The first opponent to win three sets wins the tour-
nament. (a) In how many ways can scores be recorded with
A winning in five sets? (b) In how many ways can scores be
recorded with the tournament requiring at least four sets?

20. Given n distinct objects, determine in how many ways r of
these objects can be arranged in a circle, where arrangements
are considered the same if one can be obtained from the other
by rotation.

21. For every positive integer r, show that

22, a) In how many ways can the letters in UNUSUAL be ar-
ranged?
b) For the arrangements in part (a), how many have all
three U’s together?

¢) How many of the arrangements in part (a) have no con-
secutive U’s?
23. Francesca has 20 different books but the shelf in her dor-
mitory residence will hold only 12 of them.

a) In how many ways can Francesca line up 12 of these
books on her bookshelf?

b) How many of the arrangements in part (a) include
Francesca’s three books on tennis?

24. Determine the value of the integer variable counter after
execution of the following program segment. (Here i, j, k, /,
m, and n are integer variables. The variables r, s, and ¢ are
also integer variables; their values— where r > 1, 5 > 5, and
t = 7— have been set prior to this segment.)

counter :=10
fori:=1tol2do
for j :=1tordo
counter := counter + 2
fork :=5tosdo
for 1 :=3tokdo
counter := counter + 4
form:=3 to 12 do
counter := counter + 6
for n := t downto 7 do
counter := counter + 8

25. a) Find the number of ways to write 17 as a sum of 1’s and
2’s if order is relevant.

b) Answer part (a) for 18 in place of 17.
¢) Generalize the results in parts (a) and (b) for n odd and

for n even.
n i n N n P n n n n n .
0 2 4 1 3 5
A B F G J
J C E H H A
D D G B
H E C J F C
G F B A E D
(3) (b) ©

Figure 1.11



26. a) In how many ways can 17 be written as a sum of 2’s
and 3’s if the order of the summands is (i) not relevant?
(ii) relevant?
b) Answer part (a) for 18 in place of 17.

27. a) If n and r are positive integers with n > r, how many
solutions are there to

xi+x+--+x =n,

where each x, is a positive integer, for 1 <i{ < r?

b) In how many ways can a positive integer n be written
as a sum of r positive integer summands (1 < r < n) if the
order of the summands is relevant?

28. a) In how many ways can one travel in the xy-plane from
(1, 2) to (5, 9) if each move is one of the fellowing types:

Ry x, y) > x+1,y); (Wi, y)—> & y+1)?
b) Answer part (a) if a third (diagonal) move

D) (x,y)=>(x+1,y+1)
is also possible.

29. a) In how many ways can a particle move in the xy-plane
from the origin to the point (7, 4) if the moves that are

allowed are of the form:
Ry (x, > &x+1yx WUy —=x y+D?

b) How many of the paths in part (a) do not use the path
from (2, 2) to (3, 2) to (4, 2) to (4, 3) shown in Fig. 1.12?

¢) Answer parts (a) and (b) if a third type of move
(D), y) = (x+1,y+ 1)

is also allowed.

1 2 3 4 5 6 7
Figure 112

30. Due to their outstanding academic recerds, Donna and
Katalin are the finalists for the outstanding physics student (in
their college graduating class). A committee of 14 faculty mem-
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bers will each select one of the candidates to be the winner and
place his or her choice (checked off on a ballot) into the bal-
lot box. Suppose that Katalin receives nine votes and Donna
receives five. [n how many ways can the ballots be selected,
one at a time, from the ballot box so that there are always more
votes in favor of Katalin? [This is a special case of a general
problem called, appropriately, the ballot problem. This problem
was solved by Joseph Louis Frangois Bertrand (1822-1900).]

31. Consider the 8 X 5 grid shown in Fig. 1.13. How many
different rectangles (with integer-coordinate corners) does this
grid contain? [For example, there is a rectangle (square) with
corners (1, 1), (2, 1), (2, 2), (1, 2), a second rectangle with cor-
ners (3, 2), (4, 2), (4, 4), (3, 4), and a third with corners (5, 0),
(7,00, (7,3) (5, 3).]

Y

1 2 3 4 5 & 7
Figure 1.13

32. As head of quality control, Silvia examined 15 motors, one
at a time, and found six defective (D) motors and nine in good
(G) working condition. If she listed each finding (of D or G) af-
ter examining each individual motor, in how many ways could
Silvia’s list start with a run of three G’s and have six runs in
total?

33. In order to graduate on schedule, Hunter must take (and
pass) four mathematics electives during his final six quarters. If
he may select these electives from a list of 12 (that are offered
every quarter) and he does not want to take more than one of
these electives in any given quarter, in how many ways can he
select and schedule these four electives?

34. In how many ways can a family of four (mother, father,
and two children) be seated at a round table, with eight other
people, so that the parents are seated next to each other and
there is one child on a side of each parent? (Two seatings are
considered the same if one can be rotated to look like the other.)






Properties of

the Integers:

Mathematical
Induction

Having known about the integers since our first encounters with arithmetic, in this chapter
we examine a special property exhibited by the subset of positive integers. This property
will enable us to establish certain mathematical formulas and theorems by using a technique
called mathematical induction. This method of proof will play a key role in many of the
results we shall obtain in the later chapters of this text. Furthermore, this chapter will provide
us with an introduction to five sets of numbers that are very important in the study of discrete
mathematics and combinatorics — namely, the triangular numbers, the harmonic numbers,
the Fibonacci numbers, the Lucas numbers, and the Eulerian numbers.

When x, y € Z, we know that x + y, xy, x —y € Z. Thus we say that the set Z is
closed under (the binary operations of} addition, multiplication, and subtraction. Turning
to division, however, we find, for example, that 2, 3 € Z but that the rational number % is
not a member of Z. So the set Z of all integers is not closed under the binary operation
of nonzero division. To cope with this situation, we shall introduce a somewhat restricted
form of division for Z and shall concentrate on special elements of Z™* called primes. These
primes turn out to be the “building blocks™ of the integers, and they provide our firstexample
of a representation theorem — in this case the Fundamental Theorem of Arithmetic.

41
The Well-Ordering Principle:
Mathematical induction

Given any two distinct integers x, y, we know that we must have either x < y or y < x.
However, this is also true if, instead of being integers, x and y are rational numbers or real
numbers. What makes Z special in this situation?

Suppose we try to express the subset Z1 of Z, using the inequality symbols > and >.
We find that we can define the set of positive elements of Z as

ZT={xeZlx>0={xeZlx>1}.

193
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When we try to do likewise for the rational and real numbers, however, we find that
QT ={xeQx>0) and R = {x e R|x > 0},

but we cannot represent Q™ or R* using > as we did for Z*.

The set Z7 is different from the sets Q' and R in that every nonempty subset X of
Z" contains an integer @ such that a < x, for all x € X —that is, X contains a least (or
smallest) element. This is not so for either Q1 or R, The sets themselves do not contain least
elements. There is no smallest positive rational number or smallest positive real number. If
¢ is a positive rational number, then since 0 < g /2 < ¢, we would have the smaller positive
rational number ¢ /2.

These observations lead us to the following property of the set ZT C Z.

The Well-Ordering Principle: Every nonempty subset of Z* contains a smallest
element. (We often express this by saying that Z'1 is well ordered.)

This principle serves to distinguish Zt from Q* and R*. But does it lead anywhere that
is mathematically interesting or useful? The answer 1s a resounding “Yes!” It is the basis
of a proof technique known as mathematical induction. This technique will often help us to
prove a general mathematical statement involving positive integers when certain instances
of that statement suggest a general pattern.

We now establish the basis for this induction technique.

THEOREM 4.1

The Principle of Mathematical Induction. Let 5(n) denote an open mathematical statement
(or set of such open statements) that involves one or more occurrences of the variable n,
which represents a positive integer.

a) If S(1) is true; and
b) If whenever S{k) is true (for some particular, but arbitrarily chosen, k € Z™), then
Sk + 1) is true;

then S(n) is true for all n e Z+.

Proof: Let S(n) be such an open statement satisfying conditions (a) and (b), and let F =
{r € Z7|5(z) is false}. We wish to prove that F' = (4, so to obtain a contradiction we assume
that F # . Then by the Well-Ordering Principle, F has a least element m. Since S(1)
is true, it follows that m # 1, so m > 1, and consequently m — 1 ¢ Z*. Withm — 1 ¢ F,
we have S(m — 1) true. So by condition (b) it follows that S((m — 1) + 1) = S(m) is true,
contradicting m € F. This contradiction arose from the assumption that F # 1. Conse-
quently, F = 4.

We have now seen how the Well-Ordering Principle is used in the proof of the Principle of
Mathematical Induction. It is also true that the Principle of Mathematical Induction is useful
if one wants to prove the Well-Ordering Principle. However, we shall not concern ourselves
with that fact right now. In this section our major goal will center on understanding and
using the Principle of Mathematical Induction. (But in the exercises for Section 4.2 we shall
examine how the Principle of Mathematical Induction is used to prove the Well-Ordering
Principle.)
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In the statement of Theorem 4.1 the condition in part (a) is referred to as the basis step,
while that in part (b) is called the inductive step.

The choice of 1 in the first condition of Theorem 4.1 is not mandatory. All that is needed
is for the open statement S(n) to be true for some first element ng € Z so that the induction
process has a starting place. We need the truth of S(ng) for our basis step. The integer ng
could be 5 just as well as 1. It could even be zero or negative because the set Z* in union
with {0} or any finite set of negative integers is well ordered. (When we do an induction
proof and start with ny < 0, we are considering the set of all consecutive negative integers
> ng in union with {0} and Z*.)

Under these circumstances, we may express the Principle of Mathematical Inductien,
using quantifiers, as

[S(o) A VK > ng [Sth) = Stk + DI} = VYn>ny S(n).

We may get a somewhat better understanding of why this method of proof is valid by
using our intuition in conjunction with the situation presented in Fig. 4.1.

n ng + 1 ng+2 ng + 3
0 o 0 0

r k k+1
(b)
Ng ng +1 ng+ 2 ng+ 3
(©
Figure 4.1

In part (a) of the figure we see the first four of an infinite (ordered) arrangement of
dominos, each standing on end. The spacing between any two consecutive dominos is
always the same, and it is such that if any one domino (say the kth) is pushed over to
the right, then it will knock over the next ({k 4 1)st) domino. This process is suggested
in Fig. 4.1(b). Our intuition leads us to feel that this process will continue, the (k 4+ 1)st
domino toppling and knocking over (to the right) the (k 4 2)nd domino, and so on. Part {(c)
of the figure indicates how the truth of S(rn) provides the push (to the right) to the first
domino (at ny). This provides the basis step and sets the process in motion. The truth of S(k)
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EXAMPLE 4.1

EXAMPLE 4.2

EXAMPLE 4.3

forcing the truth of S(k + 1) gives us the inductive step and continues the toppling process.
We then infer the fact that S(n) is true for all n > no as we imagine all the successive
dominos toppling {to the right.)

We shall now demonstrate several results that call for the use of Theorem 4.1.

Foralln e ZV, 3 [_ i =1+2+3+ 4 n =200
Proof: For n = 1 the open statement

anin+1)

S(n): Zi=1+2+3+...+n: 5

i=1
becomes S(1): Y /_;i =1=(1)(1 + 1)/2. So S(1) is true and we have our basis step —
and a starting point from which to begin the induction. Assuming the result true for 1 = k
(for some k € Z1), we want to establish our inductive step by showing how the truth of
S{k) “forces” us to accept the truth of S(k 4 1). [The assumption of the truth of S(k) is our
induction hypothesis.}] To establish the truth of S(k + 1), we need to show that

%i; (k+ Dk +2)
e

i=1

We proceed as follows.

k41 k
Zi=1+2+---+k+(k+1)=(Zf)+(k+1)=ﬁ'f~2+_13+(k+1),

i=1 i=1

for we are assuming the truth of S(k). But

k+1 1 2 1 k+Dk+2
k(+)+(k+]):k(k;)+(k2+):(+)2(+),

establishing the inductive step [condition (b)] of the theorem.
Consequently, by the Principle of Mathematical Induction, S(n) is true for all n € Z*.

Now that we have obtained the summation formuia for Y ._, i in two ways (see Ex-
ample 1.40), we shall digress from our main topic and consider two examples that use this
summation formula.

A wheel of fortune has the numbers from 1 to 36 painted on it in 2 random manner. Show
that regardiess of how the numbers are situated, there are three consecutive (on the wheel)
numbers whose total is 55 or more.

Let x; be any number on the wheel. Counting clockwise from x1, label the other numbers
X2, X3, ..., X3. For the result to be false, we musthave x; +x2 + x3 < 55, xo + x3 + x4 <
55, ..., X34 + X35 + X36 < 55, X35 + X35 + X1 < 55, and x35 + x1 + x3 < 55. In these 36
inequalities, each of the terms x1, X7, . . ., X34 appears (exactly) three times, so each of the
integers 1, 2, ..., 36 appears (exactly) three times. Adding all 36 inequalities, we find that
3 Z?gl xp =3 ngl i < 36(55) = 1980. But 2?21 i = (36)(37)/2 = 666, and this gives
us the contradiction that 1998 = 3(666) < 1980.

Among the 900 three-digit integers (from 100 to 999) those such as 131, 222, 303, 717,
848, and 969, where the integer is the same whether it is read from left to right or from
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right to left, are called palindromes. Without actually determining all of these three-digit
palindromes, we would like to determine their sum.

The typical palindrome under study here has the form aba = 100a + 106 +a =
101g + 10b, where 1 <a <9 and 0 < b < 9. With nine choices for ¢ and ten for b,
it follows from the rule of product that there are 90 such three-digit palindromes. Their
sum is

9 9 9 9 9 9
Z (Z aba) = Z Z aba = Z Z(lOla + 10b)
a=1 b=0 a=1 b=0 a=
9 9 9
= Z [10(101@ +10 Z b:l Z [10(101@ +10 Z b:|
a=1 b=0 a=1 b=1

9 9
10¢9 - 10
E l:lOlOa (f):l (1010 + 450)
a=1

1010 Z a + 9(450)

a=1

10109 - 10
= %) + 4050 = 49,500.

The next summation formula takes us from first powers to squares.

Prove that foreachn ¢ Z7,

ifz _nn+ DR+ 1)
= 6 ‘

Proof: Here we are dealing with the open statement

S(n): Z 2 nin + 1)(211+ 1)

Basis Step: We start with the statement S(1) and find that

iiz: oo M+ bem+)
- 4

i=1
so S(1) is true.

Inductive Step: Now we assume the truth of S(k), for some (particular) k € Z* —that
is, we assume that

iil: k(k + 1)(2k + 1)
6

i=1

is a true statement (when n is replaced by k). From this assumption we want to deduce the
truth of

%iz: k+ D+ D+ DRE+D+ 1)
6
_ k+ D+ 22k +3)
] .

Stk+1):
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Using the induction hypothesis S(k), we find that

k+1 k
DF=1P 424 Bk 1D2=) i k1)

i=1 i=1
:[Mﬂ}+(k+l)2
2k + 1 2k k+6
:(k+1)[li6—+l+(k+l)]=(k+1)|:—ig_i]
_ k+ Dk+2)2k+3)

6 El
and the general result follows by the Principle of Mathematical Induction.

The formulas from Examples 4.1 and 4.4 prove handy in deriving our next result.

EXAMPLE 4.5 Figure 4.2 provides the first four entries of the sequence of triangular numbers. We see

that 1, =1, =3, =6,1t, =10, and, in general, t, =14+24---4+i=i{i +1)/2,
foreachi € Z*. Forafixed n € Z' we want a formula for the sum of the first » triangular
numbers —that is, 7 +t +---+12, = 9 ,_, ;. When n =2 we have #; + , = 4. For
n = 3 the sum is 10. Considering »n fixed (but arbitrary) we find that
- N I IR PR I NP I
ti = = = —
I I PICRUEE DI N

i=1 i=1

:l[n(n+1)(2n+1):|+%[n(n+l):| — a4 1) [Zn—i—l +l]

2 6 2 12 4
_h(n+1){n+2)
G .
Consequently, if we wish to know the sum of the first 100 triangular numbers, we have
100(101)(102
bt = X 171700,
L]
L] ] ]
[ ] L] [ ] L] L] L]
[ ] [ ] [ ] L ] ® L] ® L] L] L]
ty =1 t=1+2 ty=1+2+3 ty=1+2+3+4
=1-2 =3=u —g=3-4 =10=4'5
2 2 2 2

Figure 4.2

Before we present any more results, let us note how we started the proofs in Examples 4.1
and 4.4. In both cases we simply replaced the variable r by 1 and verified the truth of some
rather easy equalities. Considering how the inductive step in each of these proofs was
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definitely more complicated to establish, we might question the need for bothering with
these basis steps. So let us examine the following example.

+ ; P .
EXAMPLE 4.6 If n € Z7, establish the validity of the open statement

n

S(n): Zi:1+2+3+...+n=

i=1

ni4+n+42
3 .

This time we shall go directly to the inductive step. Assuming the truth of the statement

k 2
R+k+2
S¢k): Eﬁi:1+2+3+...+k:%+_

i=1

for some {particular) k € Z*, we want to infer the truth of the statement

k+1 2
k+D*+E+1D)+2
Stk + 1): Zi:1+2+3+m+k+(k+l):( ) 2( )
T K43k 44
3 )

As we did previously, we use the induction hypothesis and calculate as follows:

k+1 k
Zi:1+2+3+---+k+(k+1)=(Zi)+(k+1)

i=1

i=1
K +k+2
=———+k+1)
2
_k2+k+2+2k+2 K43k +4
2 2 2 ’

Hence, foreach k € Z7, it follows that S(k) = S(k + 1). But before we decide to accept
the statement ¥V n S(n) as a true statement, let us reconsider Example 4.1. From thatexample
we learnedthat } ;_, i = n{n + 1)/2,foralln € Z". Therefore, we can use these tworesults
(from BExample 4.1 and the one already “established”” here) to conclude that for all n € Z*,

nin+1) :Z":l_:n2+n+2
2 £ 2

which implies that a(n + 1) = n> + n + 2 and 0 = 2, (Something is wrong somewhere!)

Ifn=1thend ]_ 1 =1but(n®+n+2)/2=(141+2)/2=2.50S5(1)is nottrue.
But we may feel that this result just indicates that we have the wrong starting point. Perhaps
S(n)istrue foralln > 7, orall n > 137. Using the preceding argument, however, we know
that for any starting point ny € Z, if S(i19) were true, then

ng
Zi=1+2+3+---+n0,

i=1

n%+n()+2=
2

From the result in Example 4.1 we have Zfil i = ng(ng =+ 1)/2, so it follows once again
that 0 = 2, and we have no possible starting point.

This example should indicate to the reader the need to establish the basis step —no
matter how easy it may be to verify it.
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EXAMPLE 4.7

Now consider the following pseudocode procedures. The procedure in Fig. 4.3 uses a for
loop to accumulate the sum of the squares. The second procedure (Fig. 4.4) demonstrates
how the result of Example 4.4 can be used in place of such aloop. In both procedures the input
is a positive integer n and the output is Z?:l i?. However, whereas the pseudocode within
the for loop of the procedure in Fig. 4.3 entails a total of rn additions and » multiplications
(not to mention the 1 — 1 additions for incrementing the counter variable {), the procedure
in Fig. 4.4 requires only two additions, three multiplications, and one {integer) division.
And this total number of additions, multiplications, and (integer) divisions is still 6 as the
value of # increases. Consequently, the procedure in Fig. 4.4 is considered more efficient.
(This idea of a more efficient procedure will be examined further in Sections 5.7 and 5.8.)

procedure SumQfSquaresl (n: positive integer)
begin
sum 1= 0
for i :=1tondo
sum := gum + 1?
end
Figure 4.3

procedure SumOfSquares2 (n: positive integer)
begin
sum:=n* (n+ 1} * (2*n+1)/6
end
Figure 4.4

Looking back at our first two applications of mathematical induction (in Examples 4.1
and 4.4), we might wonder whether this principle applies only to the verification of known
summation formulas. The next seven examples show that mathematical induction is a vital
tool in many other circumstances as well.

Let us consider the sums of consecutive odd positive integers.

D1 =1 (=1%
2) 1+3 =4 (=29
3H1+3+5 =9 (=3%
H1+3+5+7 =16 (=47

From these first four cases we conjecture the following result: The sum of the first n
consecutive odd positive integers is n?; that is, foralln € ZT,

Sm): Z(Zi —1)=n>

i=1

Now that we have developed what we feel is a true summation formula, we use the
Principle of Mathematical Induction to verify its truth for all n > 1.
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From the preceding calculations, we see that $(1) is true [as are S(2), $(3), and S(4)],
and so we have our basis step. For the inductive step we assume the truth of S(k) for some
k (= 1) and have

k
Z(Zi —1) = k%
i=1

We now deduce the truth of S(k + 1): ) “+1(2i — 1) = (& + 1)2. Since we have assumed
the truth of §(k), our induction hypothesis, we may now write

k+1 k

Z(Zz‘—1)=Z(2i—1)+[2(k+1)—1]:k2+[2(k+1)—1]

i=1 i=1

=k +2%+1=(k+ D2

Consequently, the result S(n) is true for all n > 1, by the Principle of Mathematical
Induction.

Now it is time to investigate some results that are not summation formulas.

In Table 4.1, we have listed in adjacent columns the values of 4r and n®> — 7 for the positive
integers n, where 1 < n < 8. From the table, we see that (n” — 7) <4nforn =1, 2,3,4,5;
but when n = 6, 7, 8, we have 4n < (n*> — 7). These last three observations lead us to
conjecture: For all n > 6, 4n < (n* — 7).

Table 4.1
n 4n -7 n 4n nt-7
1 4 —6 5 20 18
2 8 -3 6 24 29
3 12 2 7 28 42
4 16 9 8 32 57

Once again, the Principle of Mathematical Induction is the proof technique we need to
verify our conjecture. Let S(n) denote the open statement: 41 < (n> — 7). Then Table 4.1
confirms that S(6) is true [as are S(7) and S(8)], and we have our basis step. (At last we
have an example wherein the starting point is an integer ny # 1.)

In this example, the induction hypothesis is S(k): 4k < (k> — 7), where k ¢ Z+ and
k > 6. In order to establish the inductive step, we need to obtain the truth of S(k + 1) from
that of S(k). That is, from 4k < (k* — 7) we must conclude that 4(k + 1) < [(k + N2 —7].
Here are the necessary steps:

k<K —N=dk+d<E-=D+4< (=T +2k+1)
(because for k > 6, we find 2k + 1 > 13 > 4), and
dk+4 <k =D+ Ck+D=24k+ D<K +2k+ D) =T=(k+D?=17.

Therefore, by the Principle of Mathematical Induction, S(n) is true for all n > 6.
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EXAMPLE 4.9

EXAMPLE 4.10

Among the many interesting sequences of numbers encountered in discrete mathematics

and combinatorics, one finds the harmonic numbers H,, H, Hs, . .., where
H =1
H, =1+ 1
2
Hy=1+ ! + l,
) 2 3

L]

and, in general, H, = 1+ % + % 4+ -+ %,foreachn eZ™.
The following property of the harmonic numbers provides one more opportunity for us
to apply the Principle of Mathematical Induction.

ForallneZ', Y H; = (n+ 1)H, — n.

i=l

Proof: As we have done in the earlier examples (that is, Examples 4.1, 4.4, and 4.7), we
verify the basis step at n = 1 for the open statement S(n): Z'f-:l H; = (n+ 1)H, — n.This
result follows readily from

7=1

To verify the inductive step, we assume the truth of S(k), that is,
k
> Hj=(k+DH —k.
i=1

This assumption then leads us to the following:
&+l k
ZHJ‘ = Z Hj+ Hip = [(k+ DH — k] + Hep
st e = (k + 1) Hg =k + Heyy
= (k+ DI[Hgy1r — (1/(k + 1)) — k + His
=(k+2Hp —1—k
=k +2Hp — (k+1).

Consequently, we now know from the Principle of Mathematical Induction that S(r) is true
for all positive integers n.

For all n > 0 let A, C R, where |A, | = 2" and the elements of A, are listed in ascending
order. If r € R, prove that in order to determine whether r € A,, (by the procedure developed
below), we must compare r with no more than 1 4+ 1 elements in A,,.

When n = 0, Ay = {a¢} and only one comparison is needed. So the result is true for
n = 0 (and we have our basis step). For n = 1, A = {ay, az} with a; < a;. In order to
determine whether r € A}, at most two comparisons must be made. Hence the result follows
when n = 1. Now if n = 2, we write A; = {by, bo, ¢1, c2} = By UCy, where by < b; <
¢y <y, By ={by, by}, and C| = {c, ¢»}. Comparing r with by, we determine which of
the two possibilities— (i) r € By; or (ii) r € C; —can occur. Since |B;| = |C| = 2, either
one of the two possibilities requires at most two more comparisons (from the prior case
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where n = 1). Consequently, we can determine whether r € A> by making no more than
241 =n + 1 comparisons.

We now argue in general. Assume the result true for some &k > 0 and consider the case for
Aps1, where |Apo | = 2571, In order to establish our inductive step, let Agy; = By U Cy,
where |B¢| = |Cx| = 2*, and the elements of By, Cy are in ascending order with the largest
element x in B, smaller than the least element in Cy. Let r € R. To determine whether
r € Agyq, we consider whether r € B, or r € Cy.,

a) First we compare r and x. (One comparison)
b) If r < x, then because | By| = 2%, it follows by the induction hypothesis that we can
determine whether r € B; by making no more than & + 1 additional comparisons.

¢) If r > x, we do likewise with the elements in C,. We make at most £ 4+ 1 additional
comparisons to see whether r € Cj.

In any event, at most (k + 1) 4+ 1 comparisons are made.
The general result now follows by the Principle of Mathematical Induction.

One of our first concerns when we evaluate the quality of a computer program is whether
the program does what it is supposed to do. Just as we cannot prove a theorem by checking
specific cases, so we cannot establish the correctness of a program simply by testing various
sets of data. (Furthermore, doing this would be quite difficult if our program were to become
a part of a larger software package wherein, perhaps, a data setis internally generated.) Since
software development places a great deal of emphasis on structured programming, this has
brought about the need for program verification. Here the programmer or the programming
team must prove that the program being developed is correct regardless of the data set
supplied. The effort invested at this stage considerably reduces the time that must be spent
in debugging the program (or software package). One of the methods that can play a major
role in such program verification is mathematical induction. Let us see how.

The pseudocode program segment shown in Fig. 4.5 is supposed to produce the answer
x(y™) for real variables x, y with n a nonnegative integer. (The values for these three
variables are assigned earlier in the program.) We shall verify the correctness of this program
segment by mathematical induction for the open statement.

S(n): Forall x, y € R, if the program reaches the top of the while loop with n € N, after
the loop is bypassed (for n = 0) or the two loop instructions are executed r (> 0) times,
then the value of the real variable answer is x(y").

whilen # 0 do

begin
X X * y
n:=n-1
end

answer 1= Xx

Figure 4.5

The flowchart for this program segment is shown in Fig. 4.6. Referring to it will help us
as we develop our proof.
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Initialize the
real variables
x, y and the
nonnegative
integer vanable n

- The top of
D the while loop
v
No
n#0 l
Yes
answer ;= x
X =Xxy The program continues
n=n-1 with the next executable
————— statement following the
assignment statement for

the real vanable answer.
Figure 4.6

First consider §{0), the statement for the case where n = 0. Here the program reaches the
top of the while loop, but since # = 0, it follows the No branch in the flowchart and assigns
the value x = x(1) = x(y°) to the real variable answer. Consequently, the statement S(0)
is true and the basis step of our induction argument is established.

Now we assume the truth of S(k), for some nonnegative integer . This provides us with
the induction hypothesis.

S{k): Forall x, y € R, if the program reaches the top of the while loop with k € N, after
the loop is bypassed (for £ = 0) or the two loop instructions are executed & (> () times,
then the value of the real variable answer is x(y%).

Continuing with the inductive step of the proof, when dealing with the statement
S(k + 1), we note that because k + 1> 1, the program will not simply follow the No
branch and bypass the instructions in the while loop. Those two instructions (in the while
loop) will be executed at least once, When the program reaches the top of the while loop for
the firsttime, n = kK + 1 > 0, so the loop instructions are executed and the program returns
to the top of the while loop where now we find that

® The value of y is unchanged.
e The value of x is x; = x(y!) = xy.
® Thevalueofnis(k+1)—1==k%.
But now, by our induction hypothesis (applied to the real numbers x|, y), we know that

after the while loop for x|, y and n = k is bypassed (for £ = 0) or the two loop instructions
are executed k£ (> 0) times, then the value assigned to the real variable answer is

(5 = ey = x (.

So by the Principle of Mathematical Induction, S(n) is true for all n >  and the correct-
ness of the program segment is established.
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Recall (from Examples 1.37 and 3.11) that for a given n € Z*, a composition of n is an
ordered sum of positive-integer summands summing to #. In Fig. 4.7 we find the compo-
sitions of 1, 2, 3, and 4. We see that

a) 1 has 1 = 2% = 2'~! composition, 2 has 2 = 2! = 227} compositions, 3 has 4 = 2 =
23~1 compositions, and 4 has 8 = 23 = 24~! compositions; and

b) the eight compositions of 4 arise from the four compositions of 3 in two ways:
(i) Compositions (1)—(4") result by increasing the last summand (in each correspond-
ing composition of 3) by 1; (ii) Each of compositions (1”)—(4") is obtained by ap-
pending “4-1" to the corresponding composition of 3.

m=1 1 m=4 1) 4
2) 143

n=2y 2 (3) 242

141 @) 14142
(n=3) (1) 3 1M 341

2) 142 2 14241

3) 241 3 2+1+41

4 1+1+1 4 1+141+1
Figure 4.7

The observations in part (a) suggest that for all n € Z*, ${n): n has 2"~! compositions.
The result [in part (a)] for n = 1 provides our basis step, S(1). So now let us assume the
result true for some (fixed) k € Z+ —namely, S(k): k has 2¢=! compositions. At this point
consider S{k + 1). One can develop the compositions of £ + 1 from those of & as in part
{b) above (where k = 3). For k£ > 1, we find that the compositions of k& + 1 fall into two
distinct cases:

1) The compositions of k + 1, where the last summand is an integer ¢ > 1: Here this
last summand ¢ is replaced by # — 1, and this type of replacement provides a corre-
spondence between all of the compositions of k£ and all those compositions of k + 1,
where the last summand exceeds 1.

2) The compositions of k + 1, where the last summand is 1: In this case we delete
“+1” from the right side of this type of composition of k 4 1. Once again we get
a correspondence between all the compositions of & and all those compositions of
k 4 1, where the last summand is 1.
Therefore, the number of compositions of £ + 1 is twice the number for k. Conse-
quently, it follows from the induction hypothesis that the number of compositions of
k 4 1is 2(2k~1)y = 2k, The Principle of Mathematical Induction now tells us that for
all n € Z*, S(n): n has 2"~ compositions (as we learned earlier in Examples 1.37
and 3.11).

We learn from the equation 14 = 3 + 3 4 8 that we can express 14 using only 3's and &’s
as summands. But what may prove to be surprising is that for all n > 14,

S(n): n can be written as a sum of 3's and/or §’s (with no regard to order).
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As we start to verify S(n) for all n > 14, we realize that the given introductory sentence
shows us that the basis step S(14) is true. For the inductive step we assume the truth of
S(k) for some k € ZT, where k > 14, and then consider what can happen for S(k + 1). If
there is at least one 8 in the sum (of 3's and/or 8's) that equals k, then we can replace this 8
by three 3’s and obtain & + 1 as a sum of 3's and/or 8’s. But suppose that no 8 appears as a
summand of k. Then the only summand used is a 3, and, since & > 14, we must have at least
five 3's as summands. And now if we replace five of these 3's by two 8's, we obtain the
sum & + 1, where the only summands are 3’s and/or 8’s. Consequently, we have shown how
S(k) = S(k + 1) and so the result follows for all # > 14 by the Principle of Mathematical
Induction.

Now that we have seen several applications of the Principle of Mathematical Induction,
we shall close this section by introducing another form of mathematical induction. This sec-
ond form is sometimes referred to as the Alternative Form of the Principle of Mathematical
Induction or the Principle of Strong Mathematical Induction.

Once again we shall consider a statement of the form Vi > ng S(n), where ng € Z*, and
we shall establish both a basis step and an inductive step. However, this time the basis step
may require proving more than just the first case — where n = n¢. And in the inductive step
we shall assume the truth of all the statements S(ng), S(ng + 1), ..., Stk — 1), and S(k),
in order to establish the truth of the statement S(k 4 1). We formally present this second
Principle of Mathematical Induction in the following theorem.

THEOREM 4.2

The Principle of Mathematical Induction— Alternative Form. Let S(n) denote an open
mathematical statement (or set of such open statements) that involves one or more oc-
currences of the variable n, which represents a positive integer. Also let ny, n, € Z% with
no <Hj.

a) If S(ng), Stng+ 1), S(ng +2), ..., S(ny — 1), and S(n;) are true; and

b) H whenever 5(ng), S(ng+ 1), ..., S(k — 1), and S(k) are true for some (particular
but arbitrarily chosen) k € Z1, where k > ny, then the statement S(k 4 1) is also true;

then S{n) is true for all n > ny.

As in Theorem 4.1, condition (a) is called the basis step and condition (b) 1s called the
inductive step.

The proof of Theorem 4.2 is similar to that of Theorem 4.1 and will be requested in the
Section Exercises. We shall also learn in the exercises for Section 4.2 that the two forms
of mathematical induction (given in Theorems 4.1 and 4.2) are equivalent, for each can be
shown to be a valid proof technique when we assume the truth of the other.

Before we give any examples where Theorem 4.2 is applied, let us mention, as we did
for Theorem 4.1, that ny need not actually be a positive integer — it may, in reality, be 0 or
even possibly a negative integer. And now that we have taken care of that point once again,
let us see how we might apply this new proof technique.

Our first example should be familiar. We shall simply apply Theorem 4.2 in order to
obtain the result in Example 4.13 in a second way.
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The following calculations indicate that it is possible to write (without regard to order) the
integers 14, 15, 16 using only 3’s and/or 8’s as summands:

14=3+3+38 15=34+34+3+343 16=8438

On the basis of these three results, we make the conjecture

For every n € Z* where n > 14,

S{(n): ncanbe written as a sum of 3’s and/or 8’s.

Proof: It is apparent that the statements S(14), S(15), and S(16) are true — and this estab-
lishes our basis step. (Here ng = 14 and n, = 16.)
For the inductive step we assume the truth of the statements

S(14), S(15), ..., Stk —2), Stk — 1), and S(k)

for some k € Z*, where k > 16. [The assumption of the truth of these (k — 14) + 1 state-
ments constitutes our induction hypothesis.]Andnowifn = k + 1,thenn > 17andk + 1 =
(k —2) + 3. But since 14 < k — 2 < k, from the truth of S(k — 2) we know that (k — 2)
can be written as a sum of 3’s and/or 8’s; so (k + 1) = (k — 2) + 3 can also be written in
this form. Consequently, S(») is true for all » > 14 by the alternative form of the Principle
of Mathematical Induction.

In Example 4.14 we saw how the truth of S(k + 1) was deduced by using the truth of the
one prior result S(k — 2). Our last example presents a situation wherein the truth of more
than one prior result is needed.

Let us consider the integer sequence aq, ¢y, @2, a3, . . ., where

ap=1,a,=2,a, =3, and

ay = ty_1+ay_2+a,_3, forallneZ wheren > 3.
(Then, for instance, we find thatay =a> +a; +ap=3+2+1 =604 =a3 +ax+a, =
6+3+2=1landas=as+az+a=11+6+3=20)

We claim that the entries in this sequence are such that @, < 3" for all n € N—that is,
Yn e N §'(n), where §'(n) is the open statement: a, < 3.

For the basis step, we observe that

) ag=1=3"<3"

i) ¢y =2<3=23"and

fii) @ =3<9 =32
Consequently, we know that S'(0), 5'(1), and S'(2) are true statements.

So now we turn our attention to the inductive step where we assume the truth of the
statements S'(0), S"(1), S'(2), ..., Sk = 1), 85'(k), for some k € Z* where k > 2. For
the case where n = k + 1 > 3 we see that

aryy =apt+ag_ +a; o
< 3k + 3k—1 + 3k—2
< 3k +3k +3k — 3(3k) — 3k+1’
SO[Sk—2DASk-DASB=5Kk+1D.
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Therefore it follows from the alternative form of the Principle of Mathematical Induction

that a, < 3" foralln € N.

Before we close this section, let us take a second look at the preceding two results. In
both Example 4.14 and Example 4.15 we established the basis step by verifying the truth
of three statements: S(14), §(15), and $(16) in Example 4.14; and, $’(0), $'(1), and S'(2)
in Example 4.15. However, to obtain the truth of §(k 4+ 1) in Example 4.14, we actually
used only one of the (k — 14) 4+ 1 statements in the induction hypothesis — namely, the
statement S(k — 2). For Example 4.15 we used three of the k + 1 statements in the induction
hypothesis — in this case, the statements S'(k — 2), §’'(k — 1), and §'(k).

1. Prove each of the following for all n > 1 by the Principle

of Mathematical Induction.
niZn— 1H2n+1)

a) P43 4524 ...+ 2n—1)? = 3

by 134244354+ . +n(n+2)=

nn+1DC2n+7)
6

" 1 7
C)Zi(i—i—l)_n—i—l

i=1

2
DB ”—2(”: D (Z i)
=1

=1

2. Establish each of the following for all n > 1 by the Principle
of Mathematical Induction.

—1
a) iz“l :nZ:JJ =2"_ 1
=1

1=0

b) Z 2N =24 — 12"
=1

) Z(i)(i!) =+l -1
=1
3. a) "Note how Y7 8B 4+m+1P=3Y" (+1)7=
Z,:U(i3 + 3i2 +3i + 1). Use this result to obtain a for-
mula for Y_" | i%. (Compare with the formula given in
Example 4.4.)

b) Use the idea presented in part (a) to find a formula
for Y " | i* and one for 3", i*. [Compare the result for
Zle i* with the formula in part (d} of Exercise ! for this
section. ]

4. A wheel of fortune has the integers from 1 to 25 placed on it
in a random manner. Show that regardless of how the numbers
are positioned on the wheel, there are three adjacent numbers
whose sum is at least 39.

5. Consider the following program segment {written in pseu-
docode):

for 1 :=1to 123 do
for j :=1 to ido
print i * j
a) How many times is the print statement of the third line
executed?
b) Replace i in the second line by i?, and answer the ques-
tion in part (a).
6. a) For the four-digit integers (from 1000 to 9999) how
many are palindromes and what is their sum?
b) Write a computer program to check the answer for the
sum in part (a}.
7. Alumberjack has 4n + 110logs in a pile consisting of n lay-
ers. Each layer has two more logs than the layer directly above
it. If the top layer has six logs, how many layers are there?

8. Determine the positive integer n for which
2n n
Si-yr
=1 =1

9, Evaluate each of the following:

a) Z.}in ! b) Z?in i
10. Determine » % . where ¢, denotes the ith triangular
number, for 51 <7 < 100.

11. a) Derive a formula for Z:’:l t,, where 1; denotes the 2ith

triangular number for 1 <i < n.
b) Determine ) % #,.
¢) Write a computer program to check the resultin part (b).

12. a) Prove that (cos & + i sin ) = cos 28 + i sin 26,
where i € Cand i? = —1.

b) Using induction, prove that for all n € Z*,
(cos @ +isin @) = cos nd + i sin nd.
(This result is known as DeMoivre'’s Theorem.)
c¢) Verify that 1 +1{ = +2(cos 45° + i sin 45°), and com-
pute (1 + )1,

13. a) Consider an & X 8 chessboard. It contains sixty-four
1 X 1 squares and one 8 X 8 square. How many 2 X2



squares does it contain? How many 3 X 3 squares? How
many squares in total?
b) Now consider an n X n chessboard for some fixed
n e Z". For 1 <k <n, how many k X k squares are con-
tained in this chessboard? How many squares in total?
14. Prove thatforalln € £*, n > 3 = 2" < n!
15. Prove that foralln € Z* n > 4 = n? < 2.
16. a) Forn = 3 let X3 = {1, 2, 3}. Now consider the sum
_1+1+1+1+|+|+l
BT 3T T 2T 23T 2.3
1

nracys P4
where p4 denotes the product of all elements in a nonempty
subset A of X;. Note that the sum is taken over all the
nonempty subsets of X3. Evaluate this sum.

b) Repeat the calculation in part (a) for s, (where n = 2 and
X, =1{1,2) and s; (where n = 4 and X4 = {1, 2, 3, 4}).

¢) Conjecture the general result suggested by the calcula-
tions from parts (a) and (b). Prove your conjecture using
the Principle of Mathematical Induction,

17. For n € Z7, let H, denote the nth harmonic number (as
defined in Example 4.9).

a) Forall n € N prove that 1 + (%) < Hy».
b) Prove that foralln € Z7,

° . nn+1 a(n+1)
e L

18. Consider the following four equations:

1) 1=1
2) 2434+4=1+8
3) S+6+T+8+9=8+27

H 0+ H12+134+14+154+16=27+64

Conjecture the general formula suggested by these four equa-
tions, and prove your conjecture.

19. Forn € Z*, let S(n) be the open statement

S o ay
=1 2 '

Show that the truth of S(k) implies the truth of S¢k + 1) for all
keZ' Is S(n) true forall n € Z+?

20. Let §; and S, be two sets where |S| = m, |S:| = r, for
m,r € Z", and the elements in each of §;, S, are in ascend-
ing order. It can be shown that the elements in S, and S, can be
merged into ascending order by making nomore thanm +r — |
comparisons. (See Lemma 12.1.) Use this result to establish the
following.

Forn > 0, let S be a set with |.S| = 27, Prove that the number
of comparisons needed to place the elements of § in ascending
order is bounded above by # - 2",

4.1 The Well-Ordering Principle: Mathematical Induction
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21. During the execution of a certain program segment (written
in pseudocode), the user assigns to the integer variables x and n
any (possibly different) positive integers. The segment shown in
Fig. 4.8 immediately follows these assignments. If the program
reaches the top of the while loop, state and prove (by mathe-
matical induction) what the value assigned to answer will be
after the two loop instructions are executed n (> 0) times.

whilen # 0 do

begin
X :=X%*n
n:=n-1
end

answer = x

Figure 4.8

22, Inthe program segment shown in Fig. 4.9, x, y, and answer
are real variables, and » is an integer variable. Prior to execu-
tion of this white loop, the user supplies real values for x and y
and a nonnegative integer value for n. Prove (by mathematical
induction} that for all x, y € R, if the program reaches the top
of the while loop with n € N, after the loop is bypassed (for
n = ) or the two loop instructions are executed n (> () times,
then the value assigned to answer is x + ny.

while n # 0 do

begin
X 1=X+¥y
n:=n-1
end

answer = x

Figure 4.9

23. a) Let n € Z*, where n # 1, 3. Prove that n can be ex-
pressed as a sum of 2’s and/or 5’s.

b) Foralln € Z* show thatif n > 24, then n can be written
as a sum of 5’s and/or 7’s.

24. A sequence of numbers ay, a;, a;, . . . is defined by

a; = 1 a =2 an = dp_t + An_a, 1> 3.
a) Determine the values of as, aq4, as, ag, and a;.
b) Prove that foralln > 1, a, < (7/4)".

25. For a fixed n € Z™, let X be the random variable where
PriX=x)= %, x=1,23,..., n (Here X is called a uni-
form discrete random variable.) Determine E(X) and Var(X).
26. Let ap be a fixed constant and, for n>1, let aq, =
Y (T Dy

a) Show that 4, = a} and that a; = 2a;.

b) Determine a3 and a4 in terms of a;.
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¢) Conjecture a formula for a, in terms of ag when n > 0. 28. a) Of the 25~! = 2% = 16 compositions of 5, determine
Prove your conjecture using the Principle of Mathematical how many start with (i) 1; (i1) 2; (iii) 3; (iv) 4; and (v) 5.
Induction.

27. Verify Theorem 4.2.

b) Provide a combinatorial proof for the result in part (a)
of Exercise 2.

4.2

Recursive Definitions

Let us start this section by considering the integer sequence by, by, by, b3, . .., where
b, =2nforalln e N.Herewefindthatby =2-0=0,b, =2-1=2,b,=2-2 =4 and
by =23 = 6. If, for instance, we need to determine bg, we simply calculate bg =2 -6 =
12 — without the need to calculate the value of b, for any other r € N. We can perform
such calculations because we have an explicit formula— namely, b, = 2n —that tells us
how b, is determined from # (alone).
In Example 4.15 of the preceding section, however, we considered the integer sequence
ap, ay, a2, a4z, ..., where
ay=1,a=2,a, =3, and
Gy =@ap_1+a,_2+a,_a, forallneZ" wheren >3,
Here we do not have an explicit formula that defines each a, in terms of xn for all # € N,
If we want the value of ag, for example, we need to know the values of as, a4, and aj.
And these values {of as, a4, and a3) require that we also know the values of a,, ay, and ;.
Unlike the rather easy situation where we determined b = 2 - 6 = 12, in order to calculate
ag, here we might find ourselves writing
dg = ds ‘a4 + a3
= (a4 + a3+ ay) +(as +ay +a)) + (g +a; + ap)
= [(a3 + ax + a)) + (a2 + a; + ag) + a2
+[(az + a1 +ag) + az + a1} + (a2 + a1 + ag)
= [[{a2 + a1 + ap) + a2 + a1] + (a2 + a1 + ap) + a2
+ [(a2 + a1 + ag) + az + a1} + (a2 + a1 + ag)
=[[3+24+D+34+2]+3+2+1)+3]
FIGH24+ D E342) 4 B+241)
=37,
Or, in a somewhat easier manner, we could have gone in the opposite direction with these
considerations:
az=a+a +ay=3+24+1=6
as=as+a+a; =6+3+4+2=11
as =dag+a3+ay=11+6+3=20
ag = as +as +a3 =20+ 114+ 6 = 37.
No matter how we arrive at ag, we realize that the two integer sequences— by, b1, by,

b3, ..., and ap, a1, a», @3, .. .—are more than just numerically different. The integers
by, by, ba, b3, ..., can be very readily listed as 0, 2, 4, 6, . . ., and for any n € N we have
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the explicit formula b, = 2n. On the other hand, we might find it rather difficult (if not
impossible) to determine such an explicit formula for the integers aq, a;, aa2, as, . . . .

What is happening here for a sequence of integers can also occur for other mathematical
concepts — such as sets and binary operations [as well as functions (in Chapter 5), languages
(in Chapter 6), and relations (in Chapter 7)]. Sometimes it is difficult to define a mathematical
concept in an explicit manner. But, as for the sequence aq, @1, a2, a3, . . ., we may be able
to define what we need in terms of similar prior results. (We shall examine what we mean by
this in several examples in this section.) When we do so we say that the concept is defined
recursively, using the method, or process, of recursion. In this way we obtain the concept
we are interested in studying — by means of a recursive definition. Hence, although we do
not have an explicit formula here for the sequence ag, 4, a2, a3, . . ., we do have a way of
defining the integers a,, for n € N, by recursion. The assignments

a():l, a1=2, a2:3

provide a base for the recursion.
The equation

Ay = Gy + Gp-2 + @y, fornc Zt wheren > 3, (*)

provides the recursive process; it indicates how to obtain new entries in the sequence from
those prior results we already know (or can calculate). [Note: The integers computed from
Eq. (*) may also be computed from the equation ¢, 13 = dp42 + Gyt + Gn. forn e N.J

We now use the concept of the recursive definition to settle something that was mentioned
in three footnotes in Sections 2.1 and 2.3, After studying Section 2.2 we knew (from the
laws of logic) that for any statements py, p;, and p3, we had

PiA(pa A pa) & (LA P2) A ps,

and, consequently, we could write p; A pa A p3 without any chance of ambiguity. This is
because the truth value for the conjunction of three statements does not depend on the way
parentheses might be introduced to direct the order of forming the conjunctions of pairs
of (given or resultant) statements. But we were concerned about what meaning we should
attach to an expression such as p; A p2 A pa A pg. The following example now settles that
issue.

The logical connective A was defined (in Section 2.1) for only two statements at a time.
How, then, does one deal with an expression such as p; A p2 A p3 A ps, where py, a2, p3,
and p, are statements? In order to answer this question we introduce the following recur-
sive definition, wherein the concept at a certain [(n + 1)st] stage is developed from the
comparable concept at an earlier [nth] stage.

Given any statements p|, pa, .. ., Pn. Prnt1, We define

1) the conjunction of p;, p> by p; A p2 (as we did in Section 2.1), and
2) the conjunction of py, pa, ..., Pu, Prei, forn =2 by

PIADPIA APuAPnpt S (PLADPIA - ADPr) A Puti-
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[The result in (1) establishes the base for the recursion, while the logical equivalence n (2)
is used to provide the recursive process. Note that the statement on the right-hand side of
the logical equivalence in (2) is the conjunction of twe statements: p,4| and the previously
determined statement {(p1 A pa Ao A pu).]

Therefore, we define the conjunction of py, p2, p3, ps by

P1APrADP3 A pPas=(p1 A pPrAp3)Apy.

Then, by the associative law of A, we find that

(PLAP2API) A Pas= (1 A P2) ADIIA pa
S (1A p2) A (p3 A pa)
&= pLALpa Ap3 A pa)l
<= pi Al(p2 A p3) A pal
= pr APz A pa A ps).
These logical equivalences show that the truth value for the conjunction of four statements
is also independent of the way parentheses might be introduced to indicate how to associate
the given statements.
Using the above definition, we now extend our results to the following “Generalized

Associative Law for A.”
Letn € Z7 where n > 3, and let r € Z* with 1 <r < n. Then

S(n): For any statements py, pa, ..., Pry Prsls - -« Prs
(Pl/\PZ/\"‘/\Pr)/\(Pr+1/\"'/\Pn)<:>[71/\172/\'"/\Pr/\Pr+1/\"'/\Pn-

Proof: The truth of the statement §(3) follows from the associative law for A —and this
establishes the basis step for our inductive proof. For the inductive step we assume that
S(k) is true for some k > 3 and all 1 <r < k. That is, we assume the truth of

Sk): (pAP2A - APIA(Pr A AP
S DIAP2N AP NP A N D

Then we show that S(k) => S(k + 1). When we consider k + 1 statements, then we must
account forall 1 <r <k + 1.

1) Ifr = £, then

(PMIAP2A  APDADIL S PLAPIA A PE A Diat,

from our recursive definition.
2) For1 <r <k, we have

(PLAPLA - AP A(Prat Ao A D A Pigt)
S PIAP2 A AP AP A AP A prg]
S piApr A APIAPrar A APOLA P
S (PIAPIA AP APl A A PE) A Pigl
Al 2WAY 2 RANEENAY JAY 2% WARENAY Y N4y / TU R
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So it follows by the Principle of Mathematical Induction (Theorem 4.1} that the open
statement S{(n) is true for all n € ZT where n > 3.

Our next example provides us with a second opportunity to generalize an associative
law — but this time we shall deal with sets instead of statements.

In Definition 3.10 we extended the binary operations of U and M to an arbitrary (finite or
infinite) number of subsets from a given universe AU. However, these definitions do not rely
on the binary nature of the operations involved, and they do not provide a systematic way
of determining the union or intersection of any finite number of sets.

To overcome this difficulty, we consider the sets A, Az, ..., A,, Ay, where A; CU
forall 1 <i <n 4+ 1, and we define their union recursively as follows:

1) The union of A, Ay is A1 U A». (This is the base for our recursive definition.)
2) The union of Ay, A,, ..., A,, A,yq, forn > 2, is given by

ALUA U UAUAu = (ALUA U UA) U A,

where the set on the right-hand side of the set equality is the union of nwo sets,
namely, A\ U A, U ... U A, and A, 4. (Here we have the recursive process needed
to complete our recursive definition.)

From this definition we obtain the following “Generalized Associative Law for U.” If
n,reZ withn=>3and 1 <r < n, then
Stn): (AAUAU. - -UADUALU---UAp
=A| UAQU'--UArUAr_HU"-UAn,

where A; CAU foralll <i <n.

Proof: The truth of S(n) for n = 3 follows from the associative law of U, thereby providing
the basis step needed for this inductive proof. Assuming the truth of S(k) for some k € Z,
where k > 3 and 1 <r < k, we shall now establish our inductive step by showing that
S(k) = S(k + 1). Whendealing with k + 1 (> 4) sets we need toconsiderall 1 <r <k + 1.
We find that

1) For r = k we have
(A1UA2U"'UAk)UAk+1:A1UA2U--‘UA;CUA/(+1.

This follows from the given recursive definition.
2) If 1 <r <k, then

(A UA3U- - UA)U (A1 U---UA U App)
=(AUA U---UA)UT(Ayer U---UAD U Ayt
=[(AAVA U - UAJUA U - U AU Apy
= (AUA U UA UA, U UAD U Ay
= AUA U~ UA UA U---U A U A



214

Chapter 4 Properties of the Integers: Mathematical Induction

EXAMPLE 4.18

So it follows by the Principle of Mathematical Induction that S(x) is true for all integers
n>3.

Similar to the result in Example 4.17, the intersection of the  + 1 sets A}, Az, ..., A,,
A1 (each taken from the same universe U) is defined recursively by:

1) The intersection of A{, Ay is A N A,
2) For n > 2, the intersection of Ay, A2, ..., A,, A4 is given by
AN AN N AN Aupt = (ATN A2 NNV AR N A,
the intersection of the two sets Ay M Ay N ---N A, and A, .

We find that the recursive definitions for the union and intersection of any finite number of
sets provide the means by which we can extend the DeMorgan Laws of Set Theory. We shall
establish (by using mathematical induction) one of these extensions in the next example
and request a proof of the other extension in the Section Exercises.

Letn € Z1 wheren > 2, andlet A;, A>, ..., A, C QU foreach 1 <i <n. Then

AlNAN--NA,=A, UAU---UA,.

Proof: The basis step of this proof is given for n = 2. It follows from the fact that A| N A, =
A U A, —by the second of DeMorgan’s Laws (listed in the Laws of Set Theory in Sec-
tion 3.2).

Assuming the truth of the result for some &, where k > 2, we have

ANAn- NA; =4, UA,U---UA,

And when we consider k£ 4+ 1 (> 3) sets, the induction hypothesis is used to obtain the third
set equality in the following:

AT NA N MVA N A = (AN AN - YA M Agyy

Z(AlﬁAgﬂ'--ﬂAk)UZk_H =(K1UZ2U---UK/()UX](+1
221UZZU"‘UZ](UZ]{+1.

This then establishes the inductive step in our proof and so we obtain this generalized
DeMorgan Law for all n > 2 by the Principle of Mathematical Induction.

Now that we have seen the two recursive definitions (in Examples 4.16 and 4.17), as
we continue to investigate situations where this type of definition arises, we shall generally
refrain from labeling the base and recursive parts. Likewise, we may not always designate
the basis and inductive steps in a proof by mathematical induction.

As we look back at Examples 4.16 and 4.17, the recursive definitions in these two
examples should seem similar to us. For if we interchange the statement p; with the set A;,
forall 1 <i <n 4 1, and if we interchange each occurrence of A with U and replace <
with =, then we can obtain the recursive definition in Example 4.17 from the one given in
Example 4.16.

In a similar way one can recursively define the sum and product of s real numbers,
where n € Z" and n > 2. Then we can obtain (by the Principle of Mathematical Induction)
generalized associative laws for the addition and multiplication of real numbers. {In the
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Section Exercises the reader will be requested to do this.) We want to be aware of such
generalized associative laws because we have been using them and will continue to use them.
The reader may be surprised to learn that we have already used the generalized associative
law of addition. In each of Examples 4.1 and 4.4, for instance, the generalized associative
law of addition was used to establish the inductive step (in the proof by mathematical
induction). Furthermore, now that we are more aware of it, the generalized associative law
of addition can be used (usually, in an implicit manner) in recursive definitions — for now
there will be no chance for ambiguity if one wants to add four or more summands. For
example, we could define the sequence of harmonic numbers H,, H», Hs, ..., by

1) H =1;and
2) Forn>1 H,, 1= H, + (#‘1) :

Turning from addition to multiplication, we may use the generalized associative law of
multiplication to provide a recursive definition of n!. In this case we write

1) 0! =1;and
D Fornz=0,(n+ D=+ Y.

(This was suggested in the paragraph following Definition 1.1 in Section 1.2.) Also, the

integer sequence by, by, ba, by, ..., given explicitly (at the start of this section) by the
formula b, = 2r, n € N, can now be defined recursively by
1) b() =0; and

2) Forn>0, b,y =b, +2.

When we investigate the sequences in our next two examples, we shall once again find
recursive definitions. In addition we shall establish results where the generalized associative
law of addition will be used — althaugh in an implicit manner.

In Section 4.1 we introduced the sequence of rational numbers called the harmonic numbers.
Now we introduce an integer sequence that is prominent in combinatorics and graph theory
(and that we shall study further in Chapters 10, 11, and 12). The Fibonacci numbers may
be defined recursively by

1) i,=0, F; = 1;and

2y F,=F, |+ F, s, forneZ" withn >2.

Hence, from the recursive part of this definition, it follows that
BR=FR+F=14+0=1 Fib=FK+F=24+1=3
BE=FR+F=1+1=2 Fs=F,+F,=342=5.

We also find that Fg = 8, F5 = 13, Fg = 21, Fy = 34, Fyp, = 535, F|; = 89, and Fi; = 144

The recursive definition of the Fibonacci numbers can be used (in conjunction with the

Principle of Mathematical Induction) to establish many of the interesting properties that
these numbers exhibit. We investigate one of these properties now.

Let us consider the following five results that deal with sums of squares of the Fibonacci
numbers.

D +F=0+12=1=1x1
) R+ Fi+ R =0+174+12=2=1Xx2
)PP+ FI+FF 4+ FP=004+ 12+ 12422 =6=2X3
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A Fg+FE+ F+ FE4+ FP =00 4174+ 17 422432 =15=3 X5
SR+ A+ R+ R+ +F =0+ +124+2+3 45 =40=5x38
From what is suggested in these calculations, we conjecture that
VneZ' Y F2=F X Fp
i=0

Proof: For n = 1, the result in Eq. (1) —namely, Fj + F7 = 1 X 1 —shows us that the
conjecture is true in this first case.
Assuming the truth of the conjecture for some k > 1, we obtain the induction hypothesis:

F? = F, X Fiq1.

™~

i=0
Turning now to the case where n = k + 1 (> 2) we find that

ket k

Z F2= Z Fl 4+ Fly = (Fe X Fep) + F = Fopn X (Fot Fn) = Fi X Fgo
i=0 i=0

Hence the truth of the case for n = k 4 1 follows from the case for n = k. So the given
conjecture is true for all n € Z* by the Principle of Mathematical Induction. {The reader
may wish to note that the prior calculation uses the generalized associative law of addition.
Furthermore we employ the recursive definition of the Fibonacci numbers; it allows us to
replace Fi + Fiy1 by Fiynl)

Closely related to the Fibonacci numbers is the sequence known as the Lucas numbers. This
sequence is defined recursively by

1) Ly=2,L,=1;and
DL, =L, + L, o forneZ" withn> 2.

EXAMPLE 4.20

The first eight Lucas numbers are given in Table 4.2

Table 4.2

n O]l 1234 5| 6| 7

Ly |21 (3471|1829

Although they are not as prominent as the Fibonacci numbers, the Lucas numbers also
possess many interesting properties. One of the interrelations between the Fibonacci and
Lucas numbers is illustrated in the fact that

VaneZ' L,=F,_| + Foy1.
Proof: Here we need to consider what happens when n = 1 and n = 2. We find that
Li=1=04+1=F+F,=F_+ Fiy, and
Lo=3=142=F+FHR=FKH_ 1+,

so the result is true in these first two cases.
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Next we assume that L, = F,_| + F,. for the integers n =1,2,3, ..., k—1,k,
where k > 2, and then we consider the Lucas number L ;. It turns out that

Lipi =L+ L1 = (Fa + Fep) + (Fea + B *)
= (Fro1+ Fi) + (Fepr + Fy) = Fe + Fipo = Fugn—1+ Farns
Therefore, it follows from the alternative form of the Principle of Mathematical Induction

that L, = F,_| + F,yi foralln € Z*.[The reader should observe how we used the recursive
definitions for both the Fibonacci numbers and the Lucas numbers in the calculations at

()]

In Section 1.3 we introduced the binomial coefficients (’r’) forn,r e N, where n > r >
0. Corollary 1.1 in that section revealed that Y, _, (") = Y_»_, C(n, r) = 2", the total
number of subsets for a set of size n. With the help of the result in Example 3.12 we can
now define these binomial coefficients recursively by

(2)-0)(2) e
Q- ()n e ()0 v

At this time we present a second set of numbers, each of which is also dependent on two
integers. For m, k € N, the Eulerian numbers a,, ; are defined recursively by
Am k = (m - k)am—-l,k—l + (k + l)am—l.ka 0 = k =m— 1’ (*)
apo = 1, Am i = O1 k >m, Ak = 0, k<0.
(In Exercise 18 of the Section Exercises we shall examine a situation that shows how this

recursive definition may arise.) The values for a,, , where | <m <5and 0 <k <m — 1,
are given as follows:

Row Sum
m=1) 1 =1
(m=2) 1 1 2=2
(m=73) 1 4 1 6 =3
(m=4) 1 11 11 1 24 = 4t
(m=235) 1 26 66 26 1 120 = 5!

-1 .
These results suggest that forafixedm € Z7, Z 21:0 am ;. = m!, the number of permutations

of m objects taken m at a time. We see that the result is true for 1 <m < 5. Assuming the
result true for some fixed m (> 1), upon using the recursive definition at (*), we find that

Z Amyl k = Z [(m+1—=Kay 1+ (k+ Dagil
k=0 =0

= [('m + l)am.—l +am,0J + [mam,() + 2ram.l] =+ [(m - ])aml + 3am,2] + -
+ [3am,m73 + (m - l)am,mf?.J + [zam.m—l + mamm—l]
+ [apvl,m—l + (m + 1)am,m]-
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EXAMPLE 4.22

Since a,, 1 = 0 = a,, ,» We can write

m

Z: At 1.k — [am,() + mam.O] + [zam.l + (m - 1)am,1J +--
k=0

+ [(m - l)am,m—Z + zam,m—Z] + [mam,m—l + am.m—l_l

m—1

=(m+1) Y ane=(m+Dm!= (m+1)!
k=0

Consequently, the result is true for all m > 1 — by the Principle of Mathematical Induction.
(We'll see the Eulerian numbers again in Section 9.2.)

In closing this section we shall introduce the idea of a recursively defined set X. Here we
start with an initial collection of elements that are in X — and this provides the base of the
recursion. Then we provide a rule or list of rules that tell us how to find new elements in
X from other elements already known to be in X. This rule (or list of rules) constitutes the
recursive process, But now (and this part is new) we are also given an implicit restriction —
that is, a statement to the effect that no element can be found in the set X except for those
that were given in the initial collection or those that were formed using the prescribed rule(s)
provided in the recursive process.

We demonstrate the ideas given here in the following example.

Define the set X recursively by

1) 1€ X;and
2) Foreachae X,a+2€ X.

Then we claim that X consists (precisely) of all positive odd integers.
Proof: If we let ¥ denote the set of all positive odd integers —thatis, ¥ = {2n + 1|n € N} —
then we want to show that ¥ = X. This means, as we learned in Section 3.1, that we must
verifybothY € Xand X C Y.

In order to establish that ¥ € X, we must prove that every positive odd integer is in X.
This will be accomplished through the Principle of Mathematical Induction. We start by
considering the open statement

Sn): 2n+1eX,

which is defined for the universe N. The basis step — that is, S(0) -—is true here because
1 =2(0) + 1 € X by part (1) of the recursive definition of X. For the inductive step we
assume the truth of S(k) for some k > 0; this tells us 2k + 1 is an element in X. With
2k 4+ 1 € X it then follows by part (2) of the recursive definition of X that 2k + 1) +2 =
Rk+2)+1=2(k+ 1)+ 1€ X,s0 Sk+ 1) is also true. Consequently, S(n) is true (by
the Principle of Mathematical Induction) for all # € N and we have ¥ € X.

For the proof of the opposite inclusion (namely, X < ¥) we use the recursive defini-
tion of X. First we consider part (1) of the definition. Since 1 (= 2 -0+ 1) is a positive
odd integer, we have 1 € Y. To complete the proof, we must verify that any integer in X
that results from part (2) of the recursive definition is also in Y. This is done by show-
ing that ¢ + 2 € ¥ whenever the element g in X is also an element in Y. ForifaeV,
then a = 2r 4+ 1, where r € N—this by the definition of a positive odd integer. Thus
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a+2=2r+D+2=2r+2)+1=2(r 4+ 1)+ 1, where r 4+ 1 €N (actually, Z™),
and so a + 2 is a positive odd integer. This places @ + 2 in ¥ and now shows that X C Y.
From the preceding two inclusions —thatis, ¥ € X and X € ¥ —itfollowsthat X = Y.

1. The integer sequence a,, ay, as, . . . , defined explicitly by
the formulaa, = 5n forn € Z*, can also be defined recursively
by

1) ¢, = 5; and
2) apy1 =a, + 5, forn > 1.

For the integer sequence by, by, b3, ..., where b, =
ntn+2) foralt n € Z%, we can also provide the recursive def-
inition:

1Y b =3;and
2Y by =b,+2n+3 forn=1.

Give a recursive definition for each of the following integer
sequences ci, €3, €3, . .., where foralln € Z* we have

a) e, =7n b)c,=7"
e, =3n+7 d)yc, =7
e c,=n’ f) o =2— (=1

2. a) Give a recursive definition for the disjunction of state-
Ments pi, P2, .-y Poy Par1, 1= 1
b) Show thatif n, r € Z*, withn >3 and 1 <r <, then
(v P2V VPV A(Pr VY D)
S PV NP P VoV P

3. Use the result of Example 4.16 to prove that if p, 41, g2,
.., g, are statements and n > 2, then

PV g ANga A A )
S (EVagIAPVY@IN APV,
4. For n € Z*, n > 2, prove that for any statements pi, p,
cos Pas
a =PIV V-V ) S T PLATPI A ATy
b) =(prAp: A AP S oPIV TPV eV TP,
5. a) Give a recursive definition for the intersection of the
sets A, Ay, ..., AL Ay CU > 1.
b) Use the result in part (a) to show that for all n, r € Z*
withn > 3and 1 <r < n,
ANAN- - NAINA, 4N---MTA)

=ANAN-NA NAL NN A,

6. Forn > 2 and any sets A, Ay, ..., A4, €U, prove that
AlUA U --UA,=A NAN---NA,.

7. Use the result of Example 4.17 to show that if sets
A, B, Bs,...,B, C%and n > 2, then

AN(BIUB,U---UB,)
=(ANBYU(ANB)YU---U(ANB,).
8. a) Develop a recursive definition for the addition of » real
numbers xi, x2, ..., X,, where n > 2.

b) For all real numbers x;, x;, and x3, the associative law of
addition states that x; + (x2 + x3) = (x; + x2) + x3. Prove
thatifn, r e Z*, wheren = 3and 1 < r < n, then

G b Xzt x) F G )
=xibx b X K

9. a) Develop a recursive definition for the multiplication of
n real numbers x,, X, ..., X,, wheren > 2.

b) For all real numbers x(, x2, and x3, the associative law
of multiplication states that x; (x,x3) = (x1x2)x3. Prove that
ifn,re Z*, wheren >3 and | <r < n, then

QX - X)X - Xp) = X1 X e KKy - X
10. Forall x € R,
I N - B
—-x, ifx<0

—lx| < x < |x|. Consequently, |x+ ¥y =(x+y)P’=x>+
2xy +y2 <22+ 2xlly| + ¥ = 1xP 4 2xl |y + Iy)P =

(x| +lyD¥and x + ¥ < (x| +yD* = x +y| <

|x] + |y], forall x, y € R.

Prove thatif n € Z*, n > 2, and xy, xa, . .., x, € R, then

ey +xz + x| < 4 x4 ]

11. Define the integer sequence ay, ai, a», as, - . .
by

, recursively

Da=1a =1a=1and

2) Forn=3 a,=a, | +a,a.

Prove that @,y > {(+/2)" foralln > 0.

12. For n > 0 let F, denote the nth Fibonacci number, Prove
that

F0+F|+F2+"‘+Fn:ZE:Fn+2_1'
i=0

13. Prove that for any positive integer n,

. E*l =1 Fn+2
i=1 2 2 .
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14.

As in Example 4.20 let L, Ly, L,, ... denote the Lucas

numbers, where (1) Ly =2, Ly =1,and 2) L, =L, 1 +
Ly, forn > 0. When rn > 1, prove that

15.
16.

17.

LI+ L3+ L3+ + L2 =L,Lyy - 2.

Ifne N, provethat 5F,,; = L,yqa — L.
Give a recursive definition for the set of all
a) positive even integers

b) nonnegative even integers

One of the most common uses for the recursive definition

of sets is to define the well-formed formulae in various math-
ematical systems. For example, in the study of logic we can
define the well-formed formulae as follows:

1) Each primitive statement p, the tautology 7)), and the
contradiction Fy are well-formed formulae; and

2) If p, g are well-formed formulae, then so are
i) (=p) i) (pvq) i) (p A q)
iv) (p—¢q) V) (p<q)

Using this recursive definition, we find that for the primitive
statements p, ¢, r, the compound statement ((p A (—g)) —
(r v Ty)) is a well-formed formula. We can derive this well-
formed formula as follows:

Steps Reasons
HpgrT Part (1) of the definition
2) (—q) Step (1) and part (2i)

3)(p A (—q))

4) (i’ Vv T())

5) ((p A (—g)) = (r v Ty))

of the definition

Steps (1) and (2) and part (2iii)
of the definition

Step (1) and part (2ii}
of the definition

Steps (3) and (4) and part (2iv)
of the definition

For the primitive statements p, g, r, and s, provide derivations
showing that each of the following is a well-formed formula.

18.

a) ((pvq)—= (To A (—r))
b) (((—p) <> q) = (r A sV Fy))
Consider the permutations of 1, 2, 3, 4. The permutation

1432, for instance, is said to have one ascent — namely, 14
(since 1 < 4). This same permutation also has two descents —
namely, 43 (since 4 > 3) and 32 (since 3 > 2). The permutation
1423, on the other hand, has two ascents, at 14 and 23 —and
the one descent 42.

a) How many permutations of 1, 2, 3 have k ascents, for
k=0,1,27?

b) How many permutations of 1, 2, 3, 4 have & ascents, for
k=012 3?

¢) If a permutation of 1, 2, 3, 4, 5, 6, 7 has four ascents,
how many descents does it have?
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19.

20.

d) Suppose a permutation of 1, 2, 3, ..., m has k ascents,
for0 < k <m — 1. How many descents does the permuta-
tion have?

e) Consider the permutation p = 12436587, This permu-
tation of 1, 2, 3, ..., 8 has four ascents. In how many of
the nine locations (at the start, end, or between two num-
bers}in p can we place 9 so that the result is a permutation
of 1, 2,3,...,8,9 with (i) four ascents; (11) five ascents?
f) Let m,, , denote the number of permutations of 1, 2, 3,
...,m with k ascents. Note how m,, = 11 =2(4)+
(=@ —27ms 4+ (24 )73z How is m, related to
Tt -1 and 77,1 47

a) For k € Z* verify that &> = (§) + (*1").

b) Fix n in Z™. Since the result in part (a) is true for all
k=1,2,3, ..., n, summing the n equations

-0
()+0)

1" N n+1
" 2
we have 30 k=300 () + 25 (TN =030+
(”;2)_ [The last equality follows from Exercise 26 for
Section 3.1 because y ., ) =)+ O+ () +---+
€ =0+ @+ Q)+ ()= () = (5) e
L (3 =0+ +0 +-+(7) =0+
@)+ G+ +GI) = (I =("37)- Show that

n+1 n+2Yy na+DCrn+1)
( 3 )+( 30 6 '

¢) Fork € Z* verify that & = () + 4(* T') + (*17).
d) Use part (c) and the results from Exercise 26 for Section
3.1 to show that

n?(n + 1)?

- 1 2 3

Z = n+ +4 n—+ i n+ _
— 4 4 4 4
e) Find a,b,c,d€Z" so that for any ke Z", k* =
a(f) +6(3") + ("I +a(*1).
a) Forn =2, if pi, p2, p3, - -
prove that
[(p1 = pY A (P2 p3) Ao APy — Pari)]

S P Ap2APIA- A Pr) = Pust]
b) Prove that Theorem 4.2 implies Theorem 4.1.

¢) Use Theorem 4.1 to establish the following: If @ #
SCZ%, sothatn € 5 for some n € Z7, then S contains a
least element.

, Pu» Pn41 are statements,

d) Show that Theorem 4.1 implies Theorem 4.2.
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The Division Algorithm: Prime Numbers

Definition 4.1

Although the set Z is not closed under nonzero division, in many instances one integer
(exactly) divides another. For example, 2 divides 6 and 7 divides 21. Here the division is
exact and there is no remainder. Thus 2 dividing 6 implies the existence of a quotient —
namely, 3 —such that 6 = 2 - 3. We formalize this idea as follows.

Ifa, be Zand b # 0, we say that b divides a, and we write b|a, if there is an integer » such
that @ = bn. When this occurs we say that & is a divisor of a, or a is a multiple of b.

With this definition we are able to speak of division inside of Z without going to Q.
Furthermore, when ab = Q for a, b € Z, then either ¢ = 0 or b = 0, and we say that Z has
no proper divisors of Q. This property enables us to cancel as in 2x = 2y = x = y, for
x,ye€Z because2x =2y = 2(x —y) =0=2=00rx — y =0 = x = y. (Note that at
no time did we mention multiplying both sides of the equation 2x = 2y by % The number
% is outside the system Z.)

We now summarize some properties of this division operation. Whenever we divide by
an integer a, we assume that a # 0.

THEOREM 4.3

EXAMPLE 4.23

Foralla, b, ce Z

a) 1| and a|0. b) [(a|b) A (bla)] =>a =+ b.
o) [(alb) A (blc)] = alc. d) alb = albx forall x € Z.

e) If x = y + z, for some x, y, 7 € Z, and a divides two of the three integers x, y, and z,
then a divides the remaining integer.

f) [(a]lp) A (alc)] = al(bx + cy), for all x, y € Z. (The expression bx + cy is called a
linear combination of b, c.)

g) For 1 <i <n, let ¢; € Z. If a divides each c¢;, then a|{c;x; + caX2 + -+ - + CpXy),
where x; e Zforalll <i <n.
Proof: We prove part (f) and leave the remaining parts for the reader.

If a|b and alc, then b = am and ¢ = anr, for some m, n € Z. So bx + cy = (am)x +
(an)y = a(mx + ny) {by the Associative Law of Multiplication and the Distributive Law
of Multiplication over Addition — since the elements in Z satisfy both of these laws). Since
bx +cy = a(mx + ny), with mx + ny € Z, it follows that a|(bx + cy).

We find part (g) of the theorem useful when we consider the following guestion.

Do there exist integers x, y, z (positive, negative, or Zero) so that 6x + 9y + 15z = 107?
Suppose that such integers did exist. Then since 3|6, 3|9, and 3|15, it would follow from
part (g) of Theorem 4.3 that 3 is a divisor of 6x + 9y + 15z and, consequently, 3 is a divisor
of 107 —-but this is not so. Hence there do not exist such integers x, y, z.

Several parts of Theorem 4.3 help us in the following
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EXAMPLE 4.24

Let a, b € Z so that 2a¢ + 3b is a multiple of 17. (For example, we could have @ = 7 and
b=1—anda = 4, b = 3 also works.) Prove that 17 divides 9a + 5b.

Proof: We observe that 17|(2a + 3b) = 17|(—%4)(2a + 3b), by part (d) of Theorem 4.3.
Also, since 17|17, it follows from part (f) of the theorem that 17|(17a + 17b). Hence,
17|[(17a + 175) 4+ (—4)(2a + 3b)], by part (e) of the theorem. Consequently, as [(17a +
176) 4+ (—4)2a + 3b)] = [(17 — 8)a + (17 — 12)b] = 9a + 5b, we have 17((9a + 5b).

Using this binary operation of integer division we find ourselves in the area of mathe-
matics called number theory, which examines the properties of integers and other sets of
numbers. Once considered an area of strictly pure (abstract) mathematics, number theory is
now an essential applicable tool —especially, in dealing with computer and Internet secu-
rity. But for now, as we continue to examine the set Z* further, we notice that for all n € Z*
where n > 1, the integer n has at least two positive divisors, namely, 1 and » itself. Some
integers, such as 2, 3, 5, 7, 11, 13, and 17 have exactly two positive divisors. These inte-
gers are called primes. All other positive integers (greater than 1 and not prime) are called
composite. An immediate connection between prime and composite integers is expressed
in the following lemma,

LEMMA 4.1

If n € Z7 and n is composite, then there is a prime p such that p|n.

Proof: If not, let S be the set of all composite integers that have no prime divisor(s). If § # @,
then by the Well-Ordering Principle, § has a least element m. But if m is composite, then
m = myma, where m, mo € ZV with 1 <m; <m and 1 < my < m. Since m, ¢ S, m, is
prime or divisible by a prime — so, there exists a prime p such that p|m ;. Since m = mniy,
it now follows from part (d) of Theorem 4.3 that p|m, and so § = @.

Now why did we call the preceding result a lermma instead of a theorem? After all, it had
to be proved like all other theorems in the book so far. The reason is that although a lemma
is itself a theorem, its major role is to help prove other theorems.

In listing the primes we are inclined to believe that there are infinitely many such num-
bers. We now verify that this is true.

THEOREM 4.4

(Euclid) There are infinitely many primes.

Proof: If not, let p1, p2, ..., pr be the finite list of all primes, andlet B = pyp, - - - pr + L.
Since B > p, forall 1 <i <k, B cannot be a prime. Hence B is composite. So by Lemma
4.1 there is a prime p;, where 1 < j <k and p,|B. Since p;|B and p;|p.p>--- pr, by
Theorem 4.3(e) it follows that p;|1. This contradiction arises from the assumption that
there are only finitely many primes; the result follows.

Yes, this is the same Euclid from the fourth century B.C. whose Elements, written on 13
parchment scrolls, included the first organized coverage of the geometry we studied in high
school. One finds, however, that these 13 books are also concerned with number theory. In
particular, Books V11, VIII, and IX dwell on this topic. The preceding theorem (with proof)
is found in Book IX.



4.3 The Division Algorithm: Prime Numbers 223

‘We turn now to the major idea of this section. This result enables us to deal with nonzero
division in Z when that division is not exact.

THEOREM 4.5

EXAMPLE 4.25

The Division Algorithm. If a, b € Z, with b > 0, then there exist unique ¢, r € Z with
a=gb+r,0<r <b.

Proof: If b|a the result follows with r = 0, so consider the case where b } a (that is, b does
not divide a).

letS={a—thlteZ,a—th>0}.Ifa>0and?t =0,thenaec Sand S # . Fora <
O,lett=a—1.Thena —thb=a~— (a — )b =a(l — b) + b, with (1 — b) <0, because
b>1.Soa—tb>0and S # . Hence, for any ¢ € Z, S is a nonempty subset of Z*. By
the Well-Ordering Principle, 5 has a least element », where 0 < r = a — gb, for some
g € Z.Hr = b,thena = (¢ + 1)band b|a, contradicting b f a.If r > b,thenr = b + ¢, for
someceZt anda —gh=r=b+c=c=a—(g+ )be S, contradicting r being the
least element of §. Hence, r < b.

This now establishes a quotient ¢ and remainder r, where O < r < b, for the theorem. But
are there other ¢’s and r’s that also work? If so, let g1, g2, r1, r2 € Zwitha = g,b + 1y, for
O<ri<b,anda=gqb+r,for0<r, <b. Then g1b+r; = qb+r; = blgy — q2| =
lry — 1| < b, because O < ry, ry < b. If g1 # g2, we have the contradiction b|g; — g2| < b.
Hence ¢; = ¢», r; = 2, and the quotient and remainder are unique.

As we mentioned in the preceding proof, when a, b € Z with b > 0, then there exists a
unique quotient g and a unique remainder r where ¢ = gb + r, with 0 < r < b. Further-
more, under these circumstances, the integer b is called the divisor while a is termed the
dividend.

a) When g = 170 and » = 11 in the division algorithm, we find that 170 = 1511 4 5,
where 0 <5 < 11. So when 170 is divided by 11, the quotient is 15 and the remainder
is 5.

b) If the dividend is 98 and the divisor is 7, then we find that 98 = 14 . 7. So in this case
the quotient is 14 and the remainder is 0, and 7 (exactly) divides 98.

¢) For the case of ¢ = —45 and b = 8 we have —45 = (—0)8 + 3, where 0 <3 < 8.
Consequently, the quotient is —6 and the remainder is 3 when the dividend is —45 and
the divisor is 8.

d) Leta,beZ™.

1) Ifa = gb for some g € Z", then —a = (~g)b. So, in this case, when —a (< 0) is
divided by b (> 0) the quotient is —¢ (< 0) and the remainder is 0.

2)If a=gb+r for some geN and O<r <b, then —a={(—g)b—r =
(—g)b—b+b—r=(—g—1)b+ (b~r). For this case, when —a (<0) is
divided by # (> 0) the quotient is —g — 1 (< 0) and the remainder is b — r,
where 0 < b —r < b.

Despite the proof of Theorem 4.5 and the results in Example 4.25, we really do not have
any systematic way to calculate the quotient ¢ and remainder r when we divide an integer a
(the dividend) by the positive integer b (the divisor). The proof of Theorem 4.5 guarantees
the existence of such integers g and r, but the proof is not constructive. It does not appear to
tell us how to actually calculate ¢ and r, and it does not mention anything about the ability
to use multiplication tables or perform long division. To remedy this situation we provide



224 Chapter 4 Properties of the Integers: Mathematical Induction

the procedure (written in pseudocode) in Fig. 4.10. Our next example illustrates the idea
presented in part of this procedure.

procedure IntegerDivision (a, b: integers)
begin
if a =0 then
begin
quotient := 0
remainder := 0
end
else
begin
r := abs{(a) {the absolute value of a}
qg:=0
while r > b do
begin
r:=r->»b
g:=g+1
end
if a> 0 then
begin
guotient := g
remainder ;= r
end
else if r = 0 then
begin
gquotient := -g
remainder :=0
end
else
begin
gquotient := -g -1
remainder :=b - r
end
end
end

Figure 4.10

Just as the multiplication of positive integers may be viewed as repeated addition, so too
EXAMPLE 4.26 o Ay . . '
can we view (integer) division as repeated subtraction. We see that subtraction does play a
role in the definition of the set S in the proof of Theorem 4.5.
When calculating 4 - 7, for example, we can think in terms of repeated addition and write

2.7=7+4+7=14
3.7=Q241)-7=2-7T+1.7=(T+N+7=1447=21
4.7=(3+1)-7=3-741.7=(T4+D+D+7=21+7=128

If, on the other hand, we wish to divide 37 by 8, then we should think of the quotient ¢ as the
number of 8’s contained in 37. When each one of these 8’s is removed (that is, subtracted)
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and no other 8 can be removed without giving us a negative result, then the integer that is
left (remaining) is the remainder r. So we can calculate ¢ and r by thinking in terms of
repeated subtraction as follows:

37-8=29=>8,
29-8=(37-8)—-8=37-2-8=21=>8,
21 -8=(37T-8)—-8)—-8=37-3-8=13=8,
13—-8=0(37-8)—-8)—-8—-8=37-4-8=5<8.
The last line shows that four 8’s can be subtracted from 37 before we obtain a nonnegative

resuit — namely, 5 —that is smaller than 8. Therefore, in this example we have ¢ = 4 and
r=35.

Using the division algorithm, we consider some results on representing integers in bases
other than 10.

Write 6137 in the octal system (base 8). Here we seek nonnegative integers rg, ri, ro, . . .,
re, with O < rp < 8, such that 6137 = (ry, - - - a1 1g)s.

With 6137 = rp+ ny -8+r2‘82+~-+rk-8" =ry + 8(ry +r2-8+"'+rk-8k_l),
ry is the remainder obtained in the division algorithm when 6137 is divided by 8.

Consequently, since 6137 =14+ 8 - 767, wehaverg = land 767 =r; +r, - 84+ - - - +
Fe -8l =p 4+ 8(ra 478+ +r - 85°2). This yields r; = 7 (the remainder when
767 is divided by 8) and 95 =ry +r3 - 8 + - - - 41 - B2 Continuing in this manner, we
findrp=7,rv=3,r,=1,andr; =0foralli > 5, so

6137=1-8+3-8 +7-8+7-8+41= (13771
We can arrange the successive divisions by 8 as follows:

Remainders

8 16137
8767 1(ro)

8195  7(r)
$ L1 7(ra)
811 3(m)

0 1(r4)

In the field of computer science, the binary number system (base 2) is very important.
Here the only symbols that one may use are the bits 0 and 1. In Table 4.3 we have listed the
binary representations of the (base-10) integers from O to 15. Here we have included leading
zeros and find that we need four bits because of the leading 1 in the representations for the
integers from 8 to 15. With five bits we can continue up to 31 (= 32 — 1 = 2% — 1); six bits
are necessary to proceed to 63 (= 64 — 1 =25 —1). In general, if x € Z and 0 < x < 2",
for n € Z*, then we can write x in base 2 by using n bits. Leading zeros appear when
0<x <21~ 1,and for 2"~} < x <27 — 1 the first (most significant) bit is 1.
Information is generally stored in machines in units of eight bits called bytes, so for
machines with memory cells of one byte we can store in a single cell any one of the binary
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Table 4.3

Base 10 Base 2 Base 10 Base 2
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

equivalents of the integers from 0 to 2% — 1 = 255. For a machine with two-byte cells, any
one of the integers from 0 to 2' — 1 = 65,535 can be stored in binary form in each cell. A
machine with four-byte cells would take us up to 2*2 — 1 = 4,294 967,295,

When a human deals with long sequences of 0’s and 1’s, the job soon becomes very
tedious and the chance for error increases with the tedium. Consequently, it is common (es-
pecially in the study of machine and assembly languages) to represent such long sequences
of bits in another notation. One such notation is the hexadecimal (base-16) notation. Here
there are 16 symbols, and because we have only 10 symbols in the standard base-10 system,
we introduce the following six additional symbols:

A (Alfa) C (Charlie) E (Echo)
B (Bravo) D (Delta) F (Foxtrot)

In Table 4.4 the integers from (} to 15 are given in terms of both the binary and the hexadec-
imal number systems.

Table 4.4

Base 10 Base 2 Base 16 Base 10 Base 2 Base 16
0 0000 0 8 1000 8
1 0001 1 9 1001 g
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

To convert from base 10 to base 16, we follow a procedure like the one outlined in Example
4.27. Here we are interested in the remainders upon successive divisions by 16, Therefore,
if we want to represent the (base-10) integer 13,874,945 in the hexadecimal system, we do
the following calculations:
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Remainders
16 13,874,945
16 |867,184 1 (ro)
16 |54,199 0 (r1)

16 (3387 7 (r2)
16 211 11(=B) (r3)
16 |13 3 (ra)

0 13(=D) (rs)

Consequently, 13,874,945 = (D3B701)¢.

There is, however, an easier approach for converting between base 2 and base 16. For
example, if we want to convert the binary (one-byte) integer 01001101 to its base-16 coun-
terpart, we break the number into blocks of four bits:

0100 1101
—— =
4 D

We then convert each block of four bits to its base- 16 representation (as shown in Table 4.4),
and we have (01001101); = (4D) 4. If we start with the (two-byte) number (A13F)¢ and
want to convert in the other direction, we replace each hexadecimal symbol by its (four-bit)
binary equivalent (also as shown in Table 4.4):

A 1 3 F
N, —t— e e
1010 0001 0011 1111

This results in (A13F);¢ = (1010000100111111)5,.

We need negative integers in order to perform the binary operation of subtraction in terms of
addition [that is, (@ — b) = a + (—b)]. When we are dealing with the binary representation
of integers, we can use a popular method that enables us to perform addition, subtraction,
multiplication, and {integer) division: the iwo’s complement method. The method’s popu-
larity rests on its implementation by only two electronic circuits — one to invert and the
second to add.

In Table 4.5 the integers from —8 to 7 are represented by the four-bit patterns shown.
The nonnegative integers are represented as they were in Tables 4.3 and 4.4. To obtain the
results for —8 < n < —1, first consider the binary representation of |n|, the absolute value
of n. Then do the following:

1) Replace each O(1) in the binary representation of |r| by 1(0); this result is called the
one’s complement of (the given representation of) |n].

2) Add 1 (= 0001 in this case) to the result in step (1). This result is called the two's
complement of n.

For example, to obtain the two’s complement (representation) of —6, we proceed as
follows.
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6

1) Start with the binary N
representation of 6. 0110

2) Interchange the (s and 1°s; this 1
result is the one’s complement of 0110. 1001

3) Add 1 to the prior result, \

1001 + 0001 = 1010

We can also obtain the four-bit patterns for the values —8 < n < —1 by using the four-
bit patterns for the integers from O to 7 and complementing (interchanging 0’s and 1°s) these
patterns as shown by four such pairs of patterns in Table 4.5. Note in Table 4.5 that the
four-bit patterns for the nonnegative integers start with 0, whereas 1 is the first bit for the
negative integers in the table.

Table 4.5
Two’s Complement Notation
Value Represented Four-Bit Pattern

7 0 1 1 1 +—
6 0 1 1 0
5 0 1 0 1 +—
4 0 1 0 0
3 0 0 1 1
2 0 0 1 0
1 0 0 0 1
0 o 0 0 0

-1 1 1 1 1 :]

-2 1 1 1 0

-3 1 1 0 1

—4 1 1 0 0

=5 1 0 1 1

-6 1 0 1 0 «—

-7 1 0 o |

-8 1 0 o 0 «—

How do we perform the subtraction 33 — 15 in base 2, using the two’s complement method
with patterns of eight bits (= one byte)?

We want to determine 33 — 15 = 33 + (—15). We find that 33 = (00100001),, and 15 =
(00001111);,. Therefore we represent —15 by

11110000 4 00000001 = 11110001.

The addition of integers represented in two’s complement notation is the same as ordinary
binary addition, except that all results must have the same size bit patterns. This means that
when two integers are added by the two’s complement method, any extra bit that results on
the left of the answer (by a final carry) must be discarded. We illustrate this in the following
calculations.
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00100001
—15 + 11110001
100010010
[y s —
This bit i Answer = {00010010); = 18
discarded. 4+ This bit indicates that

the answer is nonnegative.

To find 15 — 33 we use 15 = (00001111); and 33 = (00100001),. Then, to calculate
15— 33 as 15 4+ (—33), we represent —33 by 11011110 4+ 00000001 = 11011111. This
gives us the results

15 00001111
—-33 + 11011111
11101110

4+ This bit indicates that
the answer is negative.

In order to get the positive form of the answer, we proceed as follows:

11101110

1) Take the one’s \:
complement. 00010001

2) Add 1 to the b

prior result. 00010010
Since (00010010), = 18, the answer is —18.

One problem we have avoided in the two preceding calculations involves the size of the
integers that we can represent by eight-bit patterns. No matter what size patterns we use,
the size of the integers that can be represented is limited. When we exceed this size, an
overflow error results. For example, if we are working with eight-bit patterns and try to add
117 and 88, we obtain

117 01110101
+ 88 + 01011000
11001101

4+ This bit indicates that
the answer is negative.
This result shows how we can detect an overflow error when adding two numbers. Here
an overflow error is indicated: The sum of the eight-bit patterns for two positive integers
has resulted in the eight-bit pattern for a negative integer. Similarly, when the addition of
(the eight-bit patterns of) two negative integers results in the eight-bit pattern of a positive
integer, an overflow error is detected.

To see why the procedure in Example 4.30 works in general, let x, y € Z7 with x > y.

Let 2°7! < x < 2*. Then the binary representation for x is made up of # bits (with the
leading bit 1). The binary representation for 2" consists of n + 1 bits: aleading bit 1 followed
by n 0’s. The binary representation for 2" — 1 consists of z2 17s.

When we subtract y from 2" — 1, we have

(2" —1) —y=11...1 —y, the one’s complement of y.

s
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Then (2" — 1) — y 4+ 1 gives us the two’s complement of —y, and
X—y=x4[Q =1 —y+11-2",

where the final term, —27, results in the removal of the extra bit that arises on the left of the

AnsSwcer,

We close this section with one final result on composite integers.

EXAMPLE 431 |

If n € Z" and n is composite, then there exists a prime p such that p|n and p < /n.
Proof: Since n is composite, we can write n = nyny, where 1 <n) <n and 1 <ny <n.

We claim that one of the integers Ry, 7z must be less than or equal to /. If not, then
ny > /n and ny > /0 give us the contradiction n = nyny > (V/n)(y/n) = n. Without loss
of generality, we shall assume that n, < /n. If n| is prime, the result follows. If n; is not
prime, then by Lemma 4.1 there exists a prime p < n; where p|nj. So p|n and p < ./n.

EXERCISES 4.3

1. Verify the remaining parts of Theorem 4.3.

2. Let a,b,c,deZ*. Prove that (a) [(alb) A (c|d)] =
aclbd; (byalb = aclbe; and (¢) aclbc = ab.

3, If p, g are primes, prove that p|q if and only if p = ¢.
4, If g, b, c € Z* and a|bc, does it follow that a|b or a|c?

8, For all integers a, b, and ¢, prove thatif a } bc, thena } b
anda f c.

6. Let n e Z* where n>2. Prove that if ay, as, ..., a,,
b, by, ....b,€Z" and a|b, for all 1<i<n, then
(a1ay - - a)|(b1by - - - by).

7. a) Find three positive integers a, b, ¢ such that
31|(5a +7b + 11c¢).

b} If a,b,c€Z and 31|(5a + 7b+ 11c), prove that
31/(21a + 176 + 9¢).

8. Agrocery store runs a weekly contest to promote sales. Each
customer who purchases more than $20 worth of groceries re-
ceives a game card with 12 numbers on it; if any of these num-
bers sum to exactly 500, then that customer receives a $500
shopping spree (at the grocery store). After purchasing $22.83
worth of groceries at this store, Eleanor receives her game card
on which are printed the following 12 numbers: 144, 336, 30,
66, 138, 162, 318, 54, 84, 288, 126, and 456. Has Eleanor won
a $500 shopping spree?

9. Let a, b€ Z*. If bla and b|(a + 2), prove that b =1 or
b=2

10, If n € Z*, and n is odd, prove that 8|(n> — 1).

11, If ¢, b € Z*, and both are odd, prove that 2|(a? + b%) but
4 f(a? + b%).

12. Determine the quotient ¢ and remainder r for each of the
following, where a is the dividend and b is the divisor.

a)a=23, b=7 b)a=-115 b=12

a=0, b=42 d) a = 434,
13. If n € N, prove that 3|(7" — 4™).

b =31

14. Write each of the following (base-10) integers in base 2,
base 4, and base 8.

a) 137 b) 6243 c) 12,345

15. Write each of the following (base-10) integers in base 2 and
base 16.

a) 22 b) 527 c) 1234 d) 6923
16. Converteach of the following hexadecimal numbers to base
2 and base 10.

a) A7 b) 4C2 ¢) 1C2B d) A2DFE
17. Convert each of the following binary numbers to base 10
and base 16.

a) 11001110 b) 00110001

c) 11110000 d) 01010111
18. For what base do we find that 251 4 445 = 1026?

19. Find all n € Z" where » divides 5n + 18.

20. Write each of the following integers in two’s complement
representation. Here the results are eight-bit patterns.

a) 15 b) —15 ¢) 100
d) —65 e) 127 f) —128

21. If a machine stores integers by the two’s complement
method, what are the largest and smallest integers that it can
store if it uses bit patterns of (a) 4 bits? (b) 8 bits? (¢) 16 bits?
(d) 32 bits? (e) 2" bits, n € ZT7

22. In each of the following problems, we are using four-bit
patterns for the two's complement representations of the inte-
gers from —8 to 7. Solve each problem (if possible), and then
convert the results to base 10 to check your answers. Watch for
any overflow errors.

a) 0101 by 1101
+ 0001 + 1110
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¢ 0111 d) 1101
+ 1000 + 1010

23. Ifa,x, yc Z,and a # 0, prove that ax = ay = x = y.

24. Write acomputer program (or develop an algorithm) to con-
vert a positive integer in base 10 to base b, where 2 < b < §.

25. The Division Algorithm can be generalized as follows:
For a,be Z, b # 0, there exist unique ¢, r € Z with a =
gb +r, 0<r < |b].Using Theorem 4.5, verify this generalized
form of the algorithm for b < 0.

26, Write a computer program (or develop an algorithm) to
convert a positive integer in base 10 to base 16.

27. For n € Z™, write a computer program (or develop an al-
gorithmy) that lists all positive divisors of x.

4.4
The Greatest Common Divisor:
The Euclidean Algorithm

28. Define the set X C Z* recursively as follows:
1) 3e X;and
2) Ifa,be X,thena+be X.

Prove that X = {3k|k € Z*}, the set of all positive integers di-
visible by 3.

29, letneZ  withn=r, - 10F 4+« 4 1 - 100 4+ 1 - 1041y
(the base-10 representation of n). Prove that

a) 2|n if and only if 2|ry

b) 4|n if and only if 4|(r; - 10 + ry)

c) 8}a if and only if 8|(ry - 107 + 7| - 10 + )

State a general theorem suggested by these results.

Continuing with the division operation developed in Section 4.3, we turn our attention to

the divisors of a pair of integers.

Definition 4.2

For a, b € Z, a positive integer c is said to be a common divisor of a and b if c|a and c|b.

L EXAMPLE 4.32

divisors.

The common divisors of 42 and 70 are 1, 2, 7, and 14, and 14 is the greatest of the common

Definition 4.3 Leta, b € Z, where eithera # O orb 7 0. Then ¢ € Z+ is called a greatest common divisor
of a, b if
a) c¢|a and c|b (that is, ¢ is a common divisor of a, b), and
b) for any common divisor d of @ and b, we have d|c.

The result in Example 4.32 satisfies these conditions. That is, 14 divides both 42 and 70,
and any common divisor of 42 and 70 —namely, 1, 2, 7, and 14— divides 14. However, this
example deals with two small integers. What would we do with two integers each having
20 digits? We consider the following questions.

1) Given a, b € Z, where at least one of a, b is not 0, does a greatest common divisor

of ¢ and b always exist? If so, how does one find such an integer?

2) How many greatest common divisors can a pair of integers have?

In dealing with these questions, we concentrate on a, b € Z¥.

THEOREM 4.6 Forall a, b € Z™, there exists a unique ¢ € Z* that is the greatest common divisor of a, b.

Proof: Givena, b€ Z7, let § = {us + bt|s, t € Z, as + bt > 0}. Since § # ¥, by the Well-
Ordering Principle § has a least element c. We claim that ¢ is a greatest common divisor of
a, b.
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Since ¢ € §, ¢ = ax + by, for some x, y € Z. Consequently, if d € Z and d|a and d b,
then by Theorem 4.3(f) d|{(ax + by), so d|c.

If ¢ f a, we can use the division algorithm to write @ = gc +r, withg, r e Z" and 0 <
r<c.Thenr =g —qgc=a—qglax + by) = (1 —gx)a + (—gy)b,sor € S, contradicting
the choice of ¢ as the least element of S. Consequently, c|a, and by a similar argument, ¢|b.

Hence all a, b € Z have a greatest common divisor. If ¢, ¢, both satisfy the two con-
ditions of Definition 4.3, then with ¢; as a greatest common divisor, and c; as a common
divisor, it follows that c;|e¢;. Reversing roles, we find that ¢|¢;, and so we conclude from
Theorem 4.3(b) that ¢; = ¢; because ¢, c; € ZV.

We now know that forall a, b € Z™, the greatest common divisor of a, b exists — and it
is unique. This number will be denoted by ged(a, k). Here ged(a, b) = ged(b, a); and for
each a € Z, if @ # 0, then ged(a, 0) = |a|. Also when a, b ¢ Z1, we have ged(—a, b) =
ged(a, —b) = ged(—a, —b) = ged(a, b). Finally, ged(0, 0) is not defined and is of no in-
terest to us.

From Theorem 4.6 we see that not only does ged(a, b) exist but that ged(a, b) is also
the smallest positive integer we can write as a linear combination of u and b. However,
we must realize that if @, b, c € Z™ and ¢ = ax + by for some x, y € Z, then we do nor
necessarily know that ¢ is gcd(a, ) — unless we somehow also know that ¢ is the smallest
positive integer that can be written as such a linear combination of ¢ and 5.

Finally, integers a and b are called relatively prime when gcd(a, b) = 1 —that is, when
there exist x, y € Z with ax 4+ by = 1,

Since ged(42, 70) = 14, we can find x, y € Z with 42x 470y = 14, or 3x + 5y = 1. By
inspection, x = 2, y = —lisasolution; 3(2) + 5(—1) = 1.Butfork € Z, 1 = 32 — 5k) +
5(—1+ 3k),s0 14 = 42(2 — 5k) + 70(—1 4+ 3k), and the solutions for x, y are not unique.
In general, if ged(a, b) = d, then ged((a/d), (b/d)) = 1. (Verify this!) If (a/d)xo +
(b/d)yg = 1,then 1 = (a/d)(xo — (b/d)k) + (b/d)(yo + (a/d)k),foreach k € Z. Sod =
a(xg — (b/d)k) + b(wo + (a/d)k), yielding infinitely many solutions to ax + by = 4.

The preceding example and the prior observations work well enough when a, b are
fairly small. But how does one find ged(a, b) for some arbitrary a, b € Z77? If a|b, then
ged(a, b) = a; and if bla, then ged{a, b) = b — otherwise, we turn to the following result,
which we owe to Euclid.

THEOREM 4.7

Euclidean Algorithm. Leta, b € Z™. Setry = a and r; = b and apply the division algorithm
n times as follows:

ro = g1t +r2, 0<r<n

F1 = oty + 13, O<rs<n

ra = g3y + ry, O<ry<rs

Fi = Gipitip i, 0 <ripa <rip
ran:(In—lrnfl'*'rm 0<rn<rn—1
Fn—1 = gnly.

Then r,, the last nonzero remainder, equals gcd(a, b).
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Proof: To verify that r, = gcd(a, b), we establish the two conditions of Definition 4.3.

Start with the first division process listed (where rp = @ and r; = b). If ¢|rg and c|ry,
then as rp = q1r1 + ra, it follows that c|rp. Next [(c|r1) A (c|r2)] = c|rz, because r; =
qar2 + r3. Continuing down through the division processes, we get to where c|r,_» and
¢|r,—;. From the next-to-last equation, we conclude that ¢|r,, and this verifies condition
(b) of Definition 4.3.

To establish condition (a) we go in reverse order. From the last equation, r,|r,—|, and
SO ry|Fa_2, because r,_ 2 = ¢n_17rn_1 + r,. Continuing up through the equations, we get to
where r,|ry and r,|rs, s0 ry|ra. Then [(r,|r3) A (Falr2)] = ry|ry (that is, r,|b), and finally
[(ralr2) A (r,lr)] = rplrg, (that is, ry|a). Hence r, = ged(a, b).

We have now used the word algorithm in describing the statements set forth in Theorems
4.5 and 4.7. This term will recur frequently throughout other chapters of this text, so it may
be a good idea to consider just what it connotes.

First and foremost, an algorithm is a list of precise instructions designed to solve a
particular type of problem —not just one special case. In general, we expect all of our
algorithms to receive inpur and provide the needed result(s) as output. Also, an algorithm
should provide the same result whenever we repeat the value(s) for the input. This happens
when the list of instructions is such that each intermediate result that comes about from the
execution of each instruction is unique, depending on only the (initial) input and on any
results that may have been derived at any preceding instructions. In order to accomplish
this any possible vagueness must be eliminated from the algorithm; the instructions must
be described in a simple yet unambiguous manner, a manner that can be executed by a
machine. Finally, our algorithms cannot go on indefinitely. They must terminate after the
execution of a finite number of instructions.

In Theorem 4.7 we are confronted with the determination of the greatest common divisor
of any two positive integers. Hence this algorithm receives the two positive integers a, b
as its input and generates their greatest common divisor as the output.

The use of the word algorithm in Theorem 4.5 is based on tradition. As stated, it does not
provide the precise instructions we need to determine the output we want. (We mentioned
this fact prior to Example 4.26.) To eliminate this shortcoming of Theorem 4.5, however,
we set forth the instructions in the pseudocode procedure of Fig. 4.10.

We now apply the Euclidean algorithm in the following five examples.

Find the greatest common divisor of 250 and 111, and express the result as a linear combi-
nation of these integers.

250 = 2(111) + 28, 0 <28 <111

111 = 3(28) + 27, 0 <27 <28
28 =1(27) + 1, 0<1<27
27 = 27(1) + 0.

So 1 is the last nonzero remainder. Therefore ged(250, 111) = 1, and 250 and 111 are
relatively prime. Working backward from the third equation, we have 1 = 28 — 1(27) =
28 — 1111 — 3(28)] = (—D(111) + 4(28) = (—1{111) 4 4[250 — 2(111)] = 4(250) —
9(111) = 250(4) + 111(—9), a linear combination of 250 and 111.

This expression of 1 as a linear combination of 250 and 111 is not unique, for 1 =
250[4 — 111k] + 111[—9 + 250k], for any k € Z.
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EXAMPLE 4.36

We also have

ged(—250, 111) = ged(250, —111) = gcd(—250, —111) = gecd(250, 111) = 1.

Our next example is somewhat more general, as it concerns the greatest common divisor
for an infinite number of pairs of integers.

For any n € Z™T, prove that the integers 8a + 3 and 5x + 2 are relatively prime.
When n = 1 we find that ged(8n + 3, 5n + 2) = ged(11,7) = 1.
Forn > 2 we have 8n + 3 > 5n 4 2, and as in the previous example, we may write
n+3=165n+2)+Bun+1), O0<3n+1<5n42
S5n+2=10C3n+ 1D+ 2n+ 1), O0<2n+1<3n+1

3n+1=12n+1)+n, O<n<2n+1
2n+1=2(0n)+1, 0<1l=<n
n=n(l)+0.

Consequently, the last nonzero remainder is 1, so ged(82 4+ 3, 5n +2) = 1 for all n > 1.
But we could also have arrived at this conclusion if we had noticed that

Bn+3)(-5)+Gn+2)8)=-15+16=1.

And since 1 is expressed as a linear combination of 8n + 3 and 5n + 2, and no smaller
positive integer can have this property, it follows that the greatest common divisor of
8n 4 3 and 51 + 2 is 1, for any positive integer n.

At this point we shall use the Euclidean algorithm to develop a procedure (in pseudocode)
that will find ged(a, b) for all «, b € Z*. The procedure in Fig. 4.11 employs the binary
operation mod, where for x, y € Zt, x mod y = the remainder after x is divided by y. For
example, 7mod 3is 1, and 18 mod 5 is 3. (We shall deal with “the arithmetic of remainders”
in more detail in Chapter 14.)

procedure gcd(a, b: positive integers)
begin
r:=amodb
d:=b
while r > 0 do
begin
c:=d
d:=r
r :=cmod d
end
end {gcd (a, b) is d, the last nonzero remainder}

Figure 4.11

Meanwhile, if we call this procedure for g = 168 and b = 456, the procedure first as-
signs r the value 168 mod 456 = 168 and d the value 456. Since r > 0 the code in the
while loop is executed (for the first time) and we obtain the following: ¢ = 456, d = 168,
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r = 456 mod 168 = 120. We then find that the code in the while loop is executed three
more times with the following results:

(2nd pass): ¢ =168,d =120, r = 168 mod 120 = 48

(Brdpass): ¢ =120,d = 48, r = 120mod 48 24

(dth pass): c= 48,d= 24,r 48 mod 24 0.

Since r is now 0, the procedure tells us that ged(a, ) = ged(168, 456) = 24, the final
value of 4 (the last nonzero remainder).

Griffin has two unmarked containers. One container holds 17 ounces and the other holds
55 ounces. Explain how Griffin can use his two containers to measure exactly one ounce.
From the Euclidean algorithm we find that

55 =3(17) + 4, 0<4<17
17=4#) + 1, 0<1<4

Therefore 1 = 17 — 4(4) = 17 — 4[55 — 3(17)] = 13(17) — 4(55). Consequently, Griffin
must fill his smaller (17-ounce) container 13 times and empty the contents (for the first 12
times) into the larger container. (Griffin empties the larger container whenever it is full.)
Before he fills the smaller container for the thirteenth time, Griffin has 12(17) — 3(55) =
204 — 165 = 39 ounces of water in the larger (55-ounce) container. After he fills the smaller
container for the thirteenth time, he will empty 16 (= 55 — 39) ounces from this container,
filling the larger container. Exactly one ounce will be left in the smaller container.

Assisting students in programming classes, Brian finds that on the average he can help a
student debug a Java program in six minutes, but it takes 10 minutes to debug a program
written in C++. If he works continuously for 104 minutes and doesn’t waste any time, how
many programs can he debug in each language?

Here we seek integers x, y >0, where 6x 4 10y =104, or 3x + 5y =52. As
ged(3, 5) = 1, we can write 1 = 3(2) 4+ 5(—1), so 52 = 3(104) + 5(—52) = 3(104 — 5k)
+ 5(=52 4+ 3k), k € Z. In order to obtain 0 < x = 104 — 5k and 0 < y = —52 4 3k, we
must have (52/3) < k < (104/5). So k = 18, 19, 20 and there are three possible solutions:

a) k=18 x=14, y=2 D) k=1%9: x=9, y=35
¢) k=20 x=4, y=8

The equation in Example 4.38 is an example of a Diophantine equation: a linear equa-
tion requiring integer solutions. This type of equation was first investigated by the Greek
algebraist Diophantus, who lived in the third century A.D.

Having solved one such equation, we seek to discover when a Diophantine equation has
a solution. The proof is left to the reader.

THEOREM 4.8

Ifa, b, c € 7, the Diophantine equation ax + by = ¢ has an integer solution x = xg, y =
¥o if and enly if ged(a, b) divides c.

We close this section with a concept that is related to the greatest common divisor.
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Definition 4.4

For a, b, c € ZT, ¢ is called a common multiple of a, b if ¢ is a multiple of both a and
b. Furthermore, ¢ is the least common multiple of a, b if it is the smallest of all positive
integers that are common multiples of a, b. We denote ¢ by lem(a, b).

EXAMPLE 4.39

If a, b € Z", then the product ab is a common multiple of both & and b. Conseguently,
the set of all (positive) common multiples of a, b is nonempty. So it follows from the
Well-Ordering Principle that the lcm(a, &) does exist.

a) Since 12 = 3 - 4 and no other smaller positive integer is a multiple of both 3 and 4, we
have lem(3, 4) = 12 = lem(4, 3). However, lcm(6, 15) # 90 — for although 90 is a
multiple of both 6 and 15, there is a smaller multiple, namely, 30. And since no other
common multiple of 6 and 15 is smaller than 30, it follows that lem(6, 15) = 30.

b) For all n € Z*, we find that lcm(1, n) = lem(n, 1) = n.

¢) Whena, n ¢ Z, we have lem(a, na) = na. [This statement is a generalization of part
(b). The earlier statement follows from this one whena = 1.]

d) Ifa, m, n € Z* with m < n, then lem(a™, ) = a”. [And ged{a™, a*) = a™.]

THEOREM 4.9

Leta, b, c € Z", with ¢ = lem(a, b). If d is a common multiple of @ and b, then ¢|d.
Proof: If not, then because of the division algorithm we can write d = gc + r, where
O < r < ¢. Since ¢ = lem{a, b), it follows that ¢ = ma for some m € Z'. Also, d = na for
some n € Z7, because d is a multiple of a, Consequently, na = gma + r = (n — gm)a =
r >0, and r is a multiple of a. In a similar way r is seen to be a multiple of b, so ris a
common multiple of a, b. But with 0 < r < ¢, we contradict the claim that c is the least
common multiple of ¢, b. Hence ¢|d.

Our last result for this section ties together the concepts of the greatest common divisor
and the least common multiple. Furthermore, it provides us with a way to calculate Icm(a, b)
for all a, b € Z*. The proof of this result is left to the reader.

THEOREM 4.10

EXAMPLE 4.40

Foralla, b e Z*, ab = lcmla, b) - gcd(a, b).

By virtue of Theorem 4.10 we have the following:

a) Foralla, b € Z" if a, b are relatively prime, then lem{a, b) = ab.

b) The computations in Example 4.36 establish the fact that gcd(168, 456) = 24. Asa
result we find that

168)(456
lem(168, 456) = % =3,192.

2. For a,bcZ* and s,t €Z, what can we say about
EXERCISES 4.4 god(a. b) if

1. For each of the following pairs a, b€ Z", determine
ged(a, b) and express it as a linear combination of a, b. a)as +bt =127 b) as + bt = 3?

a) 231, 1820

b) 1369,2597  ¢) 2689, 4001 ¢) as +br =47 d) as + br = 62



3. Fora, b ¢ Z" and d = ged(a, b), prove that

a2 Y-
gC d,d .

4, Fora, b, n € Z", prove that ged(na, nb) = n ged(a, b).

5. Leta, b, c € Z* with ¢ = ged(a, b). Prove that ¢?
divides ab.

6. LetneZ*.
a) Prove that gcd(n, n +2) = 1 or 2.

b} What possible values can ged(n, n + 3) have? What
about ged(n, n + 4)?

¢) If k € Z*, what can we say about ged(n, n + k)?
7. Fora, b, c,d € Z*, prove that if = a + bc, then
ged(b, d) = ged(a, b).

8. Leta, b, c € Z* with ged(a, b) = 1. If a|c and b|c, prove
that ab|c. Does the result hold if ged(a, b) # 17

9. Leta, b € Z, where at least one of a, b is nonzero.

a) Using quantifiers, restate the definition for ¢ =
ged(a, b), where ¢ € Z7.

b) Use the result in part (a) in order to decide when
¢ # ged(a, b) for some ¢ € Z7.

10. If a, b are relatively prime and a > b, prove that
ged(@a —b,a+b)=1or2
11. Leta, b, c € Z* with ged(a, b) = 1.Ifa|bc, provethatalc.
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12. Let a,b€Z" where a>b. Prove that gcd(a,b) =
ged(a — b, b).

13. Prove that forany n € Z*, ged(5n + 3, 7n + 4) = 1.

14. Anexecutive buys $2490 worth of presents for the children
of her employees. For each girl she gets an art kit costing $33;

each boy receives a set of tools costing $29. How many presents
of each type did she buy?

15. After a weekend at the Mohegan Sun Casino, Gary finds
that he has won $1020 —in $20 and $50 chips. If he has more
$50 chips than $20 chips, how many chips of each denomination
could he possibly have?

16. Let a, b € Z*. Prove that there exist ¢, d € Z* such that
¢d = a and ged(e, d) = b if and only if b*|a.

17. Determine those values of c € Z*, 10 < ¢ < 20, for which
the Diophantine equation 84x + 990y = ¢ has no solution.
Determine the solutions for the remaining values of ¢.

18. Verify Theorems 4.8 and 4.10.

19. Ifa, b € Z" with a = 630, ged(a, b) = 105, and
lem(a, by = 242, 550, what is b?

20. For each pair a, b in Exercise 1, find lcm(a, b).

21. For each n € Z*, what are ged(n, n + 1) and
lem(n, n 4+ 1)?

22. Prove that lem(na, nb) = n lem(a, b) foralln, a, b Z%.

In this section we extend Lemma 4.1 and show that for each n € Z*, n > 1, either # is
prime or n can be written as a product of primes, where the representation is unique up to
order. This result, known as the Fundamental Theorem of Arithmetic, can be found in an
equivalent form in Book IX of Euclid’s Elements.

The following two lemmas will help us accomplish ouor goal.

LEMMA 4.2 Ifa, beZ" and p is prime, then plab = p|a or p|b.
Proof: If p|a, then we are finished. If not, then because p is prime, it follows that ged(p, a) =
1, and so there exist integers x, y with px 4+ ay = 1. Then b = p(bx) + (ab)y, where p|p
and plab. So it follows from parts (d) and (e) of Theorem 4.3 that p|b.

LEMMA 4.3 Leta; € Z" forall 1 <i < n.If pisprime and plaja, - - - a,, then pla; forsome 1 </ <n.

Proof: We leave the proof of this result to the reader.

Using Lemma 4.2 we now have another opportunity to establish a result by the method

of proof by contradiction.
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| EXAMPLE 4.41

We want to show that /2 is irrational.

If not, we can write /2 = a/b,where a, b € Z* and ged(a, b) = 1. Then /2 = a/b=
2= az/b2 = 2b% = g2 = 2]a? = 2|a. (Why?) Also, 2|a = a = 2¢ for some ¢ € Z, so
2b% = a? = (2¢)* = 4¢? and b*> = 2¢*. But then 2|b? = 2|b. Since 2 divides both a and
b, it follows that ged{a, b) > 2—Dbut this contradicts the earlier claim that ged(a, b) =
1. [Note: The preceding proof for the irrationality of V2 was known to Aristotle (384
322 B.C.) and is similar to that given in Book X of Euclid’s Elements.]

Before we turn to the main result for this section, let us point out that the integer 2 in
the preceding example is not that special. The reader will be asked to show in the Section
Exercises that in fact ,/p is irrational for every prime p. Now that we have mentioned this
fact, it is time to present the Fundamental Theorem of Arithmetic.

THEOREM 4.1

EXAMPLE 4.42

EXAMPLE 4.43

Every integer 7 > 1 can be written as a product of primes uniquely, up to the order of the
primes. (Here a single prime is considered a product of one factor.)

Proof: The proof consists of two parts: The first part covers the existence of a prime factor-
ization, and the second part deals with its uniqueness.

If the first part is not true, let m > 1 be the smallest integer not expressible as a product
of primes. Since m is not a prime, we are able to write m = mm,, where 1 < m <m,
1 < my < m. But then m, m, can be written as products of primes, because they are less
than m. Consequently, with m = mim, we can obtain a prime factorization of m.

In order to establish the uniqueness of a prime factorization, we shall use the alternative
form of the Principle of Mathematical Induction (Theorem 4.2). For the integer 2, we have
a unique prime factorization, and assuming uniqueness of representation for 3, 4, 5, ...,
n — 1, we suppose that n = pi'p3* - - - pi* = g{'q5 - - - g%, where each p;, 1 <i <k, and
each g;, 1 < j<r,is a prime. Also py<pr<---<p;, and g < g <--- <gq,, and
s >0foralll <i <k t;>0foralll <j=<r.

Since p| |n, we have pilgy gy - - - g7 . By Lemma4.3, pi|g; forsome 1 < j < r.Because
1 and g; are primes, we have p; = ¢;. In fact j = 1, for otherwise ¢,ln = g, = p, for
some 1 <e <k and p| < p, = g1 < g; = p1. With p; = g, we find that ny = n/p, =
pi e pir =gl g% - g% Since ny < n, by the induction hypothesis it follows
that k=r, p;=¢q; for 1 <i<k,si—1=t;,—1(s0s;=¢#),ands; =¢ for2<i<k.
Hence the prime factorization of » is unique.

This result is now used in the following five examples.

For the integer 980,220 we can determine the prime factorization as follows:
980,220 = 2'(490,110) = 22(245,055) = 2231(81,685) = 223'51(16,337)
=223!5'171(961) = 22-3.5.17-31%

Suppose that #n € Z* and that
) 10-9.-8.7-6-5-4-3.-2.n=21.20-19-18-17-16-15- 14.

Since 17 is a prime factor of the integer on the right-hand side of Eq. (*) it must also
be a factor for the left-hand side (by the uniqueness part of the Fundamental Theorem of



EXAMPLE 4.44

4.5 The Fundamental Theorem of Arithmetic 239

Arithmetic). But 17 does not divide any of the factors 10,9, 8, .. ., 3 or 2, so it follows that
17|n. (A similar argument shows us that 19|#).

For n € Z™, we want to count the number of positive divisors of n. For example, the number
2 has two positive divisors: 1 and itself. Likewise, 1 and 3 are the only positive divisors of
3. In the case of 4, we find the three positive divisors 1, 2, and 4.

To determine the result for each n € Z*, n > 1, we use Theorem 4.11 and write n =
P st pit, where for each 1 <i <k, p, is a prime and ¢ > 0. If m|n, then m =
p'lf' p'zf2 cen p{‘, where 0 < f; <e, for all 1 <i < k. So by the rule of product, the num-
ber of positive divisors of n is

ey + Diey+ 1) -+ (ep + 1).

For example, since 29,338,848,000 = 283°537°11, we find that 29,338,848,000 has
B+ DG+ DB+ DG+ D + 1) = (9(6)(d)(4)(2) = 1728 positive divisors.

Should we want to know how many of these 1728 divisors are multiples of 360 = 2*325,
then we must realize that we want to count the integers of the form 2932577411 where

3=n =8, 2<n <5, 1 <t3<3, 0=y =<3, and 0<t=<1

Consequently, the number of positive divisors of 29,338,848,000 that are divisible by
360 is

[(8=3)+ 1S -2+ 1B =D+ 1[G -0+ 11[(1 -0) + 1]
= (6)(4)(3)(4)(2) = 576.

To determine how many of the 1728 positive divisors of 29,338,848,000 are perfect
squares, we need to consider all divisors of the form 2°' 3*25% 7% 115, where each of 51, 57, 53,
$4, 85 18 an gven nonnegative integer. Consequently, here we have

5 choices for sy —namely, 0, 2, 4, 6, §;

3 choices for s —namely, 0, 2, 4;

2 choices for each of 54, s, —namely, 0, 2; and

1 choice for s5 —namely, 0.

It then follows that the number of positive divisors of 29,338,848,000 that are perfect
squares is {5)(3)(2)(2)(1) = 60.

For our next example we shall need the multiplicative counterpart of the Sigma-notation
{for addition) that we first observed in Section 1.3. Here we use the capital Greek letter I1
for the Pi-notation.

We can use the Pi-notation to express the product xx2x3x4x5x¢, forexample, as [ |9, x,.
In general, one can express the product of the n — m + 1 terms X,, Xpmi1, Xmi2, - -5 Xns
where m, n € Z and m < n, as H:;m x,. As with the Sigma-notation the letter { is called
the index of the product, and here this index accounts for all » — m + 1 integers starting
with the lower limit m and continuing on up to (and including) the upper limit n.

This notation is demonstrated in the following:

1) [1/-3 x, = x3xaxsx6x7 = | | }_3 x,, since there is nothing special about the letter i
2) [[85i=3.4.5.6=06!/2!
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EXAMPLE 4.45 J

EXAMPLE 4.46

3 1_[7=m i=mm+Dm+2)- - (n—Dm =nl/m— D!, for all m, n € Z" with
m < n; and
) [11L % = xgxsxoxsoxn = [ =0 2745 = [1}—0 201,
fm,neZ" letm = p{'py - p; andn = plf' p{z .. p{*, with each p; prime and 0 < ¢,
and 0 < f; forall 1 =i <¢. Then if ¢; = min{e,, f;}, the minimum (or smaller) of ¢; and
fi, and b; = max{e;, f;}, the maximuom {or larger) of ¢; and f;, forall 1 <7 < ¢, we have

ar

H
: [ _ b
ged(m, n) = p{'p’ - pl = [1 P and lem(m, m) = Py pl =11 p

[

For example, let m = 491,891,400 = 2%3°527211'13% and let » = 1,138,845,708 =
22327111213317'. Then with-p1 =2, po=3, p3=5,pa =7, ps =11, ps =13, and
p7 = 17, we find a; = 2, ap = 2, a3 = 0 (the exponent of 5 in the prime factorization of n
must be 0, because 5 does not appear in the prime factorization), a4 = 1, a5 = 1, a¢ = 2,
and a; = 0. So

ged(m, n) = 22325974 11113217 = 468.468.
We also have

lem(in, 1) = 2°3°5%7211%13°17" = 1,195,787,993,400.

Our final result for this section ties together the Fundamental Theorem of Arithmetic
with the fact that any two consecutive integers are relatively prime (as observed in Exercise
21 for Section 4.4).

Here we seek an answer to the following question. Can we find three consecutive posi-
tive integers whose product is a perfect square —that is, do there exist »m, n € Z% with
mim + D(m +2) = n??

Suppose that such positive integers m, n do exist. We recall that ged(m, m + 1) = 1=
ged(m + 1, m + 2), so forany prime p, if p|(m + 1),then p } m and p f(m 4 2). Further-
more, if p|(m + 1), it follows that p|n?. And since n’ is a perfect square, by the Fundamental
Theorem of Arithmetic, we find that the exponents on p in the prime factorizations of both
m 4+ 1 and n? must be the same even integer. This is true for each prime divisor of m + 1,
so m + 1 is a perfect square. With n? and m 4 1 both being perfect squares, we conclude
that the product m (i + 2) is also a perfect square. However, the product m(m 4+ 2) is such
that m? < m? + 2m = m(m 4+ 2) < m*> + 2m + 1 = (m + 1)2. Consequently, we find that
m{m + 2) is wedged between two consecutive perfect squares — and is not equal to either
of them. So m(m + 2) cannot be a perfect square, and there are no three consecutive positive
integers whose product is a perfect square.

3. Letr € Z" and py, pa, p3. ..., p; be distinct primes. If
TR ;o tctoniation 7 g7 o pi whats the

prime factorization of (a) m?? (bym*?

1. Write each of the following integers as a product of primes

N

1

4, Verify Lemma 4.3.

.- p¥% whereQ<np, forall 1 <i<k
Prp Pic d - 5. Prove that ,/p is irrational for any prime p.
aepr=pr=cor=p 6. The change machine at Cheryll’s laundromat contains
a) 148,500 b) 7,114,800 ¢) 7,882,875 n quarters, 2a nickels, and 4n dimes, where n € Z*. Find
2. Determine the greatest common divisor and the least com- all values of n so that these coins total k dollars, where

mon multiple for each pair of integers in the preceding exercise. keZ".



7. Find the number of positive divisors for each integer in
Exercise 1.
8. a) How many positive divisors are there for
n=2"3587'0113137377
b) For the divisors in part (a), how many are
i) divisible by 2334571123722
i) divisible by 1,166,400,0007?
iii) perfect squares?
iv) perfect squares that are divisible by 2235%11%?
v) perfect cubes?
vi) perfect cubes that are multiples of
21932527°1121323727
vii) perfect squares and perfect cubes?
9, Letm, n € 2+ withmn = 2*3*33711213' Iflem(m, n) =
2233527111213, what is ged(m, n)?
10. Extend the results in Example 4.45 and find the greatest
common divisor and least common multiple for the three inte-
gers in Exercise 1.

11. How many positive integers n divide 100137n +
2483965447

12. Let a € Z*. Find the smallest value of a for which 2a is a
perfect square and 3a is a perfect cube.

13. a) Let a € Z*. Prove or disprove: (i) If 10/a®, then 10a;
and (ii) If 4|a®, then 4|a.

b) Generalize the true resuli(s) in part (a).

14. let a, b, ce {0, 1,2, ....9} with at least one of a, b, ¢
nonzero. Prove that the six-digit integer abcabc is divisible by
at least three distinct primes.

15. Determine the smallest perfect square that is divisible by 7!

16. For all n € Z*, prove that n is a perfect square if and only
if n has an odd number of positive divisors.

17. Find the smallest positive integer n for which the product
1260 X n is a perfect cube.

18. Two hundred coins numbered 1 to 200 are put in a row
across the top of a cafeteria table, Two hundred students are
assigned numbers (from 1 to 200) and are asked to turn over
certain coins. The student assigned number ! is supposed to turn
over all the coins. The student assigned number 2 is supposed to
turn over every other coin, starting with the second coin. In gen-
eral, the student assigned the number #, for each 1 <n < 200,
is supposed to turn over every sth coin, starting with the nth
coin.

a) How many times will the 200th coin be turned over?

b) Will any other coin(s) be turned over as many times as
the 200th coin?

¢) Will any coin be turned over more times than the 200th
coin?

19. How many different products can one obtain by multiplying
any two (distinct) integers in the set
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a) {4. 8, 16, 32)? b) {4, 8. 16, 32, 64}?

) {4,8,9, 16,27, 32, 64, 81, 243}?

d) {4.8,9, 16, 25,27, 32, 64, 81, 125, 243, 625, 729,
3125)?

e) (P2, P pt ph Pt gt gt gt g5, gttt ),
where p. g, and r are distinct primes?

20. Write a computer program (or develop an algorithm) to find
the prime factorization of an integer n > 1.

21. Intriangle A BC the length of side BC is 293. If the length
of side A B is a perfect square, the length of side AC is a power
of 2, and the length of side AC is twice the length of side AR,
determine the perimeter of the triangle.

22. Express each of the following in simplest form.

10
a) H,(—”’
2n+1
b) [] (=1, whereneZ*
i=1
i+ Di+2)
,H4 i — D)

2n

T

a2n—1 41

c)

,wherene Z*

23. a) Let n = 88,200. In how many ways can one factor » as
abwhere | <a <n, | <b<n, and ged(a, b) = 1. (Note:
Here order is not relevant. So, for example, a = 8, b =
11,025, and @ = 11,025, b = 8 result in the same unordered
factorization.)

b) Answer part (a) for n = 970,200.
¢) Generalize the results in parts {(a) and (b).

24. Use the Pi-notation to write each of the following.

a) (I°+ D27+ 23 + )4 + H(5* +5)

b) (1 +x)¢1 + x5 + )+ xH( +x%)

©) (1 + )0 +x)(1 + x4+ 2+ x") (0 +x')
25. Prove thatif n € Z* and n > 2, then

& 1 n+1
|| 11— =)= .
=2 [2 2n

26. When does a positive integer n have exactly

a) two positive divisors? b) three positive divisors?

¢) four positive divisors?  d) five positive divisors?
27. Let ne€Z”. We say that n is a perfect integer if 2n
equals the sum of all the positive divisors of n. For example,
since 2(6) = 12 =1+ 2 4+ 3 + 6, it follows that 6 is a perfect
integer.
a) Verify that 28 and 496 are perfect integers.
b) Ifm ¢ Z" and 27 — { is prime, prove that 2@ — 1)
is a perfect integer. [You may find the result from part (a)
of Exercise 2 for Section 4.1 useful here.]
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4.6
Summary and Historical Review

According to the Prussian mathematician Leopold Kronecker (1823-1891), “God made the
integers, all the rest is the work of man . .. . All results of the profoundest mathematical
investigation must ultimately be expressible in the simple form of properties of the integers.”
In the spirit of this quotation, we find in this chapter how the handiwork of the Almighty
has been further developed by men and women over the last 24 centuries.

Starting in the fourth century B.C. we find in Euclid’s Elements not only the geometry of
our high school experience but also the fundamental ideas of number theory. Propositions
1 and 2 of Euclid’s Book VII include an example of an algorithm to determine the greatest
common divisor of two positive integers by using an efficient technique to solve, in a finite
number of steps, a specific type of problem.

The term algorithm, like its predecessor algorism, was unknown to Euclid. In fact, this
term did not enter the vocabulary of most people until the late 1950s when the computer
revolution began to make its impact on society. The word comes from the name of the
famous Islamic mathematician, astronomer, and textbook writer Abu Ja'far Mohammed
ibn Miisa al-Khowarizmi (c. 780-850). The last part of his name, al-Khowarizmi, which is
translated as “a man from the town of Khowarizm,” gave rise to the term algorism. The word
algebra comes from al-jabr, which is contained in the title of al-Khowarizmi’s textbook
Kitab al-jabr w'al muquabala. Translated into Latin during the thirteenth century, this book
had a profound impact on the mathematics developed during the European Renaissance.

Euclid (c. 400 8.C) Al-Khowarizmi (c. 780-850)

As mentioned in Section 4.4, our use of the word algorithm connotes a precise step-by-
step method for solving a problem in a finite number of steps. The first person credited with
developing the concept of a computer algorithm was Augusta Ada Byron (1815-1852),
the Countess of Lovelace. The only child of the famous poet Lord Byron and Annabella
Millbanke, Augusta Ada was raised by a mother who encouraged her intellectual talents.
Trained in mathematics by the likes of Augustus DeMorgan (1806-1871), she continued
her studies by assisting the gifted English mathematician Charles Babbage (1792-1871) in
the development of his design for an early computing machine — the “Analytical Engine.”
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The most complete accounts of this machine are found in her writings, wherein one finds
a great deal of literary talent along with the essence of the modern computer algorithm.
Further details on the work of Charles Babbage and Augusta Ada Byron Lovelace can be
found in Chapter 2 of the work by S. Augarten [1].

Augusta Ada Byron, Countess of Lovelace (1815-1852)

In the century following Euclid, we find some number theory in the work of Eratosthenes.
However, it was not until five centuries later that the first major new accomplishments in the
field were made by Diophantus of Alexandria. In his work Arithmetica, his integer solutions
of linear (and higher-order) equations stood as a mathematical beacon in number theory
until the French mathematician Pierre de Fermat (1601-1665) came on the scene,

The problem we stated in Theorem 4.8 was investigated by Diophantus and further
analyzed during the seventh century by Hindu mathematicians, but it was not actually
solved completely until the 1860s, by Henry John Stephen Smith (1826-1883).

For more on some of these mathematicians and others who have worked in the theory
of numbers, consult L. Dickson [4]. Chapter 5 in I. Niven, H. S. Zuckerman, and H. L.
Montgomery [ 10} deals with the solutions of Diophantine equations and their applications.

In the work Formulario Matematico, published in 1889, Giuseppe Peano (1858-1932)
formulated the set of nonnegative integers on the basis of three undefined terms: zero,
number, and successor. His formulation 1is as follows:

a) Zero is a number.

b) For each number n, its successor is a number.

¢) No number has zero as its successor.

d) If two numbers m, n have the same successor, then m = n.

e) If T is a set of numbers where 0 € T, and where the successor of n is in 7 whenever

nisin T, then T is the set of all numbers.

In these postulates the notion of order {successor) and the technique called mathematical
induction are seen to be intimately related to the idea of number (that is, nonnegative
integer). Peano attributed the formulation to Richard Dedekind (1831-1916), who was the
first to develop these ideas; nonetheless, these postulates are generally known as “Peano’s
postulates.”
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The first European to apply the Principle of Mathematical Induction in proofs was the
Venetian scientist Francisco Maurocylus (1491-1575). His book, Arithmeticorum Libri
Duo {published in 1575), contains a proof, by mathematical induction, that the sum of
the first »n positive odd integers is n?. In the next century, Pierre de Fermat made further
improvements on the technique in his work involving “the method of infinite descent.”
Blaise Pascal (c. 1653), in proving such combinatorial results as C(n, k)/C(n, k+ 1) =
k+1)/(n —k),0 <k <n—1, used induction and referred to the technique as the work
of Maurocylus. The actual term mathematical induction was not used, however, until the
nineteenth century when it appeared in the work of Augustus DeMorgan (1806-1871). In
1838 he described the process with great care and gave it the name mathematical induction.
(An interesting survey on this topic is found in the article by W. H. Bussey [2].)

The text by B. K. Youse [13] illustrates many varied applications of the Principle of
Mathematical Induction in algebra, geometry, and trigonometry. For more on the relevance
of this method of proof to the problems of programming and the development of algorithms,
the text by M. Wand [12] (especially Chapter 2) provides ample background and examples.

More on the theory of numbers can be found in the texts by G. H. Hardy and E. M.
Wright [5], W. J. LeVeque [7, 8], and I. Niven, H. S. Zuckerman, and H. L. Montgomery
[10]. At a level comparable to that of this chapter, Chapter 3 of V. H. Larney [6] provides an
enjoyable introduction to this material. The text by K. H. Rosen [11] integrates applications
in cryptography and computer science in its development of the subject. The journal article
by M. J. Collison [3] examines the history of the Fundamental Theorem of Arithmetic. The
articles in [9] recount some interesting developments in number theory.
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SUPPLEMENTARY EXERCISES

1. Let a, d be fixed integers. Determine a summation for-
mulafora+(a+dy+(a+2d)+---+ (a+ (n — )d), for
n € Z*. Verify your result by mathematical induction.

2. Inthe following pseudocode program segment the variables
n and sum are integer variables. Following the execution of this
program segment, which value of x is printed?

n:=3
sum := 0
while sum < 10,000 do
begin
n:=n+17
sum := sum + i
end
print n

3. Consider the following five equations.

1) 1=1

2) 1—4=—-(1+2)

3) 1-44+9=1+2+43

4 1-44+9-16=—-(14+2+3+4

5)1—-449-164+25=142+434+445
Conjecture the general formula suggested by these five equa-
tions, and prove your conjecture.

4, For n € Z*, prove each of the following by mathematical
induction:

a) 5|(n° — n) b) 6/(n + 5n)
5. Foralln € Z*, let S(n) be the open statement: n” + n + 41
is prime.
a) Verify that S(n) istrue forall 1 <n <9.
b) Does the truth of §(k) imply that of S(k + 1) for all
keZ*?

6. For n € Z™ define the sum s, by the formula

Lt 203 0 ezh n
R TR TR, n! n+ N
a) Verify thats; = 1, s; = 'g, and 53 = %

b) Compute 54, 55, and s;.

¢) On the basis of your results in parts (a) and (b), conjec-
ture a formula for the sum of the terms in s,.

d) Verify your conjecture in part {c) for all n € Z* by the
Principle of Mathematical Induction.

7. Foralln € Z, n > 0, prove that
a) 2! 4+ 1 is divisible by 3.
b) n% 4+ (n + 13 + (n + 2)° is divisible by 9.
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8. Letn € Z* where n is odd and n is not divisible by 5. Prove
that there is a power of n whose units digit is 1.

9. Find the digits x, y, z where (xyz)e = {zyx)s.

10. If neZ*, how many possible values are there for
ged(n, n + 3000)?

11. If n € Z¥ and n > 2, prove that 2" < (') < 4"
12. If n € Z, prove that 57 divides 7"+ 4 82+,

13. For all n € Z*, show that if n > 64, then 1 can be written
as a sum of 5°s and/or 17’s.

14. Determine all a, b € Z such that % + % = 3714

15. Given reZ*%, write r=vro+r 1047 - 1004+ +
- 107, where O <r, <9forO0<i<n-—1l,andO0<r, <9.

a) Prove that 9|r if and only if 9|/(r, +rpcy +-- -+ 12 +
ry +ro).
b) Prove that 3|7 if and only it 3|(r, + 7,1+ -+ 1 +
r1+rg).
¢} If r = 137486x225, where x is a single digit, determine
the value(s) of x such that 3|z. Which values of x make ¢
divisible by 97
16. Frances spends $6.20 on candy for prizes in a contest. If a
10-ounce box of this candy costs $.50 and a 3-ounce box costs
$.20, how many boxes of each size did she purchase?

17. a) How many positive integers can we express as a product
of nine primes (repetitions allowed and order not relevant)
where the primes may be chosen from {2, 3, 5, 7, 11}?

b) How many of the positive integers in part (a) have at
least one occurrence of each of the five primes?

18. Find the product of all (positive) divisors of (a) 1000;
(b) 5000; {(c) 7000; (d) 9000; (&) p™g", where p, q are dis-
tinct primes and m, n € Z*; and (f) phq"rt, where p, q, r are
distinct primes and m, n, k € Z".

19. a) Ten students enter a locker room that contains 10 lock-
ers. The first student opens all the lockers. The second stu-
dent changes the status (from closed to open, or vice versa}
of every other locker, starting with the second locker. The
third student then changes the status of every third locker,
starting at the third locker. In general, for 1 < & < 10, the
kth student changes the status of every kth locker, starting
with the kth locker. After the tenth student has gone through
the lockers, which lockers are left open?

b) Answer part (a) if 10 is replacedbyn € Z7, n > 2.

20. Let A = {ay, a3, a3, a4, as} € Z*. Prove that A contains a
nonempty subset § where the sum of the elements in § is a mul-
tiple of 3. (Here it is possible to have a sum consisting of only
one summand.)

21. Consider the set {1, 2, 3}. Here we may write {1, 2, 3} =
{1,2}U {3}, where 1+ 2= 3. For the set {1, 2, 3,4} we
find that {1,2, 3,4} = {1,4) U {2, 3}, where 144 =243,
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However, things change when we examine the set
{1,2,3,4,5}. In this case, if C C {1, 2, 3,4, 5} and we let
sc denote the sum of the elements in C, then we find that there
isnoway towrite {1,2,3,4,5} = AU B, withAN B =@ and
54 = §p.
a) For which n € Z" n > 3, can we write {1,2,3, ...,
a}=AUB, with AN B =@ and s, = s3? (As above, s,
and sp denote the sums of the elements in A and B, respec-
tively.)
b) Let n € ZT with n > 3. If we can write {1,2,3, ...,
n}=AUB with ANB =0 and s, = sp, describe how
such sets A and B can be determined.

22. Determine those integers n for which % and 7’%' are
also integers.

23. Leta, be Z".
a) Prove that if a?|b? then a|b.
b) Is it true that if a%|5* then a|b?
24. Let n be a fixed positive integer that satisfies the property:
For all a, b € Z7, if n|ab then n|a or n|b. Prove thatn = 1 or
7 is prime.
25, Suppose that a, b, k € Z* and that & is not a power of 2.
a) Prove that if @* + b* # 2, then a* + b* is composite.
b) If n € Z* and » is not a power of 2, prove that if 2* + 1
is prime, then # is prime.

For the next three exercises, recall that H,,, F,, and L, denote
the nth harmonic, Fibonacci, and Lucas numbers, respectively.

26. Prove that foralln e N, H» < 1 +n.
27. Prove that F, < (5/3)" foralln € N.
28. For n € N, prove that

Lot Lot Laboot L =3 L= Lo — 1.
=0

29. a) For the five-digit integers (from 10000 to 99999) how
many are palindromes and what is their sum?

b) Write a computer program to check the answer for the
sum in part ().
30. Let a,b be odd with a > b. Prove that gecd(a, b} =
ged (55—”, b).

31. Letn € Z" with « the units digit of n. Prove that 7|n if and

only if 7|(55¢ — 2u).

32. Let m, n € ZY with 19m 4 90 4 81 = 1998. Determine
m, n so that (a) n is minimal; (b) m is minimal.

33. Catrina selects three integers from {0, 1,2, 3,4, 5,6, 7, 8,
9} and then forms the six possible three-digit integers (leading
zero allowed) they determine, For instance, for the selection 1,
3, and 7, she would form the integers 137, 173, 317, 371, 713,
and 731. Prove that no matter which three integers she initially
selects, it is not possible for all six of the resulting three-digit
integers to be prime.

34. Consider the three-row and four-column table shown in
Fig. 4.12. Show that it is possible to place eight of the nine in-
tegers 2, 3, 4,7, 10, 11, 12, 13, 15 in the remaining eight cells
of the table so that the average of the integers in each row is the
same integer and the average of the integers in each column is
the same integer. Specify which of the nine integers given can-
not be used and show how the other eight integers are placed in
the table.

14
5 9
1
Figure 4.12
35. Allen writes the consecutive integers 1,2,3,... , nona

blackboard. Then Barbara erases one of these integers. If the
average of the remaining integers is 3517—7, what is n and what
integer was erased?

36. Leslie selects a random integer between 1 and 100 (inclu-
sive). Find the probability her selection is divisible by (a) 2 or
3;(b)2,3,0r5.

37. Letm = pl'py* pipy! and n = p{ﬁ p{z pgﬁ p_{s, where pi,

Pz, P, Pa, ps are distinct primes, and e, ey, €3, €4, fi, f2. fa,
fs € Z*. How many common divisors are there for m, n?



