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statements (or propositions}

the negation of (statement) p: not p

the conjunction of p, g: p and q

the disjunctionof p, g. porg

the implication of ¢ by p: p implies g

the biconditional of p and ¢: p if and only if g
if and only if

logical implication: p logically implies g
logical equivalence: p is logically equivalent to q
tawology

contradiction

For all x (the universal quantifier)

For some x (the existential quantifier)

element x is a member of set A
element x is not a member of set A
the universal set
A is a subset of B
A is a proper subset of B
A is not a subset of B
A is not a proper subset of B
the cardinality, or size, of set A — that is, the number of elements in A
the empty, or null, set
the power set of A — that is, the collection of all subsets of A
the intersection of sets A, B: {x{x € A and x € B}
the union of sets A, B: {xjx € A or x € B}
the symmetric difference of sets A, B:
{xIxe Aorx € B,butx ¢ AN B}
the complement of set A: {x|x € U and x ¢ A}
the (relative) complement of set B in set A: {x|x € A and x ¢ B}
{x|x € A,, for at least one i € I}, where [ is an index set

{x|x € A,, forevery i € I}, where [ is an index set

the sample space for an experiment €

A is an event

the probability of event A

the probability of A given B; conditional probability
random variable

the expected value of X, a random variable

the variance of X, a random variable

the standard deviation of X, a random variable

adivides b, fora, beZ,a #0

a does not divide b, fora, be Z,a #0

the greatest common divisor of the integers a, b

the least common multiple of the integers a, b

Euler’s phi function for n € Z*

the greatest integer less than or equal to the real number x:
the greatest integer in x: the floor of x
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the smallest integer greater than or equal to the real number x:
the ceiling of x
a is congruent to b modulo n

the Cartesian, or cross, product of sets A, B:
{(a, b)lae A, b e B}

9 is a relation from A to B

a is related to b

a is not related to b

the converse of relation R: (a, b) € R iff (b, a) € R

the composite relation for R CA X B, ¥C B X C:
(a,0)eRoPFif(a, B)eR, (b,c) e Fforsomebec B

the least upper bound of ¢ and b

the greatest lower bound of a and b

the equivalence class of element a (relative to an
equivalence relation R on a set A): {x € Alx R a}

f is a function from A to B

for f: A — Band A C A, f(A;) is the image of A;
under f —thatis, { f(a)|a € A}

for f: A — B, f(A) is the range of f

f is a binary operation on A

f is a closed binary operation on A

the identity function on A: 1,(a) = a foreacha e A

the restriction of f: A — Bto A{ C A

the composite function for f: A — B, g: B — C:
(g° fla=g(f(a)),forac A

the inverse of function f

the preimage of By C Bfor f: A— B

f is “big Oh” of g; f is of order g

a finite set of symbols called an alphabet

the empty string

the length of string x

fxixz---xnlx, € E},neZt

{A}

U,,ez+ Z": the set of all strings of positive length

U,,zo Z": the set of all finite strings

A is a language

the concatenation of languages A, B C E*:
{abla € A, b€ B}

{aar - az|la; e ACE*) neZt

{A}

UnEZ“"An

Unzo A" the Kleene closure of language A

a finite state machine M with internal states S, input
alphabet ¥, output alphabet O, next state function
v: § X ¥ — S and output functionw: § X ¥ - 0




Xvi Contents

4 Properties of the Integers: Mathematical Induction 193

4.1  The Well-Ordering Principle: Mathematical Induction 193
4.2 Recursive Definitions 210

4.3 The Division Algorithm: Prime Numbers 221

4.4  The Greatest Common Divisor: The Euclidean Algorithm 231
4.5 The Fundamental Theorem of Arithmetic 237

4.6 Summary and Historical Review 242

5 Relations and Functions 247

5.1 Cartesian Products and Relations 248

5.2 Functions: Plain and One-to-One 252

53 Onto Functions: Stirling Numbers of the Second Kind 260
5.4  Special Functions 267

5.5  The Pigeonhole Principle 273

5.6 Function Composition and Inverse Functions 278

5.7  Computational Complexity 289

5.8 Analysis of Algorithms 294

5.9  Summary and Historical Review 302

6 Languages: Finite State Machines 309

6.1  Language: The Set Theory of Strings 309

6.2 Finite State Machines: A First Encounter 319
6.3  Finite State Machines: A Second Encounter 326
6.4  Summary and Historical Review 332

7 Relations: The Second Time Around 337

7.1  Relations Revisited: Properties of Relations 337

7.2 Computer Recognition: Zero-One Matrices and Directed Graphs 344
7.3 Partial Orders: Hasse Diagrams 356

7.4 Equivalence Relations and Partitions 366

7.5  Tinite State Machines: The Minimization Process 371

7.6  Summary and Historical Review 376

PART 2
Further Topics in Enumeration 383

8 The Principle of Inclusion and Exclusion 385

8.1 The Principle of Inclusion and Exclusion 385
8.2  Generalizations of the Principle 397

8.3  Derangements: Nothing Is in Its Right Place 402
8.4  Rook Polynomials 404

8.5  Arrangements with Forbidden Positions 406

8.6  Summary and Historical Review 411



Relations and
Functions

In this chapter we extend the set theory of Chapter 3 to include the concepts of relation
and function. Algebra, trigonometry, and calculus all involve functions. Here, however,
we shall study functions from a set-theoretic approach that includes finite functions, and
we shall introduce some new counting ideas in the study. Furthermore, we shall examine
the concept of function complexity and its role in the study of the analysis of algorithms.

We take a path along which we shall find the answers to the following (closely related)
six problems:

1) The Defense Department has seven different contracts that deal with a high-security
project. Four companies can manufacture the distinct parts called for in each contract,
and in order to maximize the security of the overall project, it is best to have all four
companies working on some part. In how many ways can the contracts be awarded
so that every company is involved?

2) How many seven-symbol quaternary (0, 1, 2, 3) sequences have at least one occur-
rence of each of the symbols 0, 1, 2, and 3?

3) An m X n zero-one matrix is a matrix A with m rows and n columns, such that in
row i, forall 1 </ <m,and column j, forall 1 < j < n, the entry a,; that appears is
either O or 1. How many 7 X 4 zero-one matrices have exactly one 1 in each row and
at least one 1 in each column? (The zero-one matrix is a data structure that arises in
computer science. We shall learn more about it in later chapters.)

4) Seven (unrelated) people enter the lobby of a building which has four additional
floors, and they all get on an elevator. What is the probability that the elevator must
stop at every floor in order to let passengers off?

5) For positive integers i, n with m < n, prove that

i(—l)"( " )(n-k)m—O.
k=0 n—k

6) For every positive integer n, verify that

nl= g(_l)k(n " k)(n et

Do you recognize the connection among the first four problems? The first three are the
same problem in different settings. However, it is not obvious that the last two problems
are related or that there i1s a connection between them and the first four. These identities,
however, will be established using the same counting technique that we develop to solve
the first four problems.

247



248 Chapter 5 Relations and Functions

5.1

Cartesian Products and Relations

Definition 5.1

| EXAMPLE 5.1

EXAMPLE 5.2

EXAMPLE 5.3

We start with an idea that was introduced earlier in Definition 3.11. However, we repeat the
definition now in order to make the presentation here independent of this prior encounter.

For sets A, B the Cartesian product, or cross product, of A and B is denoted by A X B and
equals {(a, b)la € A, b € B).

We say that the elements of A X B are ordered pairs. For {a, b), (¢, d) € A X B, we
have (a, b) = (¢, d) if and only ifa = c and b = d.

If A, B are finite, it follows from the rule of product that |A X B| = |A| - | B|. Although
we generally will not have A X B = B X A, we will have |A X B| = |B X A|.

Here A €9, and B € 9l;, and we may find that the universes are different— that is,
Uy # Uy, Also, even if A, B C %, it is not necessary that A X B C 9, so unlike the cases
for union and intersection, here % (AU) is not necessarily closed under this binary operation.

We can extend the definition of the Cartesian product, or cross product, to more than two
sets. Letn € Z7, n = 3. For sets Ay, Aa, ..., A,, the (n-fold) product of Ay, Az, ..., A,
isdenotedby A; X Ay X --- X A, and equals {(a,, az. ..., au)la; € A, 1 <i <n}. The
elements of A} X A; X -+ X A, are called ordered n-tuples, although we generally use the
term triple in place of 3-tuple. As withordered pairs, if (a;, as, ..., ay), (b1, b2, ..., by) €
Al X Ay X - -+ X A,, then (ay, g2, .. ., ay) = (b, b, ..., by) if and only if a, = b; for
alll <i <n.

Let A = {2, 3,4}, B = {4, 5}. Then
a) AX B={(2,4),(2.5), (3, 4. 3,5, 44, 4 5.
b) B X A ={4,2),(43), 44,5 2),5.3), 5 .

¢) B2=B X B={44), 45,5, 4, (5,5).
d) B* = B X BX B ={(a, b, c)|a, b, c € B}; for instance, (4, 5,5) € B

The set R X R = {(x, v)|x, ¥y € R} is recognized as the real plane of coordinate geometry
and two-dimensional calculus. The subset RT X R™ is the interior of the first quadrant
of this plane. Likewise R* represents Euclidean three-space, where the three-dimensional
interior of any sphere (of positive radius), two-dimensional planes, and one-dimensional
lines are subsets of importance.

Once again let A = {2, 3, 4} and B = {4, 5}, as in Example 5.1, and let C = {x, y}. The
construction of the Cartesian product A X B can be represented pictorially with the aid of
a tree diagram, as in part (a) of Fig. 5.1. This diagram proceeds from left to right. From

"When dealing with the Cartesian product of three or more sets, we must be careful about the lack
of associativity. In the case of three sets, for example, there is a difference between any two of the sets
A X Az X Az, (A1 X A2) X A3z, and A1 X (A X A3) because their respective elements are ordered triples
(ar. az. a3), and the distinct ordered pairs ((a;, ¢2). a3) and (g, (a2, ¢3)). Although such differences are im-
portant in certain instances, we shall not concentrate on them here and shall always use the nonparenthesized form
A1 X Az X As. This will also be our convention when dealing with the Cartesian product of four or more sets.



EXAMPLE 5.4

5.1 Cartesian Products and Relations 249

the left-most endpoint, three branches originate — one for each of the elements of A. Then
from each point, labeled 2, 3, 4, two branches emanate — one for each of the elements 4,
5 of B. The six ordered pairs at the right endpoints constitute the elements (ordered pairs)
of A X B. Part (b) of the figure provides a tree diagram to demonstrate the construction of
B X A. Finally, the tree diagram in Fig. 5.1 (c) shows us how to envision the construction
of A X B X C, and demonstrates that |4 X B X C| = 12 =3 X 2 X 2 = |A||B||C|.

(4, 2)
2,4 4 (4, 3)
p] <
{2, 5)
(3, 4) 4, 4
3 <
(3, 5) (5,2)
(4, 4
4 <
(4, 5s) 5 (5, 3)
(5, 4)
(a) AXB (b) B XA
(2,4, x%
) < (2, &) om T 2y
, 2, X
@, 5).<: ooy
(3,4, x)
3 < Che=——iiy
(3,5, x}
(3,5 em=—__, G o
4, 4, x}
4 < @ .<: @4,y
4,5, x
@, 5).<: @5 g
(] AxXBxC

Figure 5.1

In addition to their tie-in with Cartesian products, tree diagrams also arise in other
situations.

At the Wimbledon Tennis Championships, women play at most three sets in a match. The
winner is the first to win two sets. If we let N and E denote the two players, the tree diagram in
Fig. 5.2 indicates the six ways in which this match can be won. For example, the starred line
segment (edge) indicates that player E won the first set. The double-starred edge indicates
that player N has won the match by winning the first and third sets.
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Definition 5.2

EXAMPLE 5.5

| EXAMPLES6 |

First set Second set Third set
(when needed)

Figure 5.2

Tree diagrams are examples of a general structure called a rree. Trees and graphs are
important structures that arise in computer science and optimization theory. These will be
investigated in later chapters.

For the cross product of two sets, we find the subsets of this structure of great interest.

For sets A, B, any subset of A X B is called a (binary) relation from A to B. Any subset
of A X A is called a (binary) relation on A.

Since we will primarily deal with binary relations, for us the word “relation” will mean
binary relation, unless something otherwise is specified.

With A, B as in Example 5.1, the following are some of the relations from A to B.

a) ¥ b) {2, 4}
o) {2, 4), 2, 5} d) {(2,4), 3,4, (4, B}
) {(2,4), (3,4), 4. 5) f) AXB

Since |A X B| = 6, it follows from Definition 5.2 that there are 2° possible relations
from A to B (for there are 2° possible subsets of A X B).

For finite sets A, B with 1A] = m and | B} = n, there are 2™ relations from A to B,
including the empty relation as well as the relation A X B itself.

There are also 2% (= 2™") relations from B to A, one of which is also @ and another
of which is B X A. The reason we get the same number of relations from B to A as we
have from A to B is that any relation 3R; from B to A can be obtained from a unique
refation A, from A to B by simply reversing the components of each ordered pair in
PRy (and vice versa).

For B = {1, 2}, let A = P(B) = {@, {1}, {2}, {1, 2}}. The following is an example of a
relation on A: R = {(#, @), (@, {1}, (4, {2}, @, (1, 2}, ({1}, (1)), (1}, {1, 2}),

{2}, 2h, (2}, (1,2}, {1, 2}, {1, 2})}. We can say that the relation R is the subset relation
where (C, D)ye R ifandonly if C, DC Band C C D.




EXAMPLE 5.7

EXAMPLE5.8 |

5.1 Cartesian Products and Relations 251

With A = ZT, we may define a relation & on set A as {(x, y)|x < y}. This is the familiar
“is less than or equal to” relation for the set of positive integers. It can be represented
graphically as the set of points, with positive integer components, located on or above the
line y = x in the Euclidean plane, as partially shown in Fig. 5.3. Here we cannot list the
entire relation as we did in Example 5.6, but we note, for example, that (7, 7), (7, 11) € R,
but (8, 2) ¢ R. The factthat (7, 11) € R can also be denoted by 7 R 11, (8, 2) ¢ R becomes
8 Ji 2. Here 7% 11 and 8 $ 2 are examples of the infix notation for a relation.

y 4

4 - e L] L]

[
1 2
Figure 5.3

L1,
3 4

Our last example helps us to review the idea of a recursively defined set.

Let A be the subset of N X N where & = {(m, n)|n = 7Tm). Consequently, among the
ordered pairs in % one finds (0, 0), (1, 7), (11, 77), and (15, 105). This relation % on N
can also be given recursively by

1) (0, 0) € N; and

D If(s,)eR, then(s +1,1r+7) €.
We use the recursive definition to show that the ordered pair (3, 21) (from N X N) is in
. Our derivation is as follows: From part (1) of the recursive definition we start with
(0, @) € R. Then part (2) of the definition gives us

D 00)0eR=>04+1,0+4D=(1,DeR;

i) (1,DeR=>04+1,74+7=(2,14) cR; and

i) 2, 1DeR=>02+1,144+7)=3,21) A,

We close this section with these final observations.

1) Foranyset A, AX@=0.(IfAX @ #W0,let(a, b)c AX@. Thenac Aand b e .
Impossible!) Likewise, @ X A = @.

2) The Cartesian product and the binary operations of union and intersection are inter-
related in the following theorem.

THEOREM 5.1

For any sets A, B, C C9U:

Q) AX(BNC)=(AXB)N(AXC)
b) AX(BUC)=(AXB)U(AXC()
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) (ANBYXC=(AXC)N(BXC)
d) (AUB) X C=(AXC)U(BXC)

Proof: We prove part (a) and leave the other parts for the reader. We use the same concept of
set equality (as in Definition 3.2 of Section 3.1) even though the elements here are ordered
pairs. For all ¢, bel, (ag; ) e AX(BNC)<ae A and be BNC <> ae A and
beB, CaecA beBandacA beC=(a,b)ecAXBand{a, b)c AXC =

(a,b)ye (AXB)N(AXCO).

1.IFA={1,2,3,4}, B={2,5},and C = {3, 4, 7},
determine A X B; B X A; AU(BXC); (AUB) XC;
(AXCYU(BXCO).

2.If A=1{1,2 3}, and B =12, 4,5}, give examples of
(a) three nonempty relations from A to B; (b) three nonempty
relations on A.

3. For A, B as in Exercise 2, determine the following:
(a) |A X BJ; (b) the number of relations from A to B; (c) the
number of relations on Aj; (d) the number of relations from A
to B that contain (1, 2) and (1, 5); (e) the number of relations
from A to B that contain exactly five ordered pairs; and (f) the
number of relations on A that contain at least seven elements.

4. For which sets A, Bisittruethat A X B = B X A?

5. Let A, B, C, D be nonempty sets.
a) Prove that A X B S C X D if and only if A € C and
BCD.
b) What happens to the result in part (a) if any of the sets
A, B, C, Disempty?

6. The men’s final at Wimbledon is won by the first player to
win three sets of the five-set match. Let C and M denote the
players. Draw a tree diagram to show all the ways in which the
match can be decided.

5.2
Functions: Plain and One-to-One

7. a) If A=1{l,2,3, 4,5} and B = {w, x, v, z}, how many
elements are there in P(A X B)?
b) Generalize the result in part (a).

8. Logic chips are taken from a container, tested individually,
and labeled defective or good. The testing process is continued
until either two defective chips are found or five chips are tested
in total. Using a tree diagram, exhibit a sample space for this
process.

9. Complete the proof of Theorem 5.1.

10. A rumor is spread as follows. The originator catls two peo-
ple. Each of these people phones three friends, each of whom in
turn calls five associates. If no one receives more than one call,
and no one calls the originator, how many people now know the
rumor? How many phone calls were made?

11. For A, B, C C N, prove that
AX(B—-Cy=(AXB)—(AXC().
12. Let A, B be sets with |B| = 3. If there are 4096 relations
from A to B, whatis |A|?
13. Let R C N X N where (m, n) €@ if (and only ify n =
S5m+2. (a) Give a recursive definition for %R. (b) Use the
recursive definition from part (a) to show that (4, 22) € R.
14. a) Give a recursive definition for the relation % C
Z*t X ZT where (m, n) € % if (and only if ) m > .
b) From the definition in part (a) verify that (5, 2) and
4, 4) are in R.

In this section we concentrate on a special kind of relation called a function. One finds
functions in many different settings throughout mathematics and computer science. As for
general relations, they will reappear in Chapter 7, where we shall examine them much more

thoroughly.

Definition 5.3

For nonempty sets A, B, a function, or mapping, f from A to B, denoted f: A — B,isa

relation from A to B in which every element of A appears exactly once as the first compo-
nent of an ordered pair in the relation.
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We often write f(a) = b when (a, b) is an ordered pair in the function f. For (¢, b) € f,
b is called the image of a under f, whereas a is a preimage of b. In addition, the definition
suggests that f is a method for associating with each a € A the unigue element f(a) =
b e B. Consequently, {(a, b), (¢, ¢) € f implies b = c.

ForA=1{1,2,3}and B = {w, x, y, 2}, f = {(1, w), (2, x), (3, x)} is a function, and con-
sequently a relation, from A to B. 3, = {(1, w), (2, x)}and Ry = {(1, w), (2, w), (2, x),
(3, z)} are relations, but not functions, from A to B. (Why?)

For the function f: A — B, A is called the domain of f and B the codomain of f. The
subset of B consisting of those elements that appear as second components in the ordered
pairs of f is called the range of f and is also denoted by f(A) because it is the set of
images (of the elements of A) under f.

In Example 5.9, the domain of f = {1, 2, 3}, the codomain of f = {w, x, y, z}, and the
range of f = f(A) = {w, x}.

A pictorial representation of these ideas appears in Fig. 5.4, This diagram suggests that a
may be regarded as an input that is transformed by f into the corresponding output, f(a).
In this context, a C++ compiler can be thought of as a function that transforms a source
program (the input) into its corresponding object program {the output).

A B
Figure 5.4

Many interesting functions arise in computer science.
a) A common function encountered is the greatest integer function, or floor function.
This function f: R — Z, is given by
f(x) = |x] = the greatest integer less than or equal to x.
Consequently, f(x) = x, if x € Z; and, when x e R —Z, f(x) is the integer to the

immediate left of x on the real number line.
For this function we find that

1) [3.8] =3, 3] =3, |-3.8) = —4, |-3] = 3,
2) [7.1+82] =[153]=15=7+8=[7.1] + |8.2); and
3) [7.7+84] =[16.1] =16 #15=T+8 = |7.7] + [8.4].
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b) A second function — one related to the floor function in part (a) — is the ceiling func-

)

d)

tion. This function g: R — Z is defined by
g(x) = [x] = the least integer greater than or equal to x.

Sog{x) = x whenx € Z,butwhenx € R — Z, then g(x) is the integer to the immechate
right of x on the real number line. In dealing with the ceiling function one finds that

1) [3] =3, 3011 =[3.7] =4 = [4], [-3] = =3, [-3.01] = [-3.7] = -3
2) [3.6 +4.51 = [8.11 =9 =4 +5 = [3.6] + [4.5]; and
3) [3.3+42]1=[7.51=8#9=4+5=[3.3] +[4.2].

The function trunc (for truncation) is another integer-valued function defined on R.
This function deletes the fractional part of a real number. For example, trunc(3.78)
= 3, trunc(8) = 5, trunc(—7.22) = —7. Note that trunc(3.78) = |3.78] = 3 while
trunc(—3.78) = [-3.787 = =-3.

In storing a matrix in a one-dimensional array, many computer languages use the row
major implementation, Here, if A = (4;;)mx, is anm X n matrix, the first row of A is
storedinlocations 1, 2, 3, .. ., n of the array if we start with ay; inlocation 1. The entry
dy) isthen found in positionn + 1, while entry a4 occupies position 2n + 4 in the array.
In order to determine the location of an entry a;; from A, where 1 <i <m, 1 < j <n,
one defines the access function f from the entries of A to the positions 1,2, 3, ..., mn
of the array. A formula for the access function here is f(a;,) = (i — Dn + j.

an

ap| -

Ain | 421 azy |- (dae| 43l ce dij s Amn

EXAMPLE 5.11

n n+ln+2---2n2n4+1---@—Un+j- - (m—Dn+n(=mn

We may use the floor and ceiling functions in parts (a) and (b), respectively, of Example
5.10 to restate some of the ideas we examined in Chapter 4.

a)

b)

When studying the division algorithm, we learned that for all a, b € Z, where b > 0,
it was possible to find unique g, r € Z witha = ¢b + r and 0 < r < b. Now we may
addthatg = |£|andr =a — | 2] b.

In Example 4.44 we found that the positive integer
29,338,848,000 = 283°5*7311

has

60 = ()AN)(1) = P “2“ )W P er )1 [( 42- )“ (( -2+ )“ (( ;r )w

positive divisors that are perfect squares. In general, if » € Z* with n > 1, we know
that we can write

e e

n2p1p2 ...pz"

wherek € Z7, p;isprime forall 1 <i <k, p; # p,foralll <i < j <k,ande; € Z™
for all 1 <i <k. This is due to the Fundamental Theorem of Arithmetic. Then if
r € ZT, we find that the number of positive divisors of n that are perfect rth powers

ke +1 k k
s [ ’7 -‘.Whenr =1weget [| [e;+1] = [](e; + 1), which is the number
i=1 r i=1 i=1

of positive divisors of n.
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Definition 5.5

EXAMPLE 5.13
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In Sections 4.1 and 4.2 we were introduced to the concept of a sequence in conjunction
with our study of recursive definitions. We should now realize that a sequence of real
numbers ry, ry, 13, . . . can be thought of as a function f: Zt — R where f(n) = r,, forall
n € Z7. Likewise, an integer sequence ag, 41, ¢, . . . can be defined by means of a function
g: N — Z where g(n) = a,, foralln e N.

In Example 5.9 there are 2!2 = 4096 relations from A to B. We have examined one
function among these relations, and now we wish to count the total number of functions
from A to B.

For the general case, let A, B be nonempty sets with |A] = m, |B| = n. Consequently,
if A={m, 09, d3,...,0,) and B ={by, bs, b3, ..., b,}, then a typical function
f:A-> B can be described by {(a;, x1), (a2, x2), (@3, X3}, . .., {Qu, Xm)}. We can
select any of the n elements of B for x; and then do the same for x;. (We can se-
lect any element of B for xy so that the same element of B may be selected for both x;
and xp.) We continue this selection process until one of the n elements of B is finally
selected for x,,. In this way, using the rule of product, there are n™ = |B}'4! functions
from A to B.

Therefore, for A, B in Example 5.9, there are 4° = |B|!*! = 64 functions from A to B,
and 3* = |A|l®] = 81 functions from B to A. In general, we do not expect |A|'®! to equal
|B 14, Unlike the situation for relations, we cannot always obtain a function from B to A
by simply interchanging the components in the ordered pairs of a function from A to B (or
vice versa).

Now that we have the concept of a function as a special type of relation, we turn our
attention to a special type of function.

A function f: A — B is called one-to-one, or injective, if each element of B appears at
most once as the image of an element of A.

i f: A — B isone-to-one, with A, B finite, we must have |A| < | B|. For arbitrary sets
A, B, f: A— Bisone-to-one ifand only if foralla,, a; € A, f(a;) = flaz) = a; = ay.

Consider the function f: R — Rwhere f{x) = 3x + 7forallx € R. Thenforallx;, x, € R,
we find that
fle) = f)=3x4+7=3x+7=3x; =3x = x; = xp,

so the given function f is one-to-one,
On the other hand, suppose that g: R — R is the function defined by g(x) = x* — x for
each real number x. Then

g =0*-0=0 and g(H)=M*—NH=1-1=0.

Consequently, g is not one-to-one, since g(0) = g(1)but( # 1 —thatis, g is not one-to-one
because there exist real numbers x|, x; where g(x;) = g(x2) & x; = x2.
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EXAMPLE 5.14

Let A = {1, 2,3} and B = {1, 2, 3, 4, 5}. The function
F=11,1),(2,3), 3,4}
1s a one-to-one function from A to B;

g=1{1,1,(23), 3, 3)}

is a function from A to B, but it fails to be one-to-one because g(2) = ¢(3) but 2 # 3.

Definition 5.6

EXAMPLE 5.15

For A, B in Example 5.14 there are 2 relations from A to B and 5° of these are functions
from A to B. The next question we want to answer is how many functions f: A — B are
one-to-one. Again we argue for general finite sets.

With A = {ay, a3, a3, ...,a,), B=1{b1, b2, b3, ...,b,}, and m <n, a one-to-one
function f: A — B has the form {{a1, x1), (@2, ¥2), (g3, x3), .. ., (tGm, Xm)}, Where
there are n choices for x; (that is, any element of B), n — 1 choices for x; (that is,
any element of B except the one chosen for x1), n — 2 choices for x3, and so on, finish-
ing withn — (m — 1) = n — m + 1 choices for x,,. By the rule of product, the number
of one-to-one functions from A to B is

nn - =2 (n—m+1) =~ = P(n, m) = P(|BI, |A]).
{(n —m)!

Consequently, for A, B in Example 5.14, there are 5 - 4 - 3 = 60 one-to-one functions
f:A— B.

If f:A— Band A; C A, then
f(A)={be B|b= f{a), forsomea e A;},
and f(A)) is called the image of A, under f.

For A=1{1,2,3,4,5} and B ={w, x, y,z}, let f:A— B be given by f = {(1, w),
(2,x),(3,x), (4, ¥), (5, y)}. Thenfor A; = {1}, A2 = {1, 2}, Az = {1, 2, 3}, A, = {2, 3},
and As = {2, 3, 4, 5}, we find the following corresponding images under f:

flAD = f@la e A} = (f@la e (1)) = (fl@la =1} = (£} = (w};

JA2) ={f(@)la € Az} = {f(@)la e {1,2}} = {f(@)la = L or2}

={f (), f2D)} = {w, x};
FA3) ={f(), f(2), fF3)} ={w, x}, andf(A3) = f(A2) because f(2) =x = f(3);
f(Aq) = {x}; and f(As) = {x, y}.

EXAMPLE 5.16

a) Let g&: R — R be given by g(x) = x?. Then g(R) = the range of g = [0, +00). The
image of Z under g is g(Z)=1{0,1,4,9,16, ...}, and for A| = [-2, 1] we get
g(Ay) = [0, 4).
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b) Let h: Z X Z — Z where h(x, y) = 2x 4+ 3y. The domain of 4 is Z X Z, not Z,
and the codomain is Z. We find, for example, that (0, 0) = 2(0) + 3(0) = 0 and
h(=3,7) = 2(=3) + 3(7) = 15. In addition, (2, —1) = 2(2) + 3(~1) = 1, and for
each n € Z, h(2n, —n) = 2(2n) 4+ 3(—n) = 4n — 3n = n. Consequently, h{Z X Z)
= the range of h = Z. For A; = {(0, n)ln € Z¥} = [0} X ZT € Z X Z, the image
of Ajunderkhis h(A]) =(3,6,9,...) = (Bnln e Z7).

Our next result deals with the interplay between the images of subsets (of the domain)
under a function f and the set operations of union and intersection.

THEOREM 5.2

Definition 5.7

Definition 5.8

EXAMPLE 5.17

EXAMPLE 5.18

Let f: A— B, with A|, A C A. Then

a) f(A U Ax) = flAD VU f(A2); b) f(AI N A2) € f(AD N f(A2);
¢) f(A;NAy) = f(A) N f{A) when f is one-to-one.

Proof: We prove part (b) and leave the remaining parts for the reader.

For each be B, be f(AINA) = b= fla), for some ac A\ NA;=[b= fla)
for some ac A} and (b= f(a) for some ae A;]=>be f(A)) and b€ f(A) =
be f(A)N f(Ar),s0 f(AI N A C fADN f(A).

If f:A— B and A| C A, then f|a,: Ay — B is called the restriction of f to A, if
flat@) = f(a)foralla e A,.

Let Ay C Aand f: Ay —» B.fg: A— Band g(a) = f(a)foralla e A, then we call g
an extension of f to A.

ForA ={1,2,3,4,5},let f: A — Rbedefined by f = {{1, 10), (2, 13), (3, 16), (4, 19),
(5, 22)}. Let g: Q — R where g{g) = 3¢ + 7 for all ¢ € Q. Finally, let i: R — R with
h(r) =3r + 7forallr € R. Then
i) g is an extension of f (from A) to Q;
il) f is the restriction of g (from Q) to A;
iil) A is an extension of f (from A)to R;
iv) f is the restriction of 2 (from R) to A;
v) his an extension of g (from Q) to R; and
vi) g is the restriction of A (from R) to Q.

LetA={w,x,y,z},B={1,2,3,4,5},and A, = {w, y,z}.Let f:A— B, g: Ay > B
be represented by the diagrams in Fig. 5.5. Then g = f|4, and f is an extension of g from
A to A. We note that for the given function g: Ay — B, there are five ways to extend g
from A, to A.
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fA—>B g A —=B
1 1
w D/'. w /
®? ®?
x
\-. 3 *3
¥ Y
4 4
z z
5 5
Figure 5.5
a) Determine
| BeRosess2 b AnB D pnc
1. Determine whether or not each of the following relations is i) AUC ivBUC

a function. If a relation is a function, find its range.
a) {(x, y)|x,yeZ, y=x?+7},arelation from Z to Z
by {(x, y)|x. ¥y € R, y* = x}, arelation from R to R
¢) {{x, M)x, y e R, y = 3x + 1}, arelation from R to R
d) {{(x, y)|x,yeQ, x*+ y2 = 1}, a relation from Q to Q
e) %A isarelation from A to B where |A| = 5, |B| = 6, and
|2 = 6.

2. Does the formula f(x) = 1/(x?> —2) define a function
f:R— R?Afunction f: Z — R?

3. Let A={1,2,3,4} and B = {x, v, z}. (a) List five func-
tions from A to B. (b) How many functions f; A — B are there?
(c) How many functions f: A — B are one-to-one? (d) How
many functions g: B — A are there? (¢) How many functions
g: B — A are one-to-one? (f) How many functions f: A — B
satisfy f(1) = x? (g) How many functions f: A — B satisfy
f(1}y = f(2) = x? (h) How many functions f: A — B satisfy
fy=xand f(2) = y?

4, If there are 2187 functions f: A — B and |B| = 3, what
is |A|?

5.Let A, B,C CR? where A ={(x, )|y=2x+1}, B=
{(x, ¥)|y = 3x}, and C = {(x, y}x — y = 7}. Determine each
of the following;:

a) ANB b) BNC
) AuC d BuC

6. Let A, B, C CZ? where A ={(x,y)y=2x+1}, B =

{(x, My =3z} and C = {(x, Y)lx —y =T}

b) How are the answers for (i)-(iv) affected if A, B, C C
ZTXZLT?
7. Determine each of the following:
a) [2.3-1.6] b) (23] - [1.6] <) [3.4]]6.2]
d) [3.4][6.2] e) [27] f) 2[7]

8. Determine whether each of the following statements is true
or false. If the statement is false, provide a counterexample.

a) |a| = [a] foralla € Z.

b) |a] =[a] foralla e R.

¢) la] =[a] —1foralla e R - Z.

d) —[a] = [—a] foralla e R.

9. Find all real numbers x such that

a) 70x] = [7x] b) [7x] =7

o lx+7)=x+7 d) lx+7] =[x} +7
10. Determine all x € R such that | x] + [x + %J = [2x].
11. a) Find all real numbers x where [3x7] = 3[x].

b) Letn € Z* where n > 1. Determine all x € R such that
[nx] =n[x].
12, Forn, k € Z*, prove that [n/k] = [(n —~ )/k] + 1.

13. a) Let @ € R™ where a > 1. Prove that (i) |[a] fal = 1;
and (i) [la] /a] = 1.

b) If a € R* and 0 < a < 1, which result(s) in part (a) is
(are) true?

14. Let a, az. as, . . . be the integer sequence defined recur-
sively by



1) ¢y = 1; and
2) Foralln € Z* where n > 2, a, = 2aj2.
a} Determine g, forall 2 <n < 8.
b) Prove thata, <nforalln e Z"*.
15. For each of the following functions, determine whether it
is one-to-one and determine its range.
a) 127, f(x)y=2x+1
b) /:Q—-Q. fx)=2x+1
) 1217, flx)y=x>—x
d) :R-=>R, f(x)=¢"
e f:[-7/2, /2] > R, f(x) =sinx
) £:10, 7] = R, f(x) =sinx

16. Let f: R — R where f(x) = x2. Determine f(A) for the
following subsets A taken from the domain R.

a) A=12,3) b) A={-3,-2.2,3)
0 A=(-3,3) d) A=(-3,2]
e) A=[-7 2] f) A=(-4,-3]UJ[5, 6]

17. Let A=1{1,2,3,4,5}. B={w, x, y,z}, 41 =1{2,3,5}
CA, and g: A} — B. In how many ways can g be extended
to a function f: A — B?

18. Give an example of a function f: A —> Band A, A, C A
for which f(A, N Ax) # f{A1) N f(Az). [Thus the inclusion
in Theorem 5.2(b) may be proper.]

19. Prove parts (a) and (c) of Theorem 5.2.

20. If A = {1, 2, 3, 4, 5} and there are 6720 injective functions
fiA— B, whatis |B|?

21. Let f:A— B, where A=XUYwithXNY =0.1f flx
and f|y are one-to-one, does it follow that f is one-to-one?

22. For ne Z" define X, = {1.2,3,...,n). Given m,n €
Zt, f: X,, — X, is called monotone increasing if forall i, j €
Xp. 12i<j<m= f(i) = f(j). (a) How many monotone
increasing functions are there with domain X7 and codomain
X5? (b) Answer part (a) for the domain X4 and codomain X.
(c) Generalize the results in parts (a) and (b). (d) Determine
the number of monotone increasing functions f: X,y — Xg
where f(4) = 4. (e¢) How many monotone increasing functions
[ X7 — Xqz satisfy f(5) = 9? (f) Generalize the results in
parts (d) and (e).

23. Determine the access function f(a;,), as described in Ex-
ample 5.10(d), for a matrix A = (&,;)uxn, where (a) m = 12,
n=12;(bym=7,n=10;(c)ym=10,n=17.

24. For the access function developed in Example 5.10(d),
the matrix A = (a,,).,x, Was stored in a one-dimensional ar-
ray using the row major implementation. It is also possi-
ble to store this matrix using the column major implemen-
tation, where each entry a,;, 1 <i <m, in the first column
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of A is stored in locations 1,2, 3, ..., m, respectively, of
the array, when ay; is stored in location 1. Then the entries
a2, 1 <1 <m, of the second column of A are stored in loca-
tionsm + 1,m+2,m+3, ..., 2m,respectively, of the array,
and so on. Find a formula for the access function g(a;;) under
these conditions.

25. a) Let A be an m X n matrix that is to be stored (in a con-
tiguous manner) in a one-dimensional array of r entries.
Find a formula for the access function if a;; is to be stored
in location £ (= 1) of the array [as opposed to location 1 as
in Example 5.10(d)] and we use (i) the row major imple-
mentation; (i) the column major implementation.

b) State any conditions involving m, n, r, and k that must
be satisfied in order for the results in part (a) to be valid.

26. The following exercise provides a combinatorial proof for

a summation formula we have seen in four earlier results:

(1) Exercise 22 in Section 1.4; (2) Example 4.4; (3) Exercise 3

in Section 4.1; and (4) Exercise 19 in Section 4.2.

Let A={a,b,c},B=1{1,2,3,...,n,n+1}, and §=

{f:A— Blf(@) < f(c)and f(b) < f(o)}.

a) lfS;={f:A— B|f € Sand f(c} = 2}, whatis | 5|7

b) If S; ={f:A— B|f € §and f(c) = 3}, what is [ 5;]?

¢)Forl<i<n/letS ={fiA— B|feSand f(c) =

i + 1} Whatis |S§,|?

d) LetTy = {f: A— B|f € Sand f(a) = f(b)}. Explain

why |T1| = ("31).

e) LetTh ={f: A~ B|f eSand f(a) < f(B)}and T3 =

{f: A— B|f eSand f(a) > f(b)}. Explain why |T5| =

T =("3").

f) What can we conclude about the sets
S|U52US3U-"US,Z andTIUTZUTg?

2) Use the results from parts (c), (d), (¢), and (f) to verify

that
Xn:iz _nr+DH@n+ D
=1 6 .

27. One version of Ackermann’s function A(m,n) is defined re-
cursively form, n € N by

A0, m)y=n+1,n>0:

Alm,0) = A(m =1, 1), m > 0; and

Am,ny=Am -1, A(m,n— 1), m,n>0
[Such functions were defined in the 1920s by the German math-
ematician and logician Wilhelm Ackermann (1896-1962), who
was a student of David Hilbert (1862-1943), These functions
play an important role in computer science — in the theory of re-
cursive functions and in the analysis of algorithms that involve
the union of sets.]

a) Calculate A(l, 3) and A(2, 3).
b) Prove that A(l,n) =n + 2 foralln € N.
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¢) For all n € N show that A2, n} = 3 + 2n.

d) Verify that A(3, n) = 2""3 ~ 3 foralln e N.
28. Given sets A, B, we define a partial function f with do-
main A and codemain B as a function from A’ to B, where @ #
A" C A.[Here f(x)isnotdefined forx € A — A’.] Forexample,
f:R* > R, where f(x) = 1/x, is apartial function on R since
f(0) is not defined. On the finite side, {(1, x), (2, x), (3, y)}is
a partial function for domain A = {1, 2, 3, 4, 5} and codomain
B = {w, x, y, z}. Furthermore, a computer program may be

53
Onto Functions: Stirling Numbers
of the Second Kind

thought of as a partial function. The program’s input is the
input for the partial function and the program’s output is the
output of the function. Should the program fail to terminate, or
terminate abnormally (perhaps, because of an attempt to divide
by 0), then the partial function is considered to be undefined
for that input. (a) For A ={1,2,3,4,5}, B={w,x,y, 2z}
how many partial functions have domain A and codomain B?
(b) Let A, B be sets where |A| =m >0, |B] = n > 0. How
many partial functions have domain A and codomain B?

The results we develop in this section will provide the answers to the first five problems
stated at the beginning of this chapter. We find that the onto function is the key to all of the

answers.

Definition 5.9

A function f: A — B is called onto, or surjective, if f(A) = B—thatis, if forallbe B

there is at least one ¢ € A with f(a) = b.

EXAMPLES.19 |

The function f: R — R defined by f(x) = x* is an onto function. For here we find that if r
is any real number in the codomain of £, then the real number./r is in the domain of f and

F(Ir) = (Jr)y’ = r. Hence the codomain of f = R = the range of f, and the function f

is onto.

The function g: R — R, where g(x) = x2 for each real number x, is niot an onto function.
In this case no negative real number appears in the range of g. For example, for —9 to be
in the range of g, we would have to be able to find a real number r with g(r) = r? = -9,
Unfortunately, #> = —9 = r = 3j orr = —3i, where 3i, —3i € C,but3i, —3i ¢ R. Sohere
the range of ¢ = g(R) = [0, +00) C R, and the function g is not onto. Note, however, that
the function h: R — [0, +c0) defined by A(x) = x? is an onto function,

EXAMPLE5.20 |

Consider the function f:Z — Z where f(x) = 3x + 1 for each x € Z. Here the range of
f={..,-8,-5 -2,1,4,7,...} CZ,so0 f is not an onto function. If we examine the

situation here a little more closely, we find that the integer 8, for example, is not in the range

of f even though the equation

3x+1=8

can be easily solved —giving us x = 7/3. But that is the problem, for the rational number
7/3 is not an integer — so there is no x in the domain Z with f(x) = 8.

On the other hand, each of the functions

1) 2:Q— Q, where g(x) = 3x + 1 forx € Q; and

2) mR—= R, whereh(x) =3x + 1forxeR
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EXAMPLE 5.22

EXAMPLE 5.23
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is an onto function. Furthermore, 3x; + 1 = 3x3 + 1 = 3x; = 3x3 = x) = X3, regardless
of whether x| and x; are integers, rational numbers, or real numbers. Consequently, all three
of the functions f, g, and h are one-to-one.

IfA=1{1,2 3 4}and B = {x, y, z}, then

fi=1(0,2. 2, ¥, G, x), @4y} and  fr={1,x),(2,x), 3, y). 4 2)}

are both functions from A onto B. However, the function g = {(1, x), (2, x), (3, ¥), (4, v)}
is not onto, because g(A) = {x, y} C B.

If A, B are finite sets, then for an onto function f: A — B to possibly exist we must have
|A| > | B|. Considering the development in the first two sections of this chapter, the reader
undoubtedly feels it is time once again to use the rule of product and count the number
of onto functions f: A — B where |A| = m > n = | B|. Unfortunately, the rule of product
proves inadequate here. We shall obtain the needed result for some specific examples and
then conjecture a general formula. In Chapter 8 we shall establish the conjecture using the
Principle of Inclusion and Exclusion.

If A= {x,y, z}and B = {1, 2}, then all functions f: A — B are onto except f1 = {(x, 1),
(v, 1), {z, D}, and f> = {(x, 2}, (¥, 2), (z, 2)}, the constant functions. So there are
|B|'4l —2 =2% ~ 2 = 6 onto functions from A to B.

In general, if |A| = m > 2 and |B| = 2, then there are 2" — 2 onto functions from A to
B. (Does this formula tell us anything when m = 17)

For A = {w, x, vy, z} and B = {1, 2, 3}, there are 3% functions from A to B. Considering
subsets of B of size 2, there are 2* functions from A to {1, 2}, 2* functions from A to
{2, 3}, and 2* functions from A to {1, 3}. So we have 3(24) = (3)24 functions from A to
B that are definitely not onto. However, before we acknowledge 3* — (3)24 as the final
answer, we must realize that not all of these (3)2* functions are distinct. For when we
consider all the functions from A to {1, 2}, we are removing, among these, the function
{(w, 2), (x,2), (¥, 2), (z, 2)}. Then, considering the functions from A to {2, 3}, we remove
the same function: {(w, 2, (x, 2), (¥, 2), (z, 2)}. Consequently, in the result 3% — (3)2*,
we have twice removed each of the constant functions f: A — B, where f(A) is one
of the sets {1}, {2}, or {3}. Adjusting our present result for this, we find that there are
3*— (3)2* +3=(3)3* - (3)2* + (})1* = 36 onto functions from A to B.

Keeping B = {1, 2, 3}, for any set A with |A| = m > 3, there are (%)3’” — (3)2’” + (?)lm
functions from A onto B. (What result does this formula yield when m = 1? whenm = 27)

The last two examples suggest a pattern that we now state, without proof, as our general
formula.
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EXAMPLE5.24 |

EXAMPLE 5.25

For finite sets A, B with |A} = m and |B| = n, there are

n m_ n 1y n oy L
O A I
n~1
wn-—2nm__nwlnm= ___kn By
+(=1) (2)2 + (=D (1)1 ;( 1) (n_k)(n k)
- ‘ 1k f Rt
;)( 1 (n“ k)(n k)

onto functions from A to B,

Let A=(1,2,3,4,5,6,7} and B = {w, x, y, z}. Applying the general formula with
m =7 and n = 4, we find that there are

(- Q- -Er( e

4
4
= Z(—l)k( )(4 — k)" = 8400 functions from A onto B.
pard 4—k

The result in Example 5.24 is also the answer to the first three questions proposed at the
start of this chapter. Once we remove the unnecessary vocabulary, we recognize that in all
three cases we want to distribute seven different objects into four distinct containers with
no container left empty. We can do this in terms of onto functions.

For Problem 4 we have a sample space ¥ consisting of the 4’ = 16,384 ways in which
seven people can each select one of the four floors. (Note that 47 is also the total number
of functions f: A — B where |A| =7, |B| = 4.) The event that we are concerned with
contains 8400 of those selections, so the probability that the elevator must stop at every
floor is 8400/16384 = 0.5127, slightly more than half of the time.

Finally, for Problem 3, since ZZ=0(_ 1 )"(nfk) (n — k)™ is the number of onto functions
f:A— Bfor|A| =m, |B| = n, for the case where m < n there are no such functions and
the summation is 0.

Problem 6 will be addressed in Section 5.6.

Before going on to anything new, however, we consider one more problem.

At the CH Company, Joan, the supervisor, has a secretary, Teresa, and three other adminis-
trative assistants. If seven accounts must be processed, in how many ways can Joan assign
the accounts so that each assistant works on at least one account and Teresa’s work includes
the most expensive account?

First and foremost, the answer is not 8400 as in Example 5.24. Here we must consider
two disjoint subcases and then apply the rule of sum.

a) If Teresa, the secretary, works only on the most expensive account, then the other
six accounts can be distributed among the three administrative assistants in
Y ioo(=D* (32,3 — k)® = 540 ways. (540 = the number of onto functions
f:A— Bwith |A| =6, |B| = 3.)



EXAMPLE 5.26

EXAMPLE 5.27

5.3 Onto Functions: Stirling Numbers of the Second Kind 263

b) If Teresa does more than just the most expensive account, the assignments can be made
in D 7 o(—DF(2) @ — k)® = 1560 ways. (1560 = the number of onto functions
g:C— Dwith|C| =6, |D]|=4.)

Consequently, the assignments can be given under the prescribed conditions in 540 +
1560 = 2100 ways. [We mentioned earlier that the answer would not be 8400, but it is
(1/4)(8400) = (1/|B|)(8400), where 8400 is the number of onto functions f: A — B,
with |A| =7 and |B| = 4. This is no coincidence, as we shall learn when we discuss
Theorem 5.3.]

We now continue our discussion with the distribution of distinct objects into containers
with none left empty, but now the containers become identical.

HA={a, b c, d}and B = {1, 2, 3}, then there are 36 onto functions from A to B or,
equivalently, 36 ways to distribute four distinct objects into three distinguishable containers,
with no container empty (and no regard for the location of objects in a given container).
Among these 36 distributions we find the following collection of six {one of six such possible
collections of six):

D {a,bh {c  {d}s
3) {ch {a. b}, {d}s 4) {ch {d}2 {a, b)s
5) {d} {a, b}r {cls 6) {dh {c)2 {a. bls,
where, for example, the notation {c}, means that ¢ is in the second container. Now if
we no longer distinguish the containers, these 6 = 3! distributions become identical, so

there are 36/(3!) = 6 ways to distribute the distinct objects a, b, ¢, d among three identical
containers, leaving no container empty.

2) {a, b}y {d}2 {c}s

Form > nthercare ) ,.o(—1)¥(,”,J{n — k)™ ways to distribute m distinct objects into
n numbered (but otherwise identical) containers with no container left empty. Removing
the numbers on the containers, so that they are now identical in appearance, we find
that one distribution into these n (nonempty) identical containers corresponds with n!
such distributions into the numbered containers. So the number of ways in which it is
possible to distribute the m distinct objects into # identical containers, with no container
left empty, is ’

RN ™
mD D N I (LR U4
k=0
This will be denoted by S(m, n) and is called a Stirling number of the second kind.

We note that for [A} = m > n = | B|, there are n! - 5(m, n) onto functions from A
to B.

Table 5.1 lists some Stirling numbers of the second kind.

Form > n, Z?zl S(m, i) is the number of possible ways to distribute m distinct objects
into n identical containers with empty containers allowed. From the fourth row of Table 5.1
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Table 5.1
S(m, n)

o 2 3 4 5 6 7 8
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

we see that there are 1 + 7 + 6 = 14 ways to distribute the objects a, b, ¢, d among three
identical containers, with some container(s) possibly empty.

We continue now with the derivation of an identity involving Stirling numbers of the
second kind. The proof is combinatorial in nature.

THEOREM 5.3

Let 1z, n be positive integers with 1 < n < m. Then

Sim+1,n)=8S0m,n—1)4+nS(m, n).
Proof: Let A = {a1, a2, ..., dm, Gmsi}. Then S(im + 1, #) counts the number of ways in
which the objects of A can be distributed among » identical containers, with no container
left empty.

There are S(m, n — 1) ways of distributing a;, a3, . . ., a, among n — 1 identical con-
tainers, with none left empty. Then, placing «,,+; in the remaining empty container results
in S(m, n — 1) of the distributions counted in S{(m + 1, n) —namely, those distributions
where a,,1 s in a container by itself. Alternatively, distributing ¢, a2, . . . , &;, among the
n identical containers with none left empty, we have S(m, n) distributions. Now, however,
for each of these S(m, n) distributions the 1 containers become distinguished by their con-
tents. Selecting one of the » distinct containers for a,, |, we have nS(m, n) distributions
of the total S(m + 1, n) —namely, those where a,,; is in the same container as another
object from A. The result then follows by the rule of sum.

To illustrate Theorem 5.3 consider the triangle shown in Table 5.1. Here the largest num-
ber corresponds with S(m + 1, n), for m =7 and n = 3, and we see that S(7+1,3) =
966 = 63 4+ 3(301) = S(7, 2) + 35(7, 3). The identity in Theorem 5.3 can be used to ex-
tend Table 5.1 if necessary.

If we multiply the result in Theorem 5.3 by (n — 1)! we have

(%) (rISm + 1, )] =[(n — DISm, n — D]+ [n1S(m, n)].
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This new form of the equation tells us something about numbers of onto functions. If
A={a,aa,...,dy, apy1}and B = {by, by, ..., b,_1, b} withm >n — 1, then

1
(—) {The number of onto functions h: A — B)
n

= (The number of onto functions f: A — {dmt1} = B — {bn})
+ (The number of onto functions g: A — {a;.1} — B).

Thus the relationship at the end of Example 5.25 is not just a coincidence.

We close this section with an application that deals with a counting problem in which the
Stirling numbers of the second kind are used in conjunction with the Fundamental Theorem
of Arithmetic.

Consider the positive integer 30,030 =2 X 3 X 5 X 7 X 11 X 13. Among the unordered
factorizations of this number one finds

i) 30 X 1001 = (2 X 3 X 5)(7 X 11 X 13)
i) 110X273=(2x5% 11)(3X7x13)
i) 2310 X 13 = (2 X3 X 5X 7 X 11)(13)
iv) 14 X33 X 65 = (2 X 3 X 115 X 13)
V) 22X 35X 39= (2 X 11)(5 %X T)(3 X 13)

The results given in (i), (ii), and (iii) demonstrate three of the ways to distribute the six
distinct objects 2, 3, 5,7, 11, 13 into two identical containers with no container left empty. So
these first three examples are three of the S(6, 2) = 31 unordered two-factor factorizations
of 30,030 —that is, there are S(6, 2) ways to factor 30,030 as mn where m, n € Z* for
1 < m, n < 30,030 and where order is not relevant. Likewise, the results in (iv) and (v) are
two of the S(6, 3) = 90 unordered ways to factor 30,030 into three integer factors, each
greater than 1. If we want at least two factors (greater than 1) in each of these unordered
factorizations, then we find that there are » °_, (6, i) = 202 such factorizations. If we
want to include the one-factor factorization 30,030 — where we distribute the six distinct
objects 2,3,5,7, 11, 13into one (identical) container — then we have 203 such factorizations
in total.

3. For each of the following functions g: R — R, determine

1. Give an example of finite sets A and B with |A|, |B| = 4
and a function f: A — B such that (a) f is neither one-to-one
nor onto; (b) f is one-to-one but not onto; (¢) f is onto but not
one-to-one; (d) f is onto and one-to-one.

2. For each of the following functions f:Z — Z, determine
whether the function is one-to-one and whether it is onto. If the
function is not onto, determine the range f(Z).

a fxy=x+7 b) f(x)=2x-3
¢ flx)=—-x+5 d) f(x)=x’
e flx)=x>+x f) fo)=x°

whether the function is one-to-one and whether it is onto. If the
function is not onto, determine the range g (R).
a) glx})=x+7 b) g(x) =2x -3
c) g(x)=—x+5 d) g(x) = x2
e) g(x) =x>+x f) g(x) =3
4. Let A=1{1,2,3,4) and B ={1,2,3,4,5,6}. (a) How
many functions are there from A to B? How many of these
are one-to-one? How many are onto? (b) How many functions
are there from B to A? How many of these are onto? How many
are one-to-one”?
5. Verify that 3 [_ (= 1)*(,",)(n = k)" =0 for n =5 and
m=2,34.
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6. a) Verify that 5" =) % (7)(i)S(7, ).

b) Provide a combinatorial argument to prove that for all
m,neft,

n - m M :

m ;(i)(l!)S(n,l).

7.a)Let A=1{1,2,3,4,5,6,7} and B ={v, w, x, ¥, 2}.
Determine the number of functions f: A — B where (i)
F(A) = {v, x} D) | (A = 2;GiD f(A) = {w, x, y}1(v)
[FCA =3 (v) f(A) = {v, x, y, 2}, and (vi) | F(A)| = 4.
b} Let A, Bbesetswith|A| = m > n = |B|.Ifk € Z* with
1 £ & <n, how many functions f: A — B are such that
[fA)]=k?

8. A chemist who has five assistants is engaged in a research
project that calls for nine compounds that must be synthesized.
In how many ways can the chemist assign these syntheses to the
five assistants so that each is working on at least one synthesis?

9. Use the fact that every polynomial equation having real-
number coefficients and odd degree has a real root in or-
der to show that the function f: R — R, defined by f{(x} =
x° — 2x? 4 x, is an onto function. Is f one-to-one?

10. Suppose we have seven different colored balls and four
containers numbered I, 11, II1, and IV. (2) In how many ways
can we distribute the balls so that no container is left empty?
(b) In this collection of seven colored balls, one of them is
blue. In how many ways can we distribute the balls so that no
container is empty and the blue ball is in container II? (¢) If
we remove the numbers from the containers so that we can no
longer distinguish them, in how many ways can we distribute
the seven colored balls among the four identical containers, with
some container(s) possibly empty?

11. Determine the next two rows (m = 9, 10) of Table 5.1 for
the Stirling numbers S(m, n), where | <n <m.

12. a) Inhow many wayscan 31,100,905 be factored into three
factors, each greater than 1, if the order of the factors is not
relevant?

b) Answer part (a), assuming the order of the three factors
is relevant.
¢) In how many ways can one factor 31,100,905 into two
or more factors where each factor is greater than 1 and no
regard is paid to the order of the factors?
d) Answer part (¢), assuming the order of the factors is to
be taken into consideration.

13. a) How many two-factor unordered factorizations, where
cach factor is greater than 1, are there for 156,0097
b) In how many ways can 156,009 be factored into two
or more factors, each greater than 1, with no regard to the
order of the factors?
¢) Let p1, p2, p3. ..., p, be n distinct primes. In how
many ways can one factor the product HT:I p, into two

or more factors, each greater than 1, where the order of the
factors is not relevant?

14. Write a computer program (or develop an algorithm) to
compute the Stirling numbers S(in, 1) when | <m <12 and
1 <n<m.

15. Alock has n buttons labeled 1, 2, . . ., n. To open this lock
we press each of the n buttons exactly once. If no two or more
buttons may be pressed simultaneously, then there are n! ways
to do this. However, if one may press two or more buttons si-
multaneously, then there are more than n! ways to press all of
the buttons. For instance, if # = 3 there are six ways to press
the buttons one at a time. But if one may also press two or more
buttons simultaneously, then we find 13 cases — namely,

(1y1,2,3 (2) 1,3,2 (3)2,1,3
(4) 2,3,1 (5)3,1,2 (6) 3,2,1
(7 {1,2),3 (8) 3,11, 2} ) (1,3} 2
(10) 2, {1, 3} (1) {2,311 (12) 1,{2. 3}
(13) {1,2,3}

[Here, for example, case (12) indicates that one presses button
1 first and then buttons 2, 3 (together) second.] (a}) How many
ways are there to press the buttons when n = 4? n = 3? How
many for n in general? (b) Suppose a lock has 15 buttons. To
open this lock one must press 12 ditferent buttons (one at a time,
or simultaneously in sets of two or more)}. In how many ways
can this be done?

16. At St. Xavier High School ten candidates Cy, Cs, . .
run for senior class president.

- G,

a) How many outcomes are possible where (i) there are no
ties (that is, no two, or more, candidates receive the same
number of votes? (ii) ties are permitted? [Here we may
have an outcome such as {C,, Cs, C5}, {Cy, Cs, Co, Cyg},
{Cs}, {Cs, Cg}, where Ca, C3, C; tie for first place,
Cy, C4, Cy, Cyp tie for fourth place, Cs 1s in eighth place,
and Cg, Cg are tied for ninth place.] (ii1) three candidates
tie for first place (and other ties are permitted)?

b) How many of the outcomes in section (iii) of part (a)
have C5 as one of the first-place candidates?

¢) How many outcomes have Cj in first place (alone, or
tied with others)?

17. Form, n, r € Z* withm > rn,let S, (m, n} denote the num-
ber of ways to distribute m distinct objects among » identical
containers where each container receives at least r of the ob-
jects. Verify that

S.m+1, n) :ns,(m,n)+( " 1)S,(m+ l—rn-1)
.

18. We use s(m, n) to denote the number of ways to seat m
people at n circular tables with at least one person at each table.
The arrangements at any one table are not distinguished if one
can be rotated into another (as in Example 1.16). The ordering
of the tables is not taken into account. For instance, the arrange-



ments in parts (a), (b), (c) of Fig. 5.6 are considered the same;

A D C D
those in parts (a), (d), (e) are distinct (in pairs).
The numbers s (m, n) are referred to as the Stiriing numbers O O O Q
a) If n > m, what is s(m, n)? C 8 E| & A E

of the first kind.

b) For m > 1, what are s(m, m) and s(m, 1)?
¢) Determine s(m, m — 1) form > 2,
d) Show that for m > 3,

£ B A D
1
mim — 1)y(m —2Y(3m — 1).
19. Asinthe previous exercise, s(m, n} denotes a Stirling num- D A C |8 C 3

sm,m —2) = (ﬂ

ber of the first kind.

a) Form > n > | prove that
sim,ny=m —Dsim—1,n+s(m-—1,n—1).

A C
’”_11 Q Q
s(m, 2) = (m — 1) -,
s(m m );! 5 ; A

b) Verify that form > 2,
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(e)

Figure 5.6

5.4

Special Functions

Definition 5.10

Definition 5.11

| EXAMPLE5.29 |

In Section 2 of Chapter 3 we mentioned that addition is a closed binary operation on the
set Z*, whereas N is a closed binary operation on %(A1) for any given universe U. We also
noted in that section that “taking the minus” of an integer 1s a unary operation on Z, Now it
is time to make these notions of (closed) binary and unary operations more precise in terms
of functions.

For any nonempty sets A, B, any function f: A X A — B is called a binary operation on
A.If B C A, then the binary operation is said to be closed (on A). (When B € A we may
also say that A is closed under f.)

A function g: A — A is called a urary, or monary, operation on A.

a) The function f: Z X Z — Z.defined by f(a, b) = a — b, is a closed binary operation
onZ.

b) If g: Z7 X Zt — Zis the function where g(a, b) = a — b, then g is a binary operation
on Z*, butitis not closed. For example, we find that 3,7 € ZT, butg(3, 7) =3 -7 =
_agZt.

¢) The function #: Rt — Rt defined by A(a) = 1/a is a unary operation on R™.
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Let AU be a universe, and let A, B C L. (a) If f: PAU) X P(AU) — P(A) is defined by
f(A, BYy=AUB, then f is a closed binary operation on %P(U). (b) The function

EXAMPLE 5.30

g2: P(AU) —> P(U) defined by g(A) = A is a unary operation on P(U).

Definition 5.12 Let f: A X A — B;thatis, f is a binary operation on A.

a) f is said to be commutative it f(a, b) = f(b, a) for all (a, b) € A X A.

b) When B C A (that is, when f is closed), f is said to be associative if for all a, b, ¢ €
A, f(f(a,b),c) = fla, f{b. ).

The binary operation of Example 5.30 is commutative and associative, whereas the binary

EXAMPLE 5.31

operation in part (a) of Example 5.29 is neither.

a) Define the closed binary operation f: Z X Z — Z by f(a, b) = a + b — 3ab. Since
both the addition and the multiplication of integers are commutative binary operations,

EXAMPLE 5.32

it follows that
fla,by=a+b—-3ab=b+a—3ba= f(b, a),

$0 f 1s commutative.
To determine whether f is associative, consider ¢, b, ¢ € Z. Then

fla,by=a+b—3ab and f(f(a,b),c)= fla,b)y+c—3f(a, b)c
=(a+b—3ab)y+c—3(a+b-3ab)
=a+ b+ c—3ab— 3ac — 3bc + Yabc,

whereas

fh,cy=b+c—3bc and fla, f(b,c))=a+ f(b,c)—=3af(b,c)
=a+{(b+c—3bc) —3a(b+ c - 3bo)
=a+b+c—3ab—3ac — 3bc + 9abc.

Since f(f(a, b), ¢) = f(a, f(b, c)) for all 4, b, ¢ € Z, the closed binary operation
f 1s associative as well as commutative.

b) Consider the closed binary operation h: Z X Z — Z, where h(a, b) = a|b|. Then
h(3, —=2) =3|— 2| = 3(2) = 6, but (-2, 3) = —2|3] = —6. Consequently, # is not
commutative. However, with regard to the associative property, if a, b, ¢ € Z, we find
that

h(h{a, b), ¢) = h(a, b)|c| = a|b|lc| and
h(a, h(b, c)) = alh(b, c})| = alb|c|| = a|b]|c],

so the closed binary operation £ is associative.

IfA={a,b,c,d} then|A X A| = 16. Consequently, there are 4! functions f: A X A —
A: that is, there are 4'¢ closed binary operations on A.

EXAMPLE 5.33

To determine the number of commutative closed binary operations g on A, we realize
that there are four choices for each of the assignments g(a, a), g(b, b), g(c, ¢),and g(d, d).
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EXAMPLE 5.34
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We are then left with the 4% — 4 = 16 — 4 = 12 other ordered pairs (in A X A) of the form
(x, ¥), x # y. These 12 ordered pairs must be considered in sets of two in order to insure
commutativity. For example, we need g(a, ) = g(b, a) and may select any one of the four
elements of A for g(a, b). But then this choice must also be assigned to g(b, a). Therefore,
since there are four choices for each of these 12/2 = 6 sets of two ordered pairs, we find
that the number of commutative closed binary operations g on A is 4% . 46 = 410,

Let f: A X A — B be a binary operation on A. An element x € A is called an identity (or
identity element) for f if f{a, x) = f(x,a) = a,foralla € A.

a) Consider the (closed) binary operation f: Z X Z — Z, where f(a, b) = a + b. Here
the integer O is an identity since f(a,0) =a—+0=0+a = f(0, a) = a, for each
integer a.

b) We find that there is no identity for the function in part (a) of Example 5.29. For if f
had an identity x, then forany a € Z, f(a, x) =a = a — x = a = x = (. But then
fx,a)= f(0,a) =0~a # a,unlessa = 0.

¢) Let A=1{1,2,3,4,5,6,7},and let g: A X A — A be the (closed) binary operation
defined by g(a, b) = min{a, b} —that is, the minimum (or smaller) of a, 5. This
binary operation is commutative and associative, and for any ¢ € A we have g(a, 7) =
min{a, 7} = @ = min{7, a} = g(7, a). So 7 is an identity element for g.

In parts (a) and (c) of Example 5.34 we examined two (closed) binary operations, each
of which has an identity. Part (b) of that example showed that such an operation need not
have an identity element. Could a binary operation have more than one identity? We find
that the answer is no when we consider the following theorem.

THEOREM 5.4

EXAMPLE 5.35

Let f: A X A — B be a binary operation. If f has an identity, then that identity is unique.
Proof: If f has more than one identity, let x|, x; € A with

fla,x)) =a= f(x;,a), forallac A, and

fla, x3) =a= f(x,a), forallacA.
Consider x| as an element of A and x, as an identity. Then f(x;, x2) = x|. Now reverse

the roles of x| and xy — that is, consider x; as an element of A and x| as an identity. We
find that f(x;, x2) = x2. Consequently, x; = x, and f has at most one identity.

Now that we have settled the issue of the uniqueness of the identity element, let us see
how this type of element enters into one more enumeration problem.

If A ={x,a,b,c,d}, how many closed binary operations on A have x as the identity?

Let f: AX A— A with f(x,y)=y= f(y, x) forall y € A. Then we may represent
f by atable as in Table 5.2. Here the nine values, where x is the first component— as in
{x, ¢), or the second component—as in (d, x), are determined by the fact that x is the
identity element. Each of the 16 remaining (vacant) entries in Table 5.2 can be filled with
any one of the five elements in A.
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Definition 5.14

EXAMPLE 5.36 |

EXAMPLE 5.37

Table 5.2
f

o
«
<
3}
o

0 TR xR
o SR =
i
i
|
|

Hence there are 5'° closed binary operations on A where x is the identity. Of these 50 =
5% . 54 -4/2 3re commutative. We also realize that there are 5'¢ closed binary operations
on A where b is the identity. So there are 517 = (5)5'6 = (§)5%~2)-11 = (3)56-D* closed
binary operations on A that have an identity, and of these 5'' = (5)5'° = (?)545(42’4)/ 2 are
commutative.

Having seen several examples of functions (in Examples 5.16(b), 5.29, 5.30, 5.32, 5.33,
5.34, and 5.35) where the domain is a cross product of sets, we now investigate functions
where the domain is a subset of a cross product.

Forsets A and B,if D € A X B, then my: D — A, defined by ma(a, b) = 4, is called the
projection on the first coordinate. The function wg: D — B, defined by mg(a, b) = b, is
called the projection on the second coordinate.

We note that if 2 = A X B then 74 and 7 are both onto.

IfA={w,x,yjand B={1,2, 3,4}, let D = {{x, 1), (x, 2), {x,3), (y, 1), (v, D}. Then
the projection w4: D — A satisfies ma(x, 1) = ma(x,2) = ma(x,3) = x,and wu(y. 1) =
wa(y,4) = v. Since w4 (D) = {x, v} C A, this function is not onto.

For g: D — B we find that mg(x, 1) =mg(y, 1) =1, mp(x,2) =2, mg(x, 3) =3,
and m3(y, 4) = 4, so m(D) = B and this projection is an onto function.

Let A= B =R and consider the set D © A X B where D = {(x, y)|y = x%}. Then D
represents the subset of the Euclidean plane that contains the points on the parabola y = x2.
Among the infinite number of points in D we find the point (3, 9). Here m4(3,9) =3,
the x-coordinate of (3, 9), whereas mz(3, 9) = 9, the y-coordinate of the point.
For this example, w4 (D) = R = A, s0 4 is onto. (The projection 4 is also one-to-one.)
However, 75(D) = [0, +oc) C R, so mp is not onto. [Nor is it one-to-one — for example,
mg{2,4) =4 =mp(—-2,4).]

We now extend the notion of projection as follows. Let A, As, ..., A, be sets, and
{fi, 0, oo i} €L, 2, ..o n) withi ) < <---<ipandm<n. f DT A X Ay X
e X A, =XI, A, then the function m: D — A; X A;, X---XA;, defined by
alar, az, ..., an) = (a,.a;, ....q;,) is the projection of D on the i th, isth, ..., i,th

coordinates. The elements of D are called (ordered) n-tuples; an element in 7 (D) is an
(ordered) m-tuple.
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These projections arise in a natural way in the study of relational data bases, a standard
technique for organizing and describing large quantities of data by modern large-scale
computing systems. In situations like credit card transactions, not only must existing data
be organized but new data must be inserted, as when credit cards are processed for new
cardholders. When bills on existing accounts are paid, or when new purchases are made on
these accounts, data must be updated. Another example arises when records are searched
for special considerations, as when a college admissions office searches educational records
seeking, for its mailing lists, high school students who have demonstrated certain levels of
mathematical achievement.

The following example demonstrates the use of projections in a method for organizing
and describing data on a somewhat smaller scale.

At a certain university the following sets are related for purposes of registration:

A, = the set of course numbers for courses offered in mathematics.
A, = the set of course titles offered in mathematics.

A3z = the set of mathematics faculty.

A, = the set of letters of the alphabet.

Consider the fable, or relation,” D € A; X A; X A3z X A4 given in Table 5.3.

Table 5.3
Course Number Course Title Professor Section Letter
MA 111 Calculus 1 P. Z. Chinn A
MA 111 Calculus | V. Larney B
MA 112 Calculus 11 J. Kinney A
MA 112 Calculus IT A. Schmidt B
MA 112 Calculus 11 R. Mines C
MA 113 Calculus 11 J. Kinney A

The sets A, A, Az, A4 are called the domains of the relational data base, and table D
is said to have degree 4. Each element of D is often called a list.

The projection of D on A} X A3z X Ay is shown in Table 5.4. Table 5.5 shows the results
for the projection of D on A; X Aj.

Table 5.4 Table 5.5

Course Number Professor Section Letter Course Number | Course Title
MA 111 P. Z. Chinn A MA 111 Calculus 1
MA 111 V. Larney B MA 112 Calculus 11
MA 112 J. Kinney A MA 113 Calculus 11
MA 112 A. Schmidt B
MA 112 R. Mines C
MA 113 J. Kinney A

THere the relation D is not binary. In fact, D is a quaternary relation.
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Tables 5.4 and 5.5 are another way of representing the same data that appear in
Table 5.3. Given Tables 5.4 and 5.5, one can recapture Table 5.3.

The theory of relational data bases is concerned with representing data in different ways
and with the operations, such as projections, needed for such representations. The computer
implementation of such techniques is also considered. More on this topic is mentioned in
the exercises and chapter references.

1. For A ={a, b, c},let f1 A X A — A be the closed binary
operation given in Table 5.6. Give an example to show that f
1s not associative.

Table 5.6
fla b ¢
a | b c
bla ¢ b
clc b a

2. Let f: R X R — Z be the closed binary operation defined
by f(a, b) = [a + b]. (a) Is f commutative? (b) Is f associa-
tive? (¢) Does f have an identity element?

3. Each of the following functions f: Z X Z — Z is a closed
binary operation on Z. Determine in each case whether f is
commutative and/or associative.

a) f(x,y)=x+y—xy

b) f{x, y) = max{x, y}, the maximum (or larger) of x, y
¢ fx,y)=x"

d) fx, ) =x+y-3

4. Which of the closed binary operations in Exercise 3 have
an identity?

S. Let |A|=5. (a) What is |A X A|? (b) How many
functions f: A X A — A are there? (¢) How many closed bi-
nary operations are there on A? (d) How many of these closed
binary operations are commutative?

6. Let A={x,a,b.c, d}.

a) How many closed binary operations f on A satisfy
fla, b)=¢?

b) How many of the functions f in part (a) have x as an
identity?

¢) How many of the functions f in part (a) have an iden-
tity?

d) How many of the functions f in part (¢) are commuta-
tive?

7. Let f: Z* X Z* — Z* be the closed binary operation de-
fined by f(a, b) = ged(a, b). (a) Is f commutative? (b) Is f
associative? (¢) Does f have an identity element?

8. Let A ={2, 4, 8, 16, 32}, and consider the closed binary
operation f: A X A — A where f(a, b) = gcd(a, b). Does f
have an identity element?

9. For distinct primes p,q let A= {p"g¢"|0<m <31,
0<n <37} (a) What is [A|? (b) If fr1AX A— A is the
closed binary operation defined by f(a, b) = ged(a, b), does
f have an identity element?

10. State a result that generalizes the ideas presented in the
previous two exercises.
1. For 3# ACZ", let f,g: A XA — A be the closed bi-
nary operations defined by f{(a, ) = min{a, b} and g(a, ) =
max{a, b}. Does f have an identity element? Does g?
12. Let A = B = R. Determine m4 (D) and wg(D) for each of
the following sets D C A X 8.
a) D= {(x, y)lx = y?}
b) D = {(x, y)|y = sin x}
¢ D={x, x*+y =1}
13. Let A,, 1 <i <35, be the domains for a table D C A, X
Ay X A3 X Ay X As, where A = {U, V, W, X, Y, Z} (used as
code names for different cerealsin atest), and A; = A3 = A, =
As = Z". The table D is given as Table 5.7.
a) What is the degree of the table?
b) Find the projection of D on A3 X A4 X As.
¢) Adomain of a table is called a primary key for the table
if its value uniquely identifies each list of D. Determine the
primary key(s) for this table.
14. Let A,, 1 <i <5, be the domains for a table D C A; X
Ay X As X Ay X As, where A; = {1, 2} (used to identify the
daily vitamin capsule produced by two pharmaceutical compa-
nies), A; = {A, D, E}, and A; = A; = As = Z*. The wble D
is given as Table 5.8.
a) What is the degree of the table?
b) What is the projection of D on A; X A;? on A; X
Ay X Ag?
¢) This table has no primary key. (See Exercise 13.) We
can, however, define a composite primary key as the cross
product of a minimal number of domains of the table, whose
components, taken collectively, uniquely identify each list
of D. Determine some composite primary keys for this
table.
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Table 5.7

Grams of % of RDA® of % of RDA of | % of RDA of
Code Name Sugar per Vitamin A per | Vitamin C per | Protein per
of Cereal 1-0z Serving 1-0z Serving 1-0z Serving 1-0z Serving

U 1 25 25 6

\% 7 25 2 4

W 12 25 2 4

X 0 60 40 20

Y 3 25 40 10

Z 2 25 40 10

“RDA = recommended daily allowance

Table 5.8
Vitamin | Vitamin Present | Amount of Vitamin Dosage: No. of Capsules
Capsule in Capsule in Capsule in 1U” Capsules / Day per Bottle
1 A 10,000 1 100
1 D 400 1 100
1 E 30 1 100
2 A 4,000 1 250
2 D 400 1 250
2 E 15 1 250

“IU = international units

5.5

The Pigeonhole Principle

A change of pace is in order as we introduce an interesting distribution principle. This
principle may seem to have nothing in common with what we have been doing so far, but
it will prove to be helpful nonetheless.

In mathematics one sometimes finds that an almost obvious idea, when applied in a
rather subtle manner, is the key needed to solve a troublesome problem. On the list of such
obvious ideas many would undoubtedly place the following rule, known as the pigeonhole
principle.

The Pigeonhole Principle: 1f m pigeons occupy n pigeonholes and m > n, then at
least one pigeonhole has two or more pigeons roosting in it.

One situation for 6 (= m) pigeons and 4 (= n) pigeonholes (actually birdhouses) is shown
in Fig. 5.7. The general result readily follows by the method of proof by contradiction. If
the result is not true, then each pigeonhole has at most one pigeon roosting in it—for a
total of at most n (< m) pigeons. (Somewhere we have lost at least m — n pigeons!)

But now what can pigeons roosting in pigeonholes have to do with mathematics —
discrete, combinatorial, or otherwise? Actually, this principle can be applied in various
problems in which we seek to establish whether a certain situation can actually occur. We
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EXAMPLE 5.39

EXAMPLE 5.40

EXAMPLE 5.41

EXAMPLE5.42 |

Figure 5.7

illustrate this principle in the following examples and shall find it useful in Section 5.6 and
at other points in the text.

An office employs 13 file clerks, so at least two of them must have birthdays during the
same month. Here we have 13 pigeons (the file clerks) and 12 pigeonholes (the menths of
the year).

Here is a second rather immediate application of our principle.

Larry returns from the laundromat with 12 pairs of socks (each pair a different color) in a
laundry bag. Drawing the socks from the bag randomly, he’ll have to draw at most 13 of
them to get a matched pair.

From this point on, application of the pigeonhole principle may be more subtle.

Wilma operates a computer with a magnetic tape drive. One day she is given a tape that
contains 500,000 “words” of four or fewer lowercase letters. (Consecutive words on the
tape are separated by a blank character.) Can it be that the 500,000 words are all distinct?

From the rules of sum and product, the total number of different possible words, using
four or fewer letters, is

26" 4 26% 4 26% 4 26 = 475,254.

With these 475,254 words as the pigeonholes, and the 500,000 words on the tape as the
pigeons, it follows that at least one word is repeated on the tape.

Let § C Z*, where | S| = 37. Then S contains two elements that have the same remainder
upon division by 36.

Here the pigeons are the 37 positive integers in §. We know from the division algorithm
(of Theorem 4.5) that when any positive integer n is divided by 36, there exists a unique
quotient ¢ and unique remainder r, where

n =306g +r, 0=<r <306

The 36 possible values of r constitute the pigeonholes, and the result is now established by
the pigeonhole principle.
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Prove that if 101 integers are selected from the set § = {l, 2, 3, ..., 200}, then there are
two integers such that one divides the other.

For each x € S, we may write x = 2fy, with k¥ > 0, and ged(2, y) = 1. (This result
follows from the Fundamental Theorem of Arithmetic.) Then y must be odd, so y €
T=1{1,3,5,..., 199}, where |T| = 100. Since 101 integers are selected from §, by the
pigeonhole principle there are two distinct integers of the form a = 2™y, b = 2"y for
some (the same) y € T. If m < n, then a|b; otherwise, we have m > n and then b|a.

Any subset of size 6 from the set § = {1, 2, 3, ..., 9} must contain two elements whose
sum is 10.
Here the pigeons constitute a six-element subset of {1, 2, 3, ..., 9}, and the pigeon-

holes are the subsets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. When the six pigeons go to their
respective pigeonholes, they must fill at least one of the two-element subsets whose members
sum to 10.

Triangle ACE is equilateral with AC = 1. If five points are selected from the interior of
the triangle, there are at least two whose distance apart is less than 1/2.

For the triangle in Fig. 5.8, the four smaller triangles are congruent equilateral triangles
and AB = 1/2. We break up the interior of triangle AC E into the following four regions,
which are mutually disjoint in pairs:

Figure 5.8

Ry:  theinterior of triangle BC D together with the points on the segment B D, excluding
B and D.

R,:  the interior of triangle ABF.

R3:  the interior of triangle BDF together with the points on the segments BF
and DF, excluding B, D, and F.

Ry:  the interior of triangle FDE.
Now we apply the pigeonhole principle. Five points in the interior of triangle AC E must

be such that at least two of them are in one of the four regions R;, 1 <i < 4, where any two
points are separated by a distance less than 1/2.

Let S be a set of six positive integers whose maximum is at most 14. Show that the sums
of the elements in all the nonempty subsets of § cannot all be distinct.

For each nonempty subset A of §, the sum of the elements in A, denoted 5,4, satisfies
1 <54 <9410+ -+ 14 = 69, and there are 26 — 1 = 63 nonempty subsets of S. We
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| EXAMPLE 5.47

EXAMPLE 5.48

EXAMPLE 5.49

should like to draw the conclusion from the pigeonhole principle by letting the possible
sums, from 1 to 69, be the pigeonholes, with the 63 nonempty subsets of S as the pigeons,
but then we have too few pigeons.

So instead of considering all nonempty subsets of S, we cut back to those nonempty
subsets A of § where |A| < 5. Then for each such subset A it follows that 1 <s4 < 10+
11 + - - - 4+ 14 = 60. There are 62 nonempty subsets A of S with |A| <5 —namely, all the
subsets of § except for ¥ and the set § itself. With 62 pigeons (the nonempty subsets A of
S where |A| < 5) and 60 pigeonholes (the possible sums s,4), it follows by the pigeonhole
principle that the elements of at least two of these 62 subsets must yield the same sum.

Let m € Z1 with m odd. Prove that there exists a positive integer n such that m divides
2% — 1.

Consider the m + 1 positive integers 21— 1,22 1,23 —1,..., 2" — 1,2 — .
By the pigeonhole principle and the division algorithm there exist 5, t € Z1 with 1 <
s<t<m+1, where 2° — 1 and 2! — 1 have the same remainder upon division by m.
Hence2' — 1 =gm+rand2' — 1 = gam +r,forg;, gp e Nyand (2" = 1) = (2 = 1) =
(gam + 1) — (gm +r), 302" —2° = (go —g)m.But2* — 2° = 25(2'~¢ — 1); and sincem
is odd, we have gcd(2°, m) = 1. Hence m|(2'~* — 1), and the result follows with n = 1 — 5.

While on a four-week vacation, Herbert will play at least one set of tennis each day, but he
won’t play more than 40 sets total during this time. Prove that no matter how he distributes
his sets during the four weeks, there is a span of consecutive days during which he will play
exactly 15 sets.

For 1 <i <28, let x, be the total number of sets Herbert will play from the start of
the vacation to the end of the ith day. Then 1 <x; < x3 <--- <xy <40, and x; + 15 <
- << xog + 15 < 55. We now have the 28 distinct numbers xq, xa, ..., xog and the 28
distinct numbers x; + 15, xo + 15, . .., x25 + 15. These 56 numbers can take on only 55
different values, so at least two of them must be equal, and we conclude that there exist
1 < j <i <28 with x, = x; + 15. Hence, from the start of day j 4 1 to the end of day i,
Herbert will play exactly 15 sets of tennis.

Our last example for this section deals with a classic result that was first discovered in
1935 by Paul Erd&s and George Szekeres.

Let us start by considering two particular examples:
1) Note how the sequence 6, 5, 8, 3, 7 (of length 5) contains the decreasing subsequence
6, 5. 3 (of length 3).
2) Now note how the sequence 11, 8,7, 1,9, 6, 5, 10, 3, 12 (of length 10) contains the
increasing subsequence &, 9, 10, 12 (of length 4).

These two instances demonstrate the general result: For each n € Z™, a sequence of n> + 1
distinct real numbers contains a decreasing or increasing subsequence of length n + 1.

To verify this claim leta;, as, . . ., a2, be a sequence of n> 4 1 distinct real numbers.
Forl<k<n®>+1,let

x; = the maximum length of a decreasing subsequence that ends with «;, and

vr = the maximum length of an increasing subsequence that ends with ay.
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For instance, our second particular example would provide

k 1 2 3 4 5 6 7 8 9 10
aj 11 8 7 1 9 6 5 10 3 12
X 2 3 4 2 4 5 2 6 1
Vi 1 1 1 1 2 2 2 3 2 4

If, in general, there is no decreasing or increasing subsequence of length n 4+ 1, then 1 <
xx<nand l <y, <nforalll <k <n?+1. Consequently, there are at most n? distinct
ordered pairs (x;, v¢). But we have n? + 1 ordered pairs (xg, ), since 1 <k < n2+1.So
the pigeonhole principle implies that there are two identical ordered pairs (x;, ¥;), (x;, ¥;),
wherei # j—sayi < j.Nowtherealnumbersay, aa, . . ., a2y, aredistinct, soifa; < a;
then y; < y;, while if a; < o; then x; > x;. In either case we no longer have (x;, y;) =
{x;, ¥;). This contradiction tells us that xy =n+1lory, =n+1forsomen+ 1<k <
n* 4 1: the result then follows.

For an interesting application of this result, consider n? 4 1 sumo wrestlers facing for-
ward and standing shoulder to shoulder. (Here no two wrestlers have the same weight.) We
can selectn + 1 of these wrestlers to take one step forward so that, as they are scanned from
left to right, their successive weights either decrease or increase.

1. In Example 5.40, what plays the roles of the pigeons and
of the pigeonholes?

2. Show thatif eight people are in a room, at least two of them
have birthdays that occur on the same day of the week.

3. An auditorium has a seating capacity of 800. How many
seats must be occupied to guarantee that at least two people
seated in the auditorium have the same first and last initials?

4. Let $={3,7,11,15,19,...,95,99, 103}. How many
elements must we select from S to insure that there will be
at least two whose sum is 1107

5. a) Prove that if 151 integers are selected from {1, 2, 3,
..., 300}, then the selection must include two integers x, y
where x|y or y|x.

b) Write a statement that generalizes the results of part (a)
and Example 5.43.

6. Prove that if we select 101 integers from the set § =

{1,2,3,...,200}, there exist m, n in the selection where

ged(m, n) = 1.

7. a) Show that if any 14 integers are selected from the set
S={1,2,3,..., 25}, there are at least two whose sum
is 26.

b) Write a statement that generalizes the results of part (a)
and Example 5.44.

8 a) If SCZ* and |S| = 3, prove that there exist distinct
x, y € § where x + y is even.

by Let SCZ" X Z', Find the minimal value of |S]
that guarantees the existence of distinct ordered pairs
(x1, x2), {¥1, ¥2) € S suchthatx, + y; and x, + v, are both
even.

¢) Extending the ideas in parts (a) and (b}, consider § C
2T X Zt X ZF, What size must | §| be to guarantee the ex-
istence of distinct ordered triples (x;, x2, x3), (¥1, Y2, Y3} €
S where x; + y1, x2 + y2, and x3 4 y; are all even?
d) Generalize the results of parts (a), (b), and (c).
e) A point P(x, y) in the Cartesian plane is called
a lattice point if x, y€Z. Given distinct lattice
points P (x1, y1), Pa(xz, y2), ..., Pu{x,, yy), determine
the smallest value of n that guarantees the existence of
P(x,, y), P)(x,,¥;),1 <i < j=<n, such that the mid-
point of the line segment connecting P (x,,y) and
P, (x;, y,) is also a lattice point,

9. a) If 11 integers are selected from {1, 2,3,..., 100},
prove that there are at least two, say x and y, such that

O0<|vx— /¥l <L
b) Write a statement that generalizes the result of part (a).
10. Let triangle ABC be equilateral, with AB = 1. Show that

if we select 10 points in the interior of this triangle, there must
be at least two whose distance apart is less than 1/3.

11. Let ABCD be a square with AB = 1. Show that if we se-
lect five points in the interior of this square, there are at least
two whose distance apart is less than 1/+/2.

12. Let AC{1,2,3,...,25}) where 1A| = 9. For any subset
B of A let sg denote the sum of the elements in B. Prove that
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there are distinct subsets C, D of A such that |C| = |D] =5
and s¢ = sp.

13. Let S be a set of five positive integers the maximum of
which is at most 9. Prove that the sums of the elements in all
the nonempty subsets of § cannot all be distinct.

14. During the first six weeks of his senior year in college,
Brace sends out at least one resumé sach day but no more than
60 resumés in total. Show that there is a period of consecutive
days during which he sends out exactly 23 resumés.

15. Let S ¢ Z" with | S| = 7. For @ # A C §, let 54 denote the
sum of the elements in A. If m is the maximum element in S,
find the possible values of m so that there will exist distinet
subsets B, C of § with 55 = s¢.

16. Letk € Z*. Prove that there exists a positive integer n such
that k|n and the only digits in » are 0’s and 3’s.

17. a) Find a sequence of four distinct real numbers with no
decreasing or increasing subsequence of length 3.

b) Find a sequence of nine distinct real numbers with no
decreasing or increasing subsequence of length 4.

¢) Generalize the results in parts (a) and (b).

d) Whatdo the preceding parts of this exercise tell us about
Example 5.49?

18. The 50 members of Nardine’s acrobics class line up to get
their equipment. Assuming that no two of these people have the
same height, show that eight of them (as the line is equipped
from first to last) have successive heights that either decrease
or increase.

56
Function Composition
and Inverse Functions

19. For k,n € Z", prove that if kn + 1 pigeons occupy n
pigeonholes, then at least one pigeonhole has k 4+ 1 or more
pigeons roosting in it.

20. How many times must we roll a single die in order to get
the same score (a) at least twice? (b) at least three times? (c) at
least # times, for n = 47

21. a) Let S € Z*. Whatis the smallest valtue for | S| that guar-
antees the existence of two elements x, y € § where x and
¥ have the same remainder upon division by 1000?

b) What is the smallest value of n such that whenever § C
Z* and |S| = n, then there exist three elements x, y, z € §
where all three have the same remainder upon division by
10007

©) Write a statement that generalizes the results of parts (a)
and (b) and Example 5.42.

22. For m, n € Z, prove that if m pigeons occupy » pigeon-
holes, then atleast one pigeonhole has [(m — 1}/n]| + 1 ormore
pigeons roosting in it.

23. Let p1, p2, ..., pa €4". Prove that if py+py+---+
Pn — 1+ 1 pigeons occupy n pigeonholes, then either the first
pigeonhole has p; or more pigeons roosting in it, or the second
pigeonhole has p; or more pigeons roosting in it, .. ., or the
nth pigeonhole has p, or more pigeons roosting in it.

24. Given 8 Perl books, 17 Visual BASIC' books, 6 Java books,
12 SQL books, and 20 C++ books, how many of these books
must we select to insure that we have 10 books dealing with the
same computer language?

When computing with the elements of Z, we find that the (closed binary) operation of
addition provides a method for combining two integers, say a and b, into a third integer,
namely a + b. Furthermore, for each integer ¢ there is a second integer d where ¢ +d =
d + ¢ = 0, and we call d the additive inverse of ¢. (It is also true that ¢ is the additive inverse
ofd.)

Turning to the elements of R and the (closed binary) operation of multiplication, we
have a method for combining any r, s € R into their product rs. And here, for each r € R,
if t # 0, then there is a real number « such that ut = ru = 1. The real number « is called
the multiplicative inverse of t. (The real number ¢ is also the multiplicative inverse of u.)

In this section we first study a method for combining two functions into a single function.
Then we develop the concept of the inverse (of a function) for functions with certain
properties. To accomplish these objectives, we need the following preliminary ideas.

tVisual BASIC is a trademark of the Microsoft Corporation.
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Having examined functions that are one-to-one and those that are onto, we turn now to
functions with both of these properties.

If f: A— B, then f is said to be bijective, or to be a one-to-one correspondence, if f is
both one-to-one and onto.

A=1{1234}and B = {w, x, y, z}, then f = {(1, w), (2, x), (3, ¥), (4, 2)} is a one-
to-one correspondence from A (on)to B, and g = {(w, 1), (x, 2), (v, 3), (z, 4)} is a one-
to-one correspondence from B (on)to A.

It should be pointed out that whenever the term correspondence was used in Chapter 1
and in Examples 3.11 and 4.12, the adjective one-to-one was implied though never stated.

For any nonempty set A there is always a very simple but important one-to-one corre-
spondence, as seen in the following definition.

The function 14: A — A, defined by 14{a) = a for alla € A, is called the identity function
for A.

If f,g: A— B, we say that f and g are equal and write f = g, if f(a) = g(a) for all
a € A.

A common pitfall in dealing with the equality of functions occurs when f and g are
functions with a common domain A and f{(a) = g(a) for all ¢ € A. It may not be the case
that f = g. The pitfall results from not paying attention to the codomains of the functions.

Let f:Z— Z, g:Z — Q where f(x) = x = g{(x), forall x € Z. Then £, g share the com-
mon domain Z, have the same range Z, and act the same on every element of Z. Yet
f # g! Here f is a one-to-one correspondence, whereas g is one-to-one but not onto; so
the codomains do make a difference.

Consider the functions f, g: R — Z defined as follows:

X, ifxeZ

fx) = x| +1, ifxeR—Z gx)=[x],forallx e R

HxeZ then f(x) =x=]x]=gx).

Forx e R—Z, write x = n+r where n € Z and 0 <r < 1. (For example, if x = 2.3,
we write 2.3 =2+ 0.3, withn = 2andr = 0.3; forx = ~7.3 we have —7.3 = -8+ 0.7,
with n = —8 and r = 0.7.) Then

Sy =|x]+1=n+1=x]=gx).

Consequently, even though the functions f, g are defined by different formulas, we
realize that they are the same function — because they have the same domain and codomain
and f(x) = g(x) for all x in the domain R.
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Now that we have dispensed with the necessary preliminaries, it is time to examine an
operation for combining two appropriate functions.

If f:A— Bandg: B— C, we define the composite function, which is denoted
gofiA—> C by(go fia)=g(f(a)),foreacha € A.

Let A={1,2,3,4},B=f{a.b,cl,and C ={w, x, y,z} with fiA—> Bandg: B—>C
given by f = {(1,a), 2,a), (3,b), 4, c)} and g = {(4, x), (B, v), (c, z)}. For each ele-
ment of A we find:

(go fI1)=g(f(1)) =gla)=x (go fI3)=g(f3))=gb)=y
(go fI2)=g(f(2) =gla)=x (go N =g(f(d) =gl) =z
So
go f=1{(1,x), 2 x), Gy &}

Note: The composition f o g is not defined.

Let f:R — R, g¢: R — Rbe defined by f(x) =x2, g(x) =x + 5. Then
(80 )0 = g(fx) = gx™) = 2 +5,
whereas
(fog)x) = f(g(x)) = fx+5) = (x +5 = x>+ 10x + 25.

Herego f:R—> Rand fog: R—> R,but{go f)(1) =6 # 36 = (f o g){1), so even
though both composites f o g and g o f can be formed, we do not have fog =go f.
Consequently, the composition of functions is not, in general, a commutative operation.

The definition and examples for composite functions required that the codomain of f =
domain of g. If range of f € domain of g, this will actually be enough to yield the composite
function g o f: A — C. Also, forany f: A — B, weobservethat fol, = f =1g0 f.

An important recurring idea in mathematics is the investigation of whether combining
two entities with a common property yields a result with this property. For example, if A
and B are finite sets, then A N B and A U B are also finite. However, for infinite sets A and
B, we have A U B infinite but A N B could be finite.

For the composition of functions we have the following result.

THEOREM 5.5

Let f:A— Bandg: B — C.

a) If f and g are one-to-one, then g o f is one-to-one.
b) If f and g are onto, then g o f is onto.
Proof:
a) To prove that go f: A — C is one-to-one, let a;,ax € A with (go f)(a)) =
(g o f){az). Then (go f)(a) =(go filaz) = g(fla)) = g(fla2)) = fla) =

f{az), because g is one-to-one. Also, f(a;) = f(az) = a; = ay, because f is one-
to-one. Consequently, g o f is one-to-one.
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b) Forgo f: A— C,letz € C. Since g is onto, there exists y € B with g{y) = z. With
f onto and vy € B, there exists x € A with f(x) = y. Hence z = g(y) = g(f{x)) =
(g o f)(x), sothe range of g o f = € = the codomain of g o f, and g o f is onto.

Although function composition is not commutative, if f: A — B, g: B— C, and A:
C — D, what can we say about the functions (7 o g) o f and h o (g o )7 Specifically, is
(hog)o f =ho(go f)?Thatis, is function composition associative?

Before considering the general result, let us first investigate a particular example.

Let £, g, h: R— R, where f(x) = x2, g(x) =x 435 and h(x) = vx% 4 2.

Then ((ho g) o £)(x) = (ho @)(f(x)) = (h o g)x?) = h(g(x2) = h(x2 +5) =
V245242 = Vx4 1057 427

On the other hand, we see that (Ao (go fN(x) =h((go fH(x)) = h(g(f(x))) =
h(g(x?) = h(x>4+5) = \/()c2 +5)2 42 = /x*+ 10x2 + 27, as above.

So in this particular example, (ko g) o f and k2 o (g o f) are two functions with the
same domain and codomain, and for all x R, ((heog)o f)(x) = Vx4 4+ 10x2 427 =
(heo(ge f))(x). Consequently, (hog)o f =ho(go f).

We now find that the result in Example 5.55 is true in general.

THEOREM 5.6

Iff:A—- B, gi:B—> C,andh.C — D,then{hog)of =ho(gof).

Proof: Since the two functions have the same domain, A, and codomain, D, the result
will follow by showing that forevery x € A, (ho g) o f)(x) = (ho{g o [)){x). (Seethe
diagram shown in Fig. 5.9.)

(hog)of

holgef)
Figure 5.9

Using the definition of the composite function we know that for each x € A it takes two
steps to determine (g o f)(x). First we find f (x), the image of x under f. This is an element
of B. Then we apply the function g to the element f(x) to determine g( f (x}), the image
of f(x) under g. This results in an element of C. At this point we apply the function k
to the element g(f (x)) to determine 2 (g(f (x))) = h({g o f)(x)) = (ho (g o f£)){(x). This
result is an element of D. Similarly, starting once again with x in A, we have f(x) in B,



282 Chapter 5 Relations and Functions

Definition 5.19

EXAMPLE 5.56

Definition 5.20

| EXAMPLE5.57

Definition 5.21

and now we apply the composite function £ ¢ g to f(x). This gives us ((ho g) o f)(x) =

(ho@)(f(x)) = h(g(f(x))).
Since (ho g)o fH(x) = h(g(f(x))) = (ho(go f)x), foreachx in A, it now follows
that

(hog)of=ho(gof).

Consequently, the composition of functions is an associative operation.

By virtue of the associative property for function composition, we can write ko g o f,
(hog)o f or ho(go f) without any problem of ambiguity. In addition, this property
enables us to define powers of functions, where appropriate.

If f:A— Awedefine f1 = f,and forn e Z*, f™+' = f o (f™).

This definition is another example wherein the result is defined recursively. With 7! =
f o (f™M), we see the dependence of f"*! on a previous power, namely, f".

With A = {1, 2, 3,4}and f: A — Adefinedby f = {(1, 2), (2, 2), (3, 1), (4, 3}}, wehave

P=Fof={1,2,2.2.3,2,4 1} and fP=fofi=fofof={12,
2,2),(3,2), (4, 2)}. (What are * f°?)

We now come to the last new idea for this section: the existence of the invertible function
and some of its properties.

For sets A, B, if R is a relation from A to B, then the converse of R, denoted R°, is the
relation from B to A defined by &° = {(b, a)|(a, b) € R).

To get ¢ from 9, we simply interchange the components of each ordered pair in
R.Soif A={1,2,3,4}, B={w,x,y}, and R = {(1, w), (2, w), (3, x)}, then R® =
{(w, 1), (w, 2), (x, 3)}, arelation from B to A.

Since a function is a relation we can also form the converse of a function. For the
same preceding sets A, B, let f: A — B where f = {(1, w), (2, x), (3, y), (4, x)}. Then
fO=A{w, D), (x,2), (¥, 3), (x, 4)}, arelation, but not a function, from B to A. We wish te
investigate when the converse of a function yields a function, but before getting too abstract
let us consider the following example.

For A={1,2,3} and B = {w, x, y}, let f: A— B be given by f = {(1, w), (2, x),
(3, ¥)}. Then f< = {{w, 1), (x, 2), (v, 3)} is a function from B to A, and we observe that
ffof=14and fo f°=1p.

This finite example leads us to the following definition.

If f: A— B, then f is said to be invertible if there is a function g: B — A such that
gof= lAandfog: 13.
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Note that the function g in Definition 5.21 is also invertible.

Let f, g: R — R be defined by f(x) =2x +5, g(x) = (1/2){x — 5). Then (g o /) (x) =
g(f(x)) =g2x 45 = (1/2) [(2x +5) — S =x,and (f 0 g)(x) = f(gx)) =
FU/2Dx =5 =2[(1/D(x —3)]+5=x,30 fog=1Igandgo f = Ix.
Consequently, f and g are both invertible functions.

Having seen some examples of invertible functions, we now wish to show that the
function g of Definition 5.21 is unique. Then we shall find the means to identify an invertible
function.

THEOREM 5.7

If a function f: A — B is invertible and a function g: B — A satisfies g o f = 1,4 and
f o g = 1g, then this function g is unique.

Proof: If g is not unique, then there is another function : B — A with 2o f =14 and
foh =1g Consequently h =holg=ho(fog)=(hoflog=la0g=¢g.

As a result of this theorem we shall call the function g the inverse of f and shall adopt
the notation g = f~!. Theorem 5.7 also implies that f~! = f¢.

We also see that whenever f is an invertible function, so is the function f~!, and
(f~1~!' = f, again by the uniqueness in Theorem 5.7. But we still do not know what
conditions on f insure that f is invertible.

Before stating our next theorem we note that the invertible functions of Examples 5.57
and 5.58 are all bijective. Consequently, these examples provide some motivation for the
following result.

THEOREM 5.8

EXAMPLE 5.59

Afunction f: A — B is invertible if and only if it is one-to-one and onto.
Proof: Assuming that f: A — B is invertible, we have a unique function g: B — A with
gof =14 fog=1p.Ifa), az € Awith f(a1) = flaz). then g(f(a1)) = g(f(a2)). or
(g o filay) =(go fiay). Withg o f = 1, itfollowsthata; = ay, so f is one-to-one. For
the onto property, leth € B. Then g(b) € A, so we can talk about f (g(b)).Since f o g = 15,
wehave b = 15(b) = (f o g}(b) = f(g(b)), s0 f is onto.

Conversely, suppose f: A — B is bijective. Since f is onto, for each b € B there is an
a € A with f(a) = b. Consequently, we define the function g: B — A by g(b) = a, where
f(a) = b. This definition yields a unique function, The only problem that could arise is if
g(b) = uy # ay = g(b) because f{a;) = b = f(ay). However, this situation cannot arise
because f is one-to-one. Our definition of g is suchthatgo f =1 and f o g = 15,50 we
find that f is invertible, with g = f~1.

From Theorem 5.8 it follows that the function f1: R — R defined by fi(x) = x* is not
invertible (it is neither one-to-one nor onto), but f>: [0, +00) — [0, 400) defined by
Ff2(x) = x? is invertible with fz_l(x) =./x.

The next result combines the ideas of function composition and inverse functions. The
proof is left to the reader.
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THEOREM 5.9

EXAMPLE 5.60

EXAMPLE 5.61

If f:A— B, g B — C are invertible functions, then go f: A — C is invertible and
(go /)= fTTog.

Having seen some examples of functions and their inverses, one might wonder whether
there is an algebraic method to determine the inverse of an invertible function. If the func-
tion is finite, we simply interchange the components of the given ordered pairs. But what if
the function is defined by a formula, as in Example 5.59? Fortunately, the algebraic manip-
ulations prove to be little more than a careful analysis of “interchanging the components of
the ordered pairs.” This is demonstrated in the following examples.

For m, b e R, m # 0, the function f: R — R defined by f = {(x, ¥)|y = mx + b} is an
invertible function, because it is one-to-one and onto.
To get f~! we note that
F7 =1 »ly =mx + b} = {(y, )|y = mx + b}
= {{x, Y)Ix =my + b} = {{x, )y = (1/m)(x — b)}.

This is where we rename the variables
(replacing x by y and y by x} in order to
change the components of the ordered pairs of £.

So f:R — Ris defined by f(x) = mx 4+ b,and f~1: R - Ris defined by f~'(x) =
(1/m)(x — b).

Let f: R — R" be defined by f(x) = e*, where e = 2.7183, the base for the natural
logarithm, From the graph in Fig. 5.10 we see that f is one-to-one and onto, so f~':
R* — Rdoesexistand f~' = {(x, V)|y = ¢} = {{(x, ¥)|x = &’} = {(x, ¥)|y = ln x}, 50
')y =nx.

A
7 X
/m,cn

Figure 5.10

We should note that what happens in Fig. 5.10 happens in general. That is, the graphs
of f and f~! are symmetric about the line y = x. For example, the line segment connect-
ing the points (1, e) and (e, 1) would be bisected by the line y = x. This is true for any
corresponding pair of points (x, f(x)) and (f (x), f‘1 (f (0.
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This example also yields the following formulas:

x = Igx) = (f ' o /Hx) =In(e*), forallx eR.
x=1g+(x) = (fo f Hx)=e"*, forallx>0.

Even when a function f: A — B is not invertible, we find use for the symbol f~! in the
following sense.

Definition 5.22 If f1A— Band B| C B, then f~'(B)) = {x € A|f(x) € B;}. The set f~1(B)) is called
the preimage of B| under f.

Be careful! We are now using the symbol f~! in two different ways. Although we have
the concept of a preimage for any function, not every function has an inverse function.
Consequently, we cannot assume the existence of an inverse for a function f just because
we find the symbol f~! being used. A little caution is needed here.

Let A={1,2,3,4,5 6}and B=1{6,7,8,9, 10].If f: A— B with £ = [(1,7), (2, 7).

EXAMPLE 5.62 3, 8), 4, 6), (5,9), (6, 9}, then the following results are obtained.

a) For B) = {6, 8} C B, we have f~1(B)) = {3, 4}, since f(3) =8 and f(4) = 6, and
foranya € A, f(a) ¢ By unless a = 3 or a = 4. Here we also note that | f ~'(B))| =
2=|Bl.

b) Inthe case of B, = {7, 8} € B,since f(1) = f(2) = 7and f(3) = 8, we find that the
preimage of B; under fis {1, 2, 3}. And here | f '(B2)| =3 > 2 = | By|.

¢) Now consider the subset B3 = {8, 9) of B. For this case it follows that f~!(B3) =
{3, 5, 6} because £(3) = 8and f(5) = f(6) = 9. Also we find that | f ~1(B3)| =3 >
2 =Bl

d) If B, = {8, 9, 10} C B, thenwith f(3) = 8and f(5) = f(6) = 9,wehave f~'(By) =
{3, 5, 6}. So f’l(B4) = f~1{Bs) even though B, D> Bs. This result follows because
there is no element g in the domain A where f(a) = 10—that is, f~'({10}) = 8.

¢) Finally, when Bs = {8, 10} we find that f~'(Bs) = {3} since f(3) =8 and, as in
part (d), £~"({10}) = . In this case | f "1 (Bs)| = 1 <2 = |Bs|.

Whenever f: A — B, then for each b € B we shall write f~!(b) instead of f~'({b}).

For the function in Example 5.62, we find that
=1 rm=1,20 fF7'®=03 =6 f'10=0
EXAMPLE 5.63 Let f: R — R be defined by

Fl) = 3x -5, x>0
o —3x+1, x =0.
a) Determine f(0), £ (1), f(—1), f£(5/3), and f(-5/3).

b) Find 'O, £~'(1), F7' (1), f713), f7'(=3).and f'(-6).
¢) What are f’l([—S, 57) and f‘l([—6, 5N7?
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a) f(O)y=-3(0)+1=1 F5/3)=3(5/3)-5=0
fH=3H)-5=-2 f(=5/3)=-3(=5/3)+1=6
f(-1H)=-3(-H+1=4

b) f7H0) = {x eR|f(x) € {0}} = {x e R| f(x) = 0}

=xeRx>0and3x -5=0}U{xeRjlx<0and —3x+1=0}
=f{xeRlx>0andx =5/3}U{x e Rlx <0and x = 1/3}
=1{5/3tU@ = {5/3}
[Note how the horizontal line y = 0 — that is, the x-axis — intersects the graph in
Fig. 5.11 only at the point (5/3, 0).]

(—4/3,5)
(=1, 4)

¥

6
5 (10/3,5)
4 3.4

(7/3, 2)
21

Figure 5.11

F7H ) = (x eRIf) e {1}) = x eRIf(x) = 1)
={xeRlx>0and3x —5=1}U{xeRlx<0and —3x+1=1}
={reRlx>0andx =2} U {x e Rlx <0and x = 0}
= {2}V {0} =1{0,2})

[Here we note how the dashed line y = 1 intersects the graph in Fig. 5.11 at the

points (0, 1) and (2, 1).}

F'-D={xeRx>0and3x —5=-1}U{xeRjx<0and —3x+1=—1}
={xeRlx>0andx =4/3}U{x e Rlx <0and x = 2/3}
= {4/3} U@ = {4/3)

'3y =1{-2/3,8/3}  f1(=3)={2/3)

f"(—6)={xeR|x>0and3x—5=—6]U{xeR|x§0and —3x+1=-6)
=f{xeRlx>0andx = -1/3}U{xeR|x <0and x = 7/3}

=gup=4¢
¢ f7N[-5,51) = {x|f(x) e [-5, 5]} = {x| = 5 < f(x) <5}
(Case 1} x >0 -5<3x-5<5

0<3x <10

0<x <10/3—soweuse 0 < x < 10/3.
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(Case 2y x <0 ~5<-3x4+1<5

—-6<-3x <4

2>x>—4/3—here weuse —4/3 <x <0.
Hence f~Y([-5,5D ={x|—-4/3<x<0 or 0<x <10/3} =[-4/3,10/3]
Since there are no points (x, y) on the graph (in Fig. 5.11) where y < -5, itfollows
from our prior calculations that f~'([—6, 5}) = f~'([=5, 5]) = [—4/3, 10/3].

EXAMPLE 5.64 a) Let f: Z — Rbedefinedby f(x} = x> + 5. Table 5.9 lists £~ '(B) for various subsets
- B of the codomain R.
b) If g: R — Ris defined by g(x) = x* + 5, the results in Table 5.10 show how a change
in domain (from Z to R) affects the preimages (in Table 5.9).
Table 5.9 Table 5.10
B f1(B) B g7'(B)
{6} {—=1. 1} {6} {-1. 1}
6,71 (-1 1 (6, 71 [-v2, 11U, +/2]
[e. 101 {-2.-L1.2} [6.10  [—v5, -1]1U[1, V3]
[—4,5) 9 [-4,5) )
[—4, 5] {0} [-4. 5] {0}
[5, +00) (/ [5, +o0) R

The concept of a preimage appears in conjunction with the set operations of intersec-
tion, union, and complementation in our next result. The reader should note the difference
between part (a) of this theorem and part {b) of Theorem 5.2.

THEOREM 5.10 If f: A— Band B, B, C B, then (a) f (B, N By) :_f"](Bl) N £~ (B
) fTHUBIU By = fTN(B) U f1(By)iand () £ (B = ' (B).
Proof: We prove part (b) and leave parts (a) and (c) for the reader.

ForacA,ac fUBIUB) < fla)e BBUB, <= fla)e Biorfla)e Br<>ac
fiBorae fT (B ae fTUBHU (B

Using the notation of the preimage, we see that a function f: A — B is one-to-one if
and only if | £~ (b)| < 1 for each b € B.

Discrete mathematics is primarily concerned with finite sets, and the last result of this
section demonstrates how the property of finiteness can yield results that fail to be true in
general. In addition, it provides an application of the pigeonhole principle.

THEOREM 5.11 Let f: A — B for finite sets A and B, where |A| = | B|. Then the following statements are

equivalent: (a) f is one-to-one; (b) f is onto; and {(c) f is invertible.
Proof: We have already shown in Theorem 5.8 that (¢) = (a) and (b), and that together (a),
(b} = (c). Consequently, this theorem will follow when we show that for these conditions
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on A, B, (a) < (b). Assuming (b), if f is not one-to-one, then there are elements ay, a; €
A, with a; # ap, but f(a)) = f(az). Then |A| > | f(A)] = | B|, contradicting |A| = |B|.
Conversely, if f is notonto, then | f(A)| < |B|. With |A| = | B| we have |A| > | f(A)|, and
it follows from the pigeonhole principle that f is not one-to-one.

Using Theorem 5.11 we now verify the combinatorial identity introduced in Problem 6
at the start of this chapter. For if n € Z* and |A| = |B| = n, there are n! one-to-one
functions from A to B and _,_o(—1*(,",}(n — k)" onto functions from A to B. The
equality n! =) i _o(—=1)*(,",)(n — k)" is then the numerical equivalent of parts (a) and
(b) of Theorem 5.11. [This is also the reason why the diagonal elements S(n, n), 1 <n <§,

shown in Table 5.1 all equal 1.]

1. a) For A= {1, 2, 3,4, ..., 7}, how many bijective func-
tions f: A — A satisfy f(1) # 1?
b) Answer part (2) where A = [x|x € Z", | < x <n), for
some fixedn e Z*,

2. a) For A = (-2, 7] € R define the functions
f. 8 A— Rby

2x2 -8

x+2°

fx)=2x—4 and g(x)=

Verify that f = g.
b) Is the result in part (a) affected if we change A to
[-7,2)?

3. Let f,22R— R, where g(x)=1—x+x* and f(x)=
ax +b.If (g o f)(x) =9x% — 9x + 3, determine a, b.

4. Let g: N — Nbe definedby g(rn) =2n.If A = {1, 2, 3, 4}
and f: A— Nis given by f = {(1, 2}, (2, 3), (3, 5), (4, 7)),
findgo f.

5. If U is a given universe with (fixed) S, T C U, define
2P — P by g(A) =T N(SU A) for A C . Prove
that g> = g.

6. Let f, g:R— Rwhere f(x) =ax +bandg(x) =cx +d
forallx € R, witha, b, ¢, d real constants. What relationship(s)
must be satisfied by a, b, ¢, dif (f ¢ g)(x}) = (g o f)(x) forall
x €R?

7. Let f, g, : Z — Z be defined by f(x) =x — 1,

g(x} = 3x,
0, X even

hix) =
2 1, x odd.

Determine (a) fog, g0 f,goh,hog, fo(goh),
(fog)oh; (b) f2, 7, 8% &° 1%, *, ¥

8. Let f1A— B,g:B— C.Provethat (a)ifgo f:A—> C
is onto, then g is onto; and (b) if g o f: A — C is one-to-one,
then f is one-to-one.

9. a) Find the inverse of the function f: R — R* defined by
f(x) — €2x+5‘

b) Show that f o f~! = g+ andf ' o f = Ig.
10. For each of the following functions f: R — R, determine
whether f is invertible, and, if so, determine f~'.

a) f={(x, y)2x+3y=7)

b) f={{x, y)lax + by =c, b # 0}

o f=((x,»ly=x")

d) f={(x, »ly =x" +x}
11. Prove Theorem 5.9.
12. If A=(1,2,3,4,5,6,7}, B=1{2,4,6,8,10, 12}, and
fiA— B where f ={(l,2),(2,06),(3,06),H,8),5,06),

(6, 8), (7, 12)}, determine the preimage of B, under f in
each of the following cases.

a) By = {2} b) B, = {6}
¢) By = {6, 8} d) B, = {6, 8, 10}
e) B, = {6, 8, 10, 12} f) B, = {10, 12}
13. Let f: R — R be defined by
x 47, x <0
fxy=14{ —2x+5, O<x<3
x—1, I<x

a) Find f~'(=10), £ 750, f~'&), 716, f1(7), and
F7'®).
b) Determine the preimage under f for each of the inter-
vals (i) [—5, —1]; (ii) [-5, O); Gii)y [—2, 4); (iv) (3, 10);
and (v) [11, 17).
14. Let f: R — R be defined by f(x) = x?. For each of the
following subsets B of R, find f~'(B).

a) B={0, 1} b} B ={-1,0, 1}
¢) B=1[0,1] dy B=[0, 1
e) B =1[0,4] fy B=(0,11U(4,9)



15. Let A=1{1,2,3,4,5} and B=1{6,7,8,9, 10, 11, 12}.
How many functions f: A — B are such that f~1({6, 7, 8}) =
{1, 2}?

16. Let f: R — R be defined by f(x) = |x], the greatest
integer in x. Find f~'(B) for each of the following subsets B
of R.

a) B =10, 1} b) B ={-1,0,1}
¢ B=1[0,1) d) B=10,2)
e) B=1[-1,2] f) B=[-1,00uU(l,3]

17. Let f, g: Z7 — ZF where for all x € Z%, f(x) =x +1
and g(x) = max{l, x — 1}, the maximum of 1 and x — 1.

a) What is the range of f?

b) Is f an onto function?

¢) Is the function f one-to-one?

d) What is the range of g?

€) Is g an onto function?

f) Is the function g one-to-one?

g) Show that g o f = 1z+.

h) Determine (f o g)(x) forx = 2,3, 4,7, 12, and 25.

i) Do the answers for parts (b), (g), and (h) contradict the
result in Theorem 5.8?

18. Let f, g, & denote the following closed binary operations
on P(Z*). For A, BCZY, f(A,B)=ANB, g4, B)=
AUB, h(A, B)=AA B.

a) Are any of the functions one-to-one?

b) Are any of f, g, and h onto functions?
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¢) s any one of the given functions invertible?

d) Are any of the following sets infinite?

) f71®? (2) g7 @)
() 4 £
& g7'(2h 6y h7'({3})

M F7'd4,7) (8) g '({8, 12)
(9 R7'({5.9h
e) Determine the number of elements in each of the finite
sets in part (d).

19. Prove parts (a) and (c) of Theorem 5.10.

20. a) Give an example of a function f: Z — Z where (i) f is
one-to-one but not onto; and (i1) f is onto but not one-to-
one.

b) Do the examples in part (a) contradict Theorem 5.11?

21. Let f: Z — N be defined by

o) 2x — 1, ifx >0
) =
—2x, forx <0,
a) Prove that f is one-to-one and onto.
b) Determine f~'.

22, If |A| = |B| =5, how many functions f:A — B are

invertible?

23. Let f, g, h,k:N— N where f(n) =3n, gn)y = |n/3],

hin) = [(n+ 1)/3], and k(n) = |[(n + 2)/3], for ecach n € N.

(a) For each n e N what are (go f)(n), (ho f)(n), and

(ko f)(n)? (b) Do the results in part (a) contradict Theo-

rem 5.77

In Section 4.4 we introduced the concept of an algorithm, following the examples set forth
by the division algorithm (of Section 4.3) and the Euclidean algorithm (of Section 4.4). At
that time we were concerned with certain properties of a general algorithm:

® The precision of the individual step-by-step instructions

¢ The input provided to the algorithm, and the output the algorithm then provides

e The ability of the algorithm to solve a certain type of problem, not just specific instances

of the problem

¢ The uniqueness of the intermediate and final results, based on the input

"The material in Sections 5.7 and 5.8 may be skipped at this point. It will not be used very much until Chapter
10. The only place where this material appears before Chapter 10 is in Example 7.13, but that example can be

omitted without any loss of continuity.
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Definition 5.23

EXAMPLE 5.65

® The finite nature of the algorithm in that it terminates after the execution of a finite
number of instructions

When an algorithm correctly solves a certain type of problem and satisfies these five
conditions, then we may find ourselves examining it further in the following ways.

1) Can we somehow measure how long it takes the algorithm to solve a problem of a
certain size? Whether we can may very well depend, for example, on the compiler
being used, so we want to develop a measure that doesn’t actually depend on such
considerations as compilers, execution speeds, or other characteristics of a given
computer.

For example, if we want to compute a”" for @ € R and n € Z™, is there some
“function of n” that can describe how fast a given algorithm for such exponentiation
accomplishes this?

2) Suppose we can answer guestions such as the one set forth at the start of item 1. Then
if we have two (or more) algorithms that solve a given problem, is there perhaps a
way to determine whether one algorithm is “better” than another?

In particular, suppose we consider the problem of determining whether a certain real
number x is present in the list of »# real numbers ay, as, . . ., a,. Here we have a problem
of size n.

If there is an algorithm that solves this problem, how long does it take to do so? To
measure this we seek a function f(n), called the time-complexity function™ of the algorithm.
We expect (both here and in general) that the value of f(n) will increase as 1 increases.
Also, our major concern in dealing with any algorithm is how the algorithm performs for
large values of n.

In order to study what has now been described in a somewhat informal manner, we need
to introduce the following fundamental idea.

Let f, g: Z" — R. We say that g dominates f (or f is dominated by g) if there exist
constants m € RY and & € Z*1 such that | f (n)] < m|g(n)| for all n € Z*, where n > k.

Note that as we consider the values of f(1), g(1), f(2), g(2), ..., there is a point
(namely, k) after which the size of f(n) is bounded above by a positive multiple (m) of
the size of g(n). Also, when g dominates f, then | f(n)/g(n)| < m [that is, the size of the
quotient f(n)/g(n) is bounded by m}, for those n € Z* where n > k and g(n) # 0.

When f is dominated by g we say that f is of order (at most) g and we use what is
called “big-Oh” notation to designate this. We write f € O(g), where O (g) is read “order
g” or “big-Oh of g.” As suggested by the notation “f € O(g),” O(yg) represents the set of
all functions with domain Z™ and codomain R that are dominated by g. These ideas are
demonstrated in the following examples.

Let f, g: ZT — R be given by f(n) = 5n, g(n) = n?, for n € Z*. If we compute f(n)
and g(n) for 1 <n <4, we find that f(1) =5, g(1)=1; f(2)=10,¢(2) =4; f3) =

TWe could also study the space-complexity function of an algorithm, which we need when we attempt to
measure the amount of memory required for the execution of an algorithm on a problem of size . In this text,
however, we limit our study to the time-complexity function.
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15,g(3) =9, and f(4) =20, g(4) = 16. However, n > 5= n?>5n, and we have
| f(n)] = 5n <n? = |g{n)|. So with m = 1 and k = 5, we find that for n >k, | f(n)| <
m|g(n)|. Consequently, g dominates f and f € O(g). [Note that | f(n)/g(n)| is bounded
by 1 foralln > 5.}

We also realize that foralln € Z1, | f(n)| = 5n < 512 = 5|g(n)|. So the dominance of f
by g is shown here with k = 1 and m = 5. This is enough to demonstrate that the constants
k and m of Definition 5.23 need not be unique.

Furthermore, we can generalize this result if we now consider functions f|, g1: Z* — R
defined by fi(n) = an, g|(n) = bn?, where a, b are nonzero real numbers. For if m € RT
with m|b| > |a|, then for all a = 1(=k), |fi(m)] = |an| = |aln < m|bln <m|bn® =
m|bn?| = m|g,(n)|, and so f; € O(g1).

In Example 5.65 we observed that f € O{g). Taking a second look at the functions f
and g, we now want to show that g ¢ O(f).

Once again let f, g: Z* — R be defined by f(n) = 5n, g(n) = n?, forn e Z*.
If g € O(f), then in terms of quantifiers, we would have

Am eR" FkeZt VaeZ' [(n=k) = |gn)| <m|f)].
Consequently, to show that g ¢ O( f), we need to verify that
VmeR" VkeZ IneZ [(n=k) A(gtn)| > m|fw)]].

To accomplish this, we first should realize that m and k are arbitrary, so we have no control
over their values. The only number over which we have control is the positive integer n
that we select. Now no matter what the values of m and & happen to be, we can select
n € Z7 such that n > max{Sm, k}. Then n > k (actually n > k) and n > 5m = n* > Smn,
so |g(n)| = n® > 5mn = m|5n| = m|f(n) and g ¢ O(f).

For those who prefer the method of proof by contradiction, we present a second approach.
If g € O(f), then we would have

n* = |g(n)| < m|f(n)| = mn

for all n > k, where & is some fixed positive integer and m is a (real) constant. But then
from n? < mn we deduce that # < m. This is impossible because n(e Z™) is a variable that
can increase without bound while m is still a constant.

EXAMPLE 5.67

a)Let f, g:ZY > R with f(n) =512 +3n+1 and g(n) =n? Then |f(n)| =
152 4+ 3n+ 1| =502 +3n + 1 <502 + 30> + n? = 9n? = 9|g(n)|. Hence for all
n=1(=k),|fn) <m|gn)| for any m>9, and f € O(g). We can also write
f € O(n?) in this case.

In addition, |g(n)| = n? <5n% < 5n* +3n+ 1 =|f(n)|foralln > 1.So |g(n)| <
m| f(n)] for any m > 1 and all n > k > 1. Consequently g € O(f). [In fact, O(g) =
O(f); that is, any function from Z* to R that is dominated by one of f, g is also
dominated by the other. We shall examine this result for the general case in the Section
Exercises.]
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b) Now consider f, g: Z* — R with f(n) = 3n* + 7n> — 4n + 2 and g(n) = n’. Here
we have |f(n)| = |31 +7n* —dn +2| < |30°| 4+ [Tn°| + | — 4n| + 12| <3’ +
T 4+ 4n 420 = 1607 = 16|g(n)|, for all n > 1. So with m = 16 and k = 1, we
find that f is dominated by g, and f € O(g), or f € O(n?).

Since 7n —4 > 0 for all n > 1, we can write n° <3n° <3 + (Tn —4Hn +2
whenever n > 1. Then |g(n)| < | f(n)|foralln > 1,and g € O(f). [Asin part (a), we
also have O(f) = O(g) = O(n?) in this case.]

We generalize the results of Example 5.67 as follows. Let f: Z* — Rbethe polynomial
function where f(n) =amn' +a,_n'~' + - -+ an® + an +aq, for a, a1, ..., ay,
ar, ap € R, a, #0,t € N. Then

|f )] = lan’ +ain' ™ -+ an® + an + al
< lan'| + a1 4 - - - + |aan®| + lain| + |agl
= |a;ln' + la,_1|n' ™" 4 - - + |az|n® + |ay|n + |aol
< laln' + |a—1ln' + - - - + |az|a’ + |ay|n’ + |ag|n’
= (la;| + lar 1| + -+ - + laz| + la1]| + laghn'.

In Definition 5.23, let m = |a,| + |a,—1] + - - - + |az| + |a1] + |ap| and k=1, and let
g:Z" — R be given by g{n) = n'. Then | f(n)| <m|g(n)| for all n >k, s0 f is domi-
nated by g, or f € Q(n").

It is also true that g € O(f) and that O(f) = O(g) = O(x").

This generalization provides the following special results on summations.

a) Let f:Z* — Rbegivenby f(n) =1 +2 +3 4. .- +n. Then (from Examples 1.40
EXAMPLE 5.68 andi.l) fn) = (5 (n)(ny+fl) = (3)n? + (3} n,s0 f € O(n?). ’
b) Ifg:Z" > Rwithg(n) =12 +22 43> +... 4 n? = (é) (n)y(n +1H)(2n + 1) (from
Example 4.4), then g(n) = (3) n* + (3) n* + (3) nand g € O(n*).
¢)If teZ", and h: Z" — R is defined by h{n) =Y ;_, i, then h{n) = 1 42" +
4t <al+n4n 4t =am) =t soheOnTh.

Now that we have examined several examples of function dominance, we shall close this
section with two final observations. In the next section we shall apply the idea of function
dominance in the analysis of algorithms.

1) When dealing with the concept of function dominance, we seek the best (or tightest)
bound in the following sense. Suppose that f, g, h: Z" — R, where f € O(g) and
g € O(h). Then we also have f € O(h). (A proof for this is requested in the Section
Exercises.) If h € O(g), however, the statement f € O(g) provides a “better” bound
on | f(n)| than the statement f € O(h). For example, if f{(n) =35, g(n) = 5n, and
h(n) =n? foralln e Z", then f € O(g), g € O(h), and f € O(h), but h ¢ O(g).
Therefore, we are provided with more information by the statement f € O (g) than
by the statement f € O(h).

2) Certain orders, such as O(n) and O(n?), often occur when we deal with function

dominance. Therefore they have come to be designated by special names. Some of
the most important of these orders are listed in Table 5.11.
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Table 5.11
Big-Oh Form Name
o) Constant
O(log, n) Logarithmic
O(n) Linear
O(nlog, n) nlog, n
0(n?) Quadratic
on?) Cubic
Oon™),m=20,1,2,3,... Polynomial
o™, c>1 Exponential
o) Factorial
(Hint:
:
lim =400
n—>o0 log, n

1. Use the results of Table 5.11 to determine the best “‘big-Oh”
form for each of the following functions f: Z* — R.
a) f(n)=3n+7 b) f(n) =3+ sin(1/n)
€) f(n) =n®— 51> + 251 — 165
d) f(n) =50 +3nlog, n
e f(n)=n>+(n—1)
nn+ 1)n +2)
£) fimy= W
g) f) =2+4+6+-+2n
2. Let f, g: 27 — R, where f(n) =nand g(n) =n + (1/n),
for n € Z*, Use Definition 5.23 to show that f € Q(g) and
geO(f).
3. Ineach of the following, £, g: Z* — R. Use Definition 5.23
to show that g dominates f.
a) f(n)=100log, n, g(n) = (%) n
b) f(n)=2", gln) = 2% — 1000
e f(m) =302 gn) =2"42n
4. Let f, g: 7 — R be defined by f(rn) = n + 100, g(n) =
n’. Use Definition 5.23 to show that f € O(g) but g ¢ O(f).
5. Let f,g:Z* > R, where f(n)=n®+n and g(n) =
(3) n*, for n € Z*. Use Definition 5.23 to show that f € O(g)
but g ¢ O(f).

6. Let £, g: Z7 — R be defined as follows:

n, fornodd 1, forn odd

gln) =
1, fornmeven n,

Verify that f ¢ O(g) and g ¢ O(f).

7. Let f, g: Z* — R where f(n) = n and g(n) = log, n, for
neZ". Show that g € O(f) but f ¢ O(g).

flny=

for n even

This requires the use of calculus.)

8. Let f, g, h: Zt — Rwhere f € O(g)and g € O(h). Prove
that f € O(h).

9. 1f g:Z* - R and ¢ € R, we define the function cg:
Z* — R by (cg)(n) = c(g(n)), for each n € Z*, Prove that
if f, g:Z" — Rwith f € O(g),then f € O(cg) forallc € R,
c#0.

10. a) Prove that f € O(f) forall f: Z* — R.

b) Let £, g:Z" > R If f € O(g) and g € O(f), prove
that O(f) = O(g). That is, prove that for all i: Z* — R,
if & is dominated by f, then 4 is dominated by g, and con-
versely.

¢) If £, g: Z* — R, prove thatif O(f) = O(g), then f €
O(g) and g € O(f).

11. The following is analogous to the “big-Oh” notation intro-
duced in conjunction with Definition 5.23.

For f, g: ZT — Rwesay that f is of order at least g if there
exist constants M € RT and k € Z" such that | £ (r)| = M |g(n)]|
foralln € Z*, where n > k. In this case we write f € 2(g) and
say that f is “big Omega of g.” So 2(g) represents the set of
all functions with domain Z* and codomain R that dominate g.

Suppose that f, g, i: Z* — R, where f(n) = 5n* + 3n,
g(n) =n?, hin) =n, for all n € Z*. Prove that (a) f € Q(g);
(byge Q(f); () feh); and (d) h ¢ Q(f)—thatis, & is
not “big Omega of f.”

12. Let f, g: ZT — R. Prove that f € Q(g) if and only if
g€ O(f).
13. a) Let f:Z" — R where f(n)=13 ., i. When n =4,

for example, we have f(n)= f(4)=14+24+3+4>
24344>24242=3-2=744+1)/212=6>
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(4/2) = (n/2)%. For n =5, we find f(n)= f(5) =
1 424+3+4+5>3+4+5>343+3=3.3=
[(5S+1)/2]13 =9 > (5/2) = (n/2)%. In general, f(n) =
142+---+n>n/2+--+n>n/21+---+
[7/2] = [(n 4+ 1)/2][n/2] > n*/4.

Consequently, f € Q(n?).

Use
z”:l_ _nn+D
=1 2
to provide an alternative proof that f € Q(r?).
b) Let g: Z* — R where g{n) = 3 ', i>. Prove that
geqQn’).
¢) For t€Z", let mZ* > R where h(n) =Y _ "
Prove that h € Q(n'").

5.8
Analysis of Algorithms

14. For f, g: Z* — R, we say that f is “big Theta of g,” and
write f € ®(g), when there exist constants mty, m, € R* and
ke Z" suchthatm,|g(n)| < |f(m)| <ma|gn)|,foralln e Z*,
where n > k. Prove that f € ©(g) if and only if f € Q(g) and
fe0).
15. Let f, g: Z* — R. Prove that
feO(g)ifandonlyif g € O(f).

16. a) Let f: Z" — Rwhere f(n) =Y. _, i. Prove that

f e @n?).

b) Let g: Z* — Rwhere g(n) = Y_'_ i%. Prove that

FEACIGR]

¢) For t€Z", let mZ" = R where h(n) =3 " i

Prove that /2 € @ (n'*!).

Now that the reader has been introduced to the concept of function dominance, it is time to
see how this idea is used in the study of algorithms. In this section we present our algorithms
as pseudocode procedures. (We shall also present algorithms as lists of instructions. The
reader will find this to be the case in later chapters.)

We start with a procedure to determine the balance in a savings account.

EXAMPLE 5.69

In Fig. 5.12 we have a procedure (written in pseudocode) for computing the balance in
a savings account # months (for n € Z™) after it has been opened. (This balance is the

procedure’s output.) Here the user supplies the value of n, the input for the program. The
variables deposit, balance, and rate are real variables, while i is an integer variable. (The

annual interest rate is 0.06.)

begin
deposit
i:=1

begin

end
end

procedure AccountBalance(n:
:=50.00

rate :=0.005
balance := 100.00
while i < nndo

balance := deposit + balance + balance * rate
I:=1+1

integer)

The monthly deposit}
Initializes the counter}
The monthly interest rate}
Initializes the balance}

Figure 5.12

Consider the following specific situation. Nathan puts $100.00 in a new account on
January 1. Each month the bank adds the interest (balance * rate) to Nathan’s account—
on the first of the month. In addition, Nathan deposits an additional $50.00 on the first of
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each month (starting on February 1). This program tells Nathan the balance in his account
after n months have gone by (assuming that the interest rate does not change). [Note: After
one month, n = 1 and the balance is $50.00 (new deposit) + $100.00 (initial deposit) +
($100.00)(0.005) (the interest) = $150.50. When n = 2 the new balance is $350.00 (new
deposit) + $150.50 (previous balance) + ($150.50) (0.005) (new interest) = $201.25.]

Our objective is to count (measure) the total number of operations (such as assignments,
additions, multiplications, and comparisons) this program segment takes to compute the
balance in Nathan’s account # months after he opened it. We shall let f{n) denote the total
number of these operations. [Then f: Z* — R. (Actually, f(Z*) cCZ7)]

The program segment begins with four assignment statements, where the integer variable
i and the real variable balance are initialized, and the values of the real variables deposit
and rate are declared. Then the while loop is executed # times. Each execution of the loop
involves the following seven operations:

1) Comparing the present value of the counter i with n.

2) Increasing the present value of balance to deposit 4+ balance + balance * rate; this
involves one multiplication, two additions, and one assignment.

3) Incrementing the value of the counter by 1; this involves one addition and one as-
signment.

Finally, there is one more comparison. This is made when i = r + 1, so the while loop is
terminated and the other six operations (in steps 2 and 3) are not performed.

Therefore, f(n) =4 +7n+ 1 =Tn+5 € O(n). Consequently, we say that f € O(n).
For as n gets larger, the “order of magnitude” of 7n + 5 depends primarily on the value 7, the
number of times the while loop is executed. Therefore, we could have obtained f € O(n)
by simply counting the number of times the while loop was executed. Such shortcuts will
be used in our calculations for the remaining examples.

Our next example introduces us to a situation where three types of complexity are
determined. These measures are called the best-case complexity, the worst-case complexity,
and the average-case complexity.

In this example we examine a typical searching process. Here an array of n (> 1) integers
a, a, as, . .., a, is to be searched for the presence of an integer called key. If the integer
is found, the value of location indicates its first location in the array; if it is not found the
value of location is 0, indicating an unsuccessful search.

We cannot assume that the entries in the array are in any particular order. (If they were,
the problem would be easier and a more efficient algorithm could be developed.) The input
for this algorithm consists of the array (which is read in by the user or provided, perhaps,
as a file from an external source), along with the number 7 of elements in the array, and the
value of the integer key.

The algorithm is provided in the pseudocode procedure in Fig. 5.13.

We shall define the complexity function f(n) for this algorithm to be the number of
elements in the array that are examined until the value key is found (for the first time) or
the array is exhausted (that is, the number of times the while loop is executed).

What is the best thing that can happen in our search for key? If key = a;, we find that key
is the first entry of the array, and we had to compare key with only one element of the array.
In this case we have f(n) = |, and we say that the best-case complexity for our algorithm



296 Chapter 5 Relations and Functions

procedure LinearSearch(key, n: integer; a;,as,as,...,a,: integers)
begin
i:=1 {initializes the counter}
while (i < nand key # a,) do
1:=14+1
if i < n then location := 1 {successful search}
else Jocation :=0 {unsuccessful search}
end {location is the subscript of the first array entry that equals key;
location is 0 if key is not found}

EXAMPLE 5.717

Figure 5.13

is O(1) (that is, it is constant and independent of the size of the array). Unfortunately, we
cannot expect such a situation to occur very often.

From the best situation we turn now to the worst. We see that we have to examine all
n entries of the array if (1) the first occurrence of key is a, or (2) key is not found in the
array. In either case we have f(r) = n, and the worst-case complexity here is O(n). (The
worst-case complexity will typically be considered throughout the text.)

Finally, we wish to obtain an estimate of the average number of array entries examined.
We shall assume that the n entries of the array are distinct and are all equally likely (with
probability p) to contain the value key, and that the probability that key is not in the array
is equal to ¢g. Consequently, we have np +g = 1 and p = (1 — g)/n.

Foreach 1 <i < n, if key equals g;, then i elements of the array have been examined. If
key 1s not in the array, then all » array elements are examined. Therefore, the average-case
complexiry is determined by the average number of array elements examined, which is

fy=10-p+2-p+3-p+---+n-p+n-g=p(1+24+34+---4+n)+ng
_pnin+1)
3 +
If g =0, then key isinthe array, p = 1/nand f(n) = (n 4+ 1}/2 € O(n). Forg = 1/2, we
have an even chance that key is in the array and f(n) = (1/2n)[n(n + 1)/2] + (n/2) =
(n+1)/4+ (n/2) € O(n). [In general, forall 0 <g < 1, we have f(rn) € O(n).}

neg-

The result in Example 5.70 for the average number of array elements examined in the linear
search algerithm may also be calculated using the idea of the random variable. When the
algorithm s applied tothe array a;, a2, da, . . ., a, (of n distinctintegers), we let the discrete
random variable X count the number of array elements examined in the search for the integer
key. Here the sample space can be considered as {1, 2, 3, ..., n, 1™}, where for 1 <i <n,
we have the case where key is found to be @¢; — so that the / elements aj, a», a3, ..., @
have been examined. The entry n* denotes the situation where all # elements are examined
but key is not found among any of the array elements a;, a3, as, . . ., a,.

Once again we assume that each array entry has the same probability p of containing
the value key and that g is the probability that key 15 not in the array. Then np + g = 1 and

*This example uses the concept of the discrete random variable which was introduced in the optional material
in Section 3.7. It may be skipped without loss of continuity.
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we have Pr(X =i) = p,forl <i <n,and Pr(X =n*) = g. Consequently, the average
number of array elements examined during the execution of the linear search algorithm is

E(X)=Y iPr(X =i)+nPr(X =n")

=1

L nin +1
:Zszrnp:p(1+2+3+---+n)+nq=¥+

i=1

ng.

Early in the discussion of the previous section, we mentioned how we might want to
compare two algorithms that both correctly solve a given type of problem. Such a compar-
ison can be accomplished by using the time-complexity functions for the algorithms. We
demonstrate this in the next two examples.

The algorithm implemented in the pseudocode procedure of Fig. 5.14 outputs the value of a”
for the input @, n, where a is a real number and # is a positive integer. The real variable x is
initialized as 1.0 and then used to store the values a, a®, a®, . . ., a” during execution of the
for loop. Here we define the time-complexity function f (x) for the algorithm as the number

of multiplications that occur in the for loop. Consequently, we have f{(n) = n € O(n).

procedure Powerl(a: real; n: positive integer)
begin
x :=1.0
for i :=1tondo
X:=x%*a
end
Figure 5.14

In Fig. 5.15 we have a second pseudocode procedure for evaluating ¢” for all ¢ € R,
n € Z*. Recall that i /2] is the greatest integer in (or the floor of ) i /2.

procedure Power2{a: real; n: pesitive integer)
begin
x :=1.0
i:=n
while 1 > 0 do
begin
if i #2* |i/2]| then {iis odd}
X :1=X*a
i:=11/2]
if i > 0 then
a::r=a*a
end
end

Figure 5.15
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For this procedure the real variable x is initialized as 1.0 and then used to store the
appropriate powers of a until it contains the value of ¢”. The results shown in Fig. 5.16
demonstrate what is happening to x (and &) for the cases where n = 7 and 8. The numbers 1,
2,3, and 4 indicate the first, second, third, and fourth times the statements in the while loop
(in particular, the statement i := [i/2]) are executed. If n = 7, then because 22 < 7 < 27,
we have 2 < log, 7 < 3. Here the while loop is executed three times and

3=llog, 7] +1<log, 7 +1,

where [log, 7] denotes the greatest integer in log, 7, which is 2. Also, when n = §, the
number of times the while loop is executed is

4=|log, 8] +1=1log, 8+1,

since log, 8 = 3.

n="17 n==8
Xx:=1.0 X :=1.0
i:=7 1:=18
x:=x*a {x-=a)l 1Ii==4
1.1 :=3 a:=a*a
a:=a*a ) 5
i:=
o[ 1077,
X:=x*a |x=a) a:=ara
21 :=1 3[1_21
PR *
a:=awa a:=ax*a
3x::x*a (x =a’) x:i=x*a {[x=a)
i:=0 4 i:=0
[x=a'=a-a-a%] x=(((a))?)?%]

Figure 5.16

We shall define the time-complexity function g(n) for (the implementation of) this
exponentiation algorithm as the number of times the while loop is executed. This is
also the number of times the statement i := [i/2] is executed. (Here we assume that
the time interval for the computation of each |i/2] is independent of the magnitude
of i.) On the basis of the foregoing two observations, we want to establish that for all
n>1, gn) <log, n+ 1 € O(log, n). We shall establish this by the Principle of Mathe-
matical Induction (the alternative form — Theorem 4.2) on the value of n.

When 7 = 1, we see in Fig. 5.15 that i is odd, x is assigned the value of ¢ = a', and
a' is determined after only 1 = log, | 4+ 1 execution of the while loop. So g(1) =1<
log, 1+ 1.

Now assume that for all 1 <n <k, g(n) <log, n + 1. Then for n = k + 1, during the

k+1
first pass through the while loop the value of i is changed to [%J Since 1<

k+1 . . . . k+1
—— | =k, by the induction hypothesis we shall execute the while loop g | | ——

2
. k+1 k+1
more times, where g 5 = log, - + 1.
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Therefore

k+1 k+1
g(k+1)51+[10g2 [%J—Fl}il—k[bgz (%)Jrl]

=1+ [log,(k+1)—log, 24+ 1] =log,(k + 1) 4+ 1.

For the time-complexity function of Example 5.72, we found that f'(n) € O(n). Here we
have g{r) € O(log, n). It can be verified that g is dominated by f but f is not dominated
by g. Therefore, for large n, this second algorithm is considered more efficient than the first
algorithm {of Example 5.72). (However, note how much easier the pseudocode in Fig. 5.14
is than that of the procedure in Fig. 5.15.)

Inclosing this section, we shall summarize what we have learned by making the following
observations.

1) The results we established in Examples 5.69, 5.70, 5.72, and 5.73 are useful when
we are dealing with moderate to large values of n. For small values of n, such con-
siderations about time-complexity functions have little purpose.

2) Suppose that algorithms A; and 4> have time-complexity functions f(rn) and g(n),
respectively, where f(n) € O(n) and g(n) € Q(n?). We must be cautious here. We
might expect an algorithm with linear complexity to be “perhaps more efficient” than
one with quadratic complexity. But we really need more information. If £ (n) = 1000n
and g(n) = n?, then algorithm A, is fine until the problem size n exceeds 1000. If
the problem size is such that we never exceed 1000, then algorithm A is the better
choice. However, as we mentioned in observation 1, as » grows larger, the algorithm
of linear complexity becomes the better alternative.

3) In Fig. 5.17 we have graphed a log-linear plot for the functions associated with some
of the orders givenin Table 5.11. [Here we have replaced the (discrete) integer variable
n by the (continuous) real variable n.] This should help us to develop some feeling
for their relative growth rates (especially for large values of n).

f(n) ¢

Figure 5.17
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The data in Table 5.12 provide estimates of the running times of algorithms for certain
orders of complexity. Here we have the problem sizes n = 2, 16, and 64, and we assume
that the computer can perform one operation every 107® second = | microsecond {on
the average). The entries in the table then estimate the running times in microseconds.
For example, when the problem size is 16 and the order of complexity is n log, n, then
the running time is a very brief 16 log, 16 = 16 - 4 = 64 microseconds; for the order of
complexity 27, the running time is 6.5 X 10* microseconds = 0.065 seconds. Since both of
these time intervals are so short, it is difficult for a human to observe much of a difference
in execution times. Results appear to be instantaneous in either case.

Table 5.12
Order of Complexity
Problem size n | log, n n nlog, n n? 2" n!
2 1 2 2 4 4 2
16 4 16 64 256 6.5 X 10* 2.1 X 108
64 6 64 384 4096 1.84 x 10" =>10%

However, such estimates can grow rather rapidly. For instance, suppose we run a program
for which the input is an array A of n different integers. The results from this program are
generated in two parts:

1) First the program implements an algorithm that determines the subsets of A of
size 1. There are n such subsets.

2) Then a second algorithm is implemented to determine all the subsets of A. There are
2" such subsets.

Let us assume that we have a computer that can determine each subset of A in a mi-
crosecond. For the case where |A| = 64, the first part of the output is executed almost
instantaneously — in approximately 64 microseconds. For the second part, however, Table
5.12 indicates that the amount of time needed to determine all the subsets of A will be about
1.84 x 10! microseconds. We cannot be too content with this result, however, since

1.84 X 10*° microseconds = 2.14 X 10° days = 5845 centuries.

b) begi
EXERCISES 5.8 : eg:zrnlz 1= 0

1. In each of the following pseudocode program segments,
the integer variables i, j, n, and sum are declared earlier in the
program. The value of # (a positive integer) is supplied by the

for i :=1tondo
for j:=1ton* ndo
sum := sum+ 1

end
user prior to execution of the segment. In each case we define
the time-complexity function f (n) to be the number of times ¢) begin
the statement sum := sum + | is executed. Determine the best sum := 0;

“big-Oh” form for f.

a) begin
sum := 0

for 1

end

for 7
sum

for i :=1tondo
for j := 1 tondo
sum := sum+ 1

:= 1 tondo

end
:=1tondo d) begin
1= sum+ 1 sum :=0
i:=n



while i > 0 do

begin
sum := sum+ 1
i:=11/2]
end
end
e) begin
sum := 0
fori:=1tondo
begin
Jj:=n
while j > 0 do
begin
sum := sum+ 1
Jo=d/2]
end
end
end

2. The following pseudocode procedure implements an al-
gorithm for determining the maximum value in an array
.., a, of integers. Here n > 2 and the entries in
the array need not be distinct.

ay, az, 4z, .

procedure Maximum {(n: integer;
ai,a,a,..., a8,: integers)
begin
max := a;
for i := 2 tondo

if a, > max then
max := a,
end

a) If the worst-case complexity function f (r} for this seg-
ment is determined by the number of times the comparison
a, > max is executed, find the appropriate “big-Oh” form
for f.

b) What can we say about the best-case and average-case
complexities for this implementation?

3, a) Write a computer program (or develop an algorithm) to
locate the first occurrence of the maximum value in an array
aj, a, as, ..., a,of integers, (Here n € Z* and the entries
in the array need not be distinct.)

b) Determine the worst-case complexity function for the
implementation developed in part (a).

4. a) Write a computer program (or develop an algorithm) to
determine the minimum and maximum values in an array
ay, az as, ..., a, of integers. (Here n € Z* with n > 2,
and the entries in the array need not be distinct.)

b) Determine the worst-case complexity function for the
implementation developed in part (a).

5. The following pseudocode procedure can be used to eval-
uate the polynomial
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8 — 10x + 7x? = 2x% 4+ 3x* + 1247,

when x is replaced by an arbitrary (but fixed) real number r.
For this particular instance, n = 5 and ag = 8, a; = —10,
ar = 7, as = —2, ayg = 3, anda5 = 12.

procedure PolynomialEvaluationl
(1: nonnegative integer;
r,a0,81,8,...,8,: real)

begin
product :=1.0
value := ap

fori :=1tondo
begin
product := product * r
value := value + a * product
end
end

a) How many additions take place in the evaluation of
the given polynomial? (Do not include the n — 1 additions
needed to increment the loop variable i.) How many mul-
tiplications?

b) Answer the questions in part (a) for the general polyno-
mial

2 3 -1
ag+arx +axx” +azx’ + b a X" Fax”,

where ay, a,, az, as, . .., a,_1, a, are real numbers and »
is a positive integer.
6. We first note how the polynomial in the previous exercise
can be written in the nested multiplication method:

8+ x(—104+x(7 +x(—=24+x(3+ 12x)))).

Using this representation, the following pseudocode procedure
(implementing Horner's ntethod) can be used to evaluate the
given polynomial.

procedure PolynomialEvaluationZ
(n: nonnegative integer;

r,ap,81,82,..., 8, real)
begin

value := a,

for j :=n - 1down to 0 do

value :
end

=a, +r * value

Answer the questions in parts (a) and (b) of Exercise 5 for the
new procedure given here.

7. Let ai, aa2, a3, . .. be the integer sequence defined recur-
sively by
1) a; = 0;and

2) Fora>1,a, = 1+ay;.

Prove that a, = |log, n] forall n € Z*,
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8. Let 4y, a3, as, . . . be the integer sequence defined recur-
sively by
1) a, = 0;and

2) Forn>1,a, =1+apm.

Find an explicit formula for a, and prove that your formula is
correct.

9. Suppose the probability that the integer ey is in the array
a), az, as, . .., ay (of n distinct integers) is 3/4 and that each
array element has the same probability of containing this value.
If the linear search algorithm of Example 5.70 is applied to this
array and value of key, what is the average number of array
elements that are examined?

10. When the linear search algorithm is applied to the array
a, &z, a5, . . ., a, (of n distinct integers) for the integer key,

59
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suppose the probability that key has the value a, i1si/[n(n + 1)],
for 1 <1 < n. Under these circumstances, what 1s the average
number of array elements examined?

11. a) Write a computer program (or develop an algorithm)
to determine the location of the first entry in an array
ai, 4z, ds, . . - , a4, of integers that repeats a previous en-
try in the array.

b) Determine the worst-case complexity for the imple-
mentation developed in part (a).

12, a) Write a computer program (or develop an algorithm)
to determine the location of the first entry g, in an array

., a, of integers, where a, < a,_;.

ap, dz, da, ..

b) Determine the worst-case complexity for the imple-
mentation developed in part (a).

In this chapter we developed the function concept, which is of great importance in all areas
of mathematics. Although we were primarily concerned with finite functions, the definition
applies equally well to infinite sets and includes the functions of trigonometry and calculus.
However, we did emphasize the role of a finite function when we transformed a finite set
into a finite set. In this setting, computer output (that terminates) can be thought of as a
function of computer input, and a compiler can be regarded as a function that transforms a
(source) program into a set of machine-language instructions (object program).

The actual word function, in its Latin form, was introduced in 1694 by Gottfried Wil-
helm Leibniz (1646-1716) to denote a quantity associated with a curve (such as the slope
of the curve or the coordinates of a point of the curve). By 1718, under the direction of
Johann Bernoulli (1667-1748), a function was regarded as an algebraic expression made
up of constants and a variable. Equations or formulas involving constants and variables

Gottfried Wilhelm Leibniz (1646-1716)
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came later with Leonhard Euler (1707-1783). His is the definition of “function” generally
found in high school mathematics. Also, in about 1734, we find in the work of Euler and
Alexis Clairaut (1713-1765) the notation f (x), which is still in use today.

Euler’s idea remained intact until the time of Jean Baptiste Joseph Fourier (1768-1830),
who found the need for a more general type of function in his investigation of trigonometric
series. In 1837, Peter Gustav Lejeune Dirichlet (1805-1859) set down a more rigorous
formulation of the concepts of variable, function, and the correspondence between the
independent variable x and the dependent variable y, when y = f(x). Dirichlet’s work
emphasized the relationship between two sets of numbers and did not call for the existence
of a formula or expression connecting the two sets. With the developments in set theory
during the nineteenth and twentieth centuries came the generalization of the function as a
particular type of relation.

Peter Gustav Lejeune Dirichlet (1805-1859)

In addition to his fundamental work on the definition of a function, Dirichlet was also
quite active in applied mathematics and in number theory, where he found need for, and
was the first to formally state, the pigeonhole principle. Consequently, this principle 1s
sometimes referred to as the Dirichlet drawer principle or the Dirichlet box principle.

The nineteenth and twentieth centuries saw the use of the special function, one-to-one
correspondence, in the study of the infinite. In about 1888, Richard Dedekind (1831-1916)
defined an infinite set as one that can be placed into a one-to-one correspondence with a
proper subset of itself. [Galileo (1564-1642) had observed this for the set Z.] Two infinite
sets that could be placed in a one-to-one correspondence with each other were said to have
the same transfinite cardinal number, In a series of articles, Georg Cantor (1845-1918)
developed the idea of levels of infinity and showed that |Z| = |Q| but |Z| < |R|. A set A
with |A| = |Z]| is called countable, or denumerable, and we write |Z| = ¥, as Cantor did,
using the Hebrew letter aleph, with the subscripted 0, to denote the first level of infinity. To
show that |Z| < |R], or that the real numbers were uncountable, Cantor devised a technique
now referred to as the Cantor diagonal method. (More about the theory of countable and
uncountable sets can be found in Appendix 3.)

The Stirling numbers of the second kind (in Section 5.3) are named in honor of James
Stirling (1692-1770), a pioneer in the development of generating functions, a topic we
will investigate later in the text. These numbers appear in his work Methodus Differentialis,
published in London in 1730. Stirling was an associate of SirIsaac Newton (1642-1727) and
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was using the Maclaurin series in his work 25 years before Colin Maclaurin (1698-1746).
However, although his name is not attached to this series, it appears in the approximation
known as Stirling’s formula: n! = (2nn)1/ze’”n”, which, as justice would have it, was
actually developed by Abraham DeMoivre (1667-1754).

Using the counting principles developed in Section 5.3, the results in Table 5.13 extend
the ideas that were summarized in Table 1.11. Here we count the number of ways it is
possible to distribute m objects into n containers, under the conditions prescribed in the
first three columns of the table. (The cases wherein neither the objects nor the containers
are distinct will be covered in Chapter 9.)

Table 5.13
Objects | Containers Some Number
Are Are Container(s) of
Distinct Distinct May Be Empty Distributions
Yes Yes Yes n"
Yes Yes No n! S(m, n)
Yes No Yes Sim, )+ Sm,. 2)+-- -4+ Sim, n)
Yes No No S{m, n)
No Yes Yes (n+m‘l)
m
No Yes No n+m—n) -1y _(m—1
(m — r) m—n
_(m- 1
n—1

Finally, the “big-Oh” notation of Section 5.7 was introduced by Paul Gustav Heinrich
Bachmann (1837-1920} in his book Analytische Zahlentheorie, an important work on num-
ber theory, published in 1892, This notation has become prominent in approximation theory,
in such areas as numerical analysis and the analysis of algorithms. In general, the notation
f € O(g) denotes that we do not know the function f explicitly but do know an upper
bound on its order of magnitude. The “big-Oh” symbol is sometimes referred to as the Lan-
dau symbol, in honor of Edmund Landau (1877-1938), who used this notation throughout
his work.

Further properties of the Stirling numbers of the second kind are given in Chapter 4
of D. I. A. Cohen [3] and in Chapter 6 of the text by R. L. Graham, D. E. Knuth, and
O. Patashnik [7]. The article by D. J. Velleman and G. S. Call [11] provides a very interesting
introduction to the Stirling numbers of the second kind — as well as the Eulerian numbers
introduced in Example 4.21. For more on infinite sets and the work of Georg Cantor,
consult Chapter 8 of H. Eves and C. V. Newsom [6] or Chapter IV of R. L. Wilder [12].
The presentation in the book by J. W. Dauben [5] covers the controversy surrounding set
theory at the turn of the century and shows how certain aspects of Cantor’s personal life
played such an integral part in his understanding and defense of set theory.

More examples that demonstrate how to apply the pigeonhole principle are given in
the articles by K. R. Rebman [9] and A. Soifer and E. Lozansky [10]. Further results and
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extensions on problems arising from the principle are covered in the article by D. S. Clark

and J.

T. Lewis [2]. During the twentieth century a great deal of research has been de-

voted to generalizations of the pigeonhole principle, culminating in the subject of Ramsey
theory, named for Frank Plumpton Ramsey (1903-1930). An interesting introduction to
Ramsey theory can be found in Chapter 5 of D. I. A. Cohen [3]. The text by R. L. Graham,
B. L. Rothschild, and J. H. Spencer [8] provides further worthwhile information.

Extensive coverage on the topic of relational data bases can be found in the work of
C. J. Date [4]. Finally, the text by S. Baase and A. Van Gelder [1] is an excellent place to
continue the study of the analysis of algorithms.
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b) If f: A > B is a one-to-one correspondence and A, B

SUPPLEMENTARY EXERCISES are finite, then A = B.

1. Let A, B € %U. Prove that

a) (AX BN (B X A)=(ANB)X (AN B); and

¢) If f: A — B is one-to-one, then f is invertible.
d) If f: A — B isinvertible, then f is one-to-one.

e) If fiA— B is one-to-one and g, ~: B> C with
gof=ho f theng=h.

b) (AX B)U(B X A)C(AUB) X (AU B).

£)If f:A > B and A;, A> C A, then f(A; N Ay) =

2. Determine whether each of the following statements is true FLAD) N fAl).
or false. For each false statement give a counterexample. @) If f1A— B and By, B, C B, then f~'(B, N By) =

a)If f:A— Band(a, b), (a,c) € f,thenb = c. FUB)N FYUBY.
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3. Let f:R— R where f(ab)=afb)+ bf{a), for all
a, b e R (a) What is £(1)? (b) What is £({0)? (c) If n € Z",
a € R, prove that f(a") = na"~! f(a).

4, Let A, B < Nwith 1 < |A| < |B|. If there are 262,144 re-
lations from A to B, determine all possibilities for |A| and | B/.

5. If ALy, 9, are universal sets with A, B CWU,,and C, D C
Us, prove that (AN B) X (CND)Yy=(AXC)N(B X D).

6. Let A=1{1,2,3,4,5} and B ={1,2,3,4,5,6}. How
many one-to-one functions f: A — B satisfy (a) f(1) =3?
b) fF) =3, fF) =67

7. Determine all real numbers x for which
x?— x| =1/2.

8. Let ®t T Z* X Z7 be the relation given by the following
recursive definition.

1) (1, 1)e%; and

2) For all (a, b) € R, the three ordered pairs (g + 1, b),
(a+ 1,64+, and (@ + 1, b+ 2) are alsoin R.

Prove that 2a > b for all (a, b) € 4.

9. Let a, b denote fixed real numbers and suppose that f:
R — R is defined by f(x} = a(x 4+ b) — b, x € R. {a) Deter-
mine f2(x) and f>(x). (b) Conjecture a formula for f"(x),
where n € Z*. Now establish the validity of your conjecture.
10. Let Ay, A and B be sets with {1,2,3, 4,5} = A, C A,
B={s,t,u,v,w, x},and f: A; — B.If f can be extended
to A in 216 ways, what is [A[?

1. LetA={1,2,3,4,5}and B ={r, u, v, w, x, ¥, z}. (@ If
a function f: A — B is randomly generated, what is the prob-
ability that it is one-to-one? (b) Write a computer program (or
develop an algorithm) to generate random functions f: A — B
and have the program print out how many functions it generates
until it generates one that is one-to-one.

12. Let S be a set of seven positive integers the maximum of
which is at most 24. Prove that the sums of the elements in all
the nonempty subsets of S cannot be distinct.

13. In aten-day period Ms. Rosatone typed 84 letters to differ-
ent clients. She typed 12 of these letters on the first day, seven
on the second day, and three on the ninth day, and she finished
the last eight on the tenth day. Show that for a period of three
consecutive days Ms. Rosatone typed at least 25 letters.

14. If {x;, x5, ..., x3) € Z", show that for some i # j, either
X, +x, or x, — x, is divisible by 10.

15. Letn € Z*, nodd. If i\, ia, . . ., i, is a permutation of the
integers 1,2, ..., n,provethat (1 —i)(2 —iy) -« - (n —i,) is
an even integer. (Which counting principle is at work here?)
16. With both of their parents working, Thomas, Stuart, and
Craig must handle ten weekly chores among themselves. (a) In
how many ways can they divide up the work so that everyone
is responsible for at least one chore? (b) In how many ways can

the chores be assigned if Thomas, as the eldest, must mow the
lawn (one of the ten weekly chores) and no one is allowed to
be idle?
17. Letn € N, n > 2. Show that S(n, 2) =2""' — 1.
18. Mrs. Blasi has five sons (Michael, Rick, David, Kenneth,
and Donald) who enjoy reading books about sports. With Christ-
mas approaching, she visits a bookstore where she finds 12 dif-
ferent books on sports.

a) In how many ways can she select nine of these books?

b) Having made her purchase, in how many ways can she
distribute the books among her sons so that each of them
gets at least one book?
¢) Two of the nine books Mrs. Blasi purchased deal with
basketball, Donald’s favorite sport. In how many ways can
she distribute the books among her sons so that Donald gets
at least the two books on basketball?
19. Let m, n € Z* with n > m. (a) In how many ways can
one distribute n distinct objects among m different contain-
ers with no container left empty? (b) In the expansion of
{x, +x3+ - +x,)", what is the sum of all the multino-
mial coefficients (n]ln2 YYYY ”m) wheren; +ny+---+n, =nand
n;>0forall 1 <i <m?
20. Ifn € Z* with n > 4, verify that S(n, n — 2) = (g) + 3(2).
21, If f:A— A, prove that for all m,n € Z*, f" o f" =
f"o f™. (First let m = | and induct on n. Then induct on m.
This technique is known as double inducrion.)
22, Let f: X — Y, and foreachi € I, let A, € X. Prove that
a) f (UtEI Ar) = UIEI f(Al)‘
b) f (mlE[ Az) g mJEI f(Ar)
o) f(Ner &) = Mies f(A,), for f one-to-one.
23. Given a nonempty set A, let f:A —> A and g:A— A
where

fl@=g(f(fan) and gla}y= f(glf(a})

forall @ in A. Prove that f = g.

24, Let A be a set with |A| = n,
a) How many closed binary operations are there on A?
b) A closed temary (3-ary) operation on A is a function
fi AX A X A— A How many closed ternary operations
are there on A?
¢) A closed k-ary operation on A is a function f: A; X
Ay X+ X Ay — A,where A, = A,forall 1 <i <k, How
many closed k-ary operations are there on A?

d) A closed k-ary operation for A is called commurarive if

fla, az, ..

'1ak) = f(ﬂ(al),n(ag), . "!n'(ak))a

where a;,a3,...,a, € A (repetitions allowed), and



7{ay), 7(az), ..., mla) is any rearrangement of
a1, da, . . ., ag. How many of the closed k-ary operations
on A are commutative?

25. a) Let S = {2, 16, 128, 1024, 8192, 65536}. If four num-
bers are selected from S, prove that two of them must have
the product 131072.

b) Generalize the result in part (a).

26. If U is a universe and A €U, we define the characteristic
Sfunction of A by xa: U — {0, 1}, where

1, x €A
0, x¢A

For sets A, B € U, prove each of the following:

Xalx) =

a) xans = Xa - X, where (x4« xs)(x) = ya(x) - xp(x)
b) xaus = X4 + X8 — Xans

©) xz=1=xa, where (1 —xa)(x) = 1(x) — xalx) =
L= xalx}

(For U finite, placing the elements of U in a fixed order re-
sults in a one-to-one correspondence between subsets A of AU
and the arrays of (’s and !’s obtained as the images of U under
Xa- These arrays can then be used for the computer storage and
manipulation of certain subsets of Gt.)

27. With A={x,y,z}, let f,g:A— A be given by f =

[, ¥), (v, 20, (2o 1)) g = {(x, ), (. %), {z, 9} Determine
each of the following: fog,go f, f' g7 (go /)7,

floglandg™' o f'.
28. a) If f: R — Risdefined by f(x) = 5x + 3, find ! (8).

b) If g: R — R, where g(x) = x> 4 3x + 1|, find g7}(1).

c) For i: R — R, given by

hx) = |—=|,
tx) ‘x + 2‘

find A=1(4).
29. If A={1,2,3,..., 10}, how many functions f: A - A
(simultaneously) satisfy f7'({1,2,3) =8, f'({4,5)h =
{1,3,7}, and f~'({8, 10}) = {8, 10}?
30. Let f: A — A be an invertible function. For n € Z* prove
that (£7)~' = (f~")". [This result can be used to define f " as
either (F)~"or (f71)".]
31. In certain programming languages, the functions pred and
suce (for predecessor and successor, respectively) are functions
from Z to Z where pred{x) = 7(x) =x — 1 and succ(x) =
ox)=x+ 1.

a) Determine (;r o d)(x), (0 o m)(x).

b) Determine 72, 73, 7" (n > 2), 0%, o*, 0" (n = 2).
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¢) Determine 72, 73, m"
o "(n>2), where, for example, o~
(o0 o0)” = (627", (See Supplementary Exercise 30.)
32, Forn e 27, define 1: Z* — Z* by t(n) = the number of
positive-integer divisors of 7.

=2 -3
n=2), o7 o077,

2 gl gl ==

€2 €3

a) Let n = p|'ptp* ... pi¥, where p1, pa. P3, - - Dk
are distinct primes and e, is a positive integer for all
1 <i <k. Whatis t(n)?

b) Determine the three smallest values of n € Z™ for which
T(n) =k, wherek =2,3,4,5,6.

¢) Forallk € Z*, k > 1, prove that 7' (k) is infinite.

d) If a, b€ Z* with ged(a, b) = 1, prove that T(ab) =
T(a)yr(h).

33, a) How many subsets A ={a,b, ¢, d})CZ", where
a, b, c,d > 1, satsfy the propertya - b -c.d =
2-3.5.7-11-13-17-19?

b) How many subsets A ={a;,as, ...,a,} CZ*,

m

where a, > 1, 1 < <m, satisty the property Hf=1 a; =
Hj,l p;. wherethe p,, | < j <, are distinct primes and
n>=m?
34. Giveanexample of a function f: Z* — Rwhere f € O(1)
and f is one-to-one. (Hence f is not constant.}

35, Let f, g: Z* — R where

for n even

for n odd

2, formeven 3,

gln) =

n) =
fm I, forrodd 4,

Prove or disprove each of the following: (a) f € O(g); and
(b) g € O(f).
36. For f, g: Z" — R we define f + g: Z* — Rby
(f 4+ g)(n) = f(n) + g(n), for n € Z*. [Note: The plus sign
in f + g is for the addition of the functions f and g, while
the plus sign in f(n) + g(n) is for the addition of the real num-
bers f{n) and g(n).]
a) Let 1, g1:Z" — Rwith f € O(f)) and g € O(g)). If
fi(n) =0, g(n) =0, foralln € Z*, prove that (f + g) €
ofi +g1).
b) If the conditions f1(n) >0, g,(n) =0, for all n € Z7,
are not satisfied, as in part (a), provide a counterexample to
show that

fFEO(f),gcO0)AHA (f+9ecO(fi +a)

3. Let a,beR", with a, b > 1. Let f, g:Z" — R be de-
fined by f(n)=log, n, g(n) = log, n. Prove that f € O(g)
and g € O(f). [Hence O(log, n) = O(log, n).]






Relations: The
Second Time Around

In Chapter 5 we introduced the concept of a (binary) relation. Returning to relations in this
chapter, we shall emphasize the study of relations on a set A —that s, subsets of 4 X A.
Within the theory of languages and finite state machines from Chapter 6, we find many
examples of relations on a set A, where A represents a set of strings from a given alphabet
or a set of internal states from a finite state machine. Various properties of relations are
developed, along with ways to represent finite relations for computer manipulation. Directed
graphs reappear as a way to represent such relations. Finally, two types of relations on a set
A are especially important: equivalence relations and partial orders. Equivalence relations,
in particular, arise in many areas of mathematics. For the present we shall use an equivalence
relation on the set of internal states in a finite state machine M in order to find a machine
M), with as few internal states as possible, that performs whatever tasks M is capable of
performing. The procedure is known as the minimization process.

FA|
Relations Revisited:
Properties of Relations

We start by recalling some fundamental ideas considered earlier.

Definition 7.1 For sets A, B, any subset of A X B is called a (binary) relation from A to B. Any subset
of A X A is called a (binary) relation on A.

As mentioned in the sentence following Definition 5.2, our primary concern is with
binary relations. Consequently, for us the word “relation” will once again mean binary
relation, unless something otherwise is specified.

r EXAMPLE 7.1 W a) Define the relation R on the set Z by a R b, or (a, b) € R, if a < b, This subset of
: Z X Z is the ordinary “less than or equal to” relation on the set Z, and it can also be
defined on Q or R, but not on C.

b) Let n € Z%, For x, y € Z, the modulo n relation R is defined by x Ry if x — yisa
multiple of n. With n = 7, we find, for instance, that 9 R 2, —3 R 11, (14, 0) € R, but
3 % 7 (that is, 3 is not related to 7).

337
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| EXAMPLE 7.2

| EXAMPLEZ3 |

Definition 7.2

EXAMPLE 7.4

| EXAMPLE 75

¢) For the universe AU = {1, 2, 3,4, 5, 6,7} consider the (fixed) set C C U where
C = {1, 2, 3, 6}. Define the relation & on P(U) by AR B when ANC = BNC.
Then the sets {1, 2, 4, 5} and {1, 2, 5, 7} are related since {1, 2, 4, 5} N C = {1, 2} =
{1,2,5,7}NC. Likewise we find that X = {4, 5} and ¥ = {7} are so related because
XNC=@=YNC.However,thesets § ={1,2,3,4,5}and T = {1, 2,3, 6, 7} are
not related —that is, S % T—since SNC ={1,2,3} #{1,2,3,6} =TnNC.

Let X be an alphabet, with language A € Z*. For x, y € A, define x R y if x is a prefix
of y. Other relations can be defined on A by replacing “prefix” with either “suffix” or “sub-
string.”

Consider a finite state machine M = (S, $, 0, v, w).

a) For sy, 53 € §, define s R 5, if v(51, x) = 52, for some x € $. Relation R establishes
the first level of reachability.

b) The relation for the second level of reachabiliry can also be given for S. Here s1 R s, if
v(s1, X1 x2) = 53, for some x1x3 € .92, This can be extended to higher levels if the need
arises. For the general reachability relation we have v(sy, y) = s;, for some y € $*.

¢) Given s, s; € S the relation of /-equivalence, which is denoted by sy E; s, and is
read “s; is 1-equivalent to s;7, i1s defined when w(sy, x) = w(sy, x) for all x € .
Consequently, sy E; s indicates that if machine M starts in either state sy or s;, the
output is the same for each element of $. This idea can be extended to states being
k-equivalent, where we write s; By 55 if w(s1, y) = w(s2, v), for all y € $%. Here the
same output string is obtained for each input string in 9% if we start at either s; or s,.
If two states are k-equivalent for all k € Z*, then they are called equivalent. We

shall look further into this idea later in the chapter.

We now start to examine some of the properties a relation can satisfy.

Arelation R on a set A is called reflexive if forall x € A, (x, x) € AR,

To say that a relation AR is reflexive simply means that each element x of A is related
to itself. All the relations in Examples 7.1 and 7.2 are reflexive. The general reachability
relation in Example 7.3(b) and all of the relations mentioned in part (¢) of that example
are also reflexive. [What goes wrong with the relations for the first and second levels of
reachability given in parts (a) and (b) of Example 7.37]

For A =11, 2, 3,4}, arelation R C A X A will be reflexive if and only if R 2 {(1, 1),
(2,2), (3, 3), (4, 4)}. Consequently, R, = {(1, 1), (2, 2), (3, 3)} is not a reflexive relation
on A, whereas Ry = {(x, y)|x, y € A, x < y}isreflexive on A.

Given a finite set A with |A| = n, we have |A X A| = n?, so there are 27" relations on A.
How many of these are reflexive?

If A=1{ay,as,...,a,}, arelation &R on A is reflexive if and only if {(a;, a;)|1 <i <
n} € R. Considering the other n? — n ordered pairs in A X A [those of the form («;, a;),
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where i # jfor 1 <i,j < n] as we construct a reflexive relation & on A, we either include

. 2 .
or exclude each of these ordered pairs, so by the rule of product there are 2~ reflexive
relations on A.

Relation R on set A is called symmerric if (x, y) € R = (y, x) € R, forall x, y € A,

With A = {1, 2, 3}, we have:

a) Ry = {(1,2), (2, 1), (1, 3), (3, 1)}, a symmetric, but not reflexive, relation on A;
b) %, = {(1, 1), (2, 2), (3, 3), (2, 3)}, areflexive, but not symmetric, relation on A;

o) Ry ={(1, 1), (2,2), 3,3} and Ry ={(1, 1), (2,2),(3,3), (2, 3), 3,2)}, two
relations on A that are both reflexive and symmetric; and

d) RAs = {(1, 1), (2, 3), (3, 3)}, arelation on A that is neither reflexive nor symmetric.

To count the symmetric relations on A = {a1, a2, ..., a,}, we write A X A as
AU A, where Ay = {(a;, a)[1 <i <n}and A, = {{(a;, a;)|1 <i,j <n,i # j}, so that
every ordered pair in A X A is in exactly one of Ay, A;. For A;, |Az| = |A X A| — |Ay| =
n* —n = n(n — 1), an even integer. The set A, contains (1/2)(n> — n) subsets S;; of the
form {(a;, a;), (g;, a;)} where 1 <i < j < n.In constructing a symmetric relation % on A,
for each ordered pair in A we have our usual choice of exclusion or inclusion. For each of
the (1/2)(n*> — n) subsets S,;(1 <i < j < n)taken from A, we have the same two choices.
So by the rule of product there are 2" - 20 /Dnt=n) = (1720w 4n) symmetric relations on A.

In counting those relations on A that are both reflexive and symmetric, we have only
one choice for each ordered pair in A;. So we have 2(//2*~) relations on A that are both
reflexive and symmetric.

For a set A, arelation R on A is called rransitive if, forall x, v, z € A, (x, y), (¥, D eR
= (x, z) € M. (So if x “is related to”" v, and y “is related to” z, we want x “related to” z,
with y playing the role of “intermediary.”)

All the relations in Examples 7.1 and 7.2 are transitive, as are the relations in Ex-
ample 7.3(c).

Define the relation % on the set Z* by a R b if a (exactly) divides b —that is, b = ca for
someceZ". Nowif xR yand y R z, do we have x R z? Weknow that x R y = y = sx
forsomes € Z"and y R 7 = z = ty where t € ZT. Consequently, 7 = 1y = ¢(sx) = (t5)x
forts e Z*, so x R z and R is transitive. In addition, R is reflexive, but not symmetric,
because, for example, 2 R 6 but 6 R 2.

Consider the relation R on the set Z where we define ¢ R b when ab > 0. For all integers
x we have xx = x> >0, so x R x and R is reflexive. Also, if x, y € Z and x R y, then

xRy=xy>0=2>yx>0=yRx,
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s0 the relation % is symmetric as well. However, here we find that (3, 0), (0, -7) e R —
since (3)(0) > 0 and (1)(—7) > 0—but (3, —7) ¢ R because (3)(—7) < 0. Consequently,
this relation is not transitive.

EXAMPLE 7.10

If A=1{1,2,3,4}, then R = {(1, 1), (2, 3), (3, 4), (2, 4)} is a transitive relation on A,
whereas R, = {(1, 3), (3, 2)} is not transitive because (1, 3), (3, 2) € R, but (1, 2) ¢ Ry.

Definition 7.5

EXAMPLE 7.11

EXAMPLE 7.12

At this point the reader is probably ready to start counting the number of transitive
relations on a finite set. But this is not possible here. For unlike the cases dealing with the
reflexive and symmetric properties, there is no known general formula for the total number
of transitive relations on a finite set. However, at a later point in this chapter we shall have
the necessary ideas to count the relations R on a finite set, where R is (simultaneously)
reflexive, symmetric, and transitive.

For now we consider one last property for relations.
Given a relation R on a set A, A is called antisymmetric if foralla, be A, (a R b and

bR a) = a = b. (Here the only way we can have both @ “related to” b and b “related to”
a 15 if a and b are one and the same element from A.)

For a given universe AU, define the relation R on P(W) by (A, B) e R if A C B, for
A, B C . So %R is the subset relation of Chapter 3 and if A% B and B %R A, then we have
A C Band B C A, which gives us A = B. Consequently, this relation is antisymmetric, as
well as reflexive and transitive, but it is not symmetric.

Before we are led astray into thinking that “not symmetric” is synonymous with “anti-
symmetric”, let us consider the following.

For A = {1, 2, 3}, therelationR on A givenby R = {(1, 2), (2, 1), (2, 3)}is not symmetric
because (3, 2) ¢ A, and it is not antisymmetric because (1, 2), (2, 1) e R but | # 2. The
relation R, = {(1, 1), (2, 2)} is both symmetric and antisymmetric.

How many relations on A are antisymmetric? Writing

AXA={(1,1),@2,2),33)Nu{d,2, 2 D, d3), G 123, 3 2}

we make two observations as we try to construct an antisymmetric relation 9 on A,

1) Each element (x, x) € A X A can be either included or excluded with no concern
about whether or not R is antisymmetric.

2) For an element of the form {x, y), x # y, we must consider both (x, y) and (y, x)
and we note that for 3 to remain antisymmetric we have three alternatives: (a) place
(x, y) in AR; (b) place (y, x) in R; or (¢) place neither (x, y) nor {y, x) in R. [What
happens if we place both (x, y) and (y, x) in R?]
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So by the rule of product, the number of antisymmetric relations on A is 2H3h =
(2333 3/2) If |A] = n > 0, then there ate (2")(3™ ~"/2) antisymmetric relations on A.

For our next example we return to the concept of function dominance, which we first
defined in Section 5.7.

Let % denote the set of all functions with domain Z* and codomain R; that is, & =
{fIf:Z* — R}. For f, g € F, define the relation & on F by f R g if f is dominated by g
(or f € O(g)). Then A is reflexive and transitive.

If f,g:Z" —> Raredefinedby f(n) =nandg(n) =n +5,then f Rgand g R f but
f # g, so B is not antisymmetric. In addition, if h: Z* — R is given by A(n) = n®, then
(f. k). (g. h) € R, but neither (h, f) nor (k, g) is in R. Consequently, the relation R is
also not symmetric.

At this point we have seen the four major properties that arise in the study of relations.
Before closing this section we define two more notions, each of which involves three of
these four properties.

A relation QR on a set A is called a partial order, or a partial ordering relation, if R is
reflexive, antisymmetric, and transitive.

The relation in Example 7.1(a) is a partial order, but the relation in part (b) of that example
is not because it is not antisymmetric. All the relations of Example 7.2 are partial orders, as
is the subset relation of Example 7.11.

Our next example provides us with the opportunity to relate this new idea of a partial
order with results we studied in Chapters 1 and 4.

We start with the set A = {1, 2, 3, 4, 6, 12} — the set of positive integer divisors of 12 —
and define the relation R on A by x R y if x (exactly) divides y. As in Example 7.8 we
find that % is reflexive and transitive. In addition, if x, y € A and we have both x R y and
y R x, then

XRy=y=ax,forsomea e Z, and
yRx=x=by forsomebeZ".

Consequently, it follows that y = ax = a(by) = (ab)y, and since y # 0, we have ab = |.
Because a, beZt, ab=1=a=b=1,50 y=x and R is antisymmetric —hence it
defines a partial order for the set A.

Now suppose we wish to know how many ordered pairs occur in this relation R. We
may simply list the ordered pairs from A X A that comprise R:

R = (1, D, (1,2),(1,3), (1,4, (1,6), (1, 12), (2, 2), (2, 4), (2, 6),
(2,12), (3,3), (3,0), (3,12), (4, 4), (4, 12), (6, 6), (6, 12), (12, 12)}

In this way we learn that there are 18 ordered pairs in the relation. But if we then wanted to
consider the same type of partial order for the set of positive integer divisors of 1800, we
should definitely be discouraged by this method of simply /isting all the ordered pairs. So
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Definition 7.7

EXAMPLE 7.16

let us examine the relation & a little closer. By the Fundamental Theorem of Arithmetic we
may write 12 = 22 . 3 and then realize that if (c, d) € R, then

c=2".3" and d=27.39

wherem, n, p,ge Nwith0<m <p<2and0<n<g <1.

When we consider the fact that 0 <m < p <2, we find that each possibility for m, p
is simply a selection of size 2 from a set of size 3 —namely, the set {0, 1, 2} — where
repetitions are allowed. (In any such selection, if there is a smaller nonnegative integer,
then it is assigned to m.) In Chapter 1 we learned that such a selection can be made in
(**371) = (§) = 6 ways. And, in like manner, n and g can be selected in (* T3~ ") = (§) =
3 ways. So by the rule of product there should be (6)(3) = 18 ordered pairs in R —as we
found earlier by actually listing all of them.

Now suppose we examine a similar situation, the set of positive integer divisors of
1800 = 23 .32 .52 Here we are dealingwith G+ D2+ D2+ 1) = 4 (3)(3) = 36divi-
sors, and a typical ordered pair for this partial order (given by division) looks like (2" - 3% - &,
2¢.3%.5"), where £, 5, f,u, v, weN with 0<r<u<3 0<s<v=<2 and 0<t<
w < 2. So the number of ordered pairs in the relation is

(2220 () - oo -

and we definitely should not want to have to list all of the ordered pairs in the relation in
order to obtain this result.

In general, for n € Z* with n > 1, use the Fundamental Theorem of Arithmetic to write
n=p{'p?py- - pl.wherekeZT py < pr < p3y<--- < pi and p; is prime and ¢; €
Z* for each 1 <i < k. Then s has [ [%=,(¢; + 1) positive integer divisors. And when we
consider the same type of partial order for this set (of positive integer divisors of n), we
find that the number of ordered pairs in the relation is

k (e + D +2—~1Y k (e +2
1 ( )=1(*)7)

2 i=1

In closing this section we introduce the equivalence relation—a concept that is very
important in the study of mathematics.

An equivalence relation R on a set A is a relation that is reflexive, symmetric, and transi-
tive.

a) The relation in Example 7.1(b) and all the relations in Example 7.3(c) are equivalence
relations.

b) If A = {1, 2, 3}, then

(1, 1), (2,2), (3,3)},

{1, 1,2,2),2,3),3,2), 3, 3},

{(1, 1), (1, 3),2,2),3, 1), (3,3}, and

Ry =1{(1,1),(1,2),(1,3), 2, 1D, (2,2),(2,3),3,1),(3,2), 3, 3)] =A X A
are all equivalence relations on A.

R
R
R3

¢) For a given finite set A, A X A is the largest equivalence relation on A, and if A =
{a1, aa, ..., a,}. then the equality relation R = {(a;, @;)|1 < i < n} is the smallest
equivalence relation on A.
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d) LetA=1{12,3,4,5,6,7}, B={x, vy, z},and f: A — B be the onto function

F=11,x),2,2,03, x, & v, 06,2, 06,y 7, 0}

Define the relation R on A by a R b if f(a) = f(b). Then, for instance, we find
herethat 1R 1, 1R3,2R5 3R 1,and 4R 6.

Foreacha € A, f(a) = f(a) because [ is a function-—so a¢ R a, and R is reflex-
ive. Now suppose that ¢, b A and a R b. Then a R b= f(a) = f(b) = f(b) =
f(a) = bR a, so R is symmetric. Finally, if a, b,c€ A with a R b and bR ¢,
then f(a) = f(b) and f(b) = f(c). Consequently, f(a) = f(c), and we see that
(@RbAbRC)=aPRc. So R is transitive, Since R is reflexive, symmetric, and
transitive, it is an equivalence relation.

Here® = {(1, 1), (1,3),(1,7),(2,2),(2,5,3,1),(3,3),3, 7D, 4, 4), 4,06),
(5.2), (5,5),(6,4),(6,6), (7, 1), (7,3), (7, D}.

e) If % is a relation on a set A, then @R is both an equivalence relation and a partial order
on A if and only if R is the equality relation on A.

EXERCISES 7.1

1. If A = {1, 2, 3, 4}, give an example of a relation R on A
that is
a) reflexive and symmetric, but not transitive
b) reflexive and transitive, but not symmetric
¢) symmetric and transitive, but not reflexive
2. For relation (b) in Example 7.1, determine five values of x
for which (x, 5) € %.
3. For the relation % in Example 7.13, let f: Z" — R where
fin)y=n.
a) Find three elements f1. f>, f3 € Fsuchthat f; R f and
FAR f,forall 1 <7 <3.
b) Find three elements g;, g2, g3 € Fsuch that g, N f but
f e, foralll<i<3
4, a) Rephrase the definitions for the reflexive, symmetric,
transitive, and antisymmetric properties of a relation & (on
a set A), using quantifiers.
b) Use the results of part (a) to specify when a relation %t
(on a set A} is (i) not reflexive; (i) not symmetric; (iii) not
transitive; and (iv) not antisymmetric.
5. For each of the following relations, determine whether the
relation is reflexive, symmetric, antisymmetric, or transitive.
a) RCZT XZ' where a @ b if a|b (read “a divides b,”
as defined in Section 4.3).
b) R is the relation on Z where a R b if a|b.
¢) For a given universe % and a fixed subset C of U, define
% on P(U) as follows: For A, B C U we have AR B if
ANC=BnNC.
d) On the set A of all tines in R2, define the relation & for
two lines €, €2 by €; R £, if £, is perpendicular to £,.

e) A is the relation on Z where x R y if x + y is odd.
f) R is the relation on Z where x & y if x — y is even.

g) Let T be the set of all triangles in R*. Define & on T by
f1 P 1y if 1 and £, have an angle of the same measure.

h) R istherelationonZ X Z where (a, bYR(c, d)ifa <c.
|Note: R C(Z X L) X (L X E).]
6. Which relations in Exercise 5 are partial orders? Which are
equivalence relations?

7. Let R, 9, be relations on a set A. (a) Prove or disprove
that R, R; reflexive = R NR; reflexive. (b) Answer part ()
when each occurrence of “reflexive” is replaced by (i) symmet-
ric; (i) antisymmetric; and (iii) transitive,

8. Answer Exercise 7, replacing each occurrence of N by U.

9. For each of the following statements about relations on a
set A, where |A| = n, determine whether the statement is true
or false. If it is false, give a counterexample.

a) If 9 is arelation on A and |R| > n, then R is reflexive.

b) If %), R, are relations on A and %, 2 R, then R,

reflexive (symmetric, antisymmetric, transitive) = R, re-

flexive (symmetric, antisymmetric, transitive).

¢) If Ay, Ry are relations on A and %, D R, then R,

reflexive (symmetric, antisymmetric, transitive) = 9, re-

flexive (symmetric, antisymmetric, transitive).

d) I @ is an equivalence relation on A, thenn < |R| < n2.
10. If A = {w, x, y, z}, determine the number of relations on
A that are (a) reflexive; (b) symmetric; (¢) reflexive and sym-
metric; (d) refiexive and contain (x, y); (¢) symmetric and con-
tain (x, v); (f) antisymmetric; (g) antisymmetric and contain
(x, ¥); (h) symmetric and antisymmetric; and (i) reflexive, sym-
metric, and antisymmetric.
11. Let n € Z% with n > 1, and let A be the set of positive in-
teger divisors of n. Define the relation ® on A by x R y if x
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(exactly) divides y. Determine how many ordered pairs are in
the relation SR when 7 is (a) 10; (b} 20; (¢) 40; (d) 200; (e) 210;
and (f) 13860.
12. Suppose that py, pa, ps are distinet primes and that n, k €
Z* with n = pi pipt. Let A be the set of positive integer divi-
sors of n and define the relation & on A by x R y if x (exactly)
divides y. Tf there are 5880 ordered pairs in R, determine k
and |A|.
13. What is wrong with the following argument?

Let A be a set with R a relation on A. If 9 is symmetric and
transitive, then %R is reflexive.

Proof: Let (x, y) € %t. By the symmetric property, (v, x) €
#R. Then with {(x, y¥), (¥, x) € R, it follows by the transitive
property that (x, x) € R. Consequently, R is reflexive.
14, Let A be a set with |A| = s, and let R be a relation on
A that is antisymmetric. What is the maximum value for |R|?
How many antisymmetric relations can have this size?
15. Let A be a set with |A| = n, and let 3 be an equivalence
relation on A with |%| = r. Why is r — n always even?
16. A relation %k on a set A is called irreflexive if for all a €
A (a,a)¢ R

7.2
Computer Recognition: Zero-One Matrices
and Directed Graphs

a) Give an example of a relation R on Z where R is ir-
reflexive and transitive but not symmetric.

b) Let 9 be a nonempty relation on a set A. Prove that if &
satisfies any two of the following properties — irreflexive,
symmetric, and transitive — then it cannot satisfy the third.

¢) If |A| = n > 1, how many different relations on A are
irreflexive? How many are neither reflexive nor irreflexive?

17. Let A ={1,2.3.4,5,6,7). How many symmetric rela-

tions on A contain exactly (a) four ordered pairs? (b) five or-

dered pairs? (c) seven ordered pairs? (d) eight ordered pairs?

18. a) Let f: A— B, where |A| =25. B ={x,y,z), and
|f= ) =10, | f~" ()| = 10, | f~'(z)| = 5. If we define
therelation Ron Abya R bifa, be Aand f{a) = f(b),
how many ordered pairs are there in the relation R?

b) Forn, ny, nz, n3, ny € Z%, let f1 A — B, where

Al =n. B = (w, x,y, 2}, | £ @) = ny, | £ 0] = o,
[F7 ) = ns, | 72 = ng,and ny + no + 13 + 1y = n.
If we define the relation R on A by aRb if a.be A
and f(a) = f(b), how many ordered pairs are there in the
relation R?

Since our interest in relations is focused on those for finite sets, we are concerned with ways
of representing such relations so that the properties of Section 7.1 can be easily verified. For
this reason we now develop the necessary tools: relation composition, zero-one matrices,

and directed graphs.

In a manner analogous to the composition of functions, relations can be combined in the

following circumstances.

Definition 7.8

If A, B, and C are sets with R, € A X B and R, C B X C, then the composite relation

9| o R, is a relation from A to C defined by R o Ry = {(x, 2)|x € A, z € C, and there
exists y € B with (x, y) € %, (v, 2) € R},

Beware! The compesition of two relations is written in an order opposite to that for
function composition. We shall see why in Example 7.21.

EXAMPLE 7.17

Let A ={1,2,3,4}, B={w, x, vy, z}, and C = {5, 6, 7}. Consider R, = {(1, x), (2, x),
(3, ¥). (3, z)), a relation from A to B, and R; = {(w, 5), (x, 6)}, a relation from B to

C. Then %ty o R,y = {(1, 6), (2, 6)) is a relation from A to C. If R3 = {{w, 5), (w, 6)} is
another relation from B to C, then Ry o R3 = 0.
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Let A be the set of employees at a computing center, while B denotes a set of high-level
programming languages, and C is a set of projects {py, p2, ..., ps} for which managers
must make work assignments using the people in A. Consider ®| € A X B, where an or-
dered pair of the form (L. Alldredge, Java) indicates that employee L. Alldredge is proficient
in Java (and perhaps other programming languages). The relation R, € B X C consists of
ordered pairs such as (Java, p,), indicating that Java is considered an essential language
needed by anyone who works on project p;. In the composite relation R| o %, we find
(L. Alldredge, p»). If no other ordered pair in R has p; as its second component, we know
thatif L. Alldredge was assigned to p, it was solely on the basis of his proficiency in Java.
(Here A1 o R, has been used to set up a matching process between employees and projects
on the basis of employee knowledge of specific programming languages.)

Comparable to the associative law for function composition, the following result holds
for relations.

THEOREM 7.1

Definition 7.9

EXAMPLE 7.19

Definition 7.10

Let A, B, C, and D be sets with R CAX B, R, € B X, and Ry € C X D. Then
%1 o (%2 (o] %3) = (gil o] 9{2) e ‘%3.

Proof: Since both % o (R 0 %R3) and (R o Ry) o R are relations from A to D, there
is some reason to believe they are equal. If (g, d) € R o (Ry o R3), then there is an
element b€ B with (a, b) € Ry and (b, d) € (R o R3). Also, (b, d) € (R 0o R3) =
(h,c) e R, and (¢, d) e Ry for some ce C. Then (a,b)e@R; and (b, c) € Ry =
(a,c) € Ry oRy,. Finally, (a,c) e Ry o Ry and (¢, d) € Rz = (a, d) € (R o Ry) o Ra,
and Ry o (R 0 M3) € (R 0o Ry) o R3. The opposite inclusion follows by similar rea-
soning.

As a result of this theorem no ambiguity arises when we write R o R, o A5 for either
of the relations in Theorern 7.1. In addition, we can now define the powers of a relation %R
on a set,

Given aset A and arelation R on A, we define the powers of R recursively by (a}yR' = ®;
and (b) forn € ZT, R =R o R

Note that for n € ZT, R" is a relation on A,

IfA={1,2,3 4andR = {(1,2), (1, 3), (2, 4), 3, 2)},thenR* = {(1, 4), (1, 2), 3, 4)},
R = {(1, D)}, and for n > 4, R" = .

As the set A and the relation & on A grow larger, calculations such as those in Example
7.19 become tedious. To avoid this tedium, the tool we need is the computer, once a way
can be found to tell the machine about the set A and the relation 9 on A.

An m X n zero-one matrix E = (e,;)mx, 1s a rectangular array of numbers arranged in m
rows and n columns, where each e,,, for 1 <i <m and 1 < j < n, denotes the entry in the
ith row and jth column of E, and each such entry 1s 0 or 1. [We can also write (0, 1)-matrix
for this type of matrix.]
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EXAMPLE 7.20

EXAMPLE 7.21

The matrix
1 0 0 1
E=(0 1 0 1
1 0 0 0

is a 3 X 4 (0, 1)-matrix where, for example, e;; = 1, e23 = 0, and e3; = 1.

In working with these matrices, we use the standard operations of matrix addition and
multiplication with the stipulation that 1 + 1 = 1. (Hence the addition is called Boolean.)

Consider the sets A, B, and C and the relations R, R, of Example 7.17. With the orders
of the elements in A, B, and C fixed as in that example, we define the relation matrices for
G, R, as follows:

(w) ) » @ 5 ©® O

Mmro 1 0 0 w1 0 o0
M@)=@| 0 1 ¢ 0 M@= |0 1 0
®»lo o 1 1] »| o o o

@l o o0 o0 o 2|0 0 0

In constructing M(R,), we are dealing with a relation from A to B, so the elements of A
are used to mark the rows of M (%) and the elements of B designate the columns. Then to
denote, for example, that (2, x) € R4, we place a 1 in the row marked (2) and the column
marked (x). Each 0 in this matrix indicates an ordered pair in A4 X B that is missing from
R,. For example, since (3, w) ¢ N, there is a 0 for the entry in row (3) and column (w)
of the matrix M (R ). The same process is used to obtain M{(R,).

Multiplying these matrices,” we find that

3 ©® N
010071007 Mo 1 0
o1 o0o0llot1o|l @lo 1 o
M@ER) - MI)=| 45 5 1 1110 0 0 =E3§ o o o |"MTuoR)
ooo0oo0|llooo| @wlo o o

where the rows of the 4 X 3 matrix M (R o R;) are marked by the elements of A while its
columns are marked by the elements of C. In general we have: If R, is a relation from A
to B and R, is a relation from B to C, then M(R ) - M(Ry) = MR, o Ny). That is, the
product of the relation matrices for R, R,, in that order, equals the relation matrix of the
composite relation Ry o R,. (This is why the composition of two relations was written in
the order specified in Definition 7.8.)

The reader will be asked to prove the general result of Example 7.21, along with some
results from our next example, in Exercises 11 and 12 at the end of this section,

Further properties of relation matrices are exhibited in the following example.

TThe reader who is not familiar with matrix multiplication or simply wishes a brief review should consult
Appendix 2.
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Let A={1,2,3,4}and R = {(1, 2), (1, 3), (2, 4), (3, 2)}, as in Example 7.19. Keeping
the order of the elements in A fixed, we define the relation matrix for R as follows: M (%R)
is the 4 X4 (0, 1)-matrix whose entries m;,, for 1 <i,j <4, are given by

= [1, if (i, j) e R,

0, otherwise.

In this case we find that

M(R) =

Qoo C
S~ O =
OO O -
OO = O

Now how can this be of any use? If we compute (M (R))* using the convention that
1+ 1 =1, then we find that

01 0 1
2 |0 0 0 O
0 0 00
which happens to be the relation matrix for R o & = ®R?. (Check Example 7.19.) Further-
more,
0 0 00
4_ |0 0 0 0
0 000

which is also the relation matrix for the relation &* —that is, (M (S))* = M(R*). Also,
recall that * = @, as we learned in Example 7.19.

What has happened here carries over to the general situation. We now state some results
about relation matrices and their use in studying relations.

Let A be a set with [A] = n and P a relation o A. If M{R) is the relation matrix for
@R, then- :

a) M(R) = 6 (the matrix of all 0’s) if and only if R = §

b} M(®) = 1 {the mairix of all I’s)ifand only if R = A X A

¢ M@y = (MR, formeZ*

Using the (0, 1)-matrix for a relation, we now turn to the recognition of the reflex-
ive, symmetric, antisymimetric, and transitive properties. To accomplish this we need the
concepts introduced in the following three definitions.

Let £ = {€,))mxn, & = (fiy)mxn bEtwo m X n (0, 1)-matrices. We say that E precedes, or
is less than, F, and we write E < Fife, < f,,,foralll <i<m,1 < j <n.
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EXAMPLE 7.23

Definition 7.12

Definition 7.13

. 1 0 1 |1 0
WlthE—[O 0 l]andF—l:O 1

(0, 1)-matrices G for which £ < G,

} ], we have E < F. In fact, there are eight

Forn € Z7, I, = (8;))uxn 15 the n X 1 (0, 1)-matrix where

s 1 =
Y700, ifi # )

Let A = (4 }mxna be 2 (0, 1)-matrix. The transpose of A, written A", is the matrix (@5 )nxm
whereaji =a;, foralll < j<n 1<i<m.

0 1
ForaA=|0 0 ,weﬁndthatA“=[O 0 1],

EXAMPLE 7.24 11 1 0 1
As this example demonstrates, the ith row (column) of A equals the ith column (row)
of AY". This indicates a method we can use in order to obtain the matrix A" from the
matrix A.
THEOREM 7.2 Given a set A with |A| = n and a relation &R on A, let M denote the relation matrix for QR.

Then

a) R is reflexive if and only if I, < M.

b) 9 is symmetric if and only if M = M"Y,

¢) M is transitive if and only if M - M = M?> < M.

d) 9 is antisymmetric if and only if M N MY < I, (The matrix M N MY is formed
by operating on corresponding entries in M and M"Y according to the rules 0N Q =
0N1=1Nn0=~0and1N1=1—rthatis, the usual multiplication for 0's and /or 1's.)

Proof: The results follow from the definitions of the relation properties and the (0, 1)-matrix.
We demonstrate this for part (¢), using the elements of A to designate the rows and columns
in M, as in Examples 7.21 and 7.22.

Let M2 < M. If (x, ¥), (v, 2) € R, then there are 1’s in row (x), column (y) and in
row (), column (z) of M. Consequently, in row (x), column (z) of M? there is a 1. This 1
must also occur in row (x), column (z) of M because M2 < M. Hence (x, z) € R and R is
transitive.

Conversely, if R is transitive and M is the relation matrix for R, let s, be the entry in
row (x) and column (z) of M2, with s,, = 1. For s,, to equal 1 in M2, there must exist at
least one y € A where m,, = m,, = 1 in M. This happens only if x R y and y &R z. With
% transitive, it then follows that x % z. Som,, = 1 and M? < M.

The proofs of the remaining parts are left to the reader.

The relation matrix is a useful tool for the computer recognition of certain properties
of relations. Storing information as described here, this matrix is an example of a data
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structure. Also of interest is how the relation matrix is used in the study of graph theory”
and how graph theory is used in the recognition of certain properties of relations.

At this point we shall introduce some fundamental concepts in graph theory. Often these
concepts will be given within examples and not in terms of formal definitions. In Chapter 11,
however, the presentation will not assume what is given here and will be more rigorous and
comprehensive.

Let V be a finite nonempty set. A directed graph (or digraph) G on V is made up of the
elements of V, called the vertices or nodes of G, and a subset E, of ¥V X V, that contains
the (directed) edges, or arcs, of G. The set V is called the vertex set of GG, and the set E is
called the edge set. We then write G = (V, E) to denote the graph.

If a, b€ V and (a, b) € E¥, then there is an edge from a to b. Vertex a is called the
origin or source of the edge, with b the terminus, or terminating vertex, and we say that b
is adjacent from a and that a is adjacent to b. In addition, if a # b, then (a, b) # (b, a). An
edge of the form (a, a) is called a loop (at a).

For vV = {1, 2, 3, 4, 5}, the diagram in Fig. 7.1 is a directed graph G on V with edge set
{(1, ), (1, 2), (1, 4), (3, 2)}. Vertex 5 is a part of this graph even though it is not the origin
or terminus of an edge. It is referred to as an isolated vertex. As we see here, edges need
not be straight line segments, and there is no concern about the length of an edge.

4 2 (@) (b)

Figure 7.1 Figure 7.2

When we develop a flowchart to study a computer program or algorithm, we deal with
a special type of directed graph where the shapes of the vertices may be important in the
analysis of the algorithm. Road maps are directed graphs, where the cities and towns are
represented by vertices and the highways linking any two localities are given by edges. In
road maps, an edge is often directed in both directions. Consequently, if G is a directed
graphand ¢, b € V,witha # b, and both (a, b), (b, a) € E,thenthe single undirected edge
{a, b} = {b, a}inFig. 7.2(b) is used to represent the two directed edges shown in Fig. 7.2(a).
In this case, ¢ and b are called adjacent vertices. (Directions may also be disregarded for
loops.)

"Since the terminology of graph theory is not standardized, the reader may find some differences between
definitions given here and in other texts.

*In this chapter we allow only one edge from @ to b. Situations where multiple edges occur are called
multigraphs. These are discussed in Chapter 11.
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EXAMPLE 7.26

EXAMPLE 7.27

Directed graphs play an important role in many situations in computer science. The
following example demonstrates one of these.

Computer programs can be processed more rapidly when certain statements in the program
are executed concurrently. But in order to accomplish this we must be aware of the de-
pendence of some statements on earlier statements in the program. For we cannot execute
a statement that needs results from other statements — statements that have not yet been
executed.

In Fig. 7.3(a) we have eight assignment statements that constitute the beginning of
a computer program, We represent these statements by the eight corresponding vertices
51, 82, 83, ..., g in part (b) of the figure, where a directed edge such as (sy, ss) indicates
that statement s5 cannot be executed until statement s, has been executed. The resulting
directed graph is called the precedence graph for the given lines of the computer program.
Note how this graph indicates, for example, that statement s; cannot be executed until after
each of the statements sy, s2, $3, and 54 has been executed. Also, we see how a statement such
as 5| must be executed before it is possible to execute any of the statements s,, sy, 55, §7, OF
sg. In general, if a vertex (statement) s is adjacent from m other vertices (and no others), then
the corresponding statements for these m vertices must be executed before statement s can
be executed. Similarly, should a vertex (statement) s be adjacent to n other vertices, then
each of the corresponding statements for these vertices requires the execution of statement
s before it can be executed. Finally, from the precedence graph we see that the statements
$1, 83, and s can be processed concurrently. Following this, the statements s;, s4, and sg
can be executed at the same time, and then the statements ss and s7. {Or we could process
statements s, and s4 concurrently, and then the statements ss, 57, and sg.)

S5 S7
(s) b =3
(s) ¢ = b+2
(s3) a:=1
(s d:=axb=+5 38
(55) e :=d—1
(sg) f =7
(sy) e:=c+d
(sg) g = bxf 5 5 S
(@ (b)
Figure 7.3

Now we want to consider how relations and directed graphs are interrelated. For a start,
given a set A and a relation & on A, we can construct a directed graph G with vertex set A
and edgeset E C A X A, where (g, by € Eifa, b€ A and a R b. This is demonstrated in
the following example.

For A ={1,2,3,4},1et® = {(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 2)} be arela-
tionon A. The directed graph associated with R is shown in Fig. 7.4(a), where the undirected
edge {2, 3}(= {3, 2}) is used in place of the pair of distinct directed edges (2, 3) and (3, 2).
If the directions in Fig. 7.4(a) are ignored, we get the associated undirected graph shown in
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part (b) of the figure. Here we see that the graph is connected in the sense that for any two
vertices x, y, with x # y, there is a path starting at x and ending at y. Such a path consists
of a finite sequence of undirected edges, so the edges {1, 2}, {2, 4} provide a path from 1 to
4, and the edges {3, 4}, {4, 2}, and {2, 1} provide a path from 3 to 1. The sequence of edges
{3, 4}, {4, 2}, and {2, 3} provides a path from 3 to 3. Such a closed path is called a cycle.
This is an example of an undirected cycle of length 3, because it has three edges in it.

(@ (©) (c) d

Figure 7.4

When we are dealing with paths (in both directed and undirected graphs), no vertex
may be repeated. Therefore, the sequence of edges {a, b}, {b, e}, {e, f}, | f, b}, {b, d} in
Fig. 7.4(c) is not considered to be a path {(from a to d) because we pass through the vertex b
more than once. In the case of cycles, the path starts and terminates at the same vertex and has
at least three edges. In Fig. 7.4(d) the sequence of edges (b, f), (f, ), (e, d), (d, ¢), (c, b)
provides a directed cycle of length 5. The six edges (b, f), (f, e), (e, b), (b, d), (d, ©),
(¢, b) do not yield a directed cycle in the figure because of the repetition of vertex b. If their
directions are ignored, the corresponding six edges, in part (c) of the figure, likewise pass
through vertex » more than once. Consequently, these edges are not considered to form a
cycle for the undirected graph in Fig. 7.4(c).

Now since we require a cycle to have length at least 3, we shall not consider loops to be
cycles. We also note that loops have no bearing on graph connectivity.

We choese to define the next idea formally because of its relevance to what we did earlier
in Section 6.3.

A directed graph G on V is called strongly connected if for all x, y € V, where x # vy,
there is a path (in G) of directed edges from x to y — that is, either the directed edge (x, y)
is in G or, for some n € Z* and distinct vertices vy, va, ..., v, € V, the directed edges
(x, v1), (vy, ), ..., (v, Y)arein G.

It is in this sense that we talked about strongly connected machines in Chapter 6. The
graph in Fig. 7.4(a) is connected but not strongly connected. For example, there is no
directed path from 3 to 1. In Fig. 7.5 the directed graph on V = {1, 2, 3, 4} is strongly
connected and /oop-free. This is also true of the directed graph in Fig. 7.4(d).
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EXAMPLE 7.28

EXAMPLE 7.29

O—0 s
[ ]
1 2 1
2
4 3 4
@) (&)
a4

Figure 7.5 Figure 7.6

For A = {1, 2, 3, 4}, consider the relations R, = {(1, 1), (1, 2), (2, 1), (2, 2), (3,3),
G. 4, 4, 3), @ Hrand R, = {(2,4), (2, 3), (3, 2), (3, 3). (3, 9)}. AsFig.7 6illustrates,
the graphs of these relations are disconnected. However, each graph is the union of two
connected pieces called the components of the graph. For A the graph is made up of two
strongly connected components. For R, one component consists of an isolated vertex, and
the other component is connected but not strongly connected.

The graphs in Fig. 7.7 are examples of undirected graphs that are loop-free and have an
edge for every pair of distinct vertices. These graphs illustrate the complete graphs on n
vertices which are denoted by K,,. In Fig. 7.7 we have examples of the complete graphs on
three, four, and five vertices, respectively. The complete graph K3 consists of two vertices
x, y and an edge connecting them, whereas the complete graph K consists of one vertex
and no edges because loops are not allowed.

1

(K3) (Ka) (Ks)

Figure 7.7

In this drawing of K5 two edges cross, namely, {3, 5} and {1, 4}. However, there is
no point of intersection creating a new vertex. If we try to avoid the crossing of edges by
drawing the graph differently, we run into the same problem all over again. This difficulty
will be examined in Chapter 11 when we deal with the planarity of graphs.

A digraph G on a vertex set V gives rise to a relation R on V where x R vy if (x, y) isan
edge in G. Consequently, there is a (0, 1)-matrix for G, and since this relation matrix comes
about from the adjacencies of pairs of vertices, it is referred to as the adjacency matrix for
G as well as the relation matrix for %R.
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At this point we tie together the properties of relations and the structure of directed
graphs.

If A=1{1,23)and % = {(1, 1), (1,2), (2, 2), (3, 3), 3, 1)}, then R is a reflexive an-
tisymmetric relation on A, but it is neither symmetric nor transitive. The directed graph
associated with & consists of five edges. Three of these edges are loops that result from the
reflexive property of Q. (See Fig. 7.8.) In general, if R is a relation on a finite set A, then
R is reflexive if and only if its directed graph contains a loop at each vertex (element of A).

The relation R = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)} is symmetric on A = {1, 2, 3}, but
it is not reflexive, antisymmetric, or transitive. The directed graph for R is found in
Fig. 7.9. In general, a relation P on a finite set A is symmetric if and only if its directed
graph may be drawn so that it contains only loops and undirected edges.

For A = {1, 2, 3], consider R = {(1, 1), (1, 2), (2, 3), (1, 3)}. The directed graph for R is
shown in Fig. 7.10. Here QR is transitive and antisymmetric but not reflexive or symmetric.
The directed graph indicates that a relation on a set A is transitive if and only if it satisfies
the following: For all x, v € A, if there is a (directed) path from x to y in the associated
graph, then there 18 an edge (x, y) also. [Here (1, 2), (2, 3) is a (directed) path from 1 to 3,
and we also have the edge (1, 3) for transitivity.] Notice that the directed graph in Fig. 7.3
of Example 7.26 also has this property.

The relation R is antisymmetric because there are no ordered pairs in & of the form
(x.y) and (v, xJ with x # y. To use the directed graph of Fig. 7.10 to characterize anti-
symmetry, we observe that for any two vertices x, y, with x # vy, the graph contains at most
one of the edges (x, y) or (v, x). Hence there are no undirected edges aside from loops.

Figure 7.8 Figure 7.9 Figure 7.10

Our final example deals with equivalence relations,

For A = {1, 2, 3, 4, 5}, the following are equivalence relations on A:

R ={1,1),0,2),(2,1,(2,2),3,3), 3,4, (4,3), (4 4), 5.5},
R ={(1, 1), (1,2), (1,3), (2, 1), (2,2),(2,3), (3, D, (3,2), 3. 3),
4,4, 4,5), 5.9, 5,3
Their associated graphs are shown in Fig. 7.11. If we ignore the loops in each graph, we

find the graph decomposed into components such as K, K2, and K3. In general, a relation
on a finite set A is an equivalence relation if and only if its associated graph is one complete
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graph augmented by loops at every vertex or consists of the disjoint union of complete
graphs augmented by loops at every vertex.

73
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Figure 7.11

EXERCISES 7.2

1. For A ={1,2,3, 4}, let & and & be the relations on A
defined by @ = {(1,2), (1, 3), (2, 4), (4, H}and &F = {(1, 1),
(1,2),01,3),2,.3), 2, H).FindR o F, Fo R, R, R, ¥2,
and 9°.

2. Tf R is a reflexive relation on a set A, prove that R? is also
reflexive on A.

3. Provide a proof for the opposite inclusion in Theorem 7.1.

4. Let A={1,2,3},B={w, x,y.z}, and C ={4,5,6).
Define the relations Ry €A X B, R CTB X C, and N3 C
B X C, where @R, ={(,w), 3, w), 2, x){, LR =
{tw,5), (x,6), (y. 9, (.0}, and Rz ={(w,4), w,5),
(y, 5)}. (a) Determine %R; o (R;UR;) and (R oR) U
(R 0 R3). (b) Determine Ry o (R NR3) and (R) o R N
(‘%1 0%3).

5. LetA = {1, 2}, B ={m, n, p},and C = {3, 4}. Define the
relations Ry CA X B, Ry, CBXC, and R; C B X C by
Ry ={(1,m), (1,n), (1, P}, Ra={(m, 3), (m, 4), (p, N},
and Ry = {(m, 3), (m, 4), (p, 3)). Determine &R, o (R> NRy)
and (%] Og?,z) M (‘%] o] %‘;)

6. For sets A, B, and C, consider relations R, C A X B,
Ry CB X C,and %3 € B X C,Prove that (a) R, o (R, U R3)
= (R o Pz) U (R oPR3); and (b)) Ry o Ry NR3) S
(gtl o] %2) n (%1 0%3).

7. For a relation % on a set A, define %" = ((a, a)la € A).
If |A| = n, prove that there exist s, t € Nwith0 s <1 < o
such that h* = ',

8 With A={1,2,34}, let &R={(1,1)(1,2),2,3),
(3, 3), (3, 4), (4, 4)} be a relation on A. Find two relations &,
Fon Awhere PET but RoF=Rod ={(1, 1), (1,2),
(1, 4.

9, How many 6 X 6 (0, 1)-matrices A are there with A = A'?

1 0 1 1
100, E=|0 0 0 1 |, how many (0, 1)-matrices F
1 0 0 ¢

satisfy E < F? How many (0, 1)-matrices G satisfy G < E?

11. Considerthesets A = {aj, az, ..., @}, B = (b1, ba, ...,
by}, and C = {cy, c2. .. ., ¢, }, where the elements in each set
remain fixed in the order given here. Let &, be a relation from
Ato B, and let %, be arelation from B to C. The relation matrix
forR, is M(R,), wherei = 1, 2. The rows and columns of these
matrices are indexed by the elements from the appropriate sets
A, B, and C according to the orders already prescribed. The
matrix for R, o R, is the m X p matrix M (PR, o R,), where
the elements of A (in the order given) index the rows and the
elements of C (also in the order given) index the columns.
Show thatforall 1 <i <mand1 < j < p, the entries in the
ith row and jth column of M(%R,) - M(R,) and MR, o F2)
are equal. [Hence M(R) - M(R;y) = M(R, o R,).)
12. Let A be a set with |A] = n, and consider the order for
the listing of its elements as fixed. For R € A X A, let M(%h)
denote the corresponding relation matrix.
a) Prove that M (9R) = 0 (the n X n matrix of all 0°s) if and
only if it = @.
b} Prove that M{R) = 1(the n X n matrix of all 1’s) if and
onlyif R = A X A,
¢} Use the result of Exercise 11, along with the Princi-
ple of Mathematical Induction, to prove that M(®R™) =
[M(@R))", forallm € Z7.
13. Provide the proofs for Theorem 7.2(a), (b}, and (d}.
14. Use Theorem 7.2 to write a computer program (or to de-
velop an algorithm) for the recognition of equivalence relations
on a finite set.
15. a} Draw the digraph G, = (V;, E;) where V|, = {a, b, c,
d,e, f} and E, = {(a,b), (a, d), (b, c), (b, e), (d,b),
(d,e), (e, ). (e, f), (f, ).



72 Computer Recognition: Zero-One Matrices and Directed Graphs

b} Draw the undirected graph G, = (V5, E;) where V, =
{s,t,u,v,w,x,y,z} and FE,={{s, 1}, {s, u}, {5, x},
{t,a}, {t, wh {w, wh {u, 2} {v, wl {v, 3} {v, y), (w, 2},
{x, yiL
16. For the directed graph G = (V, E) in Fig. 7.12, classify
each of the following statements as true or false.

a) Vertex c is the origin of two edges in G.
b) Vertex g is adjacent to vertex .
¢) There is a directed path in G from d to b.

d) There are two directed cycles in G.

b

g

Figure 7.12

17. For A={a, b,c,d, e, f}, each graph, or digraph, in
Fig. 7.13 represents a relation & on A. Determine the rela-

(i (iv)

Figure 7.13
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tion  C A X A in each case, as well as its associated relation
matrix M (R).

18. For A = {v, w, x, v, z}, each of the following is the (0, 1)-
matrix for a relation & on A. Here the rows (from top to bot-
tom) and the columns (from left to right) are indexed in the
order v, w, x, y, z. Determine the relation # € A X A in each
case, and draw the directed graph G associated with &R,

01 1 00
1 0 1 1 1
AM®P={0 0 0 0 1
00 0 0 1
0 0 0 0 0|
[0 1 1 1 07
1 01 0 0
hM@)=|1 1 0 0 1
1 00 0 1
00 1 1 0

19. For A = {1, 2, 3,4}, let% = {(1, 1), (1, 2), (2, 3), (3, 3),
(3, 4)} be arelation on A. Draw the directed graph G on A that
is associated with R. Do likewise for R, R°, and R*.

20. a) Let G = (V, E) be the directed graph where V =
{1,2,3,4,5,6, Vand E = {(i, 1 <i<j<T}L

i) How many edges are there for this graph?

ii) Four of the directed paths in G from 1 to 7 may be
given as:
1 (1.7);
2) (1,3),(3,5). (5. 6). (6, T);
3)(1,2),2,3),3,7sand
4) (1,4), 4. 7.

How many directed paths (in total) existin G from

1t07?
b) Now let n € Z* where n > 2, and consider the di-
rected graph G = (V, E) with V ={1,2,3,..., n} and

E={(, pl<i<j=<n}
i) Determine |E|.
ii) How many directed paths exist in G from 1 to n?
ili) If a, b€ Z* with 1 <a < b <n, how many di-
rected paths existin G from a to b?
(The reader may wish to refer back to Exercise 20 in
Section 3.1.)

21. Let |A| = 5. (a) How many directed graphs can one con-
struct on A? (b) How many of the graphs in part (a) are actually
undirected?

22. For |A| = 5, how many relations % on A are there? How
many of these relations are symmetric?

23. a) Keeping the order of the elements fixed as 1, 2, 3, 4, 5,
determine the (0, 1) relation matrix for each of the equiva-
lence relations in Example 7.33.

b) Do the results of part (a) lead to any generalization?
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24. How many (undirected) edges are there in the complete the smallest integer n > 1, such that R" = R. What is the
graphs K¢, K7, and K, where n € Zt? smallest value of n > 1 for which the graph of &R" con-
25. Draw a precedence graph for the following segment found tains'somgloops? Does it ever happen that the graph of 3"
at the start of a computer program: consists of only loops?

b) Answer the same questions from part (a) for the rela-

(s1) a:=1 ton R on A =1{1,2,3,...,9, 10}, if the directed graph
(32} b:=2 associated with @ is as shown in Fig, 7.15,
(s3) a:=a+3
(s4) Cc:=b 6
(s5) a:=2*a-1 H 3 4
(84) b:=a*c¢c 10 7
(s7) ¢c:=7
(eg) d:=c+2

26. a) Let 9t be therelationon A = {1, 2, 3, 4, 5, 6, 7}, where 5 9 3

the directed graph associated with % consists of the two Figure 7.15

components, each a directed cycle, shown in Fig. 7.14. Find

¢) Do the results in parts (a) and (b) indicate anything in

5 general?
27. M the complete graph K, has 703 edges, how many vertices
does it have?
4 3 7 6
Figure 7.14
73
Partial Orders: Hasse Diagrams

If you ask children to recite the numbers they know, you’ll hear a uniform response of
“1,2, 3, ...." Without paying attention to it, they list these numbers in increasing order.
In this section we take a closer look at this idea of order, something we may have taken for
granted. We start with some observations about the sets N, Z, Q, R, and C,

The set N is closed under the binary operations of (ordinary) addition and multiplication,
but if we seek an answer to the equation x + 5 = 2, we find that no element of N provides
a solution. So we enlarge N to Z, where we can perform subtraction as well as addition and
multiplication. However, we soon run into trouble trying to solve the equation 2x + 3 = 4,
Enlarging to Q, we can perform nonzero division in addition to the other operations. Yet
this soon proves to be inadequate; the equation x? — 2 = 0 necessitates the introduction
of the real but irrational numbers + +/2. Even after we expand from Q to R, more trouble
arises when we try to solve x> 4 1 = 0. Finally we arrive at C, the complex numbers,
where any polynomial equation of the form ¢, x" + ¢, 1x" ™' 4+ - - + 2x? + ¢1x +¢5 =0,
where ¢; e CforO0 <i <n,n > 0and ¢, # 0, can be solved. (This result is known as the
Fundamental Theorem of Algebra. Its proof requires material on functions of a complex
variable, so no proof is given here.) As we kept building up from N to C, gaining more
ability to solve polynomial equations, something was lost when we went from R to C. In
R, given numbers rq, r, with r; # r;, we know that either r; < r, or r, < r|. However,
in C we have (2 +1i) # {1 + 2i), but what meaning can we attach to a statement such
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as “(2+1i) < (1 4 2i)”? We have lost the ability to “order” the elements in this number
system!

As we start to take a closer look at the notion of order we proceed as in Section 7.1
and let A be a set with & a relation on A. The pair (A, R) is called a partially ordered
set, or poset, if relation SR on A is a partial order, or a partial ordering relation (as given in
Definition 7.6). If A is called a poset, we understand that there is a partial order %t on A
that makes A into this poset. Examples 7.1(a), 7.2, 7.11, and 7.15 are posets.

Let A be the set of courses offered at a college. Define the relation Ron A by x R yif x, y
are the same course or if x is a prerequisite for y. Then R makes A into a poset.

Define ® on A = {1, 2, 3, 4} by x R y if x|y —that is, x (exactly) divides y. Then &t =
WL 1D, (2,2),3,3),4.4),1,2), (1, 3), (1,4), (2, 9} is a partial order, and (A, R) is
a poset. (This is similar to what we learned in Example 7.15.)

In the construction of a house certain jobs, such as digging the foundation, must be performed
before other phases of the construction can be undertaken. If A is a set of tasks that must
be performed in building a house, we can define a relation %t on A by x R v if x, y denote
the same task or if task x must be performed before the start of task y. In this way we
place an order on the elements of A, making it into a poset that is sometimes referred to
as a PERT (Program Evaluation and Review Technique) network. (Such networks came
into play during the 1950s in order to handle the complexities that arose in organizing the
many individual activities required for the completion of projects on a very large scale. This
technique was actually developed and first used by the U.S. Navy in order to coordinate the
many projects that were necessary for the building of the Polaris submarine.)

Consider the diagrams given in Fig. 7.16. If part (a) were part of the directed graph
associated with a relation @R, then because (1, 2), (2, 1) € AR with 1 # 2, % could not be
antisymmetric. For part (b), if the diagram were part of the graph of a transitive relation R,
then (1, 2), (2,3) € R == (1, 3) € R. Since (3, 1) e R and 1 # 3, R is not antisymmetric,
$0 it cannot be a partial order.

(a) (b
Figure 7.16

From these observations, if we are given a relation &R on a set A, and we let G be the
directed graph associated with 2R, then we find that:

i) If G contains a pair of edges of the form (a, b), (b, @), fora, b€ A witha # b, or
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EXAMPLE 7.37

EXAMPLE 7.38

i) If 3t is transitive and G contains a directed cycle (of length greater than or equal to
three),

then the relation % cannot be antisymmetric, so (A, ) fails to be a partial order.
Consider the directed graph for the partial order in Example 7.35. Figure 7.17(a) is the

graphical representation of ®. In part (b) of the figure, we have a somewhat simpler dia-
gram, which is called the Hasse diagram for R.

o{:o <

(a) ()

Figure 7.17

When we know that a relation R is a partial order on a set A, we can eliminate the loops
at the vertices of its directed graph. Since R is also transitive, having the edges (1, 2) and
(2, 4} is enough to insure the existence of edge (1, 4), so we need not include that edge. In
this way we obtain the diagram in Fig. 7.17(b), where we have not lost the directions on
the edges — the directions are assumed to go from the bottom to the top.

Int general, if R is a partial order on a finite set A, we construct a Hasse diagram for
@A on A by drawing a line segment from x up to y, if x, y € A with x R y and, most
important, if there is no other element 7 & A such that x R z and z R y. (So there is
nothing “in between” x and y.) if we adopt the convention of reading the diagram from
bottom to top, then it i8 not necessary to direct any edges.

In Fig. 7.18 we have the Hasse diagrams for the following four posets. (a) With AL = {1, 2, 3}
and A = (L), R is the subset relation on A. (b) Here R is the “(exactly) divides” relation

{1,2,3
/ | \ .
11,2 1,3 2.3 12 385
\ > >/ '
S ! 2 bA. P
® [ ] ® ®
\ / 1 2 3 5 7 2 3 5 7 11
g
(a) (b) © (d)

Figure 7.18
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Definition 7.16
EXAMPLE 7.40
G F D
C
A
B E
Figure 7.20
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applied to A = {1, 2, 4, 8}. (¢) and (d) Here the same relation as in part (b) is applied to
{2,3,5, 7} inpart (c)and to {2, 3,5, 6, 7, 11, 12, 35, 385} in part (d). In part (c) we note
that a Hasse diagram can have all isolated vertices; it can also have two (or more) connected
pieces, as shown in part (d).

Let A = {1, 2, 3, 4, 5}. The relation & on A, defined by x %t y if x < y, is a partial order.
This makes A into a poset that we can denote by (A, <). If B = {1, 2, 4} C A, then the set
(BXB)NA={(1,1),(2,2), 4. 4, {1,2), (1,4, (2, 4))} is a partial orderon B.

In general if AR is a partial order on A, then for each subset B of A, (B X B) N9 makes
B into a poset where the partial order on B is induced from @R

We turn now to a special type of partial order.

If (A, R) is a poset, we say that A is torally ordered (or, linearly ordered) if forallx, y € A
either x R y or y R x. In this case R is called a toral order (or, a linear order).

a) On the set N, the relation R defined by x & y if x < y is a total order,

b) The subset relation applied to A = P (U), where AU = {1, 2, 3}, is a partial, but not
total, order: {1, 2}, {1, 3} € A but we have neither {1, 2} C {1, 3} nor {1, 3} C {1, 2}.

¢) The Hasse diagram in part (b) of Fig. 7.18 shows a total order. In Fig. 7.19(a) we have
the directed graph for this total order —alongside its Hasse diagram in part (b).

Figure 7.19

Could these notions of partial and total order ever arise in an industrial problem?

Say a toy manvfacturer is about to market a new product and must include a set of
instructions for its assembly. In order to assemble the new toy, there are seven tasks, denoted
AB,C, ..., G, that one must perform in the partial order given by the Hasse diagram of
Fig. 7.20. Here we see, for example, that all of the tasks B, A, and E must be completed
before we can work on task C. Since the set of instructions is to consist of a listing of these
tasks, numbered 1, 2, 3, ..., 7, how can the manufacturer write the listing and make sure
that the partial order of the Hasse diagram is maintained?

What we are really asking for here is whether we can take the partial order R, given by
the Hasse diagram, and find a total order & on these tasks for which & C 7. The answer is
yes, and the technique that we need is known as topological sorting.
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Topological Sorting Algorithm
(for a partial order R on a set A with {A] = n)

Step 1: Set k = 1. Let H; be the Hasse diagram of the partial order.

Step 2: Select a vertex vg in Hy such that no (implicitly directed) edge in Hy starts
at vg.

Step 3: If k = n, the process is completed and we have a total order
T, <oy < <V <y
that contains R,

K k < n, then remove from H;, the vertex vy, and all Gmplicitly directed) edges of Hj;
that terminate at v;. Call the result Hy.,. Increase & by 1 and return to step (2).

Here we have presented our algorithm as a precise list of instructions, with no concern
about the particulars of the pseudocode used in earlier chapters and with no reference to its
implementation in a particular computer language.

Before we apply this algorithm' to the problem at hand, we should observe the deliberate
use of “a” before the word “vertex” in step (2). This implies that the selection need not be
unique and that we can get several different total orders & containing k. Also, in step (3), for
vertices v;_1 where 2 < i < n, the notation v, < v;_; is used because it is more suggestive
of “v; before v,_,” than is the notation v; & v,_;.

InFig. 7.21, we show the Hasse diagrams that evolve as we apply the topological sorting
algorithm to the partial order in Fig. 7.20. Below each diagram, the total order is listed as

it evolves.
k=1 Hy k=2 Hy (k=3) H3|k=4) Hy|tk=5 Hs|k=86) Hg|k=T7 H;
G F DG F G
C C C C
A A A
A [ ] L ] [ ]
B E B E B E B E B E B E E
D F<D G<F<D C<G A<C<G B<A<C |[E<B<A<C(C
<F<D <F<D <G<F<D |<G<«<F<D
Figure 7.21

If the toy manufacturer writes the instructions in a list as 1-E, 2-B, 3-A, 4-C, 5-G, 6-F,
7-D, he or she will have a total order that preserves the partial order needed for correct
assembly. This total order is one of 12 possible answers.

Here we are only concerned with applying this algorithm. Hence we are assuming that it works and we shall
not present a proof of that fact. Furthermore, we may operate similarly with other algorithms we encounter.
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As is typical in discrete and combinatorial mathematics, this algorithm provides a pro-
cedure that reduces the size of the problem with each successive application.

The next example provides a situation where the number of distinct total orders for a
particular partial order is determined.

Let p, g be distinct primes. In part (a) of Fig. 7.22 we have the Hasse diagram for the partial
order R of all positive-integer divisors of p>g. Applying the topological sorting algorithm
to this Hasse diagram, we find in Fig. 7.22(b) the five total orders J;, where R C 7, for
1<i<35.

F.0%9>pg>q>pi>p> 1

plg(+) T

Trp’g>pg>p’>p>q>1

pat+) p-) N

Tyip’g>p?>pg>q>p> 1
N

g{+) p(—) Ty pg>pg>pi>qg>p>

T T

=) T5p’q > p’>pq=p> gl

o= - -

(@) (b)

Figure 7.22

Now look at Fig. 7.22 again. This time focus on the three plus signs and three minus
signs in part (a) of the figure and in the list below each total order in part (b). When we
apply the topological sorting algorithm to the given partial order R, step (2) of the algorithm
implies that the first divisor selected is always p2q. This accounts for the first plus sign in
each J;, 1 <i < 5. Continuing to apply the algorithm we get two more plus signs and the
three minus signs.

Could there ever be more minus signs than plus signs in our corresponding list, as a total
order is developed? For example, could we start with 4+, —, —,7 If so, we have failed 10
correctly apply step (2) of the topological sorting algorithm -— we should have recognized
pq as the unique candidate to select after p>¢ and p?. In fact, for 0 < k <2, p*g must be
selected before p* can be. Consequently, for each list of three plus signs and three minus
signs, there is always at least as many plus signs as minus signs, as the list is read from
left to right. Comparing now with the result in part (a) of Example 1.43, we see that the
number of total orders for the given partial order is 5 = ﬁ (233). Further, for n > 1, the
topological sorting algorithm can be applied to the partial order of all positive divisors of

" 1g to yield ni 1 (2,7”) total orders, another instance where the Catalan numbers arise.

In the topological sorting algorithm, we saw how the Hasse diagram was used in deter-
mining a total order containing a given poset (4, ®). This algorithm now prompts us to
examine further properties of a partial order. At the start, particular emphasis will be given

This example refers back to the optional material on Catalan numbers in Section 1.5. It may be skipped with
no loss of continuity.
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Definition 7.17

EXAMPLE 7.42 ]

EXAMPLE 7.43

EXAMPLE 7.44

to a vertex like the vertex vy in step (2) of the algorithm. The special property exhibited by
such a vertex is now considered in the following.

If (A, R) is a poset, then an element x € A is called a maximal element of A if for all
acA a#x=>xRa Anelement y € A is called a minimal element of A if whenever
beAandb # y, thenb & v.

If we use the contrapositive of the first statement in Definition 7.17, then we can state
that x(e A) is a maximal element if for eacha € A, x R a = x = . In a similar manner,
y € A is a minimal element if foreachbe A, bR y = b = y.

Let A = {1, 2, 3} and A = P(MU).
a) Let R be the subset relation on A. Then U is maximal and ¥ is minimal for the poset
(A, ©).
h) For B, the collection of proper subsets of {1, 2, 3}, let % be the subset relation on B.

In the poset (B, ©), the sets {1, 2}, {1, 3}, and {2, 3} are all maximal elements; @ is
still the only minimal element.

With % the “less than or equal to” relation on the set Z, we find that (Z. <) is a poset with
neither a maximal nor a minimal element. The poset (N, <), however, has minimal element
0 but no maximal element.

When we look back at the partial orders in parts (b), (c¢), and (d) of Example 7.38, the
following observations come to light.

1) The partial order in part (b) has the unique maximal element 8 and the unique minimal
element 1.

2) Each of the four elements — 2, 3, 5, and 7— is both a maximal element and a minimal
element for the poset in part (¢) of Example 7.38.

3) In part (d) the elements 12 and 385 are both maximal. Each of the elements 2, 3, 5,
7, and 11 is a minimal element for this partial order.

Are there any conditions indicating when a poset must have a maximal or minimal
element?

THEOREM 7.3

If {A, R) is a poset and A is finite, then A has both a maximal and a minimal element.

Proof: Leta, € A. If there isno element @ € A where @ # a; anda; R q, then a; is maximal.
Otherwise thereis anelementa, € A witha; # a;anda; R ax. If noelementa € A, a # aa,
satisfies ay R a, then a, is maximal. Otherwise we can find a3 € A sothatas # as, aa #
(Why?) while a; R a, and a; R a;. Continuning in this manner, since A is finite, we get to
an element g, € A with a, % a forall a € A where a # a,, so g, 1s maximal.

The proof for a minimal element follows in a similar way.




Definition 7.18

EXAMPLE 7.45

EXAMPLE 7.46
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Returning now to the topological sorting algorithm, we see that in each iteration of
step {2) of the algorithm, we are selecting a maximal element from the original poset (A, R),
or a poset of the form (B, i) where @ # B C Aand R’ = (B X B) NR. Atleast one such
element exists (in each iteration) by virtue of Theorem 7.3. Then in the second part of
step (3), if x is the maximal element selected [in step (2)], we remove from the present
poset all elements of the form (&, x). This results in a smaller poset.

We turn now to the study of some additional concepts involving posets.

If (A, R) is a poset, then an element x € A is called a least element if x R a foralla € A.
Element y € A is called a greatest element if a R y for all ¢ € A.

Let U = {1, 2, 3}, and let PR be the subset relation.

a) With A = (W), the poset (A, C) has @ as aleast element and AU as a greatest element.

b) For B = the collection of nonempty subsets of U, the poset (B, <) has % as a greatest
element. There is no least element here, but there are three minimal elements.

For the partial orders in Example 7.38, we find that

1) The partial order in part (b) has a greatest element § and a least element 1.
2) There is no greatest element or least element for the poset in part {(c).

3) No greatest element or least element exists for the partial order in part (d).

We have seen that it is possible for a poset to have several maximal and minimal elements.
What about least and greatest elements?

THEOREM 7.4

Definition 7.19

EXAMPLE 7.47

If the poset (A, R) has a greatest (least) element, then that element is unique.

Proof: Suppose that x, y € A and that both are greatest elements. Since x is a greatest
element, y R x. Likewise, x R y becavse y is a greatest element. As R is antisymmetric, it
follows that x = y.

The proof for the least element is similar.

Let (A, ) be aposet with B C A. Anelement x € A is called a lower bound of Bif x R b
for all b € B. Likewise, an element y € A is called an upper bound of B if bR y for all
beB.

Anelement x” € A is called a greatest lower bound (glb) of B if itis a lower bound of B
and if for all other lower bounds x” of B we have x” R x’. Similarly ¥’ € A is a least upper
bound (lub) of B if it is an upper bound of B and if y’ % y” for all other upper bounds y”
of B.

Let U = {1, 2, 3, 4}, with A = P(U), and let R be the subset relation on A. If B =
{{1}, {2}, {1, 2}}. then {1, 2}, {1, 2, 3}, {1, 2, 4}, and {1, 2, 3, 4} are all upper bounds for
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B (in (A, ®)), whereas {1, 2} is a least upper bound {and is in B). Meanwhile, a greatest
lower bound for B is @, which is not in B.

Let % be the “less than or equal to” relation for the poset (A, R).

EXAMPLE 7.38
a) If A=Rand B = [0, 1], then B has glb 0 and lub 1. Note that 0, 1 € B. For C =
(0, 1],ChasglbOandlub 1,and 1 e CbutO ¢ C.
b) Keeping A = R, let B = {g € Q|¢? < 2}. Then B has +/2 as a lub and —+/2 as a glb,
and neither of these real numbers is in B.
¢) Now let A = Q, with B as in part (b). Here B has no lub or glb.
These examples lead us to the following result.
THEOREM 7.5 If (A, R) is a poset and B C A, then B has at most one lub (glb).
Proof: We leave the proof to the reader.
We close this section with one last ordered structure.
Definition 7.20 The poset (A, ) is called a lattice if for all x, y € A the elements lub{x, v} and glbix, v}
both existin A.
EXAMPLE 7.49 Fgr A=Nandx,ye N, deﬁn.ex R y by x < y. Then lub{x, y} = max{x, v}, glb{x, vy} =
min{x, v}, and (N, <) is a lattice.
For the poset in Example 7.45(a), if S, T C U, with lub{S, T} = SU T and glb{S$, T} =
EXAMPLE 7.50 SN T, then (2P(U), ©) is a lattice.
EXAMPLE 7.51 Consider the poset in Example 7.38(d). Here we find, for example, that

tub{2, 3) = 6, lub{3, 6] =6, lub{S, 7} = 35, lub{7, 11} = 385, lub{11, 35} = 385,
and
glb{3, 6} =3, glb{2, 12} =2, glb{35, 385} = 35.

However, even though lub{2, 3} exists, there is no glb for the elements 2 and 3. In ad-
dition, we are also lacking (among other considerations) glb{5. 7}, glb{11, 35}, glb{3, 35},
and lub{3, 35}. Consequently, this partial order is not a lattice.

3. Let (A, R)), (B, R!,) be two posets. On A X B, define re-
EXERCISES 7.3 lation R by (a, b)) R (x, y) if a R, x and b R, y. Prove that

R is a partial order.

1. Draw the Hasse diagram for the poset (P(U), <€), where

U= (1,2 3,4)

4. If R, R, in Exercise 3 are total orders, is R a total order?

2. Let A ={1,2,3,6,9, 18}, and define R on A by x # y if 5. Topologically sort the Hasse diagram in part (a) of Exam-
x|y. Draw the Hasse diagram for the poset (A, ). ple 7.38.



6. For A = {a, b, c, d, e}, the Hasse diagram for the poset
(A4, R) is shown in Fig. 7.23. (a) Determine the relation ma-
trix for . (b) Construct the directed graph G (on A) that is
associated with . (¢) Topologically sort the poset (A, R).

7. Thedirected graph G forarelation® onset A = {1, 2, 3, 4}
is shown in Fig. 7.24. (a) Verity that (A, R) is a poset and
find its Hasse diagram. (b} Topologically sort (A, R). (¢) How
many more directed edges are needed in Fig. 7.24 to extend
(A, R) to a total order?

e
d
b C
a .
Figure 7.23 Figure 7.24

8. Prove thatif a poset (A, ) has a least element, it is unique.
9. Prove Theorem 7.5,

10. Give an example of a poset with four maximal elements but
no greatest element.

11. If (A, 9%) is a poset but not a total order, and # # B C A,
does it follow that (B X B) N'%t makes B into a poset but not
atotal order?

12. If & is a relation on A, and G is the associated directed
graph, how can one recognize from G that (A, %) is a total
order?

13. If G is the directed graph for a relation %t on A, with
|A| = n,and (A, %) is a total order, how many edges (including
loops) are there in G?

14, Let M (%R) be the relation matrix for relation % on A, with
|[A| =n. If (A, R) is a total order, how many 1’s appear in
M(y?

15. a) Describe the structure of the Hasse diagram for a totally
ordered poset (A, R), where |A| = n > 1.

b) For a set A where |A| = n > 1, how many relations on
A are total orders?

16, a) For A = {a;, as, ..., a,}, let (A, R) be a poset. If
M (%) is the corresponding relation matrix, how can we
recognize a maximal or minimal element of the poset from
M()?

b) How can one recognize the existence of a greatest or
least element in (A, %) from the relation matrix M (9)?
17. Let% = {1, 2, 3, 4}, with A = P(°U), and let A be the sub-

set relation on A. For each of the following subsets B (of A),
determine the lub and glb of B.
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a) B ={{1}. {2}}

b) B ={{1}, {2}, {3}, {1. 2}}

o B={#, (1} {2}, {1,2})

d) B ={{1}, {L. 2}, (1,3}, (1. 2, 3}}

e) B ={{1}, (2} (3} {1. 2}, {1, 3}, {2. 3}

18. LetU = {1,2,3, 4,5, 6,7}, with A = P(A), and let R be
the subset relationon A. For B = {{1}, {2}, {2, 3}} € A, deter-
mine each of the following.

a) The number of upper bounds of B that contain (i) three

elements of AUL; (ii) four elements of %; (iii) five elements

of Y

b) The number of upper bounds that exist for B

¢) The lub for B

d) The number of lower bounds that exist for B

e) The glb for B

19. Define the relation R onthe set Zbya R bifa —bisa
nonnegative even integer. Verify that  defines a partial order
for Z. Is this partial order a total order?

20. For X ={0, 1}, let A = X X X. Define the relation R
on A by (a, b)) R (c,dyif i) a <c;or (ii)a =c and b <d.
(a) Prove that % is a partial order for A. (b) Determine all min-
imal and maximal elements for this partial order. (c) Is there
a least element? Is there a greatest element? (d) Is this partial
order a total order?

21. Let X = {0, 1,2} and A = X X X. Define the relation %
on A as in Exercise 20. Answer the same questions posed in
Exercise 20 for this refation R and set A,

22, For neZ*, let X={0,1,2,...,n—1,n} and A =
X X X. Define the relation & on A as in Exercise 20. Remem-
ber that each element in this total order 2R is an ordered pair
whose components are themselves ordered pairs. How many
such elements are there in R?

23. Let (A, R) be a poset. Prove or disprove each of the fol-
lowing statements.

a) If (A, Q) is a lattice, then it is a total order.

b) I (A. ) is a total order, then it is a lattice.
24, If (A, Q) is a lattice, with A finite, prove that (A, R) has a

greatest element and a least element.

25. For A={a, b, c,d, e, v, w, x, y, z}, consider the poset
(A, %) whose Hasse diagram is shown in Fig. 7.25. Find

a) glb{b, c} b) glb{b, w}
c) gible, x} d) lub{c, b}
e) lub{d, x} f) lub{c, ¢}

g) lub{a, v}
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Is (A, R) alattice? Is there a maximal element? a minimal
element? a greatest element? a least element?

Figure 7.25

26. Given partial orders (A, ) and (B, &), a function f:
A — B is called order-preserving if forallx, y e A, x Ry =
f(x) & f(y). How many such order-preserving functions are
there for each of the following, where R, & both denote < (the
usual “less than or equal to” relation)?

a) A=1{1,2,34}. B ={1, 2}
by A={1,....nt,rn=1B={1,2}

14
Equivalence Relations and Partitions

¢) A=la,a....,a,} CZ , n>1,

ap < <---<a,, B=1{1,2}

d) A={1,2}, 8={1,2,3,4)

e) A={1,2, B={l,...,n},n>1;and

) A={L2L B=1{bi,by,....5,} CZ  , n 21,

bi<by<-.- <bh,.
27. Let p, g, r, s be four distinct primes and m, n, k, £ € Z7.
How many edges are there in the Hasse diagram of all posi-
tive divisors of (a) p*; (b)p™; (¢) p'q%; (d) p"q"™; (e} pg*rY;

(F) p"g"r*: (@) pPaPrisTsand () p"q"rtst?

28. Find the number of ways to totally order the partial order
of all positive-integer divisors of (&) 24; (b) 75; and (c) 1701.

29. Let p, g be distinct primes and &k € ZT. If there are 429
ways to totally order the partial order of positive-integer divi-
sors of p‘q, how many positive-integer divisors are there for
this partial order?

30, Form, n € Z, let A be the set of all m X » (0, 1)-matrices.
Prove that the “precedes” relation of Definition 7.11 makes A
into a poset.

As we noted earlier in Definition 7.7, a relation % on a set A is an equivalence relation
if it is reflexive, symmetric, and transitive. For any set A # @, the relation of equality is
an equivalence relation on A, where two elements of A are related if they are identical;
equality thus establishes the property of “sameness” among the elements of A.

If we consider the relation % on Z defined by x R y if x — y is a multiple of 2, then ®
is an equivalence relation on Z where all even integers are related, as are all odd integers.
Here, for example, we do not have 4 = 8, but we do have 4 %R 8, for we no longer care
about the size of a number but are concerned with only two properties: “evenness” and
“oddness.” This relation splits Z into two subsets consisting of the odd and even integers:
Z={ .., -3 -1,1,3,..jU{ .., —4,-2,0,2,4 ...} This splitting up of Z is an
example of a partition, a concept closely related to the equivalence relation. In this section
we investigate this relationship and see how it helps us count the number of equivalence

relations on a finite set.

Definition 7.21
Aif
a) A= U A; and

ief

b) AiﬂAJ‘I@,

Given aset A and index set I, letd #* A; C A foreachi € 7. Then { A, };c; is a purtition of

foralli, j € I wherei # j.

Each subset A; is called a cell or block of the partition,

| EXAMPLE 752

If A={1,2,3,..., 10}, then each of the following determines a partition of A:

a) Ay =1{1,2,3,4,5}, A, =1{6,7,8,9, 10}



| EXAMPLE753 |
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b) A1 ={1,2,3}, A4, ={4,6,7,9}, A3 = {5, 8, 10}
o) A ={i,i+5}L1=<i<5

In these three examples we note how each element of A belongs to exactly one cell in each
partition.

Let A=Rand, foreachi € Z,let A; = [i, i + 1). Then {A;};cz is a partition of R.

Definition 7.22

EXAMPLE 7.54

EXAMPLE 7.55

Now just how do partitions come into play with equivalence relations?

Let i be an equivalence relation on a set A. For each x € A, the equivalence class of x,
denoted [x], is defined by [x] = {y € Aly R x}.

Define the relation R on Z by x R y if 4|(x — y). Since R is reflexive, symmetric, and
transitive, it is an equivalence relation and we find that

[0]=1{. .., 8, —4,0,4, 8 12,...} = [4klk € Z)

M =1{..,—7,-3,1,5913,..} =4k + 1|k € Z}

2]=1{...,—6,-2,2,6,10, 14, ..} = {4k + 2k € Z}
B]=1{..,=5 —1,3,7, 11,15, ...} = {4k + 3|k € Z}.

But what about [n], where » is an integer other than 0, 1, 2, or 3?7 For example, what
is [6]7 We claim that [6] = [2] and to prove this we use Definition 3.2 (for the equality of
sets) as follows. If x € [6], then from Definition 7.22 we know that x & 6. Here this means
that 4 divides (x —6), so x — 6 =4k for some k € Z. Butthen x — 6 =4k = x -2 =
4(k + 1) = 4 divides (x — 2) = x R 2 =% x € [2], so [6] C [2]. For the opposite inclusion
start with anelement y in [2]. Then y € [2] = y R 2 = 4 divides (y — 2) = y — 2 = 4l for
someleZ=y—6=4(—1),wherel — 1 € Z = 4 dividesy —6 = yR 6= y €[6],
so [2] € [6]. From the two inclusions it now follows that [6] = [2], as claimed.

Further, we also find, for example, that [2] = [—2] = [—6], [51] = [3], and [17] = [1].
Most important, {[0], [1], [2], [3]} provides a partition of Z.

[Note: Here the index set for the partition is implicit. If, for instance, we let Ay = [0],
Ay =[1], A, =[2], and A3 = [3], then one possible index set 7 (as in Definition 7.21) is
{0, 1, 2, 3}. When a collection of sets is called a partition (of a given set) but no index set
is specified, the reader should realize that the situation is like the one given here — where
the index set is implicit.]

Define the relation %R on the set Z by a R b if a®> = b? (or,a = + b). For all a € Z, we have
a*=a’>—soaRa and R is reflexive, Should a, b € Z with a R b, then a® = b2 and it
follows that b*> = a?, or b R a. Consequently, relation R is symmetric. Finally, suppose
thata, b, ceZ withaR b and b R c. Then a® = b2 and b?> = ¢2, so a2 =c? and a R c.
This makes the given relation transitive. Having established the three needed properties,
we now know that 2R is an equivalence relation.

What can we say about the corresponding partition of Z.?
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Here one finds that [0] = {0}, [1] = [-1] = {—1, 1}, [2] = [-2] = {-2, 2}, and, in gen-
eral, for each n € Z*, [n] = [—n] = {—n, n}. Furthermore, we have the partition

z=Um = LJN[n] -0 U (L.J]{—n, n}) =0 U ( U f-n, n}) .

n=0 nelt

These examples lead us to the following general situation.

THEOREM 7.6 If 92 is an equivalence relation on a set A, and x, v € A, then (2) x € [x]; (b) x R y if and
only if [x] = [y]; and (¢) [x] = [yl or [x] N [y] = &.
Proof:

a) This result follows from the reflexive property of R.

b) The proof here is somewhat reminiscent of what was done in Example 7.54.

Ifx R y,letw € [x]. Then w R x and because R is transitive, w R y. Hence w € [y]
and [x] C [y]. With 9 symmetric, x Ry = yR x. Soif t € [y], then t & y and by
the transitive property, t R x. Hence ¢ € [x] and [y] € [x]. Consequently, [x] = [y].

Conversely, let [x] = [y]. Since x € [x] by part (a), then x € [y]orx R y.

¢) This property tells us that two equivalence classes can be related in only one of two
possible ways. Either they are identical or they are disjoint.

We assume that [x] # [y] and show how it then follows that [x] N [y] =@. If
(x]N[y] # ¥, thenletv e Awithv €[x]and v € [y]. Then v R x, v R y, and, since
R is symmetric, x R v. Now (x A v and v R v) = x R y, by the transitive property.
Also x AR y = [x] = [y] by part (b). This contradicts the assumption that [x] # [¥],
so we reject the supposition that [x] N [y] # @, and the result follows.

Note that if R is an equivalence relation on A, then by parts (a) and (c) of Theorem 7.6
the distinct equivalence classes determined by 2R provide us with a partition of A.

a)lf A=1{1,2,3,4,5 and R={(1, 1), (2,2),(2,3), 3,2),3,3),4 D, 453,
(5, 4), (5, 5)}, then A is an equivalence relation on A, Here [1] = {1}, [2] = {2, 3} =
(31, 41 = {4,5} = [5],and A = [1JU [2] U [4] with [1]1 N [2] = &, [1]1 N [4] = @, and
[2] N [4] = @. So {[1], [2], [4]} determines a partition of A.

b) Consider part (d) of Example 7.16 once again. Wehave A = {1, 2, 3,4,5,06,7}, B =
{x, v, z}, and f: A — B is the onto function

F=1{.x),@2,2), 3 x), &4, y), 5, 2,®,y), 7, x)}

The relation R defined on A by ¢ QR bif f(a) = f(b) was shown to be an equivalence
relation. Here

EXAMPLE 7.56

) =113, 7y =[11(=[3] = [T,
S~y =1{4.6} =[4)(=[6]), and
@) =1{2. 51 =21 (= [5]).
With A = [1JU4U[2] = f~') U £~ () U F7'(2), we see that
LN, £7'(y), £ '(z)] determines a partition of A.

In fact, for any nonempty sets A, B, if f: A — B is an onto function, then A =
Ubeg f'(b) and { f~' (b)|b € B} provides us with a partition of A,
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EXAMPLE 758 |
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In the programming language C++ a nonexecutable specification statement called the union
construct allows two or more variables in a given program to refer to the same memory
location.

For example, within a program the statements

union

int a;

int c;

int p;
union

int up;
int dowi;

i

inform the C++ compiler that the integer variables a, ¢, and p will share one memory
location while the integer variables up and down will share another. Here the set of all
program variables is partitioned by the equivalence relation R, where v; R v, if v, and v,
are program variables that share the same memory location.

Having seen examples of how an equivalence relation induces a partition of a set, we now
go backward. If an equivalence relation R on A = {1, 2, 3, 4, 5, 6, 7} induces the partition
A={1,21U{3)U{4,5, 7} U {6}, whatis R?

Considerthecell {1, 2} of the partition. This subset implies that [1] = {1, 2} = [2],and so
(1, 1), (2,2), (1, 2), (2, 1) € . (The first two ordered pairs are necessary for the reflexive
property of @; the others preserve symmetry.)

In like manner, the cell {4, 5, 7} implies that under R, [4] = [5] = [7] = {4, 5, 7} and
that, as an equivalence relation, 9A must contain {4, 5, 7} X {4, 5, 7}. In fact,

R= ({1, 2} X {1, 2D U ({3} X (3) U ({4, 5, 7} X {4, 5, 7} U ({6} X {6}).
and

Rl =224+174+324+12=15.

The results in Examples 7.54, 7.55, 7.56, and 7.58 lead us to the following.

THEOREM 7.7

If A is a set, then

a) any equivalence relation R on A induces a partition of A, and
b) any partition of A gives rise to an equivalence relation % on A.
Proof: Part (a) follows from parts (a) and (¢) of Theorem 7.6. For part (b), given a partition

{A, }ies of A, definerelation % on A by x & v, if x and v are in the same cell of the partition.
We leave to the reader the details of verifying that 9 is an equivalence relation.

On the basis of this theorem and the examples we have examined, we state the next
result. A proof for it is outlined in Exercise 16 at the end of the section.



370 Chapter 7 Relations: The Second Time Around

THEOREM 7.8 For any set A, there is a one-to-one correspondence between the set of equivalence relations
on A and the set of partitions of A.
We are primarily concerned with using this result for finite sets.
_ o . -
EXAMPLE 7.59 a) If A={1,2, 3,'4, 5, 6}, how many Telat10ns on‘{l are equ1valen'ce' relations? N
We solve this problem by counting the partitions of A, realizing that a partition

of A is a distribution of the (distinct) elements of A into identical containers, with
no container left empty. From Section 5.3 we know, for example, that there are
S(6, 2) partitions of A into two identical nonempty containers. Using the Stirling
numbers of the second kind, as the number of containers varies from 1 to 6, we have

6

relations on A.

;=1 S(6, i) = 203 different partitions of A. Consequently, there are 203 equivalence

b) How many of the equivalence relations in part (a) satisfy 1, 2 € [4]?
Identifying 1, 2, and 4 as the “same” element under these equivalence relations, we
countasinpart(a)fortheset B = {1, 3, 5, 6} and find that there are Z‘-‘:, S, =15
equivalence relations on A for which [1] = [2] = [4].

We close by noting that if A is a finite set with | A| = #, then for all n < r < n?, there is

an equivalence relation %R on A with [%R| = r if and only if there exist ny, n,, .
with Y 5, n; =nand ) % n?

EXERCISES 7.4

1. Determine whether each of the following collections of sets
is a partition for the given set A. If the collection is not a parti-
tion, explain why it fails to be.

a) A={1,2,3,4,5,67,8}; A ={45 6},
Ay ={1,8} As=1{2,3,7).
by A={a, b, c d e fg. hy, A =1{d, e}

Ay ={a,c,d}, Ay = {f, i}, Ay = (b, g}

2. LetA=1{1,2,3,4,5,6,7, 8. Inhow many ways can we

partition A as A} U A; U As with
a) 1,2€ A, 3,4c A,, and 5.6,7 € A3?
b) 1,2€ Ay, 3,4 As, 5,6€ Az, and |A,| =37
¢) 1,2€ Ay, 3,4€A,, and 5,6¢ A3?

It A=1{1,23 4,5} and % is the equivalence relation
on A that induces the partition A = {1, 2} U {3, 4} U {5}, what
is A7

4, ForA =1{1,2,3,4,5.6,,% =((1, 1), (1.2), (2, 1), (2, 2),
(3,3), 4. 4),4,5), 5,4, (5,5), (6, 6)}isanequivalencere-
lation on A. {(a) What are [1], [2], and [3] under this equivalence
relation? (b) What partition of A does 9 induce?

5. If A=A UAUA;, where A = {1, 2}, A; = {2, 3, 4},
and Ay = {5}, define relation ® on A by x R y if x and y are in
the same subset A,, for 1 < < 3. 1s R an equivalence relation?

..,nkeZ+

=r.

6. For A = R?, define R on A by (x1, y1) R (xa, y,) if
Xy = Xo.
a) Verify that 9 is an equivalence relation on A.
b) Describe geometrically the equivalence classes and par-
tition of A induced by %R.
7. LetA ={1,2,3,4,5) X {1, 2,3, 4, 5}, and define R on A
by (e1, y1) R (x2, y2) if X1 + y1 = 22+ y2.
a) Verify that % is an equivalence relation on A.

b) Determine the equivalence classes [(1, 3)), [(2, 4)],and
[(1, D).
¢) Determine the partition of A induced by 9=.

8. IfA=1{1,2,3,45 6,7}, defineRon A by (x, y) eRif

x — y Is a multiple of 3.
a) Show that A is an equivalence relation on A.
b) Determine the equivalence classes and partition of A
induced by %.

9. For A = {(—4, =-20), (-3, =9, (=2, -4, (-1, —11),
(=1, =3), (1, 2), (1, 5), (2, 10}, (2, 14), (3, 6). (4, 8), {4, 12)
define the relation % on A by (a, ) R (c, d) if ad = bc.

a) Verify that & is an equivalence relation on A.

b) Find the equivalence classes [(2, 14)], [(—3, —9)], and
[(4, 8)].



¢) How many cells are there in the partition of A induced

by R?
10. Let A be a nonempty set and fix the set B, where B C A.
Define the relation & on P(A) by X R Y, for X, Y C A, if
BnX=R8BnNY.

a) Verify that % is an equivalence relation on P(A).

b) If A={1,2,3} and B = {I, 2}, find the partition of

%(A) induced by AR.

o) IfA=1{1,2,3,4,5}and B = {1, 2, 3}, find [X]if X =

{1, 3, 5}.

d) For A=1{1,2,3,4,5} and B = {1, 2, 3}, how many

equivalence classes are in the partition induced by A7
11. How many of the equivalence relations on A =
{a.b.c, d, e, f} have (a) exactly two equivalence classes of
size 3?7 (b) exactly one equivalence class of size 3?7 (¢} one
equivalence class of size 47 (d) at least one equivalence class
with three or more elements?
12, Let A = {v, w, x, ¥, z}. Determine the number of relations
on A that are (a) reflexive and symmetric; (b) equivalence
relations; (c) reflexive and symmetric but not transitive; (d)
equivalence relations that determine exactly two equivalence
classes; (e) equivalence relations where w € [x]; (f) equiv-
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alence relations where v, w € [x]; {g) equivalence relations
where w € [x] and y € [z]; and (h) equivalence relations where
w € [x], y € [z], and [x] # [z].

13, If |A| = 30 and the equivalence relation 22 on A partitions
A into (disjoint} equivalence classes A, As, and Aj, where
|A| = |Az| = |A;|, what is |R]?

14. Let A = {1, 2, 3, 4, 5, 6, 7}. For each of the following val-
ues of r, determine an equivalence relation % on A with |R| =
r, or explain why no such relation exists. (a) r = 6; (b r =7;
© r=8 () r=9;, (& r=11; (f) r=22; (g} r =23;
(hy r = 30; i} r = 31.

15. Provide the details for the proof of part (b) of Theo-
rem 7.7.

16. For any set A # @, let P(A) denote the set of all partitions
of A, and let E(A) denote the set of all equivalence relations
on A. Define the function f: E(A) — P(A) as follows: If R
is an equivalence relation on A, then f (%) is the partition of
A induced by . Prove that f is one-to-one and onto, thus
establishing Theorem 7.8.

17. Let f: A — B. If {By, By, By, ..., B,} is a partition of
B, prove that [ f~1(B)|1 <i <n, f71(B,) # @} is a partition
of A.

In Section 6.3 we encountered two finite state machines that performed the same task but
had different numbers of internal states. (See Figs. 6.9 and 6.10.) The machine with the
larger number of internal states contains redundunt states — states that can be eliminated
because other states will perform their functions. Since minimization of the number of
states in a machine reduces its complexity and cost, we seek a process for transforming a
given machine into one that has no redundant internal states. This process is known as the
minimization process, and its development relies on the concepts of equivalence relation

and partition.

Starting with a given finite state machine M = (S, %, G, v, w), we define the relation
E; on S by sy E| 57 if w(s;, x) = w(sz, x), for all x € .$. This relation E, is an equivalence
relation on S, and it partitions S into subsets such that two states are in the same subset if
they produce the same output for each x € §. Here the states s;, s are called I-equivalent.

Foreachk e Z1, we say that the states s, s, are k-equivalent if w(s|, x) = @(s2, x) for
all x € $F. Here w is the extension of the given output function to § X $*. The relation of k-
equivalence is also an equivalence relation on §; it partitions S into subsets of k-equivalent
states. We write s; E; s to denote that s; and s, are k-equivalent.

Finally, if 51, o € § and sy, s» are k-equivalent for all k > 1, then we call s; and s,
equivalent and write 5| E 5. When this happens, we find that if we keep s; in our machine,
then s, will be redundant and can be removed. Hence our objective is to determine the
partition of S induced by E and to select one state for each equivalence class. Then we shall
have a minimal realization of the given machine.



372 Chapter 7 Relations: The Second Time Around

EXAMPLE 7.60

To accomplish this, let us start with the following observations.

a) If two states in a machine are not 2-equivalent, could they possibly be 3-equivalent?
(or k-equivalent, for £ > 47)

The answer is no. If 51, sz € § and 51 E, s» (that is, s; and s, are not 2-equivalent),
then there is at least one string xy € $? such that w(s;, xy) = vjv3 # ww, =
(52, xy), where vy, v, wi, wy € 0. So with regard to E3, we find that s; F; s, be-
cause for any z € .9, w(s1, Xyz) = vitavy F Wiw3 = w(s2, XV7).

In general, to find states that are (k + 1)-equivalent, we look at states that are
k-equivalent.

b) Now suppose that s;, s» € § and s; E; s,. We wish to determine whether s; E; 55.
That is, does w(s|, x;x2X3) = w(sy, x1x2x3) for all strings x,x2x3 € $3? Con-
sider what happens. First we get w(s;, x1) = w(s2, x|}, because s; E; 55 = 51 E 50.
Then there is a transition to the states v(s;, x;) and v(sy, x;). Consequently,
(51, X1x2x3) = w(s2, xix2x3) if w(visy, x1), x2x3) = w(v(sy, x1), x2x3) [that is,
if vi(sy, x1) B2 v(s2, x)1.

In general, for 5, $3, € 5, where 51 E; 57, we find that 5; B, s> if (and only if)
visy, x) By visy, x) forall x € .

With these observations to guide us, we now present an algorithm for the minimization of
a finite state machine M.

Step 1: Set k = 1. We determine the states that are 1-equivalent by examining the
rows in the state table for M. For 51, 57 € § it follows that 51 Ey 5, when sy, 57 have
the same output rows.

Let Py be the partition of § induced by E;.

Step 2: Having determined Pp, we obtain Py, by noting that if 5, B, 5, then
51 Erea 82 when v(sy, x) Bz v(s;, x) for all x € $. We have s By 52 if &4, 50 are
in the same cell of the partition P;. Likewise, v{s;, x) B v(ss3, x) foreachx € 8,
if v{sy, x) and v(sy, x) are in the same cell of the partition Py. In this way Py is
obtained from Py.

Step 3: If Py = P, the process is complete. We select one state from each equiv-
alence class and these states yield a minimal realization of M.

Y Py # P, we increase k by 1 and return to step (2).

We illustrate the algorithm in the following example.

With $ = 0 = {0, 1}, let M be given by the state table shown in Table 7.1. Looking at the
output rows, we see that 53 and s4 are 1-equivalent, as are 5;, 55, and sg. Here E; partitions
S as follows:

Prids1) sz, 85, 86}, {53, 84}

For each s € § and each k € Z*, s By s, so as we continue this process to determine Ps, we
shall not concern ourselves with equivalence classes of only one state.

Since s3 E| 54, there is a chance that we could have s3 E, s4. Here v(s3, 0) = 53,
v(ss, 0) = sswith sz E; ss,and v(s3, 1) = s4, v(ss, 1) = 53 with s4 E; 53. Hence v(s3, x) E;
v(ss, x), for all x € §, and s3 E; s54. Similarly, v{sz, 0) = s5, v(ss, 0) = 57 with 55 E| 57,
and \)(32, ]) = 85, V(Sj, 1) = 85 with 852 E1 55. Thus 52 E2 S5, Finally, 1)(.8‘5, O) =85 and
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v(ss, 0) = 51, but 53 ¥, 51, 50 s5 E, 5. (Why don’t we investigate the possibility of
52 By 547) Equivalence relation E; partitions § as follows:

Py {51}, {52, 85}, {53, s4), {s6}.

Since P> # Py, we continue the process to get Ps. In determining whether s, E3 55, we
see that v(sz, Q) = 55, v(ss, 0) = 55, and s5 E; 50. Also, v(s2, 1) = 52, v(ss, 1) = 55, and
52 By 55. With v(s2, x) E; v(ss, x) forall x € §, we have s, Ej s55. For 53, 54, (v(s3, 0) = 52)
E; (s5 = v(s4, 0}) and (v(s3, 1) = 54) B (53 = v{s4, 1)), so s3 E3s4 and E; induces the
partition Ps: {51}, {s2, s5}, {53, 54}, {s6}.

Table 7.1 Table 7.2
v @ v 1)

0 1 0 1 0 1 0 1
s1 |84 s3]0 1 s1 |83 s3 |0 1
52 55 52 1 0 52 52 52 1 0
s3 | 52 5854 |0 O §3 s s |0 O
54 S5 53 0 ¢ N M 36 1 0
S5 52 55 1 0
56 | 51 s¢e | 1 O

Now P; = P, so the process is completed, as indicated in step (3) of the algorithm. We
find that s5 and s4 may be regarded as redundant states. Removing them from the table, and
replacing all further occurrences of them by s, and s3, respectively, we arrive at Table 7.2.
This is a minimal machine that performs the same tasks as the machine given in Table 7.1.

If we do not want states that skip a subscript, we can always relabel the states in this
minimal machine. Here we would have 51, 52, $3, 54 (= $g), but this s4 i$ not the same s4
we started with in Table 7.1.

You may be wondering how we knew that we could stop the process when P» = P». For
after all, couldn’t it happen that perhaps P, # P4, or that P, = P; but Ps # P4? To prove
that this never occurs, we define the following idea.

If Py, P, are partitions of a set A, then P; is called a refinement of P, and we write P, < Py,
ifevery cell of P is contained in acell of P|. When P> < Py and P> # P) we write Py < Py.
This occurs when at least one cell in P is properly contained in a cell in P,

In the minimization process of Example 7.60, we had P; = P, < P;. Whenever we
apply the algorithm, as we get Piyy from Py, we always find that Py, < P, because
(k + 1)-equivalence implies k-equivalence. So each successive partition refines the pre-
ceding partition,

THEOREM 7.9

In applying the minimization process, if £ > 1 and P, and Py, are partitions with Py =
Py, then P,y = P, forallr > k + 1.

Proof: If not, let r (> &k + 1) be the smallest subscript such that P, # P,.Then P, < P,,
so there exist 51, 57 € S with s E, 57 but 5 E,,+, s2. But s, E, s = v(s1, x) Er_) v(sy, x),
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for all x € , and with P, = P,_|, we then find that v(sy, x) E, v(s;, x), forall x € $, so
s1 E,+| 52. Consequently, P4 = P,.

We close this section with the following related idea. Let M be a finite state machine
with 51, 55 € S, and sy, s, not equivalent. If 5; [, 52, then these states produce different
output rows in the state table for M. In this case it is easy to find an x € $ such that
w(sy, x) # w(s,, x), and this distinguishes these nonequivalent states. Otherwise, s, and
52 produce the same output rows in the table but there is a smallest integer £ > 1 such that
s1 Ex 52 but 54 Ek_H s2. Now if we are to distinguish these states, we need to find a string x =
X1X3 - xpXeq1 € 351 such that (s, x) # @(s2, X), even though @(s), X1x2 «+ + X) =
w(sy, x1x2 - - - xx). Such a string x is called a distinguishing string for the states s| and s;.
There may be more than one such string, but each has the same (minimal) length &k + 1.

Before we try to find a distingunishing string for two nonequivalent states in a specific
finite state machine, let us examine the major idea at play here. So suppose that 51, s2 € S
and that for some (fixed) k € Zt we have 57 E; 53 but sy By, s;. What can we conclude?

We find that

51 Bray 2= Axy € 3 [v(sy, x1) By vis2, x1)]
= Ax; €F Txy € I [v(v{sy, X1), x2) By v(v(s2, X1), X2)],
or  Ax;€$ Ty eI [uis1, x1x2) By visa, x1x2)]

= Ax1, X2, X3 € F [V(s, x1x2%3) Kyog (82, X122%3)]

= 3x, x5 €I G xix - x) B vis, nixg - x;))
=3Ax), x2, ..., % € P, x1xp - x0) By viso, x1x2 -+ - x0)]

This last statement about the states v(sy, xjx2 - - - Xi), v($2, X1 X2 - - - X¢) not being
1-equivalent implies that we can find x; 1 € $ where

@(V{s1, X1X2 -+ Xg), Xpq1) 7 @ (V($2, X1X2 -+ - X)), Xer 1) M

That is, these single output symbols from € are different.
The result denoted by Eq. (1) also implies that

w(81, X) = w(S1, X1X2 -+ - XpXpq1) F 052, X1X2 - - - XeXpg1) = w(52, X).

In this case we have two output strings of length k + 1 that agree for the first & symbols
and differ in the (k + 1)st symbol.

We shall use the preceding observations, together with the partitions P|, P, .. ., Py,
Py of the minimization process, in order to deal with the following example.

From Example 7.60 we have the partitions shown below. Here s E s¢, but s, F, s6. Sowe
seek an input string x of length 2 such that w (s, x) # w(se, X).

1) We start at P,, where for s;, 55, we find that v(s;, 0) = s5 and v(sg, 0) = s, are in
different cells of Py —that is,

55 = v(s2, O) By viss, @) = 51,
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[The input O and output 1 (for w(s2, 0) = 1 = w(se, 1)) provide the labels for the
arrows going from the cells of P, to those of P;.]

Pz: {Sl}a {st 85 | {33554}5 {Sf,}
0,1 0,1

Pro{sy), {52, 85, 561, {854, 8,1

o,ol 0,1l

2) Working with s, and ss in the partition P, we see that
w2, 0,0 =w(ss,0) =17#0=w(s, 0) = wvis, 0),0).

3) Hence x = 00 is a minimal distinguishing string for s, and sg because w(s,, 00) =
11 # 10 = w(sq, 00).

EXAMPLE 7.62 Applying the minimization process to the machine given by the state table in part (a) of
’ Table 7.3, we obtain the partitions in part (b) of the table. (Here Py = Pi.) We find that the

states sy and s4 are 2-equivalent but not 3-equivalent. To construct a minimal distinguishing
string for these two states, we proceed as follows:

1) Since s; F; 54, we use partitions P3 and P; to find x; € $ (namely, x; = 1) so that

(v(s1, 1) = 52) By (55 = viss, 1)),
2) Thenv(sy, 1) B, v(s4, 1) = 3x; € F (herex; = Dwith (v(sy, 1), 1 E| ((sy, 1), 1),
or v(sy, 11) Ey v(s4, 11). We used the partitions P; and P; to obtain x, = 1,
3) Now we use the partition P, where we find that forx3 = 1 € $,

o, 1), 1D)=0#1=w((s, 11D, 1) or
o(sy, 111y = 100 # 101 = w(sy, 111).

In part (b) of Table 7.3, we see how we arrived at the minimal distinguishing string
x = 111 for these states. (Also note how this part of the table indicates that 11 is a minimal
distinguishing string for the states s, and s5, which are 1-equivalent but not 2-equivalent.)

Table 7.3
v i P3: {Slv 83}1 {82}’ {S4}’ {SS}
o 1]0 1 1,\‘ \1,1
st sa s210 1 Py {5,583, 8,1}, (5,), {55}
Ay S5 Y] 0 4] 1,0 1’0
z?’ ? »:2 8 } P sy, 53, 5,), 155, 55)
4| 53 S5
55 S2 53 0 1] 1511 11,0

@ (b)
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A great deal more can be done with finite state machines. Among other omissions, we
have avoided offering any rigorous explanation or proof of why the minimization process
works. The interested reader should consult the chapter references for more on this topic.

2, Forthe machine in Table 7.4(c), find a (minimal) distinguish-
EXERCISES 7.5 ing string for each given pair of states: (a) 51, §5; (b) 52, 535

(c) 55, 57.

1. Apply the minimization process to each machine in Table 7.4.

3. Let M be the finite state machine given in the state diagram
shown in Fig. 7.26.

a) Minimize machine M.

b) Find a (minimal) distinguishing string for each given pair
of states: (i) 53, 5g; (i1) 53, $4; and (iii) 57, $3.

Figure 7.26

Table 7.4
w
0 1[0 1
5 84 3 0 1
2018 s3(1 0
§3 | s1 sqj 1 O
S 81 53 O 1
55 53 853 1 0
@
w
0O 1[0 1
s1 s s3|10 0
s2 185 s34 [0 1
s3 | s¢ s2 71 1
54 54 53 1 0
ss | s s34 |0 1
56 54 56 0 0
(b)
w
0 110 1
$1 M 83 g 0
8§27 853 S| 0; 0
s3 s 5|10 0
54 §7 §4 0 0
ss | s¢ 57|10 O
56 55 5 1 0
$7 54 M 0 0

(©

16

Summary and Historical Review

Once again the relation concept surfaces. In Chapter 5 this idea was introduced as a gen-
eralization of the function. Here in Chapter 7 we concentrated on relations and the special
properties: reflexive, symmetric, antisymmetric, and transitive. As a result we focused on
two special kinds of relations: partial orders and equivalence relations.
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A relation P on a set A is a partial order, making A into a poset, if & is reftexive,
antisymmetric, and transitive. Such a relation generalizes the familiar “less than or equal
to” relation on the real numbers. Try to imagine calculus, or even elementary algebra,
without it! Or take a simple computer program and see what happens if the program is
entered into the computer haphazardly, permuting the order of the statements. Order is
with us wherever we turn. We have grown so accustomed to it that we sometimes take it
for granted. The origins of the subject of partially ordered sets (and lattices) came about
during the nineteenth century in the work of George Boole (1815-1864), Richard Dedekind
(1831-1916), Charles Sanders Peirce (1839-1914), and Ernst Schrider (1841-1902). The
work of Garrett Birkhoff (1911-1996) in the 1930s, however, is where the initial work on
partially ordered sets and lattices was developed to the point where these areas emerged as
subjects in their own right.

For a finite poset, the Hasse diagram, a special type of directed graph, provides a pictorial
representation of the order defined by the poset; it also proves useful when a total order,
including the given partial order, is needed. These diagrams are named for the German
number theorist Helmut Hasse (1898-1979). He introduced them in his textbook Héhere
Algebra (published in 1926) as an aid in the study of the solutions of polynomial equations,
The method we employed to derive a total order from a partial order is called topological
sorting and it is used in the solution of PERT (Program Evaluation and Review Technique)
networks. As mentioned earlier, this method was developed and first used by the U.S. Navy.

Although the equivalence relation differs from the partial order in only one property,
it is quite different in structure and application. We make no attempt to trace the origin
of the equivalence relation, but the ideas behind the reflexive, symmetric, and transitive
properties can be found in I Principii di Geometria (1889), the work of the Italian mathe-
matician Giuseppe Peano (1858-1932). The work of Carl Friedrich Gauss (1777-1855) on
congruence, which he developed in the 1790s, also utilizes these ideas in spirit, if not in
nare.

Giuseppe Peano (1858-1932) Carl Friedrich Gauss (1777-1855)

Basically, an equivalence relation 92 on a set A generalizes equality; it induces a char-
acteristic of “sameness” among the elements of A. This “sameness” notion then causes the
set A to be partitioned into subsets called equivalence classes. Conversely, we find that a
partition of a set A induces an equivalence relation on A, The partition of a set arises in
many places in mathematics and computer science. In computer science many searching
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algorithms rely on a technique that successively reduces the size of a given set A that is
being searched. By partitioning A into smaller and smaller subsets, we apply the searching
procedure in a more efficient manner. Each successive partition refines its predecessor, the
key needed, for example, in the minimization process for finite state machines.

Throughout the chapter we emphasized the interplay between relations, directed graphs,
and (0, 1)-matrices. These matrices provide a rectangular array of information about a
relation, or graph, and prove useful in certain calculations. Storing information like this, in
rectangular arrays and in consecutive memory locations, has been practiced in computer
science since the late 1940s and early 1950s. For more on the historical background of such
considerations, consult pages 456—462 of D. E. Knuth [3]. Another way to store information
about a graph is the adjacency list representation. (See Supplementary Exercise 11.) In the
study of data structures, linked lists and doubly linked lists are prominent in implementing
such a representation. For more on this, consult the text by A. V. Aho, I. E. Hopcroft, and
J. D. Ullman [1].

With regard to graph theory, we are in an area of mathematics that dates back to 1736
when the Swiss mathematician Leonhard Euler (1707-1783) solved the problem of the
seven bridges of Kénigsberg. Since then, much more has evolved in this area, especially in
conjunction with data structures in computer science.

For similar coverage of some of the topics in this chapter, see Chapter 3 of D. F. Stanat
and D. F. McAllister [6]. An interesting presentation of the “Equivalence Problem™ can be
found on pages 353-355 of D. E. Knuth [3] for those wanting more information on the role
of the computer in conjunction with the concept of the equivalence relation.

The early work on the development of the minimization process can be found in the
paper by E. F. Moore [5], which builds upon prior ideas of D. A. Huffman [2]. Chapter 10
of Z. Kohavi [4] covers the minimization process for different types of finite state machines
and includes some hardware considerations in their design.
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b) q %R, is reflexive on A if and only if each R, is reflex-
e

SUPPLEMENTARY EXERCISES ive on A.

1. Let A be a set and 7 an index set where, foreachi € I, R, 2. Repeat Exercise 1 with “reflexive” replaced by (i) symmet-
is arelation on A. Prove or disprove each of the following. ric; (ii) antisymmetric; (iii) transitive.

a) L’J R, is reflexive on A if and only if each 2R, is reflex-
1€

iveon A.

3. For aset A, let R and %R, be symmetric relations on A. If
R oRy TRy 0o Ry, prove that Ry o Ry = R o Ry



4, For each of the following relations on the set specified,
determine whether the relation is reflexive, symmetric, anti-
symmetric, or transitive. Also determine whether it is a partial
order or an equivalence relation, and, if the latter, describe the
partition induced by the relation.

a) % is the relation on Q wherea R b if |a — b| < 1.
I) Let T be the set of all triangles in the plane. For
t), e T,define t; A t; if £y, £ have the same area.
¢) For T as in part (b), define & by £, A 1, if at least two
sides of #; are contained within the perimeter of #,.
d) Let A=1{1,2,3,4,5,6,7}. Definec hon Aby xRy
ifxy = 10.

5. For sets A, B, and C with relations %, C A X B and

R, € B X C, prove or disprove that (| o Ry)" = RS o RS

6. Foraset A, let C = {P;|P, is a partition of A}, Define rela-
tion @R on C by P, R P; if P, < P; —thatis, P; is a refinement
of Pj

a) Verify that R is a partial order on C.

b) For A = {1, 2, 3, 4, 5}, let P;, 1 < i < 4, be the follow-
ing partitions: Py: (1, 2}, {3, 4, 5}); P: {1, 2}, {3, 4}, (5}
Py {1}, {2}, {3, 4, 5% Pa:{1. 2}, {3}, {4}, (5} Draw the
Hasse diagram for C = { P, {1 < { < 4}, where C is partially
ordered by refinement.

7. Give an example of a poset with 5 minimal (maximal) ele-
ments but no least (greatest) element.

8. LetA=1{1,2,3,4,5 6} X{1,2,3,4,5, 6}. Define & on
Aby (x1, 1) R (x2. y2), if 131 = x2%2.
a) Verify that QR is an equivalence relation on A.
b) Determine the equivalence classes [(1, 1)1, [(2, 2)],
[(3, 2)], and [(4, 3)].
9. If the complete graph K, has 45 edges, what is n?

10, Let%F = {f: ZT — R} —thatis, F is the setof all functions
with domain Z* and codomain R.

a) Define the relation %k on F by ¢ Rk, for g, h e F, if
£ is dominated by 4 and £ is dominated by g —that is,
g € O(h). (See Exercises 14, 15 for Section 5.7.) Prove
that 9 is an equivalence relation on .

b) For f € %, let | /] denote the equivalence class of f
for the relation % of part (a). Let & be the set of equiva-
lence classes induced by . Define the relation ¥ on 7' by
[g]1F [h], for [g], [h] € &', if g is dominated by A. Verify
that & is a partial order.

¢) For QR in part (a), let f, fi. f€ F with fi, e [f]
If fi + fo: Z* — Ris defined by (fi + fo)(n) = fi(n) +
f2(m), for n € Z*, prove or disprove that f, + f> € [ f].

11, We have seen that the adjacency matrix can be used to
represent a graph. However, this method proves to be rather in-
efficient when there are many O’s (that is, few edges) present. A
better method uses the adjacency list representation, which is
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made up of an adjacency list for each vertex v and an index list.
For the graph shown in Fig. 7.27, the representation is given by
the two lists in Table 7.5.

Figure 7.27
Table 7.5

Adjacency List Index List
1 1 1 1
2 2 2 4
3 3 3 5
4 6 4 7
5 1 5 9
6 6 6 9
7 3 7 11
8 5 8 11
9 2
10 7

For each vertex v in the graph, we list, preferably in numer-
ical order, each vertex w that is adjacent from v. Hence for 1,
we list 1, 2, 3 as the first three adjacencies in our adjacency list.
Next to 2 in the index list we place a 4, which tells us where
to start looking in the adjacency list for the adjacencies from 2.
Since there is a 5 to the right of 3 in the index list, we know
that the only adjacency from 2 is 6. Likewise, the 7 to the right
of 4 in the index list directs us to the seventh entry in the adja-
cency list—namely, 3 —and we find that vertex 4 is adjacent
to vertices 3 (the seventh vertex in the adjacency list) and 5 (the
eighth vertex in the adjacency list). We stop at vertex 5 because
of the 9 to the right of vertex 5 in the index list. The 9’s in the
index list next to 5 and 6 indicate that no vertex is adjacent from
vertex 5. In a similar way, the 11°s next to 7 and 8 in the index
list tell us that vertex 7 is not adjacent to any vertex in the given
directed graph.

In general, this method provides an easy way to determine
the vertices adjacent from a vertex v. They are listed in the
positions index(v), index(v) + 1, ..., index(v 4+ 1) — 1 of the
adjacency list.

Finally, the last pair of entries in the index list— namely, 8
and 11 —is a “phantom” that indicates where the adjacency list
would pick up from if there were an eighth vertex in the graph.

Represent each of the graphs in Fig. 7.28 in this manner.
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Figure 7.28
12. The adjacency list representation of a directed graph G is Table 7.7
given by the lists in Table 7.6. Construct G from this represen-
tation. v
Table 7.6 0 1 0 1
Adjacency List Index List 51 5 5 1 0
1 2 l 1 §2 57 57 0 0
2 3 2 4 53 57 5 1 0
3 6 3 5 hY ] 52 53 0 0
4 3 4 5 ss | 53 8y 0 0
5 3 5 8 S 54 M 0 0
6 4 6 10 S7 53 S5 1 0
7 5 7 10 S5 57 53 0 0
8 3 8 10
9 6

13. Let G be an undirected graph with vertex set V. Define the
relation R on V by v R w if v = w or if there is a path from v
to w (or from w to v since G is undirected). (a) Prove that &
is an equivalence relation on V. (b) What can we say about the
associated partition?

14. a) Forthe finite state machine givenin Table 7.7, determine
a minimal machine that is equivalent to it.

b) Find a minimal string that distinguishes states s4 and se.

15. Atthe computer center Maria is faced with running 10 com-
puter programs which, because of priorities, are restricted by
the following conditions: (a) 10> 8,3; (b) 8> 7, (¢) 7> 5;
(d)3>96;6>4,1;(f)9>4,5 (g4, 5, 1> 2; where,
for example, 10 > 8, 3 means that program number 10 must be
run before programs 8 and 3. Determine an order for running
these programs so that the priorities are satisfied.

16. a) Draw the Hasse diagram for the set of positive inte-
ger divisors of (i) 2; (i) 4; (iii) 6; (iv) 8; (v) 12; (vi) 16;
(vil) 24; (viii) 30; (ix) 32.

b) Forall 2 <n < 35, show that the Hasse diagram for the
set of positive-integer divisors of n looks like one of the
nine diagrams in part (a). (Ignore the numbers at the ver-
tices and concentrate on the structure given by the vertices
and edges.) What happens for n = 367

¢) Forn € Z", 1(n) = the number of positive-integer di-
visors of n. (See Supplementary Exercise 32 in Chapter 5.)
Letm,neZ" and S, T be the sets of all positive-integer
divisors of m, n, respectively. The results of parts (a) and
(b} imply that if the Hasse diagrams of §, T are structurally
the same, then t(m) = t(xn). But is the converse true?

d) Show thateach Hasse diagram in part (a) is a lattice if we

define glb{x, y} = ged(x, y) and lub{x, y} = lcm(x, y).
17. Let U denote the set of all points in and on the unit square
showninFig.7.29. Thatis, U = {(x, [0 <x < 1,0<y <1}
Define the relation R on U by (a, B) R (¢, d) if (1) (a, b) =
(c,d),or(2)b=danda =0andc = l,or(3)b=danda =1
and ¢ = 0.

a) Verify that 9 is an equivalence relation on IJ.
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b) List the ordered pairs in the equivalence classes
[(0.3, 0.7)], [(0.5, 0}], [(0.4, 1], [(0, 0.6)], [(1, 0.2}]. For
0<a=<1,0<b=<1, how many ordered pairs are in
[{a. O)]?

¢) If we “glue together” the ordered pairs in each equiva-
lence class, what type of surface comes about?

18. a) For% = {1, 2, 3}, let A = P (U). Define the relation R

onAby BR Cif B C C. How many ordered pairs are there

in the relation %7

b) Answer part (a) for AU = {1, 2, 3, 4}.

¢) Generalize the results of parts (a) and (b).
19. Forn e Z%,1etqU = {1, 2, 3, . . ., n}. Define the relation R
onP(W) by AR Bif AZ B and B € A. How many ordered
pairs are there in this relation?
20. Let A be a finite nonempty set with B C A (B fixed), and
|A] = n, |B| = m. Define the relation & on P(A) by X R Y,
forX, Y CAif XN B =YnN B.Then® is an equivalence re-
lation, as verified in Exercise 10 of Section 7.4. (a) How many
equivalence classes are in the partition of %(A) induced by RA.?
(b) How many subsets of A are in each equivalence class of the
partition induced by R?
21. For A # @, let (A, %) be a poset, and let @ # B C A such
that ' = (B X B)N&R. If (B, R') is totally ordered, we call
(B. R)achainin (A, R). In the case where B is finite, we may
ordertheelementsof Bby by, R by R b3 R -« R b, R b,
and say that the chain has length n. A chain (of length n)
is called maximal if there is no element a € A where a ¢
{by, by, b5, ..., b anda R by, b, Ra,or b, RaR b, for
some 1l </ <p—1.

a) Find two chains of length 3 for the poset given by the

Hasse diagram in Fig. 7.20. Find a maximal chain for this
poset. How many such maximal chains does it have?

b) For the poset given by the Hasse diagram in Fig. 7.18(d),
find two maximal chains of different lengths. What is the
length of a longest (maximal) chain for this poset?

¢y Let U =1{1,2,3,4} and A =P@). For the poset
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(A, ©), find two maximal chains. How many such maximal
chains are there for this poset?

d) T = {1, 2, 3, ..., n}, how many maximal chains are
there in the poset (P (W), C)?

22. For® # C € A, let (C, N') be a maximal chain in the poset
(A, R), where R’ = (C X C) NR. If the elements of C are or-
dered as c; R c; R' - - - R’ ¢,,, prove that ¢, is a minimal ele-
ment in (A, ) and that ¢, is maximal in (A, ).

23, Let (A, Q) be a poset in which the length of a longest
(maximal) chain is n > 2. Let M be the set of all maximal ele-
ments in (A, R), andlet B=A - M. ITR = (BX BYNAR,
prove that the length of a longest chainin (B, R') isn — 1.

2. Let (A, R)ybeaposet,and let d #CCA. H(C X )N
9 = ¢, then for all distinctx, y € C wehavex # yand y & x.
The elements of C are said to form an antichain in the poset
(A, R).
a) Find an antichain with three elements for the poset given
in the Hasse diagram of Fig. 7.18(d). Determine a largest
antichain containing the element 6. Determine a largest
antichain for this poset.

b) f AU = {1, 2, 3, 4}, let A = P(A). Find two different
antichains for the poset (A, €). How many elements occur
in a largest antichain for this poset?

¢) Prove that in any poset (A, 2R), the set of all maximal
elements and the set of all minimal elements are antichains.

25. Let (A, 9R) be a poset in which the length of a longest chain
is 1. Use mathematical induction to prove that the elements of
A can be partitioned into » antichains Cy, C, ..., C, (where
C.NC, =@ forl<i<j=<n).

26. a) Tnhow many ways can one totally order the partial order
of positive-integer divisors of 967

b) How many of the total orders in part (a) start with
96 > 327

¢) How many of the total orders in part (2} end with 3 > 1?
d) How many of the total orders in part (a) start with
96 > 32 and end with 3 > 17

e) How many of the total orders in part (a) start with
96 > 48 > 32 > 167

27. Let n be a fixed positive integer and let A, = {0, 1,
...} ©N. (a) How many edges are there in the Hasse di-
agram for the total order (A,, <), where “<” is the ordinary
“less than or equal to” relation? (b) In how many ways can the
edges in the Hasse diagram of part (a) be partitioned so that the
edges in each cell (of the partition) provide a path (of one or
more edges)? (¢) In how many ways can the edges in the Hasse
diagram for (A2, <) be partitioned so that the edges in each
cell (of the partition) provide a path (of one or more edges) and
one of the cells is {(3, 4), (4, 5), (5, 6), (6, }?






