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statements (or propositions}

the negation of (statement) p: not p

the conjunction of p, g: p and q

the disjunctionof p, g. porg

the implication of ¢ by p: p implies g

the biconditional of p and ¢: p if and only if g
if and only if

logical implication: p logically implies g
logical equivalence: p is logically equivalent to q
tawology

contradiction

For all x (the universal quantifier)

For some x (the existential quantifier)

element x is a member of set A
element x is not a member of set A
the universal set
A is a subset of B
A is a proper subset of B
A is not a subset of B
A is not a proper subset of B
the cardinality, or size, of set A — that is, the number of elements in A
the empty, or null, set
the power set of A — that is, the collection of all subsets of A
the intersection of sets A, B: {x{x € A and x € B}
the union of sets A, B: {xjx € A or x € B}
the symmetric difference of sets A, B:
{xIxe Aorx € B,butx ¢ AN B}
the complement of set A: {x|x € U and x ¢ A}
the (relative) complement of set B in set A: {x|x € A and x ¢ B}
{x|x € A,, for at least one i € I}, where [ is an index set

{x|x € A,, forevery i € I}, where [ is an index set

the sample space for an experiment €

A is an event

the probability of event A

the probability of A given B; conditional probability
random variable

the expected value of X, a random variable

the variance of X, a random variable

the standard deviation of X, a random variable

adivides b, fora, beZ,a #0

a does not divide b, fora, be Z,a #0

the greatest common divisor of the integers a, b

the least common multiple of the integers a, b

Euler’s phi function for n € Z*

the greatest integer less than or equal to the real number x:
the greatest integer in x: the floor of x
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the smallest integer greater than or equal to the real number x:
the ceiling of x
a is congruent to b modulo n

the Cartesian, or cross, product of sets A, B:
{(a, b)lae A, b e B}

9 is a relation from A to B

a is related to b

a is not related to b

the converse of relation R: (a, b) € R iff (b, a) € R

the composite relation for R CA X B, ¥C B X C:
(a,0)eRoPFif(a, B)eR, (b,c) e Fforsomebec B

the least upper bound of ¢ and b

the greatest lower bound of a and b

the equivalence class of element a (relative to an
equivalence relation R on a set A): {x € Alx R a}

f is a function from A to B

for f: A — Band A C A, f(A;) is the image of A;
under f —thatis, { f(a)|a € A}

for f: A — B, f(A) is the range of f

f is a binary operation on A

f is a closed binary operation on A

the identity function on A: 1,(a) = a foreacha e A

the restriction of f: A — Bto A{ C A

the composite function for f: A — B, g: B — C:
(g° fla=g(f(a)),forac A

the inverse of function f

the preimage of By C Bfor f: A— B

f is “big Oh” of g; f is of order g

a finite set of symbols called an alphabet

the empty string

the length of string x

fxixz---xnlx, € E},neZt

{A}

U,,ez+ Z": the set of all strings of positive length

U,,zo Z": the set of all finite strings

A is a language

the concatenation of languages A, B C E*:
{abla € A, b€ B}

{aar - az|la; e ACE*) neZt

{A}

UnEZ“"An

Unzo A" the Kleene closure of language A

a finite state machine M with internal states S, input
alphabet ¥, output alphabet O, next state function
v: § X ¥ — S and output functionw: § X ¥ - 0
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The Principle
of Inclusion
and Exclusion

We now return to the topic of enumeration as we investigate the Principle of Inclusion
and Fxclusion. Extending the ideas in the counting problems on Venn diagrams in
Chapter 3, this principle will assist us in establishing the formula we conjectured in Section
5.3 for the number of onto functions f: A — B, where A, B are finite (nonempty) sets.
Other applications of this principle will demonstrate its versatile nature in combinatorial
mathematics.

8.1

The Principle of Inclusion and Exclusion

EXAMPLE 8.1

In this section we develop some notation for stating this new counting principle. Then
we establish the principle by a combinatorial argument. Following this, a wide range of
examples demonstrate how this principle may be applied.

We shall motivate the Principle of Inclusion and Exclusion with a series of three exam-
ples, the first two of which will be reminiscent of the work we did with counting and Venn
diagrams in Section 3.3.

Let S represent the set of 100 students enrolled in the freshman engineering program at Cen-
tral College. Then | S| = 100. Now let ¢;, ¢; denote the following conditions (or properties)
satisfied by some of the elements of §:

¢1:  Astudent at Central College is among the 100 students in the freshman engineering
program and is enrolled in Freshman Composition.

¢y:  Astudent at Central College is among the 100 students in the freshman engineering
program and is enrolled in Introduction to Economics.

Suppose that 35 of these 100 students are enrolled in Freshman Composition and that
30 of them are enrolled in Introduction to Economics. We shall denote this by

N(c;) =35 and N(c2) = 30.

If nine of these 100 students are enrolled in both Freshman Composition and Introduction
to Economics then we write N (¢ c3) = 9.

385
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EXAMPLE 8.2

Further, of these 100 students, there are 100 — 35 = 65 who are not taking Freshman
Composition. Dencting |S| by N, we can designate this by writing N(c,) = N — N(c)).
In a similar way we designate that there are N(c;) = N — N(cz) = 100 — 30 = 70 of
these students who are not taking Introduction to Economics. The number who are taking
Freshman Composition and who are nor taking Introduction to Economics is N(cicp) =
N(c)) — N(cyep) = 35 — 9 = 26. Likewise, of these 100 students, there are N(cic2) =
N{(cy) — N(cicz) = 30 — 9 = 21 who are enrolled in Introduction to Economics but not in
Freshman Composition. Of particular interest are those students (from among these 100
freshmen) who are taking neither Freshman Composition nor Introduction to Economics —
that is, they are not taking Freshman Composition and they are also nor taking Introduction
to Economics. Their number is N(¢;¢2). And since N(c|) = N(¢ ¢2) + N(c,c2), we learn
that N(cycz) = N(c)) — N(cicp) = 65 — 21 = 44,

The preceding observations also demonstrate that

N(cica) = N(c)) — N(c1c2) = [N — N(c)] — [N(c2) — N(ciea)]
=N~ N(c1) — N(c2) + N(ciez) = N —[N(c1) + N(ca)] + N(cier)
=100 — [35 4+ 301+ 9 = 44, as we saw above.

From the Venn diagram in Fig. 8.1, we see that if N (c,) denotes the number of elements
of § in the left-hand circle and N{(c;) denotes the number in the right-hand circle, then
N(cyc;) is the number of these elements from S in the overlap, while N (c,¢5) counts those
elements of § that are outside the union of these two circles. Consequently, we see once
again— this time from the figure — that

N(ci1c2) = N = [N(c) + N{c)] + N(cica),

where the last term is added on because it was eliminated twice in the term [N (¢) + N (¢2)].
(Also, at this point, the reader may wish to look back at the second formula following
Example 3.25 to find the same result presented with a different notation.)

N(G,G)

Ni(cy &)

Figure 8.1

[Before we advance to our next example where we will introduce a third condition, let us
note that N (¢ ¢,) is not the same as N(cycz). For N(cic2) = N — N(c1c3) = 100 —9 =
91, in this example, while N(c,c2) = 44, as we learned earlier. However, N(c¢, or ¢3) =
N@) =91 =654+70—44=N(c)) + N@) — N(cit).]

We start with the same 100 students as in Example 8.1 and the same conditions ¢, ¢,, but
now we consider a third condition, given as follows:

c3:  Astudent at Central College is among the 100 students in the freshman engineering
program and is enrolled in Fundamentals of Computer Programming.
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It is still the case that N{cy) = 35, N(cz) = 30,and N(cic2) = 9, but now we are also given
that N(c3) = 30, N(cic3) = 11, N(czc3) = 10, and N (cjczc3) = 5 (that is, there are five
of these 100 freshmen who are taking Freshman Composition, Introduction to Economics,
and Fundamentals of Computer Programming). Looking to Fig. 8.2, we learn that

N(cicac3) = N —[N(cy) + N(ca) + N(c3)] + [N(c1ca) + N(cic3) + N{czc3)]

— N{cicze3).

So here we have N{c\coc3) = 100 — [35 4+ 30 + 30] 4+ [9 + 11 4 10] — 5 = 30. That is,
out of these 100 students there are 30 who are nor enrolled in any of the courses:
(i) Freshman Composition; (ii} Introduction to Economics; or (iii) Fundamentals of Com-
puter Programming.

[We also learn here that N (¢c3) = 70 = 100 — 30 = N — N(c3), N(c,c3) = 46 = 100 —
[35430]4+ 11 =N —[N{ey) + N(c3}] + N{cicz),and N(cacz) = 50 = 100 — [30 4 30]
+10= N — [N{(c2) + N{(c3)] + N(cac3). Furthermore, we note the similarity here with the
result for |[A N B N C| given in the second formula following Example 3.26.]

N(C1C5Ca)

N(C2C3)

Figure 8.2

Based on the results in the previous two examples we may now feel that for a given finite
set § (with | S| = N) and four conditions ¢y, ¢z, ¢3, ¢4 we should have
N{cieacscq) = N = [N(cr) + N(c2) + N(e3) + N(ca)] )
+ [N(eie2) + Nlcies) + Nlcrea) + N(caes) + N(cacs) + N(csea)l
— [N(cr1cze3) + Nlcieacs) + Niciczes) + Nlcacacq)]
+ N(cicacses).

To show that this is the case we consider an arbitrary element x from § and show that it is
counted the same number of times on both sides of the above equation.

0) If x satisfies none of the four conditions, then it is counted once on the left side of
Eq. (*) [in N(c)c2c3c4)], and once on the right side of Eq. (*) [in V1.

1) If x satisfies only one of the conditions, say ¢, then it is not counted at all on the left
side of Eq. (*). But on the right side of Eq. (*), x is counted once in N and once in
N(cy), foratotal of 1 — 1 = 0 times.
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2) Now suppose that x satisfies conditions ¢z, ¢4 but does not satisfy conditions ¢y, ¢3.
Once again x is not counted on the left side of Eq. (¥). For the right side of Eq. (%),
x is counted once in N, once in each of N (¢;) and N (c¢4), and then once in N (cy¢4),
totaling 1 — [1+ 1]+ 1 =1 — (§) + (3) = O times.

3) Continuing with the case for three conditions, we’ll suppose here that x satisfies
conditions ¢, ¢, and ¢4, but not ¢3. As in the previous two cases, x is not counted
on the left side of Eq. (*). On the right side of Eq. (¥), x is counted once in N,
once in each of N(cy), N(c2), and N (c4), once in each of N{(ci¢2), N(cicy), and
N (ca¢4), and, finally, once in N (¢jcacq). So on the right side of Eq. (*), x is counted
I—[+1+04+1+1+11=1=1-()+ () — () = 0 times, in total.

4) Finally, if x satisfies all four of the conditions ¢;. ¢2, ¢3, ¢4, then once again it is not
counted on the left side of Eq. (*). On the right side of Eq. (*), x is counted once for
each of the 16 terms on the right side of this equation—foratotalof 1 — [1 4+ 141+
D4+ +14+1414+14+1-[1+14+14+1+1=1=-(H+0G) -G +¢) =
0 times.

Consequently, from these preceding five cases we have shown that the two sides
of Eq. (*) count the same elements from §, and this provides a combinatorial proof
for the formula for N (¢,c;c3c4).

So now we shall reconsider the situation in Example 8.2 and introduce a fourth condition
as follows:

¢4 Astudent at Central College is among the 100 students in the freshman engineering
program and is enrolled in Introduction to Design.

We already know that N (¢;) = 35, N(c2) = 30, N(ec3) =30, N(cic2) =9, N(ciez) = 11,
N{(cacz) = 10, and N{c|cae3) = 5. If N(cy) = 41, N{cieq) = 13, N(cacy) = 14, N(cacy)
=10, N(cic2¢4) = 6, N(cic3c4) = 6, N(ce3¢4) = 6, and N(cjcac3cq) = 4, then, using
the equation we derived above, it follows that N{c,coc3c4) = 100 — [35 430 + 30 4 41]
+[O+11+134+104+144+10]—-[54+6+64+6]+4=100—1364+67 —23+4=
12. Thus, of the 100 students in the freshman engineering program at Central College,
there are 12 who are not taking any of the four courses: Freshman Composition, Intro-
duction to Economics, Fundamentals of Computer Programming, or Introduction to De-
sign.

If we are interested in the number (from these 100 students) who are taking Fresh-
man Composition, but none of the other three courses, then we should want to compute
N{c,c2c3¢4). To do so we start by observing that

N(cacsc4) = N(cicac3cy) + N(cycacics),

which can be established by an argument similar to the one above for N (¢icac3cy). This
then leads us to

N(cieac3cs) = N{(Cy03€4) — N{C1C203¢4).
Using the result in Example 8.2 we find that
N(C2c304) = N — [N(c2) + N(c3) + Nica)] + [N(cacz) + N(caeq) + Ncaca)]
— N{cacicq)
=100—-[30+30+4114+([10+ 14+ 101 — 6 =27, and
N(c1cac3¢q) = N(cacsty) — N(c\cc3cq) = 27 — 12 = 15,
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So there are 15 students in this set of 100 who are taking Freshman Composition, but none
of the other courses: Introduction to Economics, Fundamentals of Computer Programming,
or Introduction to Design.
Further, we also observe that
N(cicacacy) = N(cac3ca) — N(C1€2C3€4)
={N —[N(c2) + N(c3) + N(ca)] + [N(cac3) + Nicacs) + N(czes)]

~ N(cacsea)} — {N = [N(c1) + N(c2) + N(c3) + N(cs)]

+ [N(cie2) + N(c1e3) + N(cieq) + N(cacz) + N(czes) + N(cses)]

— [N(cieae3) + Nlciezes) + N(cieses) + N(cacaes)] + N(cicacses) ). or

N(cicac3cs) = N{cy) — [N(c1ca) + N(e103) + Nicies)]
+ [N(cicac3) + N(cioacs) + Ncicacy)] — N(cicacscy).

So here N(cicacscy) =35 —[94+ 114+ 13]+[54+46+6] —4=35-334+17—-4=15,
as we found above.

Having seen the results in Examples 8.1, 8.2, and 8.3, now it is time for us to generalize
these results and establish the Principle of Inclusion and Exclusion. To do so we once again
let S be a set with |[S| = N, and we let ¢y, ¢2, ..., ¢; be a collection of ¢ conditions or
properties — each of which may be satisfied by some of the elements of S. Some elements
of § may satisfy more than one of the conditions, whereas others may not satisfy any of
them. Forall 1 <i < ¢, N(c¢;) will denote the number of elements in S that satisfy condition
¢;. (Elements of S are counted here when they satisfy only condition ¢;, as well as when
they satisfy ¢; and other conditions ¢;, for j #i.) Forall i. j€{l,2,3,...,t} where
i # j, N{cic;) will denote the number of elements in § that satisfy both of the conditions
¢, ¢, and perhaps some others. [N (c;c,) does not count the elements of § that satisfy only
¢;, ¢;.] Continuing, if 1 <, j, k <t are three distinct integers, then N (¢;c;c;) denotes the
number of elements in § satisfying, perhaps among others, each of the conditions ¢;, c;,
and Ck-

Foreach 1 <i <t, N(¢;) = N — N(¢;) denotes the number of elements in S that do
not satisfy condition ¢;. If 1 <, j <t withi # j, N(¢;c;) = the number of elements in §
that do not satisfy either of the conditions ¢; or ¢;. [This is not the same as N(¢;c;), as we
observed at the end of Example 8.1.]

With the necessary preliminaries now in hand we state the following theorem.

THEOREM 8.1

The Principle of Inclusion and Exclusion. Consider a set S, with | S| = N, and condi-
tions ¢;, 1 <i <¢, each of which may be satisfied by some of the elements of S. The
mlmber of elements of S that satisfy none of the conditions ¢;, 1 <i <1¢, is denoted by
N = N(c cac3 - - - ¢;) where
N =N —[N(e))+ N(e) + N(e3) +- -+ N{er)] ()

+ [N(cic2) + N{ciez) +-- -+ N(cier) + Nicaes) + - -+ N{e—y¢)]

— [N(cicac3) + Nicreaes) + - -+ Nlcyeze) + N{cieaeq) + -+

+ N(cicae) + - - -+ Nlcmaci—re)] + - - -+ (= 1) Ncyezes - - - ),
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or

N=N-3 N+ p. Ncp)— Y. Ncje)+- @
l<i<t l<i<jzt I<i<j<k=t
+{(=D'N(cicacs -+ - 1)
Proof: Although this result can be established by applying the Principle of Mathematical
Induction to the number ¢ of conditions, we shall give a combinatorial proof. The argument
will be reminiscent of the ideas we saw in Example 8.3 in establishing the formula for
N (Z122¢3¢4).

For each x € § we show that x contributes the same count, either O or 1, to each side of
Eq. (2). .

If x satisfies none of the conditions, then x is counted once in N and once in N, but not
in any of the other terms in Eq. (2). Consequently, x contributes a count of 1 to each side
of the equation.

The other possibility is that x satisfies exactly r of the conditions where 1 <r <t. In

this case x contributes nothing to N. But on the right-hand side of Eq. (2), x is counted

(1) Onetimein N.

{(2) rtimesin Z N{(c;). (Once for each of the r conditions.)

1<e<r

r . . .-
3) (2) times in Z N{cic;). (Once for each pair of conditions selected from
I<i< <t
the r conditions it satisfies.)

€3] (;) times in Z N(cicjer). (Why?)
I<i<j<k<t

,
r+1 ( ) =1 time in Z N(cici, - - - ¢;,), where the summation is taken over all
¥

selections of size r from the ¢ conditions.

Consequently, on the right-hand side of Eq. (2), x is counted

r ¥ r .
1H—()*()+.‘.+(-1)r():[1+(—1)]r=0’=0t1mes,
2 3 r

by the binomial theorem. Therefore, the two sides of Eq. (2) count the same elements from
S, and the equality is verified.

An immediate corollary of this principle is given as follows:

COROLLARY 8.1

Under the hypotheses of Theorem 8.1, the number of elements in S that satisfy at least one
of the conditions ¢;, where 1 <i <y, is givenby N(ciorcyor ... or¢g) =N — N.

Before solving some examples, we examine some further notation for simplifying the
statement of Theorem 8.1.
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We write
So =N,
$1 =[N(c1)+ Ny + - -+ Nen)l,
Sy =[N(cie2) + Nlcres) +- -+ N(aiey) + Nlczes) + - -+ Nicien)),

and, in general,
Se = Nlcic, -e) lsk=r,

where the summation is taken over all selections of size k from the collection of ¢ conditions.
Hence 8 has (}) summands in it.
Using this notation we can rewrite the result in Eq. (2) as

N=S8~S+8 S+ -+ (1.

Now let us look at how this principle is used to solve certain enumeration problems.

Determine the number of positive integers n where 1 <#n < 100 and #a is not divisible by
2,3,o0r5,
Here S ={1,2,3,..., 100} and N = 100. For n € S n satisfies
a) condition ¢ if n is divisible by 2,
b) condition ¢; if # is divisible by 3, and
¢) condition ¢3 if n is divisible by 5.
Then the answer to this problem is N (¢ c,c3).
As in Section 5.2 we use the notation | r | to denote the greatest integer less than or equal

to r, for any real number r. This function proves to be helpful in this problem as we find
that

N(cy) = |100/2] = 50 [since the 50 (= [ 100/2]) positive integers 2,4, 6, 8, .. ., 96,
98 (= 2-49), 100 (= 2 - 50) are divisible by 2],

N(ep) = [100/3] = |33 1/3] = 33 [since the 33 {= [ 100/3]) positive integers 3. 6, 9,
12, ..., 96 (= 3-32), 99 (= 3 - 33) are divisible by 3];

N(c3) = |100/5] = 20;
N{eicz) = [100/6] = 16 [sincethereare 16 (= [100/6]) elements in § thatare divisible
by both 2 and 3 — hence divisible by Icm(2, 3) = 2.3 = 6];

N(cic3) = 1100/10] = 10
N(caez) = [100/15] = 6; and
N(cicae3) = [100/30] = 3.
Applying the Principle of Inclusion and Exclusion, we find that

N(@c2c3) =80 — 81+ 8 — 8 =N~ [N(c)) + N(c2) + N(ca)]
+ [N{cic) + N(cie3) + N(cae3)] — N(eicze3)
=100—-[50+334+20]+[l6+ 10+ 6] —3 =26.
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(These 26 numbers are 1,7, 11, 13, 17, 19, 23,29, 31, 37,41, 43,47,49, 53, 59, 61, 67,71,
73,77,79, 83, 89, 91, and 97.)

EXAMPLE 8.5 J In Chapter 1 we found the number of nonnegative integer solutions to the equation
’ X1+ X» + x3 + x4 = 18. We now answer the same question with the extra restriction that
x, <7, foralll <i<4.

Here S is the set of solutions of x| + x; +x3+ x4 = 18, with O < x; forall 1 <i <4.
Sols|=N=5=("")= (k)

We say that a solution xy, x3, x3, x4 satisfies condition ¢;, where 1 <7 <4,ifx, > 7 (or
x, > 8). The answer to the problem is then N (¢ ,c2¢3¢4).

Here by symmetry N(c|) = N(c2) = N(c3) = N(c4). To compute N(c;), we consider
the integer solutions for xy + x72 + x3 + x4 = 10, with each x, > 0 forall 1 <7 <4. Then
we add 8 to the value of x; and get the solutions of x; + x7 + x3 + x4 = 18 that satisfy
condition ¢y. Hence N (c;) = (‘H 1o l) = (ja). foreach 1 <i <4,and 8 = ()(}})

Likewise, N(cic») is the number of integer solutions of x| + x» + x3 + x4 = 2, where
x, > 0forall1 i <4.SoN(cie2) = (**37 1) = (3), and 52 = (5) (3).

Since N(c,c,cp) = O for every selection of three conditions, and N(cicac3cs) = 0, we
have

Neeseseo =So— s+ 8-S +5 = (o) = (V) + (D) -0-0=26
€1020364) = Sp — 8y 273 7 l1g 1/7\10 2/\2 T

So of the 1330 nonnegative integer solutions of xy + x; + x3 + x4 = 18, only 246 of them
satisfy x, <7 foreach 1 <i <4,

Our next example establishes the formula conjectured in Section 5.3 for counting onto
functions.

For finite sets A, B, where |[A| =m >n = |B|, let A= {ay,a,...,an}, B=1{by, by,
..., by}, and § = the set of all functions f: A — B. Then N = §; = |S| =n"™.

Forall 1 <i < n, let ¢, denote the condition on S where a function f: A — B satisfies
¢, if b; is not in the range of f. (Note the difference between ¢; here and ¢; in Examples
8.4 and 8.5.) Then N (c,) is the number of functions in S that have b; in their range, and
N(c\¢s - - - €,) counts the number of onto functions f: A — B.

Foralll =i <n, N(¢;} = (n — )™, because each element of B, except b,, can be used
as the second component of an ordered pair for a function f: A — B, whose range does not
include b;. Likewise, forall 1 <i < j < n, there are (n — 2)" functions f: A — B whose
range contains neither b, nor b;. From these observations we have § = [N(c)) + N(¢2) +
cH N =nm = 1" = (1} (n — Y™ and $; = [N(cic2) + Nicicz) + - - - + N(cicn)
+ N(cac3) + - -+ N(caen) + - -+ N(camrea)] = (3)(n — 2)™. In general, for each
1 <k<n,

EXAMPLE 8.6

Ss= Y Neen-c) = (Z)(n e

I <i) <iy<-<ip<n

It then follows by the Principle of Inclusion and Exclusicn that the number of onto
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functions from A to B is

N csts - ) =S =81+ 85— S+ +(=D"S,

— mo_ n _lm n _2)71_ n 3”1
=n (1 (n—1) +(2 (n~2) (3)(n— )
= ) (':)(n —iy"

n ) n
=y (—1)‘( ,)(n -,
i=0 -t
Before we finish discussing this example, let us note that
n "t
>y ( .)(n — "
4 n—i
i=(}
can also be evaluated even if m < n. Furthermore, for m < n, the expression
N(c\CaC3 - - - Cp)

still counts the number of functions f: A — B, where |[A| = m, |B| = n, and each element
of B is in the range of f. But now this number is 0.

For example, suppose thatm = 3 <7 = n. Then N (¢ cac3 - - - ©7) counts the number of
onto functions f: A — B for |A| = 3 and | B| = 7. We know this number is 0, and we also
find that

7
D)= =G =6+ ()5 - P+ ()Y - 02+ (D - ()0’
= =343 — 1512 4 2625 — 2240 + 945 — 168 -7 — 0 = 0.
Hence, forall m, n € Z*, if m < n, then

> (~1>’( " .)(n iy =0,
n—1

i=0

We now solve a problem similar to those in Chapter 3 that dealt with Venn diagrams.

In how many ways can the 26 letters of the alphabet be permuted so that none of the patterns
car, dog, pun, or byte occurs?

Let S denote the set of all permutations of the 26 letters. Then |S| = 26! For each
1 <i <4, apermutation in S is said to satisfy condition ¢, if the permutation contains the
pattern car, dog, pun, or byte, respectively.

In order to compute N (¢;), for example, we count the number of ways the 24 symbols car,
b, d,e, f,....p,q,5,t,...,x,y,zcan be permuted. So N(c() = 24!, and in a similar
way we obtain

N(ca) = N(cs3) = 24!, while N{(cy) = 23!

For N{(cc3) we deal with the 22 symbols car, dog, b, e, f. h, i, ..., m, n, p. g, 5. t, ...,
X. ¥. z, which can be permuted in 22! ways. Hence N(c;c») = 22!, and comparable calcu-
lations give

N(C|C3) = N(C2C3) = 22!, N(C,'C4) = 21!, i # 4.
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EXAMPLE 8.8

Furthermore,
N(ciczez) = 201, Nciejeq) = 191, l<i<j=<3,
N(cicaczey) = 17!
So the number of permutations in § that contain none of the given patterns is

N(cicac3cq) = 26! — [3(247) + 231] + [3(221) + 3(21DH] — [20 4 3(19D)] + 17!

Our next example deals with a number theory problem.

Forn c Z%, n = 2, let ¢(n) be the number of positive integers m, where 1 < m < n and
ged(m, n) = 1 —that is, m, n are relatively prime. This function is known as Euler’s phi
funcrion, and it arises in several situations in abstract algebra involving enumeration. We find
that ¢(2) =1, ¢(3) = 2. ¢(4) = 2, ¢(5) = 4, and ¢ (6) = 2. For each prime p, ¢(p) =
p — 1. We would like to derive a formula for ¢ (n) that is related to »n so that we need not
make a case-by-case comparison for each m, 1 < m < n, against the integer .

The derivation of our formula will use the Principle of Inclusion and Exclusion as in
Example 8.4. We proceed as follows: Forn > 2, use the Fundamental Theorem of Arithmetic
to write n = p{'ps* - - - p{’, where pi, ps, ..., p, are distinct primes and e, > 1, for all
1 <i <. We consider the case where + = 4, This will be enough to demonstrate the general
idea.

With § =1{1,2,3,.... n}, we have N = § = |§| = n, and for each 1 <i <4 we say
that k € S satisfies condition ¢; if k is divisible by p;. For | <k <n, ged(k, n) = lifkis
not divisible by any of the primes p;, where 1 <i < 4. Hence ¢{n) = N(c|C2¢3¢4).

Foreach 1 <i <4, we have N(c;) =n/p;; N(cic;) =n/(pipj).forall 1 <i < j <4,
Also, N(cicjce) =n/(pipjpe).forall 1 <i < j < £ <4, and N(cjcac3¢4) =
n/(p1p2p3ps). So

¢(n) = SH— S+ 82— 8+ 5

n n ] i n
=n—|:—+--'+—:|+|: + +---+ }
I 4 Pa pip2 pips P3pa

n n n
Prp2p3 Pap3pa Prp2p3pa
1 1 1 1 1
=p|l—{—+--4+—]+ + +-- 4+
P Pa Pip2 P1p3 P3pPs

1 1 1
ppps Prp3ps PrPapPipa
n
= ———— [p1p2ep3ps — (P2D3pas + P1P3Pa + PLP2Ps + PLP2P3)
PLP2P3P4
+ (p3ps+ p2ps + p2p3 + prps+ pi1ps+ pip2)

—pat+tpit+tpa+py+1i
[(p1 — Di(p2 — Di(ps — D(ps — 1]

4 1
(=3)
=1 Pi

PLP2P3P4

_ [m—l p—1 p3—1 [M—l:l_
_n . . . _n
P P2 P3 Pa

13
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In general, ¢p(n) =n | | pin (L = (1/p)), where the product is taken over all primes p
dividing n. Whenn = p,aprime, ¢ (n) = ¢(p) = p[1 — (1/p)] = p — 1, as we observed
earlier. If n = 23,100, for example, we find that

$(23,100) = p(22-3-.52.7-11)
= (23,100)(1 — (1/2)(1 = (1/3)(1 = (1/5)(1 = /TN (A = (1/11))
= 4800.

The Euler phi function has many interesting properties. We shall investigate some of
them in the exercises for this section and in the Supplementary Exercises.

The next example provides another encounter with the circular arrangements introduced
in Chapter 1.

Six married couples are to be seated at a circular table. In how many ways can they arrange
themselves so that no wife sits next to her husband? (Here, as in Example 1.16, two seating
arrangements are considered the same if one is a rotation of the other.)

For 1 <i <6, we let ¢, denote the condition where a seating arrangement has couple i
seated next to each other.

To determine N (c), for instance, we consider arranging 11 distinct objects — namely,
couple 1 (considered as one object) and the other 10 people. Eleven distinct objects can be
arranged around a circular table in (11 — 1)! = 10! ways. However, here N(c;) = 2(10!),
where the 2 takes into account whether the wife in couple 1 is seated to the left or right of
her husband. Similarly, N(c;) = 2(10!), for 2 <i < 6, and §; = (§)2(10").

Continuing, let us now compute N(c;c;), for 1 <i < j < 6. Here we are arranging 10
distinct objects — couple i (considered as one object), couple j (likewise considered as one
object), and the other eight people. Ten distinct objects can be arranged around a circular
table in (10 — 1)! = 9! ways. So here N(c;c;) = 22(9!) because there are two ways for the
wife in couple i to be seated next to her husband, and two ways for the wife in couple j to
be seated next to her husband. Consequently, §; = (g)Z2 (CHE

Similar reasoning shows us that

N(cieaes) =28, 83 = (§)2°(8Y N{ciereses) = 24T, Sy = (§)2°(7Y)
N(cieacacqes) = 2°(6Y), S5 = (§)2°(6)) N{cicaesesesce) = 2°(5Y), S = (§)2°(5D).

With Sy (the total number of arrangements of the 12 people) = (12 — 1)! = 11!, we find
that the number of arrangements where no couple is seated side by side is

6 6
. : (6N
N@cy---T) = Y _(—1)'S; = Z(—l)’(l.)z‘(ll -0
i=0 i=0
= 39,916,800 — 43,545,600 + 21,772,800 - 6,451,200

+ 1,209,600 — 138,240 + 7680
= 12,771,840.

Our final example recalls some of the graph theory we studied in Chapter 7.

In a certain area of the countryside are five villages. An engineer is to devise a system of
two-way roads so that after the system is completed, no village will be isclated. In how
many ways can he do this?
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Calling the villages a, b, ¢, d, and e, we seek the number of loop-free undirected graphs
on these vertices, where no vertex is isolated. Consequently, we want to count situations
such as those illustrated in parts (a) and (b) of Fig. 8.3, but not situations such as those

shown in parts (c) and (d).

(@) ()

Figure 8.3

Let S be the set of loop-free undirected graphs G on V = {a, b, ¢, d, €}. Then N =
So = |S| = 2" because there are (3) = 10 possible two-way roads for these five villages,
and each road can be either included or excluded.

For each | <i < 35, let ¢; be the condition that a system of these roads isolates village

For condition ¢; village a is isolated, so we consider the six edges (roads) {b, ¢}, {b, d},
(b, e}, {c, d}, {c, e}, {d, e}. With two choices for each edge — namely, put the edge in the
graph or leave the edge out— we find that N (c,) = 2°. Then by symmetry N(c;) = 2% for

all2<i<$5,508 = (?)26.

When villages ¢ and b are to be isolated, each of the edges {¢, d}, {4, €}, {c, e} may be put

in or left out of our graph. This results in 23 possibilities, so N{ci¢z) = 23 and S5 = @23‘
Similar arguments tell us that N(c;cac3) =2! and §3 = (§)21; N(cicrczey) =2

and

S = (3)2° and N(ccacscacs) = 2% and S5 = (3)2°.

Consequently,

EXERCISES 8.1

1. Let S be a finite set with |§| = N and let ¢, ¢3, ¢3. ¢4 be
four conditions, each of which may be satisfied by one or more
of the elements of S. Prove that N (c,c3¢4) = N (¢1C203¢4) +
N(C\T,E5C4).

2. Establish the Principle of Inclusion and Exclusion by ap-
plying the Principle of Mathematical Induction to the number ¢
of conditions,

3. Of the 100 students in Example 8.3, how many are taking
(a) Fundamentals of Computer Programming but none of the
other three courses; (b) Fundamentals of Computer Program-
ming and Introduction to Economics but neither of the other
two courses?

4. Annually, the 65 members of the maintenance staff spon-
sor a “Christmas in July” picnic for the 400 summer employees
at their company. For these 65 people, 21 bring hot dogs. 35
bring fried chicken, 28 bring salads, 32 bring desserts, 13 bring
hot dogs and fried chicken, 10 bring hot dogs and salads, 9
bring hot dogs and desserts, 12 bring fried chicken and sal-
ads, 17 bring fried chicken and desserts, 14 bring salads and
desserts, 4 bring hot dogs, fried chicken, and salads, 6 bring hot
dogs, fried chicken, and desserts, 5 bring hot dogs, salads, and
desserts, 7 bring fried chicken, salads, and desserts, and 2 bring
all four food items. Those (of the 65} who do not bring any of
these four food items are responsible for setting up and cleaning
up for the picnic. How many of the 65 maintenance staff will
(a) help to set up and clean up for the picnic? (b) bring only hot
dogs? (c) bring exactly one food item?



5. Determine the number of positive integersn, 1 <n < 2000,
that are

a) not divisible by 2, 3, or 5
b) not divisible by 2, 3,5,0r7
¢) not divisible by 2, 3, or 5, but are divisible by 7

6. Determine how many integer solutions there are to
X+ xy+x3t+x4= 19.if
a) O<x foralll1 <i<4
b) 0<x, <8foralll <i <4
0 0=<x=<50<x<63<x<73<xn=<8
7. In how many ways can one arrange all of the letters in the
word INFORMATION so that no pair of consecutive letters oc-
curs more than once? [Here we want to count arrangements such
as IINNOOFRMTA and FORTMAIINON but not INFORIN-
MOTA (where “IN” occurs twice) or NORTFNOIAMI (where
“NO" occurs twice).]

8. Determine the number of integer solutions to x; + x +
x3+ x4 = 19 where -5 <x, <10forall 1 <i <4.

9. Determine the number of positive integers x where x <
9,999,999 and the sum of the digits in x equals 31.

10. Professor Bailey has just completed writing the final ex-
amination for his course in advanced engineering mathematics.
This examination has 12 questions, whose total value is to be
200 points. In how many ways can Professor Bailey assign the
200 points if each question must count for at least 10, but not
more than 25, points and the point value for each question is to
be a multiple of 5?

11. At Flo's Flower Shop, Flo wants to arrange 15 different
plants on five shelves for a window display. In how many ways
can she arrange them so that each shelf has at least one, but no
more than four, plants?

12. In how many ways can Troy select nine marbles from a bag
of twelve (identical except for color), where three are red, three
blue, three white, and three green?

13. Find the number of permutations ofa, b, ¢, . .., x, ¥, z,in
which none of the patterns spin, game, path, or net occurs,

14. Answer the question in Example 8.10 for the case of six
villages.

8.2
Generalizations of the Principle

Consider a set § with |S| =N

, and conditions ¢y, ¢3, . .
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15. If eight distinct dice are rolled, what is the probability that
all six numbers appear?

16. How many social security numbers (nine-digit sequences)
have each of the digits 1, 3, and 7 appearing at least once?

17. In how many ways can three x’s, three y's, and three z's be
arranged so that no consecutive triple of the same letter appears?

18. Frostburg township sponsors four Boy Scout troops, each
with 20 boys. If the head scoutmaster selects 50 of these boys to
represent this township at the state jamboree, what is the prob-
ability that his selection will include at least one boy from each
of the four troops?

19. If Zachary rolls a fair die five times, what is the probability
that the sum of his five rolls is 207

20. Ata12-week conference in mathematics, Sharon met seven
of her friends from college. During the conference she met each
friend at lunch 35 times, every pair of them 16 times, every trio
eight times, every foursome four times, each set of five twice,
and each set of six once, but never all seven at once. If she had
lunch every day during the 84 days of the conference, did she
ever have lunch alone?

21. Compute ¢ (n) for n equal to (a) 51; (b) 420; (c) 12300.
22. Compute ¢ (n) for n equal to (a) 5186; (b) 5187; (c) 5188.
23. Let n € Z™. (a) Determine ¢(2*). (b) Determine ¢ (27 p),
where p is an odd prime.

24. For which n € Z7 is ¢(n) odd?

25. How many positive integers n less than 6000 (a) satisfy
ged(n, 6000) = 1?7 (b) share a common prime divisor with
6000?

26. If m, n € Z*, prove that ¢(n™) = n™ ¢ (n).

27. Find three values forn € Z* where ¢ (n) = 16.

28. For which positive integers # is ¢(n) a power of 2?7

29. For which positive integers n does 4 divide ¢ (n1)?

30. At an upcoming family reunion, five families— each con-
sisting of a husband, wife, and one child—are to be seated
around a circular table. In how many ways can these 15 people
be arranged around the table so that no family is seated all
together? (Here, as in Example 8.9, two seating arrangements
are considered the same if one is a rotation of the other.)

., ¢; satisfied by some of the

elements of S. In Section 8.1 we saw how the Principle of Inclusion and Exclusion provides
a way to determine N(c ¢z - - - ¢;), the number of elements in S that satisfy none of the ¢
conditions. If m € Z7 and 1 < m < t, we now want to determine E,,, which denotes the
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number of elements in § that satisfy exacrly m of the ¢ conditions. (At present we can obtain
Ey.)
We can write formulas such as

Ey=N(cicacz--¢) + Niopez - ¢) +- -+ N(C €263 - - - €—104),
and
Ey = N(ciea€s o) + N(ecaez - - ¢y + - + N(€1€2€3 - - - €, 20¢1¢y),

and although these results do not assist us as much as we should like, they will be a useful
starting place as we examine the Venn diagrams for the cases where r = 3 and 4.

For Fig. 8.4, where r = 3, we place a numbered condition beside the circle representing
those elements of § satisfying that particular condition and we also number each of the
individual regions shown. Then E| equals the number of elements in regions 2, 3, and 4.
But we can also write

E; = N(ci) + N(c2) + N{cz) =2 [N(cic2) + Niciez) + N(c2e3)] + 3N (¢ epc3).

In N(c;) + N(c2) + N(c3) we count the elements in regions 5, 6, and 7 twice and those in
region 8 three times. In the next term, the elements in regions 5, 6, and 7 are deleted twice.
We remove the elements in region 8 six times in 2 [N (c1¢2) + N(c1c3) + N(cze3)], so we
then add on the term 3N (¢ c2¢3) and end up not counting the elements in region 8 at all.
Hence we have £| = 8§, — 28+ 353 = §| — (})S2 + (3) S5

1 4

NV
\/

& Gz

Figure 8.4
When we turn to E5, our earlier formula indicates that we want to count the elements of
S in regions 5, 6, and 7. From the Venn diagram,
Ey = N(cie2) + N(cye3) + N(exe3) = IN(cicac3) = S5 — 383 = 85, — ("?)53,
and
E3 = N(cicac3) = Ss.

In Fig. 8.5, the conditions ¢y, ¢3, ¢3 are associated with circular subsets of §, whereas ¢4 is
paired with the rather irregularly shaped area made up of regions 4, 8,9, 11, 12, 13, 14, and
16.Foreach 1 <i < 4, E; is determined as follows:
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E [regions 2, 3, 4, 5]:

Ei =[N(c)) + N(co) + N(c3) + N(cy)l

= 2[N(cicy) + N(cica) + N(cicq) + Nicacs) + N{cacs) + N{cacy)]

+ 3 [N(cieacs) + N(cieaes) + N(ciczes) + Ncaescs)l

— 4N(C1C2(T3C4)

=85 =25 +35—48% =S — ()S: + ()5 - (3) ..

Note: Taking an element in region 3, we find that it is counted once in £ and once in S,
[in N(c3)]. Taking an element in region 6, we find that it is not counted in £; it is counted
twice in S; [in both N (c3) and N(c3)] but removed twice in 2.5, [for it is counted once in §;

in N (ca¢3)], so overall it is not counted. The reader should now consider an element from
region 12 and one from region 16 and show that each contributes a count of 0 to both sides

of the formula for £.
G G <4
gn
U,
[ XN

N

(t=4) <

Figure 8.5

E, [regions 6-11]:

From Fig. 8.5, £, = §; — 3853465, = S5, — G‘)S3 + (3)S4. For details on this formula
we examine the results in Table 8.1, where next to each summand of S, S3, and S; we
list the regions whose elements are counted in determining that particular summand. In
calculating §> — 3S3 + 65, we find the elements in regions 611, which are precisely those
that are to be counted for F;.

Table 8.1

hY 2 S3 S4

N(eje): 7,13, 15, 16 N(ciecaez): 15, 16 N(cic203¢4): 16
N(cic3): 10, 14, 15, 16 N(cicacy): 13,16
Nicieq): 11,13, 14, 16 N(cicaeq): 14, 16
N(cac3): 6,12, 15, 16 N(cacseq): 12, 16
N{cacq): 8,12, 13,16
N(cic): 9,12, 14, 16
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Finally, the elements for E; are found in regions 12-15, and FE3 = §3 — 484 = §3 —
(1)Ss; the elements for E,4 are those in region 16, and £4 = ;.
These results suggest the following theorem.

THEOREM 8.2 Under the hypotheses of Theorem 8.1, foreach 1 < m < ¢, the number of elements in S that
satisfy exactly m of the conditions ¢y, ¢2, . . ., ¢ is given by

+1 +2 t
Emzsm—(”'l1 )Sm+1+(m2 )Sm+2—---+(—l)“’”( )S,. (1)
t—m

(If m = 0, we obtain Thecrem 8.1.)
Proof: Arguing as in Theorem 8.1, let x € § and consider the following three cases.
a) When x satisfies fewer than m conditions, it contributes a count of 0 to each of the
terms E,, Sy, Sm1. .. -, S, 80 it is not counted on either side of the equation.

b) When x satisfies exactly m of the conditions, it is counted once in E,, and once in S,,,
but notin Sy, 41, . . .. S;. Consequently, it is included once in the count for either side
of the equation,

¢) Suppose x satisfies r of the conditions, where m < r < ¢. Then x contributes nothing
to E,,. Yet it is counted (,;) times in S,,, (m; l) times in S,,41, ..., and (:) times in
S,, but 0 times for any term beyond S,. So on the right-hand side of the equation, x is

counted (5) — ("7 ), ) + (7T (uh0) = (17,7 )0 times.
ForO<k <y —m,

(m+k F _ (m+ k) r!
k )m+k T m m+ I —m = k)

r! 1 r! (r — m)!

ml kK —m—k)! mlr—m) kN —m—k)!
r\{r—m
-7
Consequently, on the right-hand side of Eq. (1), x is counted
()" =CCT) G = ()60
m 0 m 1 m 2 mj\r—m
=07 -(57)+ (57) (20
m 0 1 2 r—m
= (’)[1 —qym = (r) -0 = 0 times,
m m

and the formula is verified.

Based on this result, if L, denotes the number of elements of S (under the hypotheses of
Theorem 8.1) that satisfy af least m of the ¢ conditions, then we have the following formula.

COROLLARY 8.2 Lo = So = (" ) St + (T ) Sz — -+ (=D (1215,

Proof: A proof is outlined in the exercises at the end of this section.
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When m = |, the result in Corollary 8.2 becomes

1 2 i ft—1
L1=Sl-(0 S+ 0)S3~-~-+(—1) 0 )Sf

=85 -8+85— -+ (—1)’715,.
Comparing this with the result in Theorem 8.1, we find that
Li=N-N=|§-N.

This result is not much of a surprise, because an element x of § is counted in L if it satisfies
at least one of the conditions ¢y, ¢», ¢3, ..., ¢, —that is, if x € § and x is not counted in

N = N(E[EZE_} LA EI)

Looking back to Example 8.10, we shall find the numbers of systems of two-way roads so
that exactly (E») and at least (L) two of the villages remain isolated.
The previously calculated results for this example show

Ey =8 — ()83 + (3)S: — (3) S5 = 80 — 3(20) + 6(5) — 10(1) = 40,
Ly=8—(})S+(})S: — (1) S5 = 80 — 2(20) + 3(5) — 4(1) = 51.

1. For the situation in Examples 8.10 and 8.11 compute £, for

0<i<5andshowthat) > E =N =S|

2. a) In how many ways can the letters in ARRANGEMENT
be arranged so that there are exactly two pairs of consecutive
identical letters? at least two pairs of consecutive identical
letters?

b) Answer part (a), replacing two with three.

3. In how many ways can one arrange the letters in CORRE-
SPONDENTS so that (a) there is no pair of consecutive identi-
cal letters? (b) there are exactly two pairs of consecutive
identical letters? (c) there are at least three pairs of consecu-
tive identical letters?

4, LetA=1{1,2,3, ..., 10}, and B ={1,2,3,..., 7} How
many functions f: A — B satisfy | f(A)| = 47 How many have
|f(A)] <47

5. In how many ways can one distribute ten distinct prizes
among four students with exactly two students getting nothing?
How many ways have at least two students getting nothing?

6. Zelmaishaving aluncheon for herself and nine of the women
in her tennis league. On the morning of the luncheon she places

name cards at the ten places at her table and then leaves to run a
last-minute errand. Her husband, Herbert, comes home from his
morning tennis match and unfortunately leaves the back door
open. A gust of wind scatters the ten name cards. In how many
ways can Herbert replace the ten cards at the places at the ta-
ble so that exactly four of the ten women will be seated where
Zelma had wanted them? In how many ways will at least four
of them be seated where they were supposed to be?

7. If 13 cards are dealt from a standard deck of 52, what is
the probability that these 13 cards include (a) at least one card
from each suit? (b) exactly one void (for example, no clubs)?
(c) exactly two voids?
8. The following provides an outline for proving Corollary 8.2.
Fill in the needed details.

a) Firstnote that £, = L, = §,.

b) What is E,_,. and how are L, and L,_, related?

¢) Showthat L,y = §,_; — ({23)5..

d) For all 1 <m <t —1, how are L,, L,,, and E,

refated?

e) Using the results in steps (a) through (d), establish the
corollary by a backward type of induction.
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83

Derangements: Nothing
Is in Its Right Place

EXAMPLE 8.12

EXAMPLE 8.13

In elementary calculus the Maclaurin series for the exponential function is given by
N x2 x3 Xy

e _1+X+E+E+-“_ZOH’

0
0 n
- (=" 1 1
e —ZU o —1—1+2—!—3—!+'--.
To five places, e™! =0.36788 and 1 — 1 + (1/2!) — (1/3) + - -- — (1/7!) = 0.36786.

Consequently, forall k € Z*, if k > 7. then Zﬁ:o((hl)”)/n! is a very good approximation
toe "
We find these ideas helpful in working some of the following examples.

While at the racetrack, Ralph bets on each of the ten horses in a race to come in according
to how they are favored. In how many ways can they reach the finish line so that he loses
all of his bets?

Removing the words horses and racetrack from the problem, we really want to know
in how many ways we can arrange the numbers 1,2, 3, ..., 10 so that 1 is not in first
place (its natural position), 2 is not in second place (its natural position), ..., and 10 is
not in tenth place (its natural position). These arrangements are called the derangements of
1,2,3,...,10.

The Principle of Inclusion and Exclusion provides the key to calculating the number
of derangements. For each | < i < 10, an arrangement of 1, 2, 3, . .., 10 is said to satisfy
condition ¢; if integer i is in the /th place. We obtain the number of derangements, denoted
by dg, as follows:

dip = N@ 6203 - - Tio) = 100 — ()91 + (F)8! = (D71 + - - - + (19)0!
= 1011 — ('V)0r/10 + (9)(81/10h — (V) (710D + - - - + (1) (01/10Y]
=101~ 1+ (1/2) — (173D + - - + (1/10D] = (10H(e™ ).

The sample space here consists of the 10! ways the horses can finish. So the probability
that Ralph will lose every bet is approximately (10 (e~')/(10?) = ¢~!. This probability
remains (more or less) the same if the number of horses in the race is 11, 12, . ... On the
other hand, for n horses, where #n > 10, the probability that our gambler wins at least one
of his bets is approximately 1 — e~ = 0.63212.

The number of derangements of 1, 2, 3, 4 is

dy =41 — 1+ (1721 — (1731 + (1/4)]
= A[(1/21) — (173D + (1/4)] = BH3) — 4+ 1 =09.

These nine derangements are



2143 3142
2341 3412
2413 3421
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4123
4312
4321.

Among the 24 — 9 = 15 permutations of 1, 2, 3, 4 that are o derangements one finds 1234,
2314, 3241, 1342, 2431, and 2314.

EXAMPLE 8.14

Peggy has seven books to review for the C-H Company, so she hires seven people to review
them. She wants two reviews per book, so the first week she gives each person one book

to read and then redistributes the books at the start of the second week. In how many ways
can she make these two distributions so that she gets two reviews (by different people) of

each book?

She can distribute the books in 7! ways the first week. Numbering both the books and the
reviewers (for the first week) as 1, 2, ..., 7, for the second distribution she must arrange
these numbers so that none of them is in its natural position. This she can do in d; ways.
By the rule of product, she can make the two distributions in (7)d; = (7H%(e™h) ways.

1. In how many ways can the integers 1,2, 3, ..., 10 be ar-
ranged in a line so that no even integer is in its natural position?

2. a) List all the derangements of 1, 2, 3. 4, 5 where the first
three numbers are 1, 2, and 3, in some order.

b} List all the derangements of 1, 2, 3, 4, 5, 6 where the
first three numbers are 1, 2, and 3, in some order.

3. How many derangements are there for 1, 2, 3, 4, 57

4. How many permutations of 1, 2, 3, 4, 5, 6, 7 are not de-
rangements?

5. a) Letd =1{1,2,3,...,7} Atfunction f: A — A is said
to have a fixed point if for some x € A, f(x) = x. How
many one-to-one functions f: A — A have at least one
fixed point?

b) In how many ways can we devise a secret code by as-
signing to each letter of the alphabet a different letter to
represent it?

6. How many derangements of 1, 2,3, 4, 5, 6, 7, 8 start with

(a) 1, 2, 3, and 4, in some order? (b) 5, 6, 7, and &, in some
order?

7. For the positive integers 1. 2.3, ..., 1 — 1, n, there are
11,660 derangements where 1, 2, 3, 4, and 5 appear in the first
five positions. What is the value of n?

8. Four applicants for a job are to be interviewed for 30 min-
utes each: 15 minutes with each of supervisors Nancy and
Yolanda. (The interviews are in separate rooms, and inter-
viewing starts at 9:00 Am.) (a) In how many ways can these
interviews be scheduled during a one-hour period? (b) One
applicant, named Josephine, arrives at 9:00 A.M. What is the
probability that she will have her two interviews one after the
other? (c) Regina, another applicant, arrives at 9:00 AM. and

hopes to be finished in time to leave by 9:50 aM. for another
appointment. What is the probability that Regina will be able
to leave on time?

9. In how many ways can Mrs. Ford distribute ten distinct
books to her ten children (one book to each child) and then
collect and redistribute the books so that each child has the
opportunity to peruse two different books?

10. a) Whenn balls, numbered 1, 2, 3, .. ., » are taken in suc-
cession from a container, a rencontre occurs if the mth ball
withdrawn is numbered m, for some 1 <m < a. Find the
probability of getting (i) no rencontres; (ii) (exactly) one
rencontre, (iii) at least one rencontre; and (iv) » rencontres,

where 1 <r <n.
b) Approximate the answers to the questions in part (a).

11. Ten women attend a business luncheon. Each woman
checks her coat and attaché case. Upon leaving, each woman is
given a coat and case at random. (a) In how many ways can the
coats and cases be distributed so that no woman gets either of
her possessions? (b) In how many ways can they be distributed
so that no woman gets back both of her possessions?

12. Ms. Pezzulo teaches geometry and then biology to a class
of 12 advanced students in a classroom that has only 12 desks.
In how many ways can she assign the students to these desks so
that (a) no student is seated at the same desk for both classes?
(b) there are exactly six students each of whom occupies the
same desk for both classes?

13. Give acombinatorial argument to verify that foralln € Z7,

n! = (g)do + (?)dl + (};)dg +o (Z)dﬁ = ;} (Z)dk.

(For each 1 <k < n, d; = the number of derangements of 1,
2,3,...,kidy = 1)
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14. a) In how many ways can the integers 1,2, 3, ..., i be 15, Answer part (a) of Exercise 14 if the numbers are arranged
arranged in a line so that none of the patterns 12, 23, in a circle, and, as we count clockwise about the circle, none of
34,...,(n — 1Dn occurs? the patterns 12, 23,34, .. ., (n — Dn, n1 occurs.

b) Show that the result in part (a) equals d.—1 + d,. 16. What is the probability that the gambler in Example 8.12
(d,, = the number of derangements of 1, 2, 3, ..., n.) wins (a) (exactly) five of his bets? (b) at least five of his bets?
8.4
Rook Polynomials

5

Figure 8.6

Figure 8.7

Consider the six-square “chessboard” shown in Fig. 8.6 (Note: The shaded squares are not
part of the chessboard.). In chess a piece called a rook or castle is allowed at one turn to
be moved horizontally or vertically over as many unoccupied spaces as one wishes. Here
a rook in square 3 of the figure could be moved in one turn to squares 1, 2, or 4. A rook at
square 5 could be moved to square 6 or square 2 (even though there is no square between
squares 5 and 2).

For k € Z" we want to determine the number of ways in which & rooks can be placed on
the unshaded squares of this chessboard so that no two of them can take each other — that
is, no two of them are in the same row or column of the chessboard. This number is denoted
by rg, or by i (C) if we wish to stress that we are working on a particular chessboard C.

For any chessboard, r| is the number of squares on the board. Here r| = 6. Two nontaking
rooks can be placed at the following pairs of positions: {1,4}, {1, 5}, {2, 4}, (2,6}, {3, 5],
{3, 6}, {4, 5}, and {4, 6}, so r, = 8. Continuing, we find that r3 = 2, using the locations
{1,4,5}and {2,4,6}; ry =0, fork = 4.

With ry = 1, the rook polynomial, v (C, x), for the chessboard in Fig. 8.6 is defined as
r(C, x) =14 6x + 8x% + 2x3. For each k > 0, the coefficient of x* is the number of ways
we can place k nontaking rooks on chessbeard C.

What we have done here (using a case-by-case analysis) soon proves tedious. As the size
of the board increases, we have to consider cases wherein numbers such as ry and rs are
nonzero. Consequently, we shall now make some observations that will allow us to make
use of small boards and somehow break up a large board into smaller subboards.

The chessboard C in Fig. 8.7 is made up of 11 unshaded squares. We note that C consists
of a 2 X 2 subboard C, located in the upper left corner and a seven-square subboard C;
located in the lower right corner. These subboards are disjoint because they have no squares
in the same row or column of C.

Calculating as we did for our first chessboard, here we find

r(Cy, x) =1+ 4x + 22, A€y, x) =1+ 7x 4+ 10x° + 2x3,
r(C,x) =1+ 11x +40x% 4+ 56x> + 28x* + 4x°> = r(Cy, x) - (C3, x).

Hence r(C, x) = r(Cy, x) - r(C», x). But did this occur by luck or is something happen-
ing here that we should examine more closely? For example, to obtain r; for C, we need to
know in how many ways three nontaking rooks can be placed on board C. These fall into
three cases:

a) All three rooks are on subboard C; (and none is on Cy): (2)(1) = 2 ways.
b) Two rooks are on subboard C; and one is on Cy: (10)(4) = 40 ways.

¢) One rook is on subboard C> and two are on Cy: (7)(2} = 14 ways.
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Consequently, three nontaking rooks can be placed on board C in (2)(1) 4+ (10)(4) +
(7)(2) = 56 ways. Here we see that 56 arises just as the coefficient of x* does in the product
r(Cy, x)-r(Cs, x).

In general, if C is a chessboard made up of pairwise disjoint subboards Cy, Ca, .. ., Ca,
then r{C, x) = r(Cy, x)r(Cs, x) - - - 1{Cy, x).
N

The last result for this section demonstrates the type of principle we have seen in other
results in combinatorial and discrete mathematics: Given a large chessboard, break it into
smaller subboards whose rook polynomials can be determined by inspection.

{a) (b) ©

Figure 8.8

Consider chessboard € in Fig. 8.8(a). For k > 1, suppose we wish to place k¥ nontak-
ing rooks on C. For each square of C, such as the one designated by (x), there are two
possibilities to examine.

a) Place one rook on the designated square. Then we remove, as possible locations for the
other k — 1 rooks, all other squares of C in the same row or column as the designated
square. We use C; to denote the remaining smaller subboard [seen in Fig. 8.8(b)].

b) We do not use the designated square at all. The k rooks are placed on the subboard C,
[C with the one designated square eliminated — as shown in Fig. 8.8(c)].

Since these two cases are all-inclusive and mutually disjoint,
re(C) = ri—1(Co) + e (C).
From this we see that
re(O)x* = e (€' + r(Copx. (1)
If n is the number of squares in the chessboard (here n is 8), then Eq. (1) is valid for all

1 <k < n, and we write

n n

> ndOx* =3 (G + Y r(Coxt @
k=1

k=1 k=1

For Eq. (2) we realize that the summations may stop before k = n. We have seen cases, as
in Fig. 8.6, where r,, and some prior r’s are 0. The summations start at k¥ = 1, for otherwise
we could find ourselves with the term r_, (C,)x" in the first summand on the right-hand
side of Eq. (2).
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Equation (2) may be rewritten as

n

o0t =x Y re i (CoxF T+ Y n(CaxF 3
k=1 k=1

k=1

or
n 13
1+ Y O =x-r(Cox)+ ) n(Cox* + 1.
k=1 k=1

from which it follows that
r(C,x)=x r(Cs, x)+r(C,, x). (4)

We now use this final equation to determine the rook polynomial for the chessboard
shown in part (a) of Fig. 8.8. Each time the idea in Eq. (4) is used, we mark the special
square we are using with (x). Parentheses are placed about each chessboard to denote the
rook polynomial of the board.

) @) ®

[0 [-0- [

— )+ = () - Dg o

=x2(14+2x0) + 2x(1 +4x + 2x5) + x(1 + 3x + x2)

0 )

=3x 4+ 12x2 + 7x® + x(1 4+ 2x) + (1 +4x +2x%) = 1 + 8x + 16x? + 7x°.

8.5

Arrangements with Forbidden Positions

EXAMPLE 8.15

The rook polynomials of the previous section seem interesting on their own. Now we shall
find them useful in solving the following problems.

In making seating arrangements for their son’s wedding reception, Grace and Nick are
down to four relatives, denoted R;, for 1 <i < 4, who do not get along with one another,
There is a single open seat at each of the five tables T;, where 1 < j < 5. Because of family
differences,

a) Ry will not sitat T, or T,. b) R, will not sit at T,.
¢) R; will not sit at Tz or Ty. d) R4 will not sit at T4 or Ts.
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This situation is represented in Fig. 8.9. The number of ways we can seat these four
people at four different tables, and satisfy conditions (a) through (d), is the number of ways
four nontaking rooks can be placed on the chessboard made up of the unshaded squares.
However, since there are only seven shaded squares, as opposed to thirteen unshaded ones,
it would be easier to work with the shaded chessboard.

T, T, T3 T4 Tg

Figure 8.9

We start with the conditions that are required for us to apply the Principle of Inclusion and
Exclusion: For each 1 <i <4, let ¢; be the condition where a seating assignment of these
four people (at different tables) is made with relative R; in a forbidden (shaded) position.
As usual, |S| denotes the total number of ways we can place the four relatives, one to a
table. Then |S| = N = §y = 5!

To determine Sy we consider each of the following:

® N(cy) =4+ 4!, for there are 4! ways to seat Ry, Rz, and Ry if Ry is in forbidden
position Ty and another 4! ways if R, is at table T, his or her other forbidden position.

® N(cy) = 4!, for after placing R at forbidden table T, we must place R, R3, and Ry
at Ty, T3, T4, and Ts, one person to a table.

® N(c3) = 4! + 4!, one summand for R being in forbidden position T3, and the other
summand for R3 being in the forbidden position Tj.

® N(cy) = 4! + 4!, each of the two summands arising when Ry is placed at each of the
two forbidden positions T, and Ts.

Hence §; =734").
Turning to S> we have these considerations:

® N(cicy) = 3!, because after we place Ry at T; and R, at T, there are three tables
(T3, T4, and Ts) where R3 and R4 can be seated.

® N(cic3) = 31+ 3! + 3! + 3!, because there are four cases where R, and R3 are located
at forbidden positions:
i) RiatT;;RyatTs ii) R, at Ty; Rz at Ty
iii) Ry atTy; Rz atTy iv) R, at Ty; Ry at Ty.

In a similar manner we find that N{c;cy) = 43, N(cc3) = 2(3)), N(cacy) = 2(3D,
and N (c3es) = 3(3!). Consequently, 5> = 16(3!).

Before continuing, we make a few observations about Sy and S;. For §; we have
7(4Y = 7(5 — 1)!, where 7 is the number of shaded squares in Fig. 8.9. Also, §; = 16(3!) =
16(5 — 2)!, where 16 is the number of ways two nontaking rooks can be placed on the
shaded chessboard.

In general, forall 0 <i <4, §; = r,(5 — i}, where r; is the number of ways in which it
is possible to place i nontaking rooks on the shaded chessboard shown in Fig. 8.9.



408

Chapter 8 The Principle of Inclusion and Exclusion

EXAMPLE 8.16

Consequently, to expedite the solution of this problem, we turn to »(C, x}, the rook
polynomial of this shaded chessboard. Using the decomposition of C into the disjoint
subboards in the upper left and lower right corners, we find that

FC, x) = (1 +3x +x)(1 +4x + 3xH) = 1 + Tx + 16x% + 13x° + 3x%,
SO
N(G18263¢4) = So — S1+ 52 = S5+ 84 = 51— 7(4) + 16(3) — 13(21) + 3(1)
4
=Y (—ir(5—iy =25
=0

Grace and Nick can breathe a sigh of relief. There are 25 ways in which they can seat
these last four relatives at the reception and avoid any squabbling.

The next example demonstrates how a bit of rearranging of our chessboard can help in
our calculations.

We have a pair of dice; one is red, the other green. We roll these dice six times. What is the
probability that we obtain all six values on both the red die and the green die if we know
that the ordered pairs (1, 2), (2, 1), (2, 5), (3, 4), (4, 1), (4, 5), and (6, 6) did not occur?
[Here an ordered pair (a, b) indicates a on the red die and b on the green.]

Recognizing this problem as one dealing with permutations and forbidden positions,
we construct the chessboard shown in Fig. 8.10(a), where the row labels represent the
outcome on the red die, the column labels the outcome on the green die, and the shaded
squares constitute the forbidden positions. In this figure the shaded squares are scattered.
Relabeling the rows and columns, we can redraw the chessboard as shown in Fig. 8.10(b),
where we have taken shaded squares in the same row (or column) of the board shown in
part (a) and made them adjacent. In Fig. 8.10(b), the chessboard C (of seven shaded squares)
is the union of four pairwise disjoint subboards, and so

FC, x) = +4x + 231 +x)° =1+ Tx + 1727 + 19x% + 10x* + 255,

1 2 3 4 5 6 1 5 3 4 2 6
1 1
2 2
3 4
4 3
5 5
6 6
(@ (b)

Figure 8.10

For each 1 <i < 6, define ¢; as the condition where, having rolled the dice six times,
we find that all six values occur on both the red die and the green die, but i on the red die
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is paired with one of the forbidden numbers on the green die. [Note that N(¢5) = 0.] Then
the number of (ordered) sequences of the six rolls of the dice for the event we are interested
in is

6 6
(BYN(cicaC3C4T5C) = (6)) Z(—l)iSi = (6} Z(-l)'h‘(é — !
=0 =0

= 6l[6! — 7(5) + 17(4D) — 19(3") + 1021 — 2(1H + 0(0h]
= 61[192] = 138,240.
Since the sample space consists of all sequences of six ordered pairs selected with

repetition from the 29 unshaded squares of the chessboard, the probability of this event is
138,240/(29)° = 0.00023.

Our last example provides a unifying idea for what we have done in this section.

LetA=1{1, 2,3, 4}and B = {u, v, w, x, y, z}. How many one-to-one functions f: A — B
satisfy none of the following conditions:

EXAMPLE 8.17

ci: f{ly=uorv e fQQ)=w ¢yt f(3) =worx cq: fA)=x,y, orz

As in our two prior examples, we construct a chessboard, as shown in Fig. 8.11, Here
we are really interested in the chessboard C made up of the eight shaded squares (which
comprise two disjoint subboards). Now

F(C, x) = (1 +2x)(1 + 6x +9x2 +2x%) = 1 4 8x + 21x% + 20x° + 4%,
So
N(E1EzE3E4) = S() - S[ + Sz - S3 + S4
= (6!/21) — 8(5!/2!) + 21(41/2) — 20(3!/21) + 4(2!/2Y)
4
= (=Dir(6 —)/21 =76
i=0

and there are 76 one-to-one functions f: A — B where none of the conditions ¢;, ¢, c3,
¢4 1s satisfied.

1

2

3

4

Figure 8.11

Even more so, look back at N (¢,cs¢3¢4) in Example 8.15. Disregarding the vocabulary of
the “relatives” and “tables,” we realize that we are counting the number of one-to-one func-
tions g: {Ry, Ry, R3, Ry} — (T, T, Ts, T4, Ts} where none of the conditions ¢y, ¢, ¢3, ¢4
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Finally, for A = {1, 2,3,4,5,6,7, 8}, suppose we want to count the number of
one-to-one functions i: A — A where k(i) # { for all i € A. Here the rook polynomial
would be

8
F(C,x)=(1+x)° = Z (S)x"
k=0 k

and we find that the number of such one-to-one functions 4 is

o) =) GJor- ()i (G

= dg, the number of derangements of 1,2, 3,..., 8.

EXERCISES 8.4 AND 8.5

1. Verify directly the rook polynomials for (a) the unshaded
chessboards in Figs. 8.7 and 8.8(a), and (b) the shaded chess-
boards in Figs. 8.9 and 8.10(b).

2. Construct or describe a smallest (least number of squares)
chessboard for which ry # 0.

3. a) Find the rook polynomial for the standard 8 X 8 chess-
board.

b) Answer part (a) with 8 replaced by n, forn € Z*.

4. Find the rook polynomials for the shaded chessboards in
Fig. 8.12.

C‘: Cz:

Figure 8.12

5. a) Find the rook polynomials for the shaded chessboards
in Fig. 8.13.

b} Generalize the chessboard (and rook polynomial) for
Fig. 8.13(i).

6. a} Let C be a chessboard that has m rows and # columns,
with m < n (for a total of mn squares). For 0 <k <m, in
how many ways can we arrange k {(identical) nontaking
rooks on C?

b} For the chessboard C in part (a), determine the rook
polynomial #(C, x).

7. Professor Ruth has five graders to correct programs in her
courses in Java, C++, SQL, Perl, and VHDL. Graders Jeanne

[

(im (V)
Figure 8.13

and Charles both dislike SQL, Sandra wants to avoid C++ and
VHDL. Paul detests Java and C++, and Todd refuses to work
in SQL and Perl. In how many ways can Professor Ruth assign
each grader to correct programs in one language, cover all five
languages, and keep everyone content?

8. Why do we have 6! in the term (61)N (c,c; - - - T¢) for the
solution of Example 8.167

9. Five professors named Al, Violet, Lynn, Jack, and Mary Lou
are to be assigned to teach one class each from among calcu-
lus I, calculus I, calculus 1H, statistics, and combinatorics. Al
will not teach calculus II or combinatorics, Lynn cannot stand
statistics, Violet and Mary Lou both refuse to teach calculus I
or calculus I11, and Jack detests calculus II.

a) In how many ways can the head of the mathematics de-
partment assign each of these professors one of these five
courses and still keep peace in the department?

b) For the assignments in part (a), what is the probability
that Violet will get to teach combinatorics?



10. A pair of dice, one red and the other green, is rolled six
times. We know that the ordered pairs (1, 1), (1, 5), (2, 4},
(3. 6), (4, 2), (4, 4). (5. 1), and (5, 5) did not come up. What is
the probability that every value came up on both the red die
and the green one?

11. A computer dating service wants to match each of four
women with one of six men. According to the information these
applicants provided when they joined the service, we can draw
the following conclusions.

® Woman 1 would not be compatible with man 1, 3, or 6.

8.6
Summary and Historical Review

8.6 Summary and Historical Review m

® Woman 2 would not be compatible with man 2 or 4.
& Woman 3 would not be compatible with man 3 or 6.
® Woman 4 would not be compatible with man 4 or 5.
In how many ways can the service successfully match each
of the four women with a compatible partner?

12. For A=1{1,2,3,4, 5} and B = {u., v, w, x, y, z}, deter-
mine the number of one-to-one functions f: A — B where

fh#v,w; f(2) #u, w;, f(3) #x:and f(4) #v, x, y.

In the first and third chapters of this text we were concerned with enumeration problems
in which we had to be careful of situations wherein arrangements or selections were over-
counted. This situation became even more involved in Chapter 5 when we tried to count
the number of onto functions for two finite sets.

With Venn diagrams to lead the way, in this chapter we obtained a pattern called the
Principle of Inclusion and Exclusion. Using this principle, we restated each problem in terms
of conditions and subsets. Using enumeration formulas on permutations and combinations
that were developed earlier, we solved some simpler subproblems and let the principle
manage our concern about overcounting. As a result, we were able to solve a variety of
problems, some dealing with number theory and one with graph theory. We also proved the
formula conjectured earlier in Section 5.3 for the number of onto functions for two finite

sets.

This principle has an interesting history, being found in different manuscripts under such
names as the “Sieve Method” or the “Principle of Cross Classification.” A set-theoretic
version of the principle, which concerned itself with set unions and intersections, is found
in Doctrine of Chances (1718), a text on probability theory by Abraham DeMoivre (1667—
1754), Somewhat earlier, in 1708, Pierre Rémond de Montmort (1678—1719) used the idea
behind the principle in his solution of the problem generally known as le probléme des
rencontres {matches). (In this old French card game the 52 cards in a first deck are arranged
face up in a row — perhaps on a table. Then the 52 cards of a second deck are dealt, with
one new card being placed on each of the 52 cards previously arranged on the table top.
The score for the game is determined by counting the resulting matches, where both the
suit and the face value for each of the two cards must match.)

Credit for the way we developed and dealt with the Principle of Inclusion and Exclusion
belongs to James Joseph Sylvester (1814-1897). (This colorful English-born mathemati-
cian also made major contributions in the theory of equations; the theory of matrices and
determinants; and invariant theory, which he founded with Arthur Cayley (1821-1895).
In addition Sylvester founded the American Journal of Mathematics, the first American
journal established for mathematical research.) The importance of the inclusion-exclusion
technique was not generally appreciated, however, until somewhat later, when the publica-
tion Choice and Chance by W. A, Whitworth [ 10] made mathematicians more aware of its

potential and use.
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James Joseph Sylvester (1814-1897)

For more on the application of this principle, examine Chapter 4 of C. L. Liu [4], Chapter
2 of H. J. Ryser [8], or Chapter 8 of A. Tucker [9]. More number-theoretic results related
to the principle, including the Mdbius inversion formula, can be found in Chapter 2 of
M. Hall [1], Chapter X of C. L. Liu [5], and Chapter 16 of G. H. Hardy and E. M. Wright
[3]. An extension of this formula is given in the article by G. C. Rota [7].

The article by D. Hanson, K. Seyffarth, and J. H. Weston [2] provides an interesting
generalization of the derangement problem discussed in Section 8.3. The ideas behind
the rook polynomials and their applications were developed in the late 1930s and dur-
ing the 1940s and 1950s. Additional material on this topic is found in Chapters 7 and 8 of
1. Riordan [6].
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SUPPLEMENTARY EXERCISES

1. Determine how many n € Z* satisty n < 500 and are not
divisible by 2, 3, 5, 6, 8, or 10.

2. How many integers n are such that 0 < n < 1,000,000 and
the sum of the digits in n is less than or equal to 37?

3. Atnext week’s church bazaar, Joseph and his cousin Jeffrey
must arrange six baseballs, six footballs, six soccer balls, and
six volleyballs on the four shelves in the sports booth sponsored
by their Boy Scout troop. In how many ways can they do this
so that there are at least two, but no more than seven, balls on
each shelf? (Here all six balls for any one of the four sports are
identical in appearance.)

4. Find the number of positive integers n where 1 < n < 1000
and n is rot a perfect square, cube, or fourth power.

5. In how many ways can we arrange the integers 1, 2, 3,
.... 8 in a line so that there are no occurrences of the patterns
12,23, ..., 78, 81?

6. a) If we have k different colors available, in how many
ways can we paint the walls of a pentagonal room if adja-
cent walls are to be painted with different colors?

b) What is the smallest value of & for which such a coloring
is possible?

7. Ten students take a physics test in a certain room. When
the test is over the students take a break and then return to the
room to discuss their answers to the test questions. If there are
14 chairs in this room, in how many ways can the students seat
themselves after the break so that no one is in the same chair
he, or she, occupied during the test?

8. Using the result of Theorem 8.2, prove that the number of
ways we can place s different objects in » distinct containers
with m containers each containing exactly » of the objects is

(—D"ntst & (—Di(n — iy
m! Z i —mln =D —inlh’

i=m
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9, If an arrangement of the letters in SURREPTITIOUS is
selected at random, what is the probability that it contains
(a) (exactly) three pairs of consecutive identical letters? (b) at
most three pairs of consecutive identical letters?

10. In how many ways can four w’s, four x’s, four y’s, and four

Z's be arranged so that there is no consecutive quadruple of the

same letter?

11. a) Given n distinct objects, in how many ways can we se-
lect r of these objects so that each selection includes some
particular m of the n objects? (Here m < r < n.)

b) Using the Principle of Inclusion and Exclusion, prove
that form < r < n,

G2 (0)

12, a) Let A € Z™. If we have A different colors available, in
how many ways can we color the vertices of the graph
shown in Fig. 8.14(a) so that no adjacent vertices share the
same color? This result in A is called the chromatic poiyno-
mial of the graph, and the smallest value of A for which the
value of this polynomial is positive is called the chromatic
number of the graph. What is the chromatic number of this
graph? (We shall pursue this idea further in Chapter 11.)

b) If there are six colors available, in how many ways can
the rooms R,, 1 <i <5, shown in Fig. 8.14(b) be painted
so that rooms with a common doorway, D,, 1 < j <5, are
painted with different colors?

13. Find the number of ways to arrange the letters in LAPTOP
so that none of the letters L, A, T, O is in its original position
and the letter P is not in the third or sixth position.

14. For n € Z* prove that if ¢(n) = n — 1 then n is prime.
15. Let Dyg denote the set of positive divisors of 18. For d &
Dhg let 5, ={n|0 <n <18 and gcd(n, 18) = d}. (a) Show
that the collection S;, d € Dy, provides a partition of {I, 2,
3,4, ..., 17, 18}. (b) Note that |S;| = 6 = ¢(18) and |S,| =
6 = ¢(9). For each d € Dy, express |S;| in terms of Euler's
phi function.

@
o
Ia)
Qe

Figure 8.14
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16. For m € Z* let D, = {d € Z"|d divides m}. For d € D,
let S; = {n|0 < n <m and ged(n, m) = d}. (a) Show that the
collection S, d € D,,, provides a partition of {1, 2, 3,4, ...,
m — 1, m}, (b) Determine |S,| for each d € D,,.

17. If n € Z™, prove that (a) ¢(2n) = 2¢(n) when n is even;
and (b) ¢ (2n) = @ (n) when n is odd.

18. Let a, b, c € Z" with ¢ = ged(a, b). Prove that

Plab)g(c) = ¢ (a)p(bc.

19. Caitlyn has 48 different books: 12 each in mathematics,
chemistry, physics, and computer science. These books are ar-

ranged on four shelves in her office with all books on any one
subject on its own shelf. When her office is cleaned. the 48
books are taken down and then replaced on the shelves — once
again with all 12 books on any one subject on its own shelf.
In how many ways can this be done so that (a) no subject is
on its original shelf? (b) one subject is on its original shelf?
(¢) no subject is on its original shelf and no book is in its orig-
inal position? [For example, the book originally in the third
(from the left) position on the first shelf must not be replaced
on the first shelf and must not be in the third (from the left)
position on the shelf where it is placed.]
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Recurrence
Relations

n earlier sections of the text we saw some recursive definitions and constructions. In
Definitions 5.19, 6.7, 6.12, and 7.9, we obtained concepts at level n + 1 (or of size n + 1)
from comparable concepts at level n (or of size n), after establishing the concept at a
first value of n, such as 0 or 1. When we dealt with the Fibonacci and Lucas numbers in
Section 4.2, the results at level n + 1 turned out to depend on those at levels n and n — 1
and for each of these sequences of integers the basis consisted of the first two integers
(of the sequence). Now we shall find ourselves in a somewhat similar situation. We shall
investigate functions a (n), preferably written as a, (for n > 0), where a,, depends on some
of the prior terms a,_1, a,_1, . . ., a1, dp- This study of what are called either recurrence
relations or difference equations is the discrete counterpart to ideas applied in ordinary
differential equations.
Our development will not employ any ideas from differential equations but will start
with the notion of a geometric progression. As further ideas are developed, we shall see
some of the many applications that make this topic so important.

10.1
The First-Order Linear
Recurrence Relation

A geometric progression is an infinite sequence of numbers, such as 5, 15, 45, 135, ...,
where the division of each term, other than the first, by its immediate predecessor is a
constant, called the common ratio. For our sequence this common ratiois 3: 15 = 3(5), 45 =
3(15),and so on. If ay, ay, as, - . . is a geometric progression, then ai/ap = ayfa; = - - =
Qpt1/a, = - -+ =r, the common ratio. In our particular geometric progression we have
dyy) = 3a,,n=0.

The recurrence relation a,+1 = 3a,, n > 0, does not define a unique geometric progres-

sion. The sequence 7, 21, 63, 189, . .. also satisfies the relation. To pinpeint a particular
sequence described by a,., = 3a,, we need to know one of the terms of that sequence.
Hence

Apt1 = 3an, n=0, ap = 5,
uniquely defines the sequence 5, 15, 45, . . ., whereas

Ap+1 = 3dp, n >0, a; =21,
identifies 7, 21, 63, . .. as the geometric progression under study.

447
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EXAMPLE 10.1

EXAMPLE 10.2

The equation a,.| = 3a,, n > 0 is a recurrence relation because the value of g, (the
present consideration) is dependent on a,, (a prior consideration). Since a, | depends only
on its immediate predecessor, the relation is said to be of first order. In particular, this
is a first-order linear homogeneous recurrence relation with constant coefficients. (We'll
say more about these ideas later.) The general form of such an equation can be written
apy1 = day, n > 0, where d is a constant,

Values such as ap or ¢y, given in addition to the recurrence relations, are called boundary
conditions. The expression ay = A, where A is a constant, is also referred to as an initial
condition. Our examples show the importance of the boundary condition in determining the
unique solution.

Let us return now to the recurrence relation

a1 = 3a,, n >0, dg = 5.

The first four terms of this sequence are

ay = 5,

a; = 3ag = 3(5),

ar = 3a; = 3Bap) = 3*(5), and

ay = 3a; = 3(3%(5)) = 3*(5).
These results suggest that for each n > 4, a, = 5(3"). This is the unique solution of the
given recurrence relation. In this solution, the value of a, is a function of n and there is no
longer any dependence on prior terms of the sequence, once we define ag. To compute ayg,
for example, we simply calculate 5(3') = 295,245; there is no need to start at ay and build
up to @y in order to obtain .

From this example we are directed to the following. (This result can be established by
the Principle of Mathematical Induction.)

The unigue solution of the recurrence relation ‘
Qniy = A, wheren >0, disaconstant, and ap = A,
is given by

a,,xAd“,‘ ‘>0,

Thus the solution ¢, = Ad", n = 0, defines a discrete function whose domain is the set
N of all nonnegative integers.

Solve the recurrence relation a, = 7a,_,, where n > 1 and a» = 98.

This is just an alternative form of the relation ¢,,.; = 7a, for n > 0 and a; = 98. Hence
the solution has the form a,, = ag(7"). Since a; = 98 = ay(7%), it follows that 4y = 2, and
an = 2(7"), n = 0, is the unique solution.

A bank pays 6% (annual) interest on savings, compounding the interest monthly. If Bonnie
deposits $1000 on the first day of May, how much will this deposit be worth a year later?

The annual interest rate is 6%, so the monthly rate is 6%/12 = 0.5% = 0.005. For
0 <n <12, let p, denote the value of Bonnie's deposit at the end of n months. Then
Pritl = Pn +0.005p,, where 0.005 p, is the interest earned on p, during month »# + 1,
for 0 <n < 11, and py = $1000.



EXAMPLE 10.3

EXAMPLE 10.4

10.1 The First-Order Linear Recurrence Relation 449

The relation p,o1 = (1.005) p,, pp = $1000, has the solution p, = py(1.005)" =
$1000(1.005)". Consequently, at the end of one year, Bonnie’s deposit is worth
$1000(1.005)!* = $1061.68.

In the next example we find a fifth way to count the number of compositions of a positive
integer. The reader may recall that this situation was examined earlier in Examples 1.37,
3.11,4.12, and 9.12.

Figure 10.1 provides the compositions of 3 and 4. Here we see that compositions (1)—(4")
of 4 arise from the corresponding compositions of 3 by increasing the last summand (in each
corresponding composition of 3) by 1. The other four compositions of 4, namely, (17)—(4"),
are obtained from the compositions of 3 by appending “+1” to each of the corresponding
compositions of 3. (The reader may recall seeing such results in Fig. 4.7.)

(1" 4

2 143
(N 3 (3) 242
2) 1+2 (4) 1+1+2

3) 241
4) 1+141 (1) 3+1

(2" 1+2+1
(3" 2+1+1
(4" I+1+1+1

Figure 10.1
What happens in Fig. 10.1 exemplifies the general situation. So if we let a, count the
number of compositions of #, for n € ZT, we find that
dpt+1 = 2ay, n=1, a =1,

However, in order to apply the formula for the unique solution (where n = 0} to this recur-
rence relation, we let b, = a,|. Then we have

bn+1 :2bn1 n205 b[): 17

sob, =bg(2") =2" anda, =b,_1 =2"""n>1.

The recurrence relation a,, — da, = 0 is called linear because each subscripted term
appears to the first power (as do the variables x and y in the equation of a line in the plane). In
a linear relation there are no products such as a,a,—, which appears in the nonlinear recur-
rence relation a1 — 3a,a,_1 = 0. However, there are times when a nonlinear recurrence
relation can be transformed into a linear one by a suitable algebraic substitution.

Find g1, if aiﬂ = Sa,%, where 4, > 0 forn > 0, and ag = 2.

Although this recurrence relation is not linear in a,,, if we let b, = ai, then the new
relation b,y = 5b, forn > 0, and by = 4, is a linear relation whose solution is b, = 4 - 5".
Therefore, a, = 2(x/5)" forn > 0, and a;» = 2(+/5)'2 = 31,250.
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The general first-order linear recurrence relation with constant coefficients has the form
@ny1 +ca, = f(n), n >0, where ¢ is a constant and f(n) is a function on the set N of
nonnegative integers.

When f(n) = 0 for all n € N, the relation is called homogeneous; otherwise it is called
nonhomogeneous. So far we have only dealt with homogeneous relations. Now we shall
solve a nonhomogeneous relation. We shall develop specific techniques that work for all
linear homogeneous recurrence relations with constant coefficients. However, many differ-
ent techniques prove useful when we deal with a nonhomogeneous problem, although none
allows us to solve everything that can arise.

EXAMPLE 10.5

Perhaps the most popular, though not the most efficient, method of sorting numeric data
is a technique called the bubble sors. Here the input is a positive integer n and an array

Xy, X2, X3, . .., X, of real numbers that are to be sorted into ascending order.

The pseudocode procedure in Fig. 10.2 provides an implementation for an algorithm to
carry out this sorting process. Here the integer variable i is the counter for the outer for
loop, whereas the integer variable j is the counter for the inner for loop. Finally, the real
variable femp is used for storage that is needed when an exchange takes place.

procedure BubbleSort(n: positive integer; x;,X2,X3,...,X,: real numbers)
begin
fori:=1ton—-1do

for j := ndownto i + 1 do
if x, < x,_, then

begin {interchange}
temp :=x,
Xj,] =X,
x; := temp
end
end
Figure 10.2

We compare the last entry, x,, in the given array with its immediate predecessor, x,,_;. If
Xy < xp_1, we interchange the values stored in x,_) and x,,. In any event we will now have
Xp—1 < x,. Then we compare x,_; with its immediate predecessor, x,—2. If x,_| < x,_,
we interchange them. We continue the process. After n — 1 such comparisons, the smallest
number in the list is stored in x;. We then repeat this process for the n — 1 numbers now

stored in the (smaller) atray x3, x3, . . ., x,. Inthis way, each time (counted by i) this process
is carried out, the smallest number in the remaining sublist “bubbles up” to the front of that
sublist.

A small example whereinz = Sand x; = 7,x, = 9,x3 = 2, x4 = 5,and x5 = 8is given
in Fig. 10.3 to show how the bubble sort of Fig. 10.2 places a given sequence in ascending
order. In this figure each comparison that leads to an interchange is denoted by the symbol
:); the symbol } indicates a comparison that results in no interchange.

To determine the time-complexity function A(r) when this algorithm is used on an input
(array) of size n > 1, we count the total number of comparisons made in order to sort the n
given numbers into ascending order.

If a,, denotes the number of comparisons needed to sort 7 numbers in this way, then we
get the following recurrence relation:

Gy = ap1+ (n— 1), n=2, a; =0.
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=1 x 7 7 7 7 2
Ji=2
X3 2 2} 2 9 9
j=4
X4 5} 5 5 5 5
=5
X 8 8 8 8 8

Four comparisons and two interchanges.

=21 x 2 2 2 2
X5 7 7 7DJ 3 5
X 9 9 5 7
3 2114
X, 5} S 9 9
| =
Xs 8 8 8 8

Three comparisons and two interchanges.

=3 x 2 2 2
XZ 5 5 5
X 7 7 7
x3 9 S}j:A 8
4 Dj=5
X5 8 9 9

Two comparisens and one interchange.

=4 Xq 2
X5 5
X3 7
X4 S}J -5
Xg 9

One comparison but no interchanges.

Figure 10.3

This arises as follows. Given a list of # numbers, we make n — 1 comparisons to bubble
the smallest number up to the start of the list. The remaining sublist of n — 1 numbers then
requires a,_; comparisons in order to be completely sorted.

This relation is a linear first-order relation with constant coefficients, but the termn - 1
makes it nonhomogeneous. Since we have no technique for attacking such a relation, let us
list some terms and see whether there is a recognizable pattern.

a; =0

a+2-1)=1
a+G-1)=1+2
@i=ar+ @G -1 =1+2+3

az

Il

a3

Ingeneral, @y =1 +2+---+(n—1) = [(n — Dnl/2 = (n* - n)/2.
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EXAMPLE 10.6

EXAMPLE 10.7

As a result, the bubble sort determines the time-complexity function h: Zt — R given
by h(n) = a, = (n* — n)/2. [Here h(Z") C N.] Consequently, as a measure of the running
time for the algerithm, we write i € O (n?). Hence the bubble sort is said to require On?)
comparisons,

In part (¢) of Example 9.6 we sought the generating function for the sequence 0, 2, 6, 12,
20, 30, 42, . .., and the solution rested upon our ability to recognize that a, = n? +n for
each n € N. If we fail to see this, perhaps we can examine the given sequence and determine
whether there is some other pattern that will help us.
Hereay=0,a; =2,a; = 6,a; = 12, a4 = 20, as = 30, ag = 42, and
a1—00:2 (13--(12:6 a5~—a4=10

a—a =4 as — a3 = 8 ag —as = 12.
These calculations suggest the recurrence relation
an — ay_1 = 21, n>l1, ap = 0.

To solve this relation, we proceed in a slightly different manner from the method we used
in Example 10.5. Consider the following n equations;

a “(10=2
a2—a1:4
a3-a2=6

Qn — Q-] = 21.

When we add these equations, the sum for the left-hand side will contain g; and —a; for all
1<i<n-—1.50weobtain

ayp—ag=2+4+6+---+2n=214+2+3+ --+n)
=2[n(n + 1)/2] = n* +n.

Since ay = 0, it follows that a, = n*® + n for all n € N, as we found earlier in part (c) of
Example 9.6.

At this point we shall examine a recurrence relation with a variable coefficient.
Solve the relation @, = n - a1, where n > 1 and ag = 1.
Writing the first five terms defined by the relation, we have

ap =1 a=2-a =21 a=4-a3=4-3.2.1

a1=1-a0:1 G3:3'd2:3'2'1

Therefore, a, = n! and the solution is the discrete function a,,, which counts the number
of permutations of »n objects, n > 0.
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While on the subject of permutations, we shall examine a recursive algorithm for gen-

erating the permutations of {1, 2, 3,...,n — 1, n} from those for {1,2,3,...,n—1}.7
There is only one permutation of {1}. Examining the permutations of {1, 2},
1 2
2 1

we see that after writing the permutation | twice, we intertwine the number 2 about | to get
the permutations listed. Writing each of these two permutations three times, we intertwine
the number 3 and obtain

l 2 3
1 3 2
3 1 2
3 2 1
2 3 1
2 1 3

We see here that the first permutation is 123 and that we obtain each of the next two
permutations from its immediate predecessor by interchanging two numbers: 3 and the
integer to its left. When 3 reaches the left side of the permutation, we examine the remaining
numbers and permute them according to the list of permutations we generated for {1, 2}.
(This makes the procedure recursive.) After that we interchange 3 with the integer on its
right until 3 is on the right side of the permutation. We note that if we interchange 1 and 2
in the last permutation, we get 123, the first permutation listed.

Continuing for § = {1, 2, 3, 4}, we first list each of the six permutations of {1, 2, 3} four
times. Starting with the permutation 1234, we intertwine the 4 throughout the remaining
23 permutations as indicated in Table 10.1 (on page 454). The only new idea here develops
as follows. When progressing from permutation (3) to (6) to (7) to (8), we interchange 4
with the integer to its right. At permutation (8), where 4 has reached the right side, we
obtain permutation (9) by keeping the location of 4 fixed and replacing the permutation
132 by 312 from the list of permutations of {1, 2, 3}. After that we continue as for the first
eight permutations until we reach permutation (16), where 4 is again on the right. We then
permute 321 to obtain 231 and continue intertwining 4 until all 24 permutations have been
generated. Once again, if 1 and 2 are interchanged in the last permutation, we obtain the
first permutation in our list.

The chapter references provide more information on recursive procedures for generating
permutations and combinations.

We shall close this first section by returning to an earlier idea — the greatest common
divisor of two positive integers.

Recursive methods are fundamental in the areas of discrete mathematics and the analysis
of algorithms. Such methods arise when we want to solve a given problem by breaking it
down, or referring it, to smaller similar problems. In many programming languages this can
be implemented by the use of recursive functions and procedures, which are permitted to
invoke themselves. This example will provide one such procedure.

"The material from here to the end of this section is a digression that uses the idea of recursion. Tt does not
deal with methods for solving recurrence relations and may be omitted with no loss of continuity.
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Table 10.1

(1)
(2}
(3}
4y 4
5y 4
(6}
(7)
(8)
%)
(10)
(11)
(15)
(16)
(17
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In computing ged(333, 84) we obtain the following calculations when we use the Eu-
clidean algorithm (presented in Section 4.4).

333 = 3(84) + 81 0<8l <84 (1)
84 =181 +3 0<3<81 2
81=27(3) +0. 3)

Since 3 is the last nonzero remainder, the Euclidean algorithm tells us that
gcd{333, 84) = 3. However, if we use only the calculations in Eqs. (2) and (3), then we find
that gcd(84, 81) = 3. And Eq. (3) alone implies that ged(81, 3) = 3 because 3 divides 81.
Consequently,

ged(333, 84) = ged(84, 81) = ged(81, 3) = 3,

where the integers involved in the successive calculations get smaller as we go from Eq. (1)

to Eq. (2) to Eq. (3).
We also observe that

81 = 333 mod 84 and 3 = 84 mod 81.
Therefore it follows that
ged(333, 84) = ged(84, 333 mod 84) = ged(333 mod 84, 84 mod (333 mod §4)).

These results suggest the following recursive method for computing ged(a, b), where
a,beZt.
Say we have the inputa, b € Z+.
Step 1: If b|a (or a mod b = 0), then ged(a, b) = b.
Step 2: If b f a, then perform the following tasks in the order specified.
i) Seta=s.
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ii) Set & = a mod b, where the value of a for this assignment is the old value

of a.

iif) Return to step (1).

These ideas are used in the pseudocode procedure in Fig. 10.4. (The reader may wish to
compare this procedure with the one given in Fig. 4.11.)

begin

end

procedure gcd2 (a, b: positive integers)

if amod b =0 then
gcd = b
else gcd = gcd2 (b, amod b)

Figure 10.4

1. Find a recurrence relation, with initial condition, that
uniquely determines each of the following geometric progres-
sions.

a) 2, 10, 50, 250, . ..
b) 6, —18, 54, —162, ...
c) 7, 14/5,28/25,56/125, ...

2. Find the unique sclution for each of the following recur-
rence relations.

a) a,, — 1.5a, =0, n>0
b) 4a, — 54,1 =0, n>1
C) 3HnJrl - 46[,, = 0, "z Os
d) 2a, — 3a, 1 =0, n>1,

3. Ifa,, n =0, is the unique solution of the recurrence rela-
tion a,,1 - da, = 0, and a5 = 153/49, as = 1377/2401, what
isd?

4. The number of bacteria in a culture is 1000 (approximately),
and this number increases 250% every two hours. Use a recur-

rence relation to determine the number of bacteria present after
one day.

aI:S

ay = 81

5. If Laura invests $100 at 6% interest compounded quarterly,
how many months must she wait for her money to double? (She
cannot withdraw the money before the quarter is up.)

6. Paul invested the stock profits he received 15 years ago in
an account that paid 8% interest compounded quarterly. If his
account now has $7218.27 in it, what was his initial investment?

7. Letxq, x9, ..., X0 be a list of distinct real numbers to be
sorted by the bubble-sort technique of Example 10.5. (a) After
how many comparisons will the 10 smallest numbers of the orig-
inal list be arranged in ascending order? (b) How many more
comparisons are needed to finish this sorting job?

8. For the implementation of the bubble sort given inFig. 10.2,
the outer for loop is executed n — 1 times. This occurs regard-
less of whether any interchanges take place during the exe-
cution of the inner for loop. Consequently, for { = k, where
1 <k =n—2, if the execution of the inner for loop results
in no interchanges, then the list is in ascending order. So
the execution of the outer for loop fork + 1 <j <n — 1 isnot
needed.

a) For the situation described here, how many unnecessary
comparisons are made if the execution of the inner for loop
fori = k(1 <k <n — 2) results in no interchanges?

b) Write an improved version of the bubble sort shown in
Fig. 10.2. (Your result should eliminate the unnecessary
comparisons discussed at the start of this exercise.)

¢) Using the number of comparisons as a measure of
its running time, determine the best-case and the worst-
case time complexities for the algorithm implemented in
part (b).

9. Say the permutations of {1, 2, 3, 4, 5} are generated by
the procedure developed after Example 10.7. (a) What is the
last permutation in the list? (b) What two permutations precede
251347 (¢) What three permutations follow 251347

10. Forn > 1,apermutation py, p1, ps, - - ., p, of theintegers
1,2,3,...,n is called orderly if, foreach i = 1,2, 3, ...,
n — 1, thereexistsa j = i suchthat|p, — p,| = 1.[If n = 2, the
permutations 1, 2and 2, 1 are both orderly. When» = 3 we find
that 3, 1, 2 is an orderly permutation, while 2, 3, 11is not. (Why
not?)] (a) List all the orderly permutations for 1, 2, 3.(b) List all
the orderly permutations for 1, 2, 3, 4. (c) If py, pa, p3, Pa, Ps
is an orderly permutation of 1, 2, 3, 4, 5, what value(s) can p,
be? (d) For n > 1, let a, count the number of orderly permu-
tations for 1, 2, 3, .. ., n. Find and solve a recurrence relation
for a,,.
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10.2

The Second-Order Linear
Homogeneous Recurrence
Relation with Constant Coefficients

EXAMPLE 10.9

Let k € ZT and Cy (# 0), Cy, Ca, ..., C; (3 0) be real numbers. If a,, for n >0, is a
discrete function, then

Coap + Cran-1 + Cotns + -+ + Cran_y = f(n), n>k,

is a linear recurrence relation (with constant coefficients) of erder k. When f(n) = 0 for
all n > 0, the relation is called homogeneous; otherwise, it is called nonhomogeneous.
In this section we shall concentrate on the homogeneous relation of order two:

Coan + Crap— + Cran_r =0, n=>2.

On the basis of our work in Section 10.1, we seek a solution of the form ¢, = cr”, where
c#0andr # 0.
Substituting a, = cr” into Coatp + Cran-1 + Cra,_7 = 0, we obtain

C()Ci"n + C[C]'”n_1 + CzCi"n_z =0.

With ¢, r # 0, this becomes Corl+Cir+C, =0, a quadratic equation which is called
the characteristic equation. The roots r), r» of this equation determine the following three
cases: (a) rq, r are distinct real numbers; (b) r|, rp form a complex conjugate pair; or
(¢c) r1, rp are real, but r{ = ry. In all cases, r; and r, are called the characteristic roots.

Case (A): (Distinct Real Roots)

Solve the recurrence relation a, + ap—1 — 6a,_» =0, wheren > 2 and gy = —1, a, = 8.
Ifa, = ¢r” with ¢, r # 0, we obtain cr” + cr" 1 — 6¢r®=2 = 0 from which the charac-
teristic equation r* 4+ r — 6 = 0 follows:

O0=r’+r-6=0+3)r-2)=>r=2-3

Since we have two distinct real roots, a, = 2" and @,, = (—3)" are both solutions [as are
b(2™) and d(—3)", for arbitrary constants b, d|. They are linearly independent solutions
because one is not a multiple of the other; that is, there is no real constant k such that
(=3)* = k(2" for all n € N." We write a, = c1(2*) 4 c2(—3)" for the general solution,
where ¢, ¢2 are arbitrary constants.

With gy = —1 and ¢ = 8, ¢; and ¢, are determined as follows:

“l=a=a)+a(=3)"=ca+ae
8=a; =c12Y) + e2(=3)' = 2¢; — 3cs.
Solving this system of equations, one finds ¢; = 1, ¢; = —2. Therefore, a, = 2" — 2(-3)",
n > 0, is the unique solution of the given recurrence relation.

The reader should realize that to determine the unique solution of a second-order linear
homogeneous recurrence relation with constant coefficients one needs two initial conditions

*We can also call the solutions a, = 2" and a, = (=3)" linearly independent when the following condition
is satisfied: For k1, k» € R, if k1 (2") + k2(—3)" = Oforall n e N, then k) = k» = 0.
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(values) — that is, the value of a,, for two values of n, veryoftenn = Qandn = 1,orn = 1
andn = 2,

An interesting second-order homogeneous recurrence relation is the Fibonacci relation.
{This was mentioned earlier in Sections 4.2 and 9.6.)

Solve the recurrence relation F,.; = Fy4 + F,, wheren > 0and Fy =0, F| = 1.

As in the previous example, let F,, = c¢r", for ¢, r # 0, n > 0. Upon substitution we get
cr®t? = cr"*! 4 cr". This gives the characteristic equation r* — r — 1 = 0. The character-
istic roots are r = (1 + \/5)/2, so the general solution is

~ (1+v5) -5\
()

To solve for ¢1, ¢;, we use the given initial values and write 0 = Fy =c¢) 4¢3, 1 =
Fi = ol +45)/2] + e2[(1 — 4/3)/2]. Since —c; = 2. we have 2= c (1 + v/3) —
c1(1 — +/5) and ¢| = 1/+/5. The general solution is given by

[ f1+5)" (1-v5)
SR

When dealing with the Fibonacci numbers one often finds the assignments o = (1 + +/5)/2
and B = (1 — +/5)/2, where « is known as the golden ratio. As a result, we find that

F :L(an_ﬁn):a"—ﬁ”
n \/5 Od*ﬁ

[This representation is referred to as the Binet form for F,, as it was first published in 1843
by Jacques Philippe Marie Binet (1786-1856).]

s n=0.

Forn>0,let $=1{1,2,3,...,n} (when n =0, § =), and let a, denote the number
of subsets of § that contain no consecutive integers. Find and solve a recurrence relation
for a,.

For 0 <n <4, we have gy = 1, a; = 2, a; = 3, a3 = 5, and a4 = 8. [For example,
a; = 5 because S = {1, 2, 3} has @, {1}, {2}, {3}, and {1, 3} as subsets with no consecutive
integers (and no other such subsets).] These first five terms are reminiscent of the Fibonacci
sequence. But do things change as we continue?

letn>2and $=1{1,2,3,...,n~2,n—1,n}. If AC S and A is to be counted in
a,, there are two possibilities:

a) n € A: When this happens (n — 1) ¢ A, and A — {n} would be counted in @, _;.
b) n ¢ A: For this case A would be counted ina,_|.

These two cases are exhaustive and mutually disjoint, so we conclude that g, = a,_; +
an—a, where n > 2 and ag = [, a; = 2, is the recurrence relation for the problem. Now we
could solve for a,, but if we notice that a, = F,,,, n > 0, then the result of Example 10.10

implies that
n+2 n+2
| 1485\ [1=-vE\T"
ay = — — , n>0.
V5 2 2
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EXAMPLE 10.12

Suppose we have a 2 X n chessboard, forn € Z*1. The case forn = 4 is shown in part (a) of
Fig. 10.5. We wish to cover such a chessboard using 2 X 1 (vertical) dominoes, which can
also be used as 1 X 2 (horizontal) dominoes. Such dominoes {or tiles) are shown in part (b)
of Fig. 10.5.

rEXAMPLE 10.13

(a) (b) (©
Figure 10.5

Forn € Z* we let b, count the number of ways we can cover (or tile) a 2 X » chessboard
using our 2 X 1 and 1 X 2 dominoes. Here b; = 1, fora 2 X 1 chessboard necessitates one
2 X 1(vertical) domino. A2 X 2 chessboard can be covered in two ways —using two 2 X 1
(vertical) dominoes or two 1 X 2 (horizontal) dominoes, as shown in part (¢) of the figure.
Hence b; = 2. Fora > 3, consider the last (nth) column of a 2 X n chessboard. This column
can be covered in two ways.

i) By one 2 X 1 (vertical) domino: Here the remaining 2 X (n — 1) subboard can be
covered in b,_; ways.

ii) By the right squares of two 1 X 2 (horizontal) dominoes placed one above the other:
Now the remaining 2 X (n — 2) subboard can be covered in b,_, ways.

Since these two ways have nothing in common and deal with all possibilities, we may write
by, = by + bn_y, n=>3, by =1, by = 2.
We find that b, = F,, ., so here is another situation where the Fibonacci numbers arise. The

result from Example 10.10 gives us b, = (1/v/S)}[((1 + +/5)/2)" — ((1 — /5)/2"1,

n=>1.

At this point we examine an interesting application where the number o = (1 + +/5)/2
plays a major role. This application deals with Gabriel Lamé’s work in estimating the num-
ber of divisions used in the Euclidean algorithm to find ged(a, b), where a, b € Z* with
a = b > 2. To find this estimate we need the following property of the Fibonacci numbers,
which can be established by the alternative form of the Principle of Mathematical Induction.
(A proof is requested in the Section Exercises.)

Property: Forn >3, F, > a2,

Addressing the problem at hand — namely, estimating the number of divisions when
the Euclidean algorithm is used to find ged(a, b) — we recall the following steps from
Theorem 4.7.
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Letting ry = @ and r| = b, we have

o =q1r1 + r, O<rp<n

r = qara + 3, O<iz<nr

= gsrs + ry, O<ry<rs
Fn—2 = Gn-1tn-1 + n, 0<rn<rn—1

Fn—1 = gnhn-

So ry,, the last nonzero remainder, is gcd(a, b).
From the subscripts on r we see that r divisions have been performed in determining
r, = gcd(a, b). In addition, g; = 1, forall 1 <i <n — 1, and g, > 2 because r, < r,_1.

Examining the » nonzero remainders ry,, rp—1, Ffn-2, . .., r2, and ry (= b), we learn that
>0, sor,=1=F.
(@ =2DAm= D=2 =g 22 1=2=F
2= Gttt th2lorm i +tmzFB+R=F

n=grtrnzl-ntnn=2Fh  +FhL,=F
b=r=grnt+nrn=l-rn+rn>F+ FHLh= FL.

Therefore, if 2 divisions are performed by the Euclidean algorithm to determine ged{a, b),
witha > b > 2, thenb > F, ;. So by virtue of the property introduced earlier, we may write
bt =gl =[(1 4+ «,@)/2]"‘1. Consequently, we find now that

-1
= log;y b > logyy(@"™" = (n — D logya > ?5—'

b>a" !

since log g & = log,y[(1 + +/5)/2] = 0.208988 > 0.2 = 1.
At this point suppose that 10~! < b < 10*, so that the decimal (base 10) representation
of b has k digits. Then

~1
k = log,, 10% > log,y b > "T and n < Sk+1,

With #, k € Z* we have n < 5k + 1 = n < 5k, and this last inequality now completes a
proof for the following.
Lamé’s Theorem: Let a, b € ZT with a > b > 2. Then the number of divisions needed, in
the Euclidean algorithm, to determine ged(a, b) is at most 5 times the number of decimal
digits in b.

Before closing this example, we learn one more fact from Lamé’s Theorem. Since b > 2,
it follows that log, b > log,g 2, so 5 log,, b = 5logyy 2 = log,, 2° = log,; 32 > 1. From
above we know thatn — 1 < 5log b, so

n<l45loggb <5logyyb+5logyyb=101log;, b

and n € O(log,o ). [Hence, the number of divisions needed, in the Euclidean algorithm,
to determine ged(a, b), fora, b € Z* witha > b > 2, is O(log,, b) — that is, on the order
of the number of decimal digits in b.]




460 Chapter 10 Recurrence Relations

EXAMPLE 10.14

EXAMPLE 10.15

Returning to the theme of the section we now examine a recurrence relation in a computer
science application.

In many programming languages one may consider those legal arithmetic expressions,
without parentheses, that are made up of the digits 0, 1, 2, . .. , 9 and the binary operation
symbols +, x, /. Forexample, 3 4+ 4 and 2 + 3 * 5 are legal arithmetic expressions; 8 + % 9
is not. Here 2 4 3 % 5 = 17, since there is a hierarchy of operations: Multiplication and
division are performed before addition. Operations at the same level are performed in their
order of appearance as the expression is scanned from left to right.

Forn € Z*, let a, be the number of these {legal) arithmetic expressions that are made
up of n symbols. Then a¢; = 10, since the arithmetic expressions of one symbol are the 10
digits. Next a; = 100. This accounts for the expressions 00, 01, ..., 09, 10, 11,..., 99,
(There are no unnecessary leading plus signs.) When n > 3, we consider two cases in order
to derive a recurrence relation for a,,:

1) If x is an arithmetic expression of n — 1 symbols, the last symbol must be a digit.
Adding one more digit to the right of x, we get 10a,_, arithmetic expressions of n
symbols where the last two symbols are digits.

2) Now let y be an arithmetic expression of n — 2 symbols. To obtain an arithmetic
expression with a symbols (that is not counted in case 1), we adjoin to the right of y one
of the 29 two-symbol expressions +1, ..., +9, +0, =1, ..., %9, %0, /1, ..., /9.

From these two cases we have a,, = 10a,_; + 29¢,_», where n > 3 and a1 = 10, ¢; =
100. Here the characteristic roots are 5+3+/6 and the solution is @, = (5 / (3V6)) -
(5 + 3v/6)" — (5 — 3/6)"| forn > 1. (Verify this result.)

Another way to complete the solution of this problem is to use the recurrence relation
dn = 10a,_1 + 29a,_1, with @ = 100 and @, = 10, to calculate a value for gy — namely,
ag = {az — 10a,)/29 = 0. The solution for the recurrence relation

a, = 10a,_1 + 29a, _,, n>=2, ag = 0, a; =10
is

an = (5/BVONIG + 3V6)" — (5 - 3v6)"], n >0,

A second method for counting palindromes arises in our next example.

In Fig. 10.6 we find the palindromes of 3, 4, 5, and 6 — that is, the compositions of 3, 4, 5,
and 6 that read the same left to right as right to left. (We saw this concept earlier in Example
9.13.) Consider first the palindromes of 3 and 5. To build the palindromes of 5 from those
of 3 we do the following:
i) Add 1 to the first and last summands in a palindrome of 3. This is how we get
palindromes (1) and (2') for 5 from the respective palindromes (1) and (2) for
3. [Nore: When we have a one summand palindrome # we get the one summand
palindrome » + 2. That is how we build palindrome (1") for 5 from palindrome (1}
for 3.]
ii} Append “14" to the start and “+ 1" to the end of each palindrome of 3. This technique
generates the palindromes (1”) and (2”) for 5 from the respective palindromes (1)
and (2) for 3.
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) 3
) 1+1+1

(1) 5 '4)) 4 (1) 6

(2 24142 (2) 1+2+1 (2" 24242

(1" 14+3+1 (3) 242 (39 3+3

(2" I1+14+1+14+11 & I1+14+1+1 1 @) 24+1+14+2
(1" 1+4+1
2" 1+1+2+1+1
(3" 14+2+2+1
4" 1+1+14+1+1+1

Figure 10.6

EXAMPLE 10.16

The situation is similar for building the palindromes of 6 from those of 4.
The preceding observations lead us to the following. Forn € Z*, let p, count the number
of palindromes of n. Then

pnzzpn—2s n23s 1241 :ls [72=2

Substituting p, = cr”, for ¢, r # 0, n > 1, into this recurrence relation, the resulting char-
acteristic equation is #* — 2 = 0, The characteristic roots are r = + V2,50 Pn = (V)" +
c;(—ﬁ)”. From

1= p; =c1(v2) + c2(—v2)

2= pr =1 (V2)? + (- V2)?

we find that ¢; = (% + ﬁ)’q = (% - ﬁ),so
o1 11
w=|z+-— («/5"+(—-—) V2", a=1
8 (2 2\/5) "t 27 35)¢

Unfortunately, this does not look like the result found in Example 9.13. After all, that answer
contained no radical terms. However, suppose we consider n even, say n = 2k. Then

1 1 1 1
. = | = S 22k — ﬁ22k
g (2+2ﬂ) v +(2 2f2)( =

11 11
=|lz+-—= 2k+(————)2’<:2’f:2"/2
(2 2ﬁ) 2 22

For n odd, say n =2k — 1, k € Z", we leave it for the reader to show that p, = 2¢~! =
o(n=1)/2

The preceding results can be expressed by p, = 21/ n > 1, as we found in Example
9.13.

The recurrence relation for the next example will be set up in two ways. In the first part
we shall see how auxiliary variables may be helpful.

Find a recurrence relation for the number of binary sequences of length n that have no
consecutive (I’s.
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EXAMPLE 10.17

a) For n > 1, let a, be the number of such sequences of length n. Let ! count those
that end in 0, and a' those that end in 1. Then a, = a” + aV.
We derive a recurrence relation for a,, n > 1, by computing a¢; = 2 and then con-
sidering each sequence x of length n — 1 (> Q) where x contains no consecutive 0’s.
If x ends in 1, then we can append a O or a 1 to it, giving us Zafll_)1 of the sequences
counted by a,. If the sequence x ends in 0, then only 1 can be appended, resulting in
afto_)l sequences counted by a,. Since these two cases exhaust all possibilities and have
nothing in common, we have

ay, :2<a(1)1+1-a(0)

n— n—1
\ N
The sth position The nth pesition
canbe 0 or 1. can only be 1.

If we consider any sequence y counted in a,,_» we find that the sequence y1 is counted
in afll_)l. Likewise, if the sequence z1 is counted in a'V  then Z is counted in a,_s.

n—1°
ey

Consequently, a,—; = a,_; and

1 1 0y 1
ay = an(:—)l + [afl_)l +a,(,_)1] = d,g_)l + i1 = dp-1 +ap—.

Therefore the recurrence relation for this problem is a, = a,_, + a,—3, where n >3
and a; = 2, a; = 3. (We leave the details of the solution for the reader.)

b) Alternatively, if n > 1 and a, counts the number of binary sequences with no con-
secutive 0's, then a; = 2 and a; = 3, and for # > 3 we consider the binary sequences
counted by a,. There are two possibilities for these sequences:

(Case 1: The nth symbol is 1) Here we find that the preceding n — 1 symbols form
a binary sequence with no consecutive (’s. There are a,—) such sequences.
(Case 2: The nth symbeol is ) Here each such sequence actually ends in 10 and the
first n — 2 symbols provide a binary sequence with no consecutive 0’s. In this case
there are a,_; such sequences.
Since these two cases cover all the possibilities and have no such sequence in common,
we may write

Qn = n1 + Ay, n=>3, ay =2, ay =3,
as we found in part (a).

In both part (a) and part (b) we can use the recurrence relation and a; = 2, ay = 3 to
go back and determine a value for ay —namely, agp = a; ~@; = 3 — 2 = 1. Then we can
solve the recurrence relation

ay = dp—1 + az-2, n>2, ap =1, a = 2,

Before going any further we want to be sure that the reader understands why a general
argument is needed when we develop our recurrence relations. When we are proving a
theorem we do not draw any general conclusions from a few (or even, perhaps, many)
particular instances. The same is true here. The following example should serve to drive
this point home.

We start with » identical pennies and let @, count the number of ways we can arrange these
pennies — contiguous in each row where each penny above the bottom row touches two
pennies in the row below it. (In these arrangements we are not concerned with whether any
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given penny is heads up or heads down.) In Fig. 10.7 we have the possible arrangements
for 1 < n < 6. From this it follows that

a; =1, a; =1, ay =2, as =3, as =25, and agg=38.

Consequently, these results might suggest that, in general, @, = F,, the nth Fibonacci
number, Unfortunately, we have been led astray, as one finds, for example, that

a7:12#13:F7, a8:18%21=Fg, and a9:26§é34:Fg,

(The arrangements in this example were studied by E C. Auluck in reference [2].)

(n=86)

( EXAMPLE 10.18

Figure 10.7

The last two examples for case (A) show us how to extend the results for second-order
recurrence relations to those of higher order.

Solve the recurrence relation
20443 = Anya + 20011 — A, n=0, ag =10, a =1, a; = 2.

Lettinga, = cr” forc, r # Oandr > 0, we obtain the characteristic equation 23 — 2 —
2r +1=0=(2r — 1)(r — 1)(r + 1). The characteristic roots are 1/2, 1, and —1, so the
solution is @, = ¢ (1) + c2(—= D" + 3(1/2)" = ¢1 + c2(—1)" + ¢3(1/2)", [The solutions
1, (—=1)", and (1/2)" are called linearly independent because it is impossible to express
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EXAMPLE 10.19

any one of them as a linear combination of the other two."]From 0 = ay, 1 = a;, and 2 =
as, we derive ¢ = 5/2, ¢o = 1/6, c3 = —8/3. Consequently, a, = (5/2) + (1/6)(—1)" +
(—8/3)(1/2)", n 2 0.

Forn > | we want to tile a 2 X n chessboard using the two types of tiles shown in part (a)
of Fig. 10.8. Letting a,, count the number of such tilings, we find that a; = 1, since we can
tile a 2 X 1 chessboard (of one column) in only one way — using two 1 X 1 square tiles.
Part (b) of the figure shows us that @; = 5. Finally, for the 2 X 3 chessboard there are 11
possible tilings: (i) one that uses six 1 X 1 square tiles; (ii) eight that use three 1 X 1 square
tiles and one of the larger tiles; and (iii) two that use two of the larger tiles. When n > 4 we
consider the nth column of the 2 X n chessboard. There are three cases to examine:

1) the nth column is covered by two 1 X 1 square tiles — this case provides a,, . tilings;

2) the (n — 1)st and nth columns are tiled with one 1 X 1 square tile and one larger
tile — this case accounts for 4q,_» tilings; and

3) the (n — 2)nd, (n — 1)st, and nth columns are tiled with two of the larger tiles — this
results in 2a,_j tilings.

(a) (b)

Figure 10.8

These three cases cover all possibilities and no two of the cases have anything in common,
$0

ap = dp—y +4a,_2 + 2a,_3, n=>=4, a =1, a; =5, az = 11.

The characteristic equation x> — x> — 4x — 2 = 0 can be written as

(x + 1)(x? — 2x — 2) = 0, so the characteristic roots are —1, 1 + +/3, and 1 — +/3. Con-
sequently, a, = i (—1)" + (1 + VI +e(1—+3)", n=1. From 1=a, = —¢c, +
a(l+vVH+a(l=V3), S=am=ci+c(1+v)H+3(1 — V3?2, and 11 =43 =
—c1 4+l + V3P + 31 =33, wehave ¢f = 1, ¢ = 1/4/3, and ¢3 = —1/4/3. So

an = (=" + (VA + V)" + (=1/V/HA =3, n=>1.

Case (B): (Complex Roots)
Before getting into the case of complex roots, we recall DeMoivre’s Theorem:
(cos 8 +i sin 8) = cos nB + i sin no, n>0,

[This is part (b) of Exercise 12 of Section 4.1.]

1"Altematively, the solutions 1, (=1, and (1/2)" are linearly independent, because if ki, k2, k3 are real
numbers, and k1 (1) + k2 (—1)" + k3(1/2)" = 0forall n € N, then k) = k» = k3 = 0.
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Ifz=x+iyeC,z#0, wecan write z = r(cos§ +1i sin #), where r = /x? + y? and
(y/x) =tan @, for x # 0.1f x = 0, then for y > 0,

z = yi = yisin(m/2) = y(cos(m/2) + i sin(mw/2)),
and for y < 0,
z =yi = |yli sin(37/2) = |y|(cos(37/2) + i sin(37/2)).

In all cases, z" = r"(cos n@ + i sin nf), for n > 0, by DeMoivre’s Theorem.

Determine (1 + /3 ).

EXAMPLE 10.20 Figure 10.9 shows a geometric way to represent the complex number 1+ /3 7 as the

point (1, +/3) in the xy-plane. Here r = v 12 4+ (+/3)2 = 2, and 8 = 7 /3.

(1,V3)

Figure 10.9

So 1+ +/3i = 2(cos(x/3) + i sin(ir/3)), and

(1 + /31 = 21%cos(107/3) + i sin(107/3)) = 21%(cos(47/3) + i sin(47/3))
=2'9((~1/2) — (V3/2)i) = (-2)(1 + V3 1).

We'll use such results in the following examples.

Solve the recurrence relation a,, = 2(a,_| — a,-2), wheren > 2and ay = 1, ) = 2.
Letting a, = ¢r", for c, r # 0, we obtain the characteristic equation rP—2r42=

EXAMPLE 10.21

0, whose roots are 1+/. Consequently, the general solution has the form ¢ (I +{)" +
c2(1 — )", where c; and ¢; presently denote arbitrary complex constants. [As in case (A),
there are two independent solutions: (I + /)" and (1 — i)".]

1+i = v2(cos(/4) + i sin(zr/4))
and

1—i = +/2(cos(—m/4) + i sin(—m/4)) = ~/2(cos(/4) — i sin(r/4)).
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EXAMPLE 10.22

This yields

apn =11+ + (1 — H*

c1lV2(cos(/4) + i sin(r/MN]" + c2lv2(cos(—m/4) + i sin(—m/4))])"
c1(v2)*(cos(nm /4) + i sin(nm /4)) + c;(«/z)”(cos(—nﬂ/él) + i sin(—nm/4))
c1(v/2) (cos(nm /4) + i sin(nm /4)) + c2(V2)" (cos(nm /4) — i sin(nm /4))
(V2 k1 cos(nm /4) + kq sin(am /4],

I}

Il

I

Il

where k1 = ¢; + ¢; and ky = (¢ — ).

1 =uay=[k1cosO+k;sin0] =k
2=a; = /2[1 cos(/4) + ks sin(m/4)], or2=1+k,, and k; = 1.

The solution for the given initial conditions is then given by
dy = (x/i)"[cos(mr/ll) + sin(nm/4)], n>0.
[Note: This solution contains no complex numbers. A small point may bother the reader here.

How did we start with ¢, ¢; complex and end up with &y = ¢; + ¢; and ky, = (¢) — 2}
real? This happens if ¢;, ¢; are complex conjugates. ]

Let us now examine an application from linear algebra.

For b € RY, consider the n X n determinant’ D, given by

b b 0 0 0 00 0 00
b b b 0 0 0 00 00
0 b b b O 0 ¢ 0 OO0
0 0 b b b 0 00 0 0
0 0 00O b b b 0 0
06 00 0O 0 b b b 0
06 00 00 0 0 b b b
0 00 00O 0 0 0 b &

Find the value of D, as a function of ».
Leta,, n > 1, denote the value of the n X n determinant D,. Then

b b b b 0
ay = |b| =b and azI}b b‘=0 (and a3 = b b b|=-b
0 b b

*The expansion of determinants is discussed in Appendix 2.



EXAMPLE 10.23 |

10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 467

Expanding D, by its first row, we have D, =

b b 0 0 --- 0 0 0 0 b b 0 0 0 0 0 0
b b b 0 .- 0 0 0 0 0O » b 0 --- 00 00
O b b b --- 00 0 0 0O p bbb --- 00 00
bl - -« . .. . =kl .
0000 -« b b b O 0 0 0 0 b b b 0
00600 --- 0 b b b 0 000 --- 0 b b b
0000 --- 00 b b 0 000 --- 00 b b
(This is D5 ..)

When we expand the second determinant by its first column, we find that D, =bD,_1 —
(bY(BYDy_y = bD,_; — b?D,_>. This translates into the relation a, = ba,_; — b%a,_o, for
n>3a =b,a =0.

If we let @, = cr” for ¢, r # 0 and n > 1, the characteristic equation produces the roots
b[(1/2) i/3/2].

Hence
an = c1[b((1/2) + iv3/2) + e2lb((1/2) — iv/3/2))"
= b"ci(cos(mr/3) +i sin(m/3))" + ca(cos(m/3) — i sin{zw/3))"]
= b"[ky cos(nm /3) + ky sin(nm /3)].
b =a, = blky cos(/3) + ky sin(w/3)], so 1= ki(1/2) + k2(v/3/2), ork; + /3 k; = 2.
0 = ay = b*[k; cos(2/3) + ky sin(27/3)], s0 0 = (k)(—1/2) + k2(~/3/2), or
ki = V3 k.
Hence k; = 1, k; = 1/+/3 and the value of D, is
b"[cos(nm/3) + (1/+/3) sin(az /3)].

Case (C): (Repeated Real Roots)

Solve the recurrence relation a,,2» = 4a,,, — 4a,, wheren > Qand ag = 1, q; = 3.

As in the other two cases, we let g, = ¢r”, where ¢, r # 0and n > 0. Then the charac-
teristic equation is #* — 4r + 4 = 0 and the characteristic roots are both » = 2. (So » = 2 is
called “a root of multiplicity 2.”) Unfortunately, we now lack two independent solutions: 2"
and 2" are definitely multiples of each other. We need one more independent solution. Let
us try g(n)2" where g(n) is not a constant. Substituting this into the given relation yields

g(n +2)2" % = dg(n + 12" — dg(n)2"
or
gn+2y=28m+1)—g). (1

One finds that g(n) = n satisfies Eq. (1).T So #2" is a second independent solution. (It is
independent because it is impossible to have n2" = k2" for all n = 0 if k is a constant.)

'TActually, the general solution is g(n) = an + b, for arbitrary constants @, b, witha # 0. Here we chosea = 1
and b = 0 to make g(n) as simple as possible.
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The general solution is of the form a, = ¢, (2") + ¢;n(2"). With ay = 1, a; = 3 we find
an =2" 4+ (1/2n2H =24+ n2" Y, n=0.

In general, if Coay + C10p-1 + Catpa + -+ 4+ Crayy = 0, with Cy (#0), Cy, G,
«++» G (#0) real constants, and r a characteristic root of multiplicity m, where
2 £ m <k, then the part of the general solution that involves the root r has the form

Agr® + Aynr® + Aznzr" E N

where Ap, A1, Az, .

st Apoqutien

= (Ap + A + A2n2 R Am-ﬂmm'l)r",

ven Ay are arbitrary constants.

Our last example involves a little probability.

EXAMPLE 10.24

If a first case of measles is recorded in a certain school system, let p, denote the probability
that at least one case is reported during the nth week after the first recorded case. School
records provide evidence that p, = p,.1 — (0.25)p,_», where n > 2. Since pg = 0 and
p1 = 1, if the first case (of a new outbreak) is recorded on Monday, March 3, 2003, when
did the probability for the occurrence of a new case decrease to less than 0.01 for the first

time?

2

With p, = cr” for ¢, r # 0, the characteristic equation for the recurrence relationis r= —
r+ (1/4) =0 = (r — (1/2)). The general solution has the form p, = (¢ + c2n)(1/2)",
A>0.Forpo=0p =1, wegetc;=0,¢2=2,50 p, =n2"", n >0

The first integer n for which p, < 0.01 is 12. Hence, it was not until the week of May
19, 2003, that the probability of another new case occurring was less than 0.01.

EXERCISES 10.2

1. Solve the following recurrence relations. (No final answer
should involve complex numbers.)

a)a, = S5a, 1 +6a, 5 n>2 ay=1, a =3
b} 2a,.0 — 1lany + 50, =0, n=0, ag=2, a) = —8
Qa,2+a, =0, n=0 =0 a =3
d)a, —6a,_1+%, =0, n>2, ag=135, a, =12
e) a, +2a, 1 +2a, =0, n=22, ag=1, =3

2. a) Verify the final solutions in Examples 10.14 and 10.23.
b) Solve the recurrence relation in Example 10.16.

3.Ifay=0, a =1, a =4, and a; = 37 satisfy the recur-
rence relation a,5 + ba,, +ca, =0, where n >0 and b, ¢
are constants, determine b, ¢ and solve for a,,.

4. Find and solve arecurrence relation for the number of ways
to park motorcycles and compact cars in a row of # spaces if
each cycle requires one space and each compact needs two. (All
cycles are identical in appearance, as are the cars, and we want
to use up all the n spaces.)

5. Answer the question posed in Exercise 4 if (a) the motor-
cycles come in two distinct models; (b) the compact cars come
in three different colors; and (c) the motorcycles come in two
distinct models and the compact cars come in three different
colors.

6. Answer the questions posed in Exercise 5 if empty spaces
are allowed.

7. In Exercise 12 of Section 4.2 we learned that F, + F, 4
Fat- -t F, =Y  F =F,,— 1 This is one of many
such properties of the Fibonacci numbers that were discovered
by the French mathematician Frangois Lucas (1842-1891). Al-
though we established the result by the Principle of Mathemat-
ical Induction, we see that it is easy to develop this formula by
adding the system of # + 1 equations

Fo=F—-F
F]=F3—F2

Fn—len-H_Fn
Fn=Fn+2—Fn+J-
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Develop formulas for each of the following sums, and then
check the general result by the Principle of Mathematical In-
duction.

a) Fil+Fy+Fs 4+ -+ Fy,_,wherenecZ’
b) i+ F+ Fy+ -+ Fa,, wheren € 2T
8. a) Prove that

. Fon 14+5
lim = .
2= 00 Fn 2

(This limit has come to be known as the golden ratio and is
often designated by «, as we mentioned in Example 10.10.)

b) Consider a regular pentagon ABCDE inscribed in a cir-
cle, as shown in Fig. 10.10.
i) Use the law of sines and the double angle formula
for the sine to show that AC/AX = 2 cos 36°,
ii) Ascos 18° = sin 72°
= 4 5in 18° cos 18°(1 — 2 sin” 18°) (Why?), show
that sin 18° is a root of the polynomial equa-
tion 8x* — 4x + 1 =0, and deduce that sin 18° =
(V5 — 1)/4.
¢) Verify that AC/AX = (1 + +/3)/2.

E D
Figure 10.10

9. For n > 0, let a, count the number of ways a sequence

of I's and 2’s will sum to n. For example, a3 = 3 because
(H1,1,1;(2) 1,2;and (3) 2, 1 sum to 3. Find and solve a recur-
rence relation for a,.
10, For ¥ = {0, 1},let A € =*, where A = {00, 1}.Forn > 1,
let @, count the number of strings in A* of length ». Find and
solve a recurrence relation for a,,. (The reader may wish to refer
to Exercise 25 for Section 6.1.)

11. a) For n > 1, let @, count the number of binary strings of
length n, where there are no consecutive 1’s. Find and solve
a recurrence relation for a,,.

b) For n > 1, let b, count the number of binary strings of
length n, where there are no consecutive 1's and the first
and last bit of the string are not both 1. Find and solve a
recurrence relation for b,.

12. Suppose that poker chips come in four colors — red, white,
green, and blue. Find and solve a recurrence relation for the

number of ways to stack # of these poker chips so that there are
ne consecutive blue chips.

13. An alphabet % consists of the four numeric characters 1,
2, 3, 4, and the seven alphabetic characters a, b, ¢, d, e, f, g.
Find and solve a recurrence relation for the number of words of
length » {in £*), where there are no consecutive (identical or
distinct) alphabetic characters.

14. An alphabet ¥ consists of seven numeric characters and
k alphabetic characters. For n > 0, a, counts the number of
strings (in X*) of length n that contain no consecutive (identi-
cal or distinct) alphabetic characters. If @,> = 7a,1 + 63a,,
n > 0, what is the value of k?

15. Solve therecurrence relation v,.> = g,+ 4., 7> 0,4y = 1,
ay = 2.

16. Forn > 1, let a, be the number of ways to write # as an or-
dered sum of positive integers, where each summand is at least
2. (For example, as = 3 because here we may represent 5 by 5,
by 2 + 3, and by 3 + 2.) Find and solve a recurrence relation
fora,.

17. a) For a fixed nonnegative integer n, how many composi-
tions of # + 3 have no 1 as a summand?

b) For the compositions in part (a), how many start with
(i) 2; (i) 3; (iii) &k, where 2 <k <n + 1?

¢) How many of the compositions in part (a) start with
n+2orn+ 37

d) How are the results in parts (a)—(c) related to the formula
derived at the start of Exercise 77

18. Determine the points of intersection of the parabola y =
x? — 1 and the line y = x.

19. Find the points of intersection of the hyperbolay = 14 %
and the line y = x.

20. a) Fora = (1 ++/5)/2, show thato® = a + 1.
b) Ifn e Z*, prove thata™ = o F, + F,_,.
21. Let F, denote the nth Fibonacci number, for » > 0, and
let @ = (14 +/3)/2. For n > 3, prove that (a) F, > o"? and
(by F, <a™ !,
22, a) For n € Z™, let a, count the number of palindromes of
2n. Then a, . = 2a,, n > 1, a; = 2. Solve this first-order
recurrence relation for a,.

b) For n € Z*, let &, count the number of palindromes of
2n — 1. Set up and solve a first-order recurrence relation
for b,.

(You may want to compare your solutions here with those given
in Examples 9.13 and 10.15.)

23. Consider ternary strings — that is, strings where 0, 1, 2 are
the only symbols used. For n > 1, let a, count the number of
ternary strings of length n where there are no consecutive 1’s
and no consecutive 2’s, Find and solve a recurrence relation
for a,.
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24, For n > 1, let a, count the number of waystotilea2 X n
chessboard using horizontal (1 X 2) dominoes [which can also
be used as vertical (2 X 1) dominoes) and square (2 X 2) tiles.
Find and solve a recurrence relation for «,,.

25. In how many ways can one tile a 2 X 10 chessboard using
dominoes and square tiles (as in Exercise 24) if the dominoes
come in four colors and the square tiles come in five colors?
26. Let X = {0, 1}and A = {0, 01, 11} € Z*.Forn = 1, letaq,
count the number of strings in A* of length ». Find and solve a
recurrence relation for «,,.

27. LetX = {0, 1}and A = {0, 01, 011, 111} € =* Forn > 1,
let @, count the number of strings in A* of length . Find and
solve a recurrence relation for a,,.

28. Let ¥ =1{0,1} and A =1{0,01,01%, 0111, 1111} € =~
For n = 1, let a, count the number of strings in A* of length ».
Find and solve a recurrence relation for a,,.

29. A particle moves horizontally to the right. For n € Z™, the
distance the particle travels in the (n + 1)st second is equal to
twice the distance it travels during the nth second. If x,,, n > 0,
denotes the position of the particle at the start of the (n 4 1)st
second, find and solve a recurrence relation for x,,, where x5 = 1
and X, = 5.

10.3
The Nonhomogeneous
Recurrence Relation

30. Forn > 1, let D, be the following » X n determinant.

21 0 0 0O .- 0 O O O
1 2 1.0 0 --- 0 0 O O
o 1 2 1 0 -« 0 0 0 O
o o 0o 0 O .-~ 1 2 1 0
o 0o 0 0 0o --- 0 1 21
o 0 0 0 O -~ 0 0 1 2
Find and solve a recurrence relation for the value of D,,.
31. Solve the recurrence relation a?,, — 5a2,, +4a2 =0,

wheren > 0 and ay = 4, a; = 13.

32. Determine the constants b and c ifa, = ¢{ + ¢2(7*), n > 0,
is the general solution of the relation a, 2 + ba, ) + ca, =
0,n>0.

33. Prove that any two consecutive Fibonacci numbers are rel-
atively prime.

34. Write a computer program (or develop an algorithm) to
determine whether a given nonnegative integer is a Fibonacci
number.

We now turn to the recurrence relations

an + Cray—1 = f(n),

&y + Clan—i + C2an—2 = f(n),

nz=l, (1

n>2, @

where C| and C, are constants, C; # 0in Eq. (1), C; # 0, and f(n) is not identically 0.
Although there is no general method for solving all nonhomogeneous relations, for certain
functions f(n) we shall find a successful technique.

We start with the special case for Eq. (1), when C; = —1. For the nonhomogeneous
relation a, — a,—; = f(n), we have
a;p =ap+ f(1)

w=a+ fQ)=a+ f(D+ Q)
w=a+ fO)=a+ D+ D+ 703)

@ =ay 1+ f) =ag+ fD) -+ fln)y =ap+ Y _ fli).

We can solve this type of relation in terms of 7, if we can find a suitable summation

formula for Y 7_; ().



EXAMPLE 10.25

EXAMPLE 10.26

EXAMPLE 10.27

10.3 The Nonhomogeneous Recurrence Relation an

Solve the recurrence relation a, — a, | = 3n*, where n > 1 anday = 7.
Here f(n) = 3n?, so the unique solution is

d n 1
an=ao+ ) fO)=T+33 % =T+ sm)n+ DH2n + 1.

i=1 i=1

When a formula for the summation is not known, the following procedure will handle
Eq. (1) for certain functions f(n), regardless of the value of Cy (3 0). It also works for
the second-order nonhomogeneous relation in Eq. (2) — again, for certain functions f(n).
Known as the method of undetermined coefficients, it relies on the associated homogeneous
relation obtained when f(n) is replaced by 0.

For either of Eq. (1) or Eq. (2), we let a” denote the general solution of the associated

homogeneous relation, and we let a"” be a solution of the given nonhomogeneous relation.

The term a,(,p )is called a particular solution. Then a, = a,(,h) + a,(lp) is the general solution

of the given relation. To determine a” we use the form of f(n) to suggest a form for at?.

Solve the recurrence relation a, — 3a,—1 = 5(7"), where n > 1 and ag = 2.
The solution of the associated homogeneous relation is a,(lh) = ¢(3").Since f(n) = 5(7"),

we seek a particular solution at” of the form A(T"). As a,(,p > is to be a solution of the
given nonhomogeneous relation, we place al’ = A(7") into the given relation and find
that A(7") — 3A(7""1) = 5(7"), n > 1. Dividing by 7*~', we find that 7A — 34 = 5(7), so
A =35/4,and a”’ = (35/4)7" = (5/4)7"1, n > 0. The general solution is a, = ¢(3") +
(5/H7 . With2 = ag = ¢ + (5/4)(7), it follows thatc = —=27/4and a,, = (5/H)(7") —
(1/H(3" ), n = 0.

Solve the recurrence relation a, — 3a,_; = 5(3"), where n > 1 and ay = 2.

As in Example 10.26, a®? = ¢(3"), but here @’ and f(n) are not linearly independent.

As a result we consider a particular solution ai” of the form Bn (3"). (What happens if we

(P

substitute @, = B(3") into the given relation?)
Substituting ai” = Bn3" into the given relation yields

Bn(3" —3B(n — 1H(3" ")y=53"), or Bn—Bn-1)=5, so B=S5.

Hence a, = a,(l"‘) + aflp) = (¢ + 5n)3", n = 0. With gy = 2, the unique solution is a, =

2+ 523", n=>0.

From the two preceding examples we generalize as follows.

Consider the nonhomogeneous first-order relation
ay + C‘an-l = k?‘",

where k is a constantand n € Z. If " is not a solution of the associated homogeneous
relation

dy + City-1 = 0,
then a,(}’ ) = Ar", where A is a constant. When r” is a solution of the associated homo-
geneous relation, then a” = Bnr", for B a constant.
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EXAMPLE 10.28

Now consider the case of the nonhomogeneous second-order relation
ay + Ciayi + Catp—zy = k1",
where k is a constant. Here we find that

a) aff’ V= AP , for A aconstant, if #” is pot a solution of the associated homogeneous
relation;

b) a” = Bnr", where B is a constant, if a® = cyr" + cprl, where ry # r; and

©) ai¥) = Cn?r", for C a constant, when a® = (¢{ + cyn)r".

The Towers of Hanoi. Consider n circular disks (having different diameters) with holes in
their centers. These disks can be stacked on any of the pegs shown in Fig. 10.11. In the
figure, n = 5 and the disks are stacked on peg 1 with no disk resting upon a smaller one.
The objective is to transfer the disks one at a time so that we end up with the original stack
on peg 3. Each of pegs 1, 2, and 3 may be used as a temporary location for any disk(s), but
at no time are we allowed to have a larger disk on top of a smaller one on any peg. What is
the minimum number of moves needed to do this for # disks?

Figure 10.11

For n > 0, let a, count the minimiom number of moves it takes to transfer n disks from
peg 1 to peg 3 in the manner described. Then, for n 4 1 disks we can do the following:

a) Transfer the top n disks from peg 1 to peg 2 according to the directions that are given.
This takes at least ¢, moves.

b) Transfer the largest disk from peg 1 to peg 3. This takes one move.

¢) Finally, transfer the » disks on peg 2 onto the largest disk, now on peg 3 — once again
following the specified directions. This also requires at least ¢, moves.

Consequently, at this point we know that a, ;) is no more than 2a, + 1 —that is, 4, <
2a, + 1. But could there be a method where we actually have a,,| < 2a, + 17 Alas, no!
For at some point the largest disk (the one at the bottom of the original stack— on peg 1)
must be moved to peg 3. This move requires that peg 3 has no disks on it. So this largest
disk may only be moved to peg 3 after the n smaller disks have moved to peg 2 [where they
are stacked in increasing size from the smallest (on the top) to the largest (on the bottom)].
Getting these n smaller disks moved, accordingly, requires at least a, moves. The largest
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EXAMPLE 10.30
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disk must be moved at least once to get it to peg 3. Then, to get the n smaller disks on top
of the largest disk (all on peg 3), according to the requirements, requires at least @, more
steps. Sodp1 = an + 1 +an = 2a, + 1.

With 2a, + 1 < a,4 < 2a, + 1, we now obtain the relation a,,; = 2a, + 1, wheren >
0 and ag — 0.

For a,,1 — 2a, = 1, we know that arg’” = ¢(2"). Since f(n) = 1 = (1)" is not a solution
of a,y1 — 2a, = 0, we set aff’) = A(1)* = A and find from the given relation that A =
2A+1,s0 A= —1and @, = ¢(2") — 1. From ay = 0 = ¢ — 1 it then follows that ¢ = 1,
soda, =2"—-1,n=>0.

The next example arises from the mathematics of finance.

Pauline takes out a loan of § dollars that is to be paid back in 7 periods of time. If r is the
interest rate per period for the loan, what (constant) payment P must she make at the end
of each period?

We let a, denote the amount still owed on the loan at the end of the nth period (following
the nth payment). Then at the end of the (z + 1)st period, the amount Pauline still owes on
her loan is a, (the amount she owed at the end of the nth period) + ra, (the interest that
accrued during the (n + I)st period) — P (the payment she made at the end of the (n + 1)st
period). This gives us the recurrence relation

Qny =dy +ra, — P, O0<n<T-—1, ag = 9, ar = Q0.

For this relation ' = ¢(1 + )", while a\”’ = A since no constant is a solution of the

associated homogeneous relation. With a,(f) =Awefind A—(1+r)A=—P,s0 A=
P/r.Fromay = §, weobtaing, = (S—(P/r)(1+r)"+(P/r).0<n<T.
Since 0 = ar = (S — (P/r))(L + )7 + (P/r), it follows that

(P/r)=(P/ry=S)1+r" and P =Sl = +r 717"

We now consider a problem in the analysis of algorithms.

Forn > 1, let S be a set containing 2" real numbers.

The following procedure is used to determine the maximum and minimum elements of
S. We wish to determine the number of comparisons made between pairs of elements in §
during the execution of this procedure.

If a, denotes the number of needed comparisons, thena; = 1. Whenn = 2,|§| = 2> = 4,
s0 S = {x1, x2. ¥1, ya} = S1 U 8 where §1 = {x1, x2}, $2 = {y1, »2}. Since ¢; = 1, it takes
one comparison to determine the maximum and minimum elements in each of §i, $).
Comparing the minimum elements of §) and S, and then their maximum elements, we
learn the maximum and minimum elements in § and find that a; = 4 = 2a, + 2. In general,
if |§] = 2"+, we write § = $; U $, where |S1| = |S2| = 2". To determine the maximum
and minimum elements in each of §; and $> requires g, comparisons. Comparing the
maximum (minimum) elements of S; and S, requires one more comparison; consequently,
dni1 =2a, +2,n> 1.

Herea™ = c(2")anday” = A,aconstant. Substituting a.”” into the relation, we find that
A=2A+2,orA=—-2.80a, =c2" — 2, and witha; = 1 = 2¢ — 2, we obtain ¢ = 3/2.
Therefore a,, = (3/2)(2") — 2.
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A note of caution! The existence of this procedure, which requires (3/2)(2") — 2 com-
parisons, does not exclude the possibility that we could achieve the same results via another
remarkably clever method that requires fewer comparisons.

An example on counting certain strings of length 10, for the quaternary alphabet £ =
{0, 1, 2, 3}, provides a slight twist to what we’ve been doing so far.

For the alphabet ¥ = {0, 1, 2, 3}, there are 410 = 1,048,576 strings of length 10 (in T19,
or £*), Now we want to know how many of these more than 1 million strings contain an
even number of 1’s.

Instead of being so specific about the length of the strings, we will start by letting a,
count those strings among the 4" strings in %" where there are an even number of 1’s. To
determine how the strings counted by a,, for n > 2, are related to those counted by a,_,,
consider the nth symbol of one of these strings of length n (where there is an even number
of 1's). Two cases arise:

1) The nth symbol is 0, 2, or 3: Here the preceding » — 1 symbols provide one of the
strings counted by a,_,. So this case provides 3a,_, of the strings counted by ay,.

2) The nth symbol is 1: In this case, there must be an odd number of 1’s among the first
n — 1 symbols. There are 4" ! strings of length n — 1 and we want to avoid those
that have an even number of 1’s — there are 4"~ — @, _; such strings. Consequently,
this second case gives us 4"~! — g,_; of the strings counted by a,.

These two cases are exhaustive and mutually disjoint, so we may write
an = 3ap_1 +(4n~1 — @y} = 2a,21 +4n~1’ n=2,

Here a; = 3 (for the strings 0, 2, and 3). We find that a,(qh) = ¢(2") and alP) = AN,
Upon substituting a¥ into the above relation we have A(4"~!) = 24(4""2) 4 4"~!, o
4A=2A +4and A =2. Hence, a, = c(2") +2(4" "), n > 2. From 3 =qa; =2c + 2 it
follows that c = 1/2, s0a, = -l 24 n=> 1.

When n = 10, we learn that of the 4'° = 1,048,576 strings in £, there are 2° +
2(4%) = 524,800 that contain an even number of 1’s.

Before continuing we realize that the answer here for ¢, can be checked by using the
exponential generating function f(x) =3 -2, a, i—’: (where ag = 1). From the techniques
developed in Section 9.4 we have

_ (4 x? : xr oyt . x? : x?
Joy= (Tad ot 1+ e Lra g (1 g

X (ex +e-x) X x
=g . _— @ g
2
1 l
— (E) 64): + (2) er

- 1 >0 4x)" 1 o0 (2x)"
()X GGG

n=0 n=0

Here a, = the coefficient of %7 in f(x) = (1) 4" + (3) 2" = 277! + 2(4"~"), as above.
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In 1904, the Swedish mathematician Helge von Koch (1870-1924) created the intriguing
curve now known as the Koch “snowflake” curve. The construction of this curve starts with
an equilateral triangle, as shown in part (a) of Fig. 10.12, where the triangle has side 1,
perimeter 3, and area +/3/4. (Recall that an equilateral triangle of side s has perimeter 3s
and area s2+/3/4.) The triangle is then transformed into the Star of David in Fig. 10.12(b)
by removing the middle one-third of each side (of the original equilateral triangle) and
attaching a new equilateral triangle whose side has length 1/3. So as we go from part (a)
to part (b) in the figure, each side of length 1 is transformed into 4 sides of length 1/3,
and we get a 12-sided polygon of area (v3/4) + (3)(+/3/4)(1/3)? = /3/3. Continuing
the process, we transform the figure of part (b} into that of part (c) by removing the middle
one-third of each of the 12 sides in the Star of David and attaching an equilateral tri-
angle of side 1/9 (= (1/3)%). Now we have [in Fig. 10.12(c)] a 4?(3)-sided polygon whose
area is

(V3/3) + (DU /3PP = 104327

(a) (b) {9

Figure 10.12

Forn = 0, let a, denote the area of the polygon P, obtained from the criginal equilateral
triangle after we apply n transformations of the type described above [the first from P
in Fig. 10.12(a) to Py in Fig. 10.12(b) and the second from P; in Fig. 10.12(b) to P; in
Fig. 10.12(c)]. As we go from P, (with 4*(3) sides) to P, (with 4"11(3) sides), we find
that

Any1 = @ + @ 3NV3/4 (173 = a, + (17(4V3)(4/9)"

because in transforming P, into P, we remove the middle one-third of each of the 47 (3)
sides of P, and attach an equilateral triangle of side (1/3"!).

The homogeneous part of the solution for this first-order nonhomogeneous recurrence
relation is a¥ = A(1)" = A. Since (4/9)" is not a solution of the associated homoge-
neous relation, the particular solution is given by ad = B(4/9)", where B is a constant.
Substituting this into the recurrence relation @,y = a, + (1/(4+/3))(4/9)", we find that

B = (—9/5)(1/(4+/3)). Consequently,
an = A + (=9/5)(1/@V3NE/9)" = A — (17(5v3))4/9)" 1, n=0.
Since v/3/4 = ap = A — (1/(5+/3))(4/9) 7", it follows that A = 6/(5+/3) and
an = (6/(5v/3)) — (1/(5¥3)(4/9)" ' = (1/(5V3)I6 - (4/9™ 11, n>0.
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EXAMPLE 10.34

[Asn grows larger, we find that (4/9)" ' tends to 0 and a,, approaches 6/(5+/3). We can also
obtain this value by continuing the calculations we had before we introduced our recurrence
relation, thus noting that this limiting area is also given by

(V3/4) + (V3/H3)(1/3)* + (V3/H(H ) (1/3) + (V3/HEHB)(1/3%)2 + - -
= (V3/4) + (V3/H3) D 4173 = (V4 + (176 Y (49"

n={0 n=(
= (v/3/4) + (L/@VINL/(L — (4/9)] = (V3/4) + (1/(4V3))(9/5) = 6/(5+/3)

by using the result for the sum of a geometric series from part (b) of Example 9.5.]

Forn>1,let X, ={1,2,3,...,n}; P(X,) denoctes the power set of X,. We want to
determine a,, the number of edges in the Hasse diagram for the partial order (#(X,,), ).
Here ¢ = 1 and ay = 4, and from Fig. 10.13 it follows that

as = 2a; + 27,

Figure 10.13

This is because the Hasse diagram for ((X;), C) contains the a; edges in the Hasse di-
agram for (P(X1), C) as well as the ay edges in the Hasse diagram for the partial order
({{3}, {1, 3}, {2, 3}, {1, 2, 3}}, ©). [Note the identical structure shared by the partial or-
ders (P({1, 2]), ©) and ({{3}, {1, 3}, {2. 3}, {1, 2, 3}}, €).] In addition, there are 2% other
(dashed) edges — one for each subset of {1, 2}. Now forn > 1, consider the Hasse diagrams
for the partial orders (P (X,.), C) and ({T U {n + 1}|T € P(X,)}, C). Foreach § € %(X,),
draw an edge from § in (P(X,), S)to SU{n + 1} in ({T U {n + 1} T € P(X,)}, ). The
result is the Hasse diagram for ((X,11), ©). From the construction we see that

dns1 = 2a, + 27, n=1, a; = 1.

The solution to this recurrence relation, with the given condition a; = 1, is @, = n2""!,
n=1.

Each of our next two examples deals with a second-order relation.

Solve the recurrence relation

nys — a1y + 3a, = =200, n=>0, ag = 3000, a; = 3300.
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Here al™ = ¢1(3") + c2(1") = ¢1(3") + . Since f(n) = —200 = —200(1") is a solution
of the associated homogeneous relation, here af,p ) — An for some constant A. This leads

us to
Aln+2)—4A(n+ 1) +34An = =200, so —2A4 = -200, A = 100.

Hence a, = ¢;(3") + ¢ + 100n. With ay = 3000 and a; = 3300, we have g, =
100(3") + 2900 + 100n, n > 0.

Before proceeding any further, a point needs to be made about the role of technology in
solving recurrence relations. When a computer algebra system is available, we are spared
much of the drudgery of computation. Consequently, all our effort can be directed to analyz-
ing the situation at hand and setting up the recurrence relation with its initial condition(s).
Once this is done our job is just about finished. A line or two of code will often do the trick!
For example, the Maple code in Fig. 10.14 shows how one can readily solve the recurrence
relations of Examples 10.33 and 10.34.

i T T

- > resolve({a(n+l)=2*a(n)+24n,a(l)=1},a({n));

> simplify (%) ;

> rsolve({a(n+2)=4*a(n+l)+3*a(n)=-200,a(0)=3000,a(1)=3300},a(n));

2" (rz 1)
— 4|+ 2"
2 2 2

(n-1)
n

100 3% + 2900 + 100 n

Figure 10.14

EXAMPLE 10.35

In part (a) of Fig. 10.15 we have an irerative algorithm (written as a pseudocode procedure)
for computing the nth Fibonacci number, for » > (. Here the input is a nonnegative integer
n and the output is the Fibonacci number F,,. The variables i, fib, last, next to_last, and
temp are integer variables. In this algorithm we calculate F, (in this case for# > 0) by first
assigning or computing all of the previous values Fy, F, F, ..., F,_,. Here the number
of additions needed to determine F, is 0 for n =0, 1 and n — 1 (within the for loop) for
n=2.

Part (b) of Fig. 10.15 provides a pseudocode procedure to implement a recursive algo-
rithm for calculating F, for n € N. Here the variable fib is likewise an integer variable. For
this procedure we wish to determine a,, the number of additions performed in computing
Fy,n>0.Wefind thatag = 0, a; = 0, and from the shaded line in the procedure — namely,

fib := FibNum2(n - 1) + FibNum2 (n - 2} {*)
we obtain the nonhomogeneous recurrence relation
Ay = Qn_| + An-n + 1, n>2,

where the summand of 1 is due to the addition in Eq. (*).
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procedure FibNuml (n: nonnegative integer)
begin
if n=0 then
fib :=
elseif n=1 then
fib :=
else
begin
last :=1
next to last :=0
for i1 :=2 tondo
begin
temp := last
last := last + next_to last
next to last := temp
end
fib := last
end
end (a)

procedure FibNumZ2(n: nonnegative integer)
begin
if n=0 then
fib :=
elgseif n =1 then
fib :=
elge
fib ;= FibNum2{n - 1) + FibNum2{(n - 2}
end (b)

Figure 10.15

Here we find that aﬁh) = cl(HTﬁ) + ( ‘[) and that a(m A, a constant. Upon

(p .

substituting a,”" into the nonhomogeneous recurrence relation we find that

A=A+A+1,

soA=—1andan=cl(l+‘/A) +C(] f) 1.
Since ag = 0 and a; = 0 it follows that

1 5 1—-45
co+c=1 and cl( +2\/_)+C2( \/_):1.

2

From these equations we learn that ¢; = (1 + V3)/(24/3), c3 = (W3 — 1)/(24/5). There-

fore,

(1S (145 (=) (1-45)
“ "\ 25 2 23 2

ﬁi 1+\/§ nJrl_L l—ﬁ VH—I_I
NG 2 J3 2 ‘
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As n gets larger [(1 — «/5)/2]"*l approaches O since [{1 — \/5)/2] <1, and a, =
(/5 +/5)/2]" 1 = (1 + V/3)/ @V +V5)/2)".

Consequently, we can see that, as the value of n increases, the first procedure requires
far less computation than the second one does.

We now summarize and extend the solution techniques already discussed in Examples
10.26 through 10.35.

Given a linear nonhomogeneous recurrence relation (with constant coefficients) of the
form Coa,, + Clan,l + Czungz + -+ Cku,,,k = f(I/I), where CO ?é Oand Ck ?é 0, letaflh)
denote the homogeneous part of the solution a,.

1) If f(n) is a constant multiple of one of the forms in the first column of Table 10.2
and is not a solution of the associated homogeneous relation, then a,(lp ) has the form
shown in the second column of Table 10.2. (Here A, B, Ag, Ay, A2, ..., A1, A;
are constants determined by substituting a,(lp ) into the given relation; ¢, r, and 6 are
also constants.}

Table 10.2
a’f'p)
¢, a constant A, a constant
f Aln + A()
1’12 A2n2+A;n+Ag
nt,lEZ+ A[i’lr-l-A,_ll’tl_l + -+ An+ A
r.reR Ar®
sin 6n Asinfn 4+ B cos On
cos n Asinfn + BcosOn
n'rt FrAR A n U+ A+ Ap)
F*sin On Ar? sin8n + Br" cosfn
r* cos n Ar® sin6n + Br" cos 6n

2) When f{n) comprises a sum of constant multiples of terms such as those in the
first column of the table for item (1), and none of these terms is a solution of the
associated homogeneous relation, then a,&p ) is made up of the sum of the corresponding
terms in the column headed by as” . For example, if f(n) = n* + 3 sin 2n and no
summand of f(n) is a solution of the associated homogeneous relation, then a,(,p ) =
(Aon? + An + Ag) + (A sin 2n + B cos 2n).

3) Things get trickier if a summand f)(n) of f(#n) is a solution of the associated homo-
geneous relation. This happens, for example, when f(n) contains summands such as
cr’ or (¢ + ¢an)r™ and r is a characteristic root. If f)(n) causes this problem, we
multiply the trial solution (a,(f ))1 corresponding to f1(n) by the smallest power of n,
say n*, for which no summand of n* f (n) is a solution of the associated homogeneous

relation. Then n® (af,p ))1 is the corresponding part of aP.

In order to check some of our preceding remarks on particular solutions for nonhomo-
geneous recurrence relations, the next application provides us with a situation that can be
solved in more than one way.
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For n > 2, suppose that there are n people at a party and that each of these people shakes
hands (exactly one time) with all of the other people there (and no one shakes hands with
himself or herself). If a,, counts the total number of handshakes, then

dnyl = a, +n, nx=2, a; =1, 3)

because when the (n + 1)st person arrives, he or she will shake hands with the n other
people who have already arrived.

According to the results in Table 10.2, we might think that the trial (particular) solution
for Eq. (3) is A1n 4 Ay, for constants Ag and A;. But here the associated homogeneocus
relation is d,; | = dy, OT any1 — ap = 0, for which a'® = ¢(1") = ¢, where ¢ denotes an
arbitrary constant. Therefore, the summand Ag (in A;n + Ag) is a solution of the associated
homogeneous relation. Consequently, the third remark (given with Table 10.2) tells us that
we must multiply Aja + Ay by the smallest power of n for which we no longer have any
constant summand. This is accomplished by multiplying A;n + Ay by n', and so we find
here that

aff’) = An* + Agn.
When we substitute this result into Eq. (3) we have
Avn+ 1P + Aon + 1) = A’ + Aon + 1,
or Ain® + QA + Ag)n + (AL + Ag) = A1 + (Ag + D,

By comparing the coefficients on like powers of n we find that
(n*): Ar= Ay

(n): 2A, 4+ Ag=Ap+ 1;and

n"y: A+ Ay =0.

Consequently, A, = 1/2 and Ag = —1/2, so a?’ = (1/2)n* + (=1/2)n and a, = a' +
a,(,P) =c+ (1/2)(n)(n — 1). Since a; = 1, it follows from 1 = a» = ¢ + (1/2)(2)(1) that
¢ =0,and g, = (1/2)(n)(n — 1), forn = 2.

We can also obtain this result by considering the n people in the room and realizing that
each possible handshake corresponds with a selection of size 2 from this set of size n — and
there are (’2‘) =®D/2n —2)) = (1/2)(n)(n — 1) such selections. [Or we can consider
the r people as vertices of an undirected graph (with no loops) where an edge corresponds
with a handshake. Our answer is then the number of edges in the complete graph K, and
there are (’2’) = (1/2)(n)(n — 1) such edges.]

EXAMPLE 10.37

Our last example further demonstrates how we may use the results in Table 10.2.

a) Consider the nonhomogeneous recurrence relation
Qniz — 10a,41 + 21a, = f(n), n=0.
Here the homogeneous part of the solution is
al = c1(3") + (1M,

for arbitrary constants ¢y, ¢;.

InTable 10.3 we list the form for the particular solution for certain choices of f(n).
Here the values of the 11 constants A,, for 0 < i < 10, are determined by substituting
aP into the given nonhomogeneous recurrence relation.
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Table 10.3
fn) a;”
5 Ap
31’!2 -2 A3n2+A2n+A]
7(117) Aq(11M)
31(e),r #3,7 As(r™M)
6(3") Agn3"
2(3") — 8(97) A7n3" + Ag(9")
4(3") + 3(7) Agn3" + Agn7"

b) The homogeneous component of the solution for

an + 40,1 +4ay2 = f(n), n=2

is
ah = ¢ (=2)" + e (=2)",
where ¢;, ¢, denote arbitrary constants. Consequently,
1) if f(n) = 5(=2)", then at”’ = An?(=2)";
2) if f(n) = Tn(=2)", then al” = n?(—2)*(A1n + Ay); and
3)if f(n) = —11n*(=2)", then a\” = n*(—=2)" (B> + Bin + Bo). »
P

(Here, the constants A, Ay, Ay, By, B, and B; are determined by substituting a,
into the given nonhomogeneous recurrence relation.)

5. Solve the following recurrence relations.
a) dyio + 3dp +2a, = 3%, n=0,

by a4y +dap +4a, =7, n>0,

1. Solve each of the following recurrence relations.

a =1
ay =2

day = 0.

a():],

a) dpy —a,=2n+3, n=>0, a =1 6. Solve the recurrence rtelation a,,; — 6d,4) + 9a, =
b) dyey —ay =30 —n. =0, ay=3 3(2”)_"7(3”)’“'}1”6”Z_()anfla(’z Lay=4. _
O s —20,=5 n>0, ap=1 7. Find the general solution for the recurrence relation
Qpis — 3pe2 + 3py) —t, =34+ 50,0 >0.
d)a,. —2a,=2" n=0, a=1

8. Determine the number of n-digit quaternary (0, 1, 2, 3)
sequences in which there is never a 3 anywhere to the right
of a0.

9. Meredith borrows $2500, at 12% compounded monthly, to
buy a computer. If the loan is to be paid back over two vears,
what is his monthly payment?

. . ~ a .
2. Use arecurrence relation to derive the formulafor 3 ., i’

3. a) Let n lines be drawn in the plane such that each line
intersects every other line but no three lines are ever co-
incident. For # > 0, let a,, count the number of regions into
which the plane is separated by the # lines. Find and solve

. 10. The general solution of the recurrence relation a,4; +
a recurrence relation for gy,

b1ang1 + baa, = ban + by, n > 0, with b, constant for 1 <i <
4,15 12" + ¢33" +n — 7. Find b, foreach 1 < < 4.

11. Solve the following recurrence relations.

b) For the situation in part (a), let b, count the number
of infinite regions that result. Find and solve a recurrence
relation for b,,.

a) @i, —Sa2, , +6al=Tn, n=0, ap=a, =1

b) a,z, —2a,,=0, n>1, ay=2 (Let b, =log,a,,
n=>0)

4. On the first day of a new year, Joseph deposits $1000 in
an account that pays 6% interest compounded monthly. At the
beginning of each month he adds $200 to his account. If he

continues to do this for the next four years (so that he makes
47 additional deposits of $200), how much will his account be
worth exactly four years after he opened it?

12. Let X = {0, 1, 2, 3}. Fora > 1, let 4, count the number of
strings in X” containing an odd number of 1’s. Find and solve
a recurrence relation for a,,.
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Q
(n=1

Figure 10.16

a) For the binary string 001110, there are three runs: 00,
111, and 0. Meanwhile, the string 000111 has only two
runs: 000 and 111; while the string 010101 determines the
six runs: 0, 1,0, 1, 0, 1. For n = 1, we consider two binary
strings, namely, 0 and 1 —these two strings (of length 1)
determine a total of two runs. There are four binary strings
of length » = 2 and these strings determine 1 (for 00) + 2
(for 01) + 2 (for 10y + 1 (for 11) = 6 runs. Find and solve
a recurrence relation for ¢,, the total number of runs deter-
mined by the 2" binary strings of length #, where n > 1.
b) Answer the question posed in part (a) for quaternary
strings of length #. (Here the alphabet comprises 0, 1, 2, 3.)
¢) Generalize the results of parts (a) and (b).

a) For n > 1, the nth rriangular number t, is defined by
t,=1424+---4+n=n@m+ 1)/2. Find and solve a re-
currence relation fors,, n > 1, where s, =t; +t, +-- - +
t,. the sum of the first n triangular numbers. [The reader
may wish to compare the result obtained here with the for-

10.4
The Method of Generating Functions

mula given in Example 4.5 or with the result requested in
part (b) of Exercise 8 of Section 9.5.]

b) In an organic laboratory, Kelsey synthesizes a crys-
talline structure that is made up of 10,000,000 triangular
layers of atoms. The first layer of the structure has one
atom, the second layer has three atoms, and, in general, the
nth layer has 1 +2 + - - . + r =1, atoms. (Consider each
layer, other than the last, as if it were placed upon the spaces
that result among the neighboring atoms of the succeeding
layer. See Fig. 10.16.) (i) How many atoms are there in
one of these crystalline structures? (ii) How many atoms
are packed (strictly) between the 10,000th and 100,000th
layer?

15. Write a computer program (or develop an algorithm) to
solve the problem of the Towers of Hanoi. Forn € Z*, the pro-
gram should provide the necessary steps for transferring the n
disks from peg 1 to peg 3 under the restrictions specified in
Example 10.28.

With all the different cases we had to consider for the nonhomogeneous linear recurrence

relation, we now get some assistance from the generating function. This technique will find

both the homogeneous and the particular solutions for a,,, and it will incorporate the given

initial conditions as well. Furthermore, we’ll be able to do even more with this methed.
We demonstrate the method in the following examples.

EXAMPLE 10.38

(n
(n

Il

Solve the relation g, — 3a,.1 =n,n>=1,4ay = 1.
This relation represents an infinite set of equations:

1)
2)

RE'SLL(}ZI

a2—3a1=2
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Multiplying the first of these equations by x, the second by x2, and so on, we obtain

n=1 arx! —3apx! = 1x!

(n=2) ax* = 3a;x* = 2x*

Adding this second set of equations, we find that

(s, &) [s. &) s, o)
E ax" =3 E a,_1x" = Z nx". (1)
n=1 n=1 n=1

We want to solve for a, in terms of n. To accomplish this, let f{x) = Zﬁ'f’:o ayx" be
the (ordinary) generating function for the sequence ay, @1, a3 . . .. Then Eq. (1) can be re-
written as

o0

(f(x)—ao)~-3x2:at,,‘lx"'1 =inx" (:inx") . (2)
n=1 n=0

n=1

Since Y 0 ap_x" 1 =307 a,x" = f(x) and ay = 1, the left-hand side of Eq. (2)
becomes ( f(x) — 1) — 3xf(x).

Before we can proceed, we need the generating function for the sequence 0, 1,2, 3, .. ..
Recall from part (c) of Example 9.5 that

=x4+2x" 43+, s0

(1 —x)?
x

a fx)y and f(x) =

Using a partial fraction decomposition, we find that

X _ A B C
(1—x)2(1—3x) (1-x) +(1—;;)2+(1—3x)’

or

x=A(1-x)(1 =3x)+ B(l - 3x)+ C(1 — x)*.

From the following assignments for x, we get

]

SRR

(x=1): 1= B(-2), B

EHERIONS

1
(x=0: 0=A+B+C, A:—(B+C):—Z.

Ry ]

Therefore,

U | (=1/4  (=1/2) (3/4)
=Tt aoy T oo T o
a4 (=1/4)  (-1/2)
(1-3x) (1—x) ((1-x)%

We find a, by determining the coefficient of x" in each of the three summands.
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a) (7/4)/(1 = 3x) = (7/HL1/(1 = 3x)]
= (7/H11 + Bx) + Bx)?> + (3x)’ + - - -], and the coefficient of

X is (7/4)3".

b) (—1/H/(1 —x) = (=1/H[1 +x +x*+...], and the coefficient of x” here is
(—1/4).

e) (—1/2)/(1 —x)* = (=1/2)(1 —x)~?

= (=12 [(7) + () =0 + (=0 + () (=) + -]

and the coefficient of x" is given by (—1/2)(;1) (1" = (—-1/2(-D"(* 771}
(=)' =(-1/(n+1).

Therefore a, = (7/4)3" — (1/2)n — (3/4), n > 0. (Note that there is no special concern

here with a,”. Also, the same answer is obtained by using the techniques of Section 10.3.)

In our next example we extend what we learned in Example 10.38 to a second-order
relation. This time we present the solution within a list of instructions one can follow in
order to apply the generating-function method.

EXAMPLE 10.39 Consider the recurrence relation

Anyz — Sa,1 + 6a, = 2, n=>0, ag = 3, ay =17.

1) We first multiply this given relation by x"** because n + 2 is the largest subscript
that appears. This gives us

naa X" = Sa, x4 Gaxtt? = 247

2) Then we sum all of the equations represented by the result in step (1) and obtain

[v 0] o0 ¢ oG
E Upaax™* =5 E an X" 46 E apx"tt =2 E X
n=0 n=0 n=0 n=0

3) In order to have each of the subscripts on @ match the corresponding exponent on x,
we rewrite the equation in step (2) as

oC o0 oG oC
E anox™? — Sx E dpp1 X" 4 6x° E a,x" = 2x? E x".
rn=0 n=0 n=0 n=0

Here we also rewrite the power series on the right-hand side of the equation in a form
that will permit us to use what we learned in Section 2 of Chapter 9.

4) Let f(x) = Y..2, a,x" be the generating function for the solutionThe equation in
step (3) now takes the form

2x?

(f(x) —ap —arx) = Sx(f(x) —ag) + 6x* f(x) = —

or
2

(f0) =3 =Tx) = 5x(f(x) = 3) +6x° f(x) = 7=
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5) Solving for f(x) we have
2x? C3-1x+ 10x?

—X 1—x

(1-5x+6x2)f(x):3~8x+]

L]

from which it follows that
3 — 11x + 10x2 _ 3 -5x)(1-2x) B 3 - 5x
(1 -5x+6xH{1—x) (Q-300-2x)1—-x) 1-3001-x)

A partial-fraction decomposition (by hand, or via a computer algebra system)
gives us

flxy=

2 1 =, w N
f(x)—1_3x+m~2;](3x) +;).X,

Consequently, a, =2(3") + 1,n > 0.

We consider a third example, which has a familiar result.

Let n € N. For r > 0, let a(n, r) = the number of ways we can select, with repetitions
allowed, r objects from a set of » distinct objects.

Forn > 1,let{by, b, . . ., by} be the set of these objects, and consider object b . Exactly
one of two things can happen.

a) The object b is never selected. Hence the » objects are selected from {ba, ..., b,}.
This we candoina(n — 1, r) ways.

b) The object b, is selected at least once. Then we must select r — 1 objects from
{b1, b2, ..., by}, s0 we can continue to select b, in addition to the one selection
of it we've already made. There are a(n, r — 1) ways to accomplish this.

Thena(n, r) = almn — 1, r) + a(n, r — 1) because these two cases cover all possibilities
and are mutually disjoint.

Let f, = Zio a(n, r)x" be the generating function for the sequence a(n, 0), a(n, 1),
a(n,?2),.... [Here f, is an abbreviation for f,(x).] From a(n,r)=an—1,r) +
a(n,r — 1), wheren > 1 and r > 1, it follows that

aln,ryx"=an—1,rx" +an,r — 1Hx" and

o oC

Z aln, rix’ = Za(n -1, rx"+ ia(n, r—hx".
r=1

r=1 r=1

Realizing that a(n, 0y = 1 for n > 0 and a(0, r) = O for r > @, we write

fo—am,0)=fry—arn—1,0)+x Ea(n, r—Dx"",
r=1
so fu — 1= fu-1 — 1 + xf,,. Therefore, f, — xfy = far,0r f = fa1/(1 —x).
If n = 5, for example, then

fa 1 f 3 I fi

T0-m (d-w (-n (-2 d-2° (-2
ho

- a-x08
since fy = a(0,0) + a0, Dx +a(@, x4+ ---=14+04+0+-.-.

fs
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Ingeneral, f, = 1/(1 —x)* = (1 — x)7", soa(n, r) is the coefficient of x"in (1 — x)™",
whichis (7} (1) = ("*7 ).

[Here we dealt with a recurrence relation for a(n, r), a discrete function of the twe
(integer) variables n, r > 0.]

Our last example shows how generating functions may be used to solve a system of
recurrence relations.

This example provides an approximate model for the propagation of high- and low-energy
neutrons as they strike the nuclei of fissionable material (such as uranium) and are absorbed.
Here we deal with a fast reactor where there is no moderator (such as water). {In reality,
all the neutrons have fairly high energy and there are not just two energy levels. There is a
continuous spectrum of energy levels, and these neutrons at the upper end of the spectrum
are called the high-energy neutrons. The higher-energy neutrons tend to produce more new
neutrons than the lower-energy ones.)

Consider the reactor at time 0 and suppose one high-energy neutron is injected into the
system. During each time interval thereafter (about 1 microsecond, or 10~% second) the
following events occur.

EXAMPLE 10.41

a) When a high-energy neutron interacts with a nucleus (of fissionable material), upon
absorption this results (one microsecond later) in two new high-energy neutrons and
one low-energy one.

b) For interactions involving a low-energy neutron, only one neutron of each energy level
is produced.

Assuming that all free neutrons interact with nuclei one microsecond after their creation,
find functions of n such that

a, = the number of high-energy neutrons,

b, = the number of low-energy neutrons,

in the reactor after n microseconds, n = 0.
Here we have ay = 1, by = 0 and the system of recurrence relations

Ani1 = 2a, + by, (3)
bn+1 =da, + bn. (4)

Let f(x)= Z:ozo apx", glx) = Z:io b,x" be the generating functions for the se-
quences {a,|n = 0}, {b,|n = 0}, respectively. From Eqgs. (3) and (4), when n > 0

an+]xn+1 — zanxﬂJrl + bnxﬁJri (3)’
bn+1x"+1 _ anxn-H 4 bnx"'H. @y
Summing Eq. (3)' over all n > 0, we have
(e &) o o0
Z an+1x”+] =2x Z apx" + x Z b,x". 3y
n=(} n=0 n=0
In similar fashion, Eq. (4) yields

oG oG o0
Z hpyix"t =x Z anx" + x Z b,x". 4y
n=0 n=0

n={)
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Introducing the generating functions at this point, we get
Jx) —ap = 2xf(x) + xgx) (3)"
g(x) ~bp = xf(x) + xg(x), )"

a system of equations relating the generating functions. Solving this system, we find that

L l=x /5445 1 5-45 1
f(x)x2u3x+l( 10 )(y—x>+( 10 )(a—x) and

B x [=5-3V5 Ly, —5+35 1
g(x)x2—3x+l( 10 )(y—x) ( 10 )(5—x)’

where

3445 345
]/ = , s =
2 2
Consequently,
545\ /3 -3\ /5 -5\ /3 + 5\
a, = + and
10 2 10 2
—5 =33\ (3 =3\ [=54+33\[3+/5\""!
b, = + , n>=0.
10 2 10 2

0 <r <n. Here a(n, r) = 0 when r > n. Use the recurrence
EXERCISES 10.4 relationa(n, ry =amn —1,r - 1) +a(n —1,r), where n > 1

and r > 1, to show that f(x) = (14 x)" generates a(n, r),

1. Solve the following recurrence relations by the method of r >0

generating functions.

3. Solve the following systems of recurrence relations.

a) ﬂn+]"—an:3n, HZO, a():l

a} a4y = —2a, — 4b,

—a =n' nz 0 ay =1 bys1 = 4dy -+ 6B,
€) Gnya— 3@y +2a,=0, =0, ap=1, ag=6 n>0, ap=1, b,=0
d) a0 —2ap +a,=2" 120, ag=1, a1 =2 D) Gny1 = 26, — by + 2
2. For n distinct objects, let a(n, r) denote the number of ways b1 = —a, +2b, — 1
we can select, without repetition, » of the n objects when n>0, ay=0, by=1
10.5

A Special Kind of Nonlinear
Recurrence Relation (Optional)

Thus far our study of recurrence relations has dealt with linear relations with constant
coefficients. The study of nonlinear recurrence relations and of relations with variable
coefficients is not a topic we shall pursue except for one special nonlinear relation that
lends itself to the method of generating functions.

We shall develop the method in a counting problem on data structures. Before do-
ing so, however, we first observe that if f(x) = Z:‘io a;x' is the generating function
for ag, ai, az, ..., then [f(x)]2 generates apag, apa), + arag, apdz + aa, + aag, - . .,
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EXAMPLE 10.42

Figure 10.17

andy, + a1a,-1 + axap—2 + - - - + a,—1a; + auag, - . ., the convolution of the sequence
dg, 41, dz, - . ., with itself.

In Sections 3.4 and 5.1, we encountered the idea of a tree diagram. In general, a tree is
an undirected graph that is connected and has no loops or cycles. Here we examine rooted
binary trees.

In Fig. 10.17 we see two such trees, where the circled vertex denotes the root. These trees
are called binary because from each vertex there are at most two edges (called branches)
descending (since a rooted tree is a directed graph) from that vertex.

In particular, these rooted binary trees are ordered in the sense that a left branch descend-
ing from a vertex is considered different from a right branch descending from that vertex.
For the case of three vertices, the five possible ordered rooted binary trees are shown in
Fig. 10.18. (If no attention were paid to order, then the last four rooted trees would be the
same structure.)

A

(1) @ 3) (4) (5
Figure 10.18

Our objective is to count, for » > 0, the number b, of rooted ordered binary trees on n
vertices. Assuming that we know the values of b; for 0 <{ < n, in order to obtain b, we
select one vertex as the root and note, as in Fig. 10.19, that the substructures descending on
the left and right of the root are smaller (rooted ordered binary) trees whose total number of
vertices is n. These smaller trees are called subtrees of the given tree. Among these possible
subtrees is the empty subtree, of which there is only 1 (= by).

Left Right
subtree subtree
Figure 10.19

Now consider how the n vertices in these two subtrees can be divided up.
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(1) 0 vertices on the left, n vertices on the right. This results in byb, overall sub-
structures to be counted in b, .

(2) 1 vertex on the left, » — 1 vertices on the right, yielding b, 5, | rooted ordered
binary trees on n + 1 vertices.

(i 4+ 1) i vertices on the left, n — i on the right, for a count of b;b,,_; toward b, .

(r + 1) n vertices on the left and none on the right, contributing b,by of the trees.
Hence, forall n = 0,

bui1 = boby + biby 1+ boby 2 + -+ -+ by by + byby,

and
oo 20
D basax™ =3 (boby + bibact - bamiby + bubo)a™ ()
n=0 n=0
Now let f{x) = Z:G:U b,x" be the generating function for by, by, ba, . ... We rewrite
Eq. (1) as

(fO) = b0) =x Y _(Boby + biboy + - -+ babg)x” = x[F(0)T.

n=0

This brings us to the quadratic [in f(x)]
X[fOOPF = fy+1=0, so f(x)=[1+1—4x]/(2x).
But vT—4% = (1 — 4x)1/2 = (‘{f) + (142)(—4)0 + (142)(—4;02 +--- , where the

coefficient of x", 1 > 1, 1s

(1/2)(_4)n _ /2)((1/2) — )(/2) =2) - - {(1/2) —a + 1)

n

(—h"

n!

e (1/2){1/2)3/2) - - - ((2n = 3)/2)

, (—4y"
n

=
_ (=D2"M)(3)---(2n = 3)
B n!
(=D2"(mH(DHB) - -2 —3H2n -1
nYrhH(2n - 1)

_Eh@@ - (D) -2 —1) (1) (?-n)
2n — DrH(n) (2n — 1) '

In f(x) we select the negative radical; otherwise, we would have negative values for the

b,’'s. Then
1 s 1 2n\ ,
f(x)_g[l_[1'§M(n)x H

and b,,, the coefficient of x” in f(x), is half the coefficient of x™*! in

i 1 Zn) n
(2n—1)(n e

n=1
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EXAMPLE 10.43

So

b = 1 1 2n+ 1)\ (2n)! B 1 2n

2241 -1 n+1 n+DInYy nm+D\a/)
The numbers b, are called the Caralan numbers — the same sequence of numbers we en-
countered in Section 1.5, As we mentioned earlier (following Example 1.42), these numbers
are named after the Belgian mathematician Eugéne Charles Catalan (1814-1894), who used
them in determining the number of ways to parenthesize the expression x;xpx3 - - - x,,. The
first nine Catalan numbers are by = 1, by = 1, by = 2, b3 = 5, b4 = 14, b5 = 42, bg = 132,
b7 = 429, and bg = 1430.

We continue now with a second application of the Catalan numbers. This is based on an
example given by Shimon Even. (See page 86 of reference [6].)

An important data structure that arises in computer science is the stack. This structure allows
the storage of data items according to the following restrictions.

1) All insertions take place at one end of the structure. This is called the zop of the stack,
and the insertion process is referred to as the push procedure.

2) All deletions from the (nonempty) stack also take place from the top. We call the
deletion process the pop procedure.

Since the fast item inserted in this structure is the firss item that can then be popped our
of it, the stack is often referred to as a “last-in-first-out” (LIFQ) structure.

Intuitive models for this data structure include a pile of poker chips on a table, a stack
of trays in a cafeteria, and the discard pile used in playing certain card games. In all three
of these cases, we can only (1) insert a new entry at the top of the pile or stack or (2) take
(delete) the entry at the top of the (nonempty) pile or stack.

Here we shall use this data structure, with its push and pop procedures, to help us permute
the (ordered) list 1, 2, 3, ..., n, for n € Z". The diagram in Fig. 10.20 shows how each
integer of the input 1, 2, 3, ..., n must be pushed onto the top of the stack in the order
given. However, we may pop an entry from the top of the (nonempty) stack at any time.
But once an entry is popped from the stack, it may not be returned to either the top of the
stack or the input left to be pushed onto the stack. The process continues until no entry is
left in the stack. Thus the ordered sequence of elements popped from the stack determines
a permutationof 1, 2,3, ..., n.

Qutput 4;:::::::: 1,2,3,...,n Input
NV

Stack

Figure 10.20
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If n = 1, our input list consists of only the integer 1. We insert 1 at the top of the (empty)
stack and then pop it out. This results in the permutation 1,

For n = 2, there are two permutations possible for 1, 2, and we can get both of them
using the stack.

1) To get 1, 2 we place 1 at the top of the (empty) stack and then pop it. Then 2 is placed
at the top of the (empty) stack and it is popped.

2) The permutation 2, 1 is obtained when 1 is placed at the top of the (empty) stack and
2 is then pushed onto the top of this (nonempty) stack. Upon popping first 2 from the
top of the stack, and then 1, we obtain 2, 1.

Turning to the case where n = 3, we find that we can obtain only five of the 3! =6
possible permutations of 1, 2, 3 in this sitnation. For example, the permutation 2, 3, 1
results when we take the following steps.

Place 1 at the top of the (empty) stack.

Push 2 onto the top of the stack (on top of 1).

Pop 2 from the stack.

e Push 3 onto the top of the stack (on top of 1).
e Pop 3 from the stack.

& Pop | from the stack, leaving it empty.

The reason we fail to obtain all six permutations of 1, 2, 3 is that we cannot generate
the permutation 3, 1, 2 using the stack. For in order to have 3 in the first position of the
permutation, we must build the stack by first pushing 1 ento the (empty) stack, then pushing
2 onto the top of the stack (on top of 1), and finally pushing 3 onto the stack (on top of 2).
After 3 is popped from the top of the stack, we get 3 as the first number in our permutation.
But with 2 now at the top of the stack, we cannot pop 1 until after 2 has been popped, so
the permutation 3, 1, 2 cannot be generated.

When n = 4, there are 14 permutations of the (ordered) list 1, 2, 3, 4 that can be generated
by the stack method. We list them in the four columns of Table 10.4 according to the loca-
tion of 1 in the permutation.

Table 10.4
1,2,3,4 2,1,3, 4 2,3, 1,4 2,3, 4,1
1,2,4,3 2,1,4,3 3,2,1,4 2,4,3,1
1,3,2,4 3,2,4,1
1,3,4,2 3,4,2,1
1,4,3,2 43,21

1) There are five permutations with 1 in the first position, because after 1 is pushed onto
and popped from the stack, there are five ways to permute 2, 3, 4 using the stack.

2) When 1 is in the second position, 2 must be in the first position. This is because we
pushed 1 onto the (empty) stack, then pushed 2 on top of it and then popped 2 and
then 1. There are two permutations in column 2, because 3, 4 can be permuted in two
ways on the stack.
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3) For column 3 we have 1 in position three. We note that the only numbers that can
precede it are 2 and 3, which can be permuted on the stack (with 1 on the bottom) in
two ways. Then 1 is popped, and we push 4 onto the (empty) stack and then pop it.

4) In the last column we obtain five permutations: After we push 1 onto the top of the
(empty) stack, there are five ways to permute 2, 3, 4 using the stack (with 1 on the
bottom). Then 1 is popped from the stack to complete the permutation.

On the basis of these observations, for | <i <4, let ¢; count the number of ways to
permute the integers 1, 2, 3, ..., i (or any list of / consecutive integers) using the stack.
Also, we define ag = 1 since there is enly one way to permute nothing, using the stack.
Then

as = apasz + arar + aay + azag,
where

a) Each summand a,a; satisfies j + k = 3.

b) The subscript j tells us that there are j integers to the left of 1 in the permutation—in
particular, for j > 1, these are the integers from 2 to j + 1, inclusive.

¢) The subscript k indicates that there are k integers to the right of 1 in the permutation —
for k > 1, these are the integers from 4 — (k — 1) to 4.

This permutation problem can now be generalized to any 7 € N, so that
Gyl = aoty + 10y + @28p—2 + - -+ an10) + apay,

with ag = 1. From the result in Example 10.42 we know that

1 (211)
a, = .
(n+D\n

Now let us make one final observation about the permutations in Table 10.4. Consider,
for example, the permutation 3, 2, 4, 1. How did this permutation come about? First 1 is
pushed onto the empty stack. This is then followed by pushing 2 on top of 1 and then
pushing 3 on top of 2. Now 3 is popped from the top of the stack, leaving 2 and 1; then 2
is popped from the top of the stack, leaving just 1. At this point 4 is pushed on top of | and
then popped, leaving 1 on the stack. Finally, 1 is popped from the (top of the) stack, leaving
the stack empty. So the permutation 3, 2, 4, 1 comes about from the following sequence of
four pushes and four pops:

push, push, push, pop, pop, push, pop, pop.
Now replace each “push” with a “1” and each “pop” with a “0”. The result is the sequence
I 110010 0
Similarly, the permutation 1, 3, 4, 2 is determined by the sequence
push, pop, push, push, pop, push, pop, pop
and this corresponds with the sequence
1 6110100

In fact, each permutation in Table 10.4 gives rise to a sequence of four 1's and four {'s.
But there are 8!/(4! 41) = 70 ways to list four 1’s and four 0’s. Do these 14 sequences have
some special property? Yes! As we go from left to right in each of these sequences, the
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number of 1’s (pushes) is never exceeded by the number of 0’s (pops) [just like in part (b)
of Example 1.43 — another situation counted by the Catalan numbers].

Our last example for this section is comparable to Example 10.17. Once again we see
that we must guard against trying to obtain a general result without a general argument — no
matter what a few special cases might suggest.

Here we start with n distinct objects and, for n > 1, we distribute them among at most »
EXAMPLE 10.44 . , . . . .
identical containers, but we do not allow more than three objects in any container, and we
are not concemned about how the objects are arranged within any one container. We let a,
count the number of these distributions, and from Fig. 10.21 we see that

ag =1, ar =1, a, =2, a3 =15, and a4=14.

It appears that we might have the first five terms in the sequence of Catalan numbers.
Unfortunately, the pattern breaks down and we find, for example, that

as = 46 #* 42 (the sixth Catalan number) and
as = 166 # 132 (the seventh Catalan number).

(The distributions in this example were studied by F. L. Miksa, L, Moser, and M. Wyman
in reference [22].)

C
B B C C B
A A AlB A BlA AlB AlC B|C

A
{in=10) (h=1) (nh=2) (n=3)
C D D D
B B C C BID clp D|C D
AlD AlC AlB B|A AlcC AlB AlB AlBiC

in=4)

Figure 10.21

Other examples that involve the Catalan numbers can be found in the chapter references.

EXERCISES 3. Show that for all n > 2,
B ()
0 )

1. For the rooted ordered binary trees of Example 10.42, n n—2 (n+1)
calculate b, and draw all of these four-vertex structures, 4. Which of the following permutationsof 1, 2, 3,4, 5,6, 7, 8
2. Verify that for all n > 0 can be obtained using the stack (of Example 10.43)7

1 1 2042 1 I a)4,2,3,1,56,7, 8 b)5,4,3,6,2,1,8,7
i(zn+1)(n+1):(n+1)(n)' ) 4.5.3,2.1,867  d) 34217685
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5. Suppose that the integers 1, 2, 3,4, 5, 6, 7, 8 are permuted
using the stack (of Example 10.43). (a) How many permutations
are possible? (b) How many permutations have 1 in position 4
and 5 in position 8? (¢) How many permutations have 1 in po-
sition 67 (d) How many permutations start with 3217

6. This exercise deals with a problem that was first proposed
by Leonard Euler. The problem examines a given convex poly-
gonof n (> 3) sides —that is, a polygon of n sides that satisfies
the property: For all points P, P, within the interior of the
polygon, the line segment joining P, and P; also lies within
the interior of the polygon. Given a convex polygon of # sides,
Euler wanted to count the number of ways the interior of the
polygon could be triangulated (subdivided into triangles) by
drawing diagonals that do not intersect.

For a convex polygon of n = 3 sides, let ¢, count the num-
ber of ways the interior of the polygon can be triangulated by
drawing nonintersecting diagonals.

a) Define t; = 1 and verify that
iyl = by + I3t 1 +e 4t th-103 + fhla.
b) Express ¢, as a function of #.

7. InFig. 10.22 we have two of the five ways in which we can
triangulate the interior of a convex pentagon with no intersect-
ing diagonals, Here we have labeled four of the sides — with
the letters ¢, b, ¢, d — as well as the five vertices. In part (i)
we use the labels on sides a and b to give us the label ab on
the diagonal connecting vertices 2 and 4. This is because this
diagonal (labeled ab), together with the sides ¢ and b, provides
us with one of the interior triangles for this triangulation of
the convex pentagon. Then the diagonal ab and the side ¢ give
rise to the label («&)c on the diagonal determined by vertices

2 {ab)(cd) 1
(ii)

(i) ()

Figure 10.22

2 and 5 —and the sides labeled ab, ¢ and (ab)c provide a sec-
ond interior triangle for this triangulation. Continuing in this
way, we label the base edge connecting vertices 1 and 2 with
((ab)c)d — one of the five ways we can introduce parentheses
in order to obtain the three products (of two numbers at a time)
needed to compute abed. The triangulation in part (ii} of the
figure corresponds with the parenthesized product (ab)(cd).

a) Determine the parenthesized product involving a, b, ¢,
d for the other three triangulations of the convex pentagon.

b) Find the parenthesized product for each of the triangu-

lated convex hexagons in parts (iii) and (iv) of Fig. 10.22
[From part (a) we learn that there are five ways to parenthesize
the expression abed (and five ways to triangulate a convex pen-
tagon). Part (b) shows us two of the 14 ways one can introduce
parentheses for the expression abcde (and triangulate a convex
hexagon). In general, there are - J'r - (") ways to parenthesize the
eXpression xjXzx3 - « - X,_1X,X,41. It was in solving this prob-
lem that Eugéne Charles Catalan discovered the sequence that
now bears his name.)

b= (n l 1) (2:)

1s the nth Catalan number.

8. Forn =0,

a) Show that for all n > 0,
22n+ 1)
il = —————b
(n+2)
b) Use the result of part (a) to write a computer program

(or develop an algorithm) that calculates the first 15 Catalan
numbers.

n-

9. Forn = (), evenly distribute 2n points on the circumference
of a circle, and label these points cyclically with the integers
1,2,3,...,2n. Let a, be the number of ways in which these
2n points can be paired off as n chords where no two chords
intersect. (The case for n = 3 is shown in Fig. 10.23.) Find and
solve a recurrence relation for a4, 1 > 0.

10. For n € N, consider all paths from (0, 0) to (2r, 0) us-
ing the moves N: (x,y) > (x+ 1,y +1) and S: (x, y) >
(x + 1, y — 1), where any such path can never fall below the
x-axis. The five paths (generally called mountain ranges) for
n = 3 are shown in Fig. 10.24. How many mountain ranges are
there for each n € N? (Verify your claim!)

1. ForneZ%,let f: {1,2,... n}—{1,2,...,n},where f
is monotone increasing [thatis, 1 <i < j <n= f(i) < f()H]
and f(i) =i for all 1 <i <n. (a) Determine the five mono-
tone increasing functions f:{1,2, 3} — {1, 2,3}, where
fy=i for all | <i <3. (b) Use the graphs of the func-
tions from part (a) to set up a one-to0-one Correspon-
dence with the paths from (0, 0) to (3, 3) using the moves
Ri(x,y) > (x+1,¥), U (x, y) = (x, y + 1), where each
such path never falls below the line y = x. (The reader may
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Figure 10.23
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Figure 10.24

wish to check Exercise 3 for Section 1.5.) (¢) If the paths in
part (b} are rotated clockwise through 45°, what results do we
find? (d) How many monotone increasing functions f have do-
main and codomain equal to {1, 2,3, ..., n}, forn e Z*, and
satisfy f(i) > iforall 1 <i <n?

12. For ne Z*, let g:{1,2,...,n}—{1,2, ..., n}, where
giy=<i for all 1<i<n (a) Determine the five func-
tions g: {1, 2, 3} - {1, 2, 3} where g({) <i forall 1 <i <3.
(b) Set up a one-to-one correspondence between the functions
in part (a) here and those in part (a) of the previous exer-
cise. [You want a one-to-one correspondence that will gener-
alize when you examine the functions f, g: {1, 2,..., n}—
{1,2,...,n)},neZ' where f(i) > fand g(i) < i forall 1 <i

=< n.] (¢) How many functions g have domain and codomain
equal to {1, 2,3, ..., n}, for n € Z", and satisfy g(i) <i for
alll <i < n?

13. For n € N, consider the arrangements of pennies built on a
contiguous row of n pennies. Each penny that is not in the bot-
tom row (of n pennies) rests upon the two pennies below it, and
there is no concern about whether heads or tails appears. The
situation for n = 3 is shown in Fig. 10.25. How many such ar-
rangements are there for a contiguous row of » pennies, # € N?

14. For n €N, let s, count the number of ways one can travel
from (0, 0) to (n, n) using the moves R: (x, y) — (x + 1, ¥).
Ui (x, vy — (x, y+ 1),D: (x, ¥) = (x -+ 1, ¥y + 1), where the
path can never rise above the line y = x. (a) Determine s,.
(b) How is s, related to the Catalan numbers b, by, b, 7 (¢) How
is 53 related to bg, by, by, b3? What is 532 (d) For n € N, how
is s, related to by, by, bz, . . ., b,? (The numbers sq, s/, 52, . . .
are known as the Schréder numbers.)

15. A one-to-one function f:{1,2,3,..., n}— {123,
..., n} is often called a permutation. Such a permutation is
termed a rise/fall permutation when £ (1) < f(2), f(2) > f(3),
f(3) < f{4), ....Forexample, if n = 4 the five permutations
1324 (where f(1) =1, f2) =3, f(3) =2, f(4) = 4), 1423,
2314, 2413, and 3412 are the rise/fall permutations (for 1, 2,
3, 4). This we denote by writing E4 = 5, where, in general, E,
counts the number of rise/fall permutations for 1, 2,3, ..., n.
The numbers E, E,, E;, E5, ... are called the Euler numbers
(not to be confused with the Eulerian numbers in Example 4.21).
We define Ey = 1 and find that £, = 1, E; = 1.

a) Find the rise/fall permutations for 1, 2, 3. What is E;3?

b) Find the rise/fall permutations for 1, 2, 3, 4, 5. What

is E5?

¢) Explain why in each rise/fall permutation of 1,2,

3,...n, we find n at position 2¢ for some | <i < |n/2],

ifn=1.

@&

Figure 10.25
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d) Forn > 2, show that

E*%n_lEE Ey=E =1
n 2l'—] u—-158n-2, { 1 -

=1
e) Where do we find 1 in a rise/fall permutation of
1,2,3,...,n?

f) Forn > 1, show that

E, = Mim ("; I)Em Eyponrn Eo=1.
10.6
Divide-and-Conquer
Algorithms (Optional)’

g) Prove that forn > 2,

1\ = fn-1
E, = |- EE, .. E,=E =1
R (7 et 8-

=0
h) Use the result in part (g) to find £ and E-.
i) Find the Maclaurin series expansion for f(x) = sec x +

tan x. Conjecture (no proof required) the sequence for
which this is the exponential generating function.

One of the most important and widely applicable types of efficient algorithms is based on
a divide-and-conquer approach. Here the strategy, in general, is to solve a given problem

of size n {n € Z") by

1) Solving the problem for a small value of n directly (this provides an initial condition
for the resulting recurrence relation).

2} Breaking the general problem of size n into ¢ smaller problems of the same type
and (approximately) the same size— either [n/b] or |n/b)} where a, b € Z* with

l<a<nand!l < b <n.

Then we solve the a smaller problems and use their solutions to construct a solution for the
original problem of size n. We shall be especially interested in cases where n is a power of

b,and b = 2.

We shall study those divide-and-conquer algorithms where

1) The time to solve the initial problem of size n = 1 is a constant ¢ > 0, and

2) The time to break the given problem of size » into a smaller (similar) problems,
together with the time to combine the solutions of these smaller problems to get a
solution for the given problem, is #(#n), a function of ».

Our concern here will actually be with the time-complexity function f(n) for these
algorithms. Consequently, we shall use the notation f(r) here, instead of the subscripted
notation a, that we used in the earlier sections of this chapter.

The conditions that have now been stated lead to the following recurrence relation.

f)=c,

fn)y=af@/b)+hin),

for n = b*, k> 1.

We note that the domain of f is {1, b, b2, b>, ...} = [b'|i e N} C Z.

"The material in this section may be skipped with no loss of continuity. It will be used in Section 12.3
to determine the time-complexity function for the merge sort algorithm. However, the result there will also be
obtained for a special case of the merge sort by another method that does not use the material developed in this

section.

*For each x € R, recall that [x] denotes the ceiling of x and | x ) the floor of x, or greatest integer in x, where

a) [x]

[x]=x,forx € Z.

b) x] = the integer directly to the left of x, forx e R — Z.

¢) [x]

the integer directly to the right of x, forx e R — Z.
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In our first result, the solution of this recurrence relation is derived for the case where
h(n) is the constant c.

THEOREM 10.1

Leta, b, ce Z" withb > 2,andlet f: ZT — R.If

f(LHy=r¢, and
fn)y=af(n/b) +c, for n = b, k>1,

then foralln = 1, b, b2, b3, ...,

1) f(n) =c(log, » + 1), whena = 1, and
log, a _ 1

2y f(n)= clan™ - 1) ] ),when a=2.
a —

Proof: For k > 1 and n = b¥, we write the following system of k equations. [Starting with
the second equation, we obtain each of these equations from its immediate predecessor by
(i) replacing each occurrence of n in the prior equation by n/b and (ii) multiplying the
resulting equation in (i) by a.]
fny=af@m/b)+c
af (n/b) = a? f(n/b?) + ac
a* f(n/b*) = a’ f(n/b}) + a*c

a"‘gf(n/bk’Q) — ak*!f(n/bkfl) +ak72c
a“ ' fn/py = Ak fin/bt) +a* e

We see that each of the terms af (n/b), a’ f(n/b%), ..., @' f(n/b* 1) occurs one time as
a summand on both the left-hand and right-hand sides of these equations. Therefore, upon
adding both sides of the k& equations and canceling these common summands, we obtain

fn) = akf(n/bk) +lc+ac+a’c+ - +a* el
Since n = b* and (1) = ¢, we have
fy=a f+cll+a+a’+-- +a*"]
=cll+a+a®+---+a"" +4d.

1) Ifa = 1,then f(n) = c(k + 1). Butn = b* <= log, n = k,so f(n) = c(log, n + 1),
forn € [b']i € N}.

C(l _ak+l) 3 C(ak+l _

l—-a a—1
Now n = bf <= log, n =k, so

2) Whena > 2,then f(n) =

, from identity 4 of Table 9.2,

a* = gl n = (b]Ogb “)IOgh n— (blOgb ”)IOgb“ = nlogh“’

and

log,a __ )
Foy =9 T D e (Bl eN).
(a—-1)
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EXAMPLE 10.45 a) Let f: Z* — R, where

f(ly=3, and
fn) = f(n/2) + 3, forn = 2%, ke ™.
So by part (1) of Theorem 10.1, with ¢ =3, b =2, and a = 1, it follows that
fn)=3(0og,n+ forne{l, 2,4,816,...}.
b) Suppose that g: ZT — R with
g()=7, and
g(n) =4gn/3) +17, forn = 3, keZ'.
Then with ¢ = 7, b = 3, and a = 4, part (2) of Theorem 10.1 implies that g{n) =
(7/3)(4n'%* — 1), whenn € {1, 3,9, 27, 81, .. .}.
¢) Finally, consider h: Zt — R, where
A(ly=15, and
h(n) = Th(n/7) + 3, forn = 7%, keZ*.
Once again we use part (2) of Theorem 10.1, this time withg =b =7 and ¢ = 5.

Here we learn that hA(n) = (5/6)(7a"®7 — 1) = (5/6)(7Tn — 1) for ne {1, 7, 49,
343, ...}

Considering Theorem 10.1, we must unfortunately realize that although we know about
f forne{l, b, b%, ...}, we cannot say anything about the value of f for the integers in
Z" — {1, b, 5%, .. }. So at this time we are unable to deal with the concept of f as a time-
complexity function. To overcome this, we now generalize Definition 5.23, wherein the
idea of function dominance was first introduced.

Definition 10.1 Let f, g: ZT — R with § an infinite subset of Z+. We say that g dominates fon S (or f is
dominated by g on §)if there exist constants m € Rt and k € Z™ such that | f(n)| < m|g(n)|
foralln € §, where n > k.
Under these conditions we also say that f € O(g) on S.

s
EXAMPLE 10.46 Let f: Z" — R be defined so that

fn)=n, forne{l, 3,57, ..1=25,
fln) =n?, fornef{2,4,6,8,...}= 5.

Then f € O(n)on Sy and f € 0(n*) on S;. However, we cannot conclude that f e 0.

From Example 10.45, it now follows from Definition 10.1 that

a) f € O(log, n) on {2%|k € N} b) g € O(n'°=*) on {3*|k € N}
¢) h e O(n) on {7¥|k € N}.

EXAMPLE 10.47
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Using Definition 10.1, we now consider the following corollaries for Theorem 10.1. The
first is a generalization of the first two results given in Example 10.47.

COROLLARY 10.1

Leta,b,ceZt withb>2,andlet f: ZT > R.If
f(l)y=c¢, and
fn)=af(n/b)+c, for n = bF, k> 1,
then
1) f € O(og, n) on {b*|k € N}, whena = 1, and
2) f € O(n'"% ) on (b*|k € N}, when a > 2.

Proof: This proof is left as an exercise for the reader.

This second corollary changes the equal signs of Theorem 10.1 to inequalities. As a
result, the codomain of f must be restricted from R to Rt U {0}.

COROLLARY 10.2

Fora,b, ce Z" withb =2 let [ Z+ — RT U0} If
f(l)y<e¢, and
fmy <af(n/b) +c, for n = b*, k=1,
thenforalln =1, b, b2, 03, ...,
1) f € O(log, n), whena =1, and
2) feOn°:?), whena = 2.
Proof: Consider the function g: ZT — R U {0}, where
g(ly=¢, and
g(n) =agn/b) +c, forne{l, b, b ..}
By Corollary 10.1,
g€ O(log,n) on {b*|keN}, whena=1, and
ge0®m™% on (b*lkeN}, whena>2.

We claim that f(n) < g(n)foralln € {1, b, %, .. .}. To prove our claim, we induct on k
wheren = b¥ Itk = 0,thenn = b° = L and f(1) < ¢ = g(1) — so the result is true for this
firstcase. Assuming the result is true forsomer € N, wehave f(n) = f(b') < g(®') = g(n),
forn="b".Thenfork =t + 1 and n = b* = b'*!, we find that

f)y =GN <af@T /by +e=af(B) +c<agh)+c=gd" = gn).

Therefore, it follows by the Principle of Mathematical Induction that f(n) < g(n) for all
nell,b, b, ...} Consequently, f € O(g) on {b*|k € N}, and the corollary follows be-
cause of our earlier statement about g.

Up to this point, our study of divide-and-conquer algorithms has been predominantly
theoretical. It is high time we gave an example in which these ideas can be applied. The
following result will confirm one of our earlier examples.
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EXAMPLE 10.48

Definition 10.2

Forn=1,248,16,...,let f(n) count the number of comparisons needed to find the
maximum and minimum elements in a set S C R, where |S| = n and the procedure in
Example 10.30 is used.

If n = 1, then the maximum and minimum elements are the same element. Therefore,
no comparisons are necessary and f(1) = 0.

Ifn > 1,thenn = 2¢ forsome k € ZT, and we partition § as S; U S, where ||| = |5;| =
n/2 = 281 Ittakes f(n/2) comparisons to find the maximum M, and the minimum m; for
each set §,,1 = 1, 2. For n > 4, knowing m,, M, m3, and M,, we then compare m, with
ms and M, and M, to determine the minimum and maximum elements in S. Therefore,

fy=2fn/2)+1, whenn =2, and
fn)y=2fn/2)+2, whenn =4, 8, 16, ...,

Unfortunately, these results do not provide the hypotheses of Theorem 10.1. However,
if we change our equations into the inequalities

fH<2
f)<2f(n/2) +2, for n = 2%, k>1,

then by Corollary 10.2 the time-complexity function f(n), measured by the number of
comparisons made in this recursive procedure, satisfies f € O0(n'°82?) = O(n), foralln =
1,2,4,8,....

We can examine the relationship between this example and Example 10.30 even further.
From that earlierresult, we know thatif | S| = n = 2%,k > 1, then the number of comparisons
f(n) we need (in the given procedure) to find the maximum and minimum elements in § is
(3/2)(2%) — 2. (Note: Our statement here replaces the variable n of Example 10.30 by the

variable £.)
Since n = 2%, we find that we can now write
f(H=0

Fn) = FH =GB/ —2=03/)n —2, forn=2,48,16,....

Hence f € O(n) for n € {2F|k € N}, just as we obtained above using Corollary 10.2.

All of our results have required that n = b*, for some k € N, so it is only natural to ask
whether we can do anything in the case where n is allowed to be an arbitrary positive integer.
To find out, we introduce the following idea.

A function f: Zt — R™ U {0} is called monotone increasing if forallm, n € Z*,m <n =

fim) < fn).

This permits us to consider results for all n € Z* — under certain circumstances.

THEOREM 10.2

Let £:Z" — R™ U {0} be monotone increasing, and let g:Z™ — R. For be Z*, b > 2,
suppose that f € O(g) for all n € § = (b*|k € N}. Under these conditions,

a) If g € O(log n), then f € O(log n).

b) If g € O(nlogn), then f € O(nlogn).

¢) Ifge O ), then f € O(n"), forr e R U {0}.
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Proof: We shall prove part (a) and leave parts (b) and (¢) for the Section Exercises. Before
starting, we should note that the base for the logarithms in parts (a) and (b) is any positive
real number greater than 1.

Since f € O(g) on §, and g € O(log n), we at least have f € O(log n) on S. Therefore,
by Definition 10.1, there exist constants 2 € R™ and s € ZT such that f(n) = |f(n)| <
m|logn| =mlogn for all n € S, n > s. We need to find a constant M € R* such that
f(n) < Mlogn forall n > s, not just those n € §.

First let us agree to choose s large enough so that log s > 1. Now let n € Z7, where
n > sbutn ¢ S.Then there exists k € Z* such thats < b* < n < b**!.Since f is monotone
increasing and positive,

F) < FOFY) < mlog(h*t!) = m{log(h*) + log b]
=m log(h*) + mlogh
< mlog(b*) + m log b log(b*)
= m(1 + log b) log(h*)
< m(l +logb)logn.

So with M = m(l + log b) we find that forall n € Z" — S, if n > s then f(n) < M logn.
Hence f(n) < Mlogn forall n € Z, where n > s, and f € O(log n).

We shall now use the result of Theorem 10.2 in determining the time-complexity function
f(n) for a searching algorithm known as binary search.

In Example 5.70 we analyzed an algorithm wherein an array a1, a2, as, . . . , a, of inte-
gers was searched for the presence of a particular integer called key. At that time the array
entries were not given in any particular order, so we simply compared the value of key with
those of the array elements ¢, a2, aa, . . ., a,. This would not be very efficient, however,
if we knew that ¢, < a4 < a3 < - - - < a,. (After all, one does not search a telephone book
for the telephone number of a particular person by starting at page 1 and examining every
name in succession. The alphabetical ordering of the last names is used to speed up the
searching process.) Let us look at a particular example.

Consider the array a,, a», as, . . ., a; of integers, where a1 = 2, ap =4, a3 =5, a4 =7,
as = 10, ag = 17, and g7 = 20, and let key = 9. We search this array as follows:

1) Compare key with the entry at the center of the array; here it is a4 = 7. Since key >
a4, we now concentrate on the remaining elements in the subarray as, as, a7.

2) Now compare key with the center element ag. Since key = 9 < 17 = ag, we now turn
to the subarray (of as, as, a;) that consists of those elements smaller than a¢. Here
this is only the element as.

3) Comparing key with as, we find that key # as, so key is not present in the given array
ay,dz, a3, ..., dy.

From the results of Example 10.49, we make the following observations for a general
(ordered) array of integers (or real numbers). Let a1, a2, a3, . . ., a, denote the given array,
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and let key denote the integer (or real number) for which we are searching. Unlike our array
in Example 5.70, here

a) <dy <y <:::<dy.

1) First we compare the value of key with the array entry at or near the center. This entry
is a(n4-1y/2 for n odd or a,; for n even,
Whether n is even or odd, the array element subscripted by ¢ = [ (n 4 1)/2] is the
center, or near center, element, Note that at this point | is the value of the smallest
subscript for the array subscripts, whereas » is the value of the largest subscript.

2) If key is a., we are finished. If not, then
a) If key exceeds a,., we search (with this dividing process) the subarray a.4;,

Aot 2y -« oy Uy
b) If key is smaller than a., then the dividing process is applied in searching the
subarray ay, da, . . ., Qe 1.

The preceding observations have been used in developing the pseudocode procedure in
Fig. 10.26. Here the input is an ordered array ay, a2, a3, . . . , a, of integers, or real numbers,
in ascending order, the positive integer n (for the number of entries in the given array), and
the value of the integer variable key. If the array elements are integers (real numbers), then
key should be an integer (real number). The variables s and / are integer variables used for
storing the smallest and largest subscripts for the subscripts of the array or subarray being
searched. The integer variable c stores the index for the array (subarray) element at, or near,
the center of the array (subarray). In general, ¢ = [(s + [)/2]. The integer variable location
stores the subscript of the array entry where key is located; the value of location is ( when
key is not present in the given array.

procedure BinarySearch(n; positive integer; key,a,,az,ay,...,a,: integers)
begin
g:=1 {sisthe amallest subscript of the subarray being searched}
1:=n {I!isthe largest subscript of the subarray being searched)
locaticn :=0
while g </ do
begin
c:=|{s+1)/2]
if key = a. then
begin
location :=c¢
g:=1+1
end
else if key < a, then
l:=c-1
elses:=c+1
end
end

Figure 10.26

We want to measure the (worst-case) time complexity for the algorithm implemented
in Fig. 10.26. Here f(n) will count the maximum number of comparisons (between key
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and a.) needed to determine whether the given number key appears in the ordered array
day, dz, d3, ..., dy.

® Forn = 1, key is compared to @y and f(1) = 1.
® When n = 2, in the worst case key is compared to ¢, and then to az, so f(2) = 2.
® Inthe case of n = 3, £(3) = 2 (in the worst case).

® When n = 4, the worst case occurs when key is first compared to a; and then a binary
search of a3, a4 follows. Searching a3, a4 requires (in the worst case) f(2) comparisons.
Sof@y=1+ f(2)=3.

At this point we see that f(1) < F(2) < f(3) < f(4), and we conjecture that f is a
monotone increasing function. To verify this, we shall use the Principle of Mathemati-
cal Induction in its alternative form. Here we assume that for all , j € {1, 2, 3, ..., n},
i < j= f{i) < f(j). Now consider the integer n + 1. We have two cases to examine.

1) n + 1 is odd: Here we write n = 2k and n + 1 = 2k + 1, for some k € ZT. In the
worst case, f(n + 1) = f(2k + 1) = 1 + f(k), where 1 counts the comparison of
key with ag+ |, and f (k) counts the (maximum) number of comparisons needed in a
binary search of the subarray a,, a,, . . ., a; or the subarray a; 12, @iq3, - . -, dory1-

Now f(n) = f(2k) = 1 + max{f(k - 1), f(k)}. Since k — 1, k < n, by the in-
duction hypothesis we have f(k — 1) < f(k),s0 f(n) =14 fky= f(n+1).

2) n + 1 is even: At this time we have n + 1 = 2r, for some r € Z*, and in the worst
case, f(n+ 1) =14+ max{f(r — 1), f(r)} = 1 + f(r),bytheinduction hypothesis.
Therefore,

fmy=f2r-D=1+f(r-D=1+fr)=frn+D.
Consequently, the function f is monotone increasing.

Now it is time to determine the worst-case time complexity for the binary search algo-
rithm, using the function f(rn). Since

f(y=1, and
fmy= f(n/2) + 1, forn = 2%, k=1,

it follows from Theorem 10.1 (witha = 1, b = 2, and ¢ = 1) that
fmy=log,n+1, and fe Olog,n) forne{l, 2,4,8,...}.

But with f monotone increasing, from Theorem 10.2 it now follows that f € O(log, n) (for
all n € Z1). Consequently, binary search is an O (log, n) algorithm, whereas the searching
algorithm of Example 5.70 is O (n). Therefore, as the value of # increases, binary search
is the more efficient algorithm — but then it requires the additional condition that the array
be ordered.

This section has introduced some of the basic ideas in the study of divide-and-conquer
algorithms. It also extends the material first introduced on computational complexity and
the analysis of algorithms in Sections 5.7 and 5.8.

The Section Exercises include some extensions of the results developed in this section.
The reader who wants to pursue this topic further should find the chapter references both
helpful and interesting.



504 Chapter 10 Recurrence Relations

EXERCISES 10.6

1. Ineach of the following, f: Z* — R. Solve for f(n) rela-
tive to the given set S, and determine the appropriate “big-Oh”
form for f on §.

a) f(1)=35
f)=4fm/3)+5 n=23927,...
S={3]i eN}

b) f(h=7
f)y=7m/5H+7, n=5725125 ...
S ={5'i e N}

2. leta, b, c e ZT with b > 2, and let d € N. Prove that the
solution for the recurrence relation

fy=4d
fm)y=afn/b)+c,
satisfies
a) f(m)=d+clog,n,forn =45 keN, whena =1,

b) f(n) =dn“ + (c/(a — 1)[ 4 — 1], for n = b,
keN,whena > 2.

n = b, k=1

3. Determine the appropriate “big-Oh™ forms for f on
{b*|k € N} in parts (a) and (b) of Exercise 2.

4. In each of the following, f: Z* — R. Solve for f(n) rela-
tive to the given set S, and determine the appropriate “big-Oh”
form for f on S.

a) f(1)=0
fY=2f@n/5)+3, n=525125 ..
S=1{5'li eN}

b) f(1)=1
f)y=fn/2)+2, n=2,438, ...
S={2]ieN}

5. Consider a tennis tournament for n players, where n = 2*,
k € Z7" . In the first round n/2 matches are played, and the /2
winners advance to round 2, where n/4 matches are played.
This halving process continues until a winner is determined.

a) Forn =2* k e Z%, let f(n) count the total number of
matches played in the tournament. Find and solve a recur-
rence relation for f(n) of the form

fhy=d
fmy=af(n/2)+ec,

where a, ¢, and d are constants,

n=2,428, ...,

b) Show that your answer in part (a) also solves the recur-
rence relation

f=d
= fin/+ (nj2), n=2,4.8,....
6. Complete the proofs for Corollary 10.1 and parts (b) and
(¢} of Theorem 10.2.
7. What is the best-case time-complexity function for binary
search?

8. a) Modify the procedure in Example 10.48 as follows: For
any § C R, where |S| = n, partition § as §; U S», where
|51] = |8:|,forneven, and |S;| = 1 4 | 7|, for n odd. Show
that if f(n) counts the number of comparisons needed (in
this procedure) to find the maximum and minimum ele-
ments of S, then f is a monotone increasing function.

b) What is the appropriate ‘big-Oh” form for the function
f of part (a)?

9. In Corollary 10.2 we were concerned with finding the
appropriate “big-Oh” form for a function f:Z" — R* U {0}
where

f() <ec, forceZ*

f)yzafa/by+ec,
fora, beZ" withbh > 2, andn = b*, ke Z*.

Here the constant ¢ in the second inequality is interpreted as
the amount of time needed to break down the given problem
of size n into ¢ smaller (similar) problems of size n/b and to
combine the a solutions of these smaller problems in order to
get a solution for the original problem of size n. Now we shall
examine a situation wherein this amount of time is no longer
constant but depends on 7.

a) Leta, b,ceZ", withb>2.Let f: ZT — R U {0} be

a monotone increasing function, where

fh=c
fmn) <af(n/b)+ cn, forn = b*, keZ™.

Use an argument similar to the one given (for equalities)
in Theorem 10.1 to show that for all n = 1, b, %, b°, . . .,

k
flny<en) (afby.
1=0
b) Use the result of part (a) to show that f € O(n logn),
where a = b. (The base for the log function here is any real
number greater than 1.)

¢) When a # b, show that part (a) implies that

fn) < (ﬁ) (@ — By,

d) From part (c), prove that (i) f € O(n), whena < b; and

(ii) f € O(n'° ), when a > b. [Note: The “big-Oh” form

for f here and inpart (b)is for f onZ™, notjust {b*|k € N}.]
10. In this exercise we briefly introduce the Master Theorem.
(For more on this result, including a proof, we refer the reader
to pp. 73-84 of reference [5] by T. H. Cormen, C. E. Leiserson,
R. L. Rivest, and C. Stein.)

Consider the recurrence relation

fH=1,

fmy=afn/b) + hin,
whereneZ2', n>1,acZ ", a<n andbeR", 1 <b<n
The function kA accounts for the time (or cost) of dividing the
given problem of size » into @ smaller (similar) problems of
size approximately n/b and then combining the results from



