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11

An Introduction
to Graph Theory

With this chapter we start to develop another major topic of this text. Unlike other areas
in mathematics, the theory of graphs has a definite starting place, a paper published
in 1736 by the Swiss mathematician Leonhard Euler (1707-1783). The main idea behind
this work grew out of a now-popular problem known as the seven bridges of Kdnigsberg.
We shall examine the solution of this problem, from which Euler developed some of the
fundamental concepts for the theory of graphs.

Unlike the continuous graphs of early algebra courses, the graphs we examine here are
finite in structure and can be used to analyze relationships and applications in many differ-
ent settings. We have seen some examples of applications of graph theory in earlier
chapters (3, 5-8, and 10). However, the development here is independent of these prior dis-
cussions.

11.1
Definitions and Examples

When we use a road map, we are often concerned with seeing how to get from one town
to another by means of the roads indicated on the map. Consequently, we are dealing with
two distinct sets of objects: towns and roads. As we have seen many times before, such sets
of objects can be used to define a relation. If V denotes the set of towns and E the set of
roads, we can define a relation %R on V by ¢ 9 b if we can travel from ¢ to b using only the
roads in E. If the roads in F that take us from a to b are all two-way roads, then we also
have » % a. Should all the roads under consideration be two-way, we have a symmetric
relation.

One way to represent a relation is by listing the ordered pairs that are its elements.
Here, however, it is more convenient to use a picture, as shown in Fig. 11.1. This figure
demonstrates the possible ways of traveling among six towns using the eight roads indicated.
It shows that there is at least one set of roads connecting any two towns (identical or distinct).
This pictorial representation is a lot easier to work with than the 36 ordered pairs of the
relation R.

At the same time, Fig. 11.1 would be appropriate for representing six communication
centers, with the eight “roads™ interpreted as communication links. If each link provides
two-way communication, we should be quite concerned about the vulnerability of center a
to such hazards as equipment breakdown or enemy attack. Without center a, neither & nor
¢ can communicate with any of d, e, or f.

From these observations we consider the following concepts.
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Chapter 11 An Introduction to Graph Theory

Definition 11.1

Figure 11.1 Figure 11.2

Let V be a finite nonempty set, and let £ C V X V. The pair (V, £) is then called a directed
graph (on V), or digraph® (on V), where V is the set of vertices, or nodes, and E is its set
of (directed) edges or arcs. We write G = (V, F) to denote such a graph.

When there is no concern about the direction of any edge, we still write G = (V, E). But
now E is a set of unordered pairs of elements taken from V, and G is called an undirected
graph.

Whether G = (V, F) is directed or undirected, we often call V the vertex ser of G and
E the edge set of G.

Figure 11.2 provides an example of a directed graph on V = {a, b, ¢, d, e} with E =
{(a, a), (a, b), (a, d), (b, c)}. The direction of an edge is indicated by placing a directed
arrow on the edge, as shown here. For any edge, such as (b, ¢), we say that the edge is
incident with the vertices b, ¢; b is said to be adjacent 1o ¢, whereas ¢ is adjacent from b.
In addition, vertex b is called the origin, or source, of the edge (b, ¢), and vertex c is the
terminus, or terminating vertex. The edge {(u, a) is an example of a loop, and the vertex ¢
that has no incident edges is called an isolated vertex.

An undirected graph is shown in Fig. 11.3(a). This graph is a more compact way of
describing the directed graph given in Fig. 11.3(b). In an undirected graph, there are undi-
rectededges suchas {a, b}, (b, c}, {a, ¢}, {c, d} inFig. 11.3(a). Anedge such as {a, b} stands
for {(a, b), (b, a)}. Although (a, b) = (b, a) only when a = b, we do have {a, b} = {b, a}

d d
(a) (b)

Figure 11.3

*Since the terminology of graph theory is not standard, the reader may find some differences between terms
used here and in other texts.
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EXAMPLE 11.1
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for any a, b. We can write {a, a} to denote a loop in an undirected graph, but {a, a} is
considered the same as (a, a).

In general, if a graph G is not specified as directed or undirected, it is assumed to be
undirected. When it contains no loops it is called loop-free.

In the next two definitions we shall not concern ourselves with any loops that may be
present in the undirected graph G.

Let x, y be (not necessarily distinct) vertices in an undirected graph G = (V, E). An x-y
walk in G is a (loop-free) finite alternating sequence

X :x07 elv xlv els-xla 83! e en‘l!xn‘ls emxn = y

of vertices and edges from G, starting at vertex x and ending at vertex y and involving the
nedges e; = {x;_1, x;}, where l <i <n,

The length of this walk is », the number of edges in the walk. (When n = 0, there are no
edges, x = y, and the walk is called trivial. These walks are not considered very much in
our work. )

Any x-y walk where x = y (and n > 1) is called a closed walk. Otherwise the walk is
called open.

Note that a walk may repeat both vertices and edges.

For the graph in Fig. 11.4 we find, for example, the following three open walks. We can list
the edges only or the vertices only (if the other is clearly implied).

1) {a, b}, {b, d}, {d, c}, {c, e}, {e, d}, {d, b}: This is an a-b walk of length 6 in which
we find the vertices d and b repeated, as well as the edge {b, d} (= {d, b}).

2) b= ¢— d— ¢— c— f:Here we have a b-f walk where the length is 5 and the
vertex ¢ is repeated, but no edge appears more than once.

3) {f. c). {c, e}, {e, d}, {d, a}: In this case the given f-a walk has length 4 with no
repetition of either vertices or edges.

Figure 11.4

Since the graph of Fig. 11.4 is undirected, the a-b walk in part (1) is also a b-a walk
(we read the edges, if necessary, as {b, d}, {d, €}, {e, ¢}, {c, d}, {d, b}, and {b, a}). Similar
remarks hold for the walks in parts (2} and (3).

Finally, the edges {b, ¢}. {c, d}, and {d, b} provide a b-b (closed) walk. These edges
(ordered appropriately) also define (closed) ¢-c and d-d walks.
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Definition 11.3

Now let us examine special types of walks.

Consider any x-y walk in an undirected graph G = (V, E).
a) If no edge in the x-y walk is repeated, then the walk is called an x-y trail. A closed
x-x trail is called a circuit.

b) If no vertex of the x-y walk occurs more than once, then the walk is called an x-y
path. When x = y, the term cycle is used to describe such a closed path.

EXAMPLE 11.2

Convention: In dealing with circuits, we shall always understand the presence of at least
one edge. When there is only one edge, then the circuit is a loop (and the graph is no longer
loop-free). Circuits with two edges arise in multigraphs, a concept we shall define shortly.

The term cycle will always imply the presence of at least three distinct edges (from the
graph).

a) The b-f walk in part (2) of Example 11.1 1s a b-f trail, but it is not a b-f path because
of the repetition of vertex c. However, the f~a walk in part (3) of that example is both
an f-a trail (of length 4) and an f-a path (of length 4).

b) In Fig. 11.4, the edges {a, b}, {6, d}, {d, ¢}, {c, e}, {e, d}, and {d, a} provide an a-a
circuit. The vertex d is repeated, so the edges do not give us an a-a cycle.

¢) The edges {a, b}, b, ¢}, {c. d}, and {d, a} provide an a-a cycle (of length 4) in
Fig. 11.4. When ordered appropriately these same edges may also define a b-b, c-c, or
d-d cycle. Each of these cycles is also a circuit.

For a directed graph we shall use the adjective directed, as in, for example, directed
walks, directed paths, and directed cycles.

Before continuing, we summarize (in Table 11.1) for future reference the results of
Definitions 11.2 and 11.3. Each occurrence of “Yes” in the first two columns here should
be interpreted as “Yes, possibly,” Table 11.1 reflects the fact that a path is a trail, which in
turn is an open walk. Furthermore, every cycle is a circuit, and every circuit (with at least
two edges) is a closed walk.

Table 11.1
Repeated Vertex | Repeated
(Vertices) Edge(s) Open | Closed Name
Yes Yes Yes Walk (open)
Yes Yes Yes Walk (closed)
Yes No Yes Trail
Yes No Yes Circuit
No No Yes Path
No No Yes | Cycle

Considering how many concepts we have introduced, it is time to prove a first result in
this new theory.
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THEOREM 11.1

Definition 11.4

EXAMPLE 11.3

Definition 11.5

EXAMPLE 11.4

Let G = (V, E) be an undirected graph, with @, b € V, a 5 b. If there exists a trail (in G)
from « to b, then there is a path (in G) from a to b.

Proof: Since there is a trail from a to b, we select one of shortest length, say {a. x},
{x1, x2}, .. ., {x,, b}. If this trail is not a path, we have the situation {a, x1}, {x|, x2}, .. .,
{ee—1, xedy (s 21 s s 2 -0 {omat Xhs (s Xt} -+, {xa, b}, where
k<m and x; = x,,, possibly with k=0 and a (= x¢) = xp, or m=n+1 and x, =
b (= x,.1). But then we have a contradiction because {a, x}, {x1, x2}, . .., {xi_1, xz},
{xm, Xmyt)s ..., {x,, b} 1s a shorter trail from a to b.

The notion of a path is needed in the following graph property.

Let G = (V, E) be an undirected graph. We call G connected if there is a path between
any two distinct vertices of G.

LetG = (V, E)beadirected graph. Its associated undirected graph is the graph obtained
from G by ignoring the directions on the edges. If more than one undirected edge results
for a pair of distinct vertices in G, then only one of these edges is drawn in the associated
undirected graph. When this associated graph is connected, we consider G connected.

A graph that is not connected is called disconnected.

The graphs in Figs. 11.1, 11.3, and 11.4 are connected. In Fig. 11.2 the graph is not
connected because, for example, there is no path froma to e.

In Fig. 11.5 we have an undirected graph on V = {a, b, ¢, d, ¢, f, g}. This graph is not
connected because, for example, there is no path from a to e. However, the graph is com-
posed of pieces (with vertex sets V| = {a, b, ¢, d}, Vo, = {e, f. g}, and edge sets E; =
{{a, b}, {a, ¢}, {a, d}, {b, d}}, Ex = {{e, [}, {f, g}}) that are themselves connected, and
these pieces are called the (connected) components of the graph. Hence an undirected
graph G = (V, E) is disconnected if and only if V can be partitioned into at least two
subsets V), V; such that there is no edge in E of the form {x, y}, where x € V) and y € V.
A graph is connected if and only if it has only one component.

=]

d f
Figure 11.5

For any graph G = (V, E), the number of components of G is denoted by « (G).

For the graphs in Figs. 11.1, 11.3, and 11.4, «(G) = | because these graphs are connected;
«(G) = 2 for the graphs in Figs. 11.2 and 11.5.




518 Chapter 11 An Introduction to Graph Theory

Before closing this first section, we extend our concept of a graph. Thus far we have
allowed at most one edge between two vertices; we now consider an extension.

Definition 11.6 Let V be a finite nonempty set. We say that the pair (V, F) determines a multigraph G with
vertex set V and edge set £ if, for some x, y € V, there are two or more edges in £ of the
form (a) (x, y) (for a directed multigraph), or (b) {x, y} (for an undirected multigraph). In

either case, we write G = (V, F) to designate the multigraph, just as we did for graphs.

Figure 11.6 shows an example of a directed multigraph. There are three edges from a to
b, so we say that the edge (a, b) has multiplicity 3. The edges (b, ¢) and (d, e) both have
multiplicity 2. Also, the edge (e, d) and either one of the edges (d, ¢) form a (directed)
circuit of length 2 in the multigraph.

1)

b
Figure 11.6

We shall need the idea of a multigraph later in the chapter when we solve the problem
of the seven bridges of Konigsberg. (Note: Whenever we are dealing with a multigraph G,
we shall state explicitly that G is a multigraph.)

EXERCISES 11.1

1. List three situations, different from those in this section,
where a graph could prove useful.

4, For n =2, let G = (V, E) be the loop-free undirected
graph, where V is the set of binary n-tuples (of 0’s and 1’s)
and F = {{v, w}lv, w e V and v, w differ in (exactly) two
positions}. Find « (G).

2. For the graph in Fig. 11.7, determine (a) a walk from b to 5. Let G = (V, E) be the undirected graph in Fig. 11.8. How

d that is not a trail; (b) a b-d trail that is not a path; (¢) a path
from & to d; (d) a closed walk from b to b that is not a circuit;
(e) a circuit from & to b that is not a cycle; and (f) a cycle from
btobh.

b e f
a
g
C d
Figure 11.7

3. For the graph in Fig. 11.7, how many paths are there from
bto f?

many paths are there in G from a to 27 How many of these
paths have length 5?

a b e f
C d q h
Figure 11.8

6. If u, b are distinct vertices in a connected undirected graph
G, the distance from a to b is defined to be the length of a short-
est path from a to b (when a = b the distance is defined to be

"We now allow a set to have repeated elements in order to account for multiple edges. We realize that thisis a
change from the way we dealt with sets in Chapter 3. To overcome this the term multiset is often used to describe

E in this case.



0). For the graph in Fig. 11.9, find the distances from d to (each
of) the other vertices in G.

C K ¢
L
de g
m
j
[
e f h i

Figure 11.9

7. Seventownsa, b, ¢, d, e, f, and g are connected by a sys-
tem of highways as follows: (1) I-22 goes from a to ¢, passing
through &; (2) I-33 goes from ¢ to d and then passes through b
as it continues to f; (3) I-44 goes from d through e to a; (4) I-55
goes from f to b, passing through g; and (5) 1-66 goes from g
tod.

a) Using vertices for towns and directed edges for seg-
ments of highways between towns, draw a directed graph
that models this situation.

b) List the paths from g to .

¢) What is the smallest number of highway segments that
would have to be closed down in order for travel from & to
d to be disrupted?

d) Is it possible to leave town ¢ and return there, visiting
each of the other towns only once?

e) What is the answer to part (d) if we are not required to
return to ¢?

f) Is it possible to start at some town and drive over each
of these highways exactly once? (You are allowed to visit a
town more than once, and you need not return to the town
from which you started.)

8. Figure 11.10 shows an undirected graph representing a sec-
tion of a department store. The vertices indicate where cashiers
are located; the edges denote unblocked aisles between cashiers.
The department store wants to set up a security system where
(plainclothes) guards are placed at certain cashier locations so
that each cashier either has a guard at his or her location or is
only one aisle away from a cashier who has a guard. What is
the smallest number of guards needed?

a b c

h i i k
Figure 11.10

9. Let G = (V, E) bealoop-free connected undirected graph,
andlet {a, b} be an edge of G. Prove that {a, b} ispartofacycle

111 Definitions and Examples 519

if and only if its removal (the vertices a and b are left) does not
disconnect G.

10. Give an example of a connected graph G where removing
any edge of G results in a disconnected graph.

11. Let G be a graph that satisfies the condition in Exercise 10.
(a) Must G be loop-free? (b) Could G be a multigraph? (c) If
G has n vertices, can we determine how many edges it has?

12. a) If G = (V, E) is an undirected graph with |V|= v,
|E| = e, and no loops, prove that 2e < v> — v.
b) State the corresponding inequality for the case when G
is directed.

13. Let G = (V, E) be an undirected graph. Define a relation
RonV byaRbifa = borifthereis a path in G from a to b.
Prove that P is an equivalence relation. Describe the partition
of V induced by R.

14. a) Consider the three connected undirected graphs in
Fig. 11.11. The graph in part (a) of the figure consists
of a cycle (on the vertices uy, u», u#3) and a vertex u, with
edges (spokes) drawn from u,4 to the other three vertices.
This graph is called the wheel with three spokes and is
denoted by Ws. In part (b) of the figure we find the graph

s
Uy Uz
(@) wy
V2
v
V3
Va
(b) W,
X3
X2
X4
K/
X5
e A

Figure 11.11
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W4 — the wheel with four spokes. The wheel W5 with five
spokes appears in Fig. 11.11(c). Determine how many cy-
cles of length 4 there are in each of these graphs.

b) In general, if n € Z* and n > 3, then the wheel with n
spokes is the graph made up of a cycle of length » together
with an additional vertex that is adjacent to the n vertices
of the cycle. The graph is denoted by W,. (i) How many
cycles of length 4 are there in W,,? (ii) How many cycles in
W, have length n?

15. For the undirected graph in Fig. 11.12, find and selve a re-
currence relation for the number of closed v-v walks of length
n > 1,if we allow such a walk, in this case, to contain or consist
of one or more loops.

[ } v w
Figure 11.12

16. Unit-Interval Graphs. For n > 1, we start with n closed in-
tervals of unit length and draw the corresponding unit-interval
graph on n vertices, as shown in Fig. 11.13. In part (a) of the
figure we have one unit interval. This corresponds to the single
vertex u; both the interval and the unit-interval graph can be

represented by the binary sequence 01. In parts (b), (c) of the
figure we have the two unit-interval graphs determined by two
unit intervals. When two unit intervals overlap [as in part{c)] an
edge is drawn in the unit-interval graph joining the vertices cor-
responding to these unit intervals. Hence the unit-interval graph
in part (b) consists of the two isolated vertices vy, v, that corre-
spond with the nonoverlapping unit intervals. In part (c) the unit
intervals overlap so the corresponding unit-interval graph con-
sists of a single edge joining the vertices vy, v, (that correspond
to the given unit intervals). A closer look at the unit intervals in
part (¢) reveals how we can represent the positioning of these
intervals and the corresponding unit-interval graph by the bi-
nary sequence 0011. In parts (d)}—(f) of the figure we have three
of the unit-interval graphs for three unit intervals — together
with their corresponding binary sequences.

a) How many other unit-interval graphs are there for
three unit intervals? What are the corresponding binary se-
quences for these graphs?

b) How many unit-interval graphs are there for four unit
intervals?

¢) For n > 1, how many unit-interval graphs are there for
r unit intervals?

o} 1 0 70 1 c 1
*———pn *———e o—e 0 7—17
Y
| | | 1
% *, % 0 0 1 1
*—
4 V2
(a) 01 () {c) 0011
0 1 0 1 0 1
0 T 0 0 T
0 ] o y 0 7
*-—-:aa >——e >
wWa
W1 o [ ] [ ] *r—a
Wy w; W3 W; Wz W3
W3
(d) 000111 (e) 001101 1) 010011

Figure 1113

11.2
Subgraphs, Complements,
and Graph Isomorphism

In this section we shall focus on the following two ideas:

a) What types of substructures are present in a graph?

b) Is it possible to draw two graphs that appear distinct but have the same underlying

structure?
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To answer the question in part (a) we introduce the following definition.

If G = (V, E) is a graph (directed or undirected), then G| = (V, E}) is called a subgraph
of Gif¥ # V) C V and Ey C E, where each edge in £, is incident with vertices in V.

Figure 11.14(a) provides us with an undirected graph G and two of its subgraphs, G; and
G1. The vertices a, b are isolated in subgraph . Part (b) of the figure provides a directed

Definition 11.8

example. Here vertex w is isolated in the subgraph G'.

(@) (Gy) Gy (@) (G")
b b b s s
[ 3
a C e a C e
]
t u t v
o d .
(o ? w7 W
Figure 11.13

Certain special types of subgraphs arise as follows:

Given a {directed or undirected) graph G = (V, E), let G = (V;, E,) be a subgraph of G.
If Vi = V, then G, is called a spanning subgraph of G.

In part (a) of Fig. 11.14 neither G nor G, is a spanning subgraph of G. The subgraphs
G and G4 —shown in part (a) of Fig. 11.15—are both spanning subgraphs of G. The
directed graph G’ in part (b) of Fig. 11.14 is a subgraph, but not a spanning subgraph, of
the directed graph G given in that part of the figure. In part (b} of Fig. 11.15 the directed
graphs G” and G'” are two of the 2* = 16 possible spanning subgraphs.

(G3) (Gy) (G') (G
b b S s
a C e a c e
™ .
t u v u v
[ ]
(@ d d b) w w

Figure 1115
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Definition 11.9

EXAMPLE 11.5

Definition 11.10

EXAMPLE 11.6

Let G = (V, E) be a graph (directed or undirected). If @ # U C V, the subgraph of G
induced by U is the subgraph whose vertex set is U and which contains all edges (from G)
of either the form (a) (x, y), for x, ¥y € U (when G is directed), or (b) {x, y}, forx, ye U
(when G is undirected). We denote this subgraph by (U).

A subgraph G’ of a graph G = (V, E) is called an induced subgraph if there exists
@+ U CV,where G' = (U).

For the subgraphs in Fig. 11.14(a), we find that G, is an induced subgraph of G but the
subgraph G is not an induced subgraph because edge {a, d} is missing.

Let G = (V, E) denote the graph in Fig. 11.16(a). The subgraphs in parts (b) and (c) of the
figure are induced subgraphs of G. For the connected subgraph in part (b), G, = (U} for
Uy ={b, ¢, d, ¢}. In like manner, the disconnected subgraph in part (c) is G, = {U,} for
Uy ={a, b, e, f}. Finally, G5 in part (d) of Fig. 11.16 is a subgraph of G. But it is not an
induced subgraph; the vertices c, e are in G5, but the edge {c, ¢} (of G) is not present.

(G) (Gy) (Gy) (G3)

Q
©

(a (b @ (d)
Figure 11.16

Another special type of subgraph comes about when a certain vertex or edge is deleted
from the given graph. We formalize these ideas in the following definition.

Let v be a vertex in a directed or an undirected graph G = (V, E). The subgraph of G
denoted by G — v has the vertex set V; = V — {v} and the edge set £; C F, where E,
contains all the edges in E except for those that are incident with the vertex v. (Hence
G — v is the subgraph of G induced by V;.)

In a similar way, if e is an edge of a directed or an undirected graph G = (V, E), we
obtain the subgraph G — e = (Vy, E}) of GG, where the set of edges E; = E — {e}, and the
vertex set is unchanged (that is, V, = V).

Let G = (V, E) be the undirected graph in Fig. [1.17(a). Part (b) of this figure is the
subgraph G, (of G), where G| = G — c. It is also the subgraph of G induced by the set
of vertices Uy = {a, b, d, f, g, h}, so G; = (V — {c}} = (U;). In part (¢} of Fig. 11.17
we find the subgraph G; of G, where G; = G — e for e the edge {c, d}. The result in
Fig. 11.17(d) shows how the ideas in Definition 11.10 can be extended to the deletion of
more than one vertex (edge). We may represent this subgraphof Gas G3 = (G —b) — f =
(G—fY—b=G~—|b, f}={U3),forU; ={a,c,d, g, h}.
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(G) (Gy) (Gy) (G3)

b.f————-‘a bT‘a ®d
C ¢
gq
d
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h h h h

(a) (b) {0 (d)
Figure 1117

The idea of a subgraph gives us a way to develop the complement of an undirected
Ioop-free graph. Before doing so, however, we define a type of graph that is maximal in
size for a given number of vertices.

Let V be a set of n vertices. The complete graph on V, denoted K, is a loop-free undirected
graph, where forall a, b € V, a # b, there is an edge {a, b).

Figure 11.18 provides the complete graphs K, for 1 < n < 4. We shall realize, when we
examine the idea of graph isomorphism, that these are the only possible complete graphs
for the given number of vertices.

a a a b
a
.
C
b c b | d
(Ky) (K3 (K3) (Ky)

Figure 11.13

In determining the complement of a set in Chapter 3, we needed to know the universal
set under consideration. The complete graph plays a role similar to a universal set.

Let G be a loop-free undirected graph on n vertices. The complement of G, denoted G, is
the subgraph of K, consisting of the n vertices in G and all edges that are not in G. (If
G = K,,, G is a graph consisting of » vertices and no edges. Such a graph is called a nul!
graph.)

Figure 11.19(a) shows an undirected graph on four vertices. Its complement is shown in
part (b) of the figure. In the complement, vertex « is isolated.

Once again we have reached a point where many new ideas have been defined. To
demonstrate why some of these ideas are important, we apply them now to the solution of
an interesting puzzle.
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a b ae b
d c d
(@) {b)
Figure 11.19

Instant Insanity. The game of Instant Insanity is played with four cubes. Each of the six
faces on a cube is painted with one of the colors red (R), white (W), blue (B), or yellow (Y).
The object of the game is to place the cubes in a column of four such that all four (different)
colors appear on each of the four sides of the column.

Consider the cubes in Fig. 11.20 and number them as shown. (These cubes are only one
example of this game. Many others exist.) First we shall estimate the number of arrange-
ments that are possible here. If we wish to place cube 1 at the bottom of the column, there
are at most three different ways in which we can do this. In Fig. 11.20 cube 1 is unfolded,
and we see that it makes no difference whether we place the red face on the table or the
opposite white face on the table. We are concerned only with the other four faces at the
base of our column. With three pairs of opposite faces there will be at most three ways
to place the first cube for the base of the column. Now consider cube 2. Although some
colors are repeated, no pair of opposite faces has the same color. Hence we have six ways
to place the second cube on top of the first. We can then rotate the second cube without
changing either the face on the top of the first cube or the face on the bottom of the second
cube. With four possible rotations we may place the second cube on top of the first in as
many as 24 different ways. Continuing the argument, we find that there can be as many as
(3)(24)(24)(24) = 41,472 possibilities to consider. And there may not even be a solution!

Y R
W R|[Y |W B B [W|Y 4
B Y
R 1 w
Q) @) :
R w al 3| 12 42
R|BlvY|B W R|B|Y
W W ! 3
Y 2 8
3) )
Figure 11.20 Figure 11.21

In solving this puzzle we realize that it is difficult to keep track of (1) colors on opposite
faces of cubes and (2) columns of colors. A graph (actually a labeled multigraph) helps us
to visualize the sitouation. In Fig. 11.21 we bhave a graph on four vertices R, W, B, and Y.
As we consider each cube, we examine its three pairs of opposite faces. For example, cube
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1 has a pair of opposite faces painted yellow and blue, so we draw an edge connecting Y
and B and label it 1 (for cube 1). The other two edges in the figure that are labeled with 1
account for the pairs of opposite faces that are white and yellow, and red and white. Doing
likewise for the other cubes, we arrive at the graph in the figure. A loop. such as the one at
B, with label 3, indicates a pair of opposite faces with the same color (for cube 3).

In the graph we see a total of 12 edges falling into four sets of 3, according to the labels
for the cubes. At each vertex the number of edges incident to (or from) the vertex counts
the number of faces on the four cubes that have that color. (We count a loop twice.) Hence
Fig. 11.21 tells us that for our four cubes we have five red faces, seven white ones, six blue
ones, and six that are yellow.

With the four cubes stacked in a column, we examine two opposite sides of the column.
This arrangement gives us four edges in the graph of Fig. 11.21, where each label appears
once. Since each color is to appear only once on a side of the column, each color must
appear twice as an endpoint of these four edges. If we can accomplish the same result for
the other two sides of the column, we have solved the puzzle. In Fig. 11.22(a) we see that
each side in one pair of opposite sides of our column has the four colors if the cubes are
arranged according to the information provided by the subgraph shown there. However, to
accomplish this for the other two sides of the column also, we need a second such subgraph
that doesn’t use any edge in part (a). In this case a second such subgraph does exist, as
shown in part (b) of the figure.

{a) (b)
Figure 11.22

Figure 11.23 shows how to arrange the cubes as indicated by the subgraphs in Fig. 11.22.

Y B W R
W R 1Y B R Y | B W
B W R Y
n (2) 3 @)
Figure 11.23

In general, for any four cubes we construct a labeled multigraph and try to find two
subgraphs where (1) each subgraph contains all four vertices, and four edges, one for each
label; (2) in each subgraph, each vertex is incident with exactly two edges (a loop is counted
twice); and (3) no (labeled) edge of the labeled multigraph appears in both subgraphs.

Now we turn to the second question posed at the start of the section.
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Parts (a) and (b) of Fig. 11.24 show two undirected graphs on four vertices. Since straight
edges and curved edges are considered the same here, each graph represents six adjacent
pairs of vertices. In fact, we probably feel that these graphs are both examples of the graph
K. We make this feeling mathematically rigorous in the following definition.

c d 7 P q t u
(a) ()] (@] (d)
Figure 11.24

Let G; = (Vi, E1) and G; = (Va, E3) be two undirected graphs. A function f: Vi - W,
is called a graph isomorphism if (a) f is one-to-one and onto, and (b) for all a, b€ V|,
{a, b} € Ey if and only if { f(a), f(H)} € E2. When such a function exists, G and G; are
called isomorphic graphs.

The vertex correspondence of a graph isomorphism preserves adjacencies. Since which
pairs of vertices are adjacent and which are not is the only essential property of an undirected
graph, in this way the structure of the graphs is preserved.

For the graphs in parts (a) and (b) of Fig. 11.24 the function f defined by

fla)=w, fo)=x, fley=y, fldy=z

provides an isomorphism. [In fact, any one-to-one correspondence between {a, b, ¢, d} and
{w, x, y, z} will be an isomorphism because both of the given graphs are complete graphs.
This would also be true if each of the given graphs had only four isolated vertices (and no
edges).] Consequently, as far as (graph) structure is concerned, these graphs are considered
the same — each is (isomorphic to) the complete graph K.

For the graphs in parts (c¢) and (d) of Fig. 11.24 we need to be a little more careful. The
function g defined by

glm) =r, g(n) =s, glp) =1, glg) =u

is one-to-one and onto (for the given vertex sets). However, although {m, ¢} is an edge in the
graph of part (c), {g(m), g(g)}} = {r, u}is notan edge in the graph of part (d). Consequently,
the function g does not define a graph isomorphism. To maintain the correspondence of
edges, we consider the one-to-one onto function ~ where

him) =s, h(n) =, h(p) = u,

hig) =1.
In this case we have the edge correspondences
{m, n} < {h(m), h(n)} = {s, r},
{m, p} & {h(m), h(p)} = {s, u],
{m, q} < {h(m}, h(q)} = {5, 1},

{n,q} < {h(n), k{g)} = {r, t},
{p. g} < {h(p), h(g)} = {u, 1},
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so /1 is a graph isomorphism. [We also notice how, forexample, thecyclem - n — g = m
corresponds with the cycle s (= A(m)) — r (= h(n)) =t (= h(g)) — s (= h(m)).]

Finally, since the graph in part (a) of Fig. 11.24 has six edges and that in part {c) has
only five edges, these two graphs cannot be isomorphic.

Now let us examine the idea of graph isomorphism in a more difficult situation.

In Fig. 11.25 we have two graphs, each on ten vertices. Unlike the graphs in Fig. 11.24, it
is not immediately apparent whether or not these graphs are isomorphic.

‘ /\ b

NS

\
P

(a) (o)
Figure 11.25

One finds that the correspondence given by

a—q c—>u e—>7r g—=>Xx i—z

b—wv d—y f—w h—t j—s

preserves all adjacencies. For example, { f, 2} is an edge in graph (a) with {w, ¢} the cor-
responding edge in graph (b). But how did we come up with the correspondence? The
following discussion provides some clues.

We note that because an isomorphism preserves adjacericies, it preserves graph sub-
structures such as paths and cycles. In graph (a) the edges {a, f}, {f, i}, {i, d}, {d, e}.
and {e, a} constitute a cycle of length 5. Hence we must preserve this as we try to find an
isomorphism. One possibility for the corresponding edges in graph (b) is {g, w}, {w, z},
{z, ¥y}, {y, r}, and {r, g}, which also provides a cycle of length 5. (A second possible
choice is given by the edges in the cycle y - r — 5§ — t — « — y.) In addition, start-
ing at vertex a in graph (a), we find a path that will “visit” each vertex only once. We
express thispathbyga - f - h —>c¢—> b — g— j— e —> d — i.Forthe graphs to be
isomorphic there must be a corresponding path in graph (b). Here the path described by
q—>w—>t—>u—v—>x—5—r— y— zisthe counterpart.

These are some of the ideas we can use to try to develop an isomorphism and deter-
mine whether two graphs are isomorphic. Other considerations will be discussed through-
out the chapter. However, there is no simple, foolproof method — especially when we are
confronted with larger graphs G| = (V}, E)) and G, = (V;, E,), where |V|| = |V,| and
|EV| = |Ea.

We close this section with one more example involving graph isomorphism.
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Each of the two graphs in Fig. 11.26 has six vertices and nine edges. Therefore it is reason-
able to ask whether they are isomorphic.

In graph (a), vertex a is adjacent to two other vertices of the graph. Consequently, if
we try to construct an isomorphism between these graphs, we should associate vertex a
with a comparable vertex in graph (b), say vertex u. A similar situation exists for vertex d
and either vertex x or vertex z. But no matter which of the vertices x or z we use, there
remains one vertex in graph (b) that is adjacent to two other vertices. And there is no other
such vertex in graph (a) to continue our one-to-one structure preserving correspondence.
Consequently, these graphs are not isomorphic.

Furthermore, in graph (b) it is possible to start at any vertex and find a circuit that includes
every edge of the graph. For example, if we start at vertex u, the circuit u - w —> v —
y = w — z— y — x — v —> u exhibits this property. This does not happen in graph (a)
where the only trails that include each edge start at either b or f and then terminate at f or
b, respectively.

u
b C
a d v w
e f
X % z
(a) (b}
Figure 11.26
d) Draw the subgraph of G induced by the set of vertices
L exerasisnz S
1. Let G be the undirected graph in Fig, 11.27(a). €) Fl?r(;he graph G, let the edge e = {c, f}. Draw the sub-
T3] —e.
a) How many connected subgraphs of G have four vertices grap . .
and include a cycle? 2. a) Let G = (V, E) be an undirected graph',.wnh Gl =
. . . (Vi, E}) a subgraph of G. Under what condition(s) is G,
b) Describe thej subgraph G, (of G} in part (b)_ of the fig- not an induced subgraph of G?
ure first, as an induced subgraph and second, in terms of o .
deleting a vertex of G. b) For'the graph G in Fig. 11.27(a), find a subgraph that is
. . not an induced subgraph.
¢) Describe the subgraph G, (of G) in part (¢) of the figure .
3. a) How many spanning subgraphs are there for the graph

first, as an induced subgraph and second, in terms of the

deletion of vertices of G.

G in Fig. 11.27(a)?

@

(G

Figure 11.27
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Figure 11.28

b) How many connected spanning subgraphs are there in
part (a)?
¢) How many of the spanning subgraphs in part (a) have
vertex ¢ as an isolated vertex?
4. If G = (V, E)is an undirected graph, how many spanning
subgraphs of G are also induced subgraphs?

5. Let G = (V, E) be an undirected graph, where |V| = 2. If
every induced subgraph of G is connected, can we identify the
graph G?

6. Find all (loop-free) nonisomorphic undirected graphs with
four vertices. How many of these graphs are connected?

7. Each of the labeled multigraphs in Fig. 11.28 arises in the
analysis of a set of four blocks for the game of Instant Insanity.
In each case determine a solution to the puzzle, if possible.

8. a) How many paths of length 4 are there in the complete
graph K,;? (Remember that a path such as v; — vy —
v; — vy —> vs is considered to be the same as the path
Us —> U4 —> Uz —> U > Vy.)
b) Let m, n £ Z' with m < n. How many paths of length
m are there in the complete graph K, ?

9. For each pair of graphs in Fig. 11.29, determine whether or

not the graphs are isomorphic.

10. Let & be an undirected (loop-free) graph with v vertices
and ¢ edges. How many edges are there in G?

11. a) If G, G, are (loop-free) undirected_greghs, prove that
G, G, are isomorphic if and only if G|, G, are isomor-
phic.

b) Determine whether the graphs in Fig. 11.30 are isomor-
phic.

12. a) Let G be an undirected graph with # vertices. If G is iso-
morphic to its own complement G, how many edges must
G have? (Such a graph is called self-complementary.)

b) Find an example of a self-complementary graph on four
vertices and one on five vertices.

¢) If G is a self-complementary graph on # vertices, where
n> 1,provethatn = 4k orn = 4k + 1, forsome k € Z*,

13. Let G be a cycle on n vertices. Prove that G is self-
complementary if and only if n = 5.

1
R 4 W
12
4(2 33 113
B 3 Y
4
(©
a 5
C‘f u‘x
h z
(a)
a u v
p
p X
f b
e C
d y 4
(b)
Figure 11.29
4a
h b
g C
f d
e
Figure 11.30

14. a) Find a graph G where both G and G are connected.

b) If G is a graph on n vertices, for 1 > 2, and G is not
connected, prove that G is connected.
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15. a) Extend Definition 11.13 to directed graphs. >
b) Determine whether the directed graphs in Fig. 11.31 are
isomorphic. 1 w X
16. a) How many subgraphs H = (V, F} of K¢ satisfy |V | =
37 (If two subgraphs are isomorphic but have different ver- d
tex sets, consider them distinct.)

b) How many subgraphs H = (V, E) of K, satisfy v >
V| =47 e

¢) How many subgraphs does K have? Figure 11.31

d) For n = 3, how many subgraphs does K, have?

17. Let v, w be two vertices in K,,, n > 3. How many walks of
length 3 are there from v to w?

1.3
Vertex Degree: Euler Trails and Circuits

In Example 11.9 the number of edges incident with a vertex was used to show that two
undirected graphs were not isomorphic. We now find this idea even more helpful.

Definition 11.12 Let G be an undirected graph or multigraph. For each vertex v of G, the degree of v, written
deg(v), is the number of edges in G that are incident with v. Here a loop at a vertex v is
considered as two incident edges for v.

For the graph in Fig. 11.32, deg(b) = deg(d) = deg(f) = deg(g) =2, deg(c) =4,
deg(e) = 0, and deg(h) = 1. For vertex ¢ we have deg(a) = 3 because we count a loop
twice. Since A has degree 1, it is called a pendant vertex.

( EXAMPLE 11.10

Figure 11.32

Using the idea of vertex degree, we have the following result,

THEQREM 11.2 If G = (V, E) is an undirected graph or multigraph, then Y _,, deg(v) = 2| E|.
Proof: As we consider each edge {a, b} in graph GG, we find that the edge contributes a count
of 1 to each of deg(a), deg(b), and consequently a count of 2 to Y, ., deg(v). Thus 2|E|
accounts for deg(v), forall v € V, and Zvev deg(v) = 2| E|.

veV

veV
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This theorem provides some insight into the number of odd-degree vertices that can exist
in a graph.

COROLLARY 11.1

EXAMPLE 11.11

EXAMPLE 11.12

For any undirected graph or multigraph, the number of vertices of odd degree must be even.
Proof: We leave the proof for the reader.

We apply Theorem 11.2 in the following example.

An undirected graph (or multigraph) where each vertex has the same degree is called a
regular graph. If deg(v) = k for all vertices v, then the graph is called k-regular. Is it
possible to have a 4-regular graph with 10 edges?

From Theorem 11.2, 2| E| = 20 = 4| V|, so we have five vertices of degree 4. Figure
11.33 provides two nonisomorphic examples that satisfy the requirements.

{a) (b)
Figure 11.33

If we want each vertex to have degree 4, with 15 edges in the graph, we find that
21E| = 30 = 4|V|, from which it follows that no such graph is possible.

QOur next example introduces a regular graph that arises in the study of computer archi-
tecture.

The Hypercube. In order to build a parallel computer one needs to have multiple CPUs
(central processing units), where each such processor works on part of a problem. But often
we cannot actually decompose a problem completely, so at some point the processors (each
with its own memory) have to be able to communicate with one another.

We envisage this situation as follows. The accumulated data for a given problem are
taken from a central storage location and divided up among the processors. The processors
go through a phase where each computes on its own for a certain period of time and then
some intercommunication takes place. Then the processors return to computing on their
own and continue back and forth between operating individually and communicating with
one another. This situation adequately describes how parallel algorithms work in practice.

To model the communication between the processors we use a loop-free connected
undirected graph where each processor is assigned a vertex. When two processors, say p,
P2, are able to communicate directly with one another we draw the edge { p), p;} torepresent
this (line of} possible communication. How can we decide on a model (that is, a graph) to
speed up the processing time? The complete graph (on all of our processors as vertices)
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would be ideal — but prohibitively expensive because of all the necessary connections. On
the other hand, one can connect n processors along a path with n — 1 edges or on a cycle
with n edges. Another possible model is a grid (or, mesh) graph, examples of which are
shown in Fig. 11.34.

Dy P2 P3 Pa Ps D4 5} P3 Ps
Pe Py Psg Pg Pio Ps Ps p7 Pg
Pg P1o P11 P12z
P11 P12 P13 P14 P1s

P13 Pia P1s P1s

(a) Two-by-four gnd {b) Three-by-three gnd

Figure 11.34

But in these last three models the distances (as measured by the number of edges in
the shortest paths) between pairs of processors get longer and longer as the number of
processors increases. A compromise that weighs the number of edges (direct connections)
against the distance between pairs of vertices (processors) is embodied in the regular graph
called the hypercibe.

For n € N, the n-dimensional hypercube (or n-cube) is denoted by Q,,. It is a loop-free
connected undirected graph with 27 vertices. For n > 1, these vertices are labeled by the
2" n-bit sequences representing 0, 1, 2, . .., 2" — 1. For instance, (4 has eight vertices —
labeled 000, 001, 010, 011, 100, 101, 110, and 111. Two vertices vy, v2 of Q, are joined
by the edge {v, v2} when the binary labels for v;, v, differ in exactly one position. Then
for any vertices u, w in Q, there is a shortest path of length d, when d is the number of
positions where the binary labels for 1, w differ. [This insures that Q,, is connected.}

Figure 11.35 shows Q, forr =0, 1, 2, 3. In general, forr > 0, Q0,1 can be constructed
recursively from two copies of O, as follows. Prefix the vertex labels of one copy of O,
with 0 (call the result Qg ,,) and those of the other copy with 1 (call this result Q) ,). Forx in
Qo.» and y in Q, , draw the edge {x, y} if the (newly prefixed) binary labels for x, y differ
only in the first (newly prefixed) position. The caseforn = 3 (son + 1 = 4) is demonstrated
in Fig. 11.36. The blue edges are the new edges described above for constructing @4 from
two copies of Qs.

011 111

010 110

0 00 10 000 100

001 101
Q| A Q; Qs

Figure 11.35
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0o D111 1011 11

0010 0110 1010 1110

—'~“”::::::::*:&::::——=—~—

0100 1000

0000 1100

0001 0101 1001 1101

Figure 11.36

In summary, we reiterate that for n € N, the hypercube Q, is an n-regular loop-free
undirected graph with 2" vertices. Further, it is connected with the distance between any
two vertices at most . From Theorem 11.2 it follows that 2, has (1/2)n2" = n2"~! edges.
[Referring back to Example 10.33, we find that n27~1 is likewise the number of edges for the
Hasse diagram of the partial order (P(X,,), C), where X, = {1, 2, 3, ..., n) and P(X,)
is the power set of X,,. This is no mere coincidence! If we use the Gray code of Example
3.9 to label the vertices of this Hasse diagram, we find we have the hypercube Q,.]

Finally, note thatin Q4 there are 16 vertices (processors) and the longest distance between
vertices is 4. Contrast this with the grids in Fig. 11.34, where there are 15 vertices in part
(a) and 16 in part (b) — yet the longest distance is 6 in both grids.

We turn now to the reason why Euler developed the idea of the degree of a vertex: to
solve the problem dealing with the seven bridges of Konigsberg.

The Seven Bridges of Konigsberg. During the eighteenth century, the city of Konigsberg
(in East Prussia) was divided into four sections (including the island of Kneiphof) by the
Pregel River. Seven bridges connected these regions, as shown in Fig. 11.37(a). It was said
that residents spent their Sunday walks trying to find a way to walk about the city so as to
cross each bridge exactly once and then return to the starting point.

- g\
s |/

)] (b)
Figure 1137

In order to determine whether or not such a circuit existed, Euler represented the four
sections of the city and the seven bridges by the multigraph shown in Fig. 11.37(b). Here
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Definition 11.15

he found four vertices with deg(a) = deg(c) = deg(d) = 3 and deg(b) = 5. He also found
that the existence of such a circuit depended on the number of vertices of odd degree in the

graph.

Before proving the general result, we give the following definition.

Let G = (V, E) be an undirected graph or multigraph with no isolated vertices. Then G is
said to have an Euler circuit if there is a circuit in G that traverses every edge of the graph
exactly once. If there is an open trail from « to b in GG and this trail traverses each edge in
G exactly once, the trail is called an Euler trail.

The problem of the seven bridges is now settled as we characterize the graphs that have
an Euler circuit.

THEOREM 11.3

Let G = (V, E) be an undirected graph or multigraph with no isolated vertices. Then G
has an Euler circuit if and only if GG is connected and every vertex in G has even degree.

Proof: If G has an Euler circuit, then forall a, b € V there is a trail from a to » — namely, that
part of the circuit that starts at @ and terminates at #. Therefore, it follows from Theorem 11.1
that & is connected.

Let s be the starting vertex of the Euler circuit. For any other vertex v of G, each time
the circuit comes to v it then departs from the vertex. Thus the circuit has traversed either
two (new) edges that are incident with v or a (new) loop at v. In either case a count of
2 is contributed to deg(v). Since v is not the starting point and each edge incident to v
is traversed only once, a count of 2 is obtained each time the circuit passes through v, so
deg(v) is even, As for the starting vertex s, the first edge of the circuit must be distinct from
the last edge, and because any other visit to s results in a count of 2 for deg(s), we have
deg(s) even.

Conversely, let G be connected with every vertex of even degree. If the number of edges
in G is | or 2, then G must be as shown in Fig. 11.38. Euler circuits are immediate in these
cases. We proceed now by induction and assume the result true for all situations where there
are fewer than n edges. If G has n edges, select a vertex s in G as a starting point to build an
Euler circuit. The graph (or multigraph) G is connected and each vertex has even degree,
so we can at least construct a circuit C containing s. (Verify this by considering the longest
trail in G that starts at 5.) Should the circuit contain every edge of G, we are finished. If
not, remove the edges of the ¢ircuit from G, making sure to remove any vertex that would
become isolated. The remaining subgraph K has all vertices of even degree, but it may not
be connected. However, each component of K is connected and will have an Euler circuit.
(Why?) In addition, each of these Euler circuits has a vertex that is on C. Consequently,
starting at s we travel on C until we arrive at a vertex s that is on the Euler circuit of a

a a a

Figure 11.38
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component C; of K. Then we traverse this Euler circuit and, returning to s;, continue on
C until we reach a vertex s, that is on the Euler circuit of component C; of K. Since the
graph & is finite, as we continue this process we construct an Euler circuit for G.

Should G be connected and not have too many vertices of odd degree, we can at least
find an Euler trail in G.

COROLLARY 11.2

Definition 11.16

If G is an undirected graph or multigraph with no isolated vertices, then we can construct
an Euler trail in G if and only if G is connected and has exactly two vertices of odd degree.

Proof: If G is connected and a and b are the vertices of G that have odd degree, add an
additional edge {a, b} to G. We now have a graph G that is connected and has every vertex
of even degree. Hence G has an Euler circuit C, and when the edge {a, b} is removed from
C, we obtain an Euler trail for G. (Thus the Euler trail starts at one of the vertices of odd
degree and terminates at the other odd vertex.) We leave the details of the converse for the
reader.

Returning now to the seven bridges of Konigsberg, we realize that Fig. 11.37(b) is a
connected multigraph, but it has four vertices of odd degree. Consequently, it has no Euler
trail or Euler circuit.

Now that we have seen how the solution of an eighteenth-century problem led to the
start of graph theory, is there a somewhat more contemporary context in which we might
be able to apply what we have learned?

To answer this question (in the affirmative), we shall state the directed version of Theo-
rem 11.3. But first we need to refine the concept of the degree of a vertex.

Let G = (V, E) be a directed graph or multigraph. Foreachv e V,

a) The incoming, or in, degree of v is the number of edges in G that are incident into v,
and this is denoted by id (v).

b) The outgoing, or out, degree of v is the number of edges in G that are incident from
v, and this is denoted by od (v).

For the case where the directed graph or multigraph contains one or more loops, each
loop at a given vertex v contributes a count of 1 to each of id(v) and od (v).

The concepts of the in degree and the out degree for vertices now lead us to the following
theorem.

THEOREM 11.4

Let G = (V, E) be a directed graph or multigraph with no isolated vertices. The graph G
has a directed Euler circuit if and only if G is connected and id(v) = od(v) forall v e V.

Proof: The proof of this theorem is left for the reader.

At this time we consider an application of Theorem [1.4. This example is based on a
telecommunication problem given by C. L. Liu on pages 176-178 of reference [23].
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EXAMPLE 11.14

In Fig. 11.39(a) we have the surface of a rotating drum that is divided into eight sectors of
equal area. In part (b) of the figure we have placed conducting (shaded sectors and inner cir-
cle) and nonconducting (unshaded sectors) material on the drum. When the three terminals
(shown in the figure) make contact with the three designated sectors, the nonconducting
material results in no flow of current and a | appears on the display of a digital device.
For the sectors with the conducting material, a flow of current takes place and a 0 appears
on the display in each case. If the drum were rotated 45 degrees (clockwise), the screen
would read 110 (from top to bottom). So we can obtain at least two (namely, 100 and 110)
of the eight binary representations from (00 (for 0) to 111 (for 7). But can we represent all
eight of them as the drum continues to rotate? And could we extend the problem to the 16
four-bit binary representations from 0000 through 1111, and perhaps generalize the results
even further?

(@ (b)
Figure 11.39

To answer the question for the problem in the figure, we construct a directed graph
G = (V, E),where V = {00, 01, 10, 11} and E is constructed as follows: If b1 by, bybs € V|
draw the edge (b1b2, babs). Thisresultsin the directed graph of Fig. 11.40(a), where | £| = 8.
We see that this graph is connected and that for all v € V, id(v) = od(v). Consequently,
by Theerem 11.4, it has a directed Euler circuit. One such circuit is given by

100 000 001 010 101 011 111
C)l() 00 00 01 10 01 1 11

p)

110

Here the label on each edge ¢ = (a, ¢), as shown in part (b) of Fig. 11.40, is the three-bit
sequence x| xox3, where @ = x,x; and ¢ = x,x3. Since the vertices of G are the four distinct
two-bit sequences 00, 01, 10, and 11, the labels on the eight edges of G determine the eight
distinct three-bit sequences. Also, any two consecutive edge labels in the Euler circuit are
of the form y;y»y; and y,y3ys.

Starting with the edge label 100, in order to get the next label, 000, we concatenate the
last bit in 000, namely 0, to the string 100. The resulting string 1000 then provides 100
(1000) and 000 (1000). The next edge label is 001, so we concatenate the 1 (the last bit in
001) to our present string 1000 and get 10001, which provides the three distinct three-bit
sequences 100 (QQOI ), 000 (IQQQI), and 001 (1 0001). Continuing in this way, we arrive at
the eight-bit sequence 10001011 (where the last 1 is wrapped around ), and these eight bits
are then arranged in the sectors of the rotating drum as in Fig. 11.41. It is from this figure
that the result in Fig. 11.39(b) is obtained. And as the drum in Fig. 11.39(b) rotates, all of
the eight three-bit sequences 100, 110, 111, 011, 101, 010, 001, and 000 are obtained.
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00
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Figure 11.40 Figure 11.31

In closing this section, we wish to call the reader’s attention to reference [24] by Anthony
Ralsten. This article is a good source for more ideas and generalizations related to the
problem discussed in Example 11.14.

| EXRRGSESUS ) b
1. Determine |V| for the following graphs or multigraphs G. <
a) & has nine edges and all vertices have degree 3.
b) G isregular with 15 edges. d €
¢) & has 10 edges with two vertices of degree 4 and all
others of degree 3. f
2. If G=(V, E) is a connected graph with |E| = 17 and g h
deg(v) > 3 for all v € V, what is the maximum value for |V|? Gy = (Vy, Ey)
3. Let G = (V, E) be a connected undirected graph.
a) What is the largest possible value for |V| if |E| = 19 5 t
and deg(v) = 4 forallv e V? u
b) Draw a graph to demonstrate each possible case in
part (a).
v w
4. a) Let G = (V, E) be aloop-free undirected graph, where
|V| =6 and deg(v) = 2 for all v € V, Up to isomorphism
how many such graphs G are there? X
b) Answer part (a) for |V| = 7. Y z
¢) Let G, = (V), E)) be a loop-free undirected 3-regular G, = (Vs £5)
graph with |V;| = 6. Up to isomorphism how many such Fi 2
graphs G, are there? igure 11.4.
d) Answer part (c) for |V|| = 7 and G 4-regular. b) Find the degree of each vertex in V. Do likewise for
¢) Generalize the results in parts (¢) and (d). cach vertex in V5.
S.Let G, = (V1, E)) and G, = (Vu, E3) be the loop-free c) Are the graphs G, and G, isomorphic?
undirected connected graphs in Fig. 11.42. 6. Let V ={a, b,c,d, e, f}. Draw three nonisomorphic

a) Determine |Vy|, |Eyl, |Va|, and |Es). loop-free undirected graphs G, = (V, Ey), G2 = (V, E;), and
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G; = (V, E3), where, in all three graphs, we have deg(a) = 3,
deg(b) = deg(c) = 2, and deg(d) = deg(e) = deg(f) = 1.
7. a) How many different paths of length 2 are there in the
undirected graph G in Fig. 11.43?
b) Let & = (V, E) be aloop-free undirected graph, where
V={v, vy, ..., v, and deg(v;) =d,, forall 1 <i <mn.
How many different paths of length 2 are there in G?

Figure 11.43

8. a) Find the number of edges in Q.

b) Find the maximum distance between pairs of vertices
in Qg. Give an example of one such pair that achieves this
distance.

¢} Find the length of a longest path in Q.

9. a) What is the dimension of the hypercube with 524,288
edges?
b) How many vertices are there for a hypercube with
4,980,736 edges?

10. For n € Z*, how many distinct (though isomorphic) paths
of length 2 are there in the #-dimensional hypercube Q,?

11. Let n € Z*, with n > 9. Prove that if the edges of K, can

be partitioned into subgraphs isomorphic to cycles of length

4 (where any two such cycles share no common edge), then
=8k + 1 forsome k € Z™.

12. a) For n > 2, let V denote the vertices in @,. For 1 <k <
£ < n, define the relation % on V as follows: If w, x € V,
then w R x if w and x have the same bit (0, or 1) in position
k and the same bit (0, or 1) in position £ of their binary la-
bels. [Forexample, ifn = 7andk = 3, £ = 6,then 1100010
9% 0000011.] Show that R is an equivalence relation. How
many blocks are there for this equivalence relation? How
many vertices are there in each block? Describe the sub-
graph of @, induced by the vertices in each block.

b) Generalize the results of part (a).

13. If G is an undirected graph with n vertices and ¢ edges, let

§ = min,.y {deg(v)} and let A = max,.y{deg(v)}. Prove that

§ <2(e/n) < A.

14. Let G = (V, E), H = (V', E") be undirected graphs with

f:V — V' establishing an isomorphism between the graphs.

(a) Prove that £~': V' — V is alse an isomorphism for G and

H.(byIfa e V, prove that deg(a) (in G) = deg(f(a)) (in H).

15. For all k € Z" where k > 2, prove that there exists a loop-
free connected undirected graph G = (V, E), where |V| = 2k
and deg(v) = 3forallve V.

16. Prove that for each n € Z" there exists a loop-free con-
nected undirected graph G = (V, E), where |V|=2n and
which has two vertices of degree i forevery 1 <i <n.

17. Complete the proofs of Corollaries 11.1 and 11.2.

18. Let & be a fixed positive integer and let G = (V, E) be
a loop-free undirected graph, where deg(v) = k forall v e V.
Prove that G contains a path of length .

19. a) Explain why it is not possible to draw a loop-free con-
nected undirected graph with eight vertices, where the de-
grees of the vertices are 1,1, 1,2, 3,4, 5, and 7.

b} Give an example of a loop-free connected undirected
multigraph with eight vertices, where the degrees of the
vertices are 1,1, 1,2,3, 4,5, and 7.

20, a) Find an Euler circuit for the graph in Fig. 11.44.
b) If the edge {d, ¢} is removed from this graph, find an
Euler trail for the resulting subgraph.

a b C
d € f b G
h i j K

Figure 11.44

21. Determine the value(s) of n for which the complete graph
K, has an Euler circuit. For which n does K, have an Euler trail
but not an Euler circuit?

22. For the graph in Fig. 11.37(b), what is the smallest number
of bridges that must be removed so that the resulting subgraph
has an Euler trail but not an Euler circuit? Which bridge(s)
should we remove?

23. When visiting a chamber of horrors, Paul and David try to
figure out whether they can travel through the seven rooms and
surrounding corridor of the attraction without passing through
any door more than once. If they must start from the starred po-
sition in the corridor shown in Fig. 11.45, can they accomplish
their goal?

24. Let G = (V, E) be a directed graph, where |V| = »n and
|E| = e. What are the values for Zuev id(v) and Zuev od(v)?
25, a) Find the maximum length of a trail in

i) K i) Ky
iii) K iv) Ky, n¢€ YA



e
I R B

Figure 11.45

b) Find the maximum length of a circuit in
i) Kq ii) Ky
iii) K iV) Ky.ne VAl
26. a) Let G = (V, E) be adirected graph or multigraph with
no isolated vertices. Prove that G has a directed Euler cir-
cuit if and only if G is connected and od(v) = id(v) for all
veV.

b) A directed graph is called strongly connected if there
is a directed path from a to b for all vertices a, b, where
a # b. Prove that if a directed graph has a directed Euler
circuit, then it is strongly connected. Is the converse true?

27. Let G be a directed graph on n vertices. If the associ-
ated undirected graph for G is K, prove that )_,_, [od(v)]* =
Y v lid@)P

28. If G = (V, E)isadirected graph or multigraph with no iso-
lated vertices, prove that G has a directed Euler trail if and only
if (i) G is connected; (ii) od(v) = id(v) for all but two vertices
x,vinV;and (iii) od(x) = id(x) + 1, id(y} = od(y) + 1.
29. Let V = {000, 001, 010, ..., 110, 111}. For each four-bit
sequence b bybsby draw an edge from the element b b, b; to
the element b2b3by in V. (a) Draw the graph G = (V, E) as
described. (b) Find a directed Euler circuit for G. (¢) Equally
space eight 0’s and eight 1’s around the edge of a rotating (clock-
wise) drum so that these 16 bits form a circular sequence where
the (consecutive) subsequences of length 4 provide the binary
representations of 0, 1, 2, ..., 14, 15 in some order.

veV

30. Carolyn and Richard attended a party with three other mar-
ried couples. At this party a good deal of handshaking took
place, but (1) no one shook hands with her or his spouse; (2) no
one shook hands with herself or himself; and (3) no one shook
hands with anyone more than once. Before leaving the party,
Carolyn asked the other seven people how many hands she or
he had shaken. She received a different answer from each of the
seven. How many times did Carolyn shake hands at this party?
How many times did Richard?

31. Let G = (V, E) be aloop-free connected undirected graph
with |V| > 2. Prove that G contains two vertices v, w, where
deg(v) = deg(w).
32. If G = (V, E) is an undirected graph with |V| = » and
|El = k, the following matrices are used to represent G.

LetV ={v,, va. ..., v,}. Define the adjacency matrix A =
(Gr))nxn Where a,; = 1if {v,, v,} € E, otherwise g, = 0.
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If E ={e;, e, ..., e, theincidence matrix I isthen X k
matrix (b )ax Where b, = 1if v, is a vertex on the edge e,,
otherwise b,, = 0.

a) Find the adjacency and incidence matrices associated
with the graph in Fig. 11.46.

b) Calculating A? and using the Boolean operations where
0+0=00+1=140=1+1=1,and0-0=0-1=
1-0=0,1.1=1, prove that the entry in row i and col-
umn j of A% is 1 if and only if there is a walk of length 2
between the ith and jth vertices of V.

¢) If we calculate A? using ordinary addition and multipli-
cation, what do the entries in the matrix reveal about G?
d) What is the column sum for each column of A? Why?

€) What is the column sum for each column of /? Why?

Figure 11.46

33. Determine whether or not the loop-free undirected graphs
with the following adjacency matrices are isomorphic.

fo 0 1 0 1 1
ay |0 0 1 1 00
|1 1 0 i 0 0
"0 1 0 1770 1 1 17
1 0 1 1 10 1 0
b) 01 0 1{"[1 1 0 1
[1 1 1 0] |1 0 1 0]
01 1 1770 1 0 17
) 1 0 1 0 1 0 1 0
Y11 1 0 0|0 1 0 1
(1 0 0 0|1 0 1 0]

34. Determine whether or not the loop-free undirected graphs
with the following incidence matrices are isomorphic.

1 0 1 0 1 1
a) |0 1 1 1 1 0
1 1 0] 1 0 1
M o0 1 1 1 0 0 1
1 1 0 O 1 1 0 0
b) 0O 1 1 01’0 1 1 O
000 1]]0 0 1 1
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c)

bl

_—— O

1
1
0

<O = O

S = =

0 1 0
0 0 0
1 0 1
1 i 1

o= = O
—_— O = O

0 0 1 0

35. There are 15 people at a party. Is it possible for each of
these people to shake hands with (exactly) three others?

36. Consider the two-by-four grid in Fig. 11.34. Assign the par-
tial Gray code A = {00, 01, 11} to the three horizontal levels:
top (00), middle (01}, and bottom (11). Now assign the par-
tial Gray code B = {000, 001, 011, 010, 110} to the five verti-

cal levels: left, or first (000}, second (001), third (011), fourth
(010), and right, or fifth (110). Use the elements of A X B to
label the 15 processors of this grid; for example, p, is labeled
(00,000), p, is labeled (00, 001), pg is labeled (01, 011), pyq is
labeled (11, 010), and p)s is labeled (11, 110). Show that the
two-by-four grid is isomorphic to a subgraph of the hypercube
Qs. (Thus we can consider the two-by-four grid to be embedded
in the hypercube Qs.)

37. Prove that the three-by-three grid of Fig. 11.34 is isomor-
phic to a subgraph of the hypercube Q4.

11.4

Planar Graphs

Definition 11.17

EXAMPLE 1115 |

EXAMPLE 11.16

On aroad map the lines indicating the roads and highways usually intersect only at junctions
or towns. But sometimes roads seem to intersect when one road is located above another,
as in the case of an overpass. In this case the two roads are at different levels, or planes.
This type of situation leads us to the following definition.

A graph (or multigraph) G is called planar if G can be drawn in the plane with its edges
intersecting only at vertices of G. Such a drawing of G is called an embedding of G in the
plane.

The graphs in Fig. 11.47 are planar. The first is a 3-regular graph, because each vertex has
degree 3; it is planar because no edges intersect except at the vertices. In graph (b) it appears
that we have a nonplanar graph; the edges {x, z} and {w, y} overlap at a point other than a
vertex. However, we can redraw this graph as shown in part (¢) of the figure. Consequently,
K, is planar.

(a)
Figure 11.47

Just as K, is planar, so are the graphs K, K3, and K5.

An attempt to embed K in the plane is shown in Fig. [1.48. If K5 were planar, then any
embedding would have to contain the pentagon in part (a) of the figure. Since a complete
graph contains an edge for every pair of distinct vertices, we add edge {a, ¢} as shown in
part (b). This edge is contained entirely within the interior of the pentagon in part (a). (We
could have drawn the edge in the exterior region determined by the pentagon, The reader
will be asked in the exercises to show that the same conclusion arises in this case.) Moving
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(@
Figure 11.48

to part (c), we add in the edges {a, d}, {c, e}, and {b, ¢}. Now we consider the vertices b and
d. We need the edge {b, d} in order to have Ks. Vertex d is inside the region formed by the
cycle edges {a, c}. {c, ¢}, and {e, a}, whereas b is outside the region. Thus in drawing the
edge {b. d}, we must intersect one of the existing edges at least once, as shown by the dotted
edges in part (d). Consequently, K5 is nonplanar. (Since this proof appeals to a diagram, it
definitely lacks rigor. However, later in the section we shall prove that K5 is nonplanar by
another method.)

Before we can characterize all nonplanar graphs we need to examine another class of
graphs.

A graph G = (V, E) is called bipartite if V = V| U V, with ¥V, N V> = &, and every edge
of G is of the form {a, b} with ¢ € V; and b € V5. If each vertex in V] is joined with every
vertex in V;, we have a complete bipartite graph. In this case, if |V{| = m, | V3| = n, the
graph is denoted by K, ».

Figure 11.49 indicates how we may partition the vertices of the hypercubes 04, O3, Q3 to
demonstrate that these graphs are bipartite. In general, for each n > 1, partition the vertices
of O, as Vi U V,, where V| consists of all vertices whose binary labels have an even number
of I's, while V5 consists of those whose binary labels have an odd number of 1’s. Could
there exist an edge {x, ¥} in O, where x, y € V| ? Recall that edges in ,, connect vertices
that differ in exactly one of the » positions in their binary labels. Suppose that the binary
labels of x, y differ only in position i, for some | <{ < n. Then the total number of 1's
in the binary labels for x, y is 2 - [the number of 1’s in x (or y) in all positions other than
position i] 4 1, an odd total. But with x, y € V), their binary labels each contain an even
number of 1’s— so the total number of 1’s in these binary labels is even! This contradiction
tells us that there is no edge {x, y} in O, where x, y € V|. Asimilar argument can be given
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to rule out the possibility of an edge {«, w}, where u, w € V>. Consequently, Q, is bipartite
foralln > 1.

011 111
1 01 11
010 110
0 00 10 000 100
001 101
v, = {0} vy = {00, 11} v, = {000, 011, 101, 110}
Vo ={1 Vs = {01, 10} V, = {001, 010, 100, 111}
Q) Q) (Q3)
Figure 11.49

Figure 11.50 shows two bipartite graphs. The graph in part (a) satisfies the definition
for Vi = {a, b} and V2 = {c, d. e}. If we add the edges {b, 4} and {b. ¢}, the result is
the complete bipartite graph K>3, which is planar. Graph (b) of the figure is K3 3. Let
Vi = {hy, ha. ha}and Vo = {uy, uz, 13}, and interpret V) as a set of houses and V; as a set
of utilities. Then K3 3 is called the utility graph. Can we hook up each of the houses with
each of the utilities and avoid having overlapping utility lines? In Fig. 11.50(b) it appears
that this is not possible and that K3 3 is nonplanar. (Once again we deduce the nonplanarity
of a graph from a diagram. However, we shall verify that K 3 is nonplanar by another
method, later in Example 11.21 of this section.)

c hy hs3
a
d
b
U
e
(@ (b)
Figure 11.50

We shall see that when we are dealing with nonplanar graphs, either K5 or K3 3 will be
the source of the problem. Before stating the general result, however, we need to develop
one final new idea.

Let G = (V. E) be a loop-free undirected graph, where E # @, An elementary subdivision
of G results when an edge ¢ = {u, w} is removed from G and then the edges {u, v}, {v, w}
are added to G — e, where v ¢ V.

The loop-free undirected graphs G, = (V). E;) and G, = (V,, E») are called homeo-
morphic if they are isomorphic or if they can both be obtained from the same loop-free
undirected graph H by a sequence of elementary subdivisions.
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a) Let G = (V, E) be aloop-free undirected graph with || > [. If G’ is obtained from
G by an elementary subdivision, then the graph G’ = (V', £’) satisfies |V/| = |V]| + |
and |E'| = |E| + 1.

b) Consider the graphs G, G, G, and G5 in Fig. 11.51. Here G, is obtained from G
by means of one elementary subdivision: Delete edge {a, b} from G and then add
the edges {a, w} and {w, #}. The graph G, is obtained from G by two elementary
subdivisions. Hence G and (3 are homeomorphic. Also, G5 can be obtained from G
by four elementary subdivisions, so G is homeomorphic to both G and G».

(G) (Gy) (G)) (Gy)
a b a b a b a b
Yy X y X
z
e d e d e d e d
(a) {b) © (d)

Figure 11.51

However, we cannot obtain G, from G; (or GG; from G ) by a sequence of elemen-
tary subdivisions. Furthermore, the graph G can be obtained from either G or G,
by a sequence of elementary subdivisions: six (such sequences of three elementary
subdivisions) for G and two for G,. But neither G| nor G, can be obtained from G»
by a sequence of elementary subdivisions.

One may think of homeomorphic graphs as being isomorphic except, possibly, for ver-
tices of degree 2. In particular, if two graphs are homeomorphic, they are either both planar
or they are both nonplanar.

These preliminaries lead us to the following result.

THEOREM 11.5

EXAMPLE 11.19

Kuratowski's Theorem. A graph is nonplanar if and only if it contains a subgraph that is
homeomorphic to either K5 or K3 3.

Proof: (This theorem was first proved by the Polish mathematician Kasimir Kuratowski in
1930.) If a graph G has a subgraph homeomorphic to either K5 or K3 3, it is clear that G
is nonplanar. The converse of this theorem, however, is much more difficult to prove. (A
proof can be found in Chapter 8 of C. L. Liu [23] or Chapter 6 of D. B. West [32].)

We demonstrate the use of Kuratowski's Theorem in the following example.

a) Figure [1.52(a) is a familiar graph called the Petersen graph. Part (b) of the figure
provides a subgraph of the Petersen graph that is homeomorphic to K3 3. (Figure 11.53
shows how the subgraph is obtained from K33 by a sequence of four elementary
subdivisions.) Hence the Petersen graph is nonplanar.

b) In part (a) of Fig. 11.54 we find the 3-regular graph G, which is isomorphic to the 3-
dimensional hypercube Q3. The 4-regular complement of G is shown in Fig. 11.54(b),
where the edges {a, g} and {d, f} suggest that G may be nonplanar. Figure 11.54(c)



544

Chapter 11 An Introduction to Graph Theory

depicts a subgraph #/ of G that is homeomorphic to K5, so by Kuratowski's Theorem
it follows that G is nonplanar.

2 J
d
e A b c
V.V
AN b
d C g
(a) (b)
Figure 11.52
i ] /
d d d
¢ ¢
b b b
g
0] () {n)
J j
d d
C ¢
b b
g g
() W)
Figure 11.53
a b a c 2

d c f h e g
(a) G{Q3) (b) G(Q4) () H

Figure 11.54

When a graph or multigraph is planar and connected, we find the following relation,
which was discovered by Euler. For this relation we need to be able to count the number
of regions determined by a planar connected graph or multigraph — the number (of these
regions) being defined only when we have a planar embedding of the graph. For instance,
the planar embedding of K, in part (a) of Fig. 11.55 demonstrates how this depiction of Ky
determines four regions in the plane: three of finite area—namely, R;, Rz, and R3 —and
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the infinite region R4. When we look at Fig. 11.55(b) we might think that here K4 determines
five regions, but this depiction does not present a planar embedding of K4. So the result in
Fig. 11.55(a) is the only one we actually want to deal with here.

a b a b
R1 RB
R;
d o d C
(@ Ry (b)
Figure 11.55

THEOREM 11.6

Let G = (V. E) be a connected planar graph or multigraph with |V| = v and |E| = e. Letr
be the number of regions in the plane determined by a planar embedding (or, depiction) of
G ; one of these regions has infinite area and is called the infinite region. Thenv — e +r = 2.
Proof: The proofis by inductionone. If e = Qor 1, then G is isomorphic to one of the graphs in
Fig. 11.56. The graphinpart(a)hasv = l,e = 0,andr» = l;80,v —e¢+r =1—-04+1=2.
Forgraph (b),v = 1,e¢ = 1,and r = 2. Graph (c)hasv = 2,e = [, andr» = 1. In both cases,
v—e+r=2.

wue

(@ k) ©
Figure 11.56

Now let k € N and assume that the result is true for every connected planar graph or
multigraph with e edges, where 0 <e <k. If G = (V, E) is a connected planar graph or
multigraph with v vertices, r regions, and ¢ = k + 1 edges, leta, b € V with {a, b} € E.
Consider the subgraph H of G obtained by deleting the edge {a, b} from G. (If G is a
multigraph and {a, b} is one of a set of edges between a and b, then we remove it only
once.) Consequently, we may write H = G — {a, b} or G = H + {a, b}. We consider the
following two cases, depending on whether H is connected or disconnected.

Case 1: The results in parts (a), (b), (c), and (d) of Fig. 11.57 show us how a graph G may be
obtained from a connected graph H when the (new) loop {a, @} is drawn as in parts (a) and
(b) or when the (new) edge {a, b} joins two distinct vertices in / as in parts (c) and (d). In all
of these situations, H has v vertices, k edges, and r — 1 regions because one of the regions
for H is split into two regions for G. The induction hypothesis applied to graph # tells us
that v — k + (r — 1) = 2, and from this it follows that 2 =v — (k+ 1) +r =v —e +r.
So Euler’s Theorem is true for G in this case.
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Figure 11.57

Case 2: Now we consider the case where G — {a, b} = H is a disconnected graph [as
demonstrated in Fig. 11.57(e) and (f)]. Here A has v vertices, k edges, and r regions. Also,
H has two components ) and H,, where H; has v; vertices, ¢; edges, and r; regions,
for i = 1, 2. [Part (e} of Fig. 11.57 indicates that one component could consist of just
an isolated vertex.] Furthermore, v1 + v, = v, ey +ex =k (=e— 1),andry +r =r+1
because each of H) and H; determines an infinite region. When we apply the induction
hypothesis to each of H, and H; we learn that
nm—e+r=2 and vy —ey+r=2.

Consequently, (vi +v2) —(e1 +e2)+(r+rn)=v—(e— 1+ (r+1)=4, and from
this it follows that v — e 4+ r = 2, thus establishing Euler’'s Theorem for G in this case.

The following corollary for Theorem 11.6 provides two inequalities relating the number
of edges in a loop-free connected planar graph G with (1) the number of regions determined
by a planar embedding of G; and (2) the number of vertices in GG. Before we examine this
corollary, however, let us look at the following helpful idea. For each region R in a planar
embedding of a (planar) graph or multigraph, the degree of R, denoted deg(R), is the number
of edges traversed in a (shortest) closed walk about (the edges in) the boundary of R. If
G = (V. E)is the graph of Fig. 11.58(a), then this planar embedding of G has four regions
where

deg(R)) =3, deg(Ry) =3, deg(Ry) = 3, deg(Ry) = 7.
[Here deg(R;) = 7,asdetermined by theclosedwalk:a - b —> g —-h > g —> f >d—
a.] Part (b) of the figure shows a second planar embedding of G — again with four regions —
and here

deg(Rs) =4, deg(R¢) = 3, deg(R7) =5, deg(Rg) = 6.
[The closed walk b — ¢ — h — g — f — b gives us deg(R;) = 5.)]

We see thatZ;‘:l deg(R;) = 18 =) % . deg(R;) =2 -9 = 2|E|. This s true in general
because each edge of the planar embedding is either part of the boundary of two regions
[like {b, ¢} in parts (a) and (b)] or occurs twice in the closed walk about the edges in the
boundary for one region [like {g. #} in parts (a) and (b)].
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C
a b a Rs b
R, Ra Rg
C RS h
R, A3 g
R, g
h
d f d f
(a) (b)

Figure 11.58

Now let us consider the following.

COROLLARY 11.3

EXAMPLE 11.20

EXAMPLE 11.21

EXAMPLE 11.22

Let G = (V. E) be a loop-free connected planar graph with |V|=v, |[E| =e¢ > 2, and r
regions. Then 3r < 2eand e < 3v — 0.

Proof: Since G is loop-free and is not a multigraph, the boundary of each region (includ-
ing the infinite region) contains at least three edges — hence, each region has degree > 3.
Consequently, 2¢ = 2| E| = the sum of the degrees of the r regions determined by G and
2¢ = 3r. From Euler’'s Theorem, 2=v—-e+r<v-e+4+(2/3)e=v—(1/3)e, s0
6<3v—eo0re<3v—6.

We now consider what this corollary does and does not imply. If G = (V. E) is a loop-
free connected graph with |E| > 2, then if ¢ > 3v — 6, it follows that G is not planar.
However, if ¢ < 3v — 6, we cannot conclude that G is planar.

The graph K5 is loop-free and connected with ten edges and five vertices. Consequently,
3v —6=15—-6 =9 < 10 = e. Therefore, by Corollary 11.3, we find that K5 is nonplanar.

The graph K3 3 is loop-free and connected with nine edges and six vertices. Here 3v — 6 =
18 —6 =12 >9 = ¢. It would be a mistake to conclude from this that K3 3 is planar. It
would be the mistake of arguing by the converse.

However, K3 3 is nonplanar. If K3 ; were planar, then since each region in the graph is
bounded by at least four edges, we have 4r < 2e. (We found a similar situation in the proof of
Corollary 11.3.) From Euler’s Thecrem, v —e+r =2,0orr =e—v+2=9—-64+2 =5,
50 20 = 4r < 2¢ = 18. From this contradiction we have K3 3 being nonplanar.

We use Euler’s Theorem to characterize the Platonic solids. [For these solids all faces are
congruent and all (intericr) solid angles are equal.] In Fig. 11.59 we have two of these
solids. Part (a) of the figure shows the regular tetrahedron, which has four faces, each an
equilateral triangle. Concentrating on the edges of the tetrahedron, we focus onits underlying
framework. As we view this framework from a point directly above the center of one of the
faces, we picture the planar representation in part (b). This planar graph determines four
regions (corresponding to the four faces); three regions meet at each of the four vertices.
Part (¢) of the figure provides another Platonic solid, the cube. Its associated planar graph
is given in part (d). In this graph there are six regions with three regions meeting at each
vertex.
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(@) (b) {0 {d)
Figure 11.59

On the basis of our observations for the regular tetrahedron and the cube, we shall
determine the other Platonic solids by means of their associated planar graphs. In these
graphs G = (V, E)wehaveuv = |V|;e = | E|;r = the number of planar regions determined
by G; m = the number of edges in the boundary of each region; and n = the number of
regions that meet at each vertex. Thus the constants m, n > 3. Since each edge is used in the
boundary of two regions and there are r regions, each with m edges, it follows that 2e = mr.
Counting the endpoints of the edges, we get 2e, But all these endpoints can also be counted
by considering what happens at each vertex. Since n regions meet at each vertex, n edges
meet there, so there are n endpoints of edges to count at each of the v vertices. This totals
nv endpoints of edges, so 2¢ = nv. From Euler’s Theorem we have

2e 2e 2m — mn + 2n
O0<2=v—-—e+r=——-e4+—=¢| ——— ).
n m

mA
With e, m, n > 0, we find that
2m—mn+2n>0=mn—2m —2n <0
=mn—2m—2n+4<d=(m—2)(n—-2) <4
Since m, n > 3, we have (m — 2), (n — 2) € Z*, and there are only five cases to consider:
Dm-2)=n-2)=1,m=n=3 (The regular tetrahedron)
2Yym—2y=2,(n—-2y=1,m=4,n=3 (Thecube)
IHm—-—2y=1,n—-2)=2;m=3,n=4 (The octahedron)
Hm-2)=3, n-2)=1;m=5n=3 (The dodecahedron)
SYm-2)=1,n—-2)=3;m=3,n=5 (Theicosahedron)

The planar graphs for cases 3-5 are shown in Fig. 11.60.

Octahedron Dodecahedron lcosahedron

Figure 11.60
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The last idea we shall discuss for planar graphs is the notion of a dual graph. This
concept is also valid for planar graphs with loops and for planar multigraphs. To construct
a dual (relative to a particular embedding) for a planar graph or multigraph G with V =
{a. b, c,d, e, f}, place a point (vertex) inside each region, including the infinite region,
determined by the graph, as in Fig. 11.61(a). For each edge shared by two regions, draw
an edge connecting the vertices inside these regions. For an edge that is traversed twice in
the closed walk about the edges of one region, draw a loop at the vertex for this region.
In Fig. 11.61(b), G¥ is a dual for the graph G = (V, E). From this example we make the
following observations:

1) An edge in G corresponds with an edge in G¢, and conversely.

2) A vertex of degree 2 in G yields a pair of edges in G¢ that connect the same two
vertices. Hence G? may be a multigraph. (Here vertex e provides the edges {a. e},
{e, f}in G that brought about the two edges connecting v and z in G¢.)

3) Given a loop in G, if the interior of the (finite area) region determined by the loop
contains no other vertex or edge of G, then the loop yields a pendant vertex in G¥.
(It is also true that a pendant vertex in G yields a loop in G%.)

4) The degree of a vertex in G¥ is the number of edges in the boundary of the closed
walk about the region in G that contains that vertex.

® ), b
@
G
® X ®
@
e f
(a) G=(V,E)
Figure 11.61

(Why is G“ called ¢ dual of G instead of the dual of G? The Section Exercises will show
that it is possible to have isomorphic graphs G, and G with respective duals G¢, Gg that
are not isomorphic.)

In order to examine further the relationship between a graph G and a dual G¢ of G, we
introduce the following idea. [Here we recall (from Definition 11.5) that « (G) counts the
number of components of G.]

Let G = (V, E) be an undirected graph or multigraph. A subset E’ of E is called a cur-set
of G if by removing the edges (but not the vertices) in E’ from G, we have ¥ (G) < «(G"),
where G’ = (V, E — E’); but when we remove (from E) any proper subset £E” of E', we
have K (G) = «(G"), for G" = (V, E — E").
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EXAMPLE 11.23

For a given connected graph, a cut-set is a minimal disconnecting set of edges. In the graph
in Fig. 11.62(a), note that each of the sets {{a, b}, {a, c}}, {{a. b}, {c, d}}, {{e. A}, {f. R},
{g. h}}, and {{d. f}}is acut-set. For the graph in part (b) of the figure, the edge set {{n, p},
{r, p}, {r. s}} is a cut-set. Note that the edges in this cut-set are nor all incident to some
single vertex. Here the cut-set separates the vertices m, n, r from the vertices p. s, t. The
edge set {{s, t}} is also a cut-set for this graph — the removal of the edge {s, ¢} from this
connected graph results in a subgraph with two components, one of which is the isolated
vertex 7.

Figure 11.62

Whenever a cut-set for a connected graph consists of only one edge, that edge is called
a bridge for the graph. For the graph in Fig. 11.62(a), the edge {d. f} is the only bridge;
the edge {s, ¢} is the only bridge in part (b) of the figure.

We return now to the graphs in Fig. 11.61, redrawing them as shown in Fig. 11.63 in
order to emphasize the correspondence between their edges.

1
a 2 b
6
4 c c
3 d 8|7
9
e 10 f
(a) G=(V.E)
Figure 11.63
Here the edges in G arelabeled 1, 2. . . ., 10, The numbering scheme for G¢ is obtained

as follows: The edge labeled 4*, for example, connects the vertices w and z in G4, We drew
this edge because edge 4 in G was a common edge of the regions containing these vertices.
Likewise, edge 7 is common to the region containing x and the infinite region containing
v. Hence we label the edge in G that connects x and v with 7*.

In graph G the set of edges labeled 6, 7, 8 constitutes a cycle. What about the edges
labeled 6*. 7%, 8* in G¥? If they are removed from G, then vertex x becomes isolated
and G¥ is disconnected. Since we cannot disconnect G¢ by removing any proper subset
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of {6%, 7*, 8*}, these edges form a cut-set in G¢, In similar fashion, edges 2, 4, 10 form a
cut-set in G, whereas in G¥ the edges 2*, 4*, 10* yield a cycle.

We also have the two-edge cut-set {3, 10} in G, and we find that the edges 3%, 10* provide
atwo-edge circuitin G¢. Another observation: The one-edge cut set {1*} in G¢ comes about
from edge 1, aloop in G.

In general, there is a one-to-one correspondence between the following sets of edges in
a planar graph G and a dual G? of G.

1) Cycles (cut-sets) of n (> 3) edges in G correspond with cut-sets (cycles) of n edges
in G4,

2) Aloop in G corresponds with a one-edge cut-set in G¢.

3) A one-edge cut-set in G corresponds with a loop in G¢.

4) A two-edge cut-set in G corresponds with a two-edge circuit in G¢.

5) If G is a planar multigraph, then each two-edge circuit in G determines a two-edge
cut-set of G7.

All these theoretical observations are interesting, but let us stop here and see how we
might apply the idea of a dual.

If we consider the five finite regions in Fig. 11.64(a) as countries on a map, and we construct
the subgraph (because we do not use the infinite region) of a dual as shown in part (b), then
we find the following relationship.

Suppose we are confronted with the “mapmaker’s problem” whereby we want to color
the five regions of the map in part (a) so that two countries that share a common border are
colored with different colors. This type of coloring can be translated into the dual notion of
coloring the vertices in part (b) so that adjacent vertices are colored with different colors.
(Such coloring problems will be examined further in Section 11.6.)

(O~ )

(a) (b)

Figure 11.64

The final result for this section provides us with an application for an electrical network.
This material is based on Example 8.6 on pp. 227-230 of the text by C. L. Liu [23].

In Fig. 11.65 we see an electrical network with nine contacts (switches) that control the
excitation of a light. We want to construct a dual network where a second light will go on
(off) whenever the light in our given network is off (on).

The contacts (switches) are of two types: normally open (as shown in Fig. 11.65) and
normally closed. We use @ and ¢’ as in Fig. [1.66 to represent the normally open and
normally closed contacts, respectively.
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A

Figure 11.66

[

L.
@
f—

Figure 11.65

In Fig. 11.67(a) a one-terminal-pair-graph represents the network in Fig. 11.65. Here
the special pair of vertices is labeled 1 and 2. These vertices are called the terminals of the
graph. Also each edge is labeled according to its corresponding contact in Fig. 11.65.

@
Figure 11.67

A one-terminal-pair-graph G is called a planar-one-terminal-pair-graph if G is planar,
and the resulting graph is also planar when an edge connecting the terminals is added to G.
Figure 11.67(b) shows this situation. Constructing a dual of part (b), we obtain the graph in
part (c) of the figure. Removal of the dotted edge results in the terminals 1*, 2* for this dual,
which is a one-terminal-pair-graph. This graph provides the dual network in Fig. 11.67(d).

We make two observations in closing.

1) When the contacts at a, b, ¢ are closed in the original network (Fig. 11.65), the light
is on. In Fig. 11.67(b) the edges a, b, ¢, j form a cycle that includes the terminals.
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In part (c) of the figure, the edges a*, b*, ¢*, j* form a cut-set disconnecting the
terminals 1*, 2%, Finally, with ¢’, &', ¢’ open in part (d) of the figure, no current gets
past the first level of contacts (switches) and the light is off.

2} In like manner, the edges ¢, d, ¢, g, j form a cut-set that separates the terminals in
Fig. 11.67(b). (When the contacts at ¢, d, e, g are open in Fig. 11.65, the light is off.)
Figure 11.67(c) shows how c*, d*, e*, g*, j* form a cycle that includes 1*, 2*. If ¢/,
d’, ¢, g are closed in part (d), current flows through the dual network and the light

is on.

1. Verify that the conclusion in Example 11.16 is unchanged
if Fig. 11.48(b) has edge {a, ¢} drawn in the exterior of the
pentagon.

2. Show that when any edge is removed from K, the resulting
subgraph is planar. Is this true for the graph K5 3?

3. a) How many vertices and how many edges are there in
the complete bipartite graphs K47, K711, and K, ., where
m,n, €7
b) If the graph K, » has 72 edges, whatis m?

4. Prove that any subgraph of a bipartite graph is bipartite.

5. Por each graph in Fig. 11.68 determine whether or not the
graph is bipartite.

6. Let n € Z* with » > 4. How many subgraphs of K, are
isomorphic to the complete bipartite graph K 37

7. Let m, n € Z% with m > n > 2. (a) Determine how many
distinct cycles of length 4 there are in K, ,. (b) How many
different paths of length 2 are there in K, ,? (c) How many
different paths of length 3 are there in K, ,,?

8. Whatis the length of a longest path in each of the following
graphs?

9. How many paths of longest length are there in each of the
following graphs? (Remember that a path suchasv; — v, — 13
is considered to be the same as the path v3 — v; — v;.)

a) Kiq b} Ki, c) K712
d) K, .. wherem, n ¢ Z" withim <n.
10. Canabipartite graph contain a cycle of odd length? Explain.
11. Let G = (V, E) be aloop-free connected graph with |V | =
v. If |E| > (v/2)%, prove that G cannot be bipartite.
12. a) Find all the nonisomorphic complete bipartite graphs
G = (V, E), where |V| = 6.
b) How many nonisomorphic complete bipartite graphs
G = (V, E) satisfy |V| =n = 27
13. a) Let X = {1, 2, 3, 4, 5}. Construct the loop-free undi-
rected graph G = (V, E) as follows:
¢ (V): Let each two-element subset of X represent a ver-
tex in G.
¢ (E): If v, v, €V correspond to subsets {a, b} and
{¢, d}, respectively, of X, then draw the edge {v;, v,}
inGif{a, b}Nic. d} = 4.
b) To what graph is G isomorphic?
14. Determine which of the graphs in Fig. 11.69 are planar. If
a graph is planar, redraw it with no edges overlapping. If it is
nonplanar, find a subgraph homeomorphic to either K5 or K3 3.

15. Let m, n € Zt with m < n. Under what condition(s) on

K K K . .
a) Ky b) K ¢ K.z m, n willevery edge in K, , be in exactly one of two isomorphic
d) X,.,, where m, n € Z" with m < n. subgraphs of K, ,?
a b
a b
C d
¢ d
f e
e f
g h
q h
(@) (@) (© (G

Figure 11.68
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a Q < d a a
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b f
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a a b b
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e c «
d g f
u v ow y Zz
(d) (e) Q)

Figure 11.69

16. Prove that the Petersen graph is isomorphic to the graph in
Fig. 11.70

a r

V/zsN

¥ Zz
Figure 11.70

17. Determine the number of vertices, the number of edges, and
the number of regions for each of the planar graphs in Fig. 11.71.
Then show that your answers satisfy Euler’s Theorem for con-
nected planar graphs.

(@ (b
Figure 11.71

18. Let G = (V, E) be an undirected connected loop-free
graph. Suppose further that G is planar and determines 53 re-

gions. I, for some planar embedding of G, each region has at
least five edges in its boundary, prove that | V| > 82.

19. Let G = (V, E) be aloop-free connected 4-regular planar
graph. If | E| = 16, how many regions are there in a planar de-
piction of G?7

20. Suppose that G = (V, E) is a loop-free planar graph with
V| = v, |E| = e, and «(G) = the number of components of G.
(a) State and prove an extension of Euler’s Theorem for such
a graph. (b) Prove that Corollary 11.3 remains valid if G is
loop-free and planar but not connected.

21. Prove that every loop-free connected planar graph has a
vertex v with deg(v) < 6.

22. a) Let & = (V, E) be a loop-free connected graph with
|V| = 11. Prove that either G or its complement G must be
nonplanar.

b) The result in part (a) is actually true for |V| > 9, but the
proof for |[V| = 9, 10, is much harder. Find a counterexam-
ple to part (a) for |V| = §.

23. a) Letkc ZT, k> 3.If G = (V, E) is a connected planar
graph with |V| = v, |E| = e, and each cycle of length at
least &, prove that e < (£5) (v — 2).

b) What is the minimal cycle length in K337

¢) Use parts (a) and (b) to conclude that X5 3 is nonplanar.
d) Use part (a) to prove that the Petersen graph is non-
planar.

24. a) Find a dual graph for each of the two planar graphs and
the one planar multigraph in Fig. 11.72.
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26.

a b
e
d
f g
h
(a)
t u
X
v w \
m ‘
z
(b) ©

Figure 11.72

b) Does the dual for the multigraph in part (¢) have any
pendant vertices? If not, does this contradict the third ob-
servation made prior to Definition 11.20?

a) Find duals for the planar graphs that correspond with
the five Platonic solids.

b) Find the dual of the graph W,,, the wheel with r spokes
(as defined in Exercise 14 of Section 11.1).

a) Show that the graphs in Fig. 11.73 are isomorphic.

b) Draw a dual for each graph.

¢) Show that the duals obtained in part (b) are not isomor-
phic.

d) Two graphs G and H are called 2-isomorphic if one can
be obtained from the other by applying either or both of the
following procedures a finite number of times.
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C d y z

{a) (b)
Figure 11.73

1) In Fig. 11.74 we split a vertex, namely r, of G and
obtain the graph H, which is disconnected.
2) InFig. 11.75 we obtain graph (d) from graph (a) by
i) first splitting the two distinct vertices j and
g — disconnecting the graph,
ii} thenreflecting one subgraph about the horizon-
tal axis, and
then identifying vertex j(g) in one subgraph
with vertex ¢ (j) in the other subgraph.

iii)

Prove that the dual graphs obtained in part (c) are 2-
isomorphic.
Joj s p s
—
q r t q rr
(@) {H)

Figure 11.74

e) For the cut-set {{a. b}, {c, b}, {d, b}} in part (a) of
Fig. 11.73, find the corresponding cycle in its dual. In the

i J kK m i J o kK m
% & [ p
(i) E (ii)
—> —>
*——o—» « b
n p g r s n p g qg I s
(a) (b)
i o] r s i ] r N
L p 2 »
(iiy)
—»
[ b +——4 +
poq kK om nop g kK m
{c) (d)

Figure 11.75
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dual of the graph in Fig. 11.73(b), find the cut-set that cor-
responds with the cycle {w, z}, {z, x}, {x, ¥}, {y¥, w} inthe
given graph.

W
QE
“

27. Find the dual network for the electrical network shown in

Il

Fig. 11.76.

28. Let G = (V, E) be a loop-free connected planar graph. If g &/
G is isomorphic to its dval and |V| = n, what is |E|?

29, Let Gy, G, be two loop-free connected undirected graphs.
If Gy, G, are homeomorphic, prove that (a) G, G» have the
same number of vertices of odd degree; (b} & has an Euler
trail if and only if G, has an Euler trail; and (¢) G has an Euler
circuit if and only if G5 has an Euler circuit.

Figure 11.76

11.5
Hamilton Paths and Cycles

In 1859 the Irish mathematician Sir William Rowan Hamilton (1805-1865) developed a
game that he sold to a Dublin toy manufacturer. The game consisted of a wooden regular
dodecahedron with the 20 corner points (vertices) labeled with the names of prominent
cities. The objective of the game was to find a cycle along the edges of the solid so that each
city was on the cycle (exactly once). Figure 11.77 is the planar graph for this Platonic solid;
such a cycle is designated by the darkened edges. This illustration leads us to the following
definition.

Figure 11.77

Definition 11.21 If G = (V. E) is a graph or multigraph with |V| > 3, we say that G has a Hamilron cycle
if there is a cycle in G that contains every vertex in V. A Hamilton path is a path (and not
a cycle) in G that contains each vertex.

Given a graph with a Hamilton cycle, we find that the deletion of any edge in the cycle
results in a Hamilton path. It is possible, however, for a graph to have a Hamilton path
without having a Hamilton cycle.

It may seem that the existence of a Hamilton cycle (path) and the existence of an Euler
circuit (trail) for a graph are similar problems. The Hamilton cycle (path) is designed to
visit each vertex in a graph only once; the Euler circuit (trail) traverses the graph so that
each edge is traveled exactly once. Unfortunately, there is no helpful connection between
the two ideas, and unlike the situation for Euler circuits (trails), there do not exist necessary
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and sufficient conditions on a graph G that guarantee the existence of a Hamilton cycle
(path). If a graph has a Hamilton cycle, then it will at least be connected. Many theorems
exist that establish either necessary or sufficient conditions for a connected graph to have a
Hamilton cycle or path. We shall investigate several of these results later. When confronted
with particular graphs, however, we shall often resort to trial and error, with a few helpful
observations.

Referring back to the hypercubes in Fig. 11.35 we find in Q> the cycle
00— 10— 11l — 01 — 00
and in Q1 the cycle
000 — 100 — 110 — 010 — 011 — 111 — 101 — 001 — 000.

Hence Q> and Q3 have Hamilton cycles (and paths). In fact, for all n > 2, we find that Q,
has a Hamilton cycle. (The reader is asked to establish this in the Section Exercises.) [Note,
in addition, that the listings: 00, 10, 11, 01 and 000, 100, 110, 010, 011, 111, 101, 001 are
examples of Gray codes (which were introduced in Example 3.9).]

If G is the graph in Fig. 11.78, the edges {a, b}, (b. ¢}, {c. f}, {[. e}, {e. d}, {d, g}, {g. h},
{h. i} vield a Hamilton path for G. But does G have a Hamilton cycle?

Q
>
(Y

[ 1)

g h i
Figure 11.78

Since G has nine vertices, if there is a Hamilton cycle in G it must contain nine edges.
Let us start at vertex b and try to build a Hamilton cycle. Because of the symmetry in the
graph, it doesn’t matter whether we go from b to ¢ or to a. We'll go to ¢. At ¢ we can go
either to f or to i. Using symmetry again, we go to f. Then we delete edge {c. i} from
further consideration because we cannot return to vertex c. In order to include vertex i in
our cycle, we must now go from f to i (o & to g). With edges {c, f} and {f, i} in the
cycle, we cannot have edge {e, f} in the cycle. [Otherwise, in the cycle we would have
deg(f) > 2.1 But then once we get to e we are stuck. Hence there is no Hamilton cycle for
the graph.

Example 11.27 indicates a few helpful hints for trying to find a Hamilton cycle in a graph
G=(V, E).
1) If G has a Hamilton cycle, then for all v € V, deg(v) > 2.

2) If « € V and deg(a) = 2, then the two edges incident with vertex ¢ must appear in
every Hamilton cycle for G.
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EXAMPLE 11.28

EXAMPLE 11.29

3) If « € V and deg(a) > 2, then as we try to build a Hamilton cycle, once we pass
through vertex a, any unused edges incident with a are deleted from further consid-
eration.

4) In building a Hamilton cycle for G, we cannot obtain a cycle for a subgraph of G
unless it contains all the vertices of G.

QOur next example provides an interesting technique for showing that a special type of
graph has no Hamilton path.

In Fig. 11.79(a) we have a connected graph G, and we wish to know whether G contains
a Hamilton path. Part (b) of the figure provides the same graph with a set of labels x, y.
This labeling is accomplished as follows: First we label vertex ¢ with the letter x. Those
vertices adjacent to @ (namely, b, ¢, and @) are then labeled with the letter y. Then we label
the unlabeled vertices adjacent to b, ¢, or d with x. This results in the label x on the vertices
e, g. and i. Finally, we label the unlabeled vertices adjacent to e, g, or i with the label y. At
this point, all the vertices in G are labeled. Now, since | V| = 10, if G is to have a Hamilton
path there must be an alternating sequence of five x’s and five y’s. Only four vertices are
labeled with x, so this is impossible. Hence & has no Hamilton path (or cycle).

(b) © i

Figure 11.79

But why does this argument work here? In part (c) of Fig. 11.79 we have redrawn the
given graph, and we see that it is bipartite. From Exercise 10 in the previous section we
know that a bipartite graph cannot have a cycle of odd length. It is also true that if a graph
has no cycle of odd length, then it is bipartite. (The proof is requested of the reader in
Exercise 9 of this section.) Consequently, whenever a connected graph has no odd cycle
(and is bipartite), the method described above may be helpful in determining when the graph
does not have a Hamilton path. (Exercise 10 in this section examines this idea further.)

Our next example provides an application that calls for Hamilton cycles in a complete
graph.

At Professor Alfred’s science camp, 17 students have lunch together each day at a circular
table. They are trying to get to know one another better, so they make an effort to sit next to
two different colleagues each afternoon. For how many afternoons can they do this? How
can they arrange themselves on these occasions?

To solve this problem we consider the graph K, where » > 3 and is odd. This graph
has n vertices (one for each student) and (;) = n(n — 1)/2 edges. A Hamilton cycle in K,
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corresponds to a seating arrangement. Each of these cycles has n edges, so we can have at
most (l/n)(g) = (n — 1)/2 Hamilton cycles with no two having an edge in common.

Consider the circle in Fig. 11.80 and the subgraph of K, consisting of the n vertices and
the n edges {1, 2}, {2. 3}, .. .. {n — 1. n}, {n, 1}. Keep the vertices on the circumference
fixed and rotate this Hamilton cycle clockwise through the angle [1/(n — 13](27). This
gives us the Hamilton cycle (Fig. 11.81) made up of edges {1, 3}, {3, 5}, {5, 2}, {2. 7}, . . .,
{n,n =3}, {n —3,n— 1}, {n — 1, 1}. This Hamilton cycle has no edge in common with
the first cycle. When r > 7 and we continue to rotate the cycle in Fig. 11.80 in this way
through angles [k/(n — 1)](27), where 2 <k < (n — 3)/2, we obtain a total of (n — 1)/2
Hamilton cycles, no two of which have an edge in common.

n=5 n=3
Figure 11.80 Figure 11.81

Therefore the 17 students at the science camp can dine for [(17 — 1)/2] = 8 days before
some student will have to sit next to another student for a second time. Using Fig. 11.80
with n = 17, we can obtain eight such possible arrangements.

We turn now to some further results on Hamilton paths and cycles. Our first result was
established in 1934 by L. Redei.

THEOREM 11.7

EXAMPLE 11.30

Let K be a complete directed graph —that is, K has n vertices and for each distinct pair
x, y of vertices, exactly one of the edges (x, y} or (y, x) is in K. Such a graph (called a
rournament) always contains a (directed) Hamilton path.

Proof: Let m > 2 with p, a path containing the m — 1 edges (vi, v2). (v2, v3), ...,
(Um—1, Un). If m = n, we're finished. If not, let v be a vertex that doesn’t appear in p,,.

If (v, v1) is an edge in K,;, we can extend p,, by adjoining this edge. If not, then (v;, v)
must be an edge. Now suppose that (v, v;) is in the graph. Then we have the larger path:
(v1, v}, (v, v2). (v2, v3). ..., (Um—1, Um). If (v, v2) is not an edge in K}, then (vs, v) must
be. As we continue this process there are only two possibilities: (a) Forsome | <k <m — 1
the edges (v, v), (v, vgyq1) are in K¥ and we replace (v, ve41) with this pair of edges; or
(b) (vsm. v) is in K and we add this edge to p,,. Either case results in a path p,4, that
includes m + 1 vertices and has m edges. This process can be repeated until we have such
a path p, on n vertices.

In a round-robin tournament each player plays every other player exactly once. We want to
somehow rank the players according to the results of the tournament. Since we could have
players a, b, and ¢ where a beats b and b beats ¢, but ¢ beats a, it is not always possible
to have a ranking where a player in a certain position has beaten all of the opponents in
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later positions. Representing the players by vertices, construct a directed graph G on these
vertices by drawing edge (x, y) if x beats y. Then by Theorem 11.7, it is possible to list the
players such that each has beaten the next player on the list.

THEOREM 11.8

Figure 11.82

Let G = (V, E) be aloop-free graph with |V| = n > 2. If deg(x) + deg(y) = n — 1 forall
x,y € V,x # y, then G has a Hamilton path.

Proof: First we prove that G is connected. If not, let C,, C; be two components of G and
let x, y € V with x a vertex in C, and y a vertex in C;. Let C; have n; vertices, i = 1. 2.
Then deg(x) <n( — 1, deg(y) <n» — 1, and deg(x) + deg(y) < (n; +n2) —2<n -2,
contradicting the condition given in the theorem. Consequently, G is connected.

Now we build a Hamilton path for G. For m = 2, let p,, be the path {v1, va}, {va. va},
ev oy {Um=1, v} of length m — 1. (We relabel vertices if necessary.) Such a path exists,
because for m = 2 all that is needed is one edge. If v, is adjacent to any vertex v other
than vy, v3, ..., U, we add the edge {v, v1} to pn. to get p,,.1. The same type of pro-
cedure is carried out if v, is adjacent to a vertex other than vy, va, ..., Up—1- If we
are able to enlarge p,, to p, in this way, we get a Hamilton path. Otherwise the path
Pw: {v1, v} - -, {Vm—1, U} has vy, v, adjacent only to vertices in p,,, and m < n. When
this happens we claim that G contains a cycle on these vertices. If v; and v, are adja-
cent, then the cycle is {vy. va}, {va. vs}. .. .. V=1, U}, {Vm. v1}. If vy and v, are not
adjacent, then v, is adjacent to a subset S of the vertices in {vy, v1. ..., Up—1}. If there
is a vertex v, € S such that v, is adjacent to v,_, then we can get the cycle by adding
{vr, v}, {vi=y. Um} to p, and deleting {v,—,. v;} as shown in Fig. 11.82. If not, let |S| =
k <m — 1. Then deg(v,) = k and deg(v,,) < (m — 1) — k, and we have the contradiction
deg(v,) + deg(v,) <m — 1 < n — 1. Hence there is a cycle connecting vy, vz, ..., Un.

)
Figure 11.83

Now consider a vertex v € V that is not found on this cycle. The graph G is connected,
so there 1s a path from v to a first vertex v, in the cycle, as shown in Fig. 11.83(a). Removing
the edge {v,—1, v,} (or {vy, v, } if » = 1), we get the path (longer than the original p,,) shown
in Fig. 11.83(b). Repeating this process (applied to p,,) for the path in Fig. 11.83(b), we
continue to increase the length of the path until it includes every vertex of G.
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COROLLARY 11.4

Let G = (V, E) be a loop-free graph with n (> 2) vertices. If deg(v) > (n — 1)/2 for all
v € V, then G has a Hamilton path.
Proof: The proof is left as an exercise for the reader.

Our last theorem for this section provides a sufficient condition for the existence of a
Hamilton cycle in a loop-free graph. This was first proved by Oystein Ore in 1960.

THEOREM 11.9

Let G = (V. E) be aloop-free undirected graph with |V| = r > 3. If deg(x) + deg(y) = n
for all nonadjacent x, y € V, then G contains a Hamilton cycle.
Proof: Assume that G does not contain a Hamilton cycle. We add edges to G until we arrive
at a subgraph H of K,, where H has no Hamilton cycle, but, for any edge ¢ (of K,,) not in
H, H + e does have a Hamilton cycle.

Since H # K, there are vertices a, b € V, where {a, b} is not an edge of H but i/ +
{a. b} has a Hamilton cycle C. The graph H has no such cycle, so the edge {a. b} is a part
of cycle C. Let us list the vertices of H (and G) on cycle C as follows:

Ca(=v1)—>b(:02)—>v3—>v4—>~--—)un,,—wn)

Foreach3 < i < n, ifthe edge {b, v;} isin the graph H, then we claim that the edge {a, v,—1}
cannot be an edge of H. For if both of these edges are in H, for some 3 <i < n, then we
get the Hamilton cycle

Cb%vi—av,-+1—>--~—>vn,]—>vn—>a—>v£,]—>vi_2—>---v4—>v3>

for the graph H (which has no Hamilton cycle). Therefore, for each 3 < i < 5, at most one
of the edges (b, v;}, {a. v;_,} is in H. Consequently,

degy(a) + deg, (b) < n,

where degy (v) denotes the degree of vertex v in graph H. For all v € V, degy(v) =
deg (v) = deg(v), so we have nonadjacent (in G) vertices a. b, where

deg(a) + deg(b) < n.

This contradicts the hypothesis that deg(x) 4+ deg(y) > n for all nonadjacent x, y € V,
$0 we reject our assumption and find that G contains a Hamilton ¢ycle.,

Now we shall obtain the following two results from Theorem 11.9. Each will give us a
sufficient condition for a loop-free undirected graph G = (V, E) to have a Hamilton cycle.
The first result is similar to Corollary 11.4 and is concerned with the degree of each vertex
v in V. The second result examines the size of the edge set E.

COROLLARY 11.5

If G = (V, E) is a loop-free undirected graph with |V| = n > 3, and if deg(v) > n/2 for
all v € V, then G has a Hamilton cycle.
Proof: We shall leave the proof of this result for the Section Exercises.
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COROLLARY 11.6

If G = (V, E) is a loop-free undirected graph with |V| =n >3, and if |[E| > (", ') + 2,
then G has a Hamilton cycle.
Proof: Let a, b € V, where {a, b} ¢ E. [Since a, b are nonadjacent, we want to show that
deg(a) + deg(b) > n.] Remove the following from the graph G: (i) all edges of the form
{a, x}, where x € V; (ii) all edges of the form {y, b}, where y € V; and (iii) the vertices a
and b. Let H = (V', E") denote the resulting subgraph. Then |E| = |E’| + deg(a) + deg(b)
because {a. b} ¢ E.

Since |V’| =n —2, H is a subgraph of the complete graph K, _;, so |E'| < ("EZ).
Consequently, (" 5 1) +2 =< |E| = |E'| + deg(a) + deg(b) < (”52) + deg(a) + deg(b),
and we find that

deg(a) + deg(b) > (n ; 1) +2 - (n ;2)

1 1
= (5) (n—l)(n—2)+2—(5) (n—2)(n - 3)

1
= (5) n=2ln-1—-m-3]+2

—(%) n-2)2)+2=mn-2)+2=n.

Therefore it follows from Theorem 11.9 that the given graph G has a Hamilton cycle.

A problem that is related to the search for Hamilton cycles in a graph is the traveling
salesman problem. (An article dealing with this problem was published by Thomas P. Kirk-
man in 1855.) Here a traveling salesperson leaves his or her home and must visit certain
locations before returning. The objective is to find an order in which to visit the locations
that is most efficient (perhaps in terms of total distance traveled or total cost). The problem
can be modeled with a labeled (edges have distances or costs associated with them) graph
where the most efficient Hamilton cycle is sought.

The references by R. Bellman, K. L. Cooke, and J. A. Lockett [7]; M. Bellmore and
G. L. Nemhauser [8]; E. A. Elsayed [15]; E. A. Elsayed and R. G. Stern [ 16]; and L. R. Foulds
[17] should prove interesting to the reader who wants to learn more about this important
optimization problem. Also, the text edited by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan, and D. B. Shmoys [22] presents 12 papers on various facets of this problem.

Even more on the traveling salesman problem and its applications can be found in the
handbooks edited by M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser—in
particular, the articles by R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. R. Reddy [2],
and by M. Jiinger, G. Reinelt, and G. Rinaldi [21].

3. Find a Hamilton cycle, if one exists, for each of the graphs
EXERCISES 11.5 or multigraphs in Fig. 11.84. If the graph has no Hamilton cycle,

determine whether it has a Hamilton path.

1. Give an example of a connected graph that has (a) Neither

an Euler circuit nor a Hamilton cycle. (b) An Euler circuit but 4. a) Show that the Petersen graph [Fig. 11.52(a)] has no
no Hamilton cycle. (¢) A Hamilton cycle but no Euler circuit. Hamilton cycle but that it has a Hamilton path.

(d) Both a Hamilton cycle and an Euler circuit.

b) Show that if any vertex (and the edges incident to it) is

2. Characterize the type of graph in which an Euler trail (cir- removed from the Petersen graph, then the resulting sub-
cuit) is also a Hamilton path (cycle). graph has a Hamilton cycle,
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Figure 11.84

5. Consider the graphs in parts (d) and (¢) of Fig. 11.84. Is it
possible to remove one vertex from each of these graphs so that
each of the resulting subgraphs has a Hamilton cycle?

6. If n > 3, how many different Hamilton cycles are there in
the wheel graph W,,? (The graph W, was defined in Exercise 14
of Section 11.1.)

7. a) Forn > 3, how many different Hamilton cycles are there
in the complete graph K, 7
b) How many edge-disjoint Hamilton cycles are there in
Kgl?
¢) Nineteen students in a nursery school play a game each
day where they hold hands to form a circle. For how many
days can they do this with no student holding hands with
the same playmate twice?

8. a) For n € Z7, n = 2, show that the number of distinct
Hamilton cycles in the graph K, , is (1/2)(n — 1) a!
b) How many different Hamilton paths are there for X, ,,.
n>1?
9. Let G = (V, E) be aloop-free undirected graph. Prove that
if G contains no cycle of odd length, then G is bipartite.

10. a) Let G = (V, E) be a connected bipartite undirected
graph with V partitioned as Vy U V,. Prove that if | V| #
|V»|, then G cannot have a Hamilton cycle.

b) Prove that if the graph  in part (a) has a Hamilton path,
then |Vi| — |[Va| =2 1.

¢) Give an example of a connected bipartite undirected
graph G = (V, E), where V is partitioned as V, U V, and
[Vi| = [Va| — 1, but G has no Hamilton path.

11. a) Determine all nonisomorphic tournaments with three
vertices.

b) Find all of the nonisomorphic tournaments with four
vertices. List the in degree and the out degree for each ver-
tex, in each of these tournaments,

12. Prove that for n > 2, the hypercube @, has a Hamilton
cycle.

13. Let T = (V, E) be a tournament with v € V of maximum
outdegree. If w € V and w # v, prove that either (v, w) € E or
there is a vertex y in V where y # v, w,and (v, y), (y, w) € E.
(Such a vertex v is called a king for the tournament.)

14. Find a counterexample to the converse of Theorem 11.8.

15. Give anexample of a loop-free connected undirected multi-
graph G = (V, E) such that |V| = n and deg(x) + deg(y) >
n —1forall x, y € V, but G has no Hamilton path.

16. Prove Corollaries 11.4 and 11.5.

17. Give anexample to show that the converse of Corollary 11.5
need not be true.

18. Helen and Dominic invite 10 friends to dinner. In this group
of 12 people everyone knows at least 6 others. Prove that the
12 can be seated around a circular table in such a way that each
person is acquainted with the persons sitting on either side.
19. Let G = (V, E) be a loop-free undirected graph that is 6-
regular. Prove that if |V| = 11, then & contains a Hamilton
cycle.

20. Let G = (V, E) be a loop-free undirected n-regular graph

with |V| > 2a + 2. Prove that G (the complement of G) has a
Hamilton cycle.
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21. For n > 3, let C, denote the undirected cycle on n ver-
tices. The graph C,,, the complement of C,,, is often call_ffd the
cocycle on n vertices. Prove that for # > 5 the cocycle C, has
a Hamilton cycle.
22. Letn € Z7 withn > 4, and let the vertex set V' for the com-
plete graph K, _; be {v,, va, v3, . . ., vp_1}. Now construct the
loop-free undirected graph G, = (V. E) from K,,_; as follows:
V = V' U {v}, and E consists of all the edges in K,,_| except for
the edge {v;, vz}, which is replaced by the pair of edges {v;, v}
and {v, »}.

a) Determine deg(x) + deg(y) for all nonadjacent vertices

xand yin V.

b) Does G, have a Hamilton cycle?

¢) How large is the edge set E?

d) Do the results in parts (b) and (c¢) contradict Corol-

lary 11.6?
23. Forn e 2% where n >4, let V' = {vy, va, v3, ..., Uy_1}
be the vertex set for the complete graph K, _;. Construct the
loop-free undirected graph H, = (V, F) from K,_; as follows:
V = V' U {v}, and E consists of all the edges in K,_, together
with the new edge {v, vq}.

a} Show that H, has a Hamilton path but no Hamilton

cycle.

b) How large is the edge set E?

24. Letn = 2* for k € Z*. We use the n k-bit sequences (of 0's
and 1's) to represent 1, 2, 3, ..., n, so that for two consecu-
tive integers i. i + 1, the corresponding k-bit sequences differ
in exactly one component. This representation is called a Gray
code (comparable to what we saw in Example 3.9).
a) For k =3, use a graph model with V = {000, 001,
010, ..., 111} to find such a code for 1,2,3,...,8.
How is this related to the concept of a Hamilton path?

b) Answer part (a) for k = 4.

25. If G = (V, E) is an undirected graph, a subset [ of V is
called independent if no two vertices in I are adjacent. An in-
dependent set [ is called maximal if no vertex v can be added
to { with [ U {v} independent. The independence number of G,
denoted $(G), is the size of a largest independent set in G.

a) For each graph in Fig. 11.85 find two maximal indepen-
dent sets with different sizes.

11.6
Graph Coloring
and Chromatic Polynomials

b) Find B(G) for each graph in part (a).

¢} Determine B(G) for each of the following graphs:
1) Ky (i) Kz (i) Kiz (V) Kya: (v) Kue:
(VY Ky, m,n €2t

d} Let 7 be an independent seiin G = (V, E). What type
of subgraph does I induce in G?

b

i (]
Figure 11.85

26. Let G = (V, E) be an undirected graph with subset [ of
V an independent set. For each @ € I and each Hamilton cy-
cle C for G, there will be deg(a) — 2 edges in E that are
incident with ¢ and not in C. Therefore there are at least
3 ldegla) —21=3" ., deg(a) — 2|I] edges in E that do
not appear in C.

a) Why are these Y .,

by Let v = |V|, ¢ = | E|. Prove that if

deg(a) — 2|I| edges distinct?

edeeg(a) +2)1| < v,

aed
then G has no Hamilton cycle.

¢) Select a suitable independent set I and use part (b) to
show that the graph in Fig. 11.86 (known as the Herschel
graph) has no Hamilton cycle.

Figure 11.86

At the J. & J. Chemical Company, Jeannette is in charge of the storage of chemical com-
pounds in the company warehouse. Since certain types of compounds (such as acids and
bases) should not be kept in the same vicinity, she decides to have her partner Jack par-



Definition 11.22

EXAMPLE 11.31

11.6 Graph Coloring and Chromatic Polynomials 565

tition the warehouse into separate storage areas so that incompatible chemical reagents
can be stored in separate compartments. How can she determine the number of storage
compartments that Jack will have to build?

If this company sells 25 chemical compounds, let {¢y. c2. - . ., ¢y5} = V,asetof vertices.
Forall | </ < j <25, we draw the edge {c;, ¢;} if ¢, and ¢, must be stored in separate
compartments. This gives us an undirected graph G = (V, E).

We now introduce the following concept.

If G = (V, E) is an undirected graph, a proper coloring of G occurs when we color the
vertices of G so thatif {a, b} is an edge in G, then a and b are colored with different colors.
(Hence adjacent vertices have different colors.) The minimum number of colors needed to
properly color G is called the chromatic number of G and is written x (G).

Returning to assist Jeannette at the warehouse, we find that the number of storage
compartments Jack must build is equal to x (G) for the graph we constructed on V =
{cr.ca. ..o, ¢25}. But how do we compute x (G)? Before we present any work on how to
determine the chromatic number of a graph, we turn to the following related idea.

In Example 11.24 we mentioned the connection between coloring the regions in a planar
map (with neighboring regions having different colors) and properly coloring the vertices
in an associated graph. Determining the smallest number of colors needed to color planar
maps in this way has been a problem of interest for over a century.

In about 1850, Francis Guthrie (1831-1899) became interested in the general problem
after showing how to color the counties on a map of England with only four colors. Shortly
thereafter, he showed the “Four-color Problem” to his younger brother Frederick (1833-
1866), who was then a student of Augustus DeMorgan (1806-1871). DeMorgan communi-
cated the problem (in 1852) to William Hamilton (1805-1865). The problem did not interest
Hamilton and lay dormant for about 25 years. Then, in 1878, the scientific community was
made aware of the problem through an announcement by Arthur Cayley (1821-1895) at a
meeting of the London Mathematical Society. In 1879 Cayley stated the problem in the first
volume of the Proceedings of the Royal Geographical Society. Shortly thereafter, the British
barrister (and keen amateur mathematician) Sir Alfred Kempe (1849-1922) devised a proof
that remained unquestioned for over a decade. In 1890, however, the British mathematician
Percy John Heawood (1861-1955) found a mistake in Kempe’s work.

The problem remained unsolved until 1976, when it was finally settled by Kenneth
Appel and Wolfgang Haken. Their proof employs a very intricate computer analysis of
1936 (reducible) configurations.

Although only four colors are needed to properly color the regions in a planar map, we
need more than four colors to properly color the vertices of some nonplanar graphs.

We start with some small examples. Then we shall find a way to determine x(G) from
smaller subgraphs of G —in certain situations. [In general, computing x(G) is a very
difficult problem.] We shall also obtain what is called the chromatic polynomial for G and
see how it can be used in computing ¥ (G).

For the graph G in Fig. 11.87, we start at vertex ¢ and next to each vertex write the number
of a color needed to properly color the vertices of G that have been considered up to that
point. Going to vertex b, the 2 indicates the need for a second color because vertices a
and b are adjacent. Proceeding alphabetically to f, we find that two colors are needed to
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EXAMPLE 11.32

EXAMPLE 11.33

properly color {a, b, ¢. d, ¢, f}. For vertex g a third color is needed; this third color can
also be used for vertex A because {g. h} is not an edge in G. Thus this sequential coloring
(labeling) method gives us a proper coloring for G, so x(G) < 3. Since K3 is a subgraph
of G [for example, the subgraph induced by a, b and g is (isomorphic to) K3], we have

x(G) = 3,50 x(G) =3.
£2 "
‘. o

d,2
Figure 11.87

el

a) Foralln > 1, x(K,) = n.
b) The chromatic number of the Herschel graph (Fig. 11.86) is 2.
¢} If G is the Petersen graph [see Fig. 11.52 (a)], then x (G) = 3.

Let G be the graph shown in Fig. 11.88. For U = {b, f, h, i}, the induced subgraph (U}
of G is isomorphic 10 K4, so x(G) > x (K4) = 4. Therefore, if we can determine a way to
properly color the vertices of G with four colors, then we shall know that x (G) = 4. One
way to accomplish this is to color the vertices e, f, g blue; the vertices b, j red; the vertices
¢, h white; and the vertices a, d, [ green.

a b C d

h i J
Figure 11.88

We turn now to a method for determining x (G). Our coverage follows the development
in the survey article [25] by R. C. Read.

Let G be an undirected graph, and let A be the number of colors that we have available
for properly coloring the vertices of G. Our objective is to find a polynomial function
P(G, A), in the variable A, called the chromatic polynomial of G, that will tell us in how
many different ways we can properly color the vertices of G, using at most A colors.

Throughout this discussion, the vertices in an undirected graph G = (V, E) are distin-
guished by labels. Consequently, two proper colorings of such a graph will be considered
different in the following sense: A proper coloring (of the vertices of () that uses at most A
colors is a function f, with domain V and codomain {1, 2, 3, ..., A}, where f(u) # f(v),
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for adjacent vertices u., v € V. Proper colorings are then different in the same way that these
functions are different.

a) If G = (V, E) with |V| = r and F£ = ¥, then G consists of » isolated points, and by

EXAMPLE 11.34

the rule of product, P(G, &) = A",

b) If G = K,,, then at least » colors must be available for us to color G properly. Here,
by the rule of product, P(G, i) = A(h — 1}{A —=2)--- (L —n+ 1), which we de-
note by A", For A < n, P(G, ) = 0 and there are no ways to properly color K.
P(G, ) > 0 for the first time when A = n = ¥ (G).

¢) For each path in Fig. 11.89, we consider the number of choices (of the A colors) at
each successive vertex. Proceeding alphabetically, we find that P(G . ) = A(x — 1)?
and P(G,, ) = A(L — 1)*. Since P(G,. 1) =0= P(G,. 1), but P(G,.2)=2=
P (G-, 2), it follows that x(Gy) = x(G,) = 2. If five colors are available we can
properly color G; in 5(4)* = 320 ways; G, can be so colored in 5(4)* = 1280 ways.

dx-1 a, A
e x—1 box—1

A= 1 b, x =1 drx—1 ¢x—1

(Gy) (G;)
Figure 11.89

In general, if G is a path on n vertices, then P(G, 1) = A(A — 1)""L,

d) If G is made up of components G,. Ga. .. ., G, then again by the rule of product, it
follows that P(G, A} = P(Gy, M) - P(G, L) --- P(Gy, M.

As a result of Example 11.34(d), we shall concentrate on connected graphs. In many
instances in discrete mathematics, methods have been employed to solve problems in large
cases by breaking these down into two or more smaller cases. Once again we use this method
of attack. To do so, we need the following ideas and notation.

Let G = (V, E) be an undirected graph. For ¢ = {a, b} € E, let G, denote the subgraph
of G obtained by deleting e from G, without removing vertices a and b; thatis, G, = G — ¢
as defined in Section 11.2. From G, a second subgraph of G is obtained by coalescing (or,
identifying) the vertices a and b. This second subgraph is denoted by G°,.

Figure 11.90 shows G, and G/, for graph G with the edge ¢ as specified. Note how the
coalescing of a and b in G/, results in the coalescing of the two pairs of edges (d. b}, {d, a}

EXAMPLE 11.35

and {a, c}, {b. c}.
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G Ge G,

Figure 11.90

Using these special subgraphs, we turn now to the main result.

THEOREM 11.10

EXAMPLE 11.36

Decomposition Theorem for Chromatic Polynomials. If G = (V| E) is a connected graph
and e € E, then

P(G,. »)=P(G, M)+ PG, 1)

Proof: Let ¢ = {a, b}. The number of ways to properly color the vertices in G, with (at
most) A colors is P(G., A). Those colorings where ¢ and b have different colors are proper
colorings of G. The colorings of G, that are not proper colorings of G occur when ¢ and
b have the same color. But each of these colorings corresponds with a proper coloring for
G.,. This partition of the P(G.. ) proper colorings of G, into two disjoint subsets results
in the formula P{(G,, ) = P(G. ) + P(G, »).

‘When calculating chromatic polynomials, we shall place brackets about a graph to indi-
cate its chromatic polynomial.

The following calculations yield P(G, A) for G a cycle of length 4.

a b a b a b (=d)
o
e = —
*-—
C d o d o
P(G, N) P(G,, N) P(G,, \)

From Example [1.34(c) it follows that P(G,, »} = A(x — 1)°. With G, = K3 we have
P(G.. ») = A, Therefore,

PG, A)=ar—-D}=a = DA =2)=2(h — D[(h — D = (A = 2)]
= Ak = D[A% =34 +3] =A% - 4203 + 622 - 34,

Since P(G, 1) = 0 while P(G, 2) = 2 > 0, we know that x (G) = 2.
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Here we find a second application of Theorem 11.10.

b
z 1% z ¥ z

~
~<
N
<
N

= MNA®) — 20 = (A — 20 = xA — DA — 2)2(\ — 3)
A

For the disconnected graph
with the components K, K4

Foreachl <A <3, P(G, A) = 0,but P(G, A) > Oforall A > 4. Consequently, the given
graph has chromatic number 4.

The chrematic polynomials given in Examples 11.36 and 11.37 suggest the following
results.

THEOREM 11.11

For each graph G, the constant term in P(G, A) is 0.

Proof: For each graph G, x (G) > 0 because V # @. If P(G, 1) has constant term «, then
P(G, 0y = a # 0. This implies that there are ¢ ways to color G properly with O colors, a
contradiction.

THEOREM 11.12

Let G = (V, E) with |E| > 0. Then the sum of the coefficients in P(G, A) is 0.

Proof: Since | | = 1, we have x(G) > 2, so we cannot properly color G with only one color.
Consequently, P(G, 1) = 0 = the sum of the coefficients in P(G, 1).

Since the chromatic polynomial of a complete graph is easy to determine, an alternative
method for finding P (G, 1) can be obtained. Theorem 11.10 reduced the problem to smaller
graphs. Here we add edges to a given graph until we reach complete graphs.

THEOREM 11.13

Let G = (V, E), witha, b€ V but {a, b} = e ¢ E. We write G for the graph we obtain
from G by adding the edge e = {a, b}. Coalescing the vertices a and / in G gives us the
subgraph G of G. Under these circumstances P(G, 2) = P(G/. A)+ P(G}. A).

Proof: This result follows as in Theorem 11.10 because P(G], 1) = P(G, ») — P(G}*, ).
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EXAMPLE 11.38

Let us now apply Theorem 11.13,

P(G, N) P(GF, N) PGSt N)

Here P(G, 2) = o™ + 1.3 = 10 — D(A —2)?, 50 x(G) = 3. In addition, if six colors
are available, the vertices in G can be properly colored in 6(5)(4)> = 480 ways.

Our next result again uses complete graphs — along with the following concepts.

For all graphs G| = (Vi, Ey)and G; = (Va, E).

i) the union of G, and G+, denoted G U G», is the graph with vertex set V; U V, and
edge set £, U E»; and

ii) when V| NV, # @, the intersection of G, and G, denoted G| N Gy, is the graph
with vertex set V; N V; and edge set E1 N E3.

THEOREM 11.14

EXAMPLE 11.39

Let G be an undirected graph with subgraphs Gy, G2. If G = G U Gy and G, N G; = K,
for some n € Z*, then
P(G1.A)- P(Ga, &)

P(G,3) = o

Proof: Since G| N G, = K,,, it follows that K, is a subgraph of both G| and G, and that
x(G1), x(G3) = n. Given A colors, there are A™ proper colorings of K,,. For each of these
2 colorings there are P(G,, A)/A™ ways to propetly color the remaining vertices in G .
Likewise, there are P(G;, A)/A") ways to properly color the remaining vertices in G,. By
the rule of product,

P(Gi,A) P(Gy, Ay _ P(G1.A)- P(Gy. A)

P(G- A-) = P(Kl‘l' }") ’ ;\'(n) ’ A(") A.(n)

Consider the graph in Example 11.37. Let G be the subgraph induced by the vertices
w, x, ¥, z. Let G2 be the complete graph K3 — with vertices v, w, and x. Then G, N G, is
the edge {w, x},s0 G, N G» = K.

Therefore
_ P(G1, ) P(Ga.d) AW @
P(G, 3 = el ==
RO = D=2 - 3)
A —1)

=100 — DO —2)2 (A —3),

agreeing with the answer obtained in Example 11.37.
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Much more can be said about chromatic polynomials —in particular, there are many
unanswered questions. For example, no one has found a set of conditions that indicate
whether a given polynomial in A is the chromatic polynomial for some graph. More about
this topic is introduced in the article by R. C. Read [25].

EXERCISES 11.6

1. A pet-shop owner receives a shipment of tropical fish.
Among the different species in the shipment are certain pairs
where one species feeds on the other. These pairs must conse-
quently be kept in different aquaria. Model this problem as a
graph-coloring problem, and tell how to determine the smallest
number of aquaria needed to preserve all the fish in the ship-
ment.

2. As the chair for church committees, Mrs, Blasi is faced with
scheduling the meeting times for 15 committees. Each commit-
tee meets for one hour each week. Two committees having a
common member must be scheduled at different times. Model
this problem as a graph-coloring problem, and tell how to de-
termine the least number of meeting times Mrs. Blasi has to
consider for scheduling the 15 committee meetings.

3. a) Atthel. & J. Chemical Company, Jeannette has received

three shipments that contain a total of seven different chem-
icals. Furthermore, the nature of these chemicals is such
that for all 1 </ <5, chemical { cannot be stored in the
same storage compartment as chemical 7 + 1 or chemical
i + 2. Determine the smallest number of separate storage
compartments that Jeannette will need to safely store these
seven chemicals.
b) Suppose that in addition to the conditions in part (a),
the following four pairs of these same seven chemicals also
require sepatate storage compartments: 1 and 4, 2 and 5, 2
and 6, and 3 and 6. What is the smallest number of storage
compartments that Jeannette now needs to safely store the
seven chemicals?

4. Giveanexample of anundirected graph G = (V, E), where
¥ (G) = 3 but no subgraph of G is isomorphic to K.
5. a) Determine P (G, ) for G = K 5.

b) Forn € Z, what is the chromatic polynomial for K ,,?
Whalt is its chromatic number?

6. a) Consider the graph K3 shown in Fig. 11.91, and let
A € Z” denote the number of colors available to properly
color the vertices of K3 1. (iy How many proper colorings
of K3 3 have vertices a, b colored the same? (ii) How many
proper colorings of K33 have vertices a, b colored with
different colors?

b) What is the chromatic polynomial for K;3? What is
X (K23)?

¢) Forn € Z*, what is the chromatic polynomial for K3 ,?
What is x (K,,)?

X
a

¥
b

z

Figure 11.91

7. Find the chromatic number of the following graphs.
a) The complete bipartite graphs K, .
b) A cycle on n vertices, n > 3.
¢) The graphs in Figs. 11.59(d), 11.62(a), and 11.85.
d) The n-cube Q,, n > 1.
8. If G is a loop-free undirected graph with at least one edge,
prove that G is bipartite if an only if x (G) = 2.
9. a) Determine the chromatic polynomials for the graphs in
Fig. 11.92
b) Find x (G) for each graph.

¢) If five colors are available, in how many ways can the
vertices of each graph be properly colored?

(@) (b

(]

Figure 11.92
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10. a) Determine whether the graphs in Fig. 11.93 are isomor-
phic.
b) Find P(G, A) for each graph.

¢) Comment on the results found in parts (a) and (b).

f
g j
k
u
v y
V4

Figure 11.93

11. For n =3, let G, = (V, E) be the undirected graph ob-
tained from the complete graph K, upon deletion of one edge.
Determine P(G,, A) and x(G,).

12. Consider the complete graph K, for n > 3. Color r of the
vertices in K, red and the remaining n — r (= g)) vertices green,
For any two vertices v, w in K, color the edge {v, w} (1) red if
v, w are both red; (2) green if v, w are both green; or (3) blue
if v, w have different colors. Assume that » > g.

a) Show that for r =6 and g = 3 (and n = 9) the total
number of red and green edges in Ky equals the number of
blue edges in K.
b) Show that the total number of red and green edges in
K, equals the number of blue edges in X, if and only if
n =r + g, where g, r are consecutive triangular numbers.
[The triangular numbers are defined recursively by ¢ =
Lto=t,+m+ D, n=1 50t =n(n+1)/2 Hence
th=1,6=3t=6...1]
13. Let G =(V, E) be the undirected connected “ladder
graph” shown in Fig. 11.94,
a) Determine |V| and | E|.
b) Prove that P(G, ) = A(h — 1)(A2 — 34 + 3)"~).
14. Let G be a loop-free undirected graph, where A =
max,cy {deg(v)}. (a) Prove that x(G) < A + 1. (b) Find two
types of graphs G, where x(G) = A + 1.

X X X3 Xn—1  Xp

¥1 Y2 Y3 Yn-1 ¥Yn
Figure 11.94

15. For n > 3, let C, denote the cycle of length #,
a) What is P(Cs, A)?
b) If n > 4, show that
P(Cr, 2y = P(Pyy, ) — P(Coy, ),
where F,_, denotes the path of length n — 1.
¢) Verify that P(P,_;, ) = A(A — )"}, foralln > 2,
d) Establish the relations
PCr, M) = =1 =G = 1" = P(Co1, b),
P(Co ) = (A= 1)" = P(Cy2. M) — (A= 1),
e) Prove that for all n > 3,
PG, )= ="+ (D" = D).
16. Forn > 3, recall that the wheel graph, W,, is obtained from
acycle of length n by placing a new vertex within the cycle and

adding edges (spokes) from this new vertex to each vertex of
the cycle.

n >4,

n>S5.

a) What relationship is there between x (C,) and x (W,)?
b) Use part (e) of Exercise 15 to show that
PW,, M)=4ax=2)"+(-D"A(h =2).

¢) i} If we have k different colors available, in how many
ways can we paint the walls and ceiling of a pen-
tagonal room if adjacent walls, and any wall and the
ceiling, are to be painted with different colors?
ii) What is the smallest value of k& for which such a
coloring is possible?
17. Let G = (V, E) be aloop-free undirected graph with chro-
matic polynomial P(G, A) and |V| = n. Use Theorem 11.13 to
prove that P(G, A) has degree n and leading coefficient 1 (that
is, the coefficient of A™ is 1).

18. Let G = (V, E) be a loop-free undirected graph.
a) For each such graph, where |V| <3, find P(G, A) and
show that in it the terms contain consecutive powers of A.
Also show that the coefficients of these consecutive powers
alternate in sign.

b) Now consider G = (V, E), where |V|=n >4 and
|E| = k. Prove by mathematical induction that the terms
in P(G, A) contain consecutive powers of ) and that the
coefficients of these consecutive powers alternate in sign.
[For the induction hypothesis, assume that the result is
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true for all loop-free undirected graphs G = (V, E), where b) Forn € Z*, n > 2, which of the complete graph X,, are

either (i) |V =n—1or(ii) |V|=n,but|E| =k — 1.] color-critical?

c¢) Prove that if |V| = n, then the coefficient of A"~' in ¢) Prove that a color-critical graph must be connected.

P(G, %) is the negative of | E|. d) Prove that if G is color-critical with x(G) =k, then
19. Let G = (V, E) be aloop-free undirected graph. We call G deg(v) >k —1forallve V.

color-critical if y (GY > (G —v)forallve V.

a) Explain why cycles with an odd number of vertices are
color-critical while cycles with an even number of vertices
are not color-critical.

1.7
Summary and Historical Review

Unlike other areas in mathematics, graph theory traces its beginnings to a definite time
and place: the problem of the seven bridges of K&nigsberg, which was solved in 1736 by
Leonhard Euler (1707-1783). And in 1752 we find Euler’s Theorem for planar graphs. (This
result was originally presented in terms of polyhedra.) However, after these developments,
little was accomplished in this area for almost a century.

Then, in 1847, Gustav Kirchhoff (1824-1887) examined a special type of graph called
a tree. (A rree is a loop-free undirected graph that is connected but contains no cycles.)
Kirchhoff used this concept in applications dealing with electrical networks in his extension
of Ohm’s laws for electrical flow. Ten years later Arthur Cayley (1821-1895) developed
this same type of graph in crder to count the distinct isomers of the saturated hydrocarbons
Cn H2n+2, ne Z+.

This period also saw two other major ideas come to light. The four-color conjecture was
first investigated by Francis Guthrie (1831-1899) in about 1850. In Section [ 1.6 we related
some of the history of this problem, which was solved via an intricate computer analysis in
1976 by Kenneth Appel and Wolfgang Haken.

The second major idea was the Hamilton cycle. This cycle is named for Sir William
Rowan Hamilton (1805-1865), who used the idea in 1859 for an intriguing puzzle that used
the edges on a regular dodecahedron. A solution to this puzzle is not very difficult to find,
but mathematicians still search for necessary and sufficient conditions to characterize those
undirected graphs that possess a Hamilton path or cycle.

Following these developments, we find little activity until after 1920. The characteriza-
tion of planar graphs was solved by the Polish mathematician Kasimir Kuratowski (1896—
[980) in 1930. In 1936 we find the publication of the first book on graph theory, written
by the Hungarian mathematician Dénes Konig (1884-1944), a prominent researcher in the
field. Since then there has been a great deal of activity in the area, the computer providing
assistance in the last five decades. Among the many contemporary researchers (not men-
tioned in the chapter references) in this and related fields one finds the names Claude Berge,
V. Chvital, Paul Erdos, Laszlo Lovisz, W. T. Tutte, and Hassler Whitney.

Comparable coverage of the material presented in this chapter is contained in Chapters
6, 8, and 9 of C. L. Liu [23]. More advanced work is found in the works by J. A. Bondy
and U. S. R. Murty [10], N. Hartsfield and G. Ringel [20], and D. B. West [32]. The book
by F. Buckley and F. Harary [11] revises the classic work of F. Harary [18] and brings the
reader up to date on the topics covered in the original 1969 work. The text by G. Chartrand
and L. Lesniak [12] provides a more algorithmic approach in its presentation. A proof of
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Kuratowski’s Theorem appears in Chapter 8 of C. L. Liu [23] and Chapter 6 of D. B. West
[32]. The article by G. Chartrand and R. J. Wilson [13] develops many important concepts in
graph theory by focusing on one particular graph — the Petersen graph. This graph (which
we mentioned in Section 11.4) is named for the Danish mathematician Julius Peter Christian
Petersen (1839-1910), who discussed the graph in a paper in 1898.

Applications of graph theory in electrical networks can be found in S. Seshu and M. B.
Reed [30]. In the text by N. Deo [14], applications in coding theory, electrical networks, op-
erations research, computer programming, and chemistry occupy Chapters 12-15. The text
by F. S. Roberts [26] applies the methods of graph theory to the social sciences. Applications
of graph theory in chemistry are given in the article by D. H. Rouvray [29].

More on chromatic polynomials can be found in the survey article by R. C. Read [25].
The role of Polya’s theory” in graphical enumeration is examined in Chapter 10 of N. Deo
[14]. A thorough coverage of this topic is found in the text by F. Harary and E. M. Palmer
[19].

Additional coverage on the historical development of graph theory is given in N. Biggs,
E. K. Lloyd, and R. J. Wilson [9].

Many applications in graph theory involve large graphs that require the computationally
intensive talents of a computer in conjunction with the ingenuity of mathematical methods.
Chapter 11 of N. Deo [14] presents computer algorithms dealing with several of the graph-
theoretic properties we have studied here. Along the same line, the text by A. V. Aho, J. E.
Hopcroft, and J. D. Ullman [17 provides even more for the reader interested in computer
science.

As mentioned at the end of Section 11.5, the traveling salesman problem is closely related
to the search for a Hamilton cycle in a graph. This is a graph-theoretic problem of interest
in both operations research and computer science. The article by M. Bellmore and G. L.

¥We shall introduce the basic ideas behind this method of enumeration in Chapter 16.
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Nembhauser [8] provides a good introductory survey of results on this problem. The text
by R. Bellman, K. L. Cooke, and J. A. Lockett [7] includes an algorithmic treatment of
this problem along with other graph problems. A number of heuristics for obtaining an
approximate solution to the problem are given in Chapter 4 of the text by L. R. Foulds [17].
The text edited by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys
[22] contains 12 papers dealing with various aspects of this problem, including historical
considerations as well as some results on computational complexity, Applications, where a
robot visits different locations in an automated warehouse in order to fill a given order, are
examined in the articles by E. A. Elsayed [15] and by E. A. Elsayed and R. G. Stern [16].

The solution of the four-color problem can be examined further by starting with the
paper by K. Appel and W. Haken [3]. The problem, together with its history and solution, is
examined in the text by D. Barnette [6] and in the Scientific American article by K. Appel
and W. Haken [4]. The proof uses a computer analysis to handle a large number of cases; the
article by T. Tymoczko [31] examines the role of such techniques in pure mathematics. In
[5] K. Appel and W. Haken further examine their proof in the light of the computer analysis
that was used. The articles by N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas
[27, 28] provide a simplified proof. In 1997 their computer code was made available on the
Internet. This code could prove the four-color problem on a desktop workstation in roughly
three hours.

Finally, the article by A. Ralston [24] demonstrates some of the connections among
coding theory, combinatorics, graph theory, and computer science.
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b) Prove that in any group of six people there must be three

SUPPLEMEMARY EXER\CISES who are total strangers to one another or three who are mu-

1. Let G be a loop-free undirected graph on n vertices. If G
has 56 edges and G has 80 edges, what is n?

tual friends.

4. a) Let G = (V, E) be aloop-free undirected gragh. Recall
that G is called self-complementary if G and G are iso-
morphic. If G is self-complementary (i) determine |E| if

2. Determine the number of cycles of length 4 in the hyper- |V| = n: (i) prove that G is connected.

cube Q,.

3. a) If the edges of K¢ are painted either red or blue, prove
that there is a red triangle or a blue triangle that is a sub-

graph.

by Let n e Z™, where n =4k (keZ*) or n =4k + 1
(k € N). Prove that there exists a self-complementary graph
G = (V, E). where |V| = n.



5. a) Show that the graphs G, and G, in Fig. 11.95, are iso-
morphic.
b) How many different isomorphisms f: Gy — G, are
possible here?

u
1 2 3
V4 v
Y w
4 5 6
X
{Gy) (Gy)

Figure 11.95

6. Are any of the planar graphs for the five Platonic solids
bipartite?

7. a) How many paths of length 5 are there in the com-
plete bipartite graph K3;? (Remember that a path such
as vy — vz —> U3 —> Us —» Us —> Vg is considered to be the
same as the path vg — vs — vy — v3 —> vy; = v1.)

b) How many paths of length 4 are there in K3 ;?

¢) Letm, n, p e Z' with 2m < n and 1 < p <2m. How
many paths of length p are there in the complete bipartite
graph K, ,?

8. LetX ={1,2,3,...,n},wheren > 2. Construct the loop-
free undirected graph G = (V, E) as follows:

¢ (V): Each two-element subset of X determines a vertex
of 5.

* (Ey If v, v, € V correspond to subsets {a, b} and {c, d},
respectively, of X, draw the edge {v,, v;} in G when
fa, b} N{c.d} =1
a) Show that G is an isolated vertex when n = 2 and that
G is disconnected for n = 3, 4.

b) Show that for n > 5, G is connected. (In fact, for all
v, v; € V, either {v;, va} € E or there is a path of length 2
connecting vy and v,.)

¢) Prove that G is nonplanar for n > 5.

d) Prove that for n > 8, G has a Hamilton cycle.

9. If G = (V, E) is an undirected graph, a subset K of V is
called a covering of G if for every edge {a, b} of G either a or
bisin K. The set K is a minimal covering if K — {x} fails to
cover G for each x € K. The number of vertices in a smallest
covering is called the covering number of G.

a) Prove thatif I C V, then / is an independent set in G if
and only if V — I is a covering of G.
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b) Verify that | V| is the sum of the independence number
of G (as defined in Exercise 25 for Section 11.5) and its
covering number.

10. If G = (V, E) is an undirected graph, a subset D of V is
called a dominating set if for all ve V, either v € D or v is
adjacent to a vertex in D. If D is adominating set and no proper
subset of D has this property. then D is called minimal. The size
of any smallest dominating set in G is denoted by ¥ (G) and is
called the domination number of G.

a) If G hasnoisolated vertices, prove thatif D is a minimal
dominating set, then V — D is a dominating set.

b) If 7 C V is independent, prove that / is a dominating
set if and only if / is maximal independent.

¢) Show that v (G) < B(G), and that |V| < B(G)x(G).
[Here 8(() is the independence number of G — first given
in Exercise 25 of Section 11.5.]

11. Let G = (V, E) be the undirected connected “ladder
graph” shown in Fig. 11.94. For n > 0, let a, denote the number
of ways one can select n of the edges in G so that no two edges
share a common vertex. Find and solve a recurrence relation
for a,,.

12. Consider the four comb graphs in parts (i), (i), (iii), and
(iv) of Fig. 11.96. These graphs have 1 tooth. 2 teeth. 3 teeth,
and n teeth, respectively. For n > 1, let a, count the number of
independent subsets in {x;, X2, ..., Xu. Y1, ¥2, - .-, ¥u}. Find
and solve a recurrence relation for a,,.

X X1 X X X X3

Y1 Y1 Yi Y2 ¥
{0 (i) (i)

X4 X2 A3 Xn—1 M

Yo Y2 V3 Yoo ¥n
{iv)

Figure 11.96

13. Consider the four graphs in parts (i). (ii). (iii), and (iv) of
Fig. 11.97. If a,, counts the number of independent subsets of
{x1, X2, oo Xny V1, Y20 e s vn}, where n > 1, find and solve a
recurrence relation for a,.
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X1 Xy X Xy Xy X3

)4 Yoo ¥z Yv Y2 3
(i iy (i

Xy Xz X3 Xn—1 Xn

1 Y2 73 Yn-1 Yn
(iv)

Figure 11.97

14. Forn > 1, leta, = (3}, the number of edges in K, and let
ap = 0. Find the generating function f(x) = anzo a,x".
15. For the graph G in Fig. 11.98, answer the following ques-
tions.

a) What are y(G), 8(G), and x(G)?

b) Does G have an Euler circuit or a Hamilton cycle?

¢} Is G bipartite? Is it planar?

Figure 11.98

16. a) Suppose that the complete bipartite graph X,,, con-
tains 16 edges and satisfies m < n. Determine m, » so that
K. » possesses (i) an Euler circuit but not a Hamilton cycle;
(ii)y both a Hamilton cycle and an Euler circuit.

b) Generalize the results of part (a).
17. If G = (V, E) is an undirected graph, any subgraph of G
that is a complete graph is called a cligue in G. The number of
vertices in a largest clique in G is called the cligue aumber for
G and is denoted by w(G).

a) How are x(G) and w(G) related?

b} Is there any relationship between w(G) and ,3(5)?
18. If G = (V, E) is an undirected loop-free graph, the line
graph of G, denoted L((7), is a graph with the set E as vertices,

where we join two vertices e;, e; in L(G) if and only if ¢}, e,
are adjacent edges in G.

a) Find L(G) for each of the graphs in Fig. 11.99,

b) Assuming that |V| = n and |E| = e, show that L(G)
has e vertices and (1/2) Zuev deg(v)[deg(v) — 1] =
[(1/2) ¥ ey ldeg@) Pl = e = 3oy (“4") edges.

a b w X

(@ (b)
Figure 11.99

¢) Prove that if G has an Euler ¢ircuit, then L(G) has both
an Euler circuit and a Hamilton cycle.

d) If G = K4, examine L(G) to show that the converse of
part (c) is false.

e) Provethatif G has a Hamilton cycle, then so does L(G).
f) Examine L(G) for the graph in Fig. 11.99(b) to show
that the converse of part () is false.

g) Verifythat L(G)isnonplanarfor G = Ksand G = Kj .
h) Give an example of a graph G, where G is planar but
L(G) is not.

19. Explain why each of the following polynomials in A cannot

be a chromatic polynomial.

a) A -5+ T2 — 60 +3
b) 343 —4x2 + A
c) AY =3 4542 — 4

20. a) Forall x, y € Z', prove that x>y — xy? is even.

b) Let V ={1,2,3,...,8,9}). Construct the loop-free
undirected graph G = (V, E) as follows: For m, ne V,
m # n, draw the edge {m, n} in G if 5 divides m +n or
n —n.

¢) Given any three distinct positive integers, prove that
there are two of these, say x and y, where 10 divides
Xy —xy°.

21. a) For n = 1, let P,_ denote the path made up of n ver-
tices and n — 1 edges. Let a,, be the number of independent
subsets of vertices in P,_;. (The empty subset is consid-
ered one of these independent subsets.) Find and solve a
recurrence relation for a,,.



b) Determine the number of independent subsets (of ver-
tices) in each of the graphs G, G», and G5, of Fig. 11.100.

¢) For each of the graphs H,, H,, and H,, of Fig. 11.101,
find the number of independent subsets of vertices.

d) Let G = (V, E) be a loop-free undirected graph with
V ={u, »2, ..., v} and where there are m independent
subsets of vertices. The graph G’ = (V', E”) is constructed
from G as follows: V' =V U {xy, x2, . . ., x,}, with no x,
inV,forall 1 <i <s;and E' = EU{{x;, v;}[]1 i <3,
1 < j <r). How many subsets of V' are independent?

1 1 1
7 2 z2
5 6 3 n+1
3
4 n-—1
4 5
(Gy) (Gy) (G3) n
Figure 11.100
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(Hy) 4 (H2)
1
n+1 /\ n+2
7.
(H3) &

Figure 11,101

22. Suppose that G = (V, E) is a loop-free undirected graph.

If G is 5-regular and | V| = 10, prove that G is nonplanar.
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Trees

C(mtinuing our study of graph theory, we shall now focus on a special type of graph called
a tree. First used in 1847 by Gustav Kirchhoff (1824-1887) in his work on electrical
networks, trees were later redeveloped and named by Arthur Cayley (1821-1895). In 1857
Cayley used these special graphs in order to enumerate the different isomers of the saturated
hydrocarbons C,Ha,.2, n € Z™.

With the advent of digital computers, many new applications were found for trees. Special
types of trees are prominent in the study of data structures, sorting, and coding theory, and
in the solution of certain optimization problems.

12.1
Definitions, Properties, and Examples

Definition 12.1 Let G = (V, E) be a loop-free undirected graph. The graph G is called a tree’ if G is
connected and contains no cycles.

In Fig. 12.1 the graph G, is a tree, but the graph G is not a tree because it contains the
cycle {a, b}, {b, ¢}, {c, a}. The graph G3 is not connected, so it cannot be a tree. However,
each component of G is a tree, and in this case we call G a forest.

2 b a b g____t.y
C C C
d d d
e g e
f f f
(61 ) (GZ) (GE)
Figure 12.1

TAs in the case of graphs, the terminology in the study of trees is not standard and the reader may find some
differences from one textbook to another.

581
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When a graph is a tree we write T instead of G to emphasize this structure.

In Fig. 12.1 we see that GG, is a subgraph of G, where G| contains all the vertices of G,
and G 1s a tree. In this situation G, is a spanning tree for G;. Hence a spanning tree for
a connected graph is a spanning subgraph that is also a tree. We may think of a spanning
tree as providing minimal connectivity for the graph and as a minimal skeletal framework
holding the vertices together. The graph G3 provides a sparning forest for the graph G,.

We now examine some properties of trees.

THEOREM 12.1

If @, b are distinct vertices in a tree T = (V, E), then there is a unique path that connects
these vertices.

Proof: Since T is connected, there is at least one path in T that connects a and b. If there
were more, then from two such paths some of the edges would form a cycle. But T has no
cycles.

THEOREM 12.2

If G = (V, E) is an undirected graph, then G is connected if and only if G has a spanning
tree.

Proof: 1f G has a spanning tree T, then for every pair a, & of distinct vertices in V a subset of
the edges in T provides a (unique) path between a and b, and so G is connected. Conversely,
if G is connected and G is not a tree, remove all loops from G. If the resulting subgraph G,
is not a tree, then Gy must contain a cycle C;. Remove an edge ¢, from C; and let G, =
G, — e;. If G5 contains no cycles, then G is a spanning tree for G because G, contains
all the vertices in G, is loop-free, and is connected. If G, does contain a cycle —say, Co—
then remove an edge e; from C» and consider the subgraph G; = G; — e = G — {e;, 3}
Once again, if G; contains no cycles, then we have a spanning tree for G. Otherwise we
continue this procedure a finite number of additional times until we arrive at a spanning
subgraph of G that is loop-free and connected and contains no cycles (and, consequently,
is a spanning tree for G).

Figure 12.2 shows three nonisomorphic trees that exist for five vertices. Although they
are not isomorphic, they all have the same number of edges, namely, four. This leads us to
the following general result.

(n) (T2) (T3)

Figure 12.2

THEOREM 12.3

Ineverytree T = (V, E), |V| = |E| + 1.
Proof: The proof is obtained by applying the alternative form of the Principle of Mathe-
matical Induction to |E|. If |E£| = 0, then the tree consists of a single isolated vertex, as in
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Fig. 12.3(a). Here |V| = 1 = | E| + 1. Parts (b) and {(c) of the figure verify the result for the
cases where |E| = 1 or 2,

o /
(a) (b) ©
Figure 12.3 Figure 124

Assume the theorem is true for every tree that contains at most k edges, where & > 0.
Now consider atree T = (V, E), as in Fig. 12.4, where |E| = k + 1. [The dotted edge(s)
indicates that some of the tree doesn’t appear in the figure.] If, for instance, the edge with
endpoints y, 7 is removed from 7', we obtain two subtrees, T) = (V|, E)and T; = (V,, E»),
where |V| = |V|| 4+ |Va| and |E;| 4+ |E2| + 1 = |E|. (One of these subtrees could con-
sist of just a single vertex if, for example, the edge with endpoints w, x were removed.)
Since 0 < |Ey| <k and 0 <|E,| <k, it follows, by the induction hypothesis, that
|Eil+ 1= |Vil,fori = 1, 2. Consequently, |V| = |Vi| + |V2| = (|E1|+ ) + (|E2| + D) =
(E1|+ |E2l + 1)+ 1 = |E| + 1, and the theorem follows by the alternative form of the
Principle of Mathematical Induction.

As we examine the trees in Fig. 12.2 we also see that each tree has at least two pendant
vertices — that is, vertices of degree 1. This is also true in general.

THEOREM 12.4

EXAMPLE 12.1

Forevery tree T = (V, E),if |V| > 2, then T has at least two pendant vertices.

Proof: Let |V| = n > 2. From Theorem 12.3 we know that |E| = n — 1, so by Theorem 11.2
it follows that 2(n — 1) = 2|E| = Zvev deg(v). Since T is connected, we have deg(v) > 1
for all v € V. If there are £ pendant vertices in 7', then each of the other n — k vertices has
degree at least 2 and

2n— 1) =2|E| =) deg(v) = k+2(n — k).

veV

From this we see that R2in-D=k+20—-k)]=[Cn-2)=(k+2n-20)]=
[--2 = —k] = [k = 2], and the result is consequently established.

In Fig. 12.5 we have two trees, each with 14 vertices (labeled with C’s and H’s) and 13
edges. Each vertex has degree 4 (C, carbon atom) or degree 1 (H, hydrogen atom). Part (b) of
the figure has a carbon atom (C) at the center of the tree. This carbon atom is adjacent to four
vertices, three of which have degree 4. There is no vertex (C atom) in part (a) that possesses
this property, so the two trees are not isomorphic. They serve as models for the two chemical
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EXAMPLE 12.2

isomers that correspond with the saturated’ hydrocarbon C4Hjg. Part (a) represents n-butane
(formerly called butane); part (b) represents 2-methyl propane (formerly called isobutane).

H
|
H—C—H H
| |
H—C—H H H—C—H H
| | | |
H-—C—H H—C C C—H
| | | |
H—C—H H H H
|
H
(a) {o)]
Figure 12.5

A second result from chemistry is'given in the following example.

If a saturated hydrocarbon [in particular, an acyclic (no cycles), single-bond hydrocarbon —
called an alkane] has n carbon atoms, show that it has 2n + 2 hydrogen atoms.

Considering the saturated hydrocarbon as a tree 7 = (V, E), let k equal the number of
pendant vertices, or hydrogen atoms, in the tree. Then with a total of n 4 k vertices, where
each of the n carbon atoms has degree 4, we find that

dn+k =) deg(v) =2/E|=2(1V| - ) =2(n + k - 1),

veV

and

dn+k=2m+k-1D=k=2n+2.

We close this section with a theorem that provides several different ways to characterize
trees.

THEOREM 12.5

The following statements are equivalent for a loop-free undirected graph G = (V, E).

a) G is a tree.

b) G is connected, but the removal of any edge from G disconnects G into two subgraphs
that are trees.

¢) G contains no cycles, and |V| = |E| + 1.
d) G is connected, and |V| = |E| + 1.

TThe adjective saturated is used here to indicate that for the number of carbon atoms present in the molecule,
we have the maximum number of hydrogen atoms.
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e} G contains no cycles, and if a, b € V with {a, b} ¢ E, then the graph obtained by
adding edge {a, b} to G has precisely one cycle.

Proof: We shall prove that (a) = (b), (b) = (c), and (c} = (d), leaving to the reader the

proofs for (d) = (e) and (e) = (a).

[(a) = (b)]: If G is a tree, then G is connected. So let ¢ = {a, b} be any edge of G.
Then if G — e is connected, there are at least two paths in G from a to b. But this
contradicts Theorem 12.1. Hence G — ¢ is disconnected and so the vertices in G — e
may be partitioned into two subsets: (1) vertex a and those vertices that can be reached
from @ by a pathin G — ¢; and (2) vertex b and those vertices that can be reached from
b by a pathin G — e. These two connected components ate trees because a loop or cycle
in either component would also be in G

[(b) = (c)]: If G contains a cycle, then let ¢ = {a, b} be an edge of the cycle. But
then G — ¢ is connected, contradicting the hypothesis in part (b). So G contains no
cycles, and since G is a loop-free connected undirected graph, we know that & is a tree.
Consequently, it follows from Theorem 12.3 that |V| = [E| + 1.

[(e) = (d)]: Let x(G) = r and let G|, G, ..., G, be the components of G. For 1 <
i <r,select a vertex v; € G; and add the r — 1 edges {v(, v2}, {v2, v3}, ..., {vp=1. v}
to G to form the graph G’ = (V, E’), which is a tree. Since ¢ is a tree, we know that
V| = |E’| + 1 because of Theorem 12.3. But from part (¢), |V| = |E| + 1,s0 |E| = |E’|
and r — 1 = 0. With r = 1, it follows that G is connected.

1. a) Draw the graphs of all nonisomorphic trees on six
vertices.

b) How many isomers does hexane (CgHi4) have?
2. Let T, =(Vy, E)), T» = (V,, E;) be two trees where
|E| = 17 and |V;| = 2| Vi|. Determine | V|, | V3], and | Ea|.
3. a) Let Fi = (V|, E|) be a forest of seven trees where
|E,| = 40. What is |V |?
b) If F, = (V,, E») is a forest with |V2| =62 and |E2| =
51, how many trees determine F,7
4, If G = (V, E)isaforestwith |V| = v, |E| = e, and k com-
ponents (trees), what relationship exists among v, e, and « ?
5. What kind of trees have exactly two pendant vertices?

6. a) Verify that all trees are planar.
b) Derive Theorem 12.3 from part (a) and Euler’s Theorem
for planar graphs.

7. Give an example of an undirected graph G = (V, E) where
V| =|£] 4+ 1 but & is not a tree.

8. a) If a tree has four vertices of degree 2, one vertex of de-
gree 3, two of degree 4, and one of degree 5, how many
pendant vertices does it have?

b) Ifatree T = (V, E) has vy vertices of degree 2, vy ver-
tices of degree 3, . .., and v,, vertices of degree m, what
are |V|and |E|?
9. If G = (V, E) is a loop-free undirected graph, prove that
G 1s a tree if there is a unique path between any two vertices
of G.

10. The connected undirected graph G = (V, E) has 30 edges.
What is the maximum value that |V | can have?

11, LetT = (V, E)beatree with |V| = r > 2. How many dis-
tinct paths are there (as subgraphs) in 77

12. Let G =(V, E) be a loop-free connected undirected
graph where V = {uy, va, v3, ..., .}, n > 2, deg(vy) = 1,and
deg(v,) = 2 for 2 < i < n. Prove that G must have a cycle.

13. Find two nonisomorphic spanning trees for the complete
bipartite graph K ;. How many nonisomorphic spanning trees
are there for K3 3?

14. For n € Z*, how many nonisomorphic spanning trees are
there for K; ,.?

15. Determine the number of nonidentical (though some may
be isomorphic) spanning trees that exist for each of the graphs
shown in Fig. 12.6.

16. Foreach graph in Fig. 12.7, determine how many noniden-
tical (though some may be isomorphic) spanning trees exist.
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{n

Figure 12.6

2)

3 ©

Figure 12.7

17. Let T = (V, E) be a tree where | V| = n. Suppose that for
eachv e V, deg(v) = 1 ordeg(v) > m, where m is a fixed pos-
itive integer and m > 2.

a) What is the smallest value possible for n?
b) Prove that T has at least m pendant vertices.

18. Suppose that T = (V, E) is a tree with |V| = 1000. What
is the sum of the degrees of all the vertices in 7?

19. Let G = (V, E)be aloop-free connected undirected graph.
Let H be a subgraph of G. The complement of H in G is the
subgraph of G made up of those edges in G that are not in H
(along with the vertices incident to these edges).

a) If 7 is a spanning tree of G, prove that the complement
of T in G does not contain a cut-set of G.

b) If C is a cut-set of G, prove that the complement of C
in G does not contain a spanning tree of G.

20. Complete the proof of Theorem 12.5.

21. Alabeled tree is one wherein the vertices are labeled. If the
tree has n vertices, then {1, 2, 3, ..., n} is used as the set of
labels. We find that two trees that are isomorphic without labels
may become nonisomorphic when labeled. In Fig. 12.8, the first
two trees are isomorphic as labeled trees. The third tree is iso-
morphic to the other two if we ignore the labels; as a labeled
tree, however, it is not isomorphic to either of the other two.

(iif}

Figure 12.8

The number of nonisomorphic trees with n labeled ver-
tices can be counted by setting up a one-to-one correspon-
dence between these trees and the n" 2 sequences (with repe-
titions allowed) x;, x3, ..., x,_> whose entries are taken from
{1,2,3,...,n}. If T is one such labeled tree, we use the fol-
lowing algorithm to find its corresponding sequence — called
the Priifer code for the tree. (Here T has at least one edge.)



Step 1: Set the counter i to L.

Step 2: Set T(i) = T.

Step 3: Since a tree has at least two pendant vertices, select
the pendant vertex in T (i) with the smallest label y,. Now
remove the edge {x,, y,} from T ({) and use x, for the ith
component of the sequence.

Step 4: If i = n — 2, we have the sequence corresponding
to the given labeled tree T(1). If i # n — 2, increase i by 1,
set T(i) equal to the resulting subtree obtained in step (3),
and return to step (3).

a) Find the six-digit sequence (Priifer code) for trees (i)
and (iii) in Fig. 12.8.

b) If v is a vertex in T, show that the number of times the
label on v appears in the Priifer code x, xs, ..
deg(v) — 1.

¢) Reconstruct the labeled tree on eight vertices that is as-
sociated with the Priifer code 2, 6, 5, 5, 5, 5.

d) Develop an algorithm for reconstructing a tree from a
given Priifer code x|, x, ...,

c, Xpoo is

22. Letn € Z%, n = 3. If vis a vertex in K, how many of the

n

n-2

spanning trees of K, have v as a pendant vertex?

12.2
Rooted Trees
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23. Characterize the trees whose Priifer codes
a) contain only one integer, or
b) have distinct integers in all positions.

24. Show that the number of labeled trees with n vertices, k
of which are pendant vertices, is (})(n — k)!S(r — 2, n — k) =
m!/EYSh —2,n — k), where S(n — 2, n — k) is a Stirling
number of the second kind. (This result was first established
in 1959 by A. Rényi.)

25. Let G = (V, E) be the undirected graph in Fig. 12.9. Show
that the edge set E can be partitioned as E; U E; so that the sub-
graphs G = (V, E)), Gz = (V, E,) are 1somorphic spanning
trees of G.

Figure 12.9

We turn now to directed trees. We find a variety of applications for a special type of directed

tree called a rooted tree.

Definition 12.2

If G is a directed graph, then G is called a directed tree if the undirected graph associated

with G is a tree. When G is a directed tree, G is called a rooted tree if there is a unique
vertex r, called the roor, in G with the in degree of r = id(r) = 0, and for all other vertices
v, the in degree of v = id(v) = 1.

The tree in part (a) of Fig. 12.10 is directed but not rooted; the tree in part (b) is rooted

with root r.

a b
C
e
g
(@

Figure 12.10
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| EXAMPLE 123

EXAMPLE 12.4

We draw rooted trees as in Fig. 12.10(b) but with the directions understood as going
tfrom the upper level to the lower level, so that the arrows aren’t needed. In a rooted tree,
a vertex with out degree 0 is called a leaf (or terminal verfex.) Vertices u, v, x, y, 7 are
leaves in Fig, 12.10(b). All other vertices are called branch nodes (or internal vertices).

Consider the vertex s in this rooted tree [Fig. 12.10(b)]. The path from the root, r, to s is
of length 2, so we say that s is at level 2 in the tree, or that s has level number 2. Similarly, x
is at level 3, whereas y has level number 4. We call s a child of n, and we call n the parent
of 5. Vertices w, y, and z are considered descendants of s, n, and r, while s, n, and r are
called ancestors of w, y, and z. In general, if v, and v, are vertices in a rooted tree and v,
has the smaller level number, then vy is an ancestor of v, (or v; is a descendant of vy) if
there is a (directed) path from v, to v,. Two vertices with a common parent are referred to
as siblings. Such is the case for vertices g and s, whose common parent is vertex . Finally,
if vy is any vertex of the tree, the subtree at v; is the subgraph induced by the root v; and
all of its descendants (there may be nene).

In Fig. 12.11(a) a rooted tree is used to represent the table of contents of a three-chapter
(C1, C2, C3) book. Vertices with level number 2 are for sections within a chapter; those
at level 3 represent subsections within a section. Part (b) of the figure displays the natural
order for the table of contents of this book.

Book Book

SN

51.2
c2
/ \ / Nk
$1.2 1832 833 531
$3.2
/// \\\ 53.2.1
$3.2.2
$3.21 $3.22 3.3

(a) (b)
Figure 12.11

The tree in Fig. 12.11(a) suggests an order for the vertices if we examine the subtrees
at C1, C2, and C3 from left to right. (This order will recur again in this section, in a more
general context.) We now consider a second example that provides such an order.

In the tree T shown in Fig. 12.12, the edges (or branches, as they are often called) leaving
each internal vertex are ordered from left to right. Hence T is called an ordered rocted tree.
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1231 1232

Figure 12.12

We labet the vertices for this tree by the following algorithm,
Step 1: First assign the root the label (or address) 0.
Step 23 Next assign the positive integers 1, 2, 3, . .. to the vertices at level 1, going ™
from left to right.
‘Step 3; Now et v be an int¢rnal vertex at level # > 1, and let vy, vy, . . ., v denote
the children of # (going froin left to right). If @ is the label assigned to vertex v,
assign the labels 1, 4.2, . ., a.k to the children vy, ¥, . . ., ¥, respectively.

Consequently, each vertex in 7', other than the root, has a label of the form
a.a.as . . ... a, if and only if that vertex has level number 7. This is known as the universal
address system.

This system provides a way to order all vertices in T. If u and v are two vertices

in T with addresses b and c, respectively, we define b <cif (@) b=aj.az..... a,, and
c=and. . ... O]« oo v ay, Wwithm <n;or{b)yb=a,.ax. .. .. T7 20 SRR y and
c=aay .. ... QX2 oo z, where x|, x; € Z" and x| < x3.

For the tree under consideration, this ordering yields

0 1.2 123 13 r>2.1 —3
1 12.1 1231 14 | 22 31
L— 122 1232— 2 — 9011 35

Since this resembles the alphabetical ordering in a dictionary, the order is called the /exi-
cographic, or dictionary, order.

We now consider an application of a rooted tree in the study of computer science.

a) A rooted tree is a binary rooted tree if for each vertex v, od(v) = 0, 1, or 2—that is,
if v has at most two children. If od(v) = 0 or 2 for all v € V, then the rooted tree is
called a complete binary tree. Such a tree can represent a binary operation, as in parts
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(a) and (b) of Fig. 12.13. To avoid confusion when dealing with a noncommutative
operation o, we label the root as o and require the result to be a o b, where a is the left
child, and & the right child, of the root.

+R(a+b) —fla—b)
a b a b
(a) (b
Figure 12.13

b) In Fig. 12.14 we extend the ideas presented in Fig. 12.13 in order to construct the
binary rooted tree for the algebraic expression

(T —a)/5) = ((a+b)13),

7 a
(a)
/
5
7 a a b
{b) (d) (e}
Figure 12.14

where = denotes multiplication and 1 denotes exponentiation. Here we construct this
tree, as shown in part (e) of the figure, from the bottom up. First, a subtree for the
expression 7 — a is constructed in part (a) of Fig. 12.14. This is then incorporated (as
the left subtree for /) in the binary rooted tree for the expression (7 — a)/5 in Fig.
12.14 (b). Then, in a similar way, the binary rooted trees in parts {(¢) and (d) of the figure
are constructed for the expressions a + b and (a + b) 1 3, respectively. Finally, the
two subtrees in parts (b) and (d) are used as the left and right subtrees, respectively, for
x and give us the binary rooted tree [in Fig. 12.14(¢)] for ((7 — a)}/5) = ((a + b) 1 3).

The same ideas are used in Fig. 12.15, where we find the binary rooted trees for the
algebraic expressions

(a — (3/b)) + 5 [in part (a)] and a — (3/(b + 5)) [in part (b)].

¢) In evaluating r 4 (uv)/(w + x — y°) in certain procedural languages, we write the
expression in the form ¢ + (u % v)/{(w + x — y 1 ). When the computer evaluates
this expression, it performs the binary operations (within each parenthesized part)
according to a hierarchy of operations whereby exponentiation precedes multiplication
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T4 (U v/ w y T 2)

U
®®O G

Figure 12.15 Figure 12.16

X

Il
@0

and division, which in turn precede addition and subtraction. In Fig. 12.16 we number
the operations in the order in which they are perfermed by the computer. For the
computer to evaluate this expression, it must somehow scan the expression in order
to perform the operations in the order specified.

Instead of scanning back and forth continuously, however, the machine converts
the expression into a notation that is independent of parentheses. This is known as
Polish notation, in honor of the Polish (actually Ukrainian) logician Jan Lukasiewicz
(1878-1956). Here the infix notation a o b for a binary operation o becomes o ab, the
prefix (or Polish) notation. The advantage is that the expression in Fig. 12.16 can be
rewritten without parentheses as

+t/xuv+w—x1 vz,

where the evaluation proceeds from right to left. When a binary operation is encoun-
tered, it is performed on the two operands to its right. The result is then treated as one
of the operands for the next binary operation encountered as we continue to the left.
For instance, given the assignments t =4, u =2, v =3, w=1,x=9,y=2,7=3,
the following steps take place in the evaluation of the expression

+t/xuv+w—x 1 yz
H+4/%x2341-9123

N —~
243=28
2) +4/%23+1-98
Le——
9-8=1
3 +4/%x23+11
[ ——
1+1=2
4) +4 /%232
\_—V—/
2%x3=6
5) +4 /62
——
6/2=3
6) +43
—
4 +3=7

So the value of the given expression for the preceding assignments is 7.

The use of Polish notation is important for the compilation of computer programs and
can be obtained by representing a given expression by a rooted tree, as shown in Fig. 12.17.
Here each variable (or constant) is used to label a leaf of the tree. Each internal vertex is
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labeled by a binary operation whose left and right operands are the left and right subtrees
it determines. Starting at the root, as we transverse the tree from top to bottom and left to
right, as shown in Fig. 12.17, we find the Polish notation by writing down the labels of the
vertices in the order in which they are visited.

Figure 12.17

The last two examples illustrate the importance of order. Several methods exist for
systematically ordering the vertices in a tree. Two of the most prevalent in the study of data
structures are the preorder and postorder. These are defined recursively in the following

definition.
Definition 12.3 Let T = (V, E) be arooted tree with root . If 7 has no other vertices, then the root by itself
constitutes the preorder and postorder traversals of T. If |V | > 1,1let Ty, 15, T, ..., T}

denote the subtrees of T as we go from left to right (as in Fig. 12.18).

T T T3 Ty
Figure 12.18

a) The preorder traversal of T first visits r and then traverses the vertices of T; in
preorder, then the vertices of 75 in preorder, and so on until the vertices of 7} are
traversed in preorder.

b) The postorder traversal of T traverses in postorder the vertices of the subtrees Ty,
T, ..., T; and then visits the root.
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We demonstrate these ideas in the following example.

Consider the rooted tree shown in Fig. 12.19.

1" 12 13 14 15 16 17
Figure 12.19

a) Preorder: After visiting vertex 1 we visit the subtree 77 rooted at vertex 2. After
visiting vertex 2 we proceed to the subtree rooted at vertex 5, and after visiting vertex
5 we go to the subtree rooted at vertex 11. This subtree has no other vertices, so we
visit vertex 11 and then return to vertex 5 from which we visit, in succession, vertices
12, 13, and 14. Following this we backtrack (14 to 5 to 2 to 1) to the root and then
visit the vertices in the subtree 75 in the preorder 3, 6, 7. Finally, after returning to the
root for the last time, we traverse the subtree 73 in the preorder 4, 8,9, 10, 15, 16, 17.
Hence the preorder listing of the vertices in this tree is 1, 2, 5, 11, 12, 13, 14, 3, 6, 7,
4,8,9,10, 15, 16, 17.

In this ordering we start at the root and build a path as far as we can. At each level
we go to the leftmost vertex (not previously visited) at the next level, until we reach a
leaf £. Then we backtrack to the parent p of this leaf £ and visit £’s sibling s (and the
subtree that 5 determines) directly on its right. If no such sibling s exists, we backtrack
to the grandparent g of the leaf £ and visit, if it exists, a vertex u that is the sibling of
p directly to its right in the tree. Continuing in this manner, we eventually visit (the
first time each one is encountered) all of the vertices in the tree.

The vertices in Figs. 12.11(a), 12.12, and 12.17 are visited in preorder. The preorder
traversal for the tree in Fig. 12.11(a) provides the ordering in Fig. 12.11(b). The
lexicographic order in Example 12.4 arises from the preorder traversal of the tree in
Fig. 12.12.

b} Postorder: For the postorder traversal of a tree, we start at the root  and build the
longest path, going to the leftmost child of each internal vertex whenever we can. When
we arrive at a leaf £ we visit this vertex and then backtrack to its parent p. However,
we do not visit p until after all of its descendants are visited. The next vertex we visit is
found by applying the same procedure at p that was originally applied at r in obtaining
£ —except that now we first go from p to the sibling of £ directly to the right {of £).
And at no time is any vertex visited more than once or before any of its descendants.

For the tree given in Fig. 12,19, the postorder traversal starts with a postorder
traversal of the subtree 7| rooted at vertex 2. This yields the listing 11, 12, 13, 14, 5,
2. We proceed to the subtree T, and the postorder listing continues with 6, 7, 3. Then
for T3 we find 8, 9, 15, 16, 17, 10, 4 as the postorder listing. Finally, vertex 1 is visited.
Consequently, for this tree, the postorder traversal visits the vertices in the order 11,
12,13,14,5,2,6,7,3,8,9, 15,16, 17, 10,4, 1.
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In the case of binary rooted trees, a third type of tree traversal called the inorder traversal
may be used. Here we do not consider subtrees as first and second, but rather in terms of
left and right. The formal definition is recursive, as were the definitions of preorder and
postorder traversals.

Definition 12.4 Let T = (V, E) be a binary rooted tree with vertex r the root.

1) If |V| = 1, then the vertex r constitutes the inorder traversal of T.

2) When |V| > 1, let Ty and 7g denote the left and right subtrees of T. The inorder
traversal of T first traverses the vertices 71, in inorder, then it visits the root r, and
then it traverses, in inorder, the vertices of Tg.

We realize that here a left or right subtree may be empty. Also, if v is a vertex in such a
tree and od(v) = I, then if w is the child of v, we must distinguish between w’s being the
left child and its being the right child.

EXAMPLE 12.7 As a result of the previous comments, the two binary rooted trees shown in Fig. 12.20

are not considered the same, when viewed as ordered trees. As rooted binary trees they
are the same. (Each tree has the same set of vertices and the same set of directed edges.)
However, when we consider the additional concept of left and right children, we see that
in part (a) of the figure vertex v has right child a, whereas in part (b) vertex a is the left
child of v. Consequently, when the difference between left and right children is taken into
consideration, these trees are no longer viewed as the same tree.

r r
v b v b
a C a C
(a} (b)
Figure 12.20

In visiting the vertices for the tree in part (a) of Fig. 12.20, we first visit in inorder the
left subtree of the root r. This subtree consists of the root v and its right child a. (Here the
left child is null, or nonexistent.) Since v has no left subtree, we visit in inorder vertex v
and then its right subtree, namely, a. Having traversed the left subtree of r, we now visit
vertex r and then traverse, in inorder, the vertices in the right subtree of r. This results in cur
visiting first vertex b (because & has no left subtree) and then vertex ¢. Hence the inorder
listing for the tree shown in Fig. 12.20(a)is v, a, r, b, c.

When we consider the tree in part (b) of the figure, once again we start by visiting, in
inorder, the vertices in the left subtree of the root », Here, however, this left subtree consists
of vertex v (the root of the subtree)} and its left child a. (In this case, the right child of v is
null, or nonexistent.) Therefore this inorder traversal first visits vertex a (the left subtree
of v), and then vertex v. Since v has no right subtree, we are now finished visiting the left
subtree of r, in inorder. So next the root r is visited, and then the vertices of the right subtree
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of r are traversed, in inorder. This results in the inorder listing &, v, r, b, ¢ for the tree shown
in Fig. 12.20(b).

We should note, however, that for the preorder traversal in this particular example,” the
same result is obtained for both trees:

Preorder listing: r, v, a, b, c.

Likewise, this particular example is such that the postorder traversal for either tree gives us
the following:

Postorder listing: a, v, c, b, r.

It is only for the inorder traversal, with its distinctions between left and right children and
between left and right subtrees, that a difference occurs. For the trees in parts (a) and (b) of
Fig. 12.20 we found the respective inorder listings to be

@v,a,r, b, ¢ and Mda, v, rb,c.

If we apply the inorder traversal to the binary rooted tree shown in Fig. 12.21, we find that
the inorder listing for the vertices is p, j.q, f,c. k, g, a,d,r, b, h,s,m, e, i,t,n, u.

Iel q s t u
Figure 12.21

Our prext example shows how the preorder traversal can be used in a counting problem
dealing with binary trees.

For n > 0, consider the complete binary trees on 2n + 1 vertices. The cases for O <n <3
are shown in Fig. 12.22. Here we distinguish left from right. So, for example, the two

-‘-A note of caution! If we interchange the order of the two existing children (of a certain parent) in a binary
rooted tree, then a change results in the preorder, postorder, and inorder traversals. If one child is “null,” however,
then only the inorder traversal changes.

*This example uses material developed in the optional Sections 1.5 and 10.5. It may be omitted with no loss
of continuity.
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complete binary trees for n = 2 are considered distinct. [If we do not distinguish left from
right, these trees are (isomorphic and) no longer counted as two different trees. ]

(n=0) n=1 n=2)
r r
e r
A a b a b
a b
c d c d
r r,a b ra b cd r,a,c db
L, R LRLR L,L R R
(n=3)

r.acdbef r.acefdb ra ¢ defb r,a b c def rabcefd
L,LLR R LR L,L,LRRR L,LLRLRR L,R LR, LR LR L LR R

Figure 12.22

Below each tree in the figure we list the vertices for a preorder traversal. In addition, for
1 <=n <3, wefind alist of n L’s and n R’s under each preorder traversal. These lists are
determined as follows. The first tree for n = 2, for instance, has the list L, R, L, R because,
after visiting the root r, we go to the left (L) subtree rooted at @ and visit vertex a. Then we
backtrack to r and go to the right (R) subtree rooted at b. After visiting vertex b we go to
the left (L) subtree of b rooted at ¢ and visit vertex ¢. Then, lastly, we backtrack to b and
go to its right (R) subtree to visit vertex d. This generates the list L, R, L, R and the other
seven lists of L's and R’s are obtained in the same way.

Since we are traversing these trees in preorder, each list starts with an L. There is an
equal number of L'’s and R’s in each list because the trees are complete binary trees. Finally,
the number of R’s never exceeds the number of L’s as a given list is read from left to right —
again, because we have a preorder traversal. Should we replace each L by a 1 and each R
by a —1, for the five trees for n = 3, we find ourselves back in part (a) of Example 1.43,
where we have one of our early examples of the Catalan numbers. Hence, for n > 0, we
see that the number of complete binary trees on 2n + 1 vertices is ;i——] (2””) the nth Catalan
number. [Note that if we prune the five trees for n = 3 by removing the four leaves for each
tree, we obtain the five rooted ordered binary trees in Fig, 10.18.]

The notion of preorder now arises in the following procedure for finding a spanning tree
for a connected graph.

Let G = (V, E) be a loop-free connected undirected graph with r € V. Starting from r,
we construct a path in G that is as long as possible. If this path includes every vertex in V,
then the path is a spanning tree T for G and we are finished. If not, let x and y be the last
two vertices visited along this path, with y the last vertex. We then return, or backtrack, to
the vertex x and construct a second path in G that is as long as possible, starts at x, and
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doesn’t include any vertex already visited. If no such path exists, backtrack te the parent
p of x and see how far it is possible to branch off from p, building a path (that is as long
as possible and has no previously visited vertices) to a new vertex y, (which will be a
new leaf for T'). Should all edges from the vertex p lead to vertices already encountered,
backtrack one level higher and continue the process. Since the graph is finite and connected,
this technique, which is called backtracking, or depth-first search, eventually determines a
spanning tree T for G, where r is regarded as the root of 7. Using 7', we then order the
vertices of G in a preorder listing.

The depth-first search serves as a framework around which many algorithms can be
designed to test for certain graph properties. One such algorithm will be examined in detail
in Section 12.5.

One way to help implement the depth-first search in a computer program is to assign a
fixed order to the vertices of the given graph G = (V, E). Then if there are two or more
vertices adjacent to a vertex v and none of these vertices has already been visited, we shall
know exactly which vertex to visit first. This order now helps us to develop the foregoing
description of the depth-first search as an algorithm.

Let G = (V, E) be a loop-free connected undirected graph where |V| = n and the ver-
tices are ordered as vy, va, V3, . .., U,. To find the rooted ordered depth-first spanning tree
for the prescribed order, we apply the following algorithm, wherein the variable v is used
to store the vertex presently being examined.

Depth-First Search Algorithm

Step 1: Assign v to the variable v and initialize T as the tree consisting of just
this one vertex, {The vertex v; will be the root of the spanning tree that develops.)
Visit vy.

Step 2: Select the smallest subscript i, for 2 <i <n, such that {v, v;} € E and v,
has not already been visited,

I no such subscripg is found, then go to step (3). Otherwise, perform the follow-
ing: (1) Attach the edge {v, v/} to the tree T and visit v;; (2) Assign v; to v; and
(3) Return to step (2).

Step 3: f v = wy, the tree T is the (rooted ordered) spanning tree for the order
specified.

Step 4: For v # vy, backtrack from v o its parent u in 7", Then assign » to v and
return to step (2).

We now apply this algorithm to the graph G = (V, E) shown in Fig. 12.23(a). Here the
order for the vertices is alphabetic: a, b, ¢, d, e, f, g, h, i, j.

First we assign the vertex a to the variable v and initialize T as just the vertex a (the
root). We visit vertex a. Then, going to step (2), we find that the vertex b is the first vertex
w such that {a¢, w} € E and w has not been visited earlier. So we attach edge {a, b} to T
and visit b, assign b to v, and then return to step (2).

At v = b we find that the first vertex (not visited earlier) that provides an edge for the
spanning tree is d. Consequently, the edge {b, d} is attached to T and d is visited, then d is
assigned to v, and we again return to step (2).
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(a G=(V E)

Figure 12.23

This time, however, there is no new vertex that we can obtain from d, because vertices
a and b have already been visited. So we go to step (3). But here the value of v is d, not a,
and we go to step (4). Now we backtrack from d, assigning the vertex & to v, and then we
return to step (2). At this time we add the edge {b, ¢} to T and visit e.

Continuing the process, we attach the edge {e, f} (and visit f) and then the edge {e, i}
(and visit k). But now the vertex s has been assigned to v, and we must backtrack from
hto e to b to a. When v is assigned the vertex a this (second) time, the new edge {a, c}
is obtained and vertex c is visited. Then we proceed to attach the edges {c, g}, {g, i}, and
{g, j} (visiting the vertices g, i, and j, respectively). At this point all of the vertices in G
have been visited, and we backtrack from j to g to c to a. With v = g once again we return
to step (2) and from there to step (3), where the process terminates.

The resulting tree T = (V, E;) is shown in part (b) of Fig. 12.23. Part (¢) of the figure
shows the tree 7" that results for the vertex ordering: j,i,h, g, f,e,d,c, b, a.

A second method for searching the vertices of a loop-free connected undirected graph is
the breadth-first search. Here we designate one vertex as the root and fan out to all vertices
adjacent to the root. From each child of the root we then fan out to those vertices (not
previously visited) that are adjacent to one of these children. As we continue this process,
we never list a vertex twice, s0 no cycle is constructed, and with G finite the process
eventually terminates.

We actually used this technique earlier in Example 11.28 of Section 11.5.

A certain data structure proves useful in developing an algorithm for this second searching
method. A gueue is an ordered list wherein items are inserted at one end (called the rear) of
the list and deleted at the other end (called the front). The first item inserted in the queue is
the first item that can be taken out of it. Consequently, a queue is referred to as a “first-in,
first-out,” or FIFO, structure.

As in the depth-first search, we again assign an order to the vertices of our graph.

We start with a loop-free connected undirected graph G = (V, E), where |V| = n and
the vertices are ordered as vy, va. vs, . . ., v,. The following algorithm generates the (rooted
ordered) breadth-first spanning tree T of G for the given order.

Breadth-First Search Algorithm

Step 1: Insert vertex v at the rear of the (initially empty) queue @ and initialize 7
as the tree made up of this one vertex v; (the root of the final version of T'). Visit v;.
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Step 2: While the queue  is not empty, delete the vertex v from the front of .
Now examine the vertices v; (for 2 < i < n) that are adjacent to v —in the specified
order. If v; has not been visited, perform the following: (1) Insert v; at the rear of
@ (2) Attach the edge {v, v} to T'; and (3) Visit vertex v;. {If we examine all of
the vertices previously in the queue Q and obtain no new edges, then the tree 7
{generated to this point) is the (rooted ordered) spanning tree for the given order.}

We shall employ the graph of Fig. 12.23(a) with the prescribed order a, b, ¢, d, ¢, f. g, h,
i, j toillustrate the use of the algorithm for the breadth-first search.

Start with vertex a. Insert a at the rear of (the presently empty) queue @, initialize T as
this one vertex (the root of the resulting tree), and visit vertex a.

In step (2) we now delete a from (the front of) Q and examine the vertices adjacent to
a — namely, the vertices b, ¢, d. (These vertices have not been previously visited.) This
results in our (i) inserting vertex b at the rear of (, attaching the edge {a, b} to T, and
visiting vertex b; (ii} inserting vertex c¢ at the rear of Q (after b), attaching the edge {a, ¢}
to T, and visiting vertex ¢; and (iii) inserting vertex d at the rear of @ (after c), attaching
the edge {a. d} to T, and visiting vertex d.

Since the queue @ is not empty, we execute step (2) again. Upon deleting vertex b from
the front of @), we now find that the only vertex adjacent to & (that has not been previously
visited) is e. So we insert vertex e at the rear of Q (after d), attach the edge {b, e} to T,
and visit vertex e. Continuing with vertex ¢ we obtain the new (unvisited) vertex g. So we
insert vertex g at the rear of Q (after ), attach the edge {c¢, g} to T, and visit vertex g.
And now we delete vertex d from the front of Q. But at this point there are no unvisited
vertices adjacent to d, so we then delete vertex e from the front of Q. This vertex leads
to the following: inserting vertex f at the rear of Q (after g), attaching the edge {e, f} to
T, and visiting vertex f. This is followed by: inserting vertex h at the rear of Q (after f),
attaching edge {e, k) to T, and visiting vertex /. Continuing with vertex g, we insert vertex
[ at the rear of Q (after k), attach edge {g, i} to T, and visit vertex {, and then we insert
vertex j at the rear of  (after ), attach edge {g, j} to T, and visit vertex j.

Once again we return to the beginning of step (2). But now when we delete (from the
front of @) and examine each of the vertices f, A4, i, and j (in this order), we find no
unvisited vertices for any of these four vertices. Consequently, the quene Q now remains
empty and the tree T in Fig. 12.24(a) is the breadth-first spanning tree for G, for the order

Figure 12.24
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prescribed. (The tree T, shown in part (b) of the figure, arises for the order j,i, 7, g, f. ¢,
d,c,b,a.)

Let us apply these ideas on graph searching to one more example.

Let G = (V, E) be an undirected graph (with loops) where the vertices are ordered as
v1, V2, ..., vy If Fig. 12.25(a) is the adjacency matrix A(G) for G, how can we use this
representation of ¢ to determine whether G is connected, without drawing the graph?

Vi Vi
Vi Vo V3 vy Vg Vg Vg vy v; vy
vy 0100001
| 1111000
vy{ 0110000 ke v V3¢ v
AlGY= V4 0100101
Vg 0001010 Vg Vg V7
V| DO OO0 10O
w| 1001000
Vs Ve
Breadth-first Depth-first
search search
(3) (b) ©
Figure 12.25

Using vy as the root, in part (b) of the figure we search the graph by means of its adjacency
matrix, using a breadth-first search. [Here we ignore the loops by ignoring any 1’s on the
main diagonal (extending from the upper left to the lower right).] First we visit the vertices
adjacent to vy, listing them in ascending order according to the subscripts on the v’s in A{G).
The search continues, and as all vertices in (& are reached,  is shown to be connected.

The same conclusion follows from the depth-first search in part (c). The tree here also
has v, as its root. As the tree branches out to search the graph, it does so by listing the first
vertex found adjacent to v; according to the row in A(G) for vy. Likewise, from v; the
first new vertex in this search is found from A(G) to be v4. The vertex v; is a leaf in this
tree because no new vertex can be visited from v;. As we backtrack to vy, row 2 of A(G)
indicates that v4 can now be visited from v;. As this process continues, the connectedness
of G follows from part (c¢) of the figure.

It is time now to return to our main discussion on rooted trees. The following definition
generalizes the ideas that were introduced for Example 12.5.

Let T = (V, E) be a rooted tree, and let m ¢ Z.

We call T an m-ary tree if od(v) < m for all v € V. When m = 2, the tree is called a
binary tree.

Ifod(v) =0orm,forallv € V, then T is called a complete m-ary tree. The special case
of m = 2 results in a complete binary tree.
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In a complete m-ary tree, each internal vertex has exactly m children. (Each leaf of this
tree still has no children.)
Some properties of these trees are considered in the following theorem.

THEOREM 12.6

EXAMPLE 12.13

EXAMPLE 12.14

Definition 12.6

Let T = (V, E) be a complete m-ary tree with |V|=n. If T has £ leaves and i inter-
nal vertices, then @) n=mi+ ;) L=m—-Di+ L and Q)i =(¢ - 1)/(m—-1)=
n—1)/m.

Proof: This proof is left for the Section Exercises.

The Wimbledon tennis championship is a single-elimination tournament wherein a player
(or doubles team) is eliminated after a single loss. If 27 women compete in the singles
champienship, how many matches must be played to determine the number-one female
player?

Consider the tree shown in Fig. 12.26. With 27 women competing, there are 27 leaves in
this complete binary tree, so from Theorem 12.6(c) the number of internal vertices (which
is the number of matches)is i = (£ — 1)/(m — 1} = Q27 — 1}/(2 — 1) = 26.

The
champion

!
!

The
finals l
The
semifinals
The

quarterfinals
Figure 12.26

A classroom contains 25 microcomputers that must be connected to a wall socket that has
four outlets. Connections are made by using extension cords that have four outlets each.
What is the least number of cords needed to get these computers set up for class use?

The wall socket is considered the root of a complete mi-ary tree for m = 4. The micro-
computers are the leaves of this tree, so £ = 25. Each internal vertex, except the root, corre-
sponds with an extension cord. So by part (¢) of Theorem 12.6, there are (£ — 1)/(m — 1) =
(25 — 1)/(4 — 1) = 8 internal vertices. Hence we need § — 1 (where the 1 is subtracted for
the root) = 7 extension cords.

If T =(V, E) is a rooted tree and 4 is the largest level number achieved by a leaf of T,
then T is said to have height h. A rooted tree T of height & is said to be balanced if the
level number of every leafin T is h — 1 or A.
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The rooted tree shown in Fig. 12.19 is a balanced tree of height 3. Tree 7’ in Fig. 12.23(c)
has height 7 but is not balanced. (Why?)

The tree for the tournament in Example 12.13 must be balanced so that the tournament
will be as fair as possible. If it is not balanced, some competitor will receive more than one
bye (an opportunity to advance without playing a match).

Before stating our next theorem, let us recall that for all x € R, | x] denotes the greatest
integer in x, or floor of x, whereas [x] designates the ceiling of x.

THEOREM 12.7

Let T = (V, E) be a complete m-ary tree of height & with £ leaves. Then ¢ < m" and
h = [log, £].
Proof: The proof that £ < m" will be established by induction on A. When i = 1, T is a tree
with aroot and m children. In this case £ = m = m”", and the result is true. Assume the result
true for all trees of height < A, and consider a tree 7 with height # and £ leaves. (The level
numbers that are possible for these leaves are 1, 2, . .., h, with at least m of the leaves at
level A.) The £ leaves of T are also the £ leaves (total) for the m subtrees T;, 1 <i <m, of
T rooted at each of the children of the root. For | < i < m, let £; be the number of leaves in
subtree 7;. (In the case where leaf and root coincide, £; = 1. Butsincem > landh — 1 > 0,
we have m"~! > 1 = ¢;.) By the induction hypothesis, ¢; <m"T) <m"~! where h(T})
denotes the height of the subtree 7;, and so € = £, + &, + -+ -+ £, < m(mh=1y = mh.
With £ < m”, we find that log,, £ <log, (m") = h, and since h € Z*, it follows that
h = [log,, £].

COROLLARY 12.1

EXAMPLE 12.15

Let T be a balanced complete m-ary tree with £ leaves. Then the height of T is [log,, £].
Proof: This proof is left as an exercise.

We close this section with an application that uses a complete ternary (m = 3) tree.

Decision Trees. There are eight coins (identical in appearance) and a pan balance. If exactly
one of these coins is counterfeit and heavier than the other seven, find the counterfeit coin.

Let the coins be labeled 1, 2, 3, . . ., 8. In using the pan balance to compare sets of coins
there are three outcomes to consider: (a) the two sides balance to indicate that the ceoins in
the two pans are not counterfeit; (b) the left pan of the balance goes down, indicating that
the counterfeit coin is in the left pan; or (c) the right pan goes down, indicating that it holds
the counterfeit coin.

In Fig. 12.27(a), we search for the counterfeit coin by first balancing coins 1, 2, 3, 4
against 3, 6, 7, 8. If the balance tips to the right, we follow the right branch from the root to
then analyze coins 5, 6 against 7, 8. If the balance tips to the left, we test coins 1, 2 against
3, 4. At each successive level, we have half as many coins to test, so at level 3 (after three
weighings) the heavier counterfeit coin has been identified.

The tree in part (b) of the figure finds the heavier coin in two weighings. The first weighing
balances coins 1, 2, 3 against 6, 7, 8. Three possible outcomes can occur: (i) the balance tips
to the right, indicating that the heavier coin is 6, 7, or 8, and we follow the right branch from
the root; (i1) the balance tips to the left and we follow the left branch to find which of 1, 2,
3 is the heavier; or (iii) the pans balance and we follow the center branch to find which of
4, 5 is heavier. At each internal vertex the label indicates which coins are being compared.
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11,2,3,4 -5,6,7,8!

1,213, 4 |5, 61 —1{7, 8}

Al o420 {30 4r 50 e 7 8l
Binary decision tree
(a) (Height = 3)

1,2,31-6,7, 8

Ternary decision tree
(b) (Height = 2}

Figure 12.27

Unlike part (a), a conclusion may be deduced in part (b) when a coin is not included in a
weighing. Finally, when comparing coins 4 and 5, because equality cannot take place we

label the center leaf with .

In this particular problem, we claim that the height of the complete ternary tree used must
be at least 2. With eight coins involved, the tree will have at least eight leaves. Consequently,
with £ > 8, it follows from Theorem 12.7 that & > [log, €] = [log, 8] = 2, so at least two
weighing are needed. If n coins are involved, the complete ternary tree will have £ leaves
where £ > n, and its height & satisfies 2 > [log; n].

[ oerosisnz [ A
g) Which vertices have level number 4?
1. Answer the following questions for the tree shown in 2. Let T = (V, E) be a binary tree. In Fig. 12.29 we find the

Fig. 12.28. subtree of T rooted at vertex p. (The dashed line coming into
vertex p indicates that there is more to the tree T than what

k p g s t
Figure 12.28

a) Which vertices are the leaves?
b) Which vertex is the root?
¢) Which vertex is the parent of g?

d) Which vertices are the descendants of ¢?

appears in the figure.) If the level number for vertex u is 37,
(a) what are the level numbers for vertices p, s, ¢, v, w, X, ¥,
and z? (b) how many ancestors does vertex « have? (c¢) how
many ancestors does vertex y have?

Figure 12.29

3. a) Write the expression (w + x — y)/( *z*) in Polish

€) Which vertices are the siblings of 5? notation, using a rooted tree.
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b) What is the value of the expression (in Polish notation)
/ta—bc+dxef,ifa=c=d=e=2b=f =47

4. Let T = (V, E) be arooted tree ordered by a universal ad-

dress system. (a) If vertex v in T has address 2.1.3.6, what is the

smallest number of siblings that v+ must have? (b) For the vertex

v in part (a), find the address of its parent. (¢) How many an-

cestors does the vertex v in part (a) have? (d) With the presence
of v in T, what other addresses must there be in the system?

3. For the tree shown in Fig. 12.30, list the vertices accord-

ing to a preorder traversal, an inorder traversal, and a postorder
traversal.

Figure 12.30

6. List the vertices in the tree shown in Fig. 12.31 when they
are visited in a preorder traversal and in a postorder traversal.

14 15 16 17
Figure 12.31

7. a) Find the depth-first spanning tree for the graph
shown in Fig. 11.72(a) if the order of the vertices is
givenas (i) a, b,c.d, e, f, g h: (i) h, g, f,e.d,c, b,a;
(ii)a, b, c,d, h. g, f.e.

b) Repeat part (a} for the graph shown in Fig. 11.85(i).

8. Find the breadth-first spanning trees for the graphs and pre-
scribed orders given in Exercise 7.

9. Let G = (V, E)be an undirected graph with adjacency ma-
trix A(G) as shown here,

PV UV U3 Vg Us Vg U7 Uy
w0 1 0 0 0 0 1 07
b3 11 01 1 0 1 0
vy 0 0 0O 1 0 I 0 1
wu| 0 1 1 0 0 0 00
vs| 0 1 0 0 0O 0 1 0
vs| 0 01 0 0 1 0 0
vz 1 1.0 0 1 0 0 O
| 0 01 0000 0|

Use a breadth-first search based on A(G) to determine whether
G is connected.

10. a) Let 7 = (V, E) be a binary tree. If |V| = n, what is the
maximum height that T can attain?
b) If T = (V, E) is a complete binary tree and |V| = n,
what is the maximum height that T can reach in this case?

11. Prove Theorem 12.6 and Corollary 12.1.

12. With m, n, i, € as in Theorem 12,6, prove that
ayn=mé—-1/m—1). by £=1[m—-Dn+1]/m.
13. a) A complete ternary (or 3-ary) tree T = (V, E) has 34

internal vertices. How many edges does T have? How
many leaves?

b) How many internal vertices does a complete S-ary tree
with 817 leaves have?

14. The complete binary tree 7 = (V, E) has V ={a, b, c,

., 1, j, k}. The postorder listing of V vyields d, e, b, h, i,
f, Jj. k. g, c, a. From this information draw T if (a) the height
of T is 3; (b) the height of the left subtree of T is 3.

15. Form > 3, a complete m-ary tree can be transformed into a
complete binary tree by applying the idea shown in Fig. 12.32.
a) Use this technique to transform the complete ternary
decision tree shown in Fig. 12.27(b).
b) If T is a complete quaternary tree of height 3, what is
the maximum height that 7" can have after it is transformed
into a complete binary tree? What is the minimum height?

¢) Answer part (b) if T is a complete m-ary tree of
height .

Figure 12.32



16. a) Atamen’s singles tennis tournament, each of 25 players
brings a can of tennis balls. When a match is played, one
can of balls is opened and used, then kept by the loser. The
winner takes the unopened can on to his next match. How
many cans of tennis balls will be opened during this tour-
nament? How many matches are played in the tournament?

b} In how many matches did the tournament champion

play?
17. What is the maximum number of internal vertices that a
complete quaternary tree of height 8 can have? What is the
number for a complete m-ary tree of height 2?7
18. On the first Sunday of 2003 Rizzo and Frenchie start a chain
letter, each of them sending five letters (to ten different friends
between them). Each person receiving the letter is to send five
copies to five new people on the Sunday following the letter’s
arrival. After the first seven Sundays have passed, what is the
total number of chain letters that have been mailed? How many
were mailed on the last three Sundays?
19. Use a complete ternary decision tree to repeat Example
12.15 for a set of 12 coins, exactly one of which is heavier (and
counterfeit).
20. Let T = (V, E) be a balanced complete m-ary tree of
height 27 > 2. If T has £ leaves and b,_, internal vertices at
level B — 1, explain why £ = m*~' 4+ (m — 1)b,,_,.
21. Consider the complete binary trees on 31 vertices. (Here
we distinguish left from right as in Example 12.9.) How many
of these trees have 11 vertices in the left subtree of the root?
How many have 21 vertices in the right subtree of the root?

22. Forn > 0, let a, count the number of complete binary trees
on 2n + 1 vertices. (Here we distinguish left from right as in
Example 12.9.) How is g,y related to ag, a1, aa, - . ., a,_.a,"?

12.3
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23. Consider the following algorithm where the input is a rocted
tree with root r.

Step 1: Push r onto the (emply) stack
Step 2: While the stack is not empty
Pop the vertex at the top of
the stack and record its label
Push the children— going from
right to left— of this vertex
onto the stack

(The stack data structure was explained in Example 10.43).

What is the output when this algorithm is applied to (a) the
tree in Fig. 12.19? (b) any rooted tree?

24. Consider the following algorithm where the input is arooted
tree with root r.

Step 1: Push r onto the (empty) stack
Step 2: While the stack is not empty
If the entry at the top of the stack is
not marked
Then mark it and push its
children —right to left— onto
the stack
Else
Pop the vertex at the top of the
stack and record its label

What is the output when the algorithm is applied to (a) the tree
in Fig. 12.197 (b) any rooted tree?

In Example 10.5, the bubble sort was introduced. There we found that the number of
comparisons needed to sort a list of n items is n(n — 1)/2. Consequently, this algorithm
determines a function A: ZT — R defined by h{n) = n(n — 1)/2. This is the (worst-case)
time-complexity function for the algorithm, and we often express this by writing 2 € O (n?).
Consequently, the bubble sort is said to require O(n?) comparisons. We interpret this to
nmean that for large n, the number of comparisons is bounded above by cn?, where ¢ is a
constant that is generally not specified because it depends on such factors as the compiler

and the computer that are used.

In this section we shall study a second method for sorting a given list of n items into
ascending order. The method is called the merge sort, and we shall find that the order of
its worst-case time-complexity function is O(n log, ). This will be accomplished in the

following manner:

1) First we shall measure the number of comparisons needed when n is a power of 2.
Our method will employ a pair of balanced complete binary trees.
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2) Then we shall cover the case for general n by using the optional material on divide-
and-conquer algorithms in Section 10.6.

For the case where # is an arbitrary positive integer, we start by considering the following
procedure.

Given a list of n items to sort into ascending order, the merge sort recursively splits the
given list and all subsequent sublists in half (or as close as possible to half) until each sublist
contains a single element. Then the procedure merges these sublists in ascending order until
the original n items have been so sorted. The splitting and merging processes can best be
described by a pair of balanced complete binary trees, as in the next example.

Merge Sort. Using the merge sort, Fig. 12.33 sorts the list 6, 2,7, 3,4, 9, 5, 1, 8 The tree
at the top of the figure shows how the process first splits the given list into sublists of size
1. The merging process is then outlined by the tree at the bottom of the figure.

/ AN

6,2,7,3,4-95,1,8

6,2,7—-3,4 9,5-1,8
2 - 3-4 9-5 1-8

T
T
"
© ~
o
~
on/

Z/\ZZ 7 3 51
\267/\4/ \5/\8/

Figure 12.33

To compare the merge sort to the bubble sort, we want to determine its (worst-case)
time-complexity function. The following lemma will be needed for this task.

LEMMA 12.1

Let L and L, be two sorted lists of ascending numbers, where L; contains »; elements, for
i =1, 2. Then L, and L; can be merged into one ascending list L using at mostn; +ns — 1
comparisons.

Proof: To merge L, L into list L, we perform the following algorithm.
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Step 1: Set L equal to the empty Hst 8.
Step 2: Cﬂmparé the first elements in Ly, L, Remove the smaller of the twe from
the list it i in and place it at the end of L.

Step 3¢ For the present lists Ly, Ly [one change is made in one of these hsts each
time step (2) is executed], there are two considerations.
a8) If either of Ly, L is empty, then the other list is concatenated to the end
of L. This completes the merging process.
b) If not, return to step (2).

Each comparison of a namber from L, with one from L, results in the placement of an
element at the end of list L, so there cannot be more than n, + n; comparisons. When one
of the lists L, or L; becomes empty no further comparisons are needed, so the maximum
number of comparisons needed is n; +n» — 1.

To determine the (worst-case) time-complexity function of the merge sort, consider a
list of n elements. For the moment, we do not treat the general problem, assuming here
that » = 2*.7 In the splitting process, the list of 2# elements is first split into two sublists of
size 27", (These are the level 1 vertices in the tree representing the splitting process.) As
the process continues, each successive list of size 26—k - k, is at level k and splits into
two sublists of size (1/2)(2" %) = 2"=%=!_ At level k the sublists each contain 27~* =1
element.

Reversing the process, we first merge the n = 2 leaves into 2°~! ordered sublists of
size 2. These sublists are at level & — 1 and require (1/2)(2") = 2"~! comparisons (one per
pair). As this merging process continues, at each of the 2% vertices at level k, | <k < A,
there is a sublist of size 2" %, obtained from merging the two sublists of size 2#~%~! at
its children (on level k + 1). From Lemma 12.1, this merging requires at most 2# %=1 +
2h=k=1 _ 1 = 26~k _ | comparisons. When the children of the root are reached, there are
two sublists of size 2%~ (at level 1). To merge these sublists into the final list requires at
most 2#=1 4+ 26=1 _ 1 = 2" — | comparisons.

Consequently, for | < k < h, atlevel k there are 2~ pairs of vertices. At each of these
vertices is a sublist of size 2" %, so it takes at most 2" **! — 1 comparisons to merge each
pair of sublists. With 2¢~! pairs of vertices at level k, the total number of comparisons at
level k is at most 25~ (27 ~%+! _ 1). When we sum over all levels k, where 1 <k < A, we
find that the total number of comparisons is at most

h

h—1 h—1 h—1
B A V) Y v D e R A R ¢ )]
k=0 k=0 k=0

k=1
With n = 2%, we have h = log, n and
h-Zh—(Z”—1)=nlog2n~(n»1)=n10g2n~n+l,

+The: result obtained here forn = 2”, h & N.is actually true for all n € Z* . However, the derivation for general
# requires the optional material in Section 10.6. That is why this counting argument is included here — for the
benefit of those readers who did not cover Section 10.6.



608

Chapter 12 Trees

where # log, n is the dominating term for large n. Thus the (worst-case) time-complexity
function for this sorting procedure is g(n) =nlog,n —n + 1 and g € O(n log, n), for
n = 2" heZ'. Hence the number of comparisons needed to merge sort a list of # items
is bounded above by dn log, n for some constant d, and for all n > ny, where ng is some
particular (large) positive integer.

To show that the order of the merge sort is O(nlog, n) for all n € Z*, our second
approach will use the result of Exercise 9 from Section 10.6. We state that now:

Leta, b, c € ZT, withb > 2. If g: ZT — R* U [0} is a monotone increasing function,
where

g <c,
g(n) <ag(nfb)+cn, forn=>»b" helZ",

then for the case where @ = b, we have g € O(n log n), for all n € Z. (The base for the
log function may be any real number greater than 1. Here we shall use the base 2.)

Before we can apply this result to the merge sort, we wish to formulate this sorting
process (illustrated in Fig. 12.33) as a precise algorithm. To do so, we call the procedure
outlined in Lemma 12.1 the “merge” algorithm. Then we shall write “merge (L, L7)” in
order to represent the application of that procedure to the lists L, L, which are in ascending
order.

The algorithm for merge sort is a recursive procedure because it may invoke itself. Here
the input is an array (called List) of » items, such as real numbers.

The MergeSort Algorithm

Step 1: If n = 1, then List is already sorted and the process terminates. If n > 1, then
go to step (2).

Step 2: (Divide the array and sort the subarrays.) Perform the following:
1) Assign m the value |n/2].
2) Assign to List | the subarray

Listf1], List[2], .. ., List{m].
3 Assign to List 2 the subarray '
List{m + 1], List{m + 2}, . .., Listin].
4} Apply MergeSort to List 1 {of size m)'and to List 2 (of size n — m).
Step 3: Merge (List 1, List 2).

The function g: ZT — R U {0} will measure the (worst-case) time-complexity for this
algorithm by counting the maximum number of comparisons needed to merge sort an array
of n items. Forn = 2% h € Z*, we have

glm) =2g(n/2) +[(n/2) + (n/2) = 11.

The term 2g(r/2) results from step (2) of the MergeSort algorithm, and the summand
[(n/2) + (n/2) — 1] follows trom step (3) of the algorithm and Lemma 12.1.
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With g(1) = 0, the preceding equation provides the inequalities

gh=0<1,

gn) =2gn/2) + @ — 1) <2¢(n/2) +n,

forn=2"heZ"

We also observe that g(1) =0, g(2) =1, g(3) = 3, and g(4) =5, so g(l) <g(2) <
2(3) = g(4). Consequently, it appears that g may be a monotone increasing function. The
proof that it is monotone increasing is similar to that given for the time-complexity function
of binary search. This follows Example 10.49 in Section 10.6, so we leave the details
showing that g is monotone increasing to the Section Exercises.

Now witha = b = 2 and ¢ = 1, the result stated earlier implies that g € O (n log, »n) for

alln e Z".

Although n log, n < n? for all n € Z*, it does not follow that because the bubble sort is
O(n?) and the merge sortis O (n log, n), the merge sort is more efficient than the bubble sort
for all n € Z*. The bubble sort requires less programming effort and generally takes less
time than the merge sort for small values of n (depending on factors such as the programming
language, the compiler, and the computer). However, as n increases, the ratio of the worst-
case running times, as measured by (cn?)/(dn log, n) = (c/d)(n/log, n), gets arbitrarily
large. Consequently, as the input list increases in size, the O(n?) algorithm (bubble sort)
takes significantly more time than the O(n log, n) algorithm (merge sort).

For more on sorting algorithms and their time-complexity functions, the reader should
examine [1], [3], [4], [7], and [8] in the chapter references.

1. a} Give an example of two lists L, L, each of which is in
ascending order and contains five elements, and where ning
comparisons are needed to merge L, L, by the algorithm
given in Lemma 12.1.

b} Letim, n € Z% with m < n. Give an example of two lists
L, L, each of which is in ascending order, where L has
m elements, L, has n elements, and m + rn — | compari-
sons are needed to merge L, L, by the algorithm given in
Lemma 12.1.

2. Apply the merge sort to each of the following lists. Draw the
splitting and merging trees for each application of the procedure.

a) —1,0,2,-2,36, -3,51,4
by —1,7,4,11,5,-8,15, -3, -2,6, 10,3

12.4
Weighted Trees and Prefix Codes

3. Related to the merge sort is a somewhat more efficient
procedure called the quick sort. Here we start with a list
L:ay,a, ..., a,, and use a; as a pivot to develop two
sublists L, and L, as follows. For i > 1, if a, < a;, place g,
at the end of the first list being developed (this is L, at the end
of the process); otherwise, place g, at the end of the second
list LQ.

After all g,, [ > 1, have been processed, place q; at the end
of the first list. Now apply quick sort recursively to each of the
lists L and L; to obtain sublists Lq;, L5, L3, and L. Con-
tinue the process until each of the resulting sublists contains one
element. The sublists are then ordered, and their concatenation
gives the ordering sought for the original list L.

Apply quick sort to each list in Exercise 2.

4. Prove that the function g used in the second method to an-
alyze the (worst-case) time-complexity of the merge sort is
monotone increasing.

Among the topics to which discrete mathematics is applied, coding theory is one wherein
different finite structures play a major role. These structures enable us to represent and
transmit information that is coded in terms of the symbols in a given alphabet. For instance,
the way we most often code, or represent, characters internally in a computer is by means
of strings of fixed length, using the symbols 0 and 1.
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The codes developed in this section, however, will use strings of different lengths. Why a
person should want to develop such a coding scheme and how the scheme can be constructed
will be our major concerns in this section.

Suppose we wish to develop a way to represent the letters of the alphabet using strings
of O’s and 1’s. Since there are 26 letters, we should be able to encode these symbols in terms
of sequences of five bits, given that 2* < 26 < 23, However, in the English (or any other)
language, not all letters occur with the same frequency. Consequently, it would be more
efficient to use binary sequences of different lengths, with the most frequently occurring
letters (such as e, i, f) represented by the shortest possible sequences. For example, consider
S ={a, e, n,r t}, asubset of the alphabet. Represent the elements of S by the binary
sequences

a: 01 e: 0 n: 101 r: 10 r: 1.

If the message “ata’ is to be transmitted, the binary sequence 01101 is sent. Unfortunately,

this sequence is also transmitted for the messages “etn”, “atet”, and “an”.
Consider a second encoding scheme, one given by

a: 111 e 0 n: 1100 r: 1101 t: 10.

Here the message “ata” is represented by the sequence 11110111 and there are no other
possibilities to confuse the situation. What’s more, the labeled complete binary tree shown
in Fig. 12.34 can be used to decode the sequence 11110111. Starting at the root, traverse the
edge labeled 1 to the right child (of the root). Continuing along the next two edges labeled
with 1, we arrive at the leaf labeled a. Hence the unique path from the root to the vertex
at @ is unambiguously determined by the first three 1’s in the sequence 11110111, After
we return to the root, the next two symbols in the sequence — namely, 10 — determine the
unique path along the edge from the root to its right child, followed by the edge from that
child to its left child. This terminates at the vertex labeled 7. Again returning to the root,
the final three bits of the sequence determine the letter 4 for a second time. Hence the tree
“decodes™ 11110111 as ata.

a: 11

r. 1101

Figure 12.34

Why did the second encoding scheme work out so readily when the first led to ambigu-
ities? In the first scheme, 7 is represented as 10 and » as 101, If we encounter the symbols
10, how can we determine whether the symbols represent r or the first two symbols of 101,
which represent n? The problem is that the sequence for r is a prefix of the sequence for
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. This ambiguity does not occur in the second encoding scheme, suggesting the following
definition.

A set P of binary sequences (representing a set of symbols) is called a prefix code if no
sequence in P is the prefix of any other sequence in P.

Consequently, the binary sequences 111, 0, 1100, 1101, 10 constitute a prefix code for
the letters a, e, n, r, t, respectively. But how did the complete binary tree of Fig. 12.34
come about? To deal with this problem, we need the following concept.

If T is a complete binary tree of height /s, then T is called a full binary tree if all the leaves
in T are at level /.

For the prefix code P = {111, 0, 1100, 1101, 10}, the longest binary sequence has length
4. Draw the labeled full binary tree of height 4, as shown in Fig. 12.35. The elements of P
are assigned to the vertices of this tree as follows. For example, the sequence 10 traces the
path from the root r to its right child cg. Then it continues to the left child of cg, where the
box (marked with the asterisk) indicates completion of the sequence. Returning to the root,
the other four sequences are traced out in similar fashion, resulting in the other four boxed
vertices. For each boxed vertex remove the subtree (except for the root) that it determines.
The resulting pruned tree is the complete binary tree of Fig. 12.34, where no “box” is an
ancestor of another “box.”

Figure 12.35

We turn now to a method for determining a labeled tree that models a prefix code, where
the frequency of occurrence of each symbol in the average text is taken into account—in
other words, a prefix code wherein the shorter sequences are used for the more frequently
occurring symbols. If there are many symbols, such as all 26 letters of the alphabet, a
trial-and-error method for constructing such a tree is not efficient. An elegant construction
developed by David A. Huffman (1925-1999) provides a technique for constructing such
trees.

The general problem of constructing an efficient tree can be described as follows.

Let wy, ws, ..., w, be a set of positive numbers called weights, where w; < w, <
- <w,. If T = (V, E} is a complete binary tree with n leaves, assign these weights (in
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any one-to-one manner) to the » leaves. The result is called a complete binary tree for the
weights wy, wy, . . ., w,. The weight of the tree, denoted W(T'),isdefinedas Y _;_, wi£(w,)
where, for each 1 <1 < s, £(w,) is the level number of the leaf assigned the weight w,.
The objective is to assign the weights so that W(T) is as small as possible. A complete
binary tree 7" for these weights is said to be an optimal tree if W(T") < W(T') for any other
complete binary tree 7 for the weights.

Figure 12.36 shows two complete binary trees for the weights 3, 5, 6, and 9. For tree T,
W(T) =Y, wl(w) = (3 +9+5+6) 2 = 46 because each leaf has level number 2.
Inthecaseof 75, W(T2) =3-3+5-34+6-2+49 1= 45, which we shall find is optimal.

g 9
6 6
3 95 6 v 5
3 5
(T} (T2
1 2
Figure 12.36 Figure 12.37

The major idea behind Huffman’s construction is that in order to obtain an optimal tree
T for the n weights wy, wy, ws, ..., w,, one considers an optimal tree T’ for the n — 1
weights wy + wa, ws, ..., w,. (It cannot be assumed that wy + w»> < ws.) In particular,
the tree T is transformed into T by replacing the leaf v having weight w; 4+ w» by a tree
rooted at v of height 1 with left child of weight w, and right child of weight w,. To illustrate,
if the tree 75 in Fig. 12.36 is optimal for the four weights 1 + 2, 5, 6, 9, then the tree in
Fig. 12.37 will be optimal for the five weights 1,2, 5, 6, 9.

We need the following lemma to establish these claims.

LEMMA 12.2

If T is an optimal tree for the n weights w, < wp < - - - < w,, then there exists an optimal
tree 7’ in which the leaves of weights w; and w, are siblings at the maximal level (in T").

Proof: Let v be an internal vertex of T where the level number of v is maximal for all
internal vertices. Let w, and w, be the weights assigned to the children x, y of vertex
v, with w, < w,. By the choice of vertex v, £(w;) = £(w,) = £(w1), £(w>). Consider the
case of w; < w,. (If w; = w,, then wy and w, can be interchanged and we would consider
the case of w; < w,. Applying the following proof to this case, we would find that w, and
w, can be interchanged.)

If £(w,) > £(w)), let£(w,) = £{w;) + j,forsome j € Z". Then w £(w1) + w, &{wy) =
wil(w) + we[£(wy) + j1 = wid(wy) + wej +web(w) > wi fun) +wj +
wel(wy) = wil(w,) + wl(w). So W(T) = wil(w) + w,l(wy) + Zi#m wb(w;) >
w (w,) +w,b(w) + Z,?&l_x w, £(w;). Consequently, by interchanging the locations of
the weights w and w,, we obtain a tree of smaller weight. But this contradicts the choice
of T as an optimal tree. Therefore £(w;) = £(w) = £(w,). In a similar manner, it can be
shown that £(w,) = £{wy), so £(w,) = £(w,) = £(w;) = £(wy). Interchanging the loca-
tions of the pair w;, w,, and the pair w>, w,, we obtain an optimal tree T, where w,, wn
are siblings.
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From this lemma we see that smaller weights will appear at the higher levels (and thus
have higher level numbers) in an optimal tree.

THEOREM 12.8

EXAMPLE 12.18

Let T be an optimal tree for the weights w) + wq, ws, ..., w,, where w; < w, < w3 <

+ < wy. At the leaf with weight wy 4 w; place a (complete) binary tree of height 1 and
assign the weights w;, w; to the children (leaves) of this former leaf. The new binary tree
T, so constructed is then optimal for the weights w, wq, ws, . .., W,.

Proof: Let 75 be an optimal tree for the weights wy, wa, ..., w,, where the leaves for
weights u, w, are siblings. Remove the leaves of weights w;, w, and assign the weight
w1 + w; to their parent (now a leaf). This complete binary tree is denoted T3 and W (T3) =
W(T3) + wy + ws. Also, W(T\) = W(T) + w; 4 w;. Since T is optimal, W(T) < W(T3).
If W(T) <« W(T3), then W(T\) < W(T2), contradicting the choice of T as optimal. Hence
W(T) = W(T3) and, consequently, W{(Ty) = W(T). So T, is optimal for the weights
wy, wWa, ..., Wy

Remark. The preceding proof started with an optimal tree T, whose existence rests on the
fact that there is only a finite pumber of ways in which we can assign n weights to a complete
binary tree with 7 leaves. Consequently, with a finite number of assignments there is at least
one where W(T) is minimal. But finite numbers can be large. This proof establishes the
existence of an optimal tree for a set of weights and develops a way for constructing such
a tree. To construct such a (Huffman) tree we consider the following algorithm.

Given the a (> 2) weights wy, w2, . .., Wy, proceed as fmﬂaws

Step 1: Assign the given weights, one each to a set § uf n xse;mﬂd verti
vertex is the root of a complcw binary tree (of height 0) thh A
to it.}

Step 2: While 5] > 1 perferm the fﬂﬁbmng ‘
8) Find two trees T, T” in § with the smallest twn mﬁt wmghm f,
respeptively. '
b) Create the new (complete bmary) tree T* with toot wmght w“‘ =
w + w’ and baving T, T’ as its left and right subtrees, respectively.
¢) Place T* in § and delete T and 7. {Where |S] = 1, the one completeé
binary tree in § is a Huffman tree.}

‘We now use this algorithm in the following example.

Construct an optimal prefix code for the symbols a, o, ¢, u, y, z that occur (in a given
sample) with frequencies 20, 28, 4, 17, 12, 7, respectively.

Figure 12.38 shows the construction that follows Huffman’s procedure. In part (b)
weights 4 and 7 are combined so that we then consider the construction for the weights 11,
12, 17, 20, 28. At each step [in parts (¢c)—(f) of Fig. 12.38] we create a tree with subtrees
rooted at the two smallest weights. These two smallest weights belong to vertices each of
which is originally either isolated (a tree with just a root) or the root of a tree obtained
earlier in the construction. From the last result, a prefix code is determined as

a: 01 o:11 g 1000 u: 00 y: 101 z: 1001.
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L ] [ ] [ * ®
4 7 12 26 28 51
@
11 23
28
37 1
e [ L
A7 12 20 28 /\ 12
b
b 17 20 4 7
()
11 12
L ] L ] [ ]
17 20 4 28
()
23
37
11 12 /\
4 7 1720
(d) )
Figure 12.38

Different prefix codes may result from the way the trees T, T’ are selected and assigned as
the left or right subtree in steps 2(a) and 2(b) in our algorithm and from the assignment of
O or 1 to the branches (edges) of our final (Huffman) tree.

EXERCISES 12.4

1. For the prefix code given in Fig. 12.34, decode the sequences
(a) 1001111101; (b) 10111100110001101; (c) 1101111110010.
2. A code for {a, b, c,d, e} is given by a: 00 b:01 ¢: 101
d: x10 e: yz1, where x, y, z € {0, 1}. Determine x, y, and z
so that the given code is a prefix code.

3. Construct an optimal prefix code for the symbols
a,b,c, ..., I, jthatoccur (in a given sample) with respective
frequencies 78, 16, 30, 35, 125, 31, 20, 50, 80, 3.

4. How many leaves does a full binary tree have if its height is
(a)37(b)7?(c) 127 (d) h?

5. Let T = (V, E) be a complete m-ary tree of height 4. This
tree is called a full m-ary tree if all of its leaves are at level k.
If T is a full m-ary tree with height 7 and 279,936 leaves, how
many internal vertices are there in 77

6. Let T be a full m-ary tree with height 2 and v vertices. De-
termine /4 in terms of m and v.

7. Using the weights 2, 3, 5, 10, 10, show that the height of
a Huffman tree for a given set of weights is not unique. How
would you modify the algorithm so as to always produce a Huff-
man tree of minimal height for the given weights?

8. Let L,, for 1 <i <4, be four lists of numbers, each sorted
in ascending order. The numbers of entries in these lists are 75,
40, 110, and 50, respectively.

a}) How many comparisons are needed to merge these four
lists by merging L, and L., merging L; and L4, and then
merging the two resulting lists?

b) How many comparisons are needed if we first merge L,
and L, then merge the result with L3, and finally merge this
result with L,?

¢} In order to minimize the total number of comparisons in
this merging of the four lists, what order should the merging
follow?

d) Extend the result in part {(c) to r sorted lists L, L,,
. L,.
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12.5
Biconnected Components
and Articulation Points

Definition 12.9

Let G = (V, E) be the loop-free connected undirected graph shown in Fig. 12.39%(a), where
each vertex represents a communication center. Here an edge {x, y} indicates the existence
of a communication link between the centers at x and y.

=

(@) {b)
Figure 12.39

By splitting the vertices at ¢ and f, in the suggested fashion, we obtain the collection of
subgraphs in part (b) of the figure. These vertices are examples of the following.

A vertex v in a loop-free undirected graph G = (V, E) is called an arficulation point
if (G — v) > «(G); that is, the subgraph G — v has more components than the given
graph G.
A loop-free connected undirected graph with no articulation points is called biconnected.
A biconnected component of a graph is a maximal biconnected subgraph — a bicon-
nected subgraph that is not properly contained in a larger biconnected subgraph.

The graph shown in Fig. 12.39 has the two articulation points, ¢ and f, and its four
biconnected components are shown in part (b) of the figure.

In terms of communication centers and links, the articulation points of the graph in-
dicate where the system is most vulnerable. Without articulation points, such a system is
more likely to survive disruptions at a communication center, regardless of whether these
disruptions are caused by the breakdown of a technical device or by external forces.

The problem of finding the articulation points in a connected graph provides an applica-
tion for the depth-first spanning tree. The objective here is the development of an algorithm
that determines the articulation points of a loop-free connected undirected graph. If no
such points exist, then the graph is biconnected. Should such vertices exist, the resulting
biconnected components can be used to provide information about such properties as the
planarity and chromatic number of the given graph.

The following preliminaries are needed for developing this algorithm.



616 Chapter 12 Trees

Returning to Fig. 12.39(a), we see that there are four paths from a to ¢ —namely,
MNMa—sc—e,Qa—>c—>d—oe;Ba—-bo>c—oe;andd)a—b—>c—>d—e.
Now what do these four paths have in common? They all pass through the vertex ¢, one of
the articulation points of G. This observation now motivates our first preliminary result.

LEMMA 12.3

Let G = (V, E) be a loop-free connected undirected graph with z € V. The vertex z is an
articulation point of G if and only if there exist distinct x, y € V with x # z, y # z, and
such that every path in G connecting x and y contains the vertex z.

Proof: This result follows from Definition 12.9. A proof is requested of the reader in the
Section Exercises.

Our next lemma provides an important and useful property of the depth-first spanning
tree.

LEMMA 124

Let G = (V, E) be a loop-free connected undirected graph with 7 = (V, E’) a depth-first
spanning tree of G. If {a, b} € E but {a, b} ¢ E’, then a is either an ancestor or a descendant
of b in the tree T

Proof: From the depth-first spanning tree 7', we obtain a preorder listing for the vertices in
V. Forall ve V, let dfi(v) denote the depth-first index of vertex v —that is, the position
of v in the preorder listing. Assume that dfi(a) < dfi(h). Consequently, a is encountered
before b in the preorder traversal of T, so a cannot be a descendant of b. If, in addition,
vertex a is not an ancestor of b, then & is not in the subtree T, of T rooted at ¢. But when we
backtrack (through 7;) to g, we find that because {a, b} € E, it should have been possible
for the depth-first search to go from « to b and to use the edge {a, b} in T'. This contradiction
shows that b is in T, 50 a is an ancestor of b,

If G = (V, E) isaloop-free connected undirected graph, let 7 = (V, E') be a depth-first
spanning tree for (G, as shown in Fig. 12.40. By Lemma 12.4, the dotted edge {a, b}, which
is not part of T, indicates an edge that could exist in G. Such an edge is called a back edge
(relative to T), and here a is an ancestor of b. [Here dfi(a) = 3, whereas dfi(b) = 6.] The
dotted edge {b, d} in the figure cannot exist in G, also because of Lemma 12.4. Thus all
edges of G are either edges in 7 or back edges (relative to T').

Root

Figure 12.20
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Our next example provides further insight into the relationship between the articulation
points of a graph G and a depth-first spanning tree of G.

In part (1) of Fig. 12.41 we have a loop-free connected undirected graph G = (V, E).
Applying Lemma 12.3 to vertex a, for example, we find that the only path in G from b
to i passes through a. In the case of vertex d, we apply the same lemma and consider the
vertices a and A. Now we find that although there are four paths from a to h, all four pass
through vertex d. Consequently, vertices a and d are two of the articulation points in G.
The vertex  is the only other articulation point. Can you find two vertices in G for which
all connecting paths (for these vertices) in G pass through h?

(1 6=, 6

a(l)

(2) T =(\E) 3y G=(.E) 4 T"=(V, E" By G=(\b

Figure 12.41

Applying the depth-first search algorithm, with the vertices of G ordered alphabetically,
in part (2) of Fig. 12.41, we find the depth-first spanning tree T° = (V, E') for G, where
a has been chosen as the root. The parenthesized integer next to each vertex indicates the
order in which that vertex is visited during the prescribed depth-first search. Part (3) of the
figure incorporates the three back edges (relative to 7', in ) that are missing from part (2).

For the tree 7’ the root a, which is an articulation point in (4, has more than one child.
The articulation point d has a child —namely, g — with no back edge from g or any of its
descendants (h and j) to an ancestor of d [as we see in part (3) of Fig. 12.41]. The same is
true for the articulation point 4. Its child j has (no children and) no back edge to an ancestor
of I,

In part (4) of the figure, 7" = (V, E”) is the depth-first spanning tree for the vertices
ordered alphabetically once again, but this time vertex g has been chosen as the root. As
in part (2) of the figure, the parenthesized integer next to each vertex indicates the order in
which that vertex is visited during this depth-first search. The three back edges (relative to
T”, in ) that are missing from 7 are shown in part (5) of the figure.

The root g of 7 has only one child and g is not an articulation point in G. Further, for
each of the articulation points there is at least one child with no back edge from that child
or one of its descendants to an ancestor of the articulation point. To be more specific, from
part (5) of Fig. 12.41 we find that for the articulation point # we may use any of the children
b, c or i, but not f; for d that child is a; and for 4 the child is ;.

The observations made in Example 12.19 now lead us to the following.
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LEMMA 12.5

Let G = (V, E) be a loop-free connected undirected graph with 77 = (V, E’) a depth-first
spanning tree of G. If r is the root of 7, then r is an articulation point of G if and only if r
has at least two children in 7.

Proof: If r has only one child — say, ¢ —then all the other vertices of G are descendants of
c (and r) in 7. So if x, y are two distinct vertices of 7', neither of which is r, then in the
subtree T,, rooted at ¢, there is a path from x to y. Since r is not a vertex in 7, r is not
on this path. Consequently, r is not an articulation point in G — by virtue of Lemma 12.3.
Conversely, let r be the root of the depth-first spanning tree 7 and let ¢y, ¢; be children of
r. Let x be a vertex in T, the subtree of T rooted at ¢;. Similarly, let y be a vertex in 7.,
the subtree of T rooted at ¢;. Could there be a path from x to y in G that avoids r? If so,
there is an edge {v|, vz} in G with v; in T, and v, in T,. But this contradicts Lemma 12.4.

Our final preliminary result settles the issue of when a vertex, that is not the root of a
depth-first spanning tree, is an articulation point of a graph.

LEMMA 12.6

Let G = (V, E) be a loop-free connected undirected graph with T = (V, E’) a depth-first
spanning tree for G. Let r be the root of T and let v € V, v # r. Then v is an articulation
point of G if and only if there exists a child ¢ of v with no back edge (relative to 7, in G)
from a vertex in 7., the subtree rooted at ¢, to an ancestor of v.

Proof: Suppose that vertex v has a child ¢ such that there is no back edge (relative to T,
in G) from a vertex in 7, to an ancestor of v. Then every path (in &) from r to ¢ passes
through v. From Lemma 12.3 it then follows that v is an articulation point of G.

To establish the converse, let the nonroot vertex v of 7 satisfy the following: For each
child ¢ of v there is a back edge (relative to T, in G) from a vertex in 7, the subtree rooted
at c, to an ancestor of v. Now let x, ¥y € V with x # v, y # v. We consider the following
three possibilities:

1) If neither x nor y is a descendant of v, as in part (1) of Fig. 12.42, delete from T the
subtree 7, rooted at v. The resulting subtree (of T) contains x, y and a path from x
to y that does not pass through v, so v is not an articulation point of G.

1

Figure 12.42
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2) If one of x, y —say, x —is a descendant of v but y is not, then x is a child of vora
descendant of a child ¢ of v [as in part (2) of Fig. 12.42]. From the hypothesis there
is a back edge (relative to T, in G) from some z € T, to an ancestor w of v. Since
x, z € T,, there is a path p; from x to z (that does not pass through v). Then, as neither
w nor y is a descendant of v, from part (1) there is a path p; from w to v that does
not pass through v. The edges in p;, p» together with the edge {z, w} provide a path
from x to y that does not pass through v —and once again, v is not an articulation
point.

3) Finally, suppose that both x, y are descendants of v, as in part (3) of Fig. 12.42. Here
¢1, ¢z are children of v — perhaps, with ¢; = ¢; —and x is a vertex in T, the subtree
rooted at ¢y, while y is a vertex in T,,, the subtree rooted at c;. From the hypothesis,
there exist back edges {d|, a;} and {d2, a>} (relative to T, in G), where d,, d» are
descendants of v and a;, a» are ancestors of v. Further, there is a path p; from x to
d, in T,, and a path p; from v to d, in T,. As neither a; nor a; is a descendant of v,
from part (1) we have a path p (in T') from a; to ¢, where p avoids v. Now we can
do the following: (i) Go from x to d using path py; (i) Go from d; to a| on the edge
{d\, a}; (iii) Continue to a using path p; (iv) Go from a; to d; on the edge {a,, d»};
and (v) Finish at y using the path p, from &5 to y. This provides a path from x to y
that avoids v so v is not an articulation point of & and this completes the proof.

Using the results from the preceding four lemmas, we once again start with a loop-free
connected undirected graph G = (V, E) with depth-first spanning tree T. Forv € V, where
v is not the root of 7', we let T, . be the subtree consisting of edge {v, ¢} {c a child of v)
together with the tree T, rooted at c. If there is no back edge from a descendant of v in
T,.. to an ancestor of v (and v has at least one ancestor — the root of 7'), then the splitting
of vertex v results in the separation of 7, . from G, and v is an articulation point. If no
other articulation points of & occur in 7, ., then the addition to 7, . of all other edges in G
determined by the vertices in 7;, . (the subgraph of (& induced by the vertices in 7}, ) results
in a biconnected component of G. A root has no ancestors, and it is an articulation point if
and only if it has more than one child.

The depth-first spanning tree preorders the vertices of G. Forx € V let dfi(x) denote the
depth-first index of x in that preorder. If y is a descendant of x, then dfi(x) < dfi(y). For y
an ancestor of x, dfi(x) > dfi(y). Define low(x) = min{dfi(y)|y is adjacent in & to either
x or a descendant of x}. If z is the parent of x (in T'), then there are two possibilities to
consider:

1) low(x) = dfi(z): In this case T, the subtree rooted at x, contains no vertex that is
adjacent to an ancestor of 7 by means of a back edge of 7. Hence z is an articulation
point of G. If T, contains no articulation points, then 7, together with edge {z, x}
spans a biconnected component of G (that is, the subgraph of G induced by vertex
z and the vertices in T is a biconnected component of ). Now remove T, and the
edge {z, x} from 7, and apply this idea to the remaining subtree of 7.

2) low(x)} < dfi{z): Here there is a descendant of z in T, that is joined [by a back edge
(relative to 7', in )] to an ancestor of z.

To deal in an efficient manner with these ideas, we develop the following algorithm.
Let G = (V, E) be a loop-free connected undirected graph,
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Step 1: Find the depth-first spanning tree T for G according o a prescribed order.
Let x1, X3, . .., X» be the vertices of G preordered by 7. Then dfi(x;) = j for all
l<j=n

Step 2: Start with x, and continue back to x,..1, Xn-2. . .. , X3, X2, 31, determining
low(x;), for j=n.n—1,n-2,...,3,2, 1, recursively, as follows:

a) low'(x;) = min{dfi(z)|z is adjacent in G to x;}.

b) K ¢y, €3, .. ., o arethechildrenof x ;, thenlow(x;) = min{low'(x;),
tow(ey), low(cz), . . . , low(cy)}. [No problem arises here, for the ver-
tices are examined in the reverse order to the given preorder. Conse-
quently, if ¢ is a child of p, then low(c) is determined before low(p}.]

Step 3: Letw; bethe parentof x; in T If low(x;) = dfi{w;), then w; is an articulation
point of GG, unless w; is the rootof T and w; has no childin T other than x;. Moreover,
in either situation the subtree rooted at x; together with the edge {w;, x;} is part of
a biconnected component of G.

EXAMPLE 12.20 We apply this algorithm to the graph G = (V, E) shown in part (i) of Fig. 12.43.

h(7,7)

(D) (v) (v)
Figure 12.43

In part (ii) of the figure we have the depth-first spanning tree 7 = (V, E’) for G with
d as the root. (Here the order followed for the vertices of G is alphabetic.) Next to each
vertex v of T [in part (ii}] is the dfi(v). These labels tell us the order in which the vertices
of (& are first visited.

For step (2) of the algorithm we go in the reverse order from the depth-first search
and start with vertex k(= xg). Since {g, 4} € E and £ is not adjacent to any other vertex
of G we have low'(h) = dfi{g) [= dfi(x7)] = 7. Further, as h has no children, it follows
that low(h) = low’(h) = 7. This accounts for the label (7, 7) [= (low'(h), low(h))] next
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to h in part (iii) of Fig. 12.43. Continuing next with g, and then f, we obtain the labels
(6, 6) for g, and (1, 1) for f, since low'(g) = low(g) = 6 and low'(f) =low(f) = 1.
Since {a, e}, {a, f} € E with dfi(¢) = 4 and dfi(f) = 6, for vertex a we have low'(a) =
min{4, 6} = 4. Then we find that low(a) = min{4, low(f)} = min{4, 1} = 1. Hence the
label (4, 1) for vertex a. Continuing back through e, ¢, b, and d, we obtain the labels
(low'(x;), low(x;)) for i =4, 3, 2, 1. Consequently, by applying step (2) of the algorithm
we arrive at the tree in Fig, 12.43 (iii).

In part (iv) of Fig. 12.43 the ordered pair next to each vertex v is (dfi(v), low(v)).
Applying step (3) of the algorithm to the tree in part (iv), at this point we go in reverse
order once again. First we deal with vertex 7 (= xg). Since g is the parent of & (in 7') and
low(h)} =7 = dfi(g), g is an articulation point of G and the edge {k, g} is a biconnected
component of G. Deleting the subtree rooted at g from 7, we continue with vertex g
(= x7). Here f is the parent of g (in the tree 7 — A) and low(g) = 6 = dfi(f), so f is
another articulation point — with edge {g, f} the corresponding biconnected component.

Continuing now with the tree (T — k) — g, as we go from f to a to ¢, and then from ¢
to b, we find no new articulation points among the four vertices a, ¢, ¢, and b. Since vertex
d is the root of T and d has two children— namely, the vertices b and e, it then follows
from Lemma 12.5 that d is an articulation point of G. The vertices d, e, a, f induce the
biconnected component consisting of the tree edges { f, a}, {a, e}, {e, 4} and the back edges
(relative to T, in G) { f, e} and { f, d}. Finally, the cycle induced (in G) by the vertices b, ¢
and d provides the fourth biconnected component.

Part (v} of Fig. 12.43 shows the three articulation points g, f, and d, and the four
biconnected components of G.

EXERCISES 12.5

1. Find the articulation points and biconnected components
for the graph shown in Fig, 12.44,

d [
g

Figure 12.44

2. Prove Lemma 12.3.

b) Let G = (V, E) be a loop-free connected undirected
graph with |E| > 1, Prove that G has at least two vertices
that are not articulation points.

5. If By, B,, .. .. By are the biconnected components of a
loop-free connected undirected graph G, how is x (G) related
to x(B,), 1 <i <k? [Recall that x(G) denotes the chromatic
number of G, as defined in Section 11.6.]

6. Let G = (V, E) be aloop-free connected undirected graph
with biconnected components By, B, ..., Bs. For 1 <{ <8,
J the number of distinct spanning trees for B, is #,. How many
distinct spanning trees exist for G?

7. Let G = (V, E) be a loop-free connected undirected graph
with |V} = 3. If G has no articulation points, prove that G has
no pendant vertices.

8. For the loop-free connected undirected graph G in
Fig. 12.43(i), order the vertices alphabetically.

3 LetT = (V, E)beatree with |V|=n > 3.

a) What are the smallest and the largest numbers of artic-
ulation points that 7' can have? Describe the trees for each
of these cases.

b) How many biconnected components does 7 have in
each of the cases in part (a)?

4. a)LetT = (V, E) be atree. If ve V, prove that v is an
articulation point of T if and only if deg(v) > 1.

a) Determine the depth-first spanning tree T for ¢ with e
as the root,

b) Apply the algorithm developed in this section to the tree
T in part (a) to find the articulation points and biconnected
components of G.

9. Answer the questions posed in the previous exercise but
this time order the vertices as i, g, f.e,d, ¢, b,a and let c be
the root of 7.
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10. Let G = (V. E) be aloop-free connected undirected graph,
where V = {a, b, c, ..., h, i, j}. Ordering the vertices alpha-
betically, the depth-first spanning tree T for G — with a as the
root—1s given in Fig. 12.45(1). In part (ii) of the figure the
ordered pair next to each vertex v provides (Ilow'(v), low(v)).
Determine the articulation points and the spanning trees for the
biconnected components of G.

Figure 12.45

12.6
Summary and Historical Review

11. In step(2) of the algorithm for articulation points, is it really
necessary to compute low(x, ) and low(x;)?

12. Let G = (V, E) be aloop-free connected undirected graph
withv e V.
a) Provethat G — v =G — v.
b) If v is an articulation point of G, prove that v cannot be
an articulation point of G.
13. If G = (V, E) is a loop-free undirected graph, we call G
color-critical if x (G —v) < x(G)forallv € V. (Weexamined
such graphs earlier, in Exercise 19 of Section 11.6.) Prove that
a color-critical graph has no articulation points.
14. Does the result in Lemma 12.4 remain true if T = (V, E)
is a breadth-first spanning tree for G = (V, E)?

The structure now called a tree first appeared in 1847 in the work of Gustav Kirchhoff
(1824-1887) on electrical networks. The concept also appeared at this time in Geometrie
die Lage, by Karl von Staudt (1798-1867). In 1857 trees were rediscovered by Arthur
Cayley (1821-1895), who was unaware of these earlier developments. The first to call the
structure a “tree,” Cayley used it in applications dealing with chemical isomers, He also
investigated the enumeration of certain classes of trees. In his first work on trees, Cayley
enumerated unlabeled rooted trees. This was then followed by the enumeration of unlabeled
ordered trees. Two of Cayley’s contemporaries who also studied trees were Carl Borchardt
(1817-1880} and Marie Ennemond Jordan (1838—1922).

Arthur Cayley (1821-1895)
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The formula n" % for the number of labeled trees on n vertices (Exercise 21 at the end of
Section 12.1) was discovered in 1860 by Carl Borchardt. Cayley later gave an independent
development of the formula, in 1889. Since then, there have been other derivations. These
are surveyed in the book by J. W. Moon [10].

The paper by G. Polya [11] is a pioneering work on the enumeration of trees and other
combinatorial structures. Polya’s theory of enumeration, which we shall see in Chapter 16,
was developed in this work. For more on the enumeration of trees, the reader should see
Chapter 15 of F. Harary [5]. The article by D. R. Shier [12] provides a labyrinth of several
different techniques for calculating the number of spanning trees for K, ,,.

The high-speed digital computer has proved to be a constant impetus for the discovery of
new applications of trees. The first application of these structures was in the manipulation of
algebraic formulae. This dates back to 1951 in the work of Grace Murray Hopper. Since then,
computer applications of trees have been widely investigated. In the beginning, particular
results appeared only in the documentation of specific algorithms. The first general survey
of the applications of trees was made in 1961 by Kenneth Iverson as part of a broader
survey on data structures. Such ideas as preorder and postorder can be traced to the early
1960s, as evidenced in the work of Zdzislaw Pawlak, Lyle Johnson, and Kenneth Iverson.
At this time Kenneth Iverson also introduced the name and the notation, namely [x7, for
the ceiling of a real number x. Additional material on these orders and the procedures for
their implementation on a computer can be found in Chapter 3 of the text by A. V. Aho,
J. E. Hopcroft, and J. D. Ullman [1]. In the article by J. E. Atkins, J. S. Dierckman, and
K. O’Bryant [2], the notion of preorder is used to develop an optimal route for snow removal.

Rear Admiral Grace Murray Hopper (1906-1992) salutes as she and Navy Secretary
John Lehman leave the U.S.S Constitution.
Ap/World Wide Photos
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It G = (V. E)isaloop-free undirected graph, then the depth-first search and the breadth-
first search (given in Section 12.2) provide ways to determine whether the given graph is
connected. The algorithms developed for these searching procedures are also important in
developing other algorithms, For example, the depth-first search arises in the algorithm
for finding the articulation points and biconnected components of a loop-free connected
undirected graph. If |V| =n and |E| = e, then it can be shown that both the depth-first
search and the breadth-first search have time-complexity O (max{n, e}). For most graphs
e > n, so the algorithms are generally considered to have time-complexity O(e). These
ideas are developed in great detail in Chapter 7 of S. Baase and A. Van Gelder |3], where
the coverage also includes an analysis of the time-complexity function for the algorithm (of
Section 12.5) that determines articulation points (and biconnected components). Chapter 6
of the text by A. V. Aho, J. E. Hopcroft, and J. D. Ullman [1] also deals with the depth-first
search, whereas Chapter 7 covers the breadth-first search and the algorithm for articulation
points,

More on the properties and computer applications of trees is given in Section 3 of Chapter
2 in the work by D. E. Knuth [7]. Sorting techniques and their use of trees can be further
studied in Chapter 11 of A. V. Aho, J. E. Hopcroft, and J. D. Ullman [1] and in Chapter 7
of T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein |4]. An extensive investigation
will warrant the coverage found in the text by D. E. Knuth [8].

The technique in Section 12.4 for designing prefix codes is based on methods developed
by D. A. Huffman [6].

David A. Huffman

University of Florida, Depariment of Computer and Information Science and Engineering

Finally, Chapter 7 of C. L. Liu [9] deals with trees, cycles, cut-sets, and the vector spaces
associated with these ideas. The reader with a background in linear or abstract algebra
should find this material of interest.
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SUPPLEMENTARY EXERCISES

1. Let G = (V, E) be aloop-free undirected graph with | V| =
n. Prove that G is a tree if and only if P(G, &) = A(n — 1)*7L,

2. Atelephone communication system is set up at a company
where 125 executives are employed. The system is initialized
by the president, who calls her four vice presidents. Each vice
president then calls four other executives, some of whom in turn
call four others, and so on. (Each executive who does make a
call will actually make four calls.)

a) How many calls are made in reaching all 125 execu-
tives?

b) How many executives, aside from the president, are
required to make calls?

3. Let T be a complete binary tree with the vertices of T
ordered by a preorder traversal. This traversal assigns the label
1 to all internal vertices of 7" and the label O to each leaf. The
sequence of O’s and 1’s that results from the preorder traversal
of T is called the tree’s characteristic sequence.

a) Find the characteristic sequence for the complete binary
tree shown in Fig. 12.17.

b) Determine the complete binary trees for the character-
istic sequences
i) 1011001010100 and
ii) 1011110000101011000.
¢) What are the last two symbols in the characteristic se-
quence for all complete binary trees? Why?
4. For ke Z*, let n = 2%, and consider the list L: a,, @,
as, ..., ay. To sort L in ascending order, first compare the en-

tries a, and a, 4,2, foreach 1 <i < n/2. For the resulting 2~
ordered pairs, merge sort the /th and (i + (n/4))-th ordered
pairs, for each 1 </ <n/4, Now do a merge sort on the ith
and (i + (n/8))-th ordered quadruples, for each 1 <i <n/8.
Continue the process until the elements of L are in ascending
order.

a) Apply this sorting procedure to the list

L:11,3,4,6, 57,35,
-2,1,23,9,15,18, 2, —10, 5.

b) If n = 2% how many comparisons at most does this pro-
cedure require?

5. Let G=(V, E) be a loop-free undirected graph, If
deg(v) > 2 for all v € V, prove that G contains a cycle.

6. Let T = (V, E) be arooted tree with root . Define the re-
lation on Vbyx Ry, forx, ye V,ifx = y orif x is on the
path from r to y. Prove that 2R is a partial order.

7. Let T = (V, E) be a tree with V = {v, v, ..., v}, for
n > 2. Prove that the number of pendant vertices in 7 is equal
to

24 ) (degv) —2).

deglu, }=3

8. Let G = (V, E)be aloop-free undirected graph. Define the
relation  on E as follows: If 1, e € E, thene; R ey if e; = &3
orif e, and e; are edges of acycle Cin G.

a) Verify that R is an equivalence relation on E.
b) Describe the partition of £ induced by R,
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{a)

GZ

Figure 12.46

9. If G = (V, E) is a loop-free connected undirected graph
and a, b € V, then we define the distance from a to b (or from
b to a), denoted d(a, b), as the length of a shortest path (in &)
connecting a and b. (This is the number of edges in a shortest
path connecting ¢ and b and is 0 whena = b.)

For any loop-free connected undirected graph G = (V, E),
the sguare of G, denoted G2, is the graph with vertex set V
(the same as G) and edge set defined as follows: For distinct
a,beV, (a, b}isanedge in G? if d(a, b) <2 (in G). In parts
(a) and (b) of Fig. 12.46, we have a graph G and its square.

a) Find the square of the graph in part (c) of the figure.
b) Find G? if G is the graph X .

¢) If G is the graph K ,, for n > 4, how many edges are
added to G in order to construct G2?

d) For any loop-free connected undirected graph G, prove
that G2 has no articulaiion points.

10. a) Let T = (V, E) be a complete 6-ary tree of height 8.
If 7 is balanced, but not full, determine the minimum and
maximum values for |V|.

b) Answer part (a) if T = (V, E) is a complete m-ary tree
of height k.

11. The rooted Fibonacci trees T,, n = 1, are defined recur-
sively as follows:

1} T, is the rooted tree consisting of only the root;

2) T,isthe same as T} — it too is a rooted tree that consists
of a single vertex; and

3) For n > 3, T, is the rooted binary tree with 7,,_, as its
left subtree and 7T, , as its right subtree.

The first six rooted Fibonacci trees are shown in Fig. 12.47:

a) Forn > 1, let £, count the number of leaves in 7,,. Find
and solve a recurrence relation for ¢,,.

b) Let i, count the number of internal vertices for the
tree T,, where n > 1. Find and solve a recurrence relation
fori,.

¢) Determine a formula for v, the total number of vertices
in T, where n > 1.

12. a) The graph in part (a) of Fig. 12.48 has exactly one
spanning tree —namely, the graph itself. The graph in
Fig. 12.48(b) has four nonidentical, though isomorphic,
spanning trees. In part (c) of the figure we find three of
the nonidentical spanning trees for the graph in part (d).
Note that 75 and 75 are isomorphic, but 77 is not isomor-
phic to 75 (or 73). How many nonidentical spanning trees
exist for the graph in Fig. 12.48(d)?
b) In Fig. 12.48(e) we generalize the graphs in parts (a),
(b), and (d) of the figure, For each n € Z™, the graph G,, is
Kz‘,,.

If t, counts the number of nonidentical spanning trees
for G,, find and solve a recurrence relation for ¢,.

13. Let G = (V, E) be the undirected connected “ladder
graph” shown in Fig. 12.49. Forn > 0, let a, count the number
of spanning trees of G, whereas b, counts the number of these
spanning trees that contain the edge {x;, y;}.

a) Explain why @, = a,_1 + b,.

b) Find an equation that expresses b, in terms of a,.; and
b,

LN

T T4 Ts

Te

Figure 12.47
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a a a a
1 1 2 1 3 1 2e3 1 293
b b b b

(a) (b) © T T3

a a

1 3 n

b b

(d) (e)

Figure 12.48

¢) Use the results in parts (a) and (b) to set up and solve a
recurrence relation for a,,.

X1 Xy X3 Xn—1 Xp

i vz ¥ Yn-1 Vn
Figure 12.49

14. Let T = (V, E) be a tree where |V| = v and |E| = e. The
tree 7 is called graceful if it is possible to assign the labels
{1,2,3,.... v} to the vertices of T in such a manner that the
induced edge labeling — where each edge {i, j} is assigned the
label |i — j|. fori, je{1,2,3,..., v}, i # j—results in the
e edges being labeled by 1, 2,3, . .. e.

a) Prove that every path on n vertices, n > 2, is graceful.

b) Forn € Z*, n > 2, show that K| , is graceful.

¢ T =(V, E)isatree with4 < |V| < 6, show that T is
graceful. (It has been conjectured that every tree is grace-
ful.)

15. For an undirected graph G = (V, E) a subset of  of V is
called independent when no two vertices in 7 are adjacent. If,
inaddition, J U {x} is not independent foreachx € V — I, then
we say that I is a maximal independent set (of vertices).

The two graphs in Fig. 12.50 are examples of special kinds
of trees called caterpillars. In general, a tree 7T = (V, E) is a
caterpillar when there is a (maximal) path p such that, for all
ve V, either v is on the path p or v is adjacent to a vertex on
the path p. This path p is called the spine of the caterpillar.

a) How many maximal independent sets of vertices are
there for each of the caterpillars in parts (i) and (ii) of
Fig. 12.50?

b) Forn € Z7, withn > 3, leta, count the number of maxi-
mal independent sets in a caterpillar 7 whose spine contains
n vertices. Find and solve a recurrence relation for a,. [The
reader may wish to reexamine part (a) of Supplementary
Exercise 21 in Chapter 11.]

2] vy
V2 Ya
0 Spine = {1, v, v, vg!
wy € Ws
- w
2 Wy
(i) Spine = {w;, Wy, Ws, Wy, We;

Figure 12.50

16. In part (i) of Fig. 12.51 we find a graceful labeling of the
caterpillar shown in part (1) of Fig. 12.50. Find a graceful label-
ing for the caterpillars in part (ii) of Figs. 12.50 and 12.51.
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(ii)
Figure 12.51

17. Develop an algorithm to gracefully label the vertices of a
caterpillar with at least two edges.

18. Consider the caterpillar in part (i) of Fig. 12.50. If we label
each edge of the spine with a 1 and each of the other edges
with a 0, the caterpillar can be represented by a binary string.
Here that binary string is 10001001 where the first 1 is for the
first (left-most) edge of the spine, the next three O’s are for the
(nonspine) edges at vy, the second 1 is for edge {v,, v3}, the two
0’s are for the (nonspine) leaves at v, and the final 1 accounts
for the third (right-most) edge of the spine.

We also note that the reversal of the binary string
10001001 — namely, 10010001 — corresponds with a second
caterpillar that is isomorphic to the one in part (i) of Fig. 12.50.

a) Find the binary strings for each of the caterpillars in
part (ii) of Figs. 12.50 and 12.51.

b) Can a caterpillar have a binary string of all 1’s?

¢) Can the binary string for a caterpillar have only two 17s?
d) Draw all the nonisomorphic caterpillars on five vertices.
For each caterpillar determine its binary string. How many
of these binary strings are palindromes?

e) Answer the question posed in part (d) upon replacing
“five” by “six.”

f) For n > 3, prove that the number of nonisomorphic
caterpillars on n vertices is (1/2)(2°73 4 21¢-9/21) =
20—% 4 Qun—H/2 = gn=4 3 2In/21-2 (This was first estab-
lished in 1973 by F. Harary and A. J, Schwenk.)

19. For n = 0, we want to count the number of ordered rooted
trees on n + 1 vertices. The five trees in Fig. 12.52(a) cover the
case forn = 3.
[Nore: Although the two trees in Fig. 12.52(b) are distinct as
binary rooted trees, as ordered rooted trees they are considered
the same tree and each is accounted for by the fourth tree in
Fig. 12.52(a).]
a) Performing a postorder traversal of each tree in
Fig. 12.52(a), we traverse each edge twice — once going
down and once coming back up. When we traverse an
edge going down, we shall write “1” and when we traverse
one coming back up, we shall write “—1.” Hence the post-
order traversal for the first tree in Fig, 12.52(a) generates
thelist 1. 1,1, -1, -1, —1. The list 1, 1, -1, =1, 1, —1
arises for the second tree in part (a) of the figure. Find the
corresponding lists for the other three trees in Fig. 12.52(a).

b} Determine the ordered rooted trees on five vertices that
generate the lists: (i) 1, —1, 1,1, -1, 1, =1, =1; (i) 1, 1,
—-1,—-1,1,1,—1,—l;and Gii) 1, -1, 1, —1, 1,1, -1, — 1.
How many such trees are there on five vertices?
¢) Forn = 0, how many ordered rooted trees are there for
n + 1 vertices?
20. Forn > 1, lett, count the number of spanning trees for the
fanonn + 1 vertices. The fan for n = 4 is shown in Fig. 12.53.
a) Show that7,,| =1, + Z:’:O t,,wheren > land ) = 1.
b) Forn > 2, show that ¢, = 3t, — 1, 1.
¢) Solve the recurrence relation in part (b) and show that
forn > 1,1, = F3,, the 2nth Fibonacci number.

1T 2 3 4

Figure 12.53

21. a) Consider the subgraph of G (in Fig. 12.54) induced by
the vertices a, b, ¢, d. This graph is called a kite. How many
nonidentical (though some may be isomorphic) spanning
trees are there for this kite?

(a)

LA

Figure 12.52



(G) n

Figure 12.54
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b) How many nonidentical (though some may be isomor-
phic) spanning trees of G do not contain the edge {c, /}?

¢) How many nonidentical (though some may be isomor-
phic) spanning trees of G contain all four of the edges {c, A},
{g. k}, {{, p}. and {d, 0}?

d) How many nonidentical (though some may be isomor-
phic) spanning trees exist for G7

e) We generalize the graph G as follows. For n > 2, start
with a cycle on the 2n vertices v, va, ..., V2y—1, V2n-
Replace each of the n edges {vi, v2}, {vi, va}, ...,
{vo, 1, Vo } With a (labeled) kite so that the resulting graph
is 3-regular. (The case for n = 4 appears in Fig. 12.54.)
How many nonidentical (though some may be isomorphic)
spanning trees are there for this graph?






