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Systems of Units. Some Important Conversion Factors

The most important systems of units are shown in the table below. The mks system is also known as
the International System of Units (abbreviated SI ), and the abbreviations sec (instead of s), 
gm (instead of g), and nt (instead of N) are also used.

System of units Length Mass Time Force

cgs system centimeter (cm) gram (g) second (s) dyne

mks system meter (m) kilogram (kg) second (s) newton (nt)

Engineering system foot (ft) slug second (s) pound (lb)

1 inch (in.) � 2.540000 cm 1 foot (ft) � 12 in. � 30.480000 cm

1 yard (yd) � 3 ft � 91.440000 cm 1 statute mile (mi) � 5280 ft � 1.609344 km

1 nautical mile � 6080 ft � 1.853184 km

1 acre � 4840 yd2 � 4046.8564 m2 1 mi2 � 640 acres � 2.5899881 km2

1 fluid ounce � 1/128 U.S. gallon � 231/128 in.3 � 29.573730 cm3

1 U.S. gallon � 4 quarts (liq) � 8 pints (liq) � 128 fl oz � 3785.4118 cm3

1 British Imperial and Canadian gallon � 1.200949 U.S. gallons � 4546.087 cm3

1 slug � 14.59390 kg

1 pound (lb) � 4.448444 nt 1 newton (nt) � 105 dynes

1 British thermal unit (Btu) � 1054.35 joules 1 joule � 107 ergs

1 calorie (cal) � 4.1840 joules

1 kilowatt-hour (kWh) � 3414.4 Btu � 3.6 • 106 joules

1 horsepower (hp) � 2542.48 Btu / h � 178.298 cal/ sec � 0.74570 kW

1 kilowatt (kW) � 1000 watts � 3414.43 Btu / h � 238.662 cal/ s

° F � ° C • 1.8 � 32 1° � 60� � 3600� � 0.017453293 radian

For further details see, for example, D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. 9th ed., Hoboken,
N. J: Wiley, 2011. See also AN American National Standard, ASTM/ IEEE Standard Metric Practice, Institute of Electrical and
Electronics Engineers, Inc. (IEEE), 445 Hoes Lane, Piscataway, N. J. 08854, website at www.ieee.org.
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Integration

�uv� dx � uv � � u�v dx (by parts)

�xn dx � � c (n � �1)

� dx � ln �x� � c

�eax dx � eax � c

�sin x dx � �cos x � c

�cos x dx � sin x � c

� tan x dx � �ln �cos x� � c

�cot x dx � ln �sin x� � c

�sec x dx � ln �sec x � tan x� � c

�csc x dx � ln �csc x � cot x� � c

� � arctan � c

� � arcsin � c

� � arcsinh � c

� � arccosh � c

�sin2 x dx � 1_
2 x � 1_

4 sin 2x � c

�cos2 x dx � 1_
2 x � 1_

4 sin 2x � c

� tan2 x dx � tan x � x � c

�cot2 x dx � �cot x � x � c

� ln x dx � x ln x � x � c

�eax sin bx dx

� (a sin bx � b cos bx) � c

�eax cos bx dx

� (a cos bx � b sin bx) � c
eax

a2 � b2

eax

a2 � b2

x
�
a

dx
��
�x2� �� a�2�

x
�
a

dx
��
�x2� �� a�2�

x
�
a

dx
��
�a�2��� x�2�

x
�
a

1
�
a

dx
�
x2 � a2

1
a

1
x

xn�1

n � 1

Differentiation

(cu)� � cu� (c constant)

(u � v)� � u� � v�

(uv)� � u�v � uv�

( )� �

� • (Chain rule)

(xn)� � nxn�1

(ex)� � ex

(eax)� � aeax

(ax)� � ax ln a

(sin x)� � cos x

(cos x)� � �sin x

(tan x)� � sec2 x

(cot x)� � �csc2 x

(sinh x)� � cosh x

(cosh x)� � sinh x

(ln x)� �

(loga x)� �

(arcsin x)� �

(arccos x)� � �

(arctan x)� �

(arccot x)� � �
1

�
1 � x2

1
�
1 � x2

1
��
�1� �� x�2�

1
��
�1� �� x�2�

loga e
�

x

1
�
x

dy
�
dx

du
�
dy

du
�
dx

u�v � uv�
��

v2

u
�
v
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2

C H A P T E R 1

First-Order ODEs

Chapter 1 begins the study of ordinary differential equations (ODEs) by deriving them from
physical or other problems (modeling), solving them by standard mathematical methods,
and interpreting solutions and their graphs in terms of a given problem. The simplest ODEs
to be discussed are ODEs of the first order because they involve only the first derivative
of the unknown function and no higher derivatives. These unknown functions will usually
be denoted by or when the independent variable denotes time t. The chapter ends
with a study of the existence and uniqueness of solutions of ODEs in Sec. 1.7.

Understanding the basics of ODEs requires solving problems by hand (paper and pencil,
or typing on your computer, but first without the aid of a CAS). In doing so, you will
gain an important conceptual understanding and feel for the basic terms, such as ODEs,
direction field, and initial value problem. If you wish, you can use your Computer Algebra
System (CAS) for checking solutions.

COMMENT. N umerics for first- order ODE s can b e studied immediately after this
chapter. See Secs. 21.1–21.2, which are independent of other sections on numerics.

Prerequisite: Integral calculus.
Sections that may be omitted in a shorter course: 1.6, 1.7.
R eferences and Answers to Problems: App. 1 Part A, and App. 2.

1.1 Basic Concepts. Modeling
If we want to solve an engineering problem (usually of a physical nature), we first
have to formulate the problem as a mathematical expression in terms of variables,
functions, and equations. Such an expression is known as a mathematical model of the
given problem. The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called mathematical modeling or,
briefly, modeling.

Modeling needs experience, which we shall gain by discussing various examples and
problems. (Y our computer may often help you in solving but rarely in setting up models.)

Now many physical concepts, such as velocity and acceleration, are derivatives. Hence
a model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution (a
function that satisfies the equation), explore its properties, graph it, find values of it, and
interpret it in physical terms so that we can understand the behavior of the physical system
in our given problem. However, before we can turn to methods of solution, we must first
define some basic concepts needed throughout this chapter.

y1t2y1x2

Physical
System

Physical
Interpretation

Mathematical
Model

Mathematical
Solution

Fig. 1. Modeling, 
solving, interpreting
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An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call (or sometimes if the
independent variable is time t). The equation may also contain y itself, known functions
of x (or t), and constants. For example,

(1)

(2)

(3) yryt � 3
2 yr2 � 0

ys � 9y � e�2x

yr � cos x

y(t)y(x)

SEC. 1.1 Basic Concepts. Modeling 3

h

Outflowing water

(Sec. 1.3)

Water level h

h′ = –k    

Vibrating mass
on a spring

(Secs. 2.4, 2.8)

Displacement y

y

m

my″ + ky = 0    

(Sec. 1.1)

Falling stone

y″ = g = const.

y   

Beats of a vibrating
system

(Sec. 4.5)

Lotka–Volterra
predator–prey model

(Sec. 4.5)

Pendulum

Lθ″ + g sin θ = 0

L

(Sec. 1.2)

Parachutist

mv′ = mg – bv2

Velocity
v

θ
(Sec. 3.3)

Deformation of a beam

EIyiv =  f (x)

(k)

θ

(Sec. 2.9)

Current I in an
RLC circuit

LI″ + RI′ +     I = E′

h

C

L

E

R

y

t

y

1
C

y′ = ky
1
y

2 
– ly

2

y′ = ay
1 

– by
1

y
21

2

(Sec. 2.8)
y″ + w

0
2 y = cos  wt,   w

0 
≈ w      

 
ω ω ω  ω

Fig. 2. Some applications of differential equations
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are ordinary differential equations (ODEs). Here, as in calculus, denotes ,
etc. The term ordinary distinguishes them from partial differential

equations (PDEs), which involve partial derivatives of an unknown function of two
or more variables. For instance, a PDE with unknown function u of two variables x
and y is

PDEs have important engineering applications, but they are more complicated than ODEs;
they will be considered in Chap. 12.

An ODE is said to be of order n if the nth derivative of the unknown function y is the
highest derivative of y in the equation. The concept of order gives a useful classification
into ODEs of first order, second order, and so on. Thus, (1) is of first order, (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the
first derivative and may contain y and any given functions of x. Hence we can write
them as

(4)

or often in the form

This is called the explicit form, in contrast to the implicit form (4). For instance, the implicit
ODE (where ) can be written explicitly as 

Concept of Solution
A function

is called a solution of a given ODE (4) on some open interval if is
defined and differentiable throughout the interval and is such that the equation becomes
an identity if y and are replaced with h and , respectively. The curve (the graph) of
h is called a solution curve.

Here, open interval means that the endpoints a and b are not regarded as
points belonging to the interval. Also, includes infinite intervals

(the real line) as special cases.

E X A M P L E  1 Verification of Solution

Verify that (c an arbitrary constant) is a solution of the ODE for all Indeed, differentiate
to get Multiply this by x, obtaining thus, the given ODE. �xyr � �y,xyr � �c>x;yr � �c>x2.y � c>x

x � 0.xyr � �yy � c>x

a � x � �, �� � x � �
�� � x � b,a � x � b

a � x � b

hryr

h(x)a � x � b

y � h(x)

yr  �  4x3y2.x � 0x�3yr  �  4y2 � 0

yr � f (x, y).

F(x, y, yr) � 0

yr

0
2u

0x2
�

0
2u

0y2
� 0.

ys � d2y>dx2,
dy>dxyr

4 CHAP. 1 First-Order ODEs
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E X A M P L E  2 Solution by Calculus. Solution Curves

The ODE can be solved directly by integration on both sides. Indeed, using calculus,
we obtain where c is an arbitrary constant. This is a family of solutions. Each value
of c, for instance, 2.75 or 0 or gives one of these curves. Figure 3 shows some of them, for 

��1, 0, 1, 2, 3, 4.
c � �3, �2,�8,

y � �cos x dx � sin x � c,
yr � dy>dx � cos x

SEC. 1.1 Basic Concepts. Modeling 5

y

x0

–4

2ππ–π

4

2

–2

Fig. 3. Solutions of the ODE yr � cos xy � sin x � c

0

0.5

1.0

1.5

2.5

2.0

0 2 4 6 8 10 12 14 t

y

Fig. 4B. Solutions of 
in Example 3 (exponential decay)

yr � �0.2y

0

10

20

30

40

0 2 4 6 8 10 12 14 t

y

Fig. 4A. Solutions of 
in Example 3 (exponential growth)

yr � 0.2y

E X A M P L E  3 (A) Exponential Growth. (B) Exponential Decay

From calculus we know that has the derivative

Hence y is a solution of (Fig. 4A). This ODE is of the form With positive-constant k it can
model exponential growth, for instance, of colonies of bacteria or populations of animals. It also applies to
humans for small populations in a large country (e.g., the United States in early times) and is then known as
Malthus’s law.1 We shall say more about this topic in Sec. 1.5.

(B) Similarly, (with a minus on the right) has the solution (Fig. 4B) modeling
exponential decay, as, for instance, of a radioactive substance (see Example 5). �

y � ce�0.2t,yr � �0.2

yr � ky.yr � 0.2y

yr �
dy

dt
� 0.2e0.2t � 0.2y.

y � ce0.2t

1Named after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766–1834).
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We see that each ODE in these examples has a solution that contains an arbitrary
constant c. Such a solution containing an arbitrary constant c is called a general solution
of the ODE.

(We shall see that c is sometimes not completely arbitrary but must be restricted to some
interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutions uniquely (perhaps except for
notation). Hence we shall say the general solution of a given ODE (instead of a general
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant c. If we choose a specific c (e.g., or 0
or ) we obtain what is called a particular solution of the ODE. A particular solution
does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary
constant is obtained as a particular solution by assigning a suitable value to c. Exceptions
to these rules occur but are of minor interest in applications; see Prob. 16 in Problem
Set 1.1.

Initial Value Problem
In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition with given values

and , that is used to determine a value of the arbitrary constant c. Geometrically
this condition means that the solution curve should pass through the point 
in the xy-plane. An ODE, together with an initial condition, is called an initial value
problem. Thus, if the ODE is explicit, the initial value problem is of
the form

(5)

E X A M P L E  4 Initial Value Problem

Solve the initial value problem

Solution. The general solution is ; see Example 3. From this solution and the initial condition
we obtain Hence the initial value problem has the solution . This is a
particular solution.

More on Modeling
The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the details of the typical steps of modeling. Step 1: the transition from the physical situation
(the physical system) to its mathematical formulation (its mathematical model); Step 2:
the solution by a mathematical method; and Step 3: the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your C A S)
may perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work.

�
y(x) � 5.7e3xy(0) � ce0 � c � 5.7.

y(x) � ce3x

y(0) � 5.7.yr �
dy

dx
� 3y,

y(x0) � y0.yr � f (x, y),

yr � f (x, y),

(x0, y0)
y0x0

y(x0) � y0,

�2.01
c � 6.45

6 CHAP. 1 First-Order ODEs
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And Step 2 requires a solid knowledge and good understanding of solution methods
available to you— you have to choose the method for your work by hand or by the
computer. Keep this in mind, and always check computer results for errors (which may
arise, for instance, from false inputs).

E X A M P L E  5 Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Information. Experiments show that at each instant a radioactive substance decomposes— and is thus

decaying in time— proportional to the amount of substance present.

Step 1 . Setting up a mathematical model of the physical process. Denote by the amount of substance still
present at any time t. By the physical law, the time rate of change is proportional to . This
gives the first- order ODE

(6)

where the constant k is positive, so that, because of the minus, we do get decay (as in [ B]  of Example 3).
The value of k is known from experiments for various radioactive substances (e.g., 
approximately, for radium ).

Now the given initial amount is 0.5 g, and we can call the corresponding instant Then we have the
initial condition This is the instant at which our observation of the process begins. It motivates
the term initial condition (which, however, is also used when the independent variable is not time or when
we choose a t other than ). Hence the mathematical model of the physical process is the initial value
prob lem

(7)

Step 2 . Mathematical solution. As in (B) of Example 3 we conclude that the ODE (6) models exponential decay
and has the general solution (with arbitrary constant c but definite given k)

(8)

We now determine c by using the initial condition. Since from (8), this gives Hence
the particular solution governing our process is (cf. Fig. 5)

(9)

A lways check your result— it may involve human or computer errors!  Verify by differentiation (chain rule! )
that your solution (9) satisfies (7) as well as 

Step 3 . I nterpretation of result. Formula (9) gives the amount of radioactive substance at time t. It starts from
the correct initial amount and decreases with time because k is positive. The limit of y as is zero. �t : �

dy

dt
� �0.5ke�kt � �k � 0.5e�kt � �ky,  y(0) � 0.5e0 � 0.5.

y(0) � 0.5:

(k � 0).y(t) � 0.5e�kt

y(0) � c � 0.5.y(0) � c

y(t) � ce�kt.

dy

dt
� �ky,  y(0) � 0.5.

t � 0

y(0) � 0.5.
t � 0.

226
88 

Ra
k � 1.4 � 10�11 sec�1,

dy

dt
� �ky

y(t)yr(t) � dy>dt
y(t)

SEC. 1.1 Basic Concepts. Modeling 7

0.1
0.2
0.3
0.4
0.5

0

y

0 0.5 1.5 2 2.5 31 t

Fig. 5. Radioactivity (Exponential decay, 
with as an example)k � 1.5y � 0.5e�kt,
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8 CHAP. 1 First-Order ODEs

1–8 CALCULUS

Solve the ODE by integration or by remembering a
differentiation formula.

1.

2.

3.

4.

5.

6.

7.

8.

9–15 VERIFICATION. INITIAL VALUE 
PROBLEM (IVP)

(a) Verify that y is a solution of the ODE. (b) Determine
from y the particular solution of the IVP. (c) Graph the
solution of the IVP.

9.

10.

11.

12.

13.

14.

15. Find two constant solutions of the ODE in Prob. 13 by
inspection.

16. Singular solution. An ODE may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE is of this kind. Show
by differentiation and substitution that it has the
general solution and the singular solution

. Explain Fig. 6.y � x2>4
y � cx � c2

yr2 � xyr � y � 0

yr tan x � 2y � 8, y � c sin2 x � 4, y(1
2 p) � 0

yr � y � y2, y �
1

1 � ce�x
 , y(0) � 0.25

yyr � 4x, y2 � 4x2 � c (y � 0), y(1) � 4

yr � y � ex, y � (x � c)ex, y(0) � 1
2

yr � 5xy � 0, y � ce�2.5x2

, y(0) � p

yr � 4y � 1.4, y � ce�4x � 0.35, y(0) � 2

yt � e�0.2x

yr � cosh 5.13x

ys � �y

yr � 4e�x cos x

yr � �1.5y

yr � y

yr � xe�x2>2 � 0

yr � 2 sin 2px � 0

17–20 MODELING, APPLICATIONS

These problems will give you a first impression of modeling.
Many more problems on modeling follow throughout this
chapter.

17. Half-life. The half-life measures exponential decay.
It is the time in which half of the given amount of
radioactive substance will disappear. What is the half-
life of (in years) in Example 5?

18. Half-life. Radium has a half-life of about
3.6 days.

(a) Given 1 gram, how much will still be present after
1 day?

(b) After 1 year?

19. Free fall. In dropping a stone or an iron ball, air
resistance is practically negligible. Experiments
show that the acceleration of the motion is constant
(equal to called the
acceleration of gravity). Model this as an ODE for

, the distance fallen as a function of time t. If the
motion starts at time from rest (i.e., with velocity

), show that you obtain the familiar law of
free fall

20. Exponential decay. Subsonic flight. The efficiency
of the engines of subsonic airplanes depends on air
pressure and is usually maximum near ft.
Find the air pressure at this height. Physical
information. The rate of change is proportional
to the pressure. At ft it is half its value

at sea level. H int. Remember from calculus
that if then Can you see
without calculation that the answer should be close
to ?y0>4

yr � kekx � ky.y � ekx,
y0 � y(0)

18,000
yr(x)

y(x)
35,000

y � 1
2 gt 2.

v � yr � 0
t � 0

y(t)

g � 9.80 m>sec2 � 32 ft>sec2,

224
88 Ra

226
88 

Ra

P R O B L E M  S E T  1 . 1

–4 42

y

x

2
1

3

–4
–5

–2
–3

–2–1

Fig. 6. Particular solutions and singular 
solution in Problem 16
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1.2 Geometric Meaning of 
Direction Fields, Euler’s Method

A first-order ODE

(1)

has a simple geometric interpretation. From calculus you know that the derivative of
is the slope of . Hence a solution curve of (1) that passes through a point 

must have, at that point, the slope equal to the value of f at that point; that is,

Using this fact, we can develop graphic or numeric methods for obtaining approximate
solutions of ODEs (1). This will lead to a better conceptual understanding of an ODE (1).
Moreover, such methods are of practical importance since many ODEs have complicated
solution formulas or no solution formulas at all, whereby numeric methods are needed.

Graphic Method of Direction Fields. Practical Example Illustrated in Fig. 7. We
can show directions of solution curves of a given ODE (1) by drawing short straight-line
segments (lineal elements) in the xy-plane. This gives a direction field (or slope field)
into which you can then fit (approximate) solution curves. This may reveal typical
properties of the whole family of solutions.

Figure 7 shows a direction field for the ODE

(2)

obtained by a CAS (Computer Algebra System) and some approximate solution curves
fitted in.

yr � y � x

yr(x0) � f (x0, y0).

yr(x0)
(x0, y0)y(x)y(x)
yr(x)

yr � f (x, y)

yr � f (x, y).

SEC. 1.2 Geometric Meaning of y	 � ƒ(x, y). Direction Fields, Euler’s Method 9

1

2

0.5 1–0.5–1–1.5–2

–1

–2

y

x

Fig. 7. Direction field of with three approximate solution 
curves passing through (0, 1), (0, 0), (0, ), respectively�1

yr � y � x,
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If you have no CAS, first draw a few level curves const of , then parallel
lineal elements along each such curve (which is also called an isocline, meaning a curve
of equal inclination), and finally draw approximation curves fit to the lineal elements.

We shall now illustrate how numeric methods work by applying the simplest numeric
method, that is Euler’s method, to an initial value problem involving ODE (2). First we
give a brief description of Euler’s method.

Numeric Method by Euler
Given an ODE (1) and an initial value Euler’s method yields approximate
solution values at equidistant x-values namely,

(Fig. 8)

, etc.

In general,

where the step h equals, e.g., 0.1 or 0.2 (as in Table 1.1) or a smaller value for greater
accuracy.

yn � yn�1 � hf (xn�1, yn�1)

y2 � y1 � hf (x1, y1)

y1 � y0 � hf (x0, y0)

x0, x1 � x0 � h, x2 � x0 � 2h, Á ,
y(x0) � y0,

f (x, y)f (x, y) �

10 CHAP. 1 First-Order ODEs

y

xx
0

x
1

y
0

y
1

y(x
1
)

Solution curve

Error of y
1
 

hf (x
0
,
 
y

0
)

h

Fig. 8. First Euler step, showing a solution curve, its tangent at ( ), 
step h and increment in the formula for y1hf (x0, y0)

x0, y0

Table 1.1 shows the computation of steps with step for the ODE (2) and
initial condition corresponding to the middle curve in the direction field. We
shall solve the ODE exactly in Sec. 1.5. For the time being, verify that the initial value
problem has the solution . The solution curve and the values in Table 1.1
are shown in Fig. 9. These values are rather inaccurate. The errors are shown
in Table 1.1 as well as in Fig. 9. Decreasing h would improve the values, but would soon
require an impractical amount of computation. Much better methods of a similar nature
will be discussed in Sec. 21.1.

y(xn) � yn

y � ex � x � 1

y(0) � 0,
h � 0.2n � 5
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Table 1.1. Euler method for for
with step h � 0.2x � 0, Á , 1.0

yr � y � x, y (0) � 0

SEC. 1.2 Geometric Meaning of y	 � ƒ(x, y). Direction Fields, Euler’s Method 11

0.7

0.5

0.3

0.1

0 0.2 0.4 0.6 0.8 1 x

y

Fig. 9. Euler method: Approximate values in Table 1.1 and solution curve

n Error

0 0.0 0.000 0.000 0.000
1 0.2 0.000 0.021 0.021
2 0.4 0.04 0.092 0.052
3 0.6 0.128 0.222 0.094
4 0.8 0.274 0.426 0.152
5 1.0 0.488 0.718 0.230

y(xn)ynxn

1–8 DIRECTION FIELDS, SOLUTION CURVES

Graph a direction field (by a CAS or by hand). In the field
graph several solution curves by hand, particularly those
passing through the given points .

1.

2.

3.

4.

5.

6.

7.

8.

9–10 ACCURACY OF DIRECTION FIELDS

Direction fields are very useful because they can give you
an impression of all solutions without solving the ODE,
which may be difficult or even impossible. To get a feel for
the accuracy of the method, graph a field, sketch solution
curves in it, and compare them with the exact solutions.

9.

10. (Sol. )

11. Autonomous ODE. This means an ODE not showing
x (the independent variable) explicitly. (The ODEs in
Probs. 6 and 10 are autonomous.) What will the level
curves const (also called isoclines curves�f (x,  y) �

1y � 5
2 x � cyr � �5y1>2

yr � cos px

yr � �2xy, (0, 12),  (0, 1), (0, 2)

yr � ey>x, (2, 2), (3, 3)

yr � sin2 y, (0, �0.4), (0, 1)

yr � x � 1>y, (1, 12)

yr � 2y � y2, (0, 0), (0, 1), (0, 2), (0, 3)

yr � 1 � y2, (0, 0), (2, 12)

yyr � 4x � 0, (1, 1), (0, 2)

yr � 1 � y2, (1
4 p,  1)

(x,  y)

of equal inclination) of an autonomous ODE look like?
Give reason.

12–15 MOTIONS 

Model the motion of a body B on a straight line with
velocity as given, being the distance of B from a point

at time t. Graph a direction field of the model (the
ODE). In the field sketch the solution curve satisfying the
given initial condition.

12. Product of velocity times distance constant, equal to 2,

13.

14. Square of the distance plus square of the velocity equal
to 1, initial distance 

15. Parachutist. Two forces act on a parachutist, the
attraction by the earth mg (m mass of person plus
equipment, the acceleration of gravity)
and the air resistance, assumed to be proportional to the
square of the velocity v(t). Using Newton’s second law
of motion (mass acceleration resultant of the forces),
set up a model (an ODE for v(t)). Graph a direction field
(choosing m and the constant of proportionality equal to 1).
Assume that the parachute opens when v
Graph the corresponding solution in the field. What is the
limiting velocity?  Would the parachute still be sufficient
if the air resistance were only proportional to v(t)?

� 10 m>sec.

�


g � 9.8 m>sec2
�

1>12

Distance � Velocity 
 Time, y(1) � 1

y(0) � 2.

y � 0
y(t)

P R O B L E M  S E T  1 . 2
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1.3 Separable ODEs. Modeling
Many practically useful ODEs can be reduced to the form

(1)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,
obtaining

(2)

On the left we can switch to y as the variable of integration. By calculus, , so that

(3)

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODEs is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and y only on the left.

E X A M P L E  1 Separable ODE

The ODE is separable because it can be written

By integration, or .

It is very important to introduce the constant of integration immediately when the integration is performed.
If we wrote then and then introduced c, we would have obtained which 
is not a solution (when ). Verify this. �c � 0

y � tan x � c,y � tan x,arctan y � x,

y � tan (x � c)arctan y � x � c
dy

1 � y2
� dx.

yr � 1 � y2

�g(y) dy � � f (x) dx � c.

yrdx � dy

�g(y) yrdx � � f (x) dx � c.

g(y) yr � f (x)

12 CHAP. 1 First-Order ODEs

16. CAS PROJECT. Direction Fields. Discuss direction
fields as follows.
(a) Graph portions of the direction field of the ODE (2)
(see Fig. 7), for instance, 
Explain what you have gained by this enlargement of
the portion of the field.
(b) Using implicit differentiation, find an ODE with
the general solution Graph its
direction field. Does the field give the impression
that the solution curves may be semi-ellipses?  Can you
do similar work for circles?  Hyperbolas?  Parabolas?
Other curves?
(c) Make a conjecture about the solutions of 
from the direction field.
(d) Graph the direction field of and some
solutions of your choice. How do they behave?  Why
do they decrease for ?y � 0

yr � �1
2 y

yr � �x>y

x2 � 9y2 � c (y � 0).

�5 � x � 2, �1 � y � 5.

17–20 EULER’S METHOD 

This is the simplest method to explain numerically solving
an ODE, more precisely, an initial value problem (IVP).
(More accurate methods based on the same principle are
explained in Sec. 21.1.) Using the method, to get a feel for
numerics as well as for the nature of IVPs, solve the IVP
numerically with a PC or a calculator, 10 steps. Graph the
computed values and the solution curve on the same
coordinate axes.

17.

18.

19.
Sol. 

20.
Sol. y � 1>(1 � x)5
yr � �5x4y2, y(0) � 1, h � 0.2

y � x � tanh x
yr � (y � x)2, y(0) � 0, h � 0.1

yr � y, y(0) � 1, h � 0.01

yr � y, y(0) � 1, h � 0.1
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E X A M P L E  2 Separable ODE

The ODE is separable; we obtain 

E X A M P L E  3 Initial Value Problem (IVP). Bell-Shaped Curve

Solve 

Solution. By separation and integration,

This is the general solution. From it and the initial condition, Hence the IVP has the
solution This is a particular solution, representing a bell-shaped curve (Fig. 10). �y � 1.8e�x2

.
y(0) � ce0 � c � 1.8.

dy

y
� �2x dx,  ln y � �x2 � c�,  y � ce�x2

.

yr � �2xy, y(0) � 1.8.

�
By integration,  �y�1 � �(x � 2)e�x � c,  y �

1

(x � 2)e�x � c
 .

y�2 dy � (x � 1)e�x dx.yr � (x � 1)e�xy2

SEC. 1.3 Separable ODEs. Modeling 13

1

10–1–2 2 x

y

Fig. 10. Solution in Example 3 (bell-shaped curve)

Modeling
The importance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

E X A M P L E  4 Radiocarbon Dating2

In September 1991 the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in
the ice of the Oetztal Alps (hence the name “Oetzi”) in Southern Tyrolia near the Austrian–Italian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon to carbon in
this mummy is 52.5%  of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon (made
radioactive by cosmic rays) to ordinary carbon is constant. When an organism dies, its absorption of 
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive
carbon ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of , which
is 5715 years (CR C H andbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11–52,
line 9).

Solution. Modeling. Radioactive decay is governed by the ODE (see Sec. 1.1, Example 5). By
separation and integration (where t is time and is the initial ratio of to )

(y0 � ec).y � y0  
ektln ƒ y ƒ � kt � c,

dy

y
� k dt,

12
6 
C14

6 
Cy0

yr � ky

14
6 
C

14
6 
C12

6 
C

14
6 
C

12
6 
C14

6 
C

2Method by WILLARD FRANK LIBBY  (1908–1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.
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Next we use the half-life to determine k. When , half of the original substance is still present. Thus,

Finally, we use the ratio 52.5%  for determining the time t when Oetzi died (actually, was killed),

Answer: About 5300 years ago.

Other methods show that radiocarbon dating values are usually too small. According to recent research, this is
due to a variation in that carbon ratio because of industrial pollution and other factors, such as nuclear testing.

E X A M P L E  5 Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved.
Brine runs in at a rate of 10 gal min, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal min. Find the amount of salt in the tank at any time t.

Solution. Step 1 . Setting up a model. Let denote the amount of salt in the tank at time t. Its time rate
of change is

Balance law.

5 lb times 10 gal gives an inflow of 50 lb of salt. Now, the outflow is 10 gal of brine. This is 
of the total brine content in the tank, hence 0.01 of the salt content , that is, 0.01 . Thus the

model is the ODE

(4)

Step 2 . Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

Initially the tank contains 100 lb of salt. Hence is the initial condition that will give the unique
solution. Substituting and in the last equation gives Hence 
Hence the amount of salt in the tank at time t is

(5)

This function shows an exponential approach to the limit 5000 lb; see Fig. 11. Can you explain physically that
should increase with time?  That its limit is 5000 lb?  Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob. 35)
or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and the flow
rates (in and out) may be different and known only very roughly. �

y(t)

y(t) � 5000 � 4900e�0.01t.

c � �4900.100 � 5000 � ce0 � c.t � 0y � 100
y(0) � 100

y � 5000 � ce�0.01t.ln ƒ y � 5000 ƒ � �0.01t � c*,
dy

y � 5000
� �0.01 dt,

yr � 50 � 0.01y � �0.01(y � 5000).

y(t)y(t)(� 1% )
10>1000 � 0.01

yr � Salt inflow rate � Salt outflow rate

y(t)

>
>

�

t �
ln 0.525

�0.0001 213
� 5312.ekt � e�0.0001 213t � 0.525,

k �
ln 0.5

H
� �

0.693

5715
� �0.0001 213.ekH � 0.5,y0ekH � 0.5y0,

t � HH � 5715

14 CHAP. 1 First-Order ODEs

100
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1000
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4000

1000 300200 400 500

Salt content y(t)

t

TankTank

y

Fig. 11. Mixing problem in Example 5
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E X A M P L E  6 Heating an Office Building (Newton’s Law of Cooling3)

Suppose that in winter the daytime temperature in a certain office building is maintained at 70° F. The heating
is shut off at 10 P.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at 2 A.M.
was found to be 65° F. The outside temperature was 50° F at 10 P.M. and had dropped to 40°F by 6 A.M. What
was the temperature inside the building when the heat was turned on at 6 A.M.?

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which
conducts heat well, for example, as a copper ball does) is proportional to the difference between T and the
temperature of the surrounding medium (Newton’s law of cooling).

Solution. Step 1 . Setting up a model. Let be the temperature inside the building and TA the outside
temperature (assumed to be constant in Newton’s law). Then by Newton’s law,

(6)

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a
model seems to fit the reality only poorly (as in the present case), it may still give valuable qualitative information.
To see how good a model is, the engineer will collect experimental data and compare them with calculations
from the model.

Step 2 . General solution. We cannot solve (6) because we do not know TA, just that it varied between 50° F
and 40° F, so we follow the Golden R ule: If you cannot solve your problem, try to solve a simpler one. We
solve (6) with the unknown function TA replaced with the average of the two known values, or 45° F. For physical
reasons we may expect that this will give us a reasonable approximate value of T in the building at 6 A.M.

For constant (or any other constant value) the ODE (6) is separable. Separation, integration, and
taking exponents gives the general solution

Step 3 . Particular solution. We choose 10 P.M. to be Then the given initial condition is and
yields a particular solution, call it . By substitution,

Step 4 . Determination of k. We use where is 2 A.M. Solving algebraically for k and inserting
k into gives (Fig. 12)

Tp(t) � 45 � 25e�0.056t.k � 1
4 ln 0.8 � �0.056,e4k � 0.8,Tp(4) � 45 � 25e4k � 65,

Tp(t)
t � 4T(4) � 65,

Tp(t) � 45 � 25ekt.c � 70 � 45 � 25,T(0) � 45 � ce0 � 70,

Tp

T(0) � 70t � 0.

(c � ec*

).T(t) � 45 � cektln ƒ T � 45 ƒ � kt � c*,
dT

T � 45
� k dt,

TA � 45

dT

dt
� k(T � TA).

T(t)

SEC. 1.3 Separable ODEs. Modeling 15
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Fig. 12. Particular solution (temperature) in Example 6

3Sir ISAAC NEWTON (1642–1727), great English physicist and mathematician, became a professor at
Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher
GOTTFRIED WILHELM LEIBNIZ (1646–1716) invented (independently) the differential and integral calculus.
Newton discovered many basic physical laws and created the method of investigating physical problems by
means of calculus. His Philosophiae naturalis principia mathematica (Mathematical Principles of Natural
Philosophy, 1687) contains the development of classical mechanics. His work is of greatest importance to both
mathematics and physics.
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Step 5 . A nswer and interpretation. 6 A.M. is (namely, 8 hours after 10 P.M.), and

Hence the temperature in the building dropped 9° F, a result that looks reasonable.

E X A M P L E  7 Leaking Tank. Outflow of Water Through a Hole (Torricelli’s Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 13). Y ou are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

(7) (Torricelli’s law4),

where is the height of the water above the hole at time t, and is the
acceleration of gravity at the surface of the earth.

Solution. Step 1 . Setting up the model. To get an equation, we relate the decrease in water level to the
outflow. The volume of the outflow during a short time is

(A Area of hole).

must equal the change of the volume of the water in the tank. Now

(B Cross-sectional area of tank)

where is the decrease of the height of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating and gives

We now express v according to Torricelli’s law and then let (the length of the time interval considered)
approach 0— this is a standard way of obtaining an ODE as a model. That is, we have

and by letting we obtain the ODE

,

where This is our model, a first-order ODE.

Step 2 . General solution. Our ODE is separable. is constant. Separation and integration gives

and

Dividing by 2 and squaring gives . Inserting 
yields the general solution

h(t) � (c � 0.000 332t)2.

13.28A>B � 13.28 � 0.52p>1002p� 0.000 332h � (c � 13.28At>B)2

21h � c* � 26.56 
A

B
 t.

dh

1h
� �26.56 

A

B
 dt

A>B

26.56 � 0.60022 � 980.

dh

dt
� �26.56 

A

B
1h

¢t :  0

¢h

¢t
� �

A

B
 v � �

A

B
 0.60012gh(t)

¢t

�B ¢h � Av ¢t.

¢ V *¢ V
h(t)¢h (� 0)

�¢ V * � �B ¢h

¢ V *¢ V

�¢ V � Av ¢t

¢t¢ V
h(t)

g � 980 cm>sec2 � 32.17 ft>sec2h(t)

v(t) � 0.60022gh(t)

�

Tp(8) � 45 � 25e�0.056 �  8 � 613°F 4.

t � 8

16 CHAP. 1 First-Order ODEs

4EVANGELISTA TORRICELLI (1608–1647), Italian physicist, pupil and successor of GALILEO GALILEI
(1564–1642) at Florence. The “contraction factor” 0.600 was introduced by J. C. BORDA in 1766 because the
stream has a smaller cross section than the area of the hole.
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Step 3 . Particular solution. The initial height (the initial condition) is cm. Substitution of 
and gives from the general solution and thus the particular solution (Fig. 13)

Step 4 . Tank empty. if [ hours] .
Here you see distinctly the importance of the choice of units— we have been working with the cgs system,

in which time is measured in seconds!  We used 

Step 5 . C hecking. Check the result. �

g � 980 cm>sec2.

t � 15.00>0.000332 � 45,181 c sec d � 12.6hp(t) � 0

hp(t) � (15.00 � 0.000332t)2.

c2 � 225, c � 15.00h � 225
t � 0h(0) � 225

SEC. 1.3 Separable ODEs. Modeling 17
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 at time t

h

t
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Tank Water level h(t) in tank

Fig. 13. Example 7. Outflow from a cylindrical tank (“leaking tank”). 
Torricelli’s law

Extended Method: Reduction to Separable Form
Certain nonseparable ODEs can be made separable by transformations that introduce for
y a new unknown function. We discuss this technique for a class of ODEs of practical
importance, namely, for equations

(8)

Here, f is any (differentiable) function of , such as sin , , and so on. (Such
an ODE is sometimes called a homogeneous O DE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set ; thus,

(9) and by product differentiation

Substitution into then gives or . We see that
if , this can be separated:

(10)
du

f (u) � u
�

dx

x
.

f (u) � u � 0
urx � f (u) � uurx � u � f (u)yr � f (y>x)

yr � urx � u.y � ux

y>x � u

(y>x)4(y>x)y>x

yr � f ay

x
b .

c 01.qxd  7/30/10  8:15 PM  Page 17



https://hemanthrajhemu.github.io

E X A M P L E  8 Reduction to Separable Form

Solve

Solution. To get the usual explicit form, divide the given equation by 2xy,

Now substitute y and from (9) and then simplify by subtracting u on both sides,

Y ou see that in the last equation you can now separate the variables,

By integration,

Take exponents on both sides to get or . Multiply the last equation by to
obtain (Fig. 14)

Thus

This general solution represents a family of circles passing through the origin with centers on the x-axis. �

ax �
c

2
b2 � y2 �

c2

4
.x2 � y2 � cx.

x21 � (y>x)2 � c>x1 � u2 � c>x

ln (1 � u2) � �ln ƒ x ƒ � c* � ln ` 1
x
` � c*.

2u du

1 � u2
� �

dx

x
.

urx � �
u

2
�

1

2u
�

�u2 � 1

2u
.urx � u �

u

2
�

1

2u
,

yr

yr �
y2 � x2

2xy
�

y

2x
�

x

2y
.

2xyyr � y2 � x2.

18 CHAP. 1 First-Order ODEs

4

–4

y

x–4–8 4 8

2

–2

Fig. 14. General solution (family of circles) in Example 8

1. CAUTION! Constant of integration. Why is it
important to introduce the constant of integration
immediately when you integrate?

2–10 GENERAL SOLUTION

Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.

3.

4.

5.

6.

7.

8.

9.

10. xyr � x � y (Set y>x � u)

xyr � y2 � y (Set y>x � u)

yr � (y � 4x)2 (Set y � 4x � v)

xyr � y � 2x3 sin2 
y

x
 (Set y>x � u)

yr � e2x�1y2

yyr � 36x � 0

yr sin 2px � py cos 2px

yr � sec2 y

y3yr � x3 � 0

11–17 INITIAL VALUE PROBLEMS (IVPS)

Solve the IVP. Show the steps of derivation, beginning with
the general solution.

11.

12.

13.

14.

15.

16.
(Set )

17.

18. Particular solution. Introduce limits of integration in
(3) such that y obtained from (3) satisfies the initial
condition y(x0) � y0.

(Set y>x � u)
xyr � y � 3x4 cos2 (y>x), y(1) � 0

v � x � y � 2
yr � (x � y � 2)2, y(0) � 2

yr � �4x>y, y(2) � 3

dr>dt � �2tr, r(0) � r0

yrcosh2 x � sin2 y, y(0) � 1
2 p

yr � 1 � 4y2, y(1) � 0

xyr � y � 0, y(4) � 6

P R O B L E M  S E T  1 . 3
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19–36 MODELING, APPLICATIONS

19. Exponential growth. If the growth rate of the number
of bacteria at any time t is proportional to the number
present at t and doubles in 1 week, how many bacteria
can be expected after 2 weeks?  After 4 weeks?

20. Another population model.

(a) If the birth rate and death rate of the number of
bacteria are proportional to the number of bacteria
present, what is the population as a function of time. 

(b) What is the limiting situation for increasing time?
Interpret it.

21. Radiocarbon dating. What should be the content
(in percent of ) of a fossilized tree that is claimed to
be 3000 years old?  (See Example 4.)

22. Linear accelerators are used in physics for
accelerating charged particles. Suppose that an alpha
particle enters an accelerator and undergoes a constant
acceleration that increases the speed of the particle
from to sec. Find the
acceleration a and the distance traveled during that
period of sec.

23. Boyle–Mariotte’s law for ideal gases.5 Experiments
show for a gas at low pressure p (and constant
temperature) the rate of change of the volume 
equals . Solve the model.

24. Mixing problem. A tank contains 400 gal of brine
in which 100 lb of salt are dissolved. Fresh water runs
into the tank at a rate of The mixture, kept
practically uniform by stirring, runs out at the same
rate. How much salt will there be in the tank at the
end of 1 hour?

25. Newton’s law of cooling. A thermometer, reading
5° C, is brought into a room whose temperature is 22° C.
One minute later the thermometer reading is 12° C.
How long does it take until the reading is practically
22°C , say, 21.9°C ?

26. Gompertz growth in tumors. The Gompertz model
is , where is the mass of
tumor cells at time t. The model agrees well with
clinical observations. The declining growth rate with
increasing corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients. Use the ODE to discuss the
growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

27. Dryer. If a wet sheet in a dryer loses its moisture at
a rate proportional to its moisture content, and if it
loses half of its moisture during the first 10 min of

y � 1

y(t)yr � �Ay ln y (A � 0)

2 gal>min.

�V>p
V(p)

10�3

104 m>sec in 10�3103 m>sec

y0

14
6 
C

SEC. 1.3 Separable ODEs. Modeling 19

drying, when will it be practically dry, say, when will
it have lost 99%  of its moisture?  First guess, then
calculate.

28. Estimation. Could you see, practically without calcu-
lation, that the answer in Prob. 27 must lie between
60 and 70 min?  Explain.

29. Alibi? Jack, arrested when leaving a bar, claims that
he has been inside for at least half an hour (which
would provide him with an alibi). The police check
the water temperature of his car (parked near the
entrance of the bar) at the instant of arrest and again
30 min later, obtaining the values 190° F and 110° F,
respectively. Do these results give Jack an alibi?
(Solve by inspection.)

30. Rocket. A rocket is shot straight up from the earth,
with a net acceleration ( acceleration by the rocket
engine minus gravitational pullback) of 
during the initial stage of flight until the engine cut out
at sec. How high will it go, air resistance
neglected?

31. Solution curves of Show that any
(nonvertical) straight line through the origin of the
xy-plane intersects all these curves of a given ODE at
the same angle.

32. Friction. If a body slides on a surface, it experiences
friction F (a force against the direction of motion).
Experiments show that (Coulomb’ s6 law of
kinetic friction without lubrication), where N is the
normal force (force that holds the two surfaces together;
see Fig. 15) and the constant of proportionality is
called the coefficient of kinetic friction. In Fig. 15
assume that the body weighs 45 nt (about 10 lb; see
front cover for conversion). (corresponding
to steel on steel), the slide is 10 m long, the
initial velocity is zero, and air resistance is
negligible. Find the velocity of the body at the end
of the slide.

a � 30° ,
� � 0.20

�

ƒ F ƒ � � ƒ N ƒ

yr � g1y>x2.

t � 10

7t m>sec2
�

5ROBERT BOY LE (1627–1691), English physicist and chemist, one of the founders of the Royal Society. EDME MARIOTTE (about
1620–1684), French physicist and prior of a monastry near Dijon. They found the law experimentally in 1662 and 1676, respectively.

6CHARLES AUGUSTIN DE COULOMB (1736–1806), French physicist and engineer.

v(t)

W

N

Body

α

s(t)

Fig. 15. Problem 32
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33. Rope. To tie a boat in a harbor, how many times
must a rope be wound around a bollard (a vertical
rough cylindrical post fixed on the ground) so that a
man holding one end of the rope can resist a force
exerted by the boat 1000 times greater than the man
can exert?  First guess. Experiments show that the
change of the force S in a small portion of the
rope is proportional to S and to the small angle 
in Fig. 16. Take the proportionality constant 0.15.
The result should surprise you!

¢�
¢S

20 CHAP. 1 First-Order ODEs

this as the condition for the two families to be
orthogonal (i.e., to intersect at right angles)?  Do your
graphs confirm this?

(e) Sketch families of curves of your own choice and
find their ODEs. Can every family of curves be given
by an ODE?

35. CAS PROJECT. Graphing Solutions. A CAS can
usually graph solutions, even if they are integrals that
cannot be evaluated by the usual analytical methods of
calculus.
(a) Show this for the five initial value problems

, , graphing all five curves
on the same axes.
(b) Graph approximate solution curves, using the first
few terms of the Maclaurin series (obtained by term-
wise integration of that of ) and compare with the
exact curves.
(c) Repeat the work in (a) for another ODE and initial
conditions of your own choice, leading to an integral
that cannot be evaluated as indicated.

36. TEAM PROJECT. Torricelli’s Law. Suppose that
the tank in Example 7 is hemispherical, of radius R ,
initially full of water, and has an outlet of 5 cm2 cross-
sectional area at the bottom. (Make a sketch.) Set
up the model for outflow. Indicate what portion of
your work in Example 7 you can use (so that it can
become part of the general method independent of the
shape of the tank). Find the time t to empty the tank
(a) for any R , (b) for Plot t as function of
R . Find the time when (a) for any R , (b) for
R � 1 m.

h � R >2
R � 1 m.

yr

y(0) � 0, �1, �2yr � e�x2

S + ∆S

∆�

S
Small
portion
of rope

Fig. 16. Problem 33

34. TEAM PROJECT. Family of Curves. A family of
curves can often be characterized as the general
solution of 

(a) Show that for the circles with center at the origin
we get 

(b) Graph some of the hyperbolas Find an
ODE for them.

(c) Find an ODE for the straight lines through the
origin.

(d) Y ou will see that the product of the right sides of
the ODEs in (a) and (c) equals Do you recognize�1.

xy � c.

yr � �x>y.

yr � f (x,  y).

1.4 Exact ODEs. Integrating Factors
We recall from calculus that if a function has continuous partial derivatives, its
differential (also called its total differential) is

From this it follows that if then 
For example, if , then

or

yr �
dy

dx
� �

1 � 2xy3

3x2y2
,

du � (1 � 2xy3) dx � 3x2y2 dy � 0

u � x � x2y3 � c
du � 0.u(x, y) � c � const,

du �
0u

0x
 dx �

0u

0y
 dy.

u(x, y)
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an ODE that we can solve by going backward. This idea leads to a powerful solution
method as follows.

A first-order ODE written as (use as in Sec. 1.3)

(1)

is called an exact differential equation if the differential form 
is exact, that is, this form is the differential

(2) 

of some function . Then (1) can be written

By integration we immediately obtain the general solution of (1) in the form

(3)

This is called an implicit solution, in contrast to a solution as defined in Sec.
1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution
can be converted to explicit form. (Do this for ) If this is not possible, your
CAS may graph a figure of the contour lines (3) of the function and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function such that

(4) (a) (b)

From this we can derive a formula for checking whether (1) is exact or not, as follows.
Let M and N be continuous and have continuous first partial derivatives in a region in

the xy-plane whose boundary is a closed curve without self-intersections. Then by partial
differentiation of (4) (see App. 3.2 for notation),

By the assumption of continuity the two second partial derivaties are equal. Thus

(5)
0M

0y
�

0N

0x
.

0N

0x
�

0
2u

0x 0y
.

0M

0y
�

0
2u

0y 0x
,

0u

0y
� N.

0u

0x
� M,

u(x, y)

u(x, y)
x2 � y2 � 1.

y � h(x)

u(x, y) � c.

du � 0.

u(x, y)

du �
0u

0x
 dx �

0u

0y
 dy

M(x, y) dx � N(x, y) dy

M(x, y) dx � N(x, y) dy � 0

dy � yrdxM(x, y) � N(x, y)yr � 0,

SEC. 1.4 Exact ODEs. Integrating Factors 21
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This condition is not only necessary but also sufficient for (1) to be an exact differential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books, for
instance, [ GenRef 12] , also contain a proof.)

If (1) is exact, the function can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x

(6)

in this integration, y is to be regarded as a constant, and plays the role of a “constant”
of integration. To determine , we derive from (6), use (4b) to get , and
integrate to get k. (See Example 1, below.)

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then, instead of (6), we first have by integration with respect to y

(6*)

To determine , we derive from (6* ), use (4a) to get , and integrate. We
illustrate all this by the following typical examples.

E X A M P L E  1 An Exact ODE

Solve

(7)

Solution. Step 1 . Test for exactness. Our equation is of the form (1) with

Thus

From this and (5) we see that (7) is exact.

Step 2 . I mplicit general solution. From (6) we obtain by integration

(8)

To find , we differentiate this formula with respect to y and use formula (4b), obtaining

Hence By integration, Inserting this result into (8) and observing (3),
we obtain the answer

u(x, y) � sin (x � y) � y3 � y2 � c.

k � y3 � y2 � c*.dk>dy � 3y2 � 2y.

0u

0y
� cos (x � y) �

dk

dy
� N � 3y2 � 2y � cos (x � y).

k(y)

u � �M dx � k(y) � �cos (x � y) dx � k(y) � sin (x � y) � k(y).

0N

0x
� �sin (x � y).

0M

0y
� �sin (x � y),

N � 3y2 � 2y � cos (x � y).

M � cos (x � y),

cos (x � y) dx � (3y2 � 2y � cos (x � y)) dy � 0.

dl>dx0u>0xl(x)

u � �N dy � l(x).

dk>dy
dk>dy0u>0yk(y)

k(y)

u � �M dx � k(y);

u(x, y)

22 CHAP. 1 First-Order ODEs
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Step 3 . C hecking an implicit solution. We can check by differentiating the implicit solution 
implicitly and see whether this leads to the given ODE (7):

(9)

This completes the check.

E X A M P L E  2 An Initial Value Problem

Solve the initial value problem

(10)

Solution. Y ou may verify that the given ODE is exact. We find u. For a change, let us use (6* ),

From this, Hence By integration, 
This gives the general solution From the initial condition, 

Hence the answer is cos y cosh Figure 17 shows the particular solutions for 
(thicker curve), 1, 2, 3. Check that the answer satisfies the ODE. (Proceed as in Example 1.) Also check that the
initial condition is satisfied. �

c � 0, 0.358x � x � 0.358.0.358 � c.
cos 2 cosh 1 � 1 �u(x, y) � cos y cosh x � x � c.

l(x) � x � c*.dl>dx � 1.0u>0x � cos y sinh x � dl>dx � M � cos y sinh x � 1.

u � ��sin y cosh x dy � l(x) � cos y cosh x � l(x).

y(1) � 2.(cos y sinh x � 1) dx � sin y cosh x dy � 0,

�

du �
0u

0x
 dx �

0u

0y
 dy � cos (x � y) dx � (cos (x � y) � 3y2 � 2y) dy � 0.

u(x, y) � c

SEC. 1.4 Exact ODEs. Integrating Factors 23

y

x0 1.0 2.0 3.00.5 1.5 2.5

1.0

2.0

0.5

1.5

2.5

Fig. 17. Particular solutions in Example 2

E X A M P L E  3 WARNING! Breakdown in the Case of Nonexactness

The equation is not exact because and so that in (5), but
Let us show that in such a case the present method does not work. From (6),

hence

Now, should equal by (4b). However, this is impossible because can depend only on . Try
(6* ); it will also fail. Solve the equation by another method that we have discussed.

Reduction to Exact Form. Integrating Factors
The ODE in Example 3 is It is not exact. However, if we multiply it
by , we get an exact equation [ check exactness by (5)! ] ,

(11)

Integration of (11) then gives the general solution y>x � c � const.

�y dx � x dy

x2
� �

y

x2
 dx �

1
x

 dy � d ay

x
b � 0.

1>x2
�y dx � x dy � 0.

�
yk(y)N � x,0u>0y

0u

0y
� �x �

dk

dy
.u � �M dx � k(y) � �xy � k(y),

0N>0x � 1.
0M>0y � �1N � x,M � �y�y dx � x dy � 0
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This example gives the idea. All we did was to multiply a given nonexact equation, say,

(12)

by a function F that, in general, will be a function of both x and y. The result was an equation

(13) 

that is exact, so we can solve it as just discussed. Such a function is then called
an integrating factor of (12).

E X A M P L E  4 Integrating Factor

The integrating factor in (11) is Hence in this case the exact equation (13) is

Solution

These are straight lines through the origin. (Note that is also a solution of )
It is remarkable that we can readily find other integrating factors for the equation namely,

and because

(14)

How to Find Integrating Factors
In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For the exactness condition (5) is Hence for (13),
the exactness condition is

(15)

By the product rule, with subscripts denoting partial derivatives, this gives

In the general case, this would be complicated and useless. So we follow the Golden R ule:
If you cannot solve your problem, try to solve a simpler one— the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable: fortunately, in many practical cases, there are such factors, as we shall
see. Thus, let Then and so that (15) becomes

Dividing by FQ and reshuffling terms, we have

(16) where R �
1

Q
 a 0P

0y
�

0Q

0x
b .

1

F
 
dF

dx
� R ,

FPy � FrQ � FQx.

Fx � Fr � dF>dx,Fy � 0,F � F(x).

FyP � FPy � FxQ � FQx.

0

0y
 (FP) �

0

0x
 (FQ).

FP dx � FQ dy � 0,
0M>0y � 0N>0x.M dx � N dy � 0

�
�y dx � x dy

x2 � y2
� d aarctan 

y

x
b .

�y dx � x dy

xy
� �d aln 

x

y
b ,

�y dx � x dy

y2
� d ax

y
b ,

1>(x2 � y2),1>y2, 1>(xy),
�y dx � x dy � 0,

�y dx � x dy � 0.x � 0y � cx

y

x
� c.FP dx � FQ dy �

�y dx � x dy

x2
� d ay

x
b � 0.

F � 1>x2.

F(x, y)

FP dx � FQ dy � 0

P(x, y) dx � Q(x, y) dy � 0,

24 CHAP. 1 First-Order ODEs
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This proves the following theorem.

T H E O R E M  1 Integrating Factor F (x)

If (12) is such that the right side R  of (16) depends only on x, then (12) has an
integrating factor which is obtained by integrating (16) and taking
exponents on both sides.

(17)

Similarly, if then instead of (16) we get

(18) where

and we have the companion

T H E O R E M  2 Integrating Factor F* (y)

If (12) is such that the right side R *  of (18) depends only on y, then (12) has an
integrating factor , which is obtained from (18) in the form

(19)

E X A M P L E  5 Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(20)

Solution. Step 1 . N onexactness. The exactness check fails:

but

Step 2 . I ntegrating factor. General solution. Theorem 1 fails because R [ the right side of (16)]  depends on
both x and y.

Try Theorem 2. The right side of (18) is

Hence (19) gives the integrating factor From this result and (20) you get the exact equation

(ex � y) dx � (x � e�y) dy � 0.

F*( y) � e�y.

R * �
1

P
 a 0Q

0x
�

0P

0y
b �

1

ex�y � yey (ey � ex�y � ey � yey) � �1.

R �
1

Q
 a 0P

0y
�

0Q

0x
b �

1

xey � 1
  (ex�y � ey � yey � ey).

0Q

0x
�

0

0x
 (xey � 1) � ey.

0P

0y
�

0

0y
 (ex�y � yey) � ex�y � ey � yey

y(0) � �1(ex�y � yey) dx � (xey � 1) dy � 0,

F*( y) � exp� R *( y) dy.

F* � F*( y)

R * �
1

P
 a 0Q

0x
�

0P

0y
b1

F*
 
dF*

dy
� R *,

F* � F*( y),

F(x) � exp� R (x) dx.

F � F(x),
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Test for exactness; you will get 1 on both sides of the exactness condition. By integration, using (4a),

Differentiate this with respect to y and use (4b) to get

Hence the general solution is

Setp 3 . Particular solution. The initial condition gives Hence the
answer is Figure 18 shows several particular solutions obtained as level curves
of obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4 . C hecking. Check by substitution that the answer satisfies the given equation as well as the initial
condition. �

u(x, y) � c,
ex � xy � e�y � 1 � e � 3.72.

u(0, �1) � 1 � 0 � e � 3.72.y(0) � �1

u(x, y) � ex � xy � e�y � c.

k � e�y � c*.
dk

dy
� �e�y,

0u

0y
� x �

dk

dy
� N � x � e�y,

u � �(ex � y) dx � ex � xy � k(y).

26 CHAP. 1 First-Order ODEs

y

x0–1–2–3

1

3

1 2 3

–1

–2

–3

2

Fig. 18. Particular solutions in Example 5

1–14 ODEs. INTEGRATING FACTORS 

Test for exactness. If exact, solve. If not, use an integrating
factor as given or obtained by inspection or by the theorems
in the text. Also, if an initial condition is given, find the
corresponding particular solution.

1.

2.

3.

4.

5.

6.

7. 2x tan y dx � sec2 y dy � 0

3(y � 1) dx � 2x dy, (y � 1)x�4

(x2 � y2)  dx � 2xy dy � 0

e3u(dr � 3r du) � 0

sin x cos y dx � cos x sin y dy � 0

x3dx � y3dy � 0

2xy dx � x2 dy � 0

8.

9.

10.

11. 2 cosh x cos y

12.

13.

14.

15. Exactness. Under what conditions for the constants a,
b, k, l is exact?  Solve
the exact ODE.

(ax � by) dx � (kx � ly) dy � 0

F � xayb
(a � 1)y  dx � (b � 1)x dy � 0, y(1) � 1,

e�y dx � e�x(�e�y � 1) dy � 0, F � ex�y

(2xy dx � dy)ex2

� 0,  y(0) � 2

dx � sinh x sin y dy

y dx � 3y � tan (x � y)4 dy � 0, cos (x � y)

e2x(2 cos y dx � sin y dy) � 0, y(0) � 0

ex(cos y dx � sin y dy) � 0

P R O B L E M  S E T  1 . 4
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16. TEAM PROJECT. Solution by Several Methods.
Show this as indicated. Compare the amount of work.

(a) as an exact ODE
and by separation.

(b) by Theorem 2
and by separation.

(c) by Theorem 1 or 2 and
by separation with 

(d) by Theorems 1 and 2 and
by separation.

(e) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far. Make a list of these ODEs. Find
further cases of your own.

17. WRITING PROJECT. Working Backward.
Working backward from the solution to the problem
is useful in many areas. Euler, Lagrange, and other
great masters did it. To get additional insight into
the idea of integrating factors, start from a of
your choice, find destroy exactness by
division by some and see what ODE’s
solvable by integrating factors you can get. Can you
proceed systematically, beginning with the simplest
F(x,  y)?

F(x,  y),
du � 0,

u(x,  y)

3x2 y dx � 4x3 dy � 0

v � y>x.
(x2 � y2) dx � 2xy dy � 0

(1 � 2x) cos y dx � dy>cos y � 0

ey(sinh x dx � cosh x dy) � 0
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Particular solutions in CAS Project 18

18. CAS PROJECT. Graphing Particular Solutions.
Graph particular solutions of the following ODE,
proceeding as explained.

(21)

(a) Show that (21) is not exact. Find an integrating
factor using either Theorem 1 or 2. Solve (21).

(b) Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph the seven particular solutions satisfying the
following initial conditions 

(see figure below).

(d) Which solution of (21) do we not get in (a) or (b)?

�2
3, �1

y(p>2) � �1
2,y(0) � 1,

dy � y2 sin x dx � 0.

1.5 Linear ODEs. Bernoulli Equation. 
Population Dynamics

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be brought into the form

(1)

by algebra, and nonlinear if it cannot be brought into this form.
The defining feature of the linear ODE (1) is that it is linear in both the unknown

function y and its derivative whereas p and r may be any given functions of
x. If in an application the independent variable is time, we write t instead of x.

If the first term is (instead of ), divide the equation by to get the standard
form (1), with as the first term, which is practical.

For instance, is a linear ODE, and its standard form is

The function on the right may be a force, and the solution a displacement in
a motion or an electrical current or some other physical quantity. In engineering, is
frequently called the input, and is called the output or the response to the input (and,
if given, to the initial condition).

y(x)
r(x)

y(x)r(x)
yr � y tan x � x sec x.

yr cos x � y sin x � x
yr

f (x)yrf (x)yr

yr � dy>dx,

yr � p(x)y � r(x),
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Homogeneous Linear ODE. We want to solve (1) in some interval call
it J , and we begin with the simpler special case that is zero for all x in J . (This is
sometimes written ) Then the ODE (1) becomes

(2)

and is called homogeneous. By separating variables and integrating we then obtain

thus

Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),

(3)

here we may also choose and obtain the trivial solution for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that in (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating factor
depending only on x. We can find this factor by Theorem 1 in the previous section
or we can proceed directly, as follows. We multiply (1) by obtainingF(x),

F(x)

r(x)

y(x) � 0c � 0

(c � �ec*  when y  0);y(x) � ce��p(x) dx

ln ƒ y ƒ � ��p(x) dx � c*.
dy

y
� �p(x) dx,

yr � p(x)y � 0

r(x) � 0.
r(x)

a � x � b,

(1* )

The left side is the derivative of the product Fy if

By separating variables, By integration, writing 

With this F and Eq. (1* ) becomes

By integration,

Dividing by we obtain the desired solution formula

(4) y(x) � e�h a �ehr dx � cb,  h � �p(x) dx.

eh,

ehy � �ehr dx � c.

ehyr � hrehy � ehyr � (eh)ry � (ehy)r � reh.

hr � p,

ln ƒ F ƒ � h � �p dx,  thus  F � eh.

h � �p dx,dF>F � p dx.

pFy � Fry,  thus  pF � Fr.

(Fy)r � Fry � Fyr

Fyr � pFy � rF.
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This reduces solving (1) to the generally simpler task of evaluating integrals. For ODEs
for which this is still difficult, you may have to use a numeric method for integrals from
Sec. 19.5 or for the ODE itself from Sec. 21.1. We mention that h has nothing to do with

in Sec. 1.1 and that the constant of integration in h does not matter; see Prob. 2.
The structure of (4) is interesting. The only quantity depending on a given initial

condition is c. Accordingly, writing (4) as a sum of two terms,

(4* )

we see the following:

(5)

E X A M P L E  1 First-Order ODE, General Solution, Initial Value Problem

Solve the initial value problem

Solution. Here and

From this we see that in (4),

and the general solution of our equation is

From this and the initial condition, thus and the solution of our initial value problem
is Here 3 cos x is the response to the initial data, and is the response to the 
input sin 2x.

E X A M P L E  2 Electric Circuit

Model the R L -circuit in Fig. 19 and solve the resulting ODE for the current A (amperes), where t is
time. Assume that the circuit contains as an EMF (electromotive force) a battery of V (volts), which
is constant, a resistor of (ohms), and an inductor of H (henrys), and that the current is initially
zero.

Physical Laws. A current I in the circuit causes a voltage drop R I across the resistor (Ohm’s law) and
a voltage drop across the conductor, and the sum of these two voltage drops equals the EMF
(Kirchhoff’s Voltage Law, KVL). 

Remark. In general, KVL states that “The voltage (the electromotive force EMF) impressed on a closed
loop is equal to the sum of the voltage drops across all the other elements of the loop.” For Kirchoff’s Current
Law (KCL) and historical information, see footnote 7 in Sec. 2.9.

Solution. According to these laws the model of the R L-circuit is in standard form

(6) Ir �
R

L
 I �

E(t)

L
.

LIr � RI � E(t),

LIr � L dI>dt

L � 0.1R � 11 �
E � 48E(t)

I(t)

�
�2 cos2 xy � 3 cos x � 2 cos2 x.

c � 31 � c # 1 � 2 # 12;

y(x) � cos x a2�sin x dx � cb � c cos x � 2 cos2x.

ehr � (sec x)(2 sin x cos x) � 2 sin x,e�h � cos x,eh � sec x,

h � �p dx � � tan x dx � ln ƒ sec x ƒ .

p � tan x, r � sin 2x � 2 sin x cos x,

y(0) � 1.yr � y tan x � sin 2x,

Total Output � Response to the Input r � Response to the Initial Data.

y(x) � e�h�ehr dx � ce�h,

h(x)

c 01.qxd  7/30/10  8:15 PM  Page 29



https://hemanthrajhemu.github.io

30 CHAP. 1 First-Order ODEs

We can solve this linear ODE by (4) with obtaining the general solution

By integration,

(7)

In our case, and thus,

In modeling, one often gets better insight into the nature of a solution (and smaller roundoff errors) by inserting
given numeric data only near the end. Here, the general solution (7) shows that the current approaches the limit

faster the larger is, in our case, and the approach is very fast, from
below if or from above if If the solution is constant (48/ 11 A). See
Fig. 19.

The initial value gives and the particular solution

(8)
�

I �
E

R
(1 � e�(R>L)t), thus I �

48

11
(1 � e�110t).

c � �E> RI(0) � E> R � c � 0,I(0) � 0

I(0) � 48>11,I(0) � 48>11.I(0) � 48>11
R >L � 11>0.1 � 110,R >LE> R � 48>11

I � 48
11 � ce�110t.

E(t) � 48>0.1 � 480 � const;R >L � 11>0.1 � 110

I � e�(R>L)t aE

L
 
e1R>L2t

R >L
� cb �

E

R
� ce�(R>L)t.

I � e�(R>L)t a �e(R>L)t
  

E(t)

L
 dt � c b.

x � t, y � I, p � R >L, h � (R >L)t,

Fig. 19. RL-circuit

E X A M P L E  3 Hormone Level

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.

Solution. Step 1 . Setting up a model. Let be the hormone level at time t. Then the removal rate is 
The input rate is where and A is the average input rate; here to make
the input rate nonnegative. The constants A, B, K can be determined from measurements. Hence the model is the
linear ODE

The initial condition for a particular solution is with suitably chosen, for example, 
6:00 A.M.

Step 2 . General solution. In (4) we have and Hence (4) gives the
general solution (evaluate by integration by parts)�eKt cos vt dt

r � A � B cos vt.p � K � const, h � Kt,

t � 0ypart(0) � y0ypart

yr(t) � In � Out � A � B cos vt � Ky(t),  thus  yr � Ky � A � B cos vt.

A � Bv � 2p>24 � p>12A � B cos vt,
Ky(t).y(t)

L = 0.1 H
Circuit Current I (t)

I (t)

E = 48 V

R = 11 �

0.01 0.02 0.03 0.04 0.05 t

2

4

6

8

0
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Fig. 20. Particular solution in Example 3
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The last term decreases to 0 as t increases, practically after a short time and regardless of c (that is, of the initial
condition). The other part of is called the steady-state solution because it consists of constant and periodic
terms. The entire solution is called the transient-state solution because it models the transition from rest to the
steady state. These terms are used quite generally for physical and other systems whose behavior depends on time.

Step 3 . Particular solution. Setting in and choosing we have

thus

Inserting this result into we obtain the particular solution

with the steady-state part as before. To plot we must specify values for the constants, say, 
and Figure 20 shows this solution. Notice that the transition period is relatively short (although
K is small), and the curve soon looks sinusoidal; this is the response to the input 

�1 � cos ( 1
12 pt).

A � B cos ( 1
12 pt) �

K � 0.05.
A � B � 1ypart

ypart(t) �
A

K
�

B

K 2 � (p>12)2
 aK cos 

pt

12
�
p

12
 sin 
pt

12
b � aA

K
�

KB

K 2 � (p>12)2
b e�K

y(t),

c � �
A

K
�

KB

K 2 � (p>12)2
.y(0) �

A

K
�

B

K 2 � (p>12)2

u
p

K � c � 0,

y0 � 0,y(t)t � 0

y(t)

 �
A

K
�

B

K 2 � (p>12)2
 aK cos 

pt

12
�
p

12
 sin 
pt

12
b � ce�Kt.

 � e�KteKt c A
K

�
B

K 2 � v2
 aK cos vt � v sin vtb d � ce�Kt

 y(t) � e�Kt�eKt aA � B cos vtb dt � ce�Kt

Reduction to Linear Form. Bernoulli Equation
Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation7

(9) (a any real number).yr � p(x)y � g(x)ya

7JAKOB BERNOULLI (1654–1705), Swiss mathematician, professor at Basel, also known for his contribution
to elasticity theory and mathematical probability. The method for solving Bernoulli’s equation was discovered by
Leibniz in 1696. Jakob Bernoulli’s students included his nephew NIKLAUS BERNOULLI (1687–1759), who
contributed to probability theory and infinite series, and his youngest brother JOHANN BERNOULLI (1667–1748),
who had profound influence on the development of calculus, became Jakob’s successor at Basel, and had among
his students GABRIEL CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL
BERNOULLI (1700–1782) is known for his basic work in fluid flow and the kinetic theory of gases.
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8PIERRE-FRANÇ OIS VERHULST, Belgian statistician, who introduced Eq. (8) as a model for human
population growth in 1838.

If or Equation (9) is linear. Otherwise it is nonlinear. Then we set

We differentiate this and substitute from (9), obtaining

Simplification gives

where on the right, so that we get the linear ODE

(10)

For further ODEs reducible to linear form, see lnce’s classic [ A11]  listed in App. 1. See 
also Team Project 30 in Problem Set 1.5.

E X A M P L E  4 Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation8):

(11)

Solution. Write (11) in the form (9), that is,

to see that so that Differentiate this u and substitute from (11),

The last term is Hence we have obtained the linear ODE

The general solution is [ by (4)]

Since this gives the general solution of (11),

(12) (Fig. 21)

Directly from (11) we see that is also a solution. �y � 0 (y(t) � 0 for all t)

y �
1

u
�

1

ce�At � B>A

u � 1>y,

u � ce�At � B>A.

ur � Au � B.

�Ay�1 � �Au.

� B � Ay�1.�y�2(Ay � By2)ur � �y�2yr �

yru � y1�a � y�1.a � 2,

yr � Ay � �By2

yr � Ay � By2

ur � (1 � a)pu � (1 � a)g.

y1�a � u

ur � (1 � a)(g � py1�a),

ur � (1 � a)y�ayr � (1 � a)y�a(gya � py).

yr

u(x) � 3y(x)41�a.

a � 1,a � 0
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Fig. 21. Logistic population model. Curves (9) in Example 4 with A>B � 4
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Population Dynamics
The logistic equation (11) plays an important role in population dynamics, a field
that models the evolution of populations of plants, animals, or humans over time t.
If then (11) is In this case its solution (12) is 
and gives exponential growth, as for a small population in a large country (the
United States in early times! ). This is called Malthus’s law. (See also Example 3 in
Sec. 1.1.)

The term in (11) is a “braking term” that prevents the population from growing
without bound. Indeed, if we write we see that if then

so that an initially small population keeps growing as long as But if
then and the population is decreasing as long as The limit

is the same in both cases, namely, See Fig. 21.
We see that in the logistic equation (11) the independent variable t does not occur

explicitly. An ODE in which t does not occur explicitly is of the form

(13)

and is called an autonomous ODE. Thus the logistic equation (11) is autonomous.
Equation (13) has constant solutions, called equilibrium solutions or equilibrium

points. These are determined by the zeros of because gives by
(13); hence These zeros are known as critical points of (13). An
equilibrium solution is called stable if solutions close to it for some t remain close
to it for all further t. It is called unstable if solutions initially close to it do not remain
close to it as t increases. For instance, in Fig. 21 is an unstable equilibrium
solution, and is a stable one. Note that (11) has the critical points and

E X A M P L E  5 Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODE has the stable equilibrium solution and the unstable as the direction
field in Fig. 22 suggests. The values and are the zeros of the parabola in the figure.
Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot” giving and

and the direction (upward or downward) of the arrows in the field, and thus giving information about the
stability or instability of the equilibrium solutions. �
y2,

y1

f (y) � (y � 1)(y � 2)y2y1

y2 � 2,y1 � 1yr � (y � 1)(y � 2)

y � A>B.
y � 0y � 4

y � 0

y � const.
yr � 0f (y) � 0f (y),

yr � f (y)

yr � f (t, y)

A>B.
y � A>B.yr � 0y � A>B,

y � A>B.yr � 0,
y � A>B,yr � Ay 31 � (B>A)y4,

�By 
2

y � (1>c)eAtyr � dy>dt � Ay.B � 0,
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Fig. 22. Example 5. (A) Direction field. (B) “Phase line”. (C) Parabola f (y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark. Mathematical Bioeconomics: The
Mathematics of Conservation 3rd ed. Hoboken, NJ, Wiley, 2010.

Further applications of linear ODEs follow in the next section.

1. CAUTION! Show that and

2. Integration constant. Give a reason why in (4) you may
choose the constant of integration in to be zero.

3–13 GENERAL SOLUTION. INITIAL VALUE
PROBLEMS

Find the general solution. If an initial condition is given,
find also the corresponding particular solution and graph or
sketch it. (Show the details of your work.)

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13. yr � 6(y � 2.5) tanh 1.5x

xyr � 4y � 8x4, y(1) � 2

yr � (y � 2) cot x

yr cos x � (3y � 1)  sec x � 0, y(1
4p) � 4>3

yr � y sin x � ecos x, y(0) � �2.5

yr � y tan x � e�0.01x cos x, y(0) � 0

xyr � 2y � x3ex

yr � 2y � 4 cos 2x, y(1
4p) � 3

yr � ky � e�kx

yr � 2y � 4x

yr � y � 5.2

�p dx

e�ln(sec x) � cos x.
e�ln x � 1>x (not �x) 14. CAS EXPERIMENT. (a) Solve the ODE 

Find an initial condition for which the
arbitrary constant becomes zero. Graph the resulting
particular solution, experimenting to obtain a good
figure near 

(b) Generalizing (a) from to arbitrary n, solve the
ODE Find an initial
condition as in (a) and experiment with the graph.

15–20 GENERAL PROPERTIES OF LINEAR ODEs

These properties are of practical and theoretical importance
because they enable us to obtain new solutions from given
ones. Thus in modeling, whenever possible, we prefer linear
ODEs over nonlinear ones, which have no similar properties.

Show that nonhomogeneous linear ODEs (1) and homo-
geneous linear ODEs (2) have the following properties.
Illustrate each property by a calculation for two or three
equations of your choice. Give proofs.

15. The sum of two solutions and of the
homogeneous equation (2) is a solution of (2), and so is
a scalar multiple for any constant a. These properties
are not true for (1)!

ay1

y2y1y1 � y2

yr � ny>x � �xn�2 cos (1>x).
n � 1

x � 0.

�x�1 cos (1>x).
yr � y>x �

P R O B L E M  S E T  1 . 5
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16. (that is, for all x, also written )
is a solution of (2) [ not of (1) if ! ] , called the
trivial solution.

17. The sum of a solution of (1) and a solution of (2) is a
solution of (1).

18. The difference of two solutions of (1) is a solution of (2).

19. If is a solution of (1), what can you say about 

20. If and are solutions of and
respectively (with the same p! ), what

can you say about the sum 

21. Variation of parameter. Another method of obtaining
(4) results from the following idea. Write (3) as 
where is the exponential function, which is a solution
of the homogeneous linear ODE 
Replace the arbitrary constant c in (3) with a function
u to be determined so that the resulting function 
is a solution of the nonhomogeneous linear ODE

22–28 NONLINEAR ODEs

Using a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

22.

23.

24.

25.

26.

27.

28.

29. REPORT PROJECT. Transformation of ODEs.
We have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such
transformations is an extension of solution methods to
larger classes of ODEs. Describe the key idea of each
of these transformations and give three typical exam-
ples of your choice for each transformation. Show each
step (not just the transformed ODE).

30. TEAM PROJECT. Riccati Equation. Clairaut
Equation. Singular Solution.
A Riccati equation is of the form

(14)

A Clairaut equation is of the form

(15)

(a) Apply the transformation to the
Riccati equation (14), where Y is a solution of (14), and
obtain for u the linear ODE 
Explain the effect of the transformation by writing it
as y � Y � v, v � 1>u.

ur � (2Yg � p)u � �g.

y � Y � 1>u

y � xyr � g(yr).

yr � p(x)y � g(x)y2 � h(x).

2xyyr � (x � 1)y2 � x2ex (Set y2 � z)

yr � 1>(6ey � 2x)

 y(0) � 1
2 pyr � (tan y)>(x � 1),

yr � 3.2y � 10y2

yr � y � �x>y

yr � xy � xy�1, y(0) � 3

yr � y � y2, y(0) � �1
3

yr � py � r.

y � uy*

y* r � py* � 0.
y*

cy* ,

y1 � y2?
y2r � py2 � r2,

y1r � py1 � r1y2y1

cy1 ?y1

r(x) � 0
y(x) � 0y(x) � 0y � 0 (b) Show that is a solution of the ODE

and solve this
Riccati equation, showing the details.

(c) Solve the Clairaut equation as
follows. Differentiate it with respect to x, obtaining

Then solve (A) and (B)
separately and substitute the two solutions

(a) and (b) of (A) and (B) into the given ODE. Thus
obtain (a) a general solution (straight lines) and (b) a
parabola for which those lines (a) are tangents (Fig. 6
in Prob. Set 1.1); so (b) is the envelope of (a). Such a
solution (b) that cannot be obtained from a general
solution is called a singular solution.

(d) Show that the Clairaut equation (15) has as
solutions a family of straight lines and
a singular solution determined by where

that forms the envelope of that family.

31–40 MODELING. FURTHER APPLICATIONS

31. Newton’s law of cooling. If the temperature of a cake
is when it leaves the oven and is ten
minutes later, when will it be practically equal to the
room temperature of say, when will it be 

32. Heating and cooling of a building. Heating and
cooling of a building can be modeled by the ODE

where is the temperature in the building at
time t, the outside temperature, the temperature
wanted in the building, and P the rate of increase of T
due to machines and people in the building, and and

are (negative) constants. Solve this ODE, assuming
and varying sinusoidally

over 24 hours, say, Discuss
the effect of each term of the equation on the solution.

33. Drug injection. Find and solve the model for drug
injection into the bloodstream if, beginning at a
constant amount A g min is injected and the drug is
simultaneously removed at a rate proportional to the
amount of the drug present at time t.

34. Epidemics. A model for the spread of contagious
diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between
infected and noninfected persons, who are assumed to
move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as and explain
what it means.

35. Lake Erie. Lake Erie has a water volume of about
and a flow rate (in and out) of about 175 km2450 km3

t : �

>
t � 0,

Ta � A � C cos(2p>24)t.
TaP � const, Tw � const,

k2

k1

TwTa

T � T(t)

Tr � k1(T � Ta) � k2(T � Tv) � P,

61° F?60° F,

200° F300° F

s � yr,
gr(s) � �x,
y � cx � g(c)

2yr � x � 0
ys � 0ys(2yr � x) � 0.

yr2 � xyr � y � 0

y � �x2y2 � x4 � x � 1(2x3 � 1)yr �
y � Y � x
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36 CHAP. 1 First-Order ODEs

per year. If at some instant the lake has pollution
concentration how long, approximately,
will it take to decrease it to p 2, assuming that the
inflow is much cleaner, say, it has pollution
concentration p 4, and the mixture is uniform (an
assumption that is only imperfectly true)?  First guess.

36. Harvesting renewable resources. Fishing. Suppose
that the population of a certain kind of fish is given
by the logistic equation (11), and fish are caught at a
rate H y proportional to y. Solve this so-called Schaefer
model. Find the equilibrium solutions and 
when The expression is called
the equilibrium harvest or sustainable yield corre-
sponding to H . Why?

37. Harvesting. In Prob. 36 find and graph the solution
satisfying when (for simplicity) 
and What is the limit?  What does it mean?
What if there were no fishing?

38. Intermittent harvesting. In Prob. 36 assume that you
fish for 3 years, then fishing is banned for the next 
3 years. Thereafter you start again. And so on. This is
called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
continued periodically. Find and graph the solution for
the first 9 years, assuming that 
and y(0) � 2.

A � B � 1, H � 0.2,

H � 0.2.
A � B � 1y(0) � 2

Y � H y2H � A.
y2 (� 0)y1

y(t)

>

>
p � 0.04 % ,

39. Extinction vs. unlimited growth. If in a population
the death rate is proportional to the population, and

the birth rate is proportional to the chance encounters
of meeting mates for reproduction, what will the model
be?  Without solving, find out what will eventually
happen to a small initial population. To a large one.
Then solve the model.

40. Air circulation. In a room containing of air,
of fresh air flows in per minute, and the mixture

(made practically uniform by circulating fans) is
exhausted at a rate of 600 cubic feet per minute (cfm).
What is the amount of fresh air at any time if

After what time will 90%  of the air be fresh?y(0) � 0?
y(t)

600 ft3
20,000 ft3

y(t)

Fig. 23. Fish population in Problem 38
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1.6 Orthogonal Trajectories. Optional
An important type of problem in physics or geometry is to find a family of curves that
intersects a given family of curves at right angles. The new curves are called orthogonal
trajectories of the given curves (and conversely). Examples are curves of equal
temperature (isotherms) and curves of heat flow, curves of equal altitude (contour lines)
on a map and curves of steepest descent on that map, curves of equal potential
(equipotential curves, curves of equal voltage— the ellipses in Fig. 24) and curves of
electric force (the parabolas in Fig. 24).

Here the angle of intersection between two curves is defined to be the angle between
the tangents of the curves at the intersection point. O rthogonal is another word for
perpendicular.

In many cases orthogonal trajectories can be found using ODEs. In general, if we
consider to be a given family of curves in the xy-plane, then each value of
c gives a particular curve. Since c is one parameter, such a family is called a one-
parameter family of curves.

In detail, let us explain this method by a family of ellipses

(1) (c � 0)1
2 x2 � y2 � c

G (x, y, c) � 0
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Step 2 . Find an ODE for the orthogonal trajectories This ODE is

(3)

with the same f as in (2). Why?  Well, a given curve passing through a point has
slope at that point, by (2). The trajectory through has slope 
by (3). The product of these slopes is , as we see. From calculus it is known that this
is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at

), hence of the curve and its orthogonal trajectory at .

Step 3 . Solve (3) by separating variables, integrating, and taking exponents:

This is the family of orthogonal trajectories, the quadratic parabolas along which electrons
or other charged particles (of very small mass) would move in the electric field between
the black ellipses (elliptic cylinders).

y� � c* x2.ln ƒ y� ƒ � 2 ln x � c,
d y�

y�
� 2 

dx

x
,

(x0, y0)(x0, y0)

�1
�1>f (x0, y0)(x0, y0)f (x0, y0)

(x0, y0)

y�r � � 

1

f (x, y�)
� �

2y�

x

y� � y�(x).

SEC. 1.6 Orthogonal Trajectories. Optional 37

–6 6

y

x

4

–4

Fig. 24. Electrostatic field between two ellipses (elliptic cylinders in space): 
Elliptic equipotential curves (equipotential surfaces) and orthogonal 

trajectories (parabolas)

and illustrated in Fig. 24. We assume that this family of ellipses represents electric
equipotential curves between the two black ellipses (equipotential surfaces between two
elliptic cylinders in space, of which Fig. 24 shows a cross-section). We seek the
orthogonal trajectories, the curves of electric force. Equation (1) is a one-parameter family
with parameter c. Each value of c corresponds to one of these ellipses.

Step 1 . Find an ODE for which the given family is a general solution. Of course, this
ODE must no longer contain the parameter c. Differentiating (1), we have 
Hence the ODE of the given curves is

(2) yr � f (x, y) � � 

x

2y
.

x � 2yyr � 0.

(� 0)
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38 CHAP. 1 First-Order ODEs

1–3 FAMILIES OF CURVES

Represent the given family of curves in the form
and sketch some of the curves.

1. All ellipses with foci and 3 on the x-axis.

2. All circles with centers on the cubic parabola 
and passing through the origin 

3. The catenaries obtained by translating the catenary
in the direction of the straight line .

4–10 ORTHOGONAL TRAJECTORIES (OTs)

Sketch or graph some of the given curves. Guess what their
OTs may look like. Find these OTs.

4. 5.

6. 7.

8. 9.

10.

11–16 APPLICATIONS, EXTENSIONS

11. Electric field. Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders with the z-axis in space be given by

(these are circular cylinders in
the xyz-space). Using the method in the text, find their
orthogonal trajectories (the curves of electric force).

12. Electric field. The lines of electric force of two opposite
charges of the same strength at and are
the circles through and . Show that these
circles are given by . Show
that the equipotential lines (which are orthogonal
trajectories of those circles) are the circles given by

(dashed in Fig. 25).(x � c* )2 � y�2 � c* 2 � 1

x2 � (y � c)2 � 1 � c2
(1, 0)(�1, 0)

(1, 0)(�1, 0)

u(x,  y) � x2 � y2 � c

x2 � (y � c)2 � c2

y � ce�x2

y � 2x � c

y � c>x2xy � c

y � cxy � x2 � c

y � xy � cosh x

(0, 0).
y � x3

�3

G (x,  y; c) � 0

P R O B L E M  S E T  1 . 6

Fig. 25. Electric field in Problem 12

13. Temperature field. Let the isotherms (curves of
constant temperature) in a body in the upper half-plane

be given by . Find the ortho-
gonal trajectories (the curves along which heat will
flow in regions filled with heat-conducting material and
free of heat sources or heat sinks).

14. Conic sections. Find the conditions under which 
the orthogonal trajectories of families of ellipses

are again conic sections. Illustrate
your result graphically by sketches or by using your
CAS. What happens if If 

15. Cauchy–Riemann equations. Show that for a family
const the orthogonal trajectories 

const can be obtained from the following
Cauchy–R iemann equations (which are basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of const. (Here, sub-
scripts denote partial derivatives.)

16. Congruent OTs. If with f independent of y,
show that the curves of the corresponding family are
congruent, and so are their OTs.

yr � f (x)

uy � �vxux � vy,

ex sin y �

c* �
v(x,  y) �u(x,  y) � c �

b : 0?a : 0?

x2>a2 � y2>b2 � c

4x2 � 9y2 � cy � 0

1.7 Existence and Uniqueness of Solutions 
for Initial Value Problems

The initial value problem

has no solution because (that is, for all x) is the only solution of the ODE.
The initial value problem

y(0) � 1yr � 2x,

y(x) � 0y � 0

y(0) � 1ƒ yr ƒ � ƒ y ƒ � 0,
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SEC. 1.7 Existence and Uniqueness of Solutions 39

Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.

Of course, for our simple examples, we need no theorems because we can solve these
examples by inspection; however, for complicated ODEs such theorems may be of
considerable practical importance. Even when you are sure that your physical or other
system behaves uniquely, occasionally your model may be oversimplified and may not
give a faithful picture of reality.

T H E O R E M  1 Existence Theorem

Let the right side of the O DE in the initial value problem

(1)

be continuous at all points in some rectangle

(Fig. 26)

and bounded in R ;  that is, there is a number K such that

(2) for all in R .

Then the initial value problem (1) has at least one solution . This solution exists
at least for all x in the subinterval of the interval 
here, is the smaller of the two numbers a and b K.>a

ƒ x � x0 ƒ � a;ƒ x � x0 ƒ � a
y(x)

(x, y)ƒ f (x, y) ƒ � K

ƒ y � y0 ƒ � bR : ƒ x � x0 ƒ � a,

(x, y)

y(x0) � y0yr � f (x, y),

f (x, y)

has precisely one solution, namely, The initial value problem

has infinitely many solutions, namely, where c is an arbitrary constant because
for all c.

From these examples we see that an initial value problem

(1)

may have no solution, precisely one solution, or more than one solution. This fact leads
to the following two fundamental questions.

Problem of Existence

U nder what conditions does an initial value problem of the form (1) have at least
one solution ( hence one or several solutions) ?

Problem of Uniqueness

U nder what conditions does that problem have at most one solution ( hence excluding
the case that is has more than one solution) ?

y(x0) � y0yr � f (x, y),

y(0) � 1
y � 1 � cx,

y(0) � 1xyr � y � 1,

y � x2 � 1.

c 01.qxd  7/30/10  8:15 PM  Page 39



https://hemanthrajhemu.github.io

40 CHAP. 1 First-Order ODEs

y

x

y
0
 + b

x
0
 + ax

0
 – a x

0

y
0

y
0
 – b

R

Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function is bounded (with ) in the
square . The function is not bounded for

. Explain! )

T H E O R E M  2 Uniqueness Theorem

Let f and its partial derivative be continuous for all in the rectangle
R  (Fig. 26) and bounded, say,

(3) (a) (b) for all in R .

Then the initial value problem (1) has at most one solution . Thus, by Theorem 1,
the problem has precisely one solution. This solution exists at least for all x in that
subinterval ƒ x � x0 ƒ � a.

y(x)

(x, y)ƒ  fy(x, y) ƒ � Mƒ  f (x, y) ƒ � K,

(x, y)fy � 0f>0y

ƒ x � y ƒ � p>2
f (x, y) � tan (x � y)ƒ x ƒ � 1, ƒ y ƒ � 1

K � 2f (x, y) � x2 � y2

Understanding These Theorems
These two theorems take care of almost all practical cases. Theorem 1 says that if 
is continuous in some region in the xy-plane containing the point , then the initial
value problem (1) has at least one solution.

Theorem 2 says that if, moreover, the partial derivative of f with respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely one solution.

Read again what you have just read— these are entirely new ideas in our discussion.
Proofs of these theorems are beyond the level of this book (see Ref. [ A11]  in App. 1);

however, the following remarks and examples may help you to a good understanding of
the theorems.

Since , the condition (2) implies that that is, the slope of any
solution curve in R  is at least and at most K. Hence a solution curve that passes
through the point must lie in the colored region in Fig. 27 bounded by the lines

and whose slopes are and K, respectively. Depending on the form of R , two
different cases may arise. In the first case, shown in Fig. 27a, we have and
therefore in the existence theorem, which then asserts that the solution exists for all
x between and . In the second case, shown in Fig. 27b, we have .
Therefore, and all we can conclude from the theorems is that the solutiona � b>K � a,

b>K � ax0 � ax0 � a
a � a

b>K � a
�Kl2l1

(x0, y0)
�Ky(x)

ƒ yr ƒ � K;yr � f (x, y)

0f>0y

(x0, y0)
f (x, y)
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and take the rectangle Then , and

Indeed, the solution of the problem is (see Sec. 1.3, Example 1). This solution is discontinuous at 
, and there is no continuous solution valid in the entire interval from which we started.

The conditions in the two theorems are sufficient conditions rather than necessary ones,
and can be lessened. In particular, by the mean value theorem of differential calculus we
have

where and are assumed to be in R , and is a suitable value between 
and . From this and (3b) it follows that

(4) ƒ  f (x, y2) � f (x, y1) ƒ � M ƒ y2 � y1 ƒ .

y2

y1y�(x, y2)(x, y1)

f (x, y2) � f (x, y1) � (y2 � y1) 
0f

0y
`
y�y�

�ƒ x ƒ � 5�p>2
y � tan x

a �
b

K
� 0.3 � a.

` 0f

0y
` � 2 ƒ y ƒ � M � 6,

ƒ  f (x, y) ƒ � ƒ 1 � y2
ƒ � K � 10,

a � 5, b � 3R ; ƒ x ƒ � 5, ƒ y ƒ � 3.
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y y

x

y
0
 + b
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1

l
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(a)

y
0

y
0
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y
0
 + b

l
1

l
2

x
0

(b)

y
0

y
0
 – b

R

a a = a  = aα α

α α

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R  with a large base (a long x-interval) will lead to the case in Fig. 27b.

E X A M P L E  1 Choice of a Rectangle

Consider the initial value problem

y(0) � 0yr � 1 � y2,

exists for all x between and . For larger or smaller x’ s the solution
curve may leave the rectangle R , and since nothing is assumed about f outside R , nothing
can be concluded about the solution for those larger or amaller x’s; that is, for such x’s
the solution may or may not exist— we don’t know.

x0 � b>Kx0 � b>K

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case
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42 CHAP. 1 First-Order ODEs

9RUDOLF LIPSCHITZ (1832–1903), German mathematician. Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.

10EMILE PICARD (1856–1941). French mathematician, also known for his important contributions to
complex analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems 1 and 2
as well as the convergence of the sequence (7) to the solution of (1). In precomputer times, the iteration was of
little practical value because of the integrations.

It can be shown that (3b) may be replaced by the weaker condition (4), which is known
as a Lipschitz condition.9 However, continuity of is not enough to guarantee the
uniqueness of the solution. This may be illustrated by the following example.

E X A M P L E  2 Nonuniqueness

The initial value problem

has the two solutions

and

although is continuous for all y. The Lipschitz condition (4) is violated in any region that includes
the line , because for and positive we have

(5)

and this can be made as large as we please by choosing sufficiently small, whereas (4) requires that the 
quotient on the left side of (5) should not exceed a fixed constant M. �

y2

(2y2 � 0)
ƒ  f (x, y2) � f (x, y1) ƒ

ƒ y2 � y1 ƒ

�
2y2

y2
�

1

2y2

 ,

y2y1 � 0y � 0
f (x, y) � 2 ƒ y ƒ

y* � e x2>4 if x � 0

�x2>4 if x � 0
y � 0

y(0) � 0yr � 2 ƒ y ƒ .

f (x, y)

1. Linear ODE. If p and r in are
continuous for all x in an interval show
that in this ODE satisfies the conditions of our
present theorems, so that a corresponding initial value
problem has a unique solution. Do you actually need
these theorems for this ODE?

2. Existence? Does the initial value problem
have a solution?  Does your

result contradict our present theorems?

3. Vertical strip. If the assumptions of Theorems 1 and
2 are satisfied not merely in a rectangle but in a vertical
infinite strip in what interval will the
solution of (1) exist?

4. Change of initial condition. What happens in Prob.
2 if you replace with 

5. Length of x-interval. In most cases the solution of an
initial value problem (1) exists in an x-interval larger than
that guaranteed by the present theorems. Show this fact
for by finding the best possible ayr � 2y2,  y(1) � 1

y(2) � k?y(2) � 1

ƒ x � x0 ƒ � a,

(x � 2)yr � y,  y(2) � 1

f (x,  y)
ƒ x � x0 ƒ � a,

yr � p(x)y � r(x) (choosing b optimally) and comparing the result with the
actual solution.

6. CAS PROJECT. Picard Iteration. (a) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

(6)

This form (6) of (1) suggests Picard’s Iteration Method10

which is defined by

(7)

It gives approximations of the unknown
solution y of (1). Indeed, you obtain by substituting

on the right and integrating— this is the first
step— then by substituting on the right and
integrating— this is the second step— and so on. Write

y � y1y2

y � y0

y1

y1,  y2,  y3,  .  .  .

yn(x) � y0 � �
x

x0

f (t, yn�1(t) dt, n � 1, 2, Á .

y(x) � y0 � �
x

x0

f (t,  y(t)) dt.

P R O B L E M  S E T  1 . 7
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Chapter 1 Review Questions and Problems 43

a program of the iteration that gives a printout of the
first approximations as well as their
graphs on common axes. Try your program on two
initial value problems of your own choice.

(b) Apply the iteration to Also
solve the problem exactly.

(c) Apply the iteration to Also
solve the problem exactly.

(d) Find all solutions of Which
of them does Picard’s iteration approximate?

(e) Experiment with the conjecture that Picard’s
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving

outside the integral as it is). Begin with a simple ODE
and see what happens. When you are reasonably sure,
take a slightly more complicated ODE and give it a try.

y0

yr � 21y,  y(1) � 0.

yr � 2y2,  y(0) � 1.

yr � x � y,  y(0) � 0.

y0,  y1,  .  .  .  ,  yN

7. Maximum . What is the largest possible in
Example 1 in the text?

8. Lipschitz condition. Show that for a linear ODE
with continuous p and r in

a Lipschitz condition holds. This is
remarkable because it means that for a linear ODE the
continuity of guarantees not only the existence
but also the uniqueness of the solution of an initial
value problem. (Of course, this also follows directly
from (4) in Sec. 1.5.)

9. Common points. Can two solution curves of the same
ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?

10. Three possible cases. Find all initial conditions such
that has no solution, precisely
one solution, and more than one solution.

(x2 � x)yr � (2x � 1)y

f (x,  y)

ƒ x � x0 ƒ � a
yr � p(x)y � r(x)

aA

14.

15.

16. Solve by Euler’s method 
(10 steps, ). Solve exactly and compute the error.

17–21 GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

17.

18.

19.

20.

21.

22–26 INITIAL VALUE PROBLEM (IVP)

Solve the IVP. Indicate the method used. Show the details
of your work.

22.

23.

24.

25.

26.

27–30 MODELING, APPLICATIONS

27. Exponential growth. If the growth rate of a culture
of bacteria is proportional to the number of bacteria
present and after 1 day is 1.25 times the original
number, within what interval of time will the number
of bacteria (a) double, (b) triple?

x sinh y dy � cosh y dx, y(3) � 0

3 sec y dx � 1
3 sec x dy � 0, y(0) � 0

yr � 1
2 y � y3, y(0) � 1

3

yr � 21 � y2, y(0) � 1>12

yr � 4xy � e�2x2

, y(0) � �4.3

(3xey � 2y) dx � (x2ey � x) dy � 0

yr � ay � by2 (a � 0)

25yyr � 4x � 0

yr � 0.4y � 29 sin x

yr � 2.5y � 1.6x

h � 0.1
yr � y � y2,  y(0) � 0.2

yr � y � 1.01 cos 10x

xyr � y � x21. Explain the basic concepts ordinary and partial
differential equations (ODEs, PDEs), order, general
and particular solutions, initial value problems (IVPs).
Give examples.

2. What is a linear ODE?  Why is it easier to solve than
a nonlinear ODE?

3. Does every first-order ODE have a solution?  A solution
formula?  Give examples.

4. What is a direction field?  A numeric method for first-
order ODEs?

5. What is an exact ODE?  Is 
always exact?

6. Explain the idea of an integrating factor. Give two
examples.

7. What other solution methods did we consider in this
chapter?

8. Can an ODE sometimes be solved by several methods?
Give three examples.

9. What does modeling mean?  Can a CAS solve a model
given by a first-order ODE?  Can a CAS set up a model?

10. Give problems from mechanics, heat conduction, and
population dynamics that can be modeled by first-order
ODEs.

11–16 DIRECTION FIELD: NUMERIC SOLUTION

Graph a direction field (by a CAS or by hand) and sketch
some solution curves. Solve the ODE exactly and compare.
In Prob. 16 use Euler’s method.

11.

12.

13. yr � y � 4y2

yr � 1 � y2

yr � 2y � 0

f (x) dx � g(y) dy � 0

C H A P T E R  1  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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44 CHAP. 1 First-Order ODEs

28. Mixing problem. The tank in Fig. 28 contains 80 lb
of salt dissolved in 500 gal of water. The inflow per
minute is 20 lb of salt dissolved in 20 gal of water. The
outflow is 20 gal min of the uniform mixture. Find the
time when the salt content in the tank reaches 95%
of its limiting value (as ).t : �

y(t)
>

Fig. 28. Tank in Problem 28

29. Half-life. If in a reactor, uranium loses 10%  of
its weight within one day, what is its half-life?  How
long would it take for 99%  of the original amount to
disappear?

30. Newton’s law of cooling. A metal bar whose
temperature is is placed in boiling water. How
long does it take to heat the bar to practically 
say, to , if the temperature of the bar after 1 min
of heating is First guess, then calculate.51.5° C?

99.9° C
100° C,

20° C

237
97 U

This chapter concerns ordinary differential equations (ODEs) of first order and
their applications. These are equations of the form

(1) or in explicit form

involving the derivative of an unknown function y, given functions of
x, and, perhaps, y itself. If the independent variable x is time, we denote it by t.

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3–1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

A first-order ODE usually has a general solution, that is, a solution involving an
arbitrary constant, which we denote by c. In applications we usually have to find a
unique solution by determining a value of c from an initial condition .
Together with the ODE this is called an initial value problem

(2)

and its solution is a particular solution of the ODE. Geometrically, a general
solution represents a family of curves, which can be graphed by using direction
fields (Sec. 1.2). And each particular solution corresponds to one of these curves.

A separable ODE is one that we can put into the form

(3) (Sec. 1.3)

by algebraic manipulations (possibly combined with transformations, such as
) and solve by integrating on both sides.y>x � u

g(y) dy � f (x) dx

(x0, y0 given numbers)y(x0) � y0yr � f (x, y),

y(x0) � y0

yr � dy>dx

yr � f (x, y)F(x, y, yr) � 0

SUMMARY OF CHAPTER 1
First-Order ODEs
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An exact ODE is of the form

(4) (Sec. 1.4)

where is the differential

of a function so that from we immediately get the implicit general
solution This method extends to nonexact ODEs that can be made exact
by multiplying them by some function called an integrating factor (Sec. 1.4).

Linear ODEs

(5)

are very important. Their solutions are given by the integral formula (4), Sec. 1.5.
Certain nonlinear ODEs can be transformed to linear form in terms of new variables.
This holds for the Bernoulli equation

(Sec. 1.5).

A pplications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.), and 1.6 (trajectories).

Picard’s existence and uniq ueness theorems are explained in Sec. 1.7 (and
Picard’ s iteration in Problem Set 1.7).

N umeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2
immediately after this chapter, as indicated in the chapter opening.

yr � p(x)y � g(x)ya

yr � p(x)y � r(x)

F(x, y,),
u(x, y) � c.

du � 0u(x, y),

du � ux dx � uy dy

M dx � N dy

M(x, y) dx � N(x, y) dy � 0
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