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Numerical Solution of

Ordinary Differential Equations

EySE INTRODUCTION

The methods of solution so far presented are applicable to a limited class of differential equations. Fre-
quently differential equations appearing in physical problems do not belong to any of these familiar types and
one is obliged to resort to numerical methods. These methods are of even greater importance when we realise
that computing machines are now available which reduce numerical work considerably.

A number of numerical methods are available for the solution of first order differential equations of the
form :

dy .
dx = ), given ylxy) =y, (1)

These methods yield solutions either as a power series in x from which the values of y can be found by
direct substitution, or as a set of values of x and y. The methods of Picard and Taylor series belong to the former
class of solutions whereas those of Euler, Runge-Kutta, Milne, Adams-Bashforth etc. belong to the latter class.
In these later methods, the values of y are calculated in short steps for equal intervals of x and are therefore,
termed as step-by-step methods.

Euler and Runge-Kutta methods are used for computing y over a limited range of x-values whereas Milne
and Adams-Bashforth methods may be applied for finding y over a wider range of x-values. These later methods
require starting values which are found by Picard’s or Taylor series or Runge-Kutta methods.

The initial condition in (1) is specified at the point x,. Such problems in which all the initial conditions are
given at the initial point only are called initial value problems. But there are problems involving second and
higher order differential equations in which the conditions may be given at two or more points. These are known
as boundary value problems. In this chapter, we shall first explain methods for solving initial value problems
and then give a method of solving boundary value problems.

PICARD’S METHOD*
Consider the first order equation dy/dx = f(x, y) (1)

* Called after the French mathematician Emile Picard (1856—1941) who was professor in Paris since 1881 and is famous for
his researches in the theory of functions.
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It is required to find that particular solution of (1) which assumes the value y, when x = x. Integrating (1)
between limits, we get

[ drm [ttt or sy [ s

This is an integral equation equivalent to (1), for it contains the unknown y under the integral sign.
As a first approximation y, to the solution, we put y =y, in f(x, y) and integrate (2), giving

.
Y=Y+ L f(x,y,) dx
For a second approximation y,, we puty =y, in f(x, y) and integrate (2), giving
X
yo=yo+ [ Fla) dx

X
Similarly, a third approximation is y, =y, + I fx, y5) dx.
*a

Continuing this process, a sequence of functions of x, i.e., y,, ¥,, ¥4 ... is obtained each giving a better
approximation of the desired solution than the preceding one.

Obs, Picard’s method is of considerable theoretical value, but can be applied only to a limited class of equations in
which the successive integrations can be performed easily. The method can be extended to simultaneous equations and
equations of higher order (See § 32.11 and 32.12).

Example 32.1. Using Picard’s process of successive approximation, obtain a solution upto the fifth
approximation of the equation dy/dx = y + x, such thaty = 1 when x = 0. Check your answer by finding the exact
particular solution.

Solution. (@) We havey =1 + I: (y + x) dx.

First approximation. Puty = 1, iny + x, giving
n=1+ [ Qe de=1+x4x72

Second approximation. Puty =1 + x + x¥/2 in y + x, giving
Y= 1+ L: (1+2¢x+x°/2) dx=1+x+2x*+x%6.

Third approximation. Puty = 1 + x + x?+ x*6 in y + x, giving

B
y3=1+ r Q+2x+22 +2%/6) dx=1+x+22+ —+ .
0 3 24
Fourth approximation. Puty =y, iny + x, giving
«( . ad ot JR: S
y4=1+j- 1+20+ X% + =+ |de=14+x+2%+ —+ —+—.
o | 3 24 3 12 120
Fifth approximation. Puty =y, iny + x, giving
[ 3 4 5 3 4 5 4]
X X x X X X X X
=1 1+2x+x° +—4+—+— | dx=1 R —F——F—
+I"\ RERET 120] TETET 3T 12760 720 =

(b) Given equation :
% —y=x1is a Leibnitz’s linear in x.
Its LF. being e~ %, the solution is

ye *= Ixe_‘ dx +c=—xe "~ I(—e"”) dx+c=—xe*—e*+¢ [Integrate by parts]

1% y=cet—x-1.
Sincey=1,whenx=0, .. ¢=2.
Thus the desired particular solutionisy = 2e*—x -1 i)
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2 ad
Or using the series: e =1+4+x+ —+—+— +
21 3! 4!
2 ¥ 2t Xt

+ — —_—

12 % + % b T
Comparing (i) and (iif), it is clear that (i) approximates to the exact particular solution (ii) upto the term
in x5

|' ‘Obs, At x = 1, the fourth approximation y, = 3.433 and the fifth approximation y, = 3.434 whereas exact value is 3.44.

we get y=l+x+x oo i)

_ Example 32.2. Find the value of y for x = 0.1 by Picard's method, given that | TR
Syl B XS % 5y <1, | (PT.U. 2009)
dx y+x : ) '

Solution. We havey =1 + ‘r = dx
0 y+x

First approximation. Put y = 1 in the integrand, giving
n=1+ [ 1% ]+ [ [-1+ 2 ]dx
0

1+x

=1+ [-x+2log(L+x)] =1-x+2log(l+x) D)
Second approximation, Puty =1 —x + 2 log (1 + x) in the integrand, giving

*l-x+2log(l+x)—x x 2x
Mg d Io l-x+2log(L+x)+x dewls -[o [1" 1+2log (1+x)
which is very difficult to integrate.
Hence we use the first approximation and taking x = 0.1 in (i) we obtain
$(0.1)=1—-(.1) + 2 log 1.1 = 0.9828.

TAYLOR'S SERIES METHOD*

Consider the first order equation dy/dx = flx, y) (1)
Differentiating (1), we have
d*y af  of dy !
ol S S e, Y= _ .(2)
ad e yae o Y rll (

Differentiating this successively, we can get y”, y'* etc. Putting x = x, and y = 0, the values of (y');, ("),
(3), can be obtained. Hence the Taylor’s series
(x — %)

") + —a O™y + .- ..(3)

(x — xp)*
2!
gives the values of y for every value of x for which (3) converges.

On finding the value y, for x = x, from (3), y’, " can be evaluated at x = x, by means of (1), (2) etc. Then y can
be expanded about x = x,. In this way, the solution can be extended beyond the range of convergence of series (3).

Yx) =y, + (x —x) (), +

Example 32.3. Find by Taylor's series method the value of}- at x = 0.1 and x = . "to five p ces off
dﬂcimals fmm dy!dlx =x2y -1, y(ﬂ) =1 HI.T_ U';. 2004 g ""—““ﬁdﬁ; __.

Solution. Here (y)o = 1,3"= x2y -1, Lv')o ==
Differentiating successively and substituting, we get

¥ = 2xy + 2%, 0"y =0
¥y =2y + dxy’ + 2%, 0"y =2
¥ = 6y + 6xy” + x%y”, ("), = - 6 ete.

*See footnote p. 145.
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Putting these values in the Taylor’s series,
2 3 4

L] Ll x T4
y(x) =y, + xy(0) + gy “(0) + 3'y (0) + ;—!y"(ﬁ)q- sy
2 3 o S
we have y(x)=1+x(—1)+-—(0)+ ;(2}+—( 6)+..=1-x+ B4 ¥ ...

Hence y(0.1) = 0.90033 and y(0.2) = 0.80227.

]!'.;nmpln 324. E@MT foﬁ’s;mdhad to obtain approximate value of y at x = Ojfuht&a%e
aquanon dy&dxkzy +3&‘ JF@J:&,CMlpnmabemmM solution obtained with the exact solution, m
(V.T.U., 2009 ; mw.,zoda}

"

Solution. (@) We have y’ = 2y + 3¢* ¥(0) = 2y(0) + 3¢ = 3.
Differentiating successively and substituting x = 0, y = 0, we get
¥y =2y + 3, yM(0)=2y(0)+3=9
¥ = 2y" + 3¢, ¥(0)=2y"(0) + 3 =21
y't = 2y + 3e*, YU(0) = 2y"(0) + 3 = 45 etc.
Putting these values in the Taylor’s series, we have
22 54

W) = 3(0) + 2y (0) + ~2-— y"(0)+ y "(0) + Z—-y“(ﬂ)+

=0+3x+2x —x" —x“ e =8x g.'a:?-i-19:3+Ex“-|-...
2 24 2 2 8
Hence ¥(0.2) = 3(0.2) + 4.5 (0.2}2 +3.5(0.2)% + 1.875(0.4)* + ... = 0.811U ..(1)

(b) Now % — 2y = 3¢” is a Leibnitz’s linear in x.
Its LF. being ¢~ #, the solution is
ye %= J'SE’ e ¥dx+ec=—3¢c*+¢c or y=-—3"+ce™

Sincey =0whenx =0, .. ¢=3.

Thus the exact solution is y = 3(e* —¢*)

Whenx = 0.2,y = 3 (e - %) = 0.8112 (i)
Comparing (i) and (i7), it is clear that (i) approximates to the exact value upto 3 decimal places.

Example 82.5. Solve by Taylor's series method the equatwn %I- & log (:qr)' ﬁr yﬂ,#} Myﬁﬂﬁ? gﬂuen |
=2 ) | U A Fa v wwﬁaah 2009)

Solution. We havey’ =logx + logy; y'(1)=log2

Differentiating w.r.t. x and substituting x = 1, y = 2, we get

;y”=l+ly’;y”(1)=1+llog2
x ¥ 2
1 1 1 1 1 1
e S b=y Y | ¥y (D=-1+ — |1+ =] 2)——([0 27
y 2y y +y [ yl)y y 2( 2 og 2 g
Substituting these values in the Taylor’s series about x = 1, we have

(x - 1?2 (x -1
21

¥ () + =3

yx)=y(1)+ -1 y(1)+

y»:(l) %

1 1 1 1 1 1
=24+ (x— + —(x=12[1+= +=(x—-1PB|-=+= 2%
2+(x—-1)1og2 _2(1: ) [1 2 log 2] E(x [ A log 2 (log 2) ]

§(1.1)=2+(0.1) log 2 +

(0.1)2( 1 ] ©O*r 1 1 1
1+=log 2 ——+=log2-=(og2?| =2
5 raUe2) ==+ s il | =2.036
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y(1.2)=2+02)log 2+ &2 [1 #2 log 2] , 02 [_ 1ilg2-Laog 2)2] - 2.081.
2 2 6 2 4 4
.
Umng?nmnd’nmathnd. solve dy/dx = — xy with x; = 0, yo_lnpmﬂmdappmnmahon. Wumbai.m)
2. Employ Picard’s method to obtain, correct to four places of decimal, solution of the differential equation dy/dx = x*
L d -iy’hr:=0.4.mventhaty~0whenx=0 IJNJZ U1, 2009)
g.r m | Picard’s second approximate solution of the initial value problem : 3" =22+ 1, 0)=0.

T mam’umm
4. Find an approximate value of y when x = 0.1, if dy/dx = x~y* and y = 1 at x = 0, nsing
{a) Picard’s method (b) Taylor's serigs. \ - V.U, 2010; Mmm

5. Solvey’=x + y given y(1) = 0, Find (1. I)andytl2)bquyloﬁsmeﬁm¢Commthnmuitwiththunﬂvdue. |
LNTU., 2008 ; Anna, 2005)

6. Evaluate y(0.1) correct to six places of decimals by Taylor's series method if yi(x) satisfies
_ Y=xy e y0) =1
7. Solve y” = 8x 432 ¥(0) = 1 using Taylor’s series method and computer (0.1). (Mumbai, 2007)
8, Using Taylor series method, find y(0.1) correct to 3-decimal places given that
dyldx =g =y y(0)= 1.

EULER'S METHOD*

i i Q = ' J True value of

Consider the equation i flx, y) F= 1y S 4 Q/ y
given that y(x;) = y,. Its curve of solution through o P ! [ Error
P(x,, y,) is shown dotted in Fig. 32.1. Now we have to Q .- Aowinc
find the ordinate of any other point @ on this curve, o R vflﬂ?oi‘y

Let us divide LM into n sub-intervals each of P, ../P "
width & at L, L,, ... so that h is quite small. In the ’)‘"
interval LL,, we approximate the curve by the Pasts R R,
tangent at P. If the ordinate through L, meets this 0 1
tangent in P,(x, + A, y,), then Yo

¥y=L,P,=LP +R\P, 0 2 L L, i X

=y,+ PR tan8=y, +h (‘bJ Xg xg+h xg+2h *p+nh
dx P Fig. 321

=Yt h ﬂxm ¥o)
Let P,Q, be the curve of solution of (1) through P, and let its tangent at P, meet the ordinate through L,
in Py(x, + 2h, y,). Then
Yo=y +hflxg+h,y,) .(2)
Repeating this process n times, we finally reach an approximation MP, of M@ given by

Y=Yy 1 +hfly+n—-1h,y, )
This is Euler's method of finding an approximate solution of (1).

Obs. In Euler's method, we approﬁmale the curve of solution by the tangent in each interval, Le. o0« 2eyue cenf
short lines, Unless 4 is small, the error is bound to be quite significant. This sequence of lines may also dew..u cnrdia
ably from the curve of solution. Hence there i is a modification of this method which is given in the next section,

Example 32.6. Using Euler’s method, find an approximate value of y corresponding to x = 1, given that
dyldx=x +yandy =1 when x = 0. (Mumbai, 2005 ; Rohtak, 2003)

*See footnote p. 302.



Solution. We take n = 10 and A = 0.1 which is sufficiently small. The various calculations are arranged as
follows :

Solution. We divide the interval (0, 0.1) into five steps i.e. we take n = 5 and h = 0.02. The various
calculations are arranged as follows :

Hence the required approximate value of y = 1.0928.

MODIFIED EULER’S METHOD
In the Euler’s method, the curve of solution in the interval LL, is approximated by the tangent at P
(Fig. 32.1) such that at P,, we have
Y1 =Yg+ hflxg, yp) (1)
Then the slope of the curve of solution through P, [i.e. (dy/dx); = f(x, + k, ,)] is computed and the
tangent at P, to P,Q, is drawn meeting the ordinate through L, in P,(x, + 2k, y,).
Now we find a better approxnnahony,‘” of y(x, + h) by taking the slope of the curve as the mean of the

slopes of the tangents at P and P, i.e.
3 V=yo+ = [f(xo,-yo) + g+ hy 3y ~(2)

As the slope of the tangent at P, lsnotlmown,wetakey asfounﬂm(l)byEuler’smethodandmsertrton
R.H.S. of (2) to obtain the first modified value ¥,'V. The equatmn (1) is therefore, called the predictor while (2)
serves as the corrector of y .
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Again the corrector is applied and we find a still better value y,'? corresponding to L, as

- h _
We repeat this step, till two consecutive values of v agree. This is then taken as the starting point for the
next interval L,L,.
Once y, is obtained to desired degree of accuracy, y corresponding to L, is found from the predictor
CYe=yHhf(xg+hyy)
and a better approximation y,'"is obtained from the corrector

yV=y+ % FGeg + hoyy) + flxg + 2h, o))

We repeat this step until y, becomes stationary. Then we proceed to calculate ¥4 as above and so on.
This is the modified Euler’s method which is a predictor-corrector method.

v {1 1 ¥ ; J
a4 - e | ad 1 i .

Solution. Taking & = 0.1, the various calculations are arranged as follows :
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Solution. We havey =y +e*=flx, y) ;x =0,y =0and h = 0.2
The various calculations are arranged as under :
To caleulate y(0.2) -

Since the last two values of y are equal, we take y(0.2) = 0.2468.
To calculate ¥(0.4).

Since the last two value of y are equal, we take y(0.4) = 0.6031.
Hence y(0.2) = 0.2468 and y(0.4) = 0.6031 approximately.

~ W% =




NI My . B

2.5351 and y(1.4) = 2.6531 approximately.

Fiaix = e range U sx s (.o steps of Uiz,

Solution. The various calculations are arranged as follows :
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h h
=yo+ 5 (dyldx)p =y, + ) flxg, ¥y) .(3)

Also ¥r=MT = LP + RT =y, + PR tan 0 = y .+ hf(x,, y,).

Now the value of y, at x; + h is given by the point 7" where the line through P drawn with slope at
T(x, + h, y;) meets MQ.

Slope at T =tan 6" = f(x, + h,y,) = flxy + h, y, + hf (xy, y, )]
Yo=MR + RT =y, + PT tan & =y, + hflxg + h, y, + hf (x;, y,)l ..(4)

Thus the value of flx,y) at P = flx,, y,),
the value of f(x,y) at S = f(x, + h/2,y )
and the value of f(x, y) at @ = f(x, + h, y)
where y¢ and y,, are given by (3) and (4).

Hence from (2), we nbtain

k= I [flx, y)dx =— {fp +4fc + fql [By Simpsons’ rule (p. 1106))

= E [f(xg, 55) + 4f (g + h12, yg) + flag + b, y o)) ..(5)

which gives a sufficiently accurate value of k and also of y =y, + k.
The repeated application of (5) gives the values of y for equispaced points.
Working rule to solve (1) by Runge’s method :
Calculate successively
k = hf(x,+ h,y,+ k)
and ky=hf(xg+ h,y,+ &)
Finully compute, k= -:;(ki + 4k, + ky).
(Note that k is the weighted mean of k, k,and ky)

Example 32.12. Apply Runge’s method to find an appmx;mate value of ywhen x = oﬁ,{gm Maf dy ffix
=x+yandy=1whenx=0. {

Solution. Here we havex, =0,y,=1,h = 0.2, f(x,,y,) = 1

ky = hf(xg, y) = 0.2 (1) =0.200
k,=hf(xo +3h,yo + 3k ) =0.2£(0.1,1.1)  =0.240
= hf(xg+ h, yo+ k) = 0.2 (0.2, 1.2) =0.280
and ky=hf(x,+ h,y,+ k)= 0.2 (0.1, 1.28) = 0.296
k= %k, + 4k, +ky)
= £(0.200 + 0.960 + 0.296) =0.2426

Hence the required approximate value of y is 1.2426.

Yl RUNGE-KUTTA METHOD*

The Taylor’s series method of solving differential equations numerically is restricted by the labour
involved in finding the higher order derivatives. However there is a class of methods known as Runge-Kutta
methods which do not require the calculations of higher order derivatives. These methods agree with Taylor’s
series solution upto the terms in A", where r differs from method to method and is called the order of that method.
Euler’s method, Modified Euler's method and Runge’s method are the Runge-Kutta methods of the first, second
and third order respectively.

* See footnote p. 1017. Named after Wilhelm Kutta (1867—1944).



Nuvercn sowmon o INEERS/hemanthrajhemu.github.io

The fourth-order Runge-Kutta method is most commonly used and is often referred to as 'Runge-Kutta
method' only.

Working rule for finding the increment k of y corresponding to an increment h of x by Runge-Kutta
method from

% = flx, ¥), y(x,) = y, is as follows :
Calculate successively
ky = hf(xg, ¥o)
k2 = hf(xn + %h-p .\'D + ‘%kl)
ky=hf (xq +1h.y +1k;)
and ky=hf(xg+ h,y,+ k)
Finally compute k= 3k, +2k,+ 2k, +Fk,)
which gives the required approximate value y, = y, + k.
(Note that k is the weighted mean of ky, k,, k,and k)

Obs. One of the advantages of these methods is that the operation is identical whether the differential equation is
linear or non-linear.

Example 32.13. Apply Runge-Kutta fourth order method, to find an nppmnmm me’of ywhen x = 0.2,
7+ 8

given that dy/dx=x +yand y = 1 when x = 0. i (V.T.U., 2009 ; P.T.U., V.T U, 2007)
Solution. Here 2,=0,y,=1,h =02, flx, y,) =
y ky=hf(xg,¥0)=0.2x1 =0.2000

ky=hf (% +3h, 3 + 1k ) =02 x £(0.1,1.1) = 0.2400
ky = hf (xo + 3h, yo +1ky) = 0.2 x £(0.1, 1.12) = 0.2440
and ky=hf(xg+ h,y,+ ky) = 0.2 x (0.2, 1.244) = 0.2888
k= gk, + 2k, + 2k, + k)
= 1(0.2000 + 0.4800 + 0.4880 + 0.2888) = «é x (1.4568) = 0.2468.
Hence the required approximate value of y is 1.2428.

Ehmple 32.!%. tfsmq wmm me&had oﬁbnrﬂ: order, solve ° “" =2 g 73 jg % )h 1%:?@
U,

-,O.J. LTYEe, L o J.' - 1y C (UPTU, 20(? JM!& &'M{,
y2 — a2

Solution. We have f(x,y) = y2 e

To find ¥(0.2) :

Herex;=0,y,=1,h=0.2
ky = h flx,, y,) = 0.2 (0, 1) = 0.2000
k2=hf[xo +%k, Yo +%li =0.2£(0.1, 1.1) =0.19672
ky = hf(xo 3 %h, Yo +~%k2] =0.2 (0.1, 1.09836) =0.1967
ky = hf(xy+ b,y + ky) = 0.2 £(0.2, 1.1967) =0.1891

k= %ue., + %k, + 2k, +k,)= %10.2 +2(0.19672) + 2(0.1967) + 0.1891]

=0.19599
Hence ¥(0.2) =y, + k = 1.196.
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To find ¥(0.4) :
Here x,=02,y,=1196,h =02
ky=hflx,y) =0.1891
k, = hf(x, + %h, ¥+ %k,] = 0.2 £(0.3, 1.2906) =0.1795
ky= hf(x, " %k, 5 %k,z] = 0.2 £(0.3, 1.2858) = 0.1793
ky = hf (e, + hy y, + ky) = 0.2 £(0.4, 1.3753) = 0.1688
k= %(k1+2k2+2k3+k4)
= % [0.1891 + 2(0.1795) + 2(0.1793) + 0.1688] =0.1792
Hence ¥(0.4)=y, + k& =1196 + 0.1792 = 1.3752.

Example 32.15. Apply Runge-Kutta method to find an approximate value of y for x = 0.2 in steps of 0.1,
ifdyldx = x + y°, given that y = 1, where x = 0. (V.T.U., 2009 ; Osmania, 2007 ; Madras, 2000)

Solution. Here we take & = 0.1 and carry out the calculations in two steps.
Step[.xo-o Yo=1,h=0.1

ky = hf(xg, y,) = 0.1£(0, 1) =0.1000
ky=hf (xo + Lk, ¥o + 14) = 0.1 £(0.05, 1.1) =0.1152
ky=hf (xq +Lh, yo + Lk;) = 0.1£(0.05, 1.1152) =0.1168
ky=hf(xy+ h,y,+ ky) =0.1£(0.1, 1.1168) =0.1347
k= Lk, + 2k, +2k, + k)
= -&(0.1000 +0.2304 + 0.2336 + 0.1347) =0.1165
giving y(0.1) =y, + k= 1.1165.
StepII.xl—xu+h 0.1,y,=1.1165,h = 0.1
k, = hf(x,, ¥,)=0.1£(0.1, 1.1165) =0.1347
ky=hf (xy + Lh, ¥y + Lk) = 0.1 £(0.15, 1.1838) = 0.1551
ky=hf (2, + 3h, 3 +$ky) =0.1£(0.15, 1.194) =0.1576
k, = hf(x,+ h, y,+ k) = 0.1 (0.2, 1.1576) = 0.1823
2 k= t(ky + 2k, + 2ky + k) =0.1571
Hence ¥0.2) =y, + k = 1.2736.
Example 32.16. Using Runge-Kutta method of fourth order, solve foryatx=12, 1 4fr¢; d.\: ?:et
giwen x,= 1, y,=0. (Mumbai, 2008)
X
Solution. We have f(x,y) = 2? z ez
X+ xe
To find y(1.2) :
Here %=1Ly,=0,h=02
O+e
k,=hf(x,, =(0.2 =0.1462
1 Fgr yo) l+e
h k 2(1 + 0.1)(0 + 0.073) + &' * !
k.=h —, Al = 0.2 =0.1402
2 f(x”z = 2) { (1+0.17 +(1+0.) €™
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kg) x it {2(1 +0.1)(0 + 0.07) +¢**

k —hf(xg+—{l~ Yo+
3 CTA T (1+0.1)% +(1+0.1) !

} = 0.1399

2(1.2)(0.1399) + '
(1.2)% + (1.2) '?

k,,:hf(xom,yuma):o.z{ } = 0.1348

1 1
and k=g (ky+ 2k, + 2k + k,) = ¢ [0.1462 + 0.2804 + 0.2798 + 0.1348]

= 0.1402.
Hence ¥1.2) =y, + &k =0+0.1402 = 0.1402.
To find y(1.4) :
Here x, =1.2,y, =0.1402, h = 0.2
ky = hf(x,,y) =0.2f(1.2,0) = 0.1348
ky = hf(x, + h/2,y, + k,/2) = 0.2 f(1.3, 0.2076) = 0.1303
ky=hf(x, + h/2,y, + k/2) = 0.2 f(1.3, 0.2053) = 0.1301
ky=hf(x, + h,y, + k) = 0.2 f(1.3, 0.2703) = 0.1260

k= %(k, + 2k, + 2ky + k) = % [0.1348 + 0.2606 + 0.2602 + 0.1260] = 0.1303
Hence ¥(1.4) =y, + k = 0.1402 + 0.1303 = 0.2705.

PROBLEMS 32.3

1. Use Runge's method to approximate y when x = 1.1, given that y = 1.2 when x = 1 and dyfdx = 3x + ¥
2. Using Runge-Kutta method of order 4, find y(0.2) given that dy/dx = 3x + %y. y(0) = l-..taking h=0.1.
(V.T.U., 2004)

3. Using Runge-Kutta method of order 4, compute y(.2) and (.4) from 10 % =x? 432 y(0) = 1, taking & = 0.1.

(Rohtak, 2003 ; Bhopal, 2002)

4, Use Runge-Kutta method to find y when x = 1.2 in steps of 0.1, given that :
dylde =x* + y2 and y(1) = 1.5, (Mumbai, 2007)
5. Find y(0.1) and y(0.2) using Runge-Kutta 4th order formula, given thaty’ = x*~y and 5(0) = 1. (L.N.T.U., 2006)
6. Using 4th order Runge-Kutta method, solve the following equation, taking each step of & = 0.1, given y(0) = 3, dy/dx

= (4x/y —xy). Calculate y for x = 0.1 and 0.2, (Anna, 2007)

7. Use fourth order Runge-Kutta method to find y at x = 0.1, given that % =3e* + 2y, y(0) =0 and’h =0.1.
(V.T.U., 2006)
8. Find by Runge-Kutta method an approximate value of y for x = 0.8, given that y =041 when x = 0.4 and dy/dx

< W] | ] (.
= J{x +y) - (S.V.I.U., 2007 5)
9. Using Runge-Kutta method of order 4, find ¥(0.2) for the eguation % - ?’f:: w¥(0) = 1. Take h = 0,2.

(V..U 2011 8)
10. Given that dy/ds = (V2 - 2xMy® + x) andy = Latx =0 ; find y for x = 0.1, 0.2, 0.3, 0.4 and 0.5. (Delhi, 2002)

PREDICTOR-CORRECTOR METHODS

Ifx; _,and x; be two consecutive mesh points, we have x; =x; | + /. In the Euler’s method (§ 32.4), we have
Y=Y+ hf g+ i—1h,y,_,);i=1,2,3,.. 1)
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The modified Euler’s method (§ 32.5), gives

Yi=¥i_1+ %mx._l.yi_.ﬂﬂx,-.y,-)l «(2)

The value of y, is first estimated by using (1), then this value is inserted on the right side of (2), giving a

better approximation of y,. This value of y, is again substituted in (2) to find a still better approximation of y,.

This step is repeated till two consecutive values of y, agree. This technique of refining an initially crude estimate

of y, by means of a more accurate formula is known as predictor-corrector method. The equation (1) is there-
fore called the predictor while (2) serves as a corrector of y,.

In the methods so far explained, to solve a differential equation over an interval (x,, x, , ,) only the value of

yat the beginning of the interval was required. In the predictor-corrector methods, four prior values are required

for finding the value of y at x, _ ,. A predictor formula is used to predict the value of y at x, , , and then a corrector
formula is applied to improve this value,

We now describe two such methods, namely : Milne’s method and Adams-Bashforth method.

MILNE'S METHOD

Given dy/ dx=f(x,y)andy =y, x =x; to find an approximate value of y for x = x, + nh by Milne’s method,
we proceed as fu..
The value y, = y(x,) being given, we compute
¥y =¥y + h), y, = ylx,+ 2h), y, = y(x, + 3h),
by Picard’s or Taylor’s series method.
Next we calculate,
fo=Flxg o) fr = flxg + hyy)), fo = fxy + 2R, y,), fy = flxg + 3h,y,)
Then to find y, = y(x, + 4h), we substitute Newton’s forward interpolation formula

flx, y) = f, + nAfy + nin—1 A%f+ LB 16)(" -2 Ay +

. . xg +4h
in the relation y, =y, + I f(x, y) dx

Xo

xg +4h = i
Ye=Yo+ L: ' (fo +nAfy + "("2 -]‘—)Azfﬂ + J dx [Put x = x; + nh, dx = hdn]
4 nin -1)
=y, +h L (fu +nAfy + = A%, +...]dn

=y, +h [4}'0 +BAfy + 2;—0.432{0 + gasfo + J

Neglecting fourth and higher order differences and expressing Af,, A*f, and A% in terms of the function
values, we get

4
WP =y, + Ei (2f, — f, + 2f,) which is called a predictor.

Having found y,, we obtain a first approximation to f, = f(x, + 4k, y,).
Then a better value of y, is found by Simpson’s rule (p. 1106) as

Y =y, + ;—'(/"2 + 4f, + f,) which is called a corrector.

Then an improved value of f, is computed and again the corrector is applied to find a still better value of
¥4 We repeat this step until y, remains unchanged.
Once y, and f, are obtained to desired degree of accuracy, y. = y(x, + 5h) is found from the predictor as

, 4h
i =y “3_(2f2"f3 +2f)

and f, = f(x, + Bh, y;) is calculated. Then a better approximation to the value of y, is obtained from the corrector
as
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Ir!

=¥+ (fs +4f, +fp).

We repeat this step till y, becomes stationary and we, then proceed to calculate y, as before.

This is Milne's predictor-corrector method. To ensure greater accuracy, we must first improve the accu-
racy of the starting values and then sub-divide the intervals.

Example 32.17. Apply Milne’s method, to find a solution of the differential equation y' = x =y° in the
range 0 < x < 1 for the boundary canduwnsy =0atx=0. (V.T.U., 2009, Anna, 2005, Rohtak, 2005)

Solution. Using Picard’s method, we have

y=y(0) + I: f(x. v) dx, where f(x,y) = x - y%

To get the first approximation, we put y = 0 in f(x, y),

i x x*
giving ¥,=0+ Io xdx="—
To find the second approximation, we put y = %2 in f(x, y),
- * x* 2 2
giving v= | [I—T]dx=-—2—-2—0
Similarly, the third approximation is
2 . 5Y 2 5 1
x L LT S i x :
= | == |dx=—7 -+ ——
n= ), [x {2 20] ] 2 20 160 4400 W
Now let us determine the starting values of the Milne’s method from (i), by choosing h = 0.2.
x, = 0.0, ¥ = 0.0000, fo = 0.0000
=0.2, = 0.020, f, =0.1996
x2 =04, y2 = 0.0795, f, =0.3937
x,=0.8, ¥y = 0.1762, fy=0.5689

Using the predictor, yf“”‘ = yo ﬂ 2f, -, + 2fy)

x=0.8, v =0.3049, f, =0.7070
and the corrector, yfi“ =y, + g (fy + 4f; + f,), yields
vy =0.3046, f,=0.7072 L)

Again using the corrector, y{' = 0.3046, which is same as in (ii)

Now using the predictor, y" =y, + &(Zfz —fa+ 2f,),

x=1.0, y =0.4554, f. =0.7926
and the corrector, ¥ =yt — (f3 + 4f, + f,), gives
3 = 0.4555, f. = 0.7925

Again using the correcior,
ys' = 0.4555, a value which is the same as before.
Hence, y(1) = 0.4555.

: Ehmmpla 32.18. Gwen 3y =x(x +3°) e, 3(0) = 1, find y at x = 0.1, 0.2and 0 8 by Tcylora ser{es metr‘md
and compute y{t) 4) by Milne's r:mﬁwd : ﬁm
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Solution. Given y0)=1 and A=0.1
We have y(x) =x @ +y?) e *; y'(0)=0
¥x) = [ + 2y?) (—e*) + 32+ y2 +x(2y) ¥yl e+
=e* [—x3 -2y 4+ 32+ y2 4+ 20yy] ; ¥(0)=1
¥(x) = —e ¥ [-x® —xy? + 322+ y% + 20yy” + 3a? + y2 + 2xyy’ — 6x — 2y’ — 2xy"2 — 2xyy] y"0)=-2

Substitute these values in the Taylor’s series,
P 3
ylx) =y(0) + —y (0) + 2'y’(0) + 5)”’(0) + .

$(0.1) = 1 + (0.1)0) + %(o.n%xn é(o.na(- 2) 4.

=1+ 0.005-0.0003 = 1.0047 ie., 1.0056
Now taking x=0.1,¥0.1) = 1.005, h = 0.1
¥°(0.1) = 0.092, ¥"(0.1) = 0.849, y"(0.1) = — 1.247
Substituting these values in the Taylor’s series about x = 0.1,

0.1 1
( )231”(0.1) + (03')33«”'(0 1)+

y(0.2) = y(0.1) + %le’(o.l) +

2!
2 3
- 1.005 + (0.1)(0.092) + %1 (0.849) + (0'31) (- 1.247) + ..
=1.018
Now taking x=02,50.2)=1.018,h=0.1

¥'(0.2) = 0.176, ¥"(0.2) = 0.77, y"'(0.2) = 0.819
Substituting these values in the Taylor’s series

0. 2 3
¥(0.3) = y(0.2) + -(;—1'_}'"(0 2) + ! I) ¥"0.2) + (031'} ¥"(0.2) +

= 1.018 + 0.0176 + 0.0039 + 0.0001 = 1.04
Thus the starting values of the Milne’s method with & = 0.1 are

x,=0.0 Yo=1 fo=y3=0
x, =01 ¥, = 1.005 f, = 0.092
x,=0.2 ¥, =1.018 f;=0.176
x,=03 ¥y =1.04 f,=0.26

4h
Using the predictor, y{"’ =y, + L=+ 2fy)

e M [2(0.092) — (0.176) + 2(0.26)] = 1.09

x=04 y4 =1.09 f,=¥(0.4) = 0.362

=¥yt ffz +4fs+f)

Using the corrector, y{’

¥y =0.018 + 9-3-1~ (0.176 + 4(0.26) + 0.362) = 1.071
Hence y(0.4)=1.071.

Example 32.19. Using Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3 given that dy} :
¥% ¥(0) = 1. Continue the solution ut x = 0.4 using Milne’s method. ) )

(V.T.U.,, 2008 ; S.V.T.U., 2007 ,Madm;,__l

Solution. We have  f(x,y) =xy +y%
To find ¥(0.1) :
Here 2=0,y,=1,h=0.1
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ky=h flxg, yo) = (0.1) £(0.1) =0.1000

ky = h.f[xo + -éh, o + Ekl) = (0.1) £(0.05, 1.05) =0.1155

ky = hf[xo + %h, Yo+ %kz] = (0.1) £(0.05, 1.0577) = 0.1172
ky=hf(xg+ h, yo+ kg) = (0.1) (0.1, 1.1172) = 0.13598
k= %(k1+2k2+2k3+k‘)

= %[0.1 + 0.231 + 0.2348 + 0.13598) =0.11687
Thus y(0.1) =y, =y + £ = 1.11689.
To find y(0.2) :
Herex, =0.1,y, = 1.1169, A = 0.1.
ky=h f(x;,y,)=(0.1) (0.1, 1.1169) =0.1359
ky = hf(xl + %h, »n+ %kl) =(0.1) f(0.15, 1.1848) = 0.1581
ky= hf'[xl + %h. »n+ %kq] =(0.1) f(0.15, 1.1959) =0.1609
ky=hf(x,+h,y, + ky) =(0.1) f(0.2, 1.2778) =0.1888
k= %(k1+2k2+2k3+k4) = 0.1605
Thus y(0.2) =y, =y, + k = 1.2773.
To find ¥(0.3) :
Herex, = 0.2,y, = 1.2773, h = 0.1.
ky = hf(x,, y,) = (0.1) £(0.2, 1.2773) =0.1887
k, = hf(x-z +%h. Yo +~;—k1] =(0.1) f(0.25, 1.3716) = 0.2224
1
ky= hf[x2 + Eh' Y + %kz] = (0.1) (0.25, 1.3885) = 0.2275
ky=hf(x,+ h,y, + kg) = (0.1) (0.3, 1.5048) =0.2716
k= %(kl + 2k, + 2k, + k) - 0.2267

Thus y(0.3) =y, =y, + &k = 1.504.
Now the starting values of the Milne’s method are :

xy=0.0 ¥y = 1.0000 f, = 1.0000
x,=0.1 y, = 1.1169 f, = 1.3591
x,=0.2 y, = 1.2773 f, = 1.8869
x,=0.3 ¥, = 1.5049 f,=2.7132
Using the predictor,
4h
[PI =Xot 2f fz + 2f3
x,=0.4 yP =1.8344 f, = 4.0988

and the corrector,
¥ =y, v — (;"2 +4f; + f,) yields

¥ =1.2773 + ? [1.8869 + 4 (2.7132) + 4.098]
= 1.8386 f,=4.1159
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Again using the corrector,
¥ = 12773 + %J (1.8869 + 4 (2.7132) + 4.1159)]
= 1.8391 f,=4.1182 D)
Again using the corrector
O = 12773 + % (1.8869 + 4 (2.7132) + 4.1182]

= 1.8392 which is same as (1).
Hence y (0.4) = 1.8392.

ADAMS-BASHFORTH METHOD

Given z‘: =f(x,y) and y, = y(x,), we compute

Y_q —y(xo -h)y _ 2 -J'(xu —-2h),y_ 3-."'(-"0"'3")
by Taylor’s series of Euler’s method or Runge-Kutta method.
Next we calculate f_, =f(x,—h,y _),f_o=Ffg—2h,y _,),f ;=F(x,—3h,y_y).
Then to find y,, we substitute Newton’s backwar'd interpolation formula

fa,n=fo+n vf, + n(n2+1) v2f, + nln + Ié(n +2) V3, +-
in Y1=Y + E" - flx, y)dx -(1)
Y=Yt E(ﬁ, +nVfy + n("; D V23, + ) dx [Put x = x, + nh, dx = hdn]
yo+h I:[ﬁ,-+nVﬁ, 20D gery 4 ] dn

_y°+h(ﬁ,+ Vf0+—vaf°+ V“f;, ]
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Neglecting fourth and higher order differences and expressing Vf;, szc', and V*f in terms of function
values, we get

yipl =y, + % (65f, —B69f _,+3Tf ,—9f_,) (2)

This is called Adams-Bashforth predictor formula.
Having found y,, we find £, = f(x, + A, y)).
Then to find a better value of y,, we derive a corrector formula by substituting Newton's backward
formula at f, i.e.,
n(n+1) nn+1)(n+2)

6

fx,3)=fi+ nVf + Vi + V3f, + - in (1),

Y1=Y t El(fl +nVf, + n(n2+ L. \% +] dx [Putx=x, +nh,dx=hdn]

n(n +1)

=yo+ _|'_‘Jl(f1 +nVf; + Vi 4 )dn

=3+ h (-3 Vh 35 Vi 5o V=)
Neglecting fourth and higher order differences and expressing Vf,, v?f, and V7f, in terms of function
values, we obtain
2O =y + % O, + 19/, 5f _, +1_y) (3)

which is called a Adams-Moulton corrector formula.
Then an improved value of f, is calculated and again the corrector (3) is appiied to find a still better value
of y,. This step is repeated till y, remains unchanged and then proceed to calculate y, as above.

Solution. Here f(x ¥ =21 +y).
Starting values of the Adams-Bashforth method with i = 0.1, are
x=1.0,y_4=1.000,f = (1.0)* (1 + 1.000) = 2.000
=11,y ,=1283,f ,= 2.702
v =12,y ,=1548,f = 3.669
= 1.3,y,=1.979, f, = 5.035

Using th
’L: (55f, — 59f | + 3Tf_,— 9f_3)
73, f, = 7.004
U
W_y+f )

19 x 5.035 — 5 x 3.669 + 2.702) = 2.575

le

Hence



To find y(0.4) by Adam’s method, the starting values with & = 0.1 are
x=0.0 ¥.5=24 fg=4
x=0.1 ¥ =2473 f.,=5.467
x=02 y_,=3.129 f,=17643
x=03 ¥ = 4.059 f.o=10.956

Using the predictor formula

= 4,059 + 2L (55 x 10.957 — 59 x 7.643 + 37 x 5.467 -9 x 4)

24
=5.383
Nowx=04  y,=5383 f, =2"4(5.383)=16.061
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Using the corrector formula,

Y =y, + % (9f, + 19f, - 5f , + )

= 4.0586 + % (9 x 6.061 + 19 x 10,956 — 5 x 7.643 + 5.467) = 5.392
Hence y(0.4) = 5.392.

Example 82.22. Solve the initial naiucpmblemdyldr =x-y% y(0) = 1 to find y(0.4) byAdamﬁ method,
Starting wfuﬂom required are to be obtamed using Runge-Kutta method oforder 4 using step value h = 0.’1;

. ! (P.T.U., 2003)

Solution. We have f (x,y) = x =2

To find y (0.1) :

Here:rc',:| 0,y,=1,h=0.1
k -hf(xo.yn} = (0. 1>f(o 1) =~ 0.1000

ky = hf [Io +2hyo+sh ] =(0.1)£(0.05,095)  =-0.08525
ky = hf {-fo i .% By 3o + % ki,) = (0.1) (0.05, 0.9574) = — 0.0867
ky = hf (o + hy y, + kg) = (0.1) (0.1, 0.9137) = - 0.07341
k=%(k1+2k2+2k3+k,,) =~ 0.0883

Thus $0.1) =y, =y, + k= 1-0.0883 = 0.9117

To find y(0.2) :

Herex,-OI ¥, =09117, A = 0.1.

- k =hf{xl,yl) = (0.1) £(0.1, 0.9117) =-0.0731
ky = hf [aa +ohy g k,] =(0.1)£(0.15,0.8751) =—0.0616
ky=hf [:q +% h, y, + % kz} =(0.1)£(0.15,0.8809) =—0.0626
kg = hf Gey+ hy yy + ky) = (0.1) £(0.2, 0.8491) = - 0.0521

1
k= E(k,+2k2+2k3+k4) =-0.0623

Thus ¥0.2) =y, =y, + k=0.8494.

To find y (0.3) :

Here x, = 0.2, y, = 0.8494,y = 0.1
k,= hf(xz. ¥5) =(0.1) £(0.2, 0.8494) =-0.05621
k,=hf (xg + % hy ¥y + % h) =(0.1)£(0.25,0.8233) =-0.0428
ky = hf [;;2 +%h, ¥s +ékz] = (0.1)£(0.25,0.828) = 0.0436
ky=hf (x,+ h,y, + k) =(0.1) (0.3, 0.8058) =—0.0349

k= é(kl+ 2y, + 2k, + k,) =—0.0438

Thus ¥ (0.3) =y, =y, + k= 0.8061

Now the starting values of Adam’s method with 2 = 0.1 are :

x=0.0 ¥y_g = 1.0000 f'_3=0.(}—(1.()}2 =—1.0000

x=0.1 ¥, =09117 f,=0.1-(0.9117) =-1.7312

x=0.2 y_, = 0.8494 f,=0.2—(0.8494) =-0.5215

x=03 ¥o = 0.8061 fo=0.3 —(0.8061)* =—0.3498
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Using the predictor,
AP =y, + % (55f, — 59F , + 37 , — 9F )
x=04 S = 0.8061 + % [55 (- 0.3498) - 59 (- 0.5215) + 37 (- 0.7312) 9 (~ 1)]
= 0.7789 f, = - 0.2067
Using the corrector,

i - % (O, + 19f, ~5f | +f.,)

$9 = 0.8061 + % [9 (- 0.2067) + 19 (~ 0.3498) — 5 (- 0.5215) — 0.7312] = 0.7785
Hence ¥ (0.4) = 0.7785.

[EEEEN SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS
The simultaneous differential equations of the type

dy .
‘2‘; = f(xx b z) "i(n

and % =¢(x,y2) .(2)

with initial conditions y(x;) = y, and 2(x,) = z, can be solved by the methods discussed in the preceding sections,
especially by Picard’s or Runge-Kutta methods.
(i) Picard’s method gives

Y11=+ If(x:yo-'zo)dxnzl=3o+j¢(x-)’o;zo)dx
J'2=J'o+ If (x.y1.21)'d¥.22-=2h+- j‘b(xlyl’zl}dx

Y3=Yyt+ If (x, y9,25) dx, 23 =2 + Ith, Y2, 25) dx
and so on.
(ii) Taylor’s series method is used as follows :
If k be the step-size, y, =y (x, + &) and z, = z (x; + &). Then Taylor’s algorithm for (1) and (2) gives
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2 hﬂ

Y=Y+ h_)’o' + g y[‘” +§ }’Dm ot oa ...(3)
2 h3

2z, =2z,+hzy + -ﬂz”.+§ L P B ...(4)

Differentiating (1) and (2) successively, we get y”, 2, etc. So the values y’, y,", y,”... and 2/, z,", 2,""... are
known. Substituting these in (3) and (4), we obtain y,, z, for the next step.
Similarly, we have the algorithms

2 }!3
Yo=y +hy + 2! E »n .. ...(B)
h? }13 "
z,=2z,+hz" + o1 7" T A te .-(6)
Since y, and z, are known, we can calculate y’, y,”, ... and z ', z,” ... . Substituting these in (5) and (6), we

get y, and 2,

Proceeding further, we can calculate the other values of y and z step by step.

(iit) Runge-Kutta method is applied as follows :

Starting at (x, ¥, 2,) and taking the step-sizes for x, y, z to be 4, &, [ respectively, the Runge-Kutta method
gives,

ky = hf (xy, vy 2) 1, = ho (xg ¥y 2)
k. _.hf(xo+2h Yo += k.‘zo+ l,) [2=h¢.(xu+—;-h,yo+%kl,zo+%l,)
1 | 1 1 1 1
k3=hf[xo+§h,yo+*§k2,20+'§l2] f3=h¢[x0+§h,yo+§k2,zu+§22)
k4=hf(xn+h,yu+k3,zo+[3) £4=h¢o(xu+h,yﬂ+k3,zn+£3)
Hence yl=y0+%(k1+2k2+2k3+k4) and zlzzo+%(l]+2£2+2!3+l4)

To compute y, and z,, we simply replace x,, y,, 2, by x;, ¥, 2, in the above formulae.

phMUsmgP:mrd’s"" '
miﬂ,zm)uiand'ayfdltx+égdzldx=x—y’

Solutmn Herex,=0,y,=2,2,=1,

dy _ . dz 2
dx-—f(x.y,z)=x+z, and dx=¢(x,y,z)=x—y

Y=Y+ J:f(x.yz)dx and z=z,+ I;Mx,yz)dx_

First approximations  y,=¥o+ [ 0(, 3, %)dx=2+ [[aendi=zexsisl

1
z,=2,+ Id:(x,yo,za)dx 1+L(x -4 dr=1-dx+ s’
. x 1
Second approximations y, =y, + I f{x,_v,,zl)dx=2+L[x+1—4x+ixzjdx
)

32 1’3

= ——
2+x 2 8

X
z2,=2,+ Loq:(x, Y1, %) dx

=1+j;lx—(2+x+%x)]dx 1- 4,+3‘2 ’3_.’_‘___:_5_.
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Third approximations y=y,+ I; f (x, ¥5,25) dx

s 32 13 14 15 16
=2+x 2x 2: 41 20:: 120::

X
z3=2,+ _le(x.yg.zg)dx

82,557 4
=l-dx-xf+- -2+
s R T R T

and so on.
When x=0.1,
¥, = 2.105, y, = 2.08517, y, = 2.08447
2, = 0.605, z, = 0.58397, z, = 0.58672.
Hence ¥(0.1) = 2.0845, 2(0.1) = 0.5867
correct to four decimal places.

{ L

Solution. Here flx, y,2)=1+x2,¢ (x, ¥, 2) =—xy
x,=0,y,=0,2,= 1. Let us take h = 0.3.
ky=hfx,y42)=03R0,0,1=03(1+0)=03
Li=hé(x;,5,2,)=03(-0x0)=0

1 1 1
k.g=hf[xo+'2'h1y0+§hluzo+_2'zlJ
=(0.3) f10.15, 0.15, 1) = 0.3 (1 + 0.15) = 0.345

1 1 1,/
!2=h¢[3?n +Ehd’o "'Ekl-zo""ifl)

= 0.3 [-(0.15) (0.15)] = — 0.00675.

h ky by
ks'-'hf[xo torYotond +§]
=(0.3) f0.15, 0.1725, 0.996625)
= 0.3 [1 + 0.996625 x 0.15] = 0.34485

ly=h¢ [xo "'g':J.’o +%—,zo +%]

= 0.3 [-(0.15) (0.1725)] = - 0.007762
ky=hflxg+h,y,+ kg zo+13)

=(0.3) £ (0.3, 0.34485, 0.99224) = 0.3893
Li=ho(xy+h,y,+ ks 2y +13)

= 0.3 [-(0.3) (0.34485)] = —0.03104

. 1
Hence y(xn+h)=yo+g(k-l+2k2+2ks+k4)
ie., #03)=0+ % (03 +2(0.345) + 2 (0.34485) + 0.3893] = 0.34483
and z(xﬂ+m=zo+%a1+2zz+zza+m

b, 203)=1+ % [0+ 2+ (— 0.00675) + 2 (— 0.0077625) + (— 0.03104)] = 0.98999



