

One Stop for All Study Materials

& Lab Programs

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, Currently for CSE – Computer Science Engineering...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

ANALOG AND DIGITAL ELECTRONICS LABORATORY			
(Effective from the academic year 2018 - 2019)			
SEMESTER – III			
Course Code	18CSL37	CIE Marks	40
Number of Contact Hours/Week	0:2:2	SEE Marks	60
Total Number of Lab Contact Hours	36	Exam Hours	03
Credits – 2			
Course Learning Objectives: This course (18CSL37) will enable students to:			
This laboratory course enable students to get practical experience in design, assembly and			
evaluation/testing of			
• Analog components and circuits including Operational Amplifier, Timer, etc.			
Combinational logic circuits.			
• Flip - Flops and their operations			
 Counters and registers using flip-flops. 			
Synchronous and Asynchronous sequential circuits.			
A/D and D/A converters			
Descriptions (if any):			
 Simulation packages preferred: Multisim, Modelsim, PSpice or any other relevant. 			
• For Part A (Analog Electronic Circuits) students must trace the wave form on Tracing sheet /			
Graph sheet and label trace.			
• Continuous evaluation by the faculty must be carried by including performance of a student in			
both hardware implementation and simulation (if any) for the given circuit.			
• A batch not exceeding 4 must be formed for conducting the experiment. For simulation individual			
student must execute the program.			
Laboratory Programs:			
PART A (Analog Electronic Circuits)			
1. Design an astable multivibrator ciruit for three cases of duty cycle (50%, <50% and >50%)			
using NE 555 timer IC. Simulate the same for any one duty cycle.			
2. Using ua 741 Opamp, design	Using ua 741 Opamp, design a 1 kHz Relaxation Oscillator with 50% duty cycle. And		
simulate the same.	simulate the same.		
3. Using ua 741 opamap, design	Using ua 741 opamap, design a window comparate for any given UTP and LTP. And		
simulate the same.	simulate the same.		
PART B (Digital Electronic Circuits)			
4. Design and implement Half add	ler, Full Adder, H	alf Subtractor, Full Su	ubtractor using basic
gates. And implement the same	in HDL.		
5. Given a 4-variable logic expres	sion, simplify it u	ising appropriate techr	nique and realize the
simplified logic expression using	g 8:1 multiplexer I	C. And implement the	same in HDL.
6. Realize a J-K Master / Slave F	lip-Flop using NA	AND gates and verify	its truth table. And
implement the same in HDL.	implement the same in HDL.		
7. Design and implement code cor	verter I)Binary to	Gray (II) Gray to Bina	ary Code using basic
gates.			
8. Design and implement a mod-n	(n<8) synchronou	us up counter using J-	K Flip-Flop ICs and
demonstrate its working.			
9. Design and implement an asynchronous counter using decade counter IC to count up from 0			
to n (n<=9) and demonstrate on 7-segment display (using IC-7447)			
Laboratory Outcomes: The student should be able to:			
• Use appropriate design equations / methods to design the given circuit.			
• Examine and verify the design of both analog and digital circuits using simulators.			
• Make us of electronic components, ICs, instruments and tools for design and testing of circuits			

https://hemanthrajhemu.github.io

for the given the appropriate inputs.

• Compile a laboratory journal which includes; aim, tool/instruments/software/components used, design equations used and designs, schematics, program listing, procedure followed, relevant theory, results as graphs and tables, interpreting and concluding the findings.

Conduct of Practical Examination:

- Experiment distribution
 - For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
 - For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (*Courseed to change in accoradance with university regulations*)
 - a) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - b) For laboratories having PART A and PART B
 - i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

https://hemanthrajhemu.github.io