FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Programs

Firture Vision

By K B Hemanth Raj

Scan the QR Codle to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, Currently for CSE - Computer Science Engineering...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

ANALOG AND DIGITAL ELECTRONICS LABORATORY (Effective from the academic year 2018 -2019) SEMESTER - III				
Cours		18CSL37	CIE Marks	40
Numb	Contact Hours/Week	0:2:2	SEE Marks	60
Total	ber of Lab Contact Hours	36	Exam Hours	03
Credits - 2				
Course Learning Objectives: This course (18CSL37) will enable students to:				
This laboratory course enable students to get practical experience in design, assembly and evaluation/testing of - Analog components and circuits including Operational Amplifier, Timer, etc. - Combinational logic circuits. - Flip - Flops and their operations - Counters and registers using flip-flops. - Synchronous and Asynchronous sequential circuits. - A/D and D/A converters				
Descriptions (if any):				
- Simulation packages preferred: Multisim, Modelsim, PSpice or any other relevant. - For Part A (Analog Electronic Circuits) students must trace the wave form on Tracing sheet / Graph sheet and label trace. - Continuous evaluation by the faculty must be carried by including performance of a student in both hardware implementation and simulation (if any) for the given circuit. - A batch not exceeding 4 must be formed for conducting the experiment. For simulation individual student must execute the program.				
Laboratory Programs:				
PART A (Analog Electronic Circuits)				
1.	Design an astable multivib using NE 555 timer IC. Sin	t for three same for any	of duty cycle duty cycle.	\% and >50\%)
2.	Using ua 741 Opamp, de simulate the same.	kHz Relax	Oscillator wit	duty cycle. And
3.	Using ua 741 opamap, simulate the same.	ndow co	te for any giv	and LTP. And
PART B (Digital Electronic Circuits)				
4.	Design and implement Hal gates. And implement the s	$\begin{aligned} & \text { Full Adder, } \\ & \text { DL. } \end{aligned}$	Subtractor, Fu	ctor using basic
5.	Given a 4-variable logic e simplified logic expression	simplify it multiplexe	g appropriate And implemen	and realize the in HDL.
6.	Realize a J-K Master / Sla implement the same in HD	Flop using	D gates and ve	truth table. And
7.	Design and implement cod gates.	I)Binary	ay (II) Gray to	Code using basic
8.	Design and implement a m demonstrate its working.) synchron	up counter usin	ip-Flop ICs and
9.	Design and implement an to $n(n<=9)$ and demonstrat	ous counte ment displ	g decade count sing IC-7447)	count up from 0
Laboratory Outcomes: The student should be able to:				
- Use appropriate design equations / methods to design the given circuit. - Examine and verify the design of both analog and digital circuits using simulators. - Make us of electronic components, ICs, instruments and tools for design and testing of circuits				

for the given the appropriate inputs.

- Compile a laboratory journal which includes; aim, tool/instruments/software/components used, design equations used and designs, schematics, program listing, procedure followed, relevant theory, results as graphs and tables, interpreting and concluding the findings.

Conduct of Practical Examination:

- Experiment distribution
- For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
- For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (Courseed to change in accoradance with university regulations)
a) For laboratories having only one part - Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
b) For laboratories having PART A and PART B
i. Part A - Procedure + Execution + Viva $=6+28+6=40$ Marks
ii. Part B - Procedure + Execution + Viva $=9+42+9=60$ Marks

