

One Stop for All Study Materials

& Lab Programs

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, Currently for CSE – Computer Science Engineering...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

DISCRETE MATHEMATICAL STRUCTURES				
(Effective from the academic year 2018 -2019)				
	SEMESTER		10	
Course Code	18CS36	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	03	
CREDITS –3				
Course Learning Objectives: This course (18CS36) will enable students to:				
• Provide theoretical foundations of computer science to perceive other courses in the programme.				
• Illustrate applications of discrete structures: logic, relations, functions, set theory and counting.				
• Describe different mathematical proof techniques,				
• Illustrate the importance of graph theory in computer science				
Module 1				Contact Hours
Fundamentals of Logic: Basic Connect	tives and Trut	h Tables, Logic Equivalence	– The	08
Laws of Logic, Logical Implication – Rules of Inference. Fundamentals of Logic contd.: The				
Use of Ouantifiers, Ouantifiers, Definitions and the Proofs of Theorems.				
Text book 1: Chapter2				
RBT: L1. L2. L3				
Module 2				
Properties of the Integers: The Well Ordering Principle – Mathematical Induction.				08
Fundamental Principles of Counting: The Rules of Sum and Product Permutations				00
Combinations – The Binomial Theorem Combinations with Repetition				
Text book 1: Chanter4 – 41 Chanter1				
$\mathbf{R}\mathbf{R}\mathbf{T} \cdot \mathbf{L}\mathbf{I} = \mathbf{L}\mathbf{I}\mathbf{I}$				
Module 3				
Relations and Functions: Cartesian Proc	ducts and Rela	tions Functions – Plain and (ne-to-	08
One Onto Functions The Pigeon-hole Principle Function Composition and Inverse				00
Functions				
Relations: Properties of Relations, Computer Recognition – Zero-One Matrices and Directed				
Graphs, Partial Orders Hasse Diagrams, Equivalence Relations and Partitions				
Tayt back 1: Chanter 5 Chanter 7 71 to 7 4				
RRT· L1 L2 L3				
Module 4				
The Principle of Inclusion and Evely	sion The Dri	nciple of Inclusion and Exc	lusion	08
Constalizations of the Principle Deren	gements No	thing is in its Dight Disco	Pook	08
Deheranizations of the Finicipie, Defangements – Nothing is in its Kight Flace, Kook				
Popurrance Polations: First Order Linear Decurrance Polation. The Second Order Linear				
Homogeneous Decurrence Deletion with Constant Coefficients				
Torrest heads 1: Chapter 8, 8,1 to 8,4 Chapter 10, 10,1, 10,2				
100K 1. Chapter 0 - 0.1 to 0.4, Cha	pter 10 – 10.1,	10.2		
Module 5				
Introduction to Cranh Theory Definition	one and Evom	nles Sub granhs Complement	ite and	08
Graph Isomorphism				00
Troos: Definitions Properties and Even	mlas Poutad	Troop Troop and Sorting W	aighted	
Trees and Prefix Codes				
Taxt hook 1. Chapter 11 \pm 11 1 to 11 2 Chapter 12 12 1 to 12 <i>I</i>				
RBT: L1, L2, L3	_napter12 – 1.	2.1 IU 12.4		
Course Outcomes: The student will be able to :				
• Use propositional and predicate logic in knowledge representation and truth verification.				

https://hemanthrajhemu.github.io

- Demonstrate the application of discrete structures in different fields of computer science.
- Solve problems using recurrence relations and generating functions.
- Application of different mathematical proofs techniques in proving theorems in the courses.
- Compare graphs, trees and their applications.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Ralph P. Grimaldi: Discrete and Combinatorial Mathematics, 5th Edition, Pearson Education. 2004.

Reference Books:

- 1. Basavaraj S Anami and Venakanna S Madalli: Discrete Mathematics A Concept based approach, Universities Press, 2016
- 2. Kenneth H. Rosen: Discrete Mathematics and its Applications, 6th Edition, McGraw Hill, 2007.
- 3. Jayant Ganguly: A Treatise on Discrete Mathematical Structures, Sanguine-Pearson, 2010.
- 4. D.S. Malik and M.K. Sen: Discrete Mathematical Structures: Theory and Applications, Thomson, 2004.
- 5. Thomas Koshy: Discrete Mathematics with Applications, Elsevier, 2005, Reprint 2008.

https://hemanthrajhemu.github.io