

One Stop for All Study Materials

& Lab Programs

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, Currently for CSE – Computer Science Engineering...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

DATA STRU	CTURES AND APPL	ICATIONS			
(Effective from the academic year 2018 - 2019)					
	SEMESTER – III				
Course Code	<u>18CS32</u>	CIE Marks	40		
Number of Contact Hours/Week	3:2:0	SEE Marks	60		
Total Number of Contact Hours	al Number of Contact Hours 50 Exam Hours 03		03		
CREDITS –4					
Course Learning Objectives: This course (18CS32) will enable students to:					
• Explain fundamentals of data structures and their applications essential for programming/problem					
solving.					
• Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.					
• Demonstrate sorting and searching algorithms.					
• Find suitable data structure during application development/Problem Solving.					
Module 1			Contac	ct	
			Hours		
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure					
Operations Review of Arrays Structures Self-Referential Structures and Unions Pointers					
and Dynamic Memory Allocation Functions Representation of Linear Arrays in Memory					
Dynamically allocated arrays					
Array Operations: Traversing inserting deleting searching and sorting Multidimensional					
Arrays Polynomials and Sparse Matrices					
Strings: Basic Terminology Storing Operations and Pattern Matching algorithms					
Programming Examples					
Textbook 1: Chapter 1: 1.2. Chapter 2:	2.2 - 2.7 Text Textbool	x 2: Chanter 1: 1.1 - 1.4	L		
Chapter 3: $31 - 33 - 35 - 37$ Chapter 4: $41 - 40 - 414$ Reference 3: Chapter 1: 1.4					
RRT·L1 L2 L3					
Module 2					
Stacks: Definition Stack Operations Array Representation of Stacks Stacks using Dynamic					
Arrays Stack Applications: Polish notation Infix to postfix conversion evaluation of postfix					
Arrays, Stack Applications. Forish notation, mills to positix conversion, evaluation of positix					
Expression. Easterial CCD Eibonagoi Seguence Towar of Hangi Ackerman's function					
Arroy Definition Arroy Depresentation Queue Operations Circular Queues Circular					
Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular					
queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple			ipie		
Stacks and Queues. Programming Examples.			10		
Textbook 1: Chapter 5: 5.1 -5.7 Textbook 2: Chapter 0: 0.1 -0.5, 0.5, 0.7-0.10, 0.12, 0.15					
ND1: L1, L2, L3 Modulo 3					
Violule 5	of linked lists in Ma	more Mamore allocat	ion: 10		
Carbon Callection Linked list energies	I OI IIIKEU IISIS III ME	mory, Memory anocat			
Garbage Collection. Linked list operation	is: Traversing, Searchin	Ig, Insertion, and Delet			
Doubly Linked lists, Circular linked lists, and neader linked lists. Linked Stacks and Queues.			ues.		
Applications of Linked lists – Polynomials, Sparse matrix representation. Programming					
Examples					
Textbook 1: Ch apter 4: 4.1 – 4.6, 4.8, 1	extbook 2: Ch apter 5	: 5.1 – 5.10,			
KB1: L1, L2, L3					
Module 4		4	1		
Trees: Terminology, Binary Trees, I	Toperties of Binary	urees, Array and lin			
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;					
Additional Binary tree operations. Thread	ed binary trees, Binary	Search Trees – Definit	ion,		
Insertion, Deletion, Traversal, Searching	, Application of Trees	-Evaluation of Express	ion,		
Programming Examples					

https://hemanthrajhemu.github.io

Textbook 1: Chapter 5: 5.1 – 5.5, 5.7; Textbook 2: Chapter 7: 7.1 – 7.9			
RBT: L1, L2, L3			
Module 5			
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs,	10		
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First			
Search.			
Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort.			
Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.			
Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files,			
Basic File Operations, File Organizations and Indexing			
Textbook 1: Chapter 6 : 6.1 – 6.2, Chapter 7:7.2, Chapter 8 : 8.1-8.3			
Lextbook 2: Chapter 8 : 8.1 – 8.7, Chapter 9 : 9.1-9.3, 9.7, 9.9			
Reference 2: Chapter 10 : 10.1 - 10.7			
KB1: L1, L2, L3 Course Outcomes: The student will be able to :			
Use different types of dete structures, operations and algorithms			
Ose different types of data structures, operations and algorithms			
• Apply searching and sorting operations on files			
• Use stack, Queue, Lists, Trees and Graphs in problem solving			
• Implement all data structures in a high-level language for problem solving.			
Question Paper Pattern:			
• The question paper will have ten questions.			
• Each full Question consisting of 20 marks			
• There will be 2 full questions (with a maximum of four sub questions) from each module.			
• Each full question will have sub questions covering all the topics under a module.			
The students will have to answer 5 full questions, selecting one full question from each	1 module.		
Textbooks:			
1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2 nd Ed, Universities Press			
2014.			
2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1 st Ed, McGraw Hill,	2014.		
Reference Books:			
1. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2 nd Ed, Cengag	<i>ge</i>		
Learning, 2014.			
2. Reema Thareja, Data Structures using C, 3 ⁻⁴ Ed, Oxford press, 2012.	1		
5. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with App	neations,		
4 A M Tananhaum Data Structures using C DHI 1080			
4. A IVI Tenenoaum, Data Structures using C, PHI, 1989 5. Pohert Kruse, Data Structures and Program Design in C 2 nd Ed DUI 1006			
J. KOUELI KLUSE, Data SULUCIULES AND PROGRAM DESIGN IN C, 2 EQ, PHI, 1990.			

https://hemanthrajhemu.github.io