

One Stop for All Study Materials

& Lab Programs

By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, Currently for CSE – Computer Science Engineering...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

	edit System (CBCS) and Out	OGRAMMES come Based Education (O	BE)			
	SEMESTER - III					
	<u>ULUS, FOURIER SERIES A</u>					
Course Code	18MAT31	CIE Marks	40			
Teaching Hours/Week (L: T:P)	(2:2:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
and Z-transforms.	ourier series, Fourier transform by in variational calculus and so- rical methods.		Ĩ			
Module-1						
Laplace Transform: Definition transforms of Periodic functions (Inverse Laplace Transform: D transforms (without Proof) and pr Module-2	statement only) and unit-step f Definition and problems, Conv	unction – problems. volution theorem to find t	the inverse Laplace			
Fourier Series: Periodic function arbitrary period. Half range Fourie		-	ions period 2π and			
Module-3						
Standard z-transforms, Damping	and shifting rules, initial value					
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f	and shifting rules, initial value d applications to solve difference by Differential Equations(OD) first order and first degree- Tay	e and final value theorems ce equations. E's): /lor's series method, Modif	(without proof) and			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problems	and shifting rules, initial value d applications to solve difference y Differential Equations(OD) first order and first degree- Tay order, Milne's and Adam-Ba	e and final value theorems ce equations. E's): /lor's series method, Modif	(without proof) and			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problem Module-5	and shifting rules, initial value d applications to solve difference by Differential Equations(OD first order and first degree- Tay order, Milne's and Adam-Ba s.	e and final value theorems ce equations. E's): vlor's series method, Modif sh forth predictor and com	(without proof) and fied Euler's method rrector method (No			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problems Module-5 Numerical Solution of Second	and shifting rules, initial value d applications to solve difference y Differential Equations(OD) first order and first degree- Tay order, Milne's and Adam-Ba s. Order ODE's: Runge-Kutta	e and final value theorems ce equations. E's): vlor's series method, Modif sh forth predictor and com	(without proof) and fied Euler's method rrector method (No			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problema Module-5 Numerical Solution of Second method. (No derivations of formu	and shifting rules, initial value d applications to solve difference y Differential Equations(OD first order and first degree- Tay order, Milne's and Adam-Ba s. Order ODE's: Runge-Kutta lae).	e and final value theorems ce equations. E's): vlor's series method, Modif sh forth predictor and con method and Milne's pred	(without proof) and fied Euler's method rrector method (No dictor and corrector			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problems Module-5 Numerical Solution of Second method. (No derivations of formu Calculus of Variations: Varia	and shifting rules, initial value d applications to solve difference y Differential Equations(OD first order and first degree- Tay order, Milne's and Adam-Ba s. Order ODE's: Runge-Kutta lae). tion of function and function	e and final value theorems ce equations. E's): vlor's series method, Modif sh forth predictor and con method and Milne's pred	(without proof) and fied Euler's method rrector method (No dictor and corrector			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problems Module-5 Numerical Solution of Second method. (No derivations of formu Calculus of Variations: Varia Geodesics, hanging chain, problem	and shifting rules, initial value d applications to solve difference by Differential Equations(OD first order and first degree- Tay order, Milne's and Adam-Ba s. Order ODE's: Runge-Kutta lae). tion of function and function ms.	e and final value theorems ce equations. E's): vlor's series method, Modif sh forth predictor and con method and Milne's precent	(without proof) and fied Euler's method rrector method (No dictor and correcto			
Standard z-transforms, Damping problems, Inverse z-transform and Module-4 Numerical Solutions of Ordinar Numerical solution of ODE's of f Runge -Kutta method of fourth derivations of formulae)-Problems Module-5 Numerical Solution of Second method. (No derivations of formu Calculus of Variations: Varia Geodesics, hanging chain, problem Course outcomes: At the end of t • CO1: Use Laplace transf arising in network analysi • CO2: Demonstrate Fourie system communications, of	and shifting rules, initial value d applications to solve difference y Differential Equations(OD first order and first degree- Tay order, Milne's and Adam-Ba s. Order ODE's: Runge-Kutta lae). tion of function and function ms. the course the student will be a form and inverse Laplace trans is, control systems and other fide er series to study the behaviour digital signal processing and fide er transform and Z-transform to	e and final value theorems ce equations. E's): vlor's series method, Modif sh forth predictor and con method and Milne's precent nal, variational problems ble to: sform in solving differentiated sof engineering. of periodic functions and eld theory.	(without proof) and fied Euler's method rrector method (No dictor and correcto , Euler's equation al/ integral equation their applications in			

https://hemanthrajhemu.github.io

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textbooks							
1	Advanced Engineering	E. Kreyszig	John Wiley & Sons	10 th Edition,			
	Mathematics			2016			
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition,			
				2017			
3	Engineering Mathematics	Srimanta Pal et al	Oxford University	3 rd Edition, 2016			
			Press				
Reference Books							
1	Advanced Engineering	C. Ray Wylie,	McGraw-Hill Book Co	6 th Edition, 1995			
	Mathematics	Louis C. Barrett					
2	Introductory Methods of	S.S.Sastry	Prentice Hall of India	4 th Edition 2010			
	Numerical Analysis						
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11 th Edition,2010			
4	A Textbook of Engineering	N.P.Bali and	Laxmi Publications	6 th Edition, 2014			
	Mathematics	Manish Goyal					
5	Advanced Engineering	Chandrika Prasad	Khanna Publishing,	2018			
	Mathematics	and Reena Garg					
Web links and Video Lectures:							
1. http://nptel.ac.in/courses.php?disciplineID=111							
2. http://www.class-central.com/subject/math(MOOCs)							
3. http://academicearth.org/							
4. VT	4. VTU EDUSAT PROGRAMME - 20						

https://hemanthrajhemu.github.io