FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

CBES Scheme

USN \square 15MAT41

Fourth Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Engineering Mathematics - IV

Time: 3 hrs.
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing one full question from each module.

2. Use of staisisical tables is permitted.

Module-1

1 a. Employ Taylor's series method to find y at $x=0.1$. Correct to four decimal places given $\frac{d y}{d x}=2 y+3 e^{x} ; y(0)=0$. (05 Marks)
b. Using Runge Kutta method of order 4, find $y(0.2)$ for $\frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1$, taking $h=0.2$. (05 Marks)
c. If $y^{\prime}=2 e^{x}-y ; y(0)=2, y(0.1)=2.010, y(0.2) \equiv 2.040$ and $y(0.3)=2.090$. Find $y(0.4)$ using Milne's predictor corrector formula. Apply corrector formula twice.
(06 Marks)
OR
2 a. Use Taylor's series method to find $y(4.1)$ given that $\left(x^{2}+y\right) y^{\prime}=1$ and $y(4)=4 . \quad$ (05 Marks)
b. Using modified Euler's method find y at $(x)=0.1$, given $y^{\prime}=3 x+\frac{y}{2}$ with $y(0)=1, h=0.1$. Perform two iterations.
(05 Marks)
c. Find y at $\mathrm{x}=0.4$ given $\mathrm{y}^{\prime}+\mathrm{y}+\mathrm{xy} \mathrm{y}^{2}=0$ and $\mathrm{y}_{0}=1$. $\mathrm{y}_{1}=0.9008, \mathrm{y}_{2}=0.8066, \mathrm{y}_{3}=0.722$ taking $\mathrm{h}=0.1$ using Adams-Bashforth method. Apply corrector formula twice. (06 Marks)

Module-2

3 a. Given $y^{\prime \prime}=x y^{\prime 2}-y^{2}$ find y at $x=0.2$ correct to four decimal places, given $\mathrm{y}=1$ and $\mathrm{y}^{\prime}=0$ when $\mathrm{x}=0$, using $\mathrm{R}-\mathrm{K}$ method.
(05 Marks)
b. If α and β are two distinct roots of $J_{n}(x)=0$, then prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$ if $\alpha \neq \beta$.
(05 Marks)
c. If $x^{3}+2 x^{2}-x+1=a p_{0}(x)+b p_{1}(x)+c p_{2}(x)+d p_{3}(x)$ then, find the values of a, b, c, d.
(06 Marks)
OR
4 a. Apply Milne's method to compute $\mathrm{y}(0.8)$ given that $\mathrm{y}^{\prime \prime}=1-2 \mathrm{yy}^{\prime}$ and the table.

x	0	0.2	0.4	0.6
y	0	0.02	0.0795	0.1762
y^{\prime}	0	0.1996	0.3937	0.5689

Apply corrector formula twice.
(05 Marks)
b. Show that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
(05 Marks)
c. Derive Rodrigue's formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]$.
(06 Marks)

Module-3

5 a. Define analytic function and obtain Cauchy Riemann equation in Cartesian form. (05 Marks)
b. Evaluate $\int_{\mathrm{C}} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z ; c$ is the circle $|z|=3$ by using theorem Cauchy's residue.
(05 Marks)
c. Discuss the transformation $\mathrm{w}=\mathrm{e}^{\mathrm{z}}$ with respect to straight line parallel to x and y axis.
(06 Marks)
or
6 a. Find the analytic function whose real part is $u=\frac{x^{4} y^{4}-2 x}{x^{2}+y^{2}}$.
(05 Marks)
b. State and prove Cauchy's integral formula.
(05 Marks)
c. Find the bilinear transformation which maps the points $\mathrm{z}=1, \mathrm{i},-\mathrm{t}$ into $\mathrm{w}=2, \mathrm{i},-2$.
(06 Marks)

Module-4

7 a. Find the constant c , such that the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\mathrm{cx}^{2}, & 0<\hat{x}<\hat{3} \\ 0, & \text { etherwise }\end{array}\right\}$ is a p.d.f. Also compute $p(1<x<2), p(x \leq 1), p(x>1)$.
(05 Marks)
b. If the probability of a bad reaction from a certain injection is 0.001 , determine the chance that out of 2000 individuals, more than two will get a bad reaction.
(05 Marks)
c. x and y are independent random variables, x take the values 1,2 with probability $0.7 ; 0.3$ and y take the values $-2,5,8$ with probabilities $0.3,0.5,0.2$. Find the joint distribution of x and y hence $\operatorname{find} \operatorname{cov}(\mathrm{x}, \mathrm{y})$.
(06 Marks)

8 a. Obtain mean and variance of binomiai distribution.
(05 Marks)
b. The length of telephone conservation in a booth has been an exponential distribution and found on an average to be 5 minutes. Find the probability that a random call made from this booth (i) ends less than 5 minutes, (ii) between 5 and 10 minutes.
(05 Marks)
c. The joint distribution of two discrete variables x and y is $f(x, y)=k(2 x+y)$ where x and y are integers such that $0 \leq x \leq 2 ; 0 \leq y \leq 3$. Find: (i) The value of k; (ii) Marginal distributions of x and y ; (iii) Are x and y independent?
(06 Marks)

Module-5

a. Explain the terms: (i) Null hypothesis; (ii) Type I and type II errors; (iii) Significance level.
(05 Marks)
b. A die thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Is it reasonable to think that the die is an unbiased one?
(05 Marks)
c. Find the unique fixed probability vector for the regular Stochastic matrix:

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

(06 Marks)

OR
10 a. A certain stimulus administered to each of the 12 patients resulted in the following change in blood pressure $5,2,8,-1,3,0,6,-2,1,5,0,4$. Can it be concluded that the stimulus will increase the blood pressure. ($\mathrm{t}_{0.05}$ for 11 d. $\mathrm{f}=2.201$)
(05 Marks)
b. It has been found that the mean breaking strength of a particular brand of thread is 275.6 gms with $\sigma=39.7 \mathrm{gms}$. A sample of 36 pieces of thread showed a mean breaking strength of 253.2 gms. Test the claim at $1+$.. and $5-l$. level of significance.
(05 Marks)
c. A man's smoking habits are as follows. If he smokes filter cigarettes one week, he switches to non filter cigarettes the next week with probability 0.2 . One the other hand, if he smokes non filter cigarettes one week there is a probability of 0.7 that he will smoke non filter cigarettes the next week as well. In the long run how often does he smoke filter cigarettes?
(06 Marks)

