

One Stop for All Study Materials

& Lab Programs

Fifure Vision By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, CSE – Computer Science Engineering, ISE – Information Science Engineering, ECE - Electronics and Communication Engineering & MORE...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: <u>www.instagram.com/hemanthraj_hemu/</u>

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

17MAT41

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Mathematics - IV

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. From Taylor's series method, find y(0.1), considering up to fourth degree term if y(x) satisfying the equation $\frac{dy}{dx} = x y^2$, y(0) = 1. (06 Marks)
 - b. Using Runge-Kutta method of fourth order $\frac{dy}{dx} + y = 2x$ at x = 1.1 given that y = 3 at x = 1 initially. (07 Marks)
 - c. If $\frac{dy}{dx} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040 and y(0.3) = 2.090, find y(0.4) correct up to four decimal places by using Milne's predictor-corrector formula. (07 Marks)

OR

- 2 a. Using modified Euler's method find y at x = 0.2 given $\frac{dy}{dx} = 3x + \frac{1}{2}y$ with y(0) = 1 taking h = 0.1. (06 Marks)
 - b. Given $\frac{dy}{dx} + y + zy^2 = 0$ and y(0) = 1, y(0.1) = 0.9008, y(0.2) = 0.8066, y(0.3) = 0.722. Evaluate y(0.4) by Adams-Bashforth method. (07 Marks)
 - c. Using Runge-Kutta method of fourth order, find y(0.2) for the equation $\frac{dy}{dx} = \frac{y x}{y + x}$, y(0) = 1 taking h = 0.2. (07 Marks)

Module-2

3 a. Apply Milne's method to compute y(0.8) given that $\frac{d^2y}{dx^2} = 1 - 2y\frac{dy}{dx}$ and the following table of initial values.

x	0	0.2	0.4	0.6
у	0	0.02	0.0795	0.1762
y'	0	0.1996	0.3937	0.5689

Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials. Obtain the series solution of Bessel's differential equation $x^2y'' + xy' + (x^2 + n^2) y = 0$ leading to $J_n(x)$. (06 Marks) (07 Marks) (07 Marks)

1 of 3

https://hemanthrajhemu.github.io

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

17MAT41

(06 Marks)

OR 4 a. Given y'' - xy' - y = 0 with the initial conditions y(0) = 1, y'(0) = 0, compute y(0.2) and

y'(0.2) using fourth order Runge-Kutta method.

	b.	Prove $J_{-1/2}(k) = \sqrt{\frac{2}{\pi x}} \cos x$.	07 Marks)
	c.	Prove the Rodfigues formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n y}{dx^n} (x^2 - 1)^n$	07 Marks)
		Module-3	
5	a. b.	Derive Cauchy-Riemann equations in Cartesian form.	06 Marks) 07 Marks)
	c.	By using Cauchy's residue theorem, evaluate $\int_{C} \frac{e^{2z}}{(z+1)(z+2)} dz$ if C is the circle $ z $	= 3.
			07 Marks)
		OR	
6	a.	Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	06 Marks)
	b.	State and prove Cauchy's integral formula.	07 Marks)
	c.		07 Marks)
		Module-4	
7	a.		06 Marks)
	b.	In an examination 7% of students score less than 35 marks and 89% of the stude	
		less than 60 marks. Find the mean and standard deviation if the marks are	
			07 Marks)
	C.	The joint probability distribution table for two random variables X and Y is as follo	WS:
		Y -2 -1 4 5	
		2 0.2 0.1 0.1 0	
		Determine:	
		i) Marginal distribution of X and Y	
		ii) Covariance of X and Y	07 Marka)
		iii) Correlation of X and Y	07 Marks)
		OR	
8	a.	A random variable X has the following probability function:	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			06 Marks)
	b.	The probability that a pen manufactured by a factory be defective is $1/10$. If 12 such	
		manufactured, what is the probability that	1
		i) Exactly 2 are defective	
		ii) Atleast two are defective	
			07 Marks)
	C .	The length of telephone conversation in a booth has been exponential distribution a on an average to be 5 minutes. Find the probability that a random call made	ina iouna
		i) Ends in less than 5 minutes	
			07 Marks)
		2 of 3	
h	11	tps://hemanthrajhemu.github.i	i 0
			وحاديك

17MAT41

Module-5

- 9 a. A die is thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Show that the dia cannot be regarded as an unbiased die. (06 Marks)
 - b. A group of 10 boys fed on diet A and another group of 8 boys fed on a different disk B for a period of 6 months recorded the following increase in weight (lbs):

Diet A:	5	6	8	1	12	4	3	9	6	10
Diet B:	2	3	6	8	10	1	2	8		

Test whether diets A and B differ significantly t.05 = 2.12 at 16df. (07 Marks) c. Find the unique fixed probability vector for the regular stochastic matrix

 $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$

(07 Marks)

(06 Marks)

(07 Marks)

OR

- 10 a. Define the terms:
 - i) Null hypothesis
 - ii) Type-I and Type-II error
 - iii) Confidence limits

The t.p.m. of a Markov chain is given by $P = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$. Find the fine

1 0 0. H

 $1/2^{-1}$

. Find the fined probabilities

vector.

b.

c. Two boys B_1 and B_2 and two girls G_1 and G_2 are throwing ball from one to another. Each boy throws the ball to the other boy with probability 1/2 and to each girl with probability 1/4. On the other hand each girl throws the ball to each boy with probability 1/2 and never to the other girl. In the long run how often does each receive the ball? (07 Marks)

1/2

B.L.D.E. ASSOCIATION'S VACHANA PITAMAHA DR. P. G. HALAKATTI COLLEGE OF ENGINEERING LIBRARY, BIJAPUR.

3 of 3

https://hemanthrajhemu.github.io