FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. From Taylor's series method, find $y(0.1)$, considering upto fourth degree term if $y(x)$ satisfying the equation $\frac{d y}{d x}=x-y^{2}, y(0)=1$.
(06 Marks)
b. Using Runge-Kutta method of fourth order $\frac{d y}{d x}+y=2 x$ at $x=1.1$ given that $y=3$ at $x=1$ initially.
(07 Marks)
c. If $\frac{d y}{d x}=2 e^{x}-y, y(0)=2, y(0.1)=2.010, y(0.2)=2.040$ and $y(0.3)=2.090$, find $y(0.4)$ correct upto four decimal places by using Milne's predictor-corrector formula.
(07 Marks)

OR

2 a. Using modified Euler's method find y at $x=0.2$ given $\frac{d y}{d x}=3 x+\frac{1}{2} y$ with $y(0)=1$ taking $\mathrm{h}=0.1$.
(06 Marks)
b. Given $\frac{d y}{d x}+y+z y^{2}=0$ and $y(0)=1, y(0.1)=0.9008, y(0.2)=0.8066, y(0.3)=0.722$. Evaluate $\mathrm{y}(0.4)$ by Adams-Bashforth method.
(07 Marks)
c. Using Runge-Kutta method of fourth order, find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}$, $y(0)=1$ taking $\mathrm{h}=0.2$,
(07 Marks)

Module- 2

3 a. Apply Milne's method to compute $y(0.8)$ given that $\frac{d^{2} y}{d x^{2}}=1-2 y \frac{d y}{d x}$ and the following table of initial values.

x	0	0.2	0.4	0.6
y	0	0.02	0.0795	0.1762
y^{\prime}	0	0.1996	0.3937	0.5689

(06 Marks)
Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
(07 Marks)
c. Obtain the series solution of Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}+n^{2}\right) y=0$ leading to $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
(07 Marks)

OR

4 a. Given $y^{\prime \prime}-x y^{\prime}-\mathrm{y}=0$ with the initial conditions $\mathrm{y}(0)=1$, $\mathrm{y}^{\prime}(0)=0$, compute $\mathrm{y}(0.2)$ and $y^{\prime}(0.2)$ using fourth order Runge-Kutta method.
(06 Marks)
b. Prove $J_{-1 / 2}(k)=\sqrt{\frac{2}{\pi \mathrm{x}}} \cos \mathrm{x}$.
(07 Marks)
c. Prove the Rodfigues formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n} y}{d x^{n}}\left(x^{2}-1\right)^{n}$
(07 Marks)

Module-3

5 a. Derive Cauchy-Riemann equations in Cartesian form.
(06 Marks)
b. Discuss the transformation $w=z^{2}$.
(07 Marks)
c. By using Cauchy's residue theorem, evaluate $\int_{C} \frac{e^{2 z}}{(z+1)(z+2)} d z$ if C is the circle $|z|=3$.
(07 Marks)
OR
a. Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
(06 Marks)
b. State and prove Cauchy's integral formula.
(07 Marks)
c. Find the bilinear transformation which maps $z=\infty, i, 0$ into $w=-1,-1,1$.
(07 Marks)

Module-4

7 a. Find the mean and standard of Poisson distribution.
(06 Marks)
b. In an examination 7% of students score less than 35 marks and 89% of the students score less than 60 marks. Find the mean and standard deviation if the marks are normally distributed given $\mathrm{A}(1.2263)=0.39$ and $\mathrm{A}(1.4757)=0.43$
(07 Marks)
c. The joint probability distribution table for two random variables X and Y is as follows:

X	-2	-1	4	5
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

Determine:
i) Marginal distribution of X and Y
ii) Covariance of X and Y
iii) Correlation of X and Y
(07 Marks)

OR

8 a. A random variable X has the following probability function:

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 k	2 k	3 k	K^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

Find K and evaluate $P(x \geq 6), P(3<x \leq 6)$.
(06 Marks)
b. The probability that a pen manufactured by a factory be defective is $1 / 10$. If 12 such pens are manufactured, what is the probability that
i) Exactly 2 are defective
ii) Atleast two are defective
iii) None of them are defective.
(07 Marks)
c. The length of telephone conversation in a booth has been exponential distribution and found on an average to be 5 minutes. Find the probability that a random call made
i) Ends in less than 5 minutes
ii) Between 5 and 10 minutes.
(07 Marks)

Module-5

9 a. A die is thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Show that the dia cannot be regarded as an unbiased die.
(06 Marks)
b. A group of 10 boys fed on diet A and another group of 8 boys fed on a different disk B for a period of 6 months recorded the following increase in weight (lbs):

Diet A:	5	6	8	1	12	4	3	9	6	10
Diet B:	2	3	6	8	10	1	2	8		

Test whether diets A and B differ significantly $\mathrm{t} .05=2.12$ at 16 df .
(07 Marks)
c. Find the unique fixed probability vector for the regular stochastic matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 / 6 & 1 / 2 & 1 / 3 \\ 0 & 2 / 3 & 1 / 3\end{array}\right]$
(07 Marks)

10 a. Define the terms:
i) Null hypothesis
ii) Type-I and Type-II error
iii) Confidence limits
(06 Marks)
b. The t.p.m. of a Markov chain is given by $\mathrm{P}=\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 1 & 0 & 0 \\ 1 / 4 & 1 / 2 & 1 / 4\end{array}\right]$. Find the fined probabilities vector.
(07 Marks)
c. Two boys B_{1} and B_{2} and two girls G_{1} and G_{2} are throwing ball from one to another. Each boy throws the ball to the other boy with probability $1 / 2$ and to each girl with probability $1 / 4$. On the other hand each girl throws the ball to each boy with probability $1 / 2$ and never to the other girl. In the long run how often does each receive the ball?
(07 Marks)

