FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

GBCS Scheme

USN

15MAT41

Fourth Semester B.E. Degree Examination, June/July 2017 Engineering Mathematics-IV

Time: 3 hrs .

Note: 1. Answer FIVE full questions, choosing one full question from each module. 2. Use of statistical tables are permitted.

Module- 1

1 a. Find by Taylor's series method the value of y at $x=0.1$ from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$ (upto $4^{\text {th }}$ degree term).
(05 Marks)
b. The following table gives the solution of $5 x y^{\prime}+y^{2}-2=0$. Find the value of y at $x=4.5$ using Milne's predictor and corrector formulae.
(05 Marks)

x	4	4.1	4.2	4.3	4.4
y	1	1.0049	1.0097	1.0143	1.0187

c. Using Euler's modified method. Obtain a solution of the equation $\frac{d y}{d x}=x+|\sqrt{y}|$, with initial conditions $y=1$ at $x=0$, for the range $0 \leq x \leq 0.4$ in steps of 0.2 .
(06 Marks)

OR

2 a. Using modified Euler's method find $y(20.2)$ and $y(20.4)$ given that $\frac{d y}{d x}=\log _{10}\left(\frac{x}{y}\right)$ with $y(20)=5$ taking $\mathrm{h}=0.2$.
(05 Marks)
b. Given $\frac{d y}{d x}=x^{2}(1+y)$ and $y(1)=1, y(1.1)=1.233, y(1.2)=1.548, y(1.3)=1.979$. Evaluate $y(1.4)$ by Adams-Bashforth method.
(05 Marks)
c. Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2$ by taking $\mathrm{h}=0.2$
(06 Marks)

Module-2

3 a. Obtain the solution of the equation $2 \frac{d^{2} y}{d x^{2}}=u x+\frac{d y}{d x}$ by computing the value of the dependent variable corresponding to the value 1.4 of the independent variable by applying Milne's method using the following data:
(05 Marks)

x	1	1.1	1.2	1.3
y	2	2.2156	2.4649	2.7514
y^{\prime}	2	2.3178	2.6725	3.0657

b. Express $f(x)=3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
(05 Marks)
c. Obtain the series solution of Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}+n^{2}\right) y=0$
(06 Marks)

1 of 3

OR

4 a. By Runge-Kutta method solve $\frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y^{2}$ for $x=0.2$. Correct to four decimal places using the initial conditions $\mathrm{y}=1$ and $\mathrm{y}^{\prime}=0$ at $\mathrm{x}=0, \mathrm{~h}=0.2$.
(05 Marks)
b. Prove that $J_{+\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
c. Prove the Rodrigues formula,
$\rho_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}}$
(06 Marks)

Module-3

5 a. State and prove Cauchy's-Riemann equation in polar form.
(05 Marks)
b. Discuss the transformation $W=e^{z}$.
(05 Marks)
c. Evaluate $\int_{c}\left\{\frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)^{2}(z-2)}\right\} d z$
using Cauchy's residue theorem where ' C ' is the circle $|z|=3$
(06 Marks)

OR
6 a. Find the analytic function whose real part is, $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
(05 Marks)
b. State and prove Cauchy's integral formula.
(05 Marks)
c. Find the bilinear transformation which maps $z=\infty, i, 0$ into $\omega=-1,-i, 1$. Also find the fixed points of the transformation.
(06 Marks)

Module-4

7 a. Find the mean and standard deviation of Poisson distribution.
(05 Marks)
b. In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hours and S.D of 60 hours. Estimate the number of bulbs likely to burn for,
(i) more than 2150 hours.
(ii) less than 1950 hours
(iii) more than 1920 hours and less than 2160 hours.
$[\mathrm{A}(1.833)=0.4664, \mathrm{~A}(1.5)=0.4332, \mathrm{~A}(2)=0.4772]$
(05 Marks)
c. The joint probability distribution of two random variables x and y is as follows:

x / y	-4	2	7
1	$1 / 8$	$1 / 4$	$1 / 8$
5	$1 / 4$	$1 / 8$	$1 / 8$

Determine:
(i) Marginal distribution of x and y.
(ii) Covariance of x and y
(iii) Correlaiton of x and y.
(06 Marks)

OR
8 a. The probability that a pen manufactured by a factory be defective is $\frac{1}{10}$. If 12 such pens are manufactured what is the probability that, (i) Exactly 2 are defective (ii) at least 2 are defective (iii) none of them are defective.
(05 Marks)
b. Derive the expressions for mean and variance of binomial distribution. (05 Marks)
c. A random variable X take the values $-3,-2,-1,0,1,2,3$ such that $P(x=0)=P(x<0)$ and $P(x=-3)=P(x=-2)=P(x=-1)=P(x=1)=P(x=2)=P(x=3)$. Find the probability distribution.
(06 Marks)

Module-5

9 a. In 324 throws of a six faced 'die' an odd number turned up 181 times. Is it reasonable to think that the 'die' is an unbiased one?
(05 Marks)
b. Two horses A and B were tested according to the time (in seconds) to run a particular race with the following results:

Horse A:	28	30	32	33	33	29	34
Horse B:	29	30	30	24	27	29	

Test whether you can discriminate between the two horses. $\mathrm{t}_{0.05}=2.2$ and $\mathrm{t}_{0.02}=2.72$ for $\left.11 \mathrm{~d} . \mathrm{f}\right)$ (05 Marks)
c. Find the unique fixed probability vector for the regular stochastic matrix, $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 / 6 & 1 / 2 & 1 / 3 \\ 0 & 2 / 3 & 1 / 3\end{array}\right]$
(06 Marks)
a. Define the terms: (i) NuR limits.
(iii) Confidence
b. Prove that the Markov chain whose t.p.m $P=\left[\begin{array}{ccc}0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$ is irreducible. Find the corresponding stationary probability vector.
(05 Marks)
c. Three boys A, B, C are throwing ball to each other. A always throws the ball to B and B always throws the ball to C. C is just as likely to throw the ball to B as to A . If C was the first person to throw the ball find the probabilities that after three throws (i) A has the ball. (ii) B has the ball. (iii) C has the ball.
(06 Marks)

