FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

USN

15MAT41
Fourth Semester B.E. Degree Examination, June/July 2018

Engineering Mathomatics - IV

Time: 3 hrs .
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Use of statistical tables is permitted.

Module-1

1 a. Use Taylor's series method to find y at $\mathrm{x}=1.1$, considering terms upto third degree given that $\frac{d y}{d x}=x+y$ and $y(1)=0$. (05 Marks)
b. Using Runge-Kutta method, find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1$, taking $h=0.2$. (05 Marks)
c. Given $\frac{d y}{d x}=x^{2}-y, y(0)=1$ and the values $y(0.1)=0.90516, y(0.2)=0.82127$, $y(0.3)=0.74918$, evaluate $y(0.4)$, using Adams-Bashforth method. (06 Marks)

OR

2 a. Using Euler's modified method, find $y(0,1)$ given $\frac{d y}{d x}=x-y^{2}, y(0)=1$, taking $h=0.1$.
(05 Marks)
b. Solve $\frac{d y}{d x}=x y ; y(1)=2$, find the approximate solution at $x=12$, asing Runge-Kutta method.
(05 Marks)
c. Solve $\frac{d y}{d x}=x-y^{2}$ with the following data $y(0)=0, \quad y(0.2)=0.02, \quad y(0.4)=0.0795$, $y(0.6)=0.1762$, compute y at $x=0.8$, using Milne's method.
(06 Marks)

Module- 2

3 a. Using Runge-Kutta method of order four, solve $y^{\prime \prime}=y+x y^{\prime}, y(0)=1, y^{\prime}(0)=0$ to find $y(0.2)$.
(05 Marks)
b. Express the polynomial $2 x^{3}-x^{2}-3 x+2$ in terms of Legendre polynomials.
(05 Marks)
c. If α and β are two distinct roots of $J_{n}(x)=0$ then prove that $\int_{n}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$, if $\alpha \neq \beta$.
(06 Marks)

OR

4 a. Given $y^{\prime \prime}=1+y^{\prime} ; y(0)=1, y^{\prime}(0)=1$, compute $y(0.4)$ for the following data, using Milne's predictor-corrector method.
$y(0.1)=1.1103 \quad y(0.2)=1.2427 \quad y(0.3)=1.399$
$y^{\prime}(0.1)=1.2103 \quad y^{\prime}(0.2)=1.4427 \quad y^{\prime}(0.3)=1.699$.
(05 Marks)
b. Prove that $\int_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
(05 Marks)
c. Derive Rodrigue's formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]$.
(06 Marks)

Module-3

5
a. Derive Cauchy-Riemann equations in polar form.
(05 Marks)
b. Evaluate $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where C is the cirele $|z|=3$, using Cauchy's residue theorem.
(05 Marks)
c. Find the bilinear transformation which maps $z=\infty, i, 0$ on to $w=0, i, \infty$.

OR

a. State and prove Cauchy's integral formula.
(05 Marks)
b. If $u=\frac{\sin 2 x}{\cosh 2 y+\cos 2 x}$, find the corresponding analytic function $f(z)=u+i v$.
(05 Marks)
c. Discuss the transformation $w=z^{2}$.
(06 Marks)

Module-4

7 a. Derive mean and standard deviation of the binomial distribution.
(05 Marks)
b. If the probability that an individual will suffer a bad reaction from an injection of a given serum is 0.00 !, determine the probability that out of 2000 individual (i) exactly 3 (ii) more than 2 individuals will suffer a bad reaction.
(05 Marks)
c. The joint probability distribution for two random variables X and Y is as follows:

	Y	-3	-2
X		4	
1	0.1	0.2	0.2
3	0.3	0.1	0.1

Determine: i) Marginal distribution of X and $Y \quad$ ii) Covariance of X and Y
iii) Correlation of X and Y
(06 Marks)

OR

8 a. Derive mean and standard deviation of exponential distribution.
(05 Marks)
b. In an examination 7% of students score less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation if the marks are normally distributed. Given $\mathrm{P}(0<\mathrm{z}<1.2263)=0.39$ and $\mathrm{P}(0<\mathrm{z}<1.14757)=0.43$.
(05 Marks)
c. The joint probability distribution of two random variables X and Y is as follows:

Y	X	-4	2	7
1	$1 / 8$	$1 / 4$	$1 / 8$	
5		$1 / 4$	$1 / 8$	$1 / 8$

Compute: i) $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y}) \quad$ ii) $\mathrm{E}(\mathrm{XY}) \quad$ iii) $\operatorname{COV}(\mathrm{X}, \mathrm{Y}) \quad$ iv) $\rho(\mathrm{X}, \mathrm{Y}) \quad$ (06 Marks)

Medule-5

9 a. Explain the terms: i) Null hypothesis
ii) Type I and Type II errors.
(05 Marks)
b. The nine items of a sample have the values $45,47,50,52,48,47,49,53,51$. Does the mean of these differ significantly from the assumed mean of 47.5 ?
(05 Marks)
c. Given the matrix $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)$ then show that A is a regular stochastic matrix. (06 Marks)

OR

10 a. A die was thrown 9000 times and of these 3220 yielded a 3 or 4 , can the die be regarded as unbiased?
(05 Marks)
b.

Explain: i) Transient state
ii) Absorbing state
iii) Recurrent state
(05 Marks)
c. A student's study habits are as follows. If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night. In the long run, how often does he study?
(06 Marks)

