FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

Fourth Semester B.E. Degree Examination, June/July 2019 Engineering Mathematics - IV

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. If $y^{\prime}+y+2 x=0, y(0)=-1$ then find $y(0.1)$ by using Taylor's series method. Consider upto third order derivative term.
(06 Marks)
b. Find $y(0,2)$ by using modified Euler's method, given that $y^{\prime}=x+y, y(0)=1$. Take $\mathrm{h}=0.1$ and carry out two modifications at each step.
(07 Marks)
c. If $y^{\prime}=\frac{1}{x+y}, y(0)=2, y(0.2)=2.0933, y(0.4)=2.1755, y(0.6)=2.2493$ then find $y(0.8)$ by Milne's method.
(07 Marks)
OR
2 a. Use Taylor's series method to find $y(0.1)$ from $y^{\prime}=3 x+y^{2}, y(0)=1$. Consider upto fourth derivative term.
(06 Marks)
b. Use Runge - Kutta method to find $y(0.1)$ from $y^{\prime}=x^{2}+y, y(0)=-1$.
(07 Marks)
c. Use Adam - Bashforth method to find $y(0,4)$ from $y^{\prime}=\frac{1}{2} x y, y(0)=1, y(0.1)=1.0025$. $y(0.2)=1.0101, y(0.3)=1.0228$.
(07 Marks)

Module-2

3 a. Express $x^{3}-5 x^{2}+6 x+1$ in terms of Legendre polynomials.
(06 Marks)
b. Find $\mathrm{y}(0.1)$, by using Runge - Kutta method, given that $\mathrm{y}^{\prime \prime}+\mathrm{xy} \mathrm{y}^{\prime}+\mathrm{y}=0, \mathrm{y}(0)=1$. $y^{\prime}(0)=0$.
(07 Marks)
c. Solve Bessel's operation leading to $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.

4 a. Prove that $J \cdot(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
(06 Marks)
b. Find $y(0.4)$ by using Milne's method, given that $y(0)=1, \quad y^{\prime}(0)=1 \quad, y(0.1)=1.0998$. $y^{\prime}(0.1)=0.9946, y(0.2)=1.1987, y^{\prime}(0.2)=0.9773, y(0.3)=1.2955, y^{\prime}(0.3)=0.946$.
c. State and prove Rodrigue's formula.
(07 Marks)
(07 Marks)

Module-3

5 a. Derive Cauchy - Riemann equations in Cartesian coordinates.
(06 Marks)
b. Find an analytic function $f(z)=u+i v$ in terms of z, given that $u=e^{2 x}(x \cos 2 y-y \sin 2 y)$.
(07 Marks)
c. Evaluate $\int \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z, c$ is $|z|=3$ by residue theorem.
(07 Marks)

OR

17MAT41

6
a. Prove that $\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}\right)|\mathrm{f}(\mathrm{z})|^{2}=4\left|\mathrm{f}^{\prime}(\mathrm{z})\right|^{2}$.
(06 Marks)
b. Discuss the transformation $W=Z^{2}$.
(07 Marks)
c. Find a bilinear transformation that maps the points x, i, o in Z-plane into $-1,-i, 1$ in W - plane respectively.
(07 Marks)

Module-4

7 a. In a sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2 , out of 1000 such samples, how many would be expected to contain atleast 3 defective parts?
(06 Marks)
b. If X is a normal variate with mean 30 and standard deviation 5 , find the probabilities that
i) $26 \leq X \leq 40$
ii) $X>45$
iii) $|X-30|>5$.

Given that $\phi(0.8)=0.288, \quad \phi(2.0)=0.4772, \phi(3)=0.4987, \phi(1)=0.3413$
(07 Marks)
c. The joint density function of two continuous random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cl}
K x y, & 0 \leq x \leq 4, \quad 1<y<5 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find i) K ii) $E(x)$ iii) $E(2 x+3 y)$.
(07 Marks)
OR
8 a. Derive mean and standard deviation of the Poisson distribution.
(06 Marks)
b. The joint probability distribution for two random variables X and Y as follows :

X	X	-2	-1	4	5
\mathbf{N}	0.1	0.2	0	0.3	
2	0.2	0.1	0.3	0	

Find i) Expectations of $X, Y, X Y \quad$ ii) SD of X and Y
iv) Correlation of X and Y
iii) Covariance of X . Y
(07 Marks)
c. In a certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more
ii) Less than 10 minutes
iii) Between 10 and 12 minutes.
(07 Marks)

Module-5

9 a. A group of boys and girls were given in Intelligence test. The mean score, SD score and numbers in each group are as follows
(06 Marks)

	Boys	Girls
Mean	74	70
SD	8	10
X	12	10

Is the difference between the means of the two groups significant at 5% level of significance? Given that $\mathrm{t}_{0.05}=2.086$ for $20 \mathrm{~d} . \mathrm{f}$.
b. The following table gives the number of accidents that take place in an industry during yarious days of the week. Test if accidents are uniformly distributed over the week.

Day	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	14	18	12	11	15	14

Given that $X^{2}=11.09$ at 5% level for 5 d.f.
(07 Marks)
c. Find the unique fixed probability vector for the regular stochastic matrix.

$$
\Lambda=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

(07 Marks)

OR

10 a. Define the following terms
i) Type I error and type II error.
ii) Transient state.
iii) Absorbing state.
(06 Marks)
b. A certain stimulus administered to each of the 12 patients resulted in the following increases of blood pressure : 5, 2, 8, -1, 3, 0, -2, 1, 5, 0, 4, 6. Can it be concluded that the stimulus will be general be accompanied by an increase in blood pressure. Given that $t_{0.05}=2.2$ for 11 d.f.
(07 Marks)
c. If $\mathrm{P}=\left[\begin{array}{ccc}0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$. Find the corresponding stationary probability vector. (07 Marks)

