

One Stop for All Study Materials

& Lab Programs

Fifure Vision By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, CSE – Computer Science Engineering, ISE – Information Science Engineering, ECE - Electronics and Communication Engineering & MORE...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: <u>www.instagram.com/hemanthraj_hemu/</u>

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

		OF ALGORITHMS ic year 2018 -2019)			
	SEMESTER				
Course Code	18CS42	CIE Marks	40		
Number of Contact Hours/Week	3:2:0	SEE Marks	60		
Total Number of Contact Hours	50	Exam Hours	03		
	CREDITS				
Course Learning Objectives: This con					
• Explain various computational					
• Apply appropriate method to so		em.			
• Describe various methods of al	gorithm analysis.				
Module 1				Contact	
Introduction: What is an Algorithm?				Hours 10	
Framework (T1:2.1), Performance An Asymptotic Notations: Big-Oh notati- Little-oh notation (<i>o</i>), Mathematical a with Examples (T1:2.2, 2.3, 2.4). Im processing, Graph Problems, Combin Stacks, Queues, Graphs, Trees, Sets and RBT: L1, L2, L3	on (<i>O</i>), Omega no analysis of Non-R portant Problem natorial Problems	otation (Ω), Theta notation (ecursive and recursive Algentiate Types: Sorting, Searching, Fundamental Data Stru	(<i>O</i>), and orithms , String		
Module 2 Divide and Conquer: General method				10	
conquer, Finding the maximum and r (T1:4.1, 4.2), Strassen's matrix multip divide and conquer. Decrease and Con RBT: L1, L2, L3	minimum (T2:3.1 plication (T2:3.8)	, 3.3 , 3.4), Merge sort, Qui Advantages and Disadvant	ck sort		
Module 3					
Greedy Method: General method, sequencing with deadlines (T2:4.1, Algorithm, Kruskal's Algorithm (T1: Algorithm (T1:9.3). Optimal Tree Transform and Conquer Approach: RBT: L1, L2, L3	4.3, 4.5). Minim :9.1, 9.2). Single problem: Huff	source shortest paths: D man Trees and Codes (1	Prim's ijkstra's	10	
Module 4					
Dynamic Programming: General met Transitive Closure: Warshall's Algo Optimal Binary Search Trees, Kna Algorithm (T2:5.4), Travelling Sales P	prithm, All Pairs (Shortest Paths: Floyd's Alg (T1:8.2, 8.3, 8.4), Bellma	orithm, an-Ford	10	
RBT: L1, L2, L3 Module 5					

https://hemanthrajhemu.github.io

determ	inistic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).	
RBT :	L1, L2, L3	
Cours	e Outcomes: The student will be able to :	
٠	Describe computational solution to well known problems like searching, sorting etc.	
٠	Estimate the computational complexity of different algorithms.	
٠	Devise an algorithm using appropriate design strategies for problem solving.	
Questi	on Paper Pattern:	
٠	The question paper will have ten questions.	
٠	Each full Question consisting of 20 marks	
•	There will be 2 full questions (with a maximum of four sub questions) from each module.	
٠	Each full question will have sub questions covering all the topics under a module.	
•	The students will have to answer 5 full questions, selecting one full question from each module	
Textbo	ooks:	
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.	
	Pearson.	
2.	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014,	
	Universities Press	
Refere	ence Books:	
1.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford	
	Stein, 3rd Edition, PHI.	
2.	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).	

https://hemanthrajhemu.github.io