

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Introduction to The Design &
Analysis of Algorithms ~ ~

IND EDITION "
~

Anany Levitin
Villanova University

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

https://hemanthrajhemu.github.io

Contents

Preface xvii

1 Introduction 1

1.1 What is an Algorithm? 3
Exercises 1.1 8

1.2 Fundamentals of Algorithmic Problem Solving 9
Understanding the Problem 9
Ascertaining the Capabilities of a Computational Device 11
Choosing between Exact and Approximate Problem Solving 11
Deciding on Appropriate Data Structures 12
Algorithm Design Techniques 12
Methods of Specifying an Algorithm 12
Proving an Algorithm's Correctness 13
Analyzing an Algorithm 14
Coding an Algorithm 15

Exercises 1.2 17

1.3 Important Problem Types 19
Sorting 19
Searching 20
String Processing 21
Graph Problems 21
Combinatorial Problems 22
Geometric Problems 22
Numerical Problems 23

Exercises 1.3 23

vii

https://hemanthrajhemu.github.io

---~----·-·

I viii Contents
jli
;!'
rll
!:! 1.4 Fundamental Data Structures 26
II: Linear Data Structures 26 .,
il Graphs 28
'II ,. Trees 32 I!

1:1

Sets and Dictionaries 36

Exercises 1.4 38

Summary 39

f:i

I' 2
II:

fundamentals of the Analysis of Algorithm
Efficiency 41

1\,

I'! -,,
2.1 Analysis Framework 42 i!i

if!

li1

Measuring an Input's Size 43
Units for Measuring Running Time 44

II
Orders of Growth 45
Worst-Case. Best-Case, and Average-Case Efficiencies 47

I Recapitulation of the Analysis Framework 50

I

Exercises 2.1 50

! 2.2 Asymptotic Notations and Basic Efficiency Classes 52
' ' Informal Introduction 52

a-notation 53
0-notation 54
e-notation 55
Useful Property Involving the Asymptotic Notations 56
Using Limits for Comparing Orders of Growth 57
Basic Efficiency Classes 58

Exercises 2.2 59

2.3 Mathematical Analysis of Non recursive Algorithms 61

Exercises 2.3 67

2.4 Mathematical Analysis of Recursive Algorithms 69

Exercises 2.4 76

2.5 Example: Fibonacci Numbers 78
Explicit Formula for the nth Fibonacci Number 79
Algorithms for Computing Fibonacci Numbers 80

Exercises 2.5 83

https://hemanthrajhemu.github.io

Contents ix

2.6 Empirical Analysis of Algorithms 84
Exercises 2.6 90

2.7 Algorithm Visualization 91
Summary 95

3 Brute Force 97

3.1 Selection Sort and Bubble Sort 98
Selection Sort 98
Bubble Sort 100
Exercises 3.1 102

3.2 Sequential Search and Brute-Force String Matching 103
Sequential Search 103
Brute-Force String Matching 104
Exercises 3.2 105

3.3 Closest-Pair and Convex-Hull Problems by Brute Force 107
Closest-Pair Problem 107
Convex-Hull Problem 108
Exercises 3.3 112

3.4 Exhaustive Search 114
Traveling Salesman Problem 114
Knapsack Problem 115
Assignment Problem 116
Exercises 3.4 119
Summary 120

4 Divide-and-Conquer 123

4.1 Mergesort 125
Exercises 4.1 128

4.2 Quicksort 129
Exercises 4.2 134

4.3 Binary Search 135

Exercises 4.3 138

https://hemanthrajhemu.github.io

1
Introduction

Two ideas lie gleaming on the jeweler's velvet. The first is the calculus,
the second, the algorithm. The calculus and the rich body of mathematical
analysis to which it gave rise made modern science possible; but it has been
the algorithm that has rnade possible the modern world.

-David Berlinski, The Advent of the Algorithm, 2000

Why do you need to study algorithms? If you are going to be a computer
professional, there are both practical and theoretical reasons to study algo

rithms. From a practical standpoint, you have to know a standard set of important
algorithms from different areas of computing; in addition, you should be able to
design new algorithms and analyze their efficiency. From the theoretical stand
point, the study of algorithms, sometimes called algorithmics, has come to be
recognized as the cornerstone of computer science. David Hare!, in his delightful
book pointedly titled Algorithmics: the Spirit of Computing, put it as follows:

Algorithmics is more than a branch of computer science. It is the core of
computer science, and, in all fairness, can be said to be relevant to most of
science, business, and technology. [Har92], p. 6.

But even if you are not a student in a computing-related program, there are
compelling reasons to study algorithms. To put it bluntly, computer programs
would not exist without algorithms. And with computer applications becoming
indispensable in almost all aspects of our professional and personal lives, studying
algorithms becomes a necessity for more and more people.

Another reason for studying algorithms is their usefulness in developing an
alytical skills. After all, algorithms can be seen as special kinds of solutions to
problems-not answers but precisely defined procedures for getting answers. Con
sequently, specific algorithm design techniques can be interpreted as problem
solving strategies that can be useful regardless of whether a computer is involved.
Of course, the precision inherently imposed by algorithmic thinking limits the
kinds of problems that can be solved with an algorithm. You will not find, for
example, an algorithm for living a happy life or becoming rich and famous. On

1

https://hemanthrajhemu.github.io

w
.

.

'

i!

I'
I

I

1:
I

IIi
f1

'I
I

II
'I
~ i

·i,'
'I ''!
!i

i'

2 Introduction

the other hand, this required precision has an important educational advantage.
Donald Knuth, one of the most prominent computer scientists in the history of
algorithmics, put it as follows:

A person well-trained in computer science knows how to deal with algorithms:
how to construct them, manipulate them, understand them, analyze them.
This knowledge is preparation for much more than writing good computer
programs; it is a general-purpose mental tool that will be a definite aid to
the understanding of other subjects, whether they be chemistry, linguistics,
or music, etc. The reason for this may be understood in the following way:
It has often been said that a person does not really understand something
until after teaching it to someone else. Actually, a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm ... An attempt to formalize things as algorithms leads to
a much deeper understanding than if we simply try to comprehend things in
the traditional way. [Knu96], p. 9.

We take up the notion of algorithm in Section 1.1. As examples, we use three
algorithms for the same problem: computing the greatest common divisor. There
are several reasons for this choice. First, it deals with a problem familiar to ev
erybody from their middle-school days. Second, it makes the important point that
the same problem can often be solved by several algorithms. Quite typically, these
algorithms differ in their idea, level of sophistication, and efficiency. Third, one of
these algorithms deserves to be introduced first, both because of its age~it ap
peared in Euclid's famous treatise more than two thousand years ago~and its
enduring power and importance. Finally, the middle-school procedure for com
puting the greatest common divisor allows us to highlight a critical requirement
every algorithm must satisfy.

Section 1.2 deals with algorithmic problem solving. There we discuss several
important issues related to the design and analysis of algorithms. The different
aspects of algorithmic problem solving range from analysis of the problem and the
means of expressing an algorithm to establishing its correctness and analyzing its
efficiency. The section does not contain a magic recipe for designing an algorithm
for an arbitrary problem. It is a well-established fact that such a recipe does not
exist. Still, the material of Section 1.2 should be useful for organizing your work
on designing and analyzing algorithms.

Section 1.3 is devoted to a few problem types that have proven to be partic
ularly important to the study of algorithms and their application. In fact, there
are textbooks (e.g., [Sed88]) organized around such problem types. I hold the
view~shared by many others~that an organization based on algorithm design
techniques is superior. In any case, it is very important to be aware of the princi
pal problem types. Not only are they the most commonly encountered problem
types in real-life applications, they are used throughout the book to demonstrate
particular algorithm design techniques. I

t
1

'10
!J

,lllll,,,!j··---···----~~·-------------------"~~1 https://hemanthrajhemu.github.io

1.1 What is an Algorithm? 3

Section 1.4 contains a review of fundamental data structures. It is meant to
serve as a reference rather than a deliberate discussion of this topic. If you need
a more detailed exposition, there is a wealth of good books on the subject, most
of them tailored to a particular programming language.

1.1 What is an Algorithm?

Although there is no universally agreed-on wording to describe this notion, there
is general agreement about what the concept means:

An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

This definition can be illustrated by a simple diagram (Figure 1.1).
The reference to "instructions" in the definition implies that there is some

thing or someone capable of understanding and following the instructions given.
We call this a "computer," keeping in mind that before the electronic computer
was invented, the word "computer" meant a human being involved in perform
ing numeric calculations. Nowadays, of course, "computers" are those ubiquitous
electronic devices that have become indispensable in almost everything we do.
Note, however, that although the majority of algorithms are indeed intended for
eventual computer implementation, the notion of algorithm does not depend on
such an assumption.

As examples illustrating the notion of algorithm, we consider in this section
three methods for solving the same problem: computing the greatest common
divisor of two integers. These examples will help us to illustrate several important
points:

"' The nonambiguity requirement for each step of an algorithm cannot be com·
promised.

problem

1
algorithm

input ---.[==·~c~om~p~ut~e~r·~· =}----+ output

FIGURE 1.1 Notion of algorithm

https://hemanthrajhemu.github.io

4 Introduction

" The range of inputs for which an algorithm works has to be specified carefully.
,. The same algorithm can be represented in several different ways.
" Several algorithms for solving the same problem may exist.
II! Algorithms for the same problem can be based on very different ideas and

can solve the problem with dramatically different speeds.

Recall that the greatest common divisor of two nonnegative, not -both-zero
integers m and n, denoted gcd(m, n), is defined as the largest integer that divides
both m and n evenly, i.e., with a remainder of zero. Euclid of Alexandria (third
century B.C.) outlined an algorithm for solving this problem in one of the volumes
of his Elements, most famous for its systematic exposition of geometry. In modern
terms, Euclid's algorithm is based on applying repeatedly the equality

gcd(m, n) = gcd(n, m mod n)

(where m mod n is the remainder of the division of m by n) until m mod n is equal
to 0; since gcd(m, 0) = m (why?), the last value of m is also the greatest common
divisor of the initial m and n.

For example, gcd(60, 24) can be computed as follows:

gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.

(If you are not impressed by this algorithm, try finding the greatest common divisor
of larger numbers such as those in Problem 5 of Exercises 1.1.)

Here is a more structured description of this algorithm:

Euclid's algorithm for computing gcd(m, n)

Step 1 If n = 0, return the value of m as the answer and stop; otherwise,
proceed to Step 2.

Step 2 Divide m by n and assign the value of the remainder to r.
Step 3 Assign the value of n tom and the value of r ton. Go to Step 1.

Alternatively, we can express the same algorithm in a pseudocode:

ALGORITHM Euclid(m, n)

//Computes gcd(m, n) by Euclid's algorithm
!!Input: Two nonnegative, not -both-zero integers m and n

//Output: Greatest common divisor of m and n

while n oJ 0 do
r +-m modn
m +-n
n +---- r

return m

How do we know that Euclid's algorithm eventually comes to a stop? This
follows from the observation that the second number of the pair gets smaller with

https://hemanthrajhemu.github.io

1.1 What is an Algorithm? 5

each iteration and it cannot become negative. Indeed, the new value of n on the
next iteration ism mod n, which is always smaller than n. Hence, the value of the
second number in the pair eventually becomes 0, and the algorithm stops.

Just as with many other problems, there are several algorithms for computing
the greatest common divisor. Let us look at the other two methods for this prob
lem. The first is simply based on the definition of the greatest common divisor of
m and n as the largest integer that divides both numbers evenly. Obviously, such
a common divisor cannot be greater than the smaller of these numbers, which we
will denote by t = min{m, n). So we can start by checking whether t divides both
m and n: if it does, t is the answer; if it does not, we simply decrease t by 1 and
try again. (How do we know that the process will eventually stop?) For example,
for numbers 60 and 24, the algorithm will try first 24, then 23, and so on until it
reaches 12, where it stops.

Consecutive integer checking algorithm for computing gcd(m, n)

Step 1 Assign the value of min{m, n) tot.

Step 2 Divide m by t. If the remainder of this division is 0, go to Step 3;
otherwise, go to Step 4.

Step 3 Divide n by t. If the remainder of this division is 0, return the value of
t as the answer and stop; otherwise, proceed to Step 4.

Step 4 Decrease the value oft by 1. Go to Step 2.

Note that unlike Euclid's algorithm, this algorithm, in the form presented,
does not work correctly when one of its input numbers is zero. This example
illustrates why it is so important to specify the range of an algorithm's inputs
explicitly and carefully.

The third procedure for finding the greatest common divisor should be famil
iar to you from middle school.

Middle-school procedure for computing gcd(m, n)

Step 1 Find the prime factors of m.

Step 2 Find the prime factors of n.

Step 3 Identify all the common factors in the two prime expansions found in
Step 1 and Step 2. (If p is a common factor occurring Pm and Pn times
in m and n, respectively, it should be repeated min{pm, p,) times.)

Step 4 Compute the product of all the common factors and return it as the
greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

60=2·2·3·5
24=2·2·2·3

gcd(60, 24) = 2. 2. 3 = 12.

'7

https://hemanthrajhemu.github.io

6 Introduction

Nostalgia for the days when we learned this method should not prevent us
from noting that the last procedure is much more complex and slower than Euclid's
algorithm. (We will discuss methods for finding and comparing running times of
algorithms in the next chapter.) In addition to inferior efficiency, the middle-school
procedure does not qualify, in the form presented, as a legitimate algorithm. Why?
Because the prime factorization steps are not defined unambiguously: they require
a list of prime numbers, and I strongly suspect that your middle-school teacher
did not explain how to obtain such a list. You undoubtedly agree that this is not
a matter of unnecessary nitpicking. Unless this issue is resolved, we cannot, say,
write a program implementing this procedure. (Incidentally, Step 3 is also not
defined clearly enough. Its ambiguity is much easier to rectify than that of the
factorization steps, however. How would you find common elements in two sorted
lists?)

So let us introduce a simple algorithm for generating consecutive primes
not exceeding any given integer n. It was probably invented in ancient Greece
and is known as the sieve of Eratosthenes (ca. 200 B.C.). The algorithm starts by
initializing a list of prime candidates with consecutive integers from 2 ton. Then,
on the first iteration of the algorithm, it eliminates from the list all multiples of
2, i.e., 4, 6, and so on. Then it moves to the next item on the list, which is 3,
and eliminates its multiples. (In this straightforward version, there is an overhead
because some numbers, such as 6, are eliminated more than once.) No pass for
number 4 is needed: since 4 itself and all its multiples are also multiples of 2, they
were already eliminated on a previous pass. (By similar reasoning, we need not
consider multiples of any eliminated number.) The next remaining number on the
list, which is used on the third pass, is 5. The algorithm continues in this fashion
until no more numbers can be eliminated from the list. The remaining integers of
the list are the primes needed.

As an example, consider the application of the algorithm to finding the list of
primes not exceeding n = 25:

2 3
2 3
2 3
2 3

4 5 6 7 8 9 10 11 12
5 7 9 11
5 7 11
5 7 11

13 14 15 16
13 15
13
13

17 18 19
17 19
17 19
17 19

20 21 22
21

23 24 25
23 25
23 25
23

For this example, no more passes are needed because they would eliminate num
bers already eliminated on previous iterations of the algorithm. The remaining
numbers on the list are the consecutive primes less than or equal to 25.

In general, what is the largest number p whose multiples can still remain on
the list? Before we answer this question, let us first note that if p is a number
whose multiples are being eliminated on the current pass, then the first multiple
we should consider is p · p because all its smaller multiples 2p, ... , (p- l)p have
been eliminated on earlier passes through the list. This observation helps to avoid

https://hemanthrajhemu.github.io

1.1 What is an Algorithm? 7

eliminating the same number more than once. Obviously, p · p should not be
greater than n, and therefore p cannot exceed ,jn rounded down (denoted l ,jn J
using the so-called floor function). We assume in the following pseudocode that
there is a function available for computing l ,jn J; alternatively, we could check
the inequality p · p S n as the loop continuation condition there.

ALGORITHM Sieve(n)

//Implements the sieve of Eratosthenes
//Input: An integer n ": 2
//Output: Array L of all prime numbers less than or equal ton
for p-<-- 2 ton do A[p]-<- p

for p -<-- 2 to l ,Jnj do //see note before pseudocode
if A[p] i' 0 II p hasn't been eliminated on previous passes

j-<-P*P
while j S n do

A[j] -<-- 0 //mark element as eliminated
j-<-j+p

//copy the remaining elements of A to array L of the primes
i-<--0

forp-<-2tondo
ifA[p]i'O

L[i]+- A[p]

i-<-i+1
return L

So now we can incorporate the sieve of Eratosthenes into the middle-school
procedure to get a legitimate algorithm for computing the greatest common di
visor of two positive integers. Note that special care needs to be exercised if one
or both input numbers are equal to 1: because mathematicians do not consider
1 to be a prime number, strictly speaking, the method does not work for such
inputs.

Before we leave this section, one more comment is in order. The examples
considered in this section notwithstanding, the majority of algorithms in use
today-even those that are implemented as computer programs-do not deal
with mathematical problems. Look around for algorithms helping us through our
daily routines, both professional and personal. May this ubiquity of algorithms in
today's world strengthen your resolve to learn more about these fascinating
engines of the information age.

https://hemanthrajhemu.github.io

:I

8 Introduction

-----Exercises 1.1

1. Do some research on al-Khorezmi (also al-Khwarizmi), the man from whose
name the word "algorithm" is derived. 1n particular, you should learn what
the origins of the words "algorithm)' and "algebra" have in common.

2. Given that the official purpose of the U.S. patent system is the promotion
of the "useful arts," do you think algorithms are patentable in this country?
Should they be?

3. a. Write down driving directions for going from your school to your home
with the precision required by an algorithm.

b. Write down a recipe for cooking your favorite dish with the precision
required by an algorithm.

4. Design an algorithm for computing L ftJ for any positive integer n. Besides
assignment and comparison, your algorithm may only use the four basic
arithmetical operations.

5. a. Find gcd(31415, 14142) by applying Euclid's algorithm.

b. Estimate how many times faster it will be to find gcd(31415, 14142) by
Euclid's algorithm compared with the algorithm based on checking con
secutive integers from min{m, n) down to gcd(m, n).

6. Prove the equality gcd(m, n) = gcd(n, m mod n) for every pair of positive
integers m and n.

7. What does Euclid's algorithm do for a pair of numbers in which the first
number is smaller than the second one? What is the largest number of times
this can happen during the algorithm's execution on such an input?

8. a. What is the smallest number of divisions made by Euclid's algorithm
among all inputs 1 ::= m, n ::= 10?

b. What is the largest number of divisions made by Euclid's algorithm among
all inputs 1 ::= m, n ::= 10?

9. a. Euclid's algorithm, as presented in Euclid's treatise, uses subtractions
rather than integer divisions. Write a pseudocode for this version of Eu
clid's algorithm.

b. Euclid's game (see [Bog]) starts with two unequal positive numbers on the
board. Two players move in turn. On each move, a player has to write on
the board a positive number equal to the difference oftwo numbers already
on the board; this number must be new, i.e., different from all the numbers
already on the board. The player who cannot move loses the game. Should
you choose to move first or second in this game?

10. The extended Euclid's algorithm determines not only the greatest common
divisor d of two positive integers m and n but also integers (not necessarily
positive) x andy, such that mx + ny =d.

https://hemanthrajhemu.github.io

1.2 Fundamentals of Algorithmic Problem Solving 9

a. Look up a description of the extended Euclid's algorithm (see, e.g., [Knui],
p. 13) and implement it in the language of your choice.

b. Modify your program for finding integer solutions to the Diophantine
equation ax +by= c with any set of integer coefficients a, b, and c.

11. Locker doors There are n lockers in a hallway, numbered sequentially from
1 to n. Initially all the locker doors are closed. You make 11 passes by the
lockers, each time starting with locker #1. On the ith pass, i = 1, 2, ... , 11, you
toggle the door of every ith locker: if the door is closed, you open it; if it is
open, you close it. For example, after the first pass every door is open; on the
second pass you only toggle the even-numbered lockers (#2, #4, ...) so that
after the second pass the even doors are closed and the odd ones are open;
the third time through, you close the door of locker #3 (opened from the first
pass), open the door of locker #6 (closed from the second pass), and so on.
After the last pass, which locker doors are open and which are closed? How
many of them are open?

1.2 Fundamentals of Algorithmic Problem Solving

Let us start by reiterating an important point made in the introduction to this
chapter:

We can consider algorithms to be procedural solutions to problems.

These solutions are not answers but specific instructions for getting answers. It is
this emphasis on precisely defmed constructive procedures that makes computer
science distinct from other disciplines. In particular, this distinguishes it from the
oretical mathematics whose practitioners are typically satisfied with just proving
the existence of a solution to a problem and, possibly, investigating the solution's
properties.

We now list and briefly discuss a sequence of steps one typically goes through
in designing and analyzing an algorithm (Figure 1.2).

Understanding the Problem

From a practical perspective, the frrst thing you need to do before designing an
algorithm is to understand completely the problem given. Read the problem's
description carefully and ask questions if you have any doubts about the problem,
do a few small examples by hand, think about special cases, and ask questions
again if needed.

There are a few types of problems that arise in computing applications quite
often. We review them in the next section. If the problem in question is one of
them, you might be able to use a known algorithm for solving it. Of course, it
helps to understand how such an algorithm works and to know its strengths and

https://hemanthrajhemu.github.io

r
10 Introduction

Understand the problem

Decide on:
computational means,

exact vs. approximate solving,
data structure(s),

algorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

FIGURE 1.2 Algorithm design and analysis process

weaknesses, especially if you have to choose among several available algorithms.
But often, you will not find a readily available algorithm and will have to design
your own. The sequence of steps outlined in this section should help you in this
exciting but not always easy task. .

An input to an algorithm specifies an ';nstanc~ of the problem the algorithm
solves. It is very important to specify exactly the range of instances the algorithm
needs to handle. (As an example, recall the variations in the range of instances for
the three greatest common divisor algorithms discussed in the previous section.)
If you fail to do this, your algorithm may work correctly for a majority of inputs
but crash on some "boundary" value.,t-gemember that a correct algorithm is not
one that works most of the time, but 'One that works correctly for alllegitiJ!!aty
inputs.

Do not skimp on this first step of the algorithmic problem-solving process; if
you do, you will run the risk of unnecessary rework.

https://hemanthrajhemu.github.io

1.2 Fundamentals of Algorithmic Problem Solving 11

Ascertaining the Capabilities of a Computational Device

Once you completely understand a problem. you need to ascertain the capabilities
of the computational device the algorithm is intended for. The vast majority of
algorithms in use today are still destined to be programmed for a computer closely
resembling the von Neumann machine-a computer architecture outlined by
the prominent Hungarian-American mathematician John von Neumann (1903-
1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of
this architecture is captured by the so-called random-access machine (RAM).
Its central assumption is that instructions are executed one after another, one
operation at a time. Accordingly, algorithms designed to be executed on such
machines are called sequential algorithms.

The central assumption of the RAM model does not hold for some newer
computers that can execute operations concurrently, i.e., in parallel. Algorithms
that take advantage of this capability are called parallel algorithms. Still, studying
the classic techniques for design and analysis of algorithms under the RAM model
remains the cornerstone of algorithmics for the foreseeable future.

Should you worry about the speed and amount of memory of a computer
at your disposal? If you are designing an algorithm as a scientific exercise, the
answer is a qualified no. As you will see in Section 2.1, most computer scientists
prefer to study algorithms in terms independent of specification parameters for
a particular computer. If you are designing an algorithm as a practical tool, the
answer may depend on a problem you need to solve. Even "slow" computers of
today are almost unimaginably fast. Consequently, in many situations, you need
not worry about a computer being too slow for the task. There are important
problems, however, that are very complex by their nature, have to process huge
volumes of data, or deal with applications where time is critical. In such situations,
it is imperative to be aware of the speed and memory available on a particular
computer system.

Choosing between Exact and Approximate Problem Solving

The next principal decision is to choose between solving the problem exactly or
solving it approximately. In the former case, an algorithm is called an exact algo
rithm; in the latter case, an algorithm is called an approximation algorithm. Why
would one opt for an approximation algorithm? First, there are important prob
lems that simply cannot be solved exactly for most of their instances; examples
include extracting square roots, solving nonlinear equations, and evaluating def
inite integrals. Second, available algorithms for solving a problem exactly can be
unacceptably slow because of the problem's intrinsic complexity. Tbis happens, in
particular, for many problems involving a very large number of choices; you will
see examples of such difficult problems in Chapters 3, 11, and 12. Third, an ap
proximation algorithm can be a part of a more sophisticated algorithm that solves
a problem exactly.

https://hemanthrajhemu.github.io

12 Introduction

Deciding on Appropriate Data Structures

Some algorithms do not demand any ingenuity in representing their inputs. But
others are, in fact, predicated on ingenious data structures. In addition, some
of the algorithm design techniques we shall discuss in Chapters 6 and 7 depend
intimately on structuring or restructuring data specifying a problem's instance.
Many years ago, an influential textbook proclaimed the fundamental importance
of both algorithms and data structures for computer programming by its very title:
Algorithms + Data Structures ~ Programs [Wir76]. In the new world of object
oriented programming, data structures remain crucially important for both design
and analysis of algorithms. We review basic data structures in Section 1.4.

Algorithm Design Techniques

Now, with all the components of the algorithmic problem solving in place, how do
you design an algorithm to solve a given problem? This is the main question this
book seeks to answer by teaching you several general design techniques.

What is an algorithm design technique?

An algorithm design technique (or "strategy" or "paradigm") is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

Check this book's table of contents and you will see that a majority of its
chapters are devoted to individual design techniques. They distill a few key ideas
that have proven to be useful in designing algorithms. Learning these techniques
is of utmost importance for the following reasons.

First, they provide guidance for designing algorithms for new problems, i.e.,
problems for which there is no known satisfactory algorithm. Therefore-to use
the language of a famous proverb-learning such techniques is akin to learning
to fish as opposed to being given a fish caught by somebody else. It is not true, of
course, that each of these general techniques will be necessarily applicable to every
problem you may encounter. But taken together, they do constitute a powerful
collection of tools that you will find quite handy in your studies and work.

Second, algorithms are the cornerstone of computer science. Every science is
interested in classifying its principal subject, and computer science is no exception.
Algorithm design techniques make it possible to classify algorithms according
to an underlying design idea; therefore, they can serve as a natural way to both
categorize and study algorithms.

Methods of Specifying an Algorithm

Once you have designed an algorithm, you need to specify it in some fashion. In
Section 1.1, to give you an example, we described Euclid's algorithm in words (in
a free and also a step-by-step form) and in pseudocode. These are the two options
that are most widely used nowadays for specifying algorithms.

l
l

https://hemanthrajhemu.github.io

1.2 Fundamentals of Algorithmic Problem Solving 13

Using a natural language has an obvious appeal; however, the inherent ambi
guity of any natural language makes a succinct and clear description of algorithms
surprisingly difficult. Nevertheless, being able to do this is an important skill that
you should strive to develop in the process of learning algorithms.

A pseudocode is a mixture of a natural language and programming language
like constructs. A pseudocode is usually more precise than a natural language, and
its usage often yields more succinct algorithm descriptions. Surprisingly, computer
scientists have never agreed on a single form of pseudocode, leaving textbook
authors to design their own "dialects." Fortunately, these dialects are so close to
each other that anyone familiar with a modern programming language should be
able to understand them all.

This book's dialect was selected to cause minimal difficulty for a reader. For
the sake of simplicity, we omit declarations of variables and use indentation to
show the scope of such statements as for, if, and while. As you saw in the previous
section, we use an arrow <-- for the assignment operation and two slashes I I for
comments.

In the earlier days of computing, the dominant vehicle for specifying algo
rithms was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm's steps. This
representation technique has proved to be inconvenient for all but very simple
algorithms; nowadays, it can be found only in old algorithm books.

The state of the art of computing has not yet reached a point where an
algorithm's description-whether in a natural language or a pseudocode-can be
fed into an electronic computer directly. Instead, it needs to be converted into a
computer program written in a particular computer language. We can look at such
a program as yet another way of specifying the algorithm, although it is preferable
to consider it as the algorithm's implementation.

Proving an Algorithm's Correctness

Once an algorithm has been specified, you have to prove its correctness. That is,
you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time. For example, correctness of Euclid's algorithm
for computing the greatest common divisor stems from correctness of the equality
gcd(m, n) = gcd(n, m mod n) (which, in turn, needs a proof; see Problem 6 in
Exercises 1.1), the simple observation that the second number gets smaller on
every iteration of the algorithm, and the fact that the algorithm stops when the
second number becomes 0.

For some algorithms, a proof of correctness is quite easy; for others, it can
be quite complex. A common technique for proving correctness is to use mathe
matical induction because an algorithm's iterations provide a natural sequence of
steps needed for such proofs. It might be worth mentioning that although tracing
the algorithm's performance for a few specific inputs can be a very worthwhile
activity, it cannot prove the algorithm's correctness conclusively. But in order to

https://hemanthrajhemu.github.io

14 Introduction

show that an algorithm is incorrect, you need just one instance of its input for
which the algorithm fails. If the algorithm is found to be incorrect, you need to ei
ther redesign it under the same decisions regarding the data structures, the design
technique, and so on, or, in a more dramatic reversal, to reconsider one or more
of those decisions (see Figure 1.2).

The notion of correctness for approximation algorithms is less straightforward
than it is for exact algorithms. For an approximation algorithm, we usually would
like to be able to show that the error produced by the algorithm does not exceed
a predefined limit. You can find examples of such investigations in Chapter 12.

Analyzing an Algorithm

We usually want our algorithms to possess several qualities. After correctness, by
far the most important is efficiency. In fact, there are two kinds of algorithm effi
ciency: time efficiency and space efficiency. Time ~fficiency indicates how fast the
algorithm runs; space efficiency indicates how much extra memory the algorithm
needs. A general framework and specific techniques for analyzing an algorithm's
efficiency appear in Chapter 2.

Another desirable characteristic of an algorithm is simplicity. Unlike effi
ciency, which can be precisely defined and investigated with mathematical rigor,
simplicity, like beauty, is to a considerable degree in the eye of the beholder. For
example, most people would agree that Euclid's algorithm is simpler than the
middle-school procedure for computing gcd(m, n), but it is not clear whether Eu
clid's algorithm is simpler than the consecutive integer checking algorithm. Still,
simplicity is an important algorithm characteristic to strive for. Why? Because sim
pler algorithms are easier to understand and easier to program; consequently, the
resulting programs usually contain fewer bugs. There is also the undeniable aes
thetic appeal of simplicity. Sometimes simpler algorithms are also more efficient
than more complicated alternatives. Unfortunately, it is not always true, in which
case a judicious compromise needs to be made.

Yet another desirable characteristic of an algorithm is generality. There are,
in fact, two issues here: generality of the problem the algorithm solves and the
range of inputs it accepts. On the first issue, note that it is sometimes easier to
design an algorithm for a problem posed in more general terms. Consider, for
example, the problem of determining whether two integers are relatively prime,
i.e., whether their only common divisor is equal to 1. It is easier to design an
algorithm for a more general problem of computing the greatest common divisor
of two integers and, to solve the former problem, check whether the gcd is 1 or
not. There are situations, however, where designing a more general algorithm is
unnecessary or difficult or even impossible. For example, it is unnecessary to sort
a list of n numbers to find its median, which is its r n/21 th smallest element. To give
another example, the standard formula for roots of a quadratic equation cannot
be generalized to handle polynomials of arbitrary degrees.

l

https://hemanthrajhemu.github.io

1.2 Fundamentals of Algorithmic Problem Solving 15

As to the range of inputs, your main concern should be designing an algorithm
that can handle a range of inputs that is natural for the problem at hand. For exam
ple, excluding integers equal to 1 as possible inputs for a greatest common divisor
algorithm would be quite unnatural. On the other hand, although the standard
formula for the roots of a quadratic equation holds for complex coefficients, we
would normally not implement it on this level of generality unless this capability
is explicitly required.

If you are not satisfied with the algorithm's efficiency, simplicity, or general
ity, you must return to the drawing board aud redesign the algorithm. In fact,
even if your evaluation is positive, it is still worth searching for other algorithmic
solutions. Recall the three different algorithms in the previous section for com
puting the greatest common divisor; generally, you should not expect to get the
best algorithm on the first try. At the very least, you should try to fine-tunc the
algorithm you already have. For example, we made several improvements in our
implementation of the sieve of Eratosthenes compared with its initial outline in
Section 1.1. (Can you identify them?) You will do well if you keep in mind the
following observation of Antoine de Saint-Exupery, the French writer, pilot, and
aircraft designer: "A designer knows he has arrived at perfection not when there
is no longer anything to add, but when there is no longer anything to take away."1

Coding an Algorithm

Most algorithms are destined to be ultimately implemented as computer pro
grams. Programming an algorithm presents both a peril and an opportunity. The
peril lies in the possibility of making the transition from an algorithm to a pro
gram either incorrectly or very inefficiently. Some influential computer scientists
strongly believe that unless the correctness of a computer program is proven with
full mathematical rigor, the program cannot be considered correct. They have de
veloped special techniques for doing such proofs (see [Gri81]), but the power of
these techniques of formal verification is limited so far to very small programs.
As a practical matter, the validity of programs is still established by testing. Test
ing of computer programs is an art rather than a science, but that does not mean
that there is nothing in it to learn. Look up books devoted to testing and debug
ging; even more important, test and debug your program thoroughly whenever
you implement an algorithm.

Also note that throughout the book, we assume that inputs to algorithms fall
within their specified ranges and hence require no verification. When implement
ing algorithms as programs to be used in actual applications, you should provide
such verifications.

1. I found this call for design simplicity in an essay collection by Jon Bentley [BenOO]; the essays deal
with a variety of issues in algorithm design and implementation, and arc justifiably titled Programming
Pearls. I wholeheartedly recommend writings of both Jon Bentley and Antoine de Saint-Exup6ry.

https://hemanthrajhemu.github.io

r '

.

I,
!'!

I '. I

I
1:

i

il

16 Introduction

Of course, implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm's power by an inefficient implemen
tation. Modern compilers do provide a certain safety net in this regard, especially
when they are used in their code optimization mode. Still, you need to be aware
of such standard tricks as computing a loop's invariant (an expression that does
not change its value) outside the loop, collecting common subexpressions, replac
ing expensive operations by cheap ones, and so on. (See [Ker99] and [BenOO] for
a good discussion of code tuning and other issues related to algorithm program
ming.) Typically, such improvements can speed up a program only by a constant
factor, whereas a better algorithm can make a difference in running time by orders
of magnitude. But once an algorithm is selected, a 10-50% speedup may be worth
an effort.

A working program provides an additional opportunity in allowing an em
pirical analysis of the underlying algorithm. The analysis is based on timing the
program on several inputs and then analyzing the results obtained. We discuss the
advantages and disadvantages of this approach to analyzing algorithms in Sec
tion 2.6.

In conclusion, let us emphasize again the main lesson of the process depicted
in Figure 1.2:

As a rule, a good algorithm is a result of repeated effort and rework.

Even if you have been fortunate enough to get an algorithmic idea that seems
perfect, you should still try to see whether it can he improved.

Actually, this is good news since it makes the ultimate result so much more
enjoyable. (Yes, I did think of naming this hook The Joy of Algorithms.) On the
other hand, how does one know when to stop? In the real world, more often than
not the project's schedule or the patience of your boss will stop you. And so it
should be: perfection is expensive and in fact not always called for. Designing
an algorithm is an engineering-like activity that calls for compromises among
competing goals under the constraints of available resources, with the designer's
time being one of the resources.

In the academic world, the question leads to an interesting but usually difficult
investigation of an algorithm's optimality. Actually, this question is not about the
efficiency of an algorithm but about the complexity of the problem it solves: what
is the minimum amount of effort any algorithm will need to exert to solve the
problem in question? For some problems, the answer to this question is known.
For example, any algorithm that sorts an array by comparing values of its elements
needs about n log2 n comparisons for some arrays of size n (see Section 11.2).
But for many seemingly easy problems, such as matrix multiplication, computer
scientists do not yet have a final answer.

Another important issue of algorithmic problem solving is the question of
whether or not every problem can be solved by an algorithm. We are not talking
here about problems that do not have a solution, such as finding real roots of

~
E

i
l
1-

j
!

I https://hemanthrajhemu.github.io

1.2 Fundamentals of Algorithmic Problem Solving 17

a quadratic equation with a negative discriminant. For such cases, an output
indicating that the problem does not have a solution is all we can and should
expect from an algorithm. Nor are we talking about ambiguously stated problems.
Even some unambiguous problems that must have a simple yes or no answer are
"undecidable," i.e., unsolvable by any algorithm. An important example of such
a problem appears in Section 11.3. Fortunately, a vast majority of problems in
practical computing can be solved by an algorithm.

Before leaving this section, let us be sure that you do not have the mis
conception-possibly caused by the somewhat mechanical nature of the diagram
of Figure 1.2-that designing an algorithm is a dull activity. There is nothing
further from the truth: inventing (or discovering?) algorithms is a very creative
and rewarding process. This book is designed to convince you that this is the case.

-----Exercises 1.2---------------

1. Old World puzzle A peasant finds himself on a riverbank with a wolf, a goat,
and a head of cabbage. He needs to transport all three to the other side of the
river in his boat. However, the boat has room for only the peasant himself
and one other item (either the wolf, the goat, or the cabbage). In his absence,
the wolf would eat the goat, and the goat would eat the cabbage. Solve this
problem for the peasant or prove it has no solution. (Note: The peasant is a
vegetarian but does not like cabbage and hence can eat neither the goat nor
the cabbage to help him solve the problem. And it goes without saying that
the wolf is a protected species.)

2. New World puzzle There are four people who want to cross a bridge; they
all begin on the same side. You have 17 minutes to get them all across to
the other side. It is night, and they have one flashlight. A maximum of two
people can cross the bridge at one time. Any party that crosses, either one
or two people, must have the flashlight with them. The flashlight must be
walked back and forth; it cannot be thrown, for example. Person 1 takes 1
minute to cross the bridge, person 2 takes 2 minutes, person 3 takes 5 minutes,
and person 4 takes 10 minutes. A pair must walk together at the rate of the
slower person's pace. For example, if person 1 and person 4 walk across first,
10 minutes have elapsed when they get to the other side of the bridge. If person
4 returns the flashlight, a total of 20 minutes have passed and you have failed
the mission. (Note: According to a rumor on the Internet, interviewers at a
well-known software company located near Seattle have given this problem
to interviewees.)

3. Which of the following formulas can be considered an algorithm for comput
ing the area of a triangle whose side lengths are given positive numbers a, b,
and c?

https://hemanthrajhemu.github.io

ii
i

18 Introduction

a. S = ,j p(p- a)(p- b)(p- c), where p =(a+ b + c)/2

b. S = 1hc sin A, where A is the angle between sides band c

c. S = iaha, where ha is the height to base a

4. Write a pseudocode for an algorithm for finding real roots of equation ax2 +
bx + c = 0 for arbitrary real coefficients a, b, and c. (You may assume the
availability of the square root function sqrt(x).)

5. Describe the standard algorithm for finding the binary representation of a
positive decimal integer
a. in English.

b. in a pseudocode.

6. Describe the algorithm used by your favorite ATM machine in dispensing
cash. (You may give your description in either English or a pseudocode,
whichever you find more convenient.)

7. a. Can the problem of computing the number n be solved exactly?

b. How many instances does this problem have?

c. Look up an algorithm for this problem on the World Wide Web.

8. Give an example of a problem other than computing the greatest common
divisor for which you know more than one algorithm. Which of them is
simpler? Which is more efficient?

9. Consider the following algorithm for finding the distance between the two
closest elements in an array of numbers.

ALGORITHM MinDistance(A[O .. n - 1])

//Input: Array A[O .. n- 1] of numbers
//Output: Minimum distance between two of its elements
dmin +-- oo
fori <--0ton-1do

for} <--0ton-1do
if i I J and IA[i]- A[J]I < dmin

dmin <-- IA[i]- A[J]I
return dmin

Make as many improvements as you can in this algorithmic solution to the
problem. (If you need to, you may change the algorithm altogether; if not,
improve the implementation given.)

10. One of the most influential books on problem solving, titled How to Solve
It [Pol57], was written by the Hungarian-American mathematician George
Polya (1887-1985). Polya summarized his ideas in a four-point summary. Find

https://hemanthrajhemu.github.io

1.3 Important Problem Types 19

this summary on the Web or. better yet. in his book. and compare it with the
plan outlined in Section 1.2. What do they have in common? How are they
different?

1.3 Important Problem Types

In the limitless sea of problems one encounters in computing, there are a few areas
that have attracted particular attention from researchers. By and large, interest
has been driven either by the problem's practical importance or by some specific
characteristics making the problem an interesting research subject; fortunately,
these two motivating forces reinforce each other in most cases.

In this section, we take up the most important problem types:

ill Sorting

"' Searching

" String processing

" Graph problems

" Combinatorial problems

" Geometric problems

"' Numerical problems

These problems are used in subsequent chapters of the book to illustrate different
algorithm design techniques and methods of algorithm analysis.

Sorting

The sorting problem asks us to rearrange the items of a given list in ascending
order. Of course, for this problem to be meaningful, the nature of the list items
must allow such an ordering. (Mathematicians would say that there must exist
a relation of total ordering.) As a practical matter, we usually need to sort lists
of numbers, characters from an alphabet, character strings, and, most important,
records similar to those maintained by schools about their students, libraries about
their holdings, and companies about their employees. In the case of records, we
need to choose a piece of information to guide sorting. For example, we can choose
to sort student records in alphabetical order of names or by student number or by
student grade point average. Such a specially chosen piece of information is called
a key. Computer scientists often talk about sorting a list of keys even when the list's
items are not records but, say, just integers.

Why would we want a sorted list? Well, sorting makes many questions about
the list easier to answer. The most important of them is searching: it is why
dictionaries, telephone books, class lists, and so on are sorted. You will see other

https://hemanthrajhemu.github.io

r .

'
' '

20 Introduction

examples of the usefulness of list presorting in Section 6.1. In a similar vein, sorting
is used as an auxiliary step in several important algorithms in other areas, e.g.,
geometric algorithms.

By now, computer scientists have discovered dozens of different sorting algo
rithms. In fact, inventing a new sorting algorithm has been likened to designing
the proverbial mousetrap. And I am happy to report that the hunt for a better
sorting mousetrap continues. This perseverance is admirable in view of the fol
lowing facts. On the one hand, there are a few good sorting algorithms that sort
an arbitrary array of size n using about n log2 n comparisons. On the other hand,
no algorithm that sorts by key comparisons (as opposed to, say, comparing small
pieces of keys) can do substantially better than that.

There is a reason for this embarrassment of algorithmic riches in the land
of sorting. Although some algorithms are indeed better than others, there is no
algorithm that would be the best solution in all situations. Some of the algorithms
are simple but relatively slow while others are faster but more complex; some
work better on randomly ordered inputs while others do better on almost sorted
lists; some are suitable only for lists residing in the fast memory while others can
be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algo
rithm is called stable if it preserves the relative order of any two equal elements in
its input. In other words, if an input list contains two equal elements in positions
i and j where i < j, then in the sorted list they have to be in positions i' and j',
respectively, such that i' < j'. This property can be desirable if, for example, we
have a list of students sorted alphabetically and we want to sort it according to
student GPA: a stable algorithm will yield a list in which students with the same
GPA will still be sorted alphabetically. Generally speaking, algorithms that can
exchange keys located far apart are not stable but they usually work faster; you
will see how this general comment applies to important sorting algorithms later
in the book.

The second notable feature of a sorting algorithm is the amount of extra
memory the algorithm requires. An algorithm is said to be in place if it does
not require extra memory, except, possibly, for a few memory units. There are
important sorting algorithms that are in place and those that are not.

Searching

The searching problem deals with finding a given value, called a search key, in a
given set (or a multiset, which permits several elements to have the same value).
There are plenty of searching algorithms to choose from. They range from the
straightforward sequential search to a spectacularly efficient but limited binary
search and algorithms based on representing the underlying set in a different form
more conducive to searching. The latter algorithms are of particular importance
for real-life applications because they are indispensable for storing and retrieving
information from large databases.

https://hemanthrajhemu.github.io

1.3 Important Problem Types 21

For searching, too, there is no single algorithm that fits all situations best. Some
algorithms work faster than others but require more memory; some are very fast
but applicable only to sorted arrays; and so on. Unlike with sorting algorithms,
there is no stability problem, but different issues arise. Specifically, in applica
tions where the underlying data may change frequently relative to the uumber
of searches, searching has to be considered in conjunction with two other oper
ations: addition to and deletion from the data set of an item. In such situations,
data structures and algorithms should be chosen to strike a balance among the
requirements of each operation. Also, organizing very large data sets for efficient
searching poses special challenges with important implications for real-life appli
cations.

String Processing

In recent years, the rapid proliferation of applications dealing with nonnumerical
data has intensified the interest of researchers and computing practitioners in
string-handling algorithms. A string is a sequence of characters from an alphabet.
Strings of particular interest are text strings, which comprise letters, numbers, and
special characters; bit strings, which comprise zeros and ones; and gene sequences,
which can be modeled by strings of characters from the four-character alphabet {A,
C, G, T}. It should be pointed out, however, that string-processing algorithms have
been important for computer science for a long time in conjunction with computer
languages and compiling issues.

One particular problem-that of searching for a given word in a text-has
attracted special attention from researchers. They call it string matching. Several
algorithms that exploit the special nature of this type of searching have been
invented. We introduce one very simple algorithm in Chapter 3, and discuss two
algorithms based on a remarkable idea by R. Boyer and J. Moore in Chapter 7.

Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms.
Informally, a graph can be thought of as a collection of points called vertices, some
of which are connected by line segments called edges. (A more formal definition
is given in the next section.) Graphs are an interesting subject to study for both
theoretical and practical reasons. Graphs can be used for modeling a wide variety
of real-life applications, including transportation and communication networks,
project scheduling, and games. One interesting recent application is an estimation
of the Web's diameter, which is the maximum number of links one needs to follow
to reach one Web page from another by the most direct route between them2

2. This number, according to an estimate by a group of researchers at the University of Notre Dame
[Alb99], is just 19.

https://hemanthrajhemu.github.io

22 Introduction

Basic graph algorithms include graph traversal algorithms (How can one
visit all the points in a network?), shortest-path algorithms (What is the best
route between two cities?), and topological sorting for graphs with directed edges
(Is a set of courses with their prerequisites consistent or self-contradictory?).
Fortunately, these algorithms can be considered illustrations of general design
techniques; accordingly, you will find them in corresponding chapters of the book.

Some graph problems are computationally very hard; the most well-known
examples are the traveling salesman problem and the graph-coloring problem.
The traveling salesman problem (TSP) is the problem of finding the shortest
tour through n cities that visits every city exactly once. In addition to obvious
applications involving route planning, it arises in such modern applications as
circuit board and VLSI chip fabrication, X-ray chrystallography, and genetic
engineering. The gmph-coloring problem asks us to assign the smallest number
of colors to vertices of a graph so that no two adjacent vertices are the same
color. This problem arises in several applications, such as event scheduling: if the
events are represented by vertices that are connected by an edge if and only if
the corresponding events cannot be scheduled in the same time, a solution to the
graph-coloring problem yields an optimal schedule.

Combinatorial Problems

From a more abstract perspective, the traveling salesman problem and the graph
coloring problem are examples of combinatorial problems. Tbese are problems
that ask (explicitly or implicitly) to find a combinatorial object-such as a permu
tation, a combination, or a subset-that satisfies certain constraints and has some
desired property (e.g., maximizes a value or minimizes a cost).

Generally speaking, combinatorial problems are the most difficult problems
in computing, from both the theoretical and practical standpoints. Their difficulty
sterns from the following facts. First, the number of combinatorial objects typically
grows extremely fast with a problem's size, reaching unimaginable magnitudes
even for moderate-sized instances. Second, there are no known algorithms for
solving most such problems exactly in an acceptable amount of time. Moreover,
most computer scientists believe that such algorithms do not exist. This conjecture
has been neither proved nor disapproved, and it remains the most important
unresolved issue in theoretical computer science. We discuss this topic in more
detail in Section 11.3.

Some combinatorial problems can be solved by efficient algorithms, but they
should be considered fortunate exceptions to the rule. The shortest -path problem
mentioned earlier is among such exceptions.

Geometric Problems

Geometric algorithms deal with geometric objects such as points, lines, and poly
gons. Ancient Greeks were very much interested in developing procedures (they
did not call them algorithms, of course) for solving a variety of geometric problems,

https://hemanthrajhemu.github.io

1.3 Important Problem Types 23

including problems of constructing simple geometric shapes-triangles, circles,
and so on-with an unmarked ruler and a compass. Then, for about 2000 years,
intense interest in geometric algorithms disappeared, to be resurrected in the age
o£ computers-no more rulers and compasses, just bits, bytes, and good old hu
man ingenuity. 0£ course, today people are interested in geometric algorithms
with quite different applications in mind, such as computer graphics, robotics, and
tomography.

We will discuss algorithms for only two classic problems of computational
geometry: the closest-pair problem and the convex-hull problem. The closest-pair
problem is self-explanatory: given n points in the plane, find the closest pair among
them. The convex-hull problem asks to find the smallest convex polygon that
would include all the points of a given set. If you are interested in other geometric
algorithms, you will find a wealth of material in specialized monographs (e.g.,
[0Ro98]), or corresponding chapters of textbooks organized around problem
types (e.g., [Sed88]).

Numerical Problems

Numerical problems, another large special area of applications, are problems
that involve mathematical objects of continuous nature: solving equations and
systems of equations, computing definite integrals, evaluating functions, and so on.
The majority of such mathematical problems can be solved only approximately.
Another principal difficulty stems from the fact that such problems typically
require manipulating real numbers, which can be represented in a computer only
approximately. Moreover, a large number of arithmetic operations performed on
approximately represented numbers can lead to an accumulation of the round-off
error to a point where it can drastically distort an output produced by a seemingly
sound algorithm.

Many sophisticated algoritluns have been developed over the years in this
area, and they continue to play a critical role in many scientific and engineering
applications. But in the last 25 years or so, the computing industry has shifted
its focus to business applications. These new applications require primarily algo
rithms for information storage, retrieval, transportation through networks, and
presentation to users. As a result of this revolutionary change) numerical analysis
has lost its formerly dominating position in both industry and computer science
programs. Still, it is important for any computer-literate person to have at least a
rudimentary idea about numerical algorithms. We discuss several classical numer
ical algorithms in Sections 6.2, 11.4, and 12.4.

-----Exercises 1 o3 ----------------

1. Consider the algorithm for the sorting problem that sorts an array by counting,
for each of its elements, the number of smaller elements and then uses this
information to put the element in its appropriate position in the sorted array:

https://hemanthrajhemu.github.io

24 Introduction

ALGORITHM ComparisonCountingSort(A[O .. n -1])

//Sorts an array by comparison counting
//Input: Array A[O .. n -1] of orderable values
//Output: Array S[O .. n- 1] of A's elements sorted in nondecreasing order
for i <-- 0 to n - 1 do

C ount[i] <-- 0
for i <-- 0 to n - 2 do

for j +-- i + 1 to n - 1 do
if A[i] < A[j]

Count[j] <-- Count[j] + 1
else Count[i] +-- Count[i] + 1

fori +-0ton-1do
S[Count[i]] <-- A[i]

returnS

' ' \ ..
':!\,.I./!

a. Apply this algorithm to sorting the list 60, 35, 81, 98, 14, 47.

b. Is this algorithm stable?

c. Is it in place?

2. Name the algorithms for the searching problem that you already know. Give
a good succinct description of each algorithm in English. (If you know no such
algorithms, use this opportunity to design one.)

3. Design a simple algorithm for the string-matching problem.

4. Konigsberg bridges The Konigsberg bridge puzzle is universally accepted
as the problem that gave birth to graph theory. It was solved by tbe great
Swiss-born mathematician Leonhard Euler (1707-1783). The problem asked
whether one could, in a single stroll, cross all seven bridges of the city of
Konigsberg exactly once and return to a starting point. Following is a sketch
of the river with its two islands and seven bridges:

a. State the problem as a graph problem.

b. Does this problem have a solution? If you believe it does, draw such a stroll;
if you believe it does not, explain why and indicate the smallest number of
new bridges that would be required to make such a stroll possible.

II
li
!I
I https://hemanthrajhemu.github.io

1.3 Important Problem Types 25

5. Icosian Game A century after Euler's discovery (see Problem 4), another
famous puzzle-this one invented by the renown Irish mathematician Sir
William Hamilton (1805-1865)-was presented to the world under the name
of the Icosian Game. The game was played on a circular wooden board on
which the following graph was carved:

Find a Hamiltonian circuit-a path that visits all the graph's vertices exactly
once before returning to the starting vertex-for this graph.

6. Consider the following problem: Design an algorithm to determine the best
route for a subway passenger to take from one designated station to another in
a well-developed subway system similar to those in such cities as Washington,
D.C., and London, UK.

a. The problem's statement is somewhat vague, which is typical of real-life
problems. In particular, what reasonable criterion can be used for defining
the "best" route?

b. How would you model this problem by a graph?

7. a. Rephrase the traveling salesman problem in combinatorial object terms.

b. Rephrase the graph-coloring problem in combinatorial object terms.

8. Consider the following map:

https://hemanthrajhemu.github.io

i' , I

26 Introduction

a. Explain how we can use the graph-coloring problem to color the map so
that no two neighboring regions are colored the same.

b. Use your answer to part (a) to color the map with the smallest number of
colors.

9. Design an algorithm for the following problem: Given a set of n points in the
Cartesian plane, determine whether all of them lie on the same circumference.

10. Write a program that reads as its inputs the (x, y) coordinates of the endpoints
of two line segments P1Q1 and P2Q2 and determines whether the segments
have a common point.

1 .4 Fundamental Data Structures

Since the vast majority of algorithms of interest operate on data, particular ways of
organizing data play a critical role in the design and analysis of algorithms. A data
structure can be defined as a particular scheme of organizing related data items.
The nature of the data items is dictated by a problem at hand; they can range
from elementary data types (e.g., integers or characters) to data structures (e.g., a
one-dimensional array of one-dimensional arrays is often used for implementing
matrices). There are a few data structures that have proved to be particularly
important for computer algorithms. Since you are undoubtedly familiar with most
if not all of them, just a quick review is provided here.

Linear Data Structures

The two most important elementary data structures are the array and the linked
list. A (one-dimensional) array is a sequence of n items of the same data type that
are stored contiguously in computer memory and made accessible by specifying a
value of the array's index (Figure 1.3).

In the majority of cases, the index is an integer either between 0 and n - 1
(as shown in Figure 1.3) or between 1 and n. Some computer languages allow an
array index to range between any two integer bounds low and high, and some even
permit nonnumerical indices to specify, for example, data items corresponding to
the 12 months of the year by the month names.

Item 101 Item [11 Item [o-11

FIGURE 1.3 Array of n elements

https://hemanthrajhemu.github.io

1.4 Fundamental Data Structures 27

FIGURE 1.4 Singly linked list of n elements

Each and every element of an array can be accessed in the same constant
amount of time regardless of where in the array the element in question is located.
This feature positively distinguishes arrays from linked lists (see below). It is also
assumed that every element of an array occupies the same amount of computer
storage.

Arrays are used for implementing a variety of other data structures. Promi
nent among them is the string, a sequence of characters from an alphabet termi
nated by a special character indicating the string's end. Strings composed of zeros
and ones are called binary strings or bit strings. Strings are indispensable for pro
cessing textual data, defining computer languages and compiling programs written
in them, and studying abstract computational models. Operations we usually per
form on strings differ from those we typically perform on other arrays (say, arrays
of numbers). They include computing the string length, comparing two strings to
determine which one precedes the other according to the so-called lexicographic
order, i.e., in a dictionary, and concatenating two strings (forming one string from
two given strings by appending the second to the end of the first).

A linked list is a sequence of zero or more elements called nodes each
containing two kinds of information: some data and one or more links called
pointers to other nodes of the linked list. (A special pointer called "null" is used
to indicate the absence of a node's successor.) In a singly linked list, each node
except the last one contains a single pointer to the next element (Figure 1.4).

To access a particular node of a linked list, we start with the list's first node
and traverse the pointer chain until the particular node is reached. Thus, the time
needed to access an element of a singly linked list, unlike that of an array, depends
on where in the list the element is located. On the positive side, linked lists do
not require any preliminary reservation of the computer memory, and insertions
and deletions can be made quite efficiently in a linked list by reconnecting a few
appropriate pointers.

We can exploit flexibility of the linked list structure in a variety of ways. For
example, it is often convenient to start a linked list with a special node called
the header. This node often contains information about the linked list such as its
current length; it may also contain, in addition to a pointer to the first element, a
pointer to the linked list's last element.

Another extension is the structure called the doubly linked list, in which every
node, except the first and the last, contains pointers to both its successor and its
predecessor (Figure 1.5).

The array and linked list are two principal choices in representing a more
abstract data structure called a linear list or simply a list. A list is a finite sequence

https://hemanthrajhemu.github.io

28

~ I

Introduction

-lnulll/temO I Fl·l/tem11 J- · · · ~1·1/temn-++-
FIGURE 1.5 Doubly linked list of n elements

of data items, i.e., a collection of data items arranged in a certain linear order. The
basic operations performed on this data structure are searching for, inserting, and
deleting an element.

Two special types of lists, stacks and queues, are particularly important. A
stack is a list in which insertions and deletions can be done only at the end. This end
is called the top because a stack is usually visualized not horizontally but vertically
(akin to a stack of plates whose "operations" it mimics very closely). As a result,
when elements are added to (pushed onto) a stack and deleted from (popped off)
it, the structure operates in the "last-in-first-out" (LIFO) fashion, exactly as the
stack of plates does if we can remove only the top plate or add another plate to
top of the stack. Stacks have a multitude of applications; in particular, they are
indispensable for implementing recursive algorithms.

A queue, on the other hand, is a list from which elements are deleted from
one end of the structure, called the front (this operation is called dequeue),
and new elements are added to the other end, called the rear (this operation is
called enqueue). Consequently, a queue operates in the "first -in-first-out" (FIFO)
fashion (akin, say, to a queue of customers served by a single teller in a bank).
Queues also have many important applications, including several algorithms for
graph problems.

Many important applications require selection of an item of the highest prior
ity among a dynamically changing set of candidates. A data structure that seeks to
satisfy the needs of such applications is called a priority queue. A priority queue
is a collection of data items from a totally ordered universe (most often, inte
ger or real numbers). The principal operations on a priority queue are finding its
largest element, deleting its largest element, and adding a new element. Of course,
a priority queue must be implemented so that the last two operations yield an
other priority queue. Straightforward implementations of this data structure can
be based on either an array or a sorted array, but neither of these options yields
the most efficient solution possible. A better implementation of a priority queue
is based on an ingenious data structure called the heap. We discuss heaps (and an
important sorting algorithm based on them) in Section 6.4.

Graphs
As mentioned in the previous section, a graph is informally thought of as a collec
tion of points in the plane called "vertices" or "nodes," some of them connected
by line segments called "edges" or "arcs." Formally, a graph G = {V, E) is defined
by a pair of two sets: a finite set V of items called vertices and a set E of pairs

https://hemanthrajhemu.github.io

1.4 Fundamental Data Structures 29

of these items called edges. lf these pairs of vertices are unordered, i.e., a pair of
vertices (u, v) is the same as the pair (v, u), we say that the vertices u and v are
adjacent to each other and that they are connected by the undirected edge (u, v).
We call the vertices u and v endpoints of the edge (u, v) and say that u and v are
incident to this edge; we also say that the edge (u, v) is incedent to its endpoints
u and v. A graph G is called undirected if every edge in it is undirected.

If a pair of vertices (u, v) is not the same as the pair (v, u), we say that the edge
(u, v) is directed from the vertex u, called the edge's tail, to the vertex v, called
the edge's head. We also say that the edge (u, v) leaves u and enters v. A graph
whose every edge is directed is called directed. Directed graphs are also called
digraphs.

It is normally convenient to label vertices of a graph or a digraph with letters,
integer numbers, or, if an application calls for it, character strings (Figure 1.6). The
graph in Figure 1.6a has six vertices and seven edges:

V ={a, b, c, d, e, f), E ={(a, c), (a, d), (b, c), (b, f), (c, e), (d, e), (e, f)).

The digraph in Figure 1.6b has six vertices and eight directed edges:

V ={a, b, c, d, e, f),

E ={(a, c), (b, c), (b, f), (c, e), (d, a), (d, e), (e, c), (e, f)).

Our definition of a graph does not forbid loops, or edges connecting vertices
to themselves. Unless explicitly stated otherwise, we will consider graphs without
loops. Since our definition disallows multiple edges between the same vertices of
an undirected graph, we have the following inequality for the number of edges IE I
possible in an undirected graph with IV I vertices and no loops:

0 :<:lEIs IVICIVI- 1)/2.

(We get the largest number of edges in a graph if there is an edge connecting
each of its 1 V 1 vertices with all IV I - 1 other vertices. We have to divide product
IVICIVI - 1) by 2, however, because it includes every edge twice.)

A graph with every pair of its vertices connected by an edge is called complete.
A standard notation for the complete graph with lVI vertices is KIVI· A graph
with relatively few possible edges missing is called dense; a graph with few edges

(a) (b)

FIGURE 1.6 (a) Undirected graph. (b) Digraph.

https://hemanthrajhemu.github.io

30 Introduction

a b c d e f
a 0 0 0 0 -7 c -7 d
b 0 0 0 0 1 -7 c -7 f
c 0 0 0 -7 a -7 b -7 e
d 0 0 0 0 -7 a -7 e
e 0 0 0 1 -7 c -7 d -7 f
f 0 0 0 0 -7 b -7 e

(a) (b)

FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph in Figure 1.6a

relative to the number of its vertices is called sparse. Whether we are dealing with
a dense or sparse graph may influence how we choose to represent the graph and,
consequently, the running time of an algorithm being designed or used.

Graph representations Graphs for computer algorithms can be represented in
two principal ways: the adjacency matrix and adjacency lists. The adjacency matrix
of a graph with n vertices is an n-by-n boolean matrix with one row and one
column for each of the graph's vertices, in which the element in the ith row
and the jth column is equal to 1 if there is an edge from the ith vertex to the
jth vertex, and equal to 0 if there is no such edge. For example, the adjacency
matrix for the graph in Figure 1.6a is given in Figure 1.7a. Note that the adjacency
matrix of an undirected graph is always symmetric, i.e., A[i, j] = A[j, i] for every
0 :0 i, j :0 n - 1 (why?).

The adjacency lists of a graph or a digraph is a collection of linked lists,
one for each vertex, that contain all the vertices adjacent to the list's vertex
(i.e., all the vertices connected to it by an edge). Usually, such lists start with a
header identifying a vertex for which the list is compiled. For example, Figure 1.7b
represents the graph in Figure 1.6a via its adjacency lists. To put it another way,
adjacency lists indicate columns of the adjacency matrix that, for a given vertex,
contain 1 's.

If a graph is sparse, the adjacency list representation may use less space
than the corresponding adjacency matrix despite the extra storage consumed by
pointers of the linked lists; the situation is exactly opposite for dense graphs. In
general, which of the two representations is more convenient depends on the
nature of the problem, on the algorithm used for solving it, and, possibly, on the
type of input graph (sparse or dense).

Weighted graphs A weighted graph (or weighted digraph) is a graph (or digraph)
with numbers assigned to its edges. These numbers are called weights or costs. An
interest in such graphs is motivated by numerous real-life applications, such as
finding the shortest path between two points in a transportation or communication
network or the traveling salesman problem mentioned earlier.

https://hemanthrajhemu.github.io

1.4 Fundamental Data Structures 31

!~
a b c d

r 5

I] m
---7b,5---7C,1

1 4
b 5 00 7 --7 a, 5 ---7 c, 7 -;. d, 4
c 1 7 00 -> a, 1 -. b, 7 -. d, 2

2
d 00 4 2 -;> b, 4 -;> C, 2

(a) (b) (c)

FIGURE 1.8 (a) Weighted graph. (b) Its weight matrix. (c) Its adjacency lists.

Both principal representations of a graph can be easily adopted to accommo
date weighted graphs. If a weighted graph is represented by its adjacency matrix,
then its element A[i, j] will simply contain the weight of the edge from the ith to
the jth vertex if there is such an edge and a special symbol, e.g., co, if there is no
such edge. Such a matrix is called the weight matrix or cost matrix. This approach
is illustrated in Figure l.Sb. (For some applications, it is more convenient to put
O's on the main diagonal of the adjacency matrix.) Adjacency lists for a weighted
graph have to include in their nodes not only the name of an adjacent vertex but
also the weight of the corresponding edge (Figure 1.8c).

Paths and cycles Among many interesting properties of graphs, two are impor
tant for a great number of applications: connectivity and acyclicity. Both are based
on the notion of a path. A path from vertex u to vertex v of a graph G can be de
tined as a sequence of adjacent (connected by an edge) vertices that starts with u
and ends with v. If all vertices of a path are distinct, the path is said to be simple.
The length of a path is the total number of vertices in a vertex sequence defining
the path minus one, which is the same as the number of edges in the path. For ex
ample, a, c, b, f is a simple path oflength 3 from a to fin the graph of Figure 1.6a,
whereas a, c, e, c, b, f is a path (not simple) oflength 5 from a to f.

In the case of a directed graph, we are usually interested in directed paths.
A directed path is a sequence of vertices in which every consecutive pair of the
vertices is connected by an edge directed from the vertex listed first to the vertex
listed next. For example, a, c, e, f is a directed path from a to fin the graph of
Figure 1.6b.

A graph is said to be connected if for every pair of its vertices u and v there is
a path from u to v. Informally, this property means that if we make a model of a
connected graph by connecting some balls representing the graph's vertices with
strings representing the edges, it will be a single piece. If a graph is not connected,
such a model will consist of several connected pieces that are called connected
components of the graph. Formally, a connected component is a maximal (not

https://hemanthrajhemu.github.io

32 Introduction

f

g h

FIGURE 1.9 Graph that is not connected

expandable via an inclusion of an extra vertex) connected subgraph3 of a given
graph. For example, the graphs of Figures 1.6a and l.Sa are connected, while the
graph in Figure 1.9 is not because there is no path, for example, from a to f. The
graph in Figure 1.9 has two connected components with vertices (a, b, c, d, e) and
(f, g, h, i], respectively.

Graphs with several connected components do happen in real-life applica
tions. A graph representing the Interstate highway system of the United States
would be an example (why?).

It is important to know for many applications whether or not a graph under
consideration has cycles. A cycle is a path of a positive length that starts and ends at
the same vertex and does not traverse the same edge more than once. For example,
j, h, i, g, .f is a cycle in the graph of Figure 1.9. A graph with no cycles is said to
be acyclic. We discuss acyclic graphs in the next subsection.

Trees

A tree (more accurately, afree tree) is a connected acyclic graph (Figure l.lOa).
A graph that has no cycles but is not necessarily connected is called a forest: each
of its connected components is a tree (Figure l.lOb).

Trees have several important properties other graphs do not have. In par
ticular, the number of edges in a tree is always one less than the number of its
vertices:

lEI= IVI-1.

As the graph of Figure 1.9 demonstrates, this property is necessary but not suffi
cient for a graph to be a tree. However, for connected graphs it is sufficient and
hence provides a convenient way of checking whether a connected graph has a
cycle.

3. Asubgraph of a given graph G = (V, E) is a graph G' = (V', E'} such that V' ~VandE'£;; E.

https://hemanthrajhemu.github.io

1.4 Fundamental Data Structures 33

(a) (b)

FIGURE 1.10 (a) Tree. (b) Forest.

e

f

h

(a) (b)

FIGURE 1.11 (a) Free tree. (b) Its transformation into a rooted tree.

Rooted trees Another very important property of trees is the fact that for every
two vertices in a tree, there always exists exactly one simple path from one of these
vertices to the other. This property makes it possible to select an arbitrary vertex
in a free tree and consider it as the root of the so-called rooted tree. A rooted tree
is usually depicted by placing its root on the top (level 0 of the tree), the vertices
adjacent to the root below it (Ievell), the vertices two edges apart from the root
below that (level2), and so on. Figure 1.11 presents such a transformation from a
free tree to a rooted tree.

Rooted trees play a very important role in computer science, a much more
important one than free trees do; in fact, for the sake of brevity, they are often
referred to as simply "trees." Obvious applications of trees are for describing
hierarchies, from file directories to organizational charts of enterprises. There are
many less obvious applications, such as implementing dictionaries (see below),
efficient storage of very large data sets (Section 7.4), and data encoding (Section
9.4). As we discuss in Chapter 2, trees also are helpful in analysis of recursive
algorithms. To finish this far-from-complete list of tree applications, we should

https://hemanthrajhemu.github.io

,
'i
[!

' !i
!I

34 Introduction

mention the so-called state-space trees that underline two important algorithm
design techniques: backtracking and branch-and-bound (Sections 12.1 and 12.2).

For any vertex v in a tree T, all the vertices on the simple path from the root to
that vertex are called ancestors of v. The vertex itself is usually considered its own
ancestor; the set of ancestors that excludes the vertex itself is referred to as proper
ancestors. If (u, v) is the last edge of the simple path from the root to vertex v (and
u ,P v), u is said to be the parent of v and vis called a child of u; vertices that have
the same parent are said to be siblings. A vertex with no children is called a leaf; a
vertex with at least one child is called parental. All the vertices for which a vertex
v is an ancestor are said to be descendants of v; the proper descendants exclude
the vertex v itself. All the descendants of a vertex v with all the edges connecting
them form the subtree ofT rooted at that vertex. Thus, for the tree of Figure 1.11b,
the root of the tree is a; vertices d, g, .f, h, and i are leaves, while vertices a, b, e,
and c are parental; the parent of his a; the children of b are c and g; the siblings
of bared and e; the vertices of the subtree rooted at bare {b. c, g, h, i).

The depth of a vertex vis the length of the simple path from the root to v. The
height of a tree is the length of the longest simple path from the root to a leaf. For
example, the depth of vertex c in the tree in Figure 1.1lb is 2, and the height of
the tree is 3. Thus, if we count tree levels top down starting with 0 for the root's
level, the depth of a vertex is simply its level in the tree, and the tree's height is the
maximum level of its vertices. (You should be alert to the fact that some authors
define the height of a tree as the number of levels in it; this makes the height of
a tree larger by 1 than the height defined as the length of the longest simple path
from the root to a leaf.)

Ordered trees An ordered tree is a rooted tree in which all the children of each
vertex are ordered. It is convenient to assume that in a tree's diagram, all the 1·· .•

children are ordered left to right. A binary tree can be defined as an ordered tree
in which every vertex has no more than two children and each child is designated
as either a left child or a right child of its parent. The subtree with its root at
the left (right) child of a vertex is called the left (right) subtree of that vertex. An
example of a binary tree is given in Figure 1.12a.

5

7 10

4

(a) (b)

FIGURE 1.12 (a) Binary tree. (b) Binary search tree.

https://hemanthrajhemu.github.io

1.4 Fundamental Data Structures 35

In Figure 1.12b, some numbers are assigned to vertices of the binary tree in
Figure 1.12a. Note that a number assigned to each parental vertex is larger than all
the numbers in its left subtree and smaller than all the numbers in its right subtree.
Such trees are called binary search trees. Binary trees and binary search trees have
a wide variety of applications in computer science; you will encounter some of
them throughout the book. In particular, binary search trees can be generalized
to more general kinds of search trees called multiway sew·ch trees, which are
indispensable for efficient storage of very large files on disks.

As you will see later in the book, the efficiency of most important algorithms
for binary search trees and their extensions depends on the tree's height. There
fore, the following inequalities for the height h of a binary tree with n nodes are
especially important for analysis of such algorithms:

Llog2 nj :5: h :5: n- 1.

A binary tree is usually implemented for computing purposes by a collection
of nodes corresponding to vertices of the tree. Each node contains some informa
tion associated with the vertex (its name or some value assigned to it) and two
pointers to the nodes representing the left child and right child of the vertex, re
spectively. Figure 1.13 illustrates such an implementation for the binary search
tree in Figure 1.12b.

A computer representation of an arbitrary ordered tree can be done by simply
providing a parental vertex with the number of pointers equal to the number of
its children. This representation may prove to be inconvenient if the number of
children varies widely among the nodes. We can avoid this inconvenience by using
nodes with just two pointers, as we did for binary trees. Here, however, the left
pointer will point to the first child of the vertex, while the right pointer will point

FIGURE 1.13 Standard implementation of the binary search tree in Figure 1 12b

https://hemanthrajhemu.github.io

r ":" 36 Introduction

a

null b

null c d

o-t--->1 null h g e

f

(a) (b)

FIGURE 1.14 {a) First child-next sibling representation of the graph in Figure 1.11b.
{b) Its binary tree representation.

to its next sibling. Accordingly, this representation is called the first child-next
sibling representation. Thus, all the siblings of a vertex are linked (via the nodes'
right pointers) in a singly linked list, with the first element of the list pointed
to by the left pointer of their parent. Figure 1.14a illustrates this representation
for the tree in Figure l.llb. It is not difficult to see that this representation
effectively transforms an ordered tree into a binary tree said to be associated with
the ordered tree. We get this representation by "rotating" the pointers about 45
degrees clockwise (see Figure 1.14b).

Sets and Dictionaries

The notion of a set plays a central role in mathematics. A set can be described
as an unordered collection (possibly empty) of distinct items called elements of
the set. A specific set is defined either by an explicit listing of its elements (e.g.,
S = {2, 3, 5, 7}) or by specifying a property that all the set's elements and only they
must satisfy (e.g., S = {n: n is a prime number and n < 10}). The most important set
operations are checking membership of a given item in a given set (whether a given

l
I
I
I

t
I
'

item is among the elements of the set), finding the union of two sets (which set I
comprises all the elements that belong to either of the two sets or to both of them), .·,::.·_ .•.
and finding the intersection of two sets (which set comprises all the elements that
belong to both sets). .1.

Sets can be implemented in computer applications in two ways. The first ..
considers only sets that are subsets of some large set U, called the universal set.

https://hemanthrajhemu.github.io

1.4 Fundamental Data Structures 37

If set U has 11 elements, then any subset S of U can be represented by a bit
string of size 11, called a bit vector, in which the ith element is 1 if and only if
the ith element of U is included in set S. Thus, to continue with our example, if
U = (1, 2, 3, 4, 5, 6, 7, 8, 9], then S = (2, 3, 5, 7] will be represented by the bit
string 011010100. This way of representing sets makes it possible to implement
the standard set operations very fast but at the expense of potentially using a large
amount of storage.

The second and more common way to represent a set for computing purposes
is to use the list structure to indicate the set's elements. (Of course, this option,
too, is feasible only for finite sets; fortunately, unlike mathematics, this is the kind
of sets most computer applications need.) Note, however, the two principal points
of distinction between sets and lists. First, a set cannot contain identical elements;
a list can. This requirement for uniqueness is sometimes circumvented by the
introduction of a multiset or a bag, an unordered collection of items that are not
necessarily distinct. Second, a set is an unordered collection of items; therefore,
changing the order of its elements does not change the set. A list, defined as an
ordered collection of items, is exactly the opposite. This is an important theoretical
distinction, but fortunately it is not important for many applications. It is also
worth mentioning that if a set is represented by a list, depending on the application
at hand, it might be worth maintaining the list in a sorted order.

In computing, the operations we need to perform for a set or a multiset most
often are searching for a given item, adding a new item, and deleting an item
from the collection. A data structure that implements these three operations is
called the dictionary. Note the relationship between this data structure and the
problem of searching mentioned in Section 1.3; obviously, we are dealing here
with searching in a dynamic context. Consequently, an efficient implementation
of a dictionary has to strike a compromise between the efficiency of searching and
the efficiencies of the other two operations. There are quite a few ways a dictionary
ean be implemented. They range from an unsophisticated use of arrays (sorted or
not) to much more sophisticated techniques such as hashing and balanced search
trees, which we discuss later in the book.

A number of applications in computing require a dynamic partition of some
n-element set into a collection of disjoints subsets. After being initialized as a
collection of n one-element subsets, the collection is subjected to a sequence of
intermixed union and search operations. This problem is called the set union
problem. We discuss efficient algorithmic solutions to this problem in Section 9.2
in conjunction with one of its most important applications.

You may have noticed that in our review of basic data structures we almost
always mentioned specific operations that are typically performed for the struc
ture in question. This intimate relationship between data and operations has been
recognized by computer scientists for a long time. It has led them in particular
to the idea of an abstmct data type (ADT): a set of abstract objects represent
ing data items with a collection of operations that can be performed on them.
As illustrations of this notion, reread, say, our definitions of priority queue and

https://hemanthrajhemu.github.io

1:

38 Introduction

dictionary. Although abstract data types could be implemented in older procedu
rallanguages such as Pascal (see, e.g., [Aho83]), it is much more convenient to do
so in object -oriented languages, such as C++ and Java, that support abstract data
types by means of classes.

-----Exercises 1.4----------------

1. Describe how one can implement each of the following operations on an array
so that the time it takes does not depend on the array's size n.

a. Delete the ith element of an array (1 sis n).

b. Delete the ith element of a sorted array (the remaining array has to stay
sorted, of course).

2. If you have to solve the searching problem for a list of n numbers, how can you
take advantage of the fact that the list is known to be sorted? Give separate
answeTs for
a. lists represented as arrays.

b. lists represented as linked lists.

3. a. Show the stack after each operation of the following sequence that starts
with the empty stack:

push(a), push(b), pop, push(c), push(d), pop

b. Show the queue after each operation of the following sequence that starts
with the empty queue:

enqueue(a), enqueue(b), dequeue, enqueue(c), enqueue(d), dequeue

4. a. Let A be the adjacency matrix of an undirected graph. Explain what prop-
erty of the matrix indicates that

i. the graph is complete.
ii. the graph has a loop, i.e., an edge connecting a vertex to itself.
iii. the graph has an isolated vertex, i.e., a vertex with no edges incident

to it.

b. Answer the same questions for the adjacency list representation.

5. Give a detailed description of an algorithm for transforming a free tree into
a tree rooted at a given vertex of the free tree.

6. Prove the inequalities that bracket the height of a binary tree with n vertices:

Llog2 n J s h s n - 1.

7. Indicate how the ADT priority queue can be implemented as

1

I
I il

ll
1!

I
I . . .

https://hemanthrajhemu.github.io

Summary 39

a. an (unsorted) array.

b. a sorted array.

c. a binary search tree.

8. How would you implement a dictionary of a reasonably small size n if you
knew that all its elements are distinct (e.g., names of 50 states of the United
States)? Specify an implementation of each dictionary operation.

9. For each of the following applications, indicate the most appropriate data
structure:
a. answering telephone calls in the order of their known priorities

b. sending backlog orders to customers in the order they have been received

c. implementing a calculator for computing simple arithmetical expressions

10. Anagram checking Design an algorithm for checking whether two given
words are anagrams, i.e., whether one word can be obtained by permuting
the letters of the other. (For example, the words tea and eat are anagrams.)

SUMMARY

il An algorithm is a sequence of nonarnbiguous instructions for solving a
problem in a fmite amount of time. An input to an algorithm specifies an
instance o[the problem the algorithm solves.

" Algorithms can be specified in a natural language or a pseudocode; they can
also be implemented as computer programs.

" Among several ways to classify algorithms, the two principal alternatives are:
to group algorithms according to types of problems they solve;

- to group algorithms according to underlying design techniques they are
based upon.

II The important problem types are sorting, searching, string processing, graph
problems, combinatmial problems, geometric problems, and numerical
problems.

" Algorithm design techniques (or "strategies" or "paradigms") are general
approaches to solving problems algorithmically, applicable to a variety of
problems from different areas of computing.

" Although designing an algorithm is undoubtedly a creative activity, one can
identify a sequence of interrelated actions involved in such a process. They
are summarized in Figure 1.2.

11 A good algorithm is usually a result of repeated efforts and rework.

--,

https://hemanthrajhemu.github.io

40 Introduction

" The same problem can often be solved by several algorithms. For example,
three algorithms were given for computing the greatest common divisor of
two integers: Euclid's algorithm, the consecutive integer checking algorithm,
and the middle-school algorithm (enhanced by the sieve of Eratosthenes for
generating a list of primes).

" Algorithms operate on data. This makes the issue of data structuring critical
for efficient algorithmic problem solving. The most important elementary data
structures are the array and the linked list. They are used for representing
more abstract data structures such as the list, the stack, the queue, the graph
(via its adjacency matrix or adjacency lists), the binary tree, and the set.

" An abstract collection of objects with several operations that can be per
formed on them is called an abstract data type (ADT). The list, the stack, the
queue, the priority queue, and the dictionary are important examples of ab
stract data types. Modem object-oriented languages support implementation
of ADTs by means of classes.

https://hemanthrajhemu.github.io

Fundamentals of
the Analysis of
Algorithm Efficiency

I often say that when you can measure what you are speaking about and
express it in numbers you know something about it; but when you can
not express it in numbers your knowledge is a meagre and unsatisfactory
kind: it may be the beginning of knowledge but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter may be.

-Lord Kelvin {1824-19071

Not everything that can be counted counts, and not everything that counts
can be counted.

-Albert Einstein {1879-1955)

T his chapter is devoted to analysis of algorithms. The American Heritage Dic
tionary defines "analysis" as "the separation of an intellectual or substantial

whole into its constituent parts for individual study." Accordingly, each of the prin
cipal dimensions of an algorithm pointed out in Section 1.2 is both a legitimate and
desirable subject of study. But the term "analysis of algorithms" is usually used in
a narrower technical sense to mean an investigation of an algorithm's efficiency
with respect to two resources: running time and memory space. This emphasis on
efficiency is easy to explain. First, unlike such dimensions as simplicity and gen
erality, efficiency can be studied in precise quantitative terms. Second, one can
argue-although this is hardly always the case, given the speed and memory of
today's computers-that the efficiency considerations are of primary importance
from the practical point of view. In this chapter, we too limit the discussion to an
algorithm's efficiency.

41

https://hemanthrajhemu.github.io

rr·
!

42 Fundamentals of the Analysis of Algorithm Efficiency

We start with a general framework for analyzing algorithm efficiency in Sec
tion 2.1. This section is arguably the most important in the chapter; the funda
mental nature of the topic makes it also one of the most important sections in the
entire book.

In Section 2.2, we introduce three notations: 0 ("big oh"), Q ("big omega"),
and 19 ("big theta"). Borrowed from mathematics, these notations have become
the language for discussing an algorithm's efficiency.

In Section 2.3, we show how the general framework outlined in Section 2.1 can
be systematically applied to analyzing the efficiency of nourecursive algorithms.
The main tool of such an analysis is setting up a sum representing the algorithm's
running time and then simplifying the sum by using standard sum manipulation
techniques.

In Section 2.4, we show how the general framework outlined in Section 2.1
can be systematically applied to analyzing the efficiency of recursive algorithms.
Here, the main tool is not a sum but a special kind of equation called a recur
rence relation. We explain how such recurrence relations can be set up and then
introduce a method for solving them.

Although we illustrate the analysis framework and the methods of its appli
cations by a variety of examples in the first four sections of this chapter, Section
2.5 is devoted to yet another example-that of the Fibonacci numbers. Intro
duced 800 years ago, this remarkable sequence appears in a variety of applications
both within and outside computer science. A discussion of the Fibonacci sequence
serves as a natural vehicle for introducing an important class of recurrence rela
tions not solvable by the method of Section 2.4. We also discuss several algorithms
for computing the Fibonacci numbers, mostly for the sake of a few general obser
vations about the efficiency of algorithms and methods of analyzing them.

The methods of Sections 2.3 and 2.4 provide a powerful technique for analyz
ing the efficiency of many algorithms with mathematical clarity and precision, but
these methods are far from being foolproof. The last two sections of the chapter
deal with two approaches-empirical analysis and algorithm visualization-that
complement the pure mathematical techniques of Sections 2.3 and 2.4. Much
newer and, hence, less developed than their mathematical counterparts, these ap
proaches promise to play au important role among the tools available for analysis
of algorithm efficiency.

2.1 Analysis Framework

In this section, we outline a general framework for analyzing the efficiency of algo
rithms. To begin with, there are two kinds of efficiency: time efficiency and space
efficiency. Time efficiency indicates how fast an algorithm in question runs; space
efficiency deals with the extra space the algorithm requires. In the early days of
electronic computing, both resources-time and space-were at a premium. Half

l
I
I
I

I
~
l'
~
I'

II

il
]!
Ui ,, https://hemanthrajhemu.github.io

2.1 Analysis Framework 43

a century of relentless technological innovations have improved the computer's
speed and memory size by many orders of magnitude. Now the amount of extra
space required by an algorithm is typically not of as much concern, with the caveat
that there is still, of course, a difference between the fast main memory, the slower
secondary memory, and the cache. The time issue has not diminished quite to the
same extent, however. In addition, the research experience has shown that for
most problems, we can achieve much more spectacular progress in speed than in
space. Therefore, following a well-established tradition of algorithm textbooks, we
primarily concentrate on time efficiency, but the analytical framework introduced
here is applicable to analyzing space efficiency as well.

Measuring an Input's Size

Let us start with the obvious observation that almost all algorithms run longer
on larger inputs. For example, it takes longer to sort larger arrays, multiply larger
matrices, and so on. Therefore, it is logical to investigate an algorithm's efficiency
as a function of some parameter n indicating the algorithm's input size.1 In most
cases, selecting such a parameter is quite straightforward. For example, it will be
the size of the list for problems of sorting, searching, finding the list's smallest
element, and most other problems dealing with lists. For the problem of evaluating
a polynomial p(x) = a,x" + · · · + a0 of degree n, it will be the polynomial's degree
or the number of its coefficients, which is larger by one than its degree. You will
see from the discussion that such a minor difference is inconsequential for the
efficiency analysis.

There are situations, of course,. where the choice of a parameter indicating
an input size does matter. One such example is computing the product of two n
by-n matrices. There are two natural measures of size for this problem. The first
and more frequently used is the matrix order n. But the other natural contender
is the total number of elements N in the matrices being multiplied. (The latter
is also more general since it is applicable to matrices that are not necessarily
square.) Since there is a simple formula relating these two measures, we can easily
switch from one to the other, but the answer about an algorithm's efficiency will
be qualitatively different depending on which of the two measures we use (see
Problem 2 in Exercises 2.1).

The choice of an appropriate size metric can be influenced by operations of
the algorithm in question. For example, how should we measure an input's size
for a spell-checking algorithm? If the algorithm examines individual characters of
its input, then we should measure the size by the number of characters; if it works
by processing words, we should count their number in the input.

1. Some algorithms require more than one parameter to indicate the size of their inputs (e.g., the number
of vertices and the number of edges for algorithms on graphs represented by adjacency lists).

https://hemanthrajhemu.github.io

44 Fundamentals of the Analysis of Algorithm Efficiency

We should make a special note about measuring the size of inputs for algo
rithms involving properties of numbers (e.g., checking whether a given integer n
is prime). For such algorithms, computer scientists prefer measuring size by the
number b of bits in then's binary representation:

b= Llog2 nJ +1. (2.1)

This metric usually gives a better idea about the efficiency of algorithms in ques
tion.

Units for Measuring Running lime

The next issue concerns units for measuring an algorithm's running time. Of
course, we can simply use some standard unit of time measurement-a second,
a millisecond, and so on-to measure the running time of a program implement
ing the algorithm. There are obvious drawbacks to such an approach, however:
dependence on the speed of a particular computer, dependence on the quality of
a program implementing the algorithm and of the compiler used in generating the
machine code, and the difficulty of clocking the actual running time of the pro
gram. Since we are after a measure of an algorithm's efficiency, we would like to
have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each of the algorithm's
operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important
operation of the algorithm, called the basic operation, the operation contributing
the most to the total running time, and compute the number of times the basic
operation is executed.

As a rule, it is not difficult to identify the basic operation of an algorithm:
it is usually the most time-consuming operation in the algorithm's innermost
loop. For example, most sorting algorithms work by comparing elements (keys)
of a list being sorted with each other; for such algorithms, the basic operation
is a key comparison. As another example, algorithms for matrix multiplication
and polynomial evaluation require two arithmetic operations: multiplication and
addition. On most computers, multiplication of two numbers takes longer than
addition, making the former an unquestionable choice for the basic operation2

Thus, the established framework for the analysis of an algorithm's time ef
ficiency suggests measuring it by counting the number of times the algorithm's
basic operation is executed on inputs of size n. We will find out how to compute
such a count for nonrecursive and recursive algorithms in Sections 2.3 and 2.4,
respectively.

2. On some computers based on the so-called RISC architecture, it is not necessarily the case (see, for
example, the timing data provided by Kernighan and Pike [Ker99], pp. 185-186).

I
https://hemanthrajhemu.github.io

2.1 Analysis Framework 45

Here is an important application. Let c0P be the execution time of an algo
rithm's basic operation on a particular computer, and let C(n) be the number of
times this operation needs to be executed for this algorithm. Then we can estimate
the running time T (n) of a program implementing this algorithm on that computer
by the formula

T(n) "'c0 pC(n).

Of course, this formula should be used with caution. The count C (n) does not
contain any information about operations that are not basic, and, in fact, the
count itself is often computed only approximately. Further, the constant c

0
, is

also an approximation whose reliability is not always easy to assess. Still, unless
n is extremely large or very small, the formula can give a reasonable estimate of
the algorithm's running time. It also makes it possible to answer such questions as
"How much faster would this algorithm run on a machine that is ten times faster
than the one we have?" The answer is, obviously, ten times. Or, assuming that
C(n) = ~n(n- 1), how much longer will the algorithm run if we double its input
size? The answer is about four times longer. Indeed, for all but very small values
ofn,

and therefore

' 1 12 1 12 C(n) = -n(n -1) = -n - -n"' -n
2 2 2 2

T(2n) C0 ,C(2n) ~(2n)2

--"' "'-- =4
T(n) C0 pC(n) ~n2 ·

Note that we were able to answer the last question without actually knowing
the value of C0 P: it was neatly cancelled out in the ratio. Also note that ~. the
multiplicative constant in the formula for the count C(n), was also cancelled out.
It is for these reasons that the efficiency analysis framework ignores multiplicative
constants and concentrates on the count's order of growth to within a constant
multiple for large-size inputs.

Orders of Growth

Why this emphasis on the count's order of growth for large input sizes? A differ
ence in running times on small inputs is not what really distinguishes efficient
algorithms from inefficient ones. When we have to compute, for example, the
greatest common divisor of two small numbers, it is not innnediately clear how
much more efficient Euclid's algorithm is compared to the other two algorithms
discussed in Section 1.1 or even why we should care which of them is faster and
by how much. It is only when we have to find the greatest common divisor of two
large numbers that the difference in algorithm efficiencies becomes both clear and
important. For large values of n, it is the function's order of growth that counts: just

https://hemanthrajhemu.github.io

1fT
~~~ .· 

46 Fundamentals of the Analysis of Algorithm Efficiency 

TABLE 2.1 Va!ues (some approximate) of several functions important for 

analysis of algorithms 

n log2 n 11 11log2 n 112 113 2" n! 

10 3.3 101 3.3-101 102 103 103 3.6-106 

102 6.6 10' 6.6-102 to• 106 1.3·1030 9.3·10157 

103 10 103 1.0-104 106 109 

w• 13 104 1.3-105 108 1012 

105 17 105 1.7-106 1010 1015 

106 20 106 2.0·107 1012 1018 

look at Table 2.1, which contains values of a few functions particularly important 
for analysis of algorithms. 

The magnitude of the numbers in Table 2.1 has a profound significance for 
the analysis of algorithms. The function growing the slowest among these is the 
logarithmic function. It grows so slowly, in fact, that we should expect a program 
implementing an algorithm with a logarithmic basic-operation count to run practi
callyinstantaneously on inputs of all realistic sizes. Also note that although specific 
values of such a count depend, of course, on the logarithm's base, the formula 

log, 11 = log, h log6 n 

makes it possible to switch from one base to another, leaving the count logarithmic 
but with a new multiplicative constant. This is why we omit a logarithm's base and 
write simply log n in situations where we are interested just in a function's order 
of growth to within a multiplicative constant. 

On the other end of the spectrum are the exponential function 2" and the 
factorial function n! Both these functions grow so fast that their values become 
astronomically large even for rather small values of n. (This is the reason why 
we did not include their values for n > 102 in Table 2.1.) For example, it would 
take about 4. 1010 years for a computer making one trillion (1012) operations per 
second to execute 2100 operations. Though this is incomparably faster than it would 
have taken to execute 100! operations, it is still longer than 4.5 billion (4.5 · 109

) 

years-the estimated age of the planet Earth. There is a tremendous difference 
between the orders of growth of the functions 2" and n !, yet both are often referred 
to as "exponential-growth functions" (or simply "exponential") despite the fact 
that, strictly speaking, only the former should be referred to as such. The bottom 
Hne, which is important to remember, is this: 

Algorithms that require an exponential number of operations are practical 
for solving only problems of very small sizes. 

https://hemanthrajhemu.github.io



2.1 Analysis Framework 47 

Another way to appreciate the qualitative difference among the orders of 
growth of the functions in Table 2.1 is to consider how they react to, say, a 
twofold increase in the value of their argument n. The function log2 n increases in 
value by just 1 (because log2 2n = log2 2 + log2 n = 1 + log2 n ); the linear function 
increases twofold; the "n-log-n" function n log2 n increases slightly more than 
twofold; the quadratic function n2 and cubic function n3 increase fourfold and 
eightfold, respectively (because (2n)2 = 4n2 and (2n) 3 = 8n3); the value of 2" gets 
squared (because 22" = (2")2); and n! increases much more than that (yes, even 
mathematics refuses to cooperate to give a neat answer for n!). 

Worst-Case, Best-Case, and Average-Case Efficiencies 

In the beginning of this section, we established that it is reasonable to measure 
an algorithm's efficiency as a function of a parameter indicating the size of the 
algorithm's input. But there are many algorithms for which running time depends 
not only on an input size but also on the specifics of a particular input. Consider, 
as an example, sequential search. This is a straightforward algorithm that searches 
for a given item (some search key K) in a list of n elements by checking successive 
elements of the list until either a match with the search key is found or the list 
is exhausted. Here is the algorithm's pseudocode, in which, for simplicity, a list is 
implemented as an array. (It also assumes that the second condition A[i] # K will 
not be checked if the first one, which checks that the array's index does not exceed 
its upper bound, fails.) 

ALGORITHM SequentialSearch(A[O .. n - 1], K) 

//Searches for a given value in a given array by sequential search 
//Input: An array A[O .. n -1] and a search key K 

//Output: The index of the frrst element of A that matches K 

II or -1 if there are no matching elements 
i+-0 
while i <nand A[i] # K do 

i+-i+1 
ifi < n return i 
else return -1 

Clearly, the running time of this algorithm can be quite different for the 
same list size n. In the worst case, when there are no matching elements or 
the frrst matching element happens to be the last one on the list, the algorithm 
makes the largest number of key comparisons among all possible inputs of size n: 

cworst(n) = n. 
The worst-case efficiency of an algorithm is its efficiency for the worst-case 

input of size n, which is an input (or inputs) of size n for which the algorithm 
runs the longest among all possible inputs of that size. The way to determine 

https://hemanthrajhemu.github.io



I 

'' I' 
I' 

il: 
!j~--

48 Fundamentals of the Analysis of Algorithm Efficiency 

the worst-case efficiency of an algorithm is, in principle, quite straightforward: we 
analyze the algorithm to see what kind of inputs yield the largest value of the basic 
operation's count C(n) among all possible inputs of size nand then compute this 
worst-case value Cworst(n). (For sequential search, the answer was obvious. The 
methods for handling less trivial situations are explained in subsequent sections of 
this chapter.) Clearly, the worst-case analysis provides very important information 
about an algorithm's efficiency by bounding its running time from above. In other 
words, it guarantees that for any instance of size n, the running time will not exceed 
Cworst(n), its running time on the worst-case inputs. 

The best-case efficiency of an algorithm is its efficiency for the best-case input 
of size n, which is an input (or inputs) of size n for which the algorithm runs the 
fastest among all possible inputs of that size. Accordingly, we can analyze the best
case efficiency as follows. First, we determine the kind of inputs for which the count 
C(n) will be the smallest among all possible inputs of size n. (Note that the best 
case does not mean the smallest input; it means the input of size n for which the 
algorithm runs the fastest.) Then we ascertain the value of C (n) on these most 
convenient inputs. For example, for sequential search, best-case inputs are lists of 
size n with their first elements equal to a search key; accordingly, Cbw(n) = 1. 

The analysis of the best-case efficiency is not nearly as important as that of the 
worst-case efficiency. But it is not completely useless, either. Though we should 
not expect to get best-case inputs, we might be able to take advantage of the fact 
that for some algorithms a good best -case performance extends to some useful 
types of inputs close to being the best-case ones. For example, there is a sorting 
algorithm (insertion sort) for which the best-case inputs are already sorted arrays 
on which the algorithm works very fast. Moreover, this good best-case efficiency 
deteriorates only slightly for almost sorted arrays. Thus, such an algorithm might 
well be the method of choice for applications dealing with almost sorted arrays. 
And, of course, if the best-case efficiency of an algorithm is unsatisfactory, we can 
immediately discard it without further analysis. 

It should be clear from our discussion, however, that neither the worst-case 
analysis nor its best -case counterpart yields the necessary information about 
an algorithm's behavior on a "typical" or "random" input. This is the informa
tion that the average-case efficiency seeks to provide. To analyze the algorithm's 
average-case efficiency, we must make some assumptions about possible inputs of 
size n. 

Let us consider again sequential search. The standard assumptions are that 
(a) the probability of a successful search is equal top (0 ::0 p ::0 1) and (b) the 
probability of the first match occurring in the ith position of the list is the same 
for every i. Under these assumptions-the validity of which is usually difficult to 
verify, their reasonableness notwithstanding-we can find the average number 
of key comparisons Ca,

8
(n) as follows. In the case of a successful search, the 

probability of the first match occurring in the i th position of the list is p j n for 
every i, and the number of comparisons made by the algorithm in such a situation 

https://hemanthrajhemu.github.io



2.1 Analysis Framework 49 

is obviously i. In the case of an unsuccessful search, the number of comparisons 
is n with the probability of such a search being (1- p). Therefore, 

Cav (n)=[l· [!_ +2· [!_+·· ·+i · [!_ +·· ·+n · f]+n· (1- p) 
g n n n n 

= f[1 + 2 + · ·. + i + · · · + n] + n(1- p) 
n 

= p n(n + 1) + n(1 - p) = p(n + 1) + n(l- p). 
n 2 2 

This general formula yields some quite reasonable answers. For example, if p = 1 
(i.e., the search must be successful), the average number of key comparisons made 
by sequential search is (n + 1) /2; i.e., the algorithm will inspect, on average, about 
half of the list's elements. If p = 0 (i.e., the search must be unsuccessful), the 
average number of key comparisons will be n because the algorithm will inspect 
all n elements on all such inputs. 

As you can see from this very elementary example, investigation of the 
average-case efficiency is considerably more difficult than investigation of the 
worst-case and best-case efficiencies. The direct approach for doing this involves 
dividing all instances of size n into several classes so that for each instance of the 
class the number of times the algorithm's basic operation is executed is the same. 
(What were these classes for sequential search?) Then a probability distribution 
of inputs is obtained or assumed so that the expected value of the basic operation's 
count can be found. 

The technical implementation of this plan is rarely easy, however, and prob
abilistic assumptions underlying it in each particular case are usually difficult 
to verify. Given our quest for simplicity, we will mostly quote known results 
about average-case efficiency of algorithms under discussion. If you are interested 
in derivations of these results, consult such books as [BaaOO], [Sed96], [Knui], 
[Knuii], and [Knuiii]. 

Does one really need the average-case efficiency information? The answer is 
unequivocally yes: there are many important algorithms for which the average
case efficiency is much better than the overly pessimistic worst-case efficiency 
would lead us to believe. So, without the average-case analysis, computer scientists 
could have missed many important algorithms. Finally, it should be clear from the 
preceding discussion that the average-case efficiency cannot be obtained by taking 
the average of the worst-case and the best-case efficiencies. Even though this 
average does occasionally coincide with the average-case cost, it is not a legitimate 
way of performing the average-case analysis. 

Yet another type of efficiency is called amortized efficiency. It applies not to 
a single run of an algorithm but rather to a sequence of operations performed 
on the same data structure. It turns out that in some situations a single operation 
can be expensive, but the total time for an entire sequence of n such operations is 
always significantly better than the worst-case efficiency of that single operation 

https://hemanthrajhemu.github.io



50 

.I 

Fundamentals of the Analysis of Algorithm Efficiency 
1 
I 
g 
I 

multiplied by n. So we cau "amortize" the high cost of such a worst-case occur
rence over the entire sequence in a manner similar to the way a business would 
amortize the cost of an expensive item over the years of the item's productive life. 
This sophisticated approach was discovered by the American computer scientist I 
Robert Tarjan, who used it, among other applications, in developing an interest- I 
ing variation of the classic binary search tree (see [Tar87] for a quite readable J • 
nontechnical discussion and [Tar85] for a technical account). We will see an ex-
ample of the usefulness of amortized efficiency in Section 9.2, when we consider 
algorithms for finding unions of disjoint sets. 

Recapitulation of the Analysis Framework 

Before we leave this section, let us summarize the main points of the framework 
outlined above . 

., Both time and space efficiencies are measured as functions of the algorithm's 
input size. 

"' Time efficiency is measured by counting the number of times the algorithm's 
basic operation is executed. Space efficiency is measured by counting the 
number of extra memory units consumed by the algorithm. 

" The efficiencies of some algorithms may differ significantly for inputs of the 
same size. For such algorithms, we need to distinguish between the worst-case, 
average-case, and best -case efficiencies . 

., The framework's primary interest lies in the order of growth of the algorithm's 
running time (extra memory units consumed) as its input size goes to infinity. 

In the next section, we look at formal means to investigate orders of growth. In 
Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursive 
and recursive algorithms, respectively. It is there that you will see how the analysis 
framework outlined here can be applied to investigating efficiency of specific 
algorithms. You will encounter many more examples throughout the rest of the 
book. 

-----Exercises 1 ---------------

1. For each of the following algorithms, indicate (i) a natural size metric for its 
inputs; (ii) its basic operation; (iii) whether the basic operation count can be 
different for inputs of the same size: 
a. computing the sum of n numbers 

b. computing n! 

c. finding the largest element in a list of n numbers 

d. Euclid's algorithm 

li.J:.. -----------------------· 
llllliiiiiiilooii!iliiiiiiilliiiiiiiO __ ,_ https://hemanthrajhemu.github.io



2.1 Analysis Framework 51 

e. sieve of Eratosthenes 

f. pen-and-pencil algorithm for multiplying two 11-digit decimal integers 

2. a. Consider the definition-based algorithm for adding two 11-by-11 matrices. 
What is its basic operation? How many times is it performed as a function 
of the matrix order n? As a function of the total number of elements in the 
input matrices? 

b. Answer the same questions for the definition-based algorithm for matrix 
multiplication. 

3. Consider a variation of sequential search that scans a list to return the number 
of occurrences of a given search key in the list. Will its efficiency differ from 
the efficiency of classic sequential search? 

4. a. Glove selection There are 22 gloves in a drawer: 5 pairs of red gloves, 4 
pairs of yellow, and 2 pairs of green. You select the gloves in the dark and 
can check them only after a selection has been made. What is the smallest 
number of gloves you need to select to have at least one matching pair in 
the best case? in the worst case? (after [MosOl], 1118) 

b. Missing socks Imagine that after washing 5 distinct pairs of socks, you 
discover that two socks are missing. Of course, you would like to have 
the largest number of complete pairs remaining. Tims, you are left with 
4 complete pairs in the best-case scenario and with 3 complete pairs in 
the worst case. Assuming that the probability of disappearance for each 
of the 10 socks is the same, find the probability of the best-case scenario; 
the probability of the worst -case scenario; the number of pairs you should 
expect in the average case. (after [Mos01], 1148) 

5. a. Prove formula (2.1) for the number of bits in the binary representation of 
a positive decimal integer. 

b. What would be the analogous formula for the number of decimal digits? 

c. Explain why, within the accepted analysis framework, it does not matter 
whether we use binary or decimal digits in measuring n 's size. 

6. Suggest how any sorting algorithm can be augmented in a way to make the 
best-case count of its key comparisons equal to just n - 1 (11 is a list's size, 
of course). Do you think it would be a worthwhile addition to any sorting 
algorithm? 

7. Gaussian elimination, the classic algorithm for solving systems of n linear 
equations in 11 unknowns, requires about ~113 multiplications, which is the 
algorithm's basic operation. 
a. How much longer should you expect Gaussian elimination to work on a 

system of 1000 equations versus a system of 500 equations? 

b. You are considering buying a computer that is 1000 times faster than the 
one you currently have. By what factor will the faster computer increase 

https://hemanthrajhemu.github.io



• ,, ·I··. 
: .. I i 
i'• 

52 Fundamentals of the Analysis of Algorithm Efficiency 

the sizes of systems solvable in the same amount of time as on the old 
computer? 

8. For each of the following functions, indicate how much the function's value 
will change if its argument is increased fourfold. 

a. log2 n b. fo c. n d. n2 e. n3 f. 2" 

9. Indicate whether the first function of each of the following pairs has a smaller, 
same, or larger order of growth (to within a constant multiple) than the second 
function. 

a. n(n + 1) and 2000n2 b. 100n2 and 0.01n3 

c. log2 n and In n 

e. 2n-l and 211 

d. log~ n and log2 n
2 

f. (n-l)!andn! 

10. Invention of chess According to a well-known legend, the game of chess was 
invented many centuries ago in northwestern India by a sage named Shashi. 
When he took his invention to his king, the king liked the game so much that 
he offered the inventor any reward he wanted. Sashi asked for some grain to 
be obtained as follows: just a single grain of wheat was to be placed on the first 
square of the chess board, two on the second, four on the third, eight on the 
fourth, and so on, until all64 squares had been filled. What would the ultimate 
result of this algorithm have been? 

Asymptotic Notations and 
Basic Efficiency Classes 

As pointed out in the previous section, the efficiency analysis framework con
centrates on the order of growth of an algorithm's basic operation count as the 
principal indicator of the algorithm's efficiency. To compare and rank such orders 
of growth, computer scientists use three notations: 0 (big oh), Q (big omega), and 
19 (big theta). First, we introduce these notations informally, and then, after sev
eral examples, formal definitions are given. In the following discussion, t(n) and 
g(n) can be any nonnegative functions defined on the set of natural numbers. In 
the context we are interested in, t(n) will be an algorithm's running time (usually 
indicated by its basic operation count C(n) ), and g(n) will be some simple function 
to compare the cmmt with. 

Informal Introduction 

Informally, 0 (g(n)) is the set of all functions with a smaller or same order of growth 
as g(n) (to within a constant multiple, as n goes to infinity). Thus, to give a few 
examples, the following assertions are all true: 

1 
-n(n- 1) E O(n2). 
2 

l 
I 
I 
I 
l 
I 
I 
J https://hemanthrajhemu.github.io



2.2 Asymptotic Notations and Basic Efficiency Classes 53 

Indeed, the first two functions are linear and hence have a smaller order of growth 
than g(11) = 112, while the last one is quadratic and hence has the same order of 
growth as 112 On the other hand, 

Indeed, the functions 11 3 and 0.0000ln3 are both cubic and hence have a higher 
order of growth than 112 ; and so has the fourth-degree polynomial 11 4 + n + 1. 

The second notation, O(g(n)), stands for the set of all functions with a larger 
or same order of growth as g(11) (to within a constant multiple, as 11 goes to infinity). 
For example, 

but lOOn+ 5 rfc O(n2
). 

Finally, EJ(g(11)) is the set of all functions that have the same order of growth 
as g(n) (to within a constant multiple, as n goes to infinity). Thus, every quadratic 
function a112 + bn + c with a > 0 is in C"l(11 2), but so are, among infinitely many 
others, 112 +sin nand 112 +log n. (Can you explain why?) 

Hopefully, the preceding informal discussion has made you comfortable with 
the idea behind the three asymptotic notations. So now come the formal defini
tions. 

a-notation 

DEFINITION 1 A function t(n) is said to be in O(g(n)), denoted t(n) E O(g(n)), 
if t(11) is bounded above by some constant multiple of g(n) for all large 11, i.e., if 
there exist some positive constant c and some nonnegative integer n0 such that 

t(n) 00 cg(n) for all 11 2: 110 . 

The definition is illustrated in Figure 2.1 where, for the sake of visual clarity, n is 
extended to be a real number. 

As an example, let us formally prove one of the assertions made in the 
introduction: lOOn+ 5 E 0(112). Indeed, 

lOOn+ 5 S lOOn + n (for all n 2: 5) = lOln S 101n2 

Thus, as values of the constants c and n0 required by the definition, we can take 
101 and 5, respectively. 

Note that the definition gives us a lot of freedom in choosing specific values 
for constants c and n0. For example, we could also reason that 

lOOn + 5 S lOOn + 5n (for all 11 2: 1) = l05n 

to complete the proof with c = 105 and n0 = 1. 

https://hemanthrajhemu.github.io



54 

I 

Fundamentals of the Analysis of Algorithm Efficiency 

doesn't 
matter 

FIGURE 2.1 Big-oh notation: t(n) E O(g(n)) 

Q-notation 

cginl 

tin) 

DEFINITION 2 A function t(n) is said to be in Q (g(n)). denoted t(n) E Q (g(n)), 
if t(n) is bounded below by some positive constant multiple of g(n) for all large n, 
i.e., if there exist some positive constant c and some nonnegative integer n0 such 
that 

t(n) ": cg(n) for all n ":no. 

The definition is illustrated in Figure 2.2. 

doesn't 
matter 

tin) 

cginl 

L-----~---------------------+1! no 

FIGURE 2.2 Big-omega notation: t(n) E Q(g(n)) 

https://hemanthrajhemu.github.io



..•. 

2.2 Asymptotic Notations and Basic Efficiency Classes 

Here is an example of the formal proof that n3 E Q (n2): 

n3 2: n2 for all n 2: 0, 

i.e., we can select c = 1 and n0 = 0. 

8-notation 

55 

DEFINITION 3 A function t(n) is said to be in E>(g(n)), denoted t(n) E E>(g(n)), 
if t(n) is bounded both above and below by some positive constant multiples of 
g(n) for all large n, i.e., if there exist some positive constant c1 and c2 and some 
nonnegative integer n0 such that 

c2g(n) s t(n) s qg(11) for all 11 2: 110. 

The definition is illustrated in Figure 2.3. 

For example, let us prove that ~n(n- 1) E 8(112). First, we prove the right 
inequality (the upper bound): 

~11(n- 1) = ~11 2 - ~n < ~112 for all 11 > 0. 
2 2 2 -2 -

Second, we prove the left inequality (the lower bound): 

1 1 2 11 2 11 1 2 -n(11- 1) = -n - -n > -11 - -n-11 (for all n > 2) = -n . 
2 2 2 -2 2 2 - 4 

Hence, we can select c2 = ~, c1 = i, 'and n0 = 2. 

doesn't : 
matter 

c1g(n) 

tin) 

c2g(n) 

L_----~---------------------+n no 

FIGURE 2.3 Big-theta notation: t(n) E G(g(n)) 

https://hemanthrajhemu.github.io



56 

i 

Fundamentals of the Analysis of Algorithm Efficiency 

Useful Property Involving the Asymptotic Notations 

Using the formal definitions o£ the asymptotic notations, we can prove their 
general properties (see Problem 7 in Exercises 2.2 for a few simple examples). The 
following property, in particular, is useful in analyzing algorithms that comprise 
two consecutively executed parts. 

THEOREM If 11(n) E O(g1(n)) and 12(n) E O(g2(n)), then 

l1(n) + l2(n) E O(max{gt(n), g2(n))). 

(The analogous assertions are true for the 0 and B notations as well.) 

PROOF (As you will see, the proof extends to orders of growth the following 
simple fact about four arbitrary real numbers al> bl> a2o and b2: if a1 :: b1 and 
a2 :: b2, then a1 + a2 :: 2 max{b1, h2].) Since IJ(n) E O(gJ(n)), there exist some 
positive constant c1 and some nonnegative integer n1 such that 

11(n)c:c1g1(n) forallno:n 1. 

Similarly, since 12(n) E O(g2(n)), 

12(n) C: c2g2(n) for alln 2: n2 . 

Let us denote c3 = max{c1, c2) and consider n 2: max{n1, n2] so that we can use 
both inequalities. Adding the two inequalities above yields the following: 

i](n) + 12(11) :" CJ8J(n) + c2g2(n) 

:" c3g1(lr) + c3g2(n) = c3[g1(n) + 82(n)] 

C: c32 max{gJ(n), g2(n)). 

Hence, 11(n) + 12(n) E O(max{g1(n), g2(n))), with the constants c and n0 required 
by the 0 definition being 2c3 = 2 max{c1, c2] and max{n1, n2], respectively. II 

So what does this property imply for an algorithm that comprises two consec
utively executed parts? It implies that the algorithm's overall efficiency is deter
mined by the part with a larger order of growth, i.e., its least efficient part: 

t1(n) E O(g1(n)) } 

12
(n) E O(g

2
(n)) IJ(n) + t2(n) E O(max{gJ(n), gz(n))). 

For example, we can check whether an array has identical elements by means of 
the following two-part algorithm: first, sort the array by applying some known 
sorting algorithm; second, scan the sorted array to check its consecutive elements 
for equality. If, for example, a sorting algorithm used in the frrst part makes no 
more than ~n(n- 1) comparisons (and hence is in O(n2)) while the second part 
makes no more than n- 1 comparisons (and hence is in O(n)), the efficiency of 
the entire algorithm will be in O(max{n2, n)) = O(n2). 

I 
l 

I 

I. 
I 

I 
I 

I 

I https://hemanthrajhemu.github.io



2.2 Asymptotic Notations and Basic Efficiency Classes 57 

Using limits for Comparing Orders of Growth 

Though the formal definitions of 0, Q, and 0J are indispensable for proving their 
abstract properties, they are rarely used for comparing the orders of growth of 
two specific functions. A much more convenient method for doing so is based on 
computing the limit of the ratio of two functions in question. Three principal cases 
may arise: 

( ) { 0 implies that t(n) has a smaller order of growth than g(n) 
lim t__rl_ = c > 0 implies that t(n) has the same order of growth as g(n) 
"~ 00 

g(n) oo implies that t(n) has a larger order of growth than g(n) 3 

Note that the first two cases mean that t(n) E O(g(n)), the last two mean that 
t(n) E rl(g(n)), and the second case means that t(n) E C"J(g(n)). 

The limit -based approach is often more convenient than the one based on 
the definitions because it can take advantage of the powerful calculus techniques 
developed for computing limits, such as L'Hopital's rule 

lim t(n) = lim t'(n) 
11--+oo g(n) 11--+oo g'(n) 

and Stirling's formula 

n!"' ~ ( ~ )" for large values of n. 

Here are three examples of using the limit-based approach to comparing 
orders of growth of two functions. 

EXAMPLE 1 Compare the orders of growth of ~n(n - 1) and n2. (This is one of 
the examples we used at the beginning of this section to illustrate the definitions.) 

ln(n- 1) 
lim ~2--..,.--

n--+oo n2 

1 
lim "

2
-n =!lim (1-!)=!. 

2 n--+oo n2 2 n--+oo n 2 

Since the limit is equal to a positive constant, the functions have the same order 
of growth or, symbolically, in(n- 1) E C"J(n2). !!! 

EXAMPLE 2 Compare the orders of growth of log2 nand fo. (Unlike Example 
1, the answer here is not immediately obvious.) 

. log2 n . (Iog2 n )' 
hm --=Inn , 

11--+oo ,Jii 11->oo (,Jit) 
lim (Iogz e) ~ = 2 log

2 
e lim Jii = 0. 

n--+oo _1_ n--+oo n 
2.j/i 

3. The fourth case, in which such a limit does not exist, rarely happens in the actual practice of analyzing 
algorithms. Still, this possibility makes the limit-based approach to comparing orders of growth less 
general than the one based on the definitions of 0, ~,and e. 

https://hemanthrajhemu.github.io



58 

, I 

Fundamentals of the Analysis of Algorithm Efficiency 

Since the limit is equal to zero, log2 n has a smaller order of growth than fo. (Since 
lim Iogb" = 0, we can use the so-called little-oh notation: log2 n E o(fo). Unlike 

n---+oo -vn 
the big-oh, the little-oh notation is rarely used in analysis of algorithms.) Ill 

EXAMPLE 3 Compare the orders of growth of 11! and 2". (We discussed this issue 
informally in the previous section.) Taking advantage of Stirling's formula, we get 

lim !!.:_ = lim e = lim v'21fn-"-"- = lim v'21fn !!_ = oo. I v'2Jrn ( ~ )" ( )" 
/1----:>-00 211 ll--+00 211 n-HX) 211 ell 11--+00 2e 

Thus, though 2" grows very fast, 11! grows still faster. We can write symbolically 
that n! E rl(2"); note, however, that while big-omega notation does not preclude 
the possibility that n! and 2" have the same order of growth, the limit computed 
here certainly does. Ill 

Basic Efficiency Classes 

Even though the efficiency analysis framework puts together all the functions 
whose orders of growth differ by a constant multiple, there are still infinitely many 
such classes. (For example, the exponential functions a" have different orders of 
growth for different values of base a.) Therefore, it may come as a surprise that 
the time efficiencies of a large number of algorithms fall into only a few classes. 
These classes are listed in Table 2.2 in increasing order of their orders of growth, 
along with their names and a few comments. 

You could raise a concern that classifying algorithms by their asymptotic effi
ciency would be of little practical use since the values of multiplicative constants 
are usually left unspecified. This leaves open a possibility of an algorithm in a 
worse efficiency class running faster than an algorithm in a better efficiency class 
for inputs of realistic sizes. For example, if the running time of one algorithm is n3 

while the running time of the other is 106n2 , the cubic algorithm will outperform 
the quadratic algorithm unless n exceeds 10°. A few such anomalies are indeed 
known. For example, there exist algorithms for matrix multiplication with a better 
asymptotic efficiency than the cubic efficiency of the definition-based algorithm 
(see Section 4.5). Because of their much larger multiplicative constants, however, 
the value of these more sophisticated algorithms is mostly theoretical. 

Fortunately, multiplicative constants usually do not differ that drastically. As 
a rule, you should expect an algorithm from a better asymptotic efficiency class 
to outperform an algorithm from a worse class even for moderately sized inputs. 
This observation is especially true for an algorithm with a better than exponential 
running time versus an exponential (or worse) algorithm. 

https://hemanthrajhemu.github.io



2.2 Asymptotic Notations and Basic Efficiency Classes 59 

TABLE 2.2 Basic asymptotic efficiency classes 

Class Name Comments 

1 constant Short of best-case efficiencies, very few reasonable 
examples can be given since an algorithm's running 
time typically goes to infinity when its input size grows 
infinitely large. 

Iogn logarithmic Typically, a result of cutting a problem's size by a 
constant factor on each iteration of the algorithm (see 
Section 5.5). Note that a logarithmic algorithm cannot 
take into account all its input (or even a fixed fraction 
of it): any algorithm that does so will have at least 
linear running time. 

n linear Algorithms that scan a list of size n (e.g., sequential 
search) belong to this class. 

n log n "n-log-n" Many divide-and-conquer algorithms (see Chapter 4), 
including mergesort and quicksort in the average case, 
fall into this category. 

n2 quadratic Typically, characterizes efficiency of algorithms with 
two embedded loops (see the next section). Elemen-
tary sorting algorithms and certain operations on 
n-by-n matrices are standard examples. 

n3 cubic JYpically, characterizes efficiency of algorithms with 
three embedded loops (see the next section). Several 
nontriVial algorithms from linear algebra fall into this 
class. 

2" exponential Typical for algorithms that generate all subsets of an 
n-element set. Often, the term "exponential" is used 
in a broader sense to include this and larger orders of 
growth as well. 

n! factorial Typical for algorithms that generate all permutations 
of ann-element set. 

-----Exercises 2.2----------------

1. Use the most appropriate notation among 0. 8, and Q to indicate the time 
efficiency class of sequential search (see Section 2.1) 
a. in the worst case. 

b. in the best case. 

c. in the average case. 

https://hemanthrajhemu.github.io



60 Fundamentals of the Analysis of Algorithm Efficiency 

2. Use the informal definitions of 0, El, and Q to determine whether the follow
ing assertions are true or false. 

a. n(n+1)/2E O(n3) b. n(n+l)j2E O(n2 ) 

c. n(n+l)j2EEl(n3) d. n(n+1)j2EQ(n) 

3. For each of the following functions, indicate the class El(g(n)) the function 
belongs to. (Use the simplest g(n) possible in your answers.) Prove your 
assertions. 

a. (n2 + 1)10 b. Vl0n2 + 7n + 3 

c. 2n Jg(n + 2)2 + (n + 2)2 Jg!! 

e. Llog2 nj 

d. zn+l+3n-l 

4. a. Table 2.1 contains values of several functions that often arise in analysis of 
algorithms. These values certainly suggest that the functions 

1 I 232"1 og n, n, n og n, n , n , , n. 

are listed in increasing order of their order of growth. Do these values 
prove this fact with mathematical certainty? 

b. Prove that the functions are indeed listed in increasing order of their order 
of growth. 

5. Order the following functions according to their order of growth (from the 
lowest to the highest): 

(n- 2)!, Slg(n + 100)10 , 22", 0.00ln4 + 3n3 + 1, Jn2 n, ..y;J, 3". 

6. a. Prove that every polynomial of degree k, p(n) = aknk + ak_1nk-l + · · · + 
ao, with ak > 0 belongs to El(nk). 

b. Prove that exponential functions a" have different orders of growth for 
different values of base a > 0. 

7. Prove (by using the definitions of the notations involved) or disprove (by 
giving a specific counterexample) the following assertions. 
a. If t(n) E O(g(n)), then g(n) E Q(l(n)). 

b. El(ag(n)) = El(g(n)) where a> 0. 

c. El(g(n)) = O(g(n)) n Q(g(n)). 

d. For any two nonnegative functions t(n) and g(n) defined on the set of 
nonnegative integers, either t(n) E O(g(n)), or t(n) E Q(g(n)), or hath. 

8. Prove the section's theorem for 
a. Q-notation. 

b. 8-notation. 

9. We mentioned in this section that one can check whether all elements of an 
array are distinct hy a two-part algorithm based on the array's presorting. 

https://hemanthrajhemu.github.io



2.3 

2.3 Mathematical Analysis of Nonrecursive Algorithms 61 

a. If the presorting is done by an algorithm with the time efficiency in 
El(n log n), what will be the time efficiency class of the entire algorithm? 

b. If the sorting algorithm used for presorting needs an extra array of size n, 
what will be the space efficiency class of the entire algorithm? 

10. Door in a wall You are facing a wall that stretches infinitely in both direc
tions. There is a door in the wall, but you know neither how far away nor in 
which direction. You can see the door only when you are right next to it. De
sign an algorithm that enables you to reach the door by walking at most 0 (n) 
steps where n is the (unknown to you) number of steps between your initial 
position and the door. [Par95], #652 

Mathematical Analysis of 
Nomecursive Algorithms 

In this section, we systematically apply the general framework outlined in Sec
tion 2.1 to analyzing the time efficiency of nonrecursive algorithms. Let us start 
with a very simple example that demonstrates all the principal steps typically taken 
in analyzing such algorithms. 

EXAMPLE 1 Consider the problem of finding the value of the largest element 
in a list of n numbers. For simplicity, we assume that the list is implemented as 
an array. The following is a pseudocode of a standard algorithm for solving the 
problem. 

ALGORITHM MaxE!ernent(A[O .. n -1]) 

//Determines the value of the largest element in a given array 
//Input: An array A[O .. n - 1] of real numbers 
//Output: The value of the largest element in A 
rnaxva[ +-- A[O] 

fori +-lton-1do 
if A[i] > rnaxval 

maxval +-- A[i] 
return maxval 

The obvious measure of an input's size here is the number of elements in the 
array, i.e., n. The operations that are going to be executed most often are in the 
algorithm's for loop. There are two operations in the loop's body: the comparison 
A[i] >max val and the assignment max val +-- A[i]. Which of these two operations 
should we consider basic? Since the comparison is executed on each repetition 
of the loop and the assignment is not, we should consider the comparison to be 
the algorithm's basic operation. (Note that the number of comparisons will be the 

https://hemanthrajhemu.github.io



62 Fundamentals of the Analysis of Algorithm Efficiency 

same for all arrays of size n; therefore, in terms of this metric, there is no need to 
distinguish among the worst, average, and best cases here.) 

Let us denote C(n) the number of times this comparison is executed and try 
to find a formula expressing it as a function of size n. The algorithm makes one 
comparison on each execution of the loop, which is repeated for each value of the 
loop's variable i within the bounds 1 and n - 1 (inclusively). Therefore, we get the 
following sum for C(n): 

n-l 

C(n) = L 1. 
i=l 

This is an easy sum to compute because it is nothing else but 1 repeated n - 1 
times. Thus, 

Il-l 

C(n) = L 1=n -lE G(n). Ill 

i=l 

Here is a general plan to follow in analyzing nonrecursive algorithms. 

General Plan for Analyzing Time Efficiency of Nonrecursive Algorithms 

l, Decide on a parameter (or parameters) indicating an input's size. 

2. Identify the algorithm's basic operation. (As a rule, it is located in its inner
most loop.) 

3. Check whether the number of times the basic operation is executed depends 
only on the size of an input. If it also depends on some additional property, 
the worst-case, average-case, and, if necessary, best-case efficiencies have to 
be investigated separately. 

4. Set up a sum expressing the number of times the algorithm's basic operation 
is executed.4 

5. Using standard formulas and rules of sum manipulation, either find a closed
form formula for the count or, at the very least, establish its order of growth. 

Before proceeding with further examples, you may want to review Appendix 
A, which contains a list of summation formulas and rules that are often useful in 
analysis of algorithms. In particular, we use especially frequently two basic rules 
of sum manipulation 

u u 

Lcai=c Lai (Rl) 
i=l i=l 

u u u 

(R2) 
i=l i=f i=l 

4. Sometimes, an analysis of a nonrecursive algorithm requires setting up not a sum but a recurrence 
relation for the number of times its basic operation is executed. Using recurrence relations is much 
more typical for analyzing recursive algorithms (see Section 2.4). 

l 
! 

I 
l 
I 

I 
1 

J 
l 

l 
! 

I 

I 
I 
! 
I 
i 
l 

https://hemanthrajhemu.github.io



2.3 Mathematical Analysis of Nonrecursive Algorithms 63 

and two summation formulas 

" L 1 = u - l + 1 where l <( u are some lower and upper integer limits (Sl) 
i=l 

~ . ~ . n(n + 1) 1 2 2 
L.., z = L.., 1 = 1 + 2 + · · · + n = ""-n E El(n ). 
i=O i=l 2 2 

(S2) 

(Note that the formula 'L;':;} 1 = n - 1, which we used in Example 1, is a special 
case of formula (Sl) for l = 1 and u = n -1.) 

EXAMPLE 2 Consider the element uniqueness problem: check whether all the 
elements in a given array are distinct. This problem can be solved by the following 
straightforward algorithm. 

ALGORITHM UniqueElements(A[O .. n -1]) 

//Determines whether all the elements in a given array are distinct 
//Input: An array A[O .. n -1] 
//Output: Returns "true" if all the elements in A are distinct 
II and "false" otherwise 
for i <-- 0 to n - 2 do 

for j <-- i + 1 to n - 1 do 
if A[i] = A[j] return false 

return true 

The natural measure of the input's size here is again the number of elements 
in the array, i.e., n. Since the innermost loop contains a single operation (the com
parison of two elements), we should consider it as the algorithm's basic operation. 
Note, however, that the number of element comparisons will depend not only on 
n but also on whether there are equal elements in the array and, if there are, which 
array positions they occupy. We will limit our investigation to the worst case only. 

By definition, the worst ease input is an array for which the number of element 
comparisons Cwors1(n) is the largest among all arrays of size n. An inspection of 
the innermost loop reveals that there are two kinds of worst-case inputs (inputs 
for which the algorithm does not exit the loop prematurely): arrays with no equal 
elements and arrays in which the last two elements are the only pair of equal 
elements. For such inputs, one comparison is made for each repetition of the 
innermost loop, i.e., for each value of the loop's variable j between its limits i + 1 
and n - 1; and this is repeated for each value of the outer loop, i.e., for each value 
of the loop's variable i between its limits 0 and n - 2. Accordingly, we get 

https://hemanthrajhemu.github.io



rr ,,, '' 
,; i! 

64 

.I 

Fundamentals of the Analysis of Algorithm Efficiency 

n-2 n-1 n-2 n-2 

Cwm>t(n) = L L 1 = L[(n- 1)- (i + 1) + 1] = L(n -1- i) 
i=O j=i+l 

n-2 n-2 n-2 (n _ 2)(n _ 1) 
= L (n - 1) - L i = (n - 1) L 1 -

2 
i=O i=O i=O 

= (n _ 1)2 _ (n- 2)(n- 1) = (n- 1)n ""~n2 E G(n2). 
2 2 2 

We also could have computed the sum I:;'~r~(n - 1- i) faster as follows: 

n-2 
~ . ~~-Dn L}n - 1- 1) = (n - 1) + (11 - 2) + · · · + 1 = . 
. 2 
1=0 

Note that this result was perfectly predictable: in the worst case, the algorithm 
needs to compare all n(n- 1)/2 distinct pairs of its n elements. ll 

EXAMPLE 3 Given two n-by-n matrices A and B, find the time efficiency of the 
definition-based algorithm for computing their product C = AB. By definition, C 
is an n-by-n matrix whose elements are computed as the scalar (dot) products of 
the rows of matrix A and the columns of matrix B: 

A B c 

col.j 

where C[i, j] = A[i, O]B[O, j] + · · · + A[i, k]B[k, j] + · · · + A[i, n -1]B[n -1, j] 
for every pair of indices 0 ~ i, j :::=: n - 1. 

ALGORITHM MatrixMultiplication(A[O .. n- 1, O .. n- 1], B[O .. n- 1, O .. n- 1]) 

//Multiplies two n-by-n matrices by the definition-based algorithm 
//Input: Two n-by-n matrices A and B 

//Output: Matrix C = AB 
fori +-Oton -1do 

for j +- 0 to n - 1 do 
C[i, j] +- 0.0 
for k +- 0 to n - 1 do 

C[i, j] +- C[i, j] + A[i, kj * B[k, j] 
return C 

https://hemanthrajhemu.github.io



2.3 Mathematical Analysis of Nonrecursive Algorithms 65 

We measure an input's size by matrix order n. In the algorithm's innermost 
loop are two arithmetical operations-multiplication and addition-that, in prin
ciple, can compete for designation as the algorithm's basic operation. We consider 
multiplication as the algorithm's basic operation (see Section 2.1). Note that for 
this algorithm, we do not have to choose between these two operations because 
on each repetition of the innermost loop, each of the two is executed exactly once. 
So by counting one we automatically count the other. Let us set up a sum for the 
total number of multiplications M(n) executed by the algorithm. (Since this count 
depends only on the size of the input matrices, we do not have to investigate the 
worst-case, average-case, and best-case efficiencies separately.) 

Obviously, there is just one multiplication executed on each repetition of the 
algorithm's innermost loop, which is governed by the variable k ranging from the 
lower bound 0 to the upper bound n - 1. Therefore, the number of multiplications 
made for every pair of specific values of variables i and j is 

n-1 

I). 
k~O 

and the total number of multiplications M(n) is expressed by the following triple 
sum: 

n-1 n-1 n-1 

M(n) = L L L 1. 
i=O j=O k=O 

Now we can compute this sum by using formula ( S1) and rule ( R1) (see above). 
Starting with the innermost sum L.:~;;;6 1, which is equal ton (why?), we get 

n-1 n-1n-1 n-1 n-1 n-1 

M(n)= LLL1= LLn= Ln2=n3. 
i=O j=O 

(This example is simple enough so that we could get this result without all the sum
mation machinations. How? The algorithm computes n2 elements of the product 
matrix. Each of the product's elements is computed as the scalar (dot) product 
of an n-element row of the first matrix and an n-element column of the second 
matrix, which takes n multiplications. So the total number of multiplications is 
n . n2 = n3. It is this kind of reasoning we expected you to employ when answering 
this question in Problem 2 of Exercises 2.1.) 

If we now want to estimate the running time of the algorithm on a particular 
machine, we can do it by the product 

T(n) ~ c111 M(n) = c111 n
3, 

where C111 is the time of one multiplication on the machine in question. We would 
get a more accurate estimate if we took into account the time spent on the 
additions, too: 

https://hemanthrajhemu.github.io



r 
rlrl ! ,., 66 Fundamentals of the Analysis of Algorithm Efficiency 

where ca is the time of one addition. Note that the estimates differ only by their 
multiplicative constants, not by their order of growth. II! 

You should not have the erroneous impression that the plan outlined above 
always succeeds in analyzing a nonrecursive algorithm. An irregular change in a 
loop's variable, a sum too complicated to analyze, and the difficulties intrinsic to 
the average-case analysis are just some of the obstacles that can prove to be insur
mountable. These caveats notwithstanding, the plan does work for many simple 
nonrecursive algorithms, as you will see throughout the subsequent chapters of 
the book. 

As a last example, let us consider an algorithm in which the loop's variable 
changes in a different manner from that of the previous examples. 

EXAMPLE 4 The following algorithm finds the number o£ binary digits in the 
binary representation of a positive decimal integer. 

ALGORITHM Binary(n) 

//Input: A positive decimal integer n 

//Output: The number of binary digits in n 's binary representation 
count +-1 
while n > 1 do 

count +---- count + 1 
n +- Ln/2J 

return count 

First, notice that the most frequently executed operation here is not inside the 
while loop but rather the comparison n > 1 that determines whether the loop's 
body will be executed. Since the number of times the comparison will be executed 
is larger than the number of repetitions of the loop's body by exactly 1, the choice 
is not that important. 

A more significant feature of this example is the fact that the loop's variable 
takes on only a few values between its lower and upper limits; therefore we 
have to use an alternative way of computing the number of times the loop is 
executed. Since the value of n is about halved on each repetition of the loop, 
the answer should be about log2 n. The exact formula for the number of times 
the comparison 11 > 1 will be executed is actually Llog2 11j + 1-the number of bits 
in the binary representation of 11 according to formula (2.1). We could also get 
this answer by applying the analysis technique based on recurrence relations; we 
discuss this technique in the next section because it is more pertinent to the analysis 
of recursive algorithms. II! 

https://hemanthrajhemu.github.io



2.3 Mathematical Analysis of Nonrecursive Algorithms 67 

-----Exercises 2.3---------------

1. Compute the following sums. 

a. 1+3+5+7+···+999 

b. 2 + 4 + 8 + 16 + ... + 1024 

c. z::;·:i 1 d. z::;·:i i e. z::;·,..;z i (i + 1) 
f. 2.::}~1 31+1 g. z::;·~l 2.::}~1 ij h. z::;·~11/i(i + 1) 

2. Find the order of growth of the following sums. 

a. z::;·,..;tu 2+ 1)2 b. I:;',..;i lg i2 

c. z::;'~ 1 Ci + 1J2'-1 d. z::;•,..;J I:}~1u + n 
Use the El(g(n)) notation with the simplest function g(n) possible. 

3. The sample variance of n measurements x1, ... , xn can be computed as 

or 

"" ( -)2 "" ~"-~i=~1~x-'...,-,-x_ where i = -"-~i=~1~x_; 
n -1 n 

I:;'~, xf- CI:7d x;)2 jn 

n-1 

Find and compare the number of divisions, multiplications, and additions/ 
subtractions (additions and subtractions are usually bunched together) that 
are required for computing the variance according to each of these formulas. 

4. Consider the following algorithm. 

ALGORITHM Mystery(n) 

//Input: A nonnegative integer n 
s of- 0 
for i +-- 1 to n do 

S<-S+i*i 
returnS 

a. What does this algorithm compute? 

b. What is its basic operation? 

c. How many times is the basic operation executed? 

d. What is the efficiency class of this algorithm? 

e. Suggest an improvement or a better algorithm altogether and indicate its 
efficiency class. If you cannot do it, try to prove that in fact it cannot be 
done. 

https://hemanthrajhemu.github.io



r 
• 

68 Fundamentals of the Analysis of Algorithm Efficiency 

5. Consider the following algorithm. 

ALGORITHM Secret(A[O .. n -1]) 

//Input: An array A[O .. n - 1] of n real numbers 
minval +- A[O]; maxval +- A[O] 
for i +- 1 to n - 1 do 

if A[i] <min val 
min val <--- A[i] 

if A[i] > maxval 
maxval +- A[i] 

return maxval - minval 

Answer questions (a)-( e) of Problem 4 about this algorithm. 

6. Consider the following algorithm. 

ALGORITHM Enigma(A[O .. n -1, O .. n -1]) 

//Input: A matrix A[O .. n - 1, O .. n - 1] of real numbers 
for i +- 0 to n - 2 do 

for j +- i + 1 to n - J do 
if A[i, j] oft A[j, i] 

return false 
return true 

Answer questions (a)-( e) of Problem 4 about this algorithm. 

7. Improve the implementation of the matrix multiplication algorithm (see Ex
ample 3) by reducing the number of additions made by the algorithm. What 
effect will this change have on the algorithm's efficiency? 

8. Determine the asymptotic order of growth for the total number of times all 
the doors are toggled in the locker doors puzzle (Problem 11 in Exercises 1.1 ). 

9. Prove the formula 

~. n(n+l) 
L.., 1 = 1 + 2 + · · · + n = --'--c'--'-

i=l 
2 

either by mathematical induction or by following the insight of a 10-year old 
schoolboy named Karl Friedrich Gauss (1777-1855), who grew up to become 
one of the greatest mathematicians of all times. 

10. Consider the following version of an important algorithm that we will study 
later in the book. 

https://hemanthrajhemu.github.io



2 

2.4 Mathematical Analysis of Recursive Algorithms 

AlGORITHM GE(A[O .. n -1, O .. nj) 

//Input: An n-by-n + 1 matrix A[O .. n - 1, O .. n] of real numbers 
for i <- 0 to n - 2 do 

for j <- i + 1 to n - 1 do 
for k +-- i to n do 

A[j, k] <- A[j, k]- A[i, k] * A[j, i] / A[i, i] 

a. Find the time efficiency class of this algorithm. 

69 

b. What glaring inefficiency does this pseudocode contain and how can it be 
eliminated to speed the algorithm up? 

11. von Neumann's neighborhood How many one-by-one squares are gener
ated by the algorithm that starts with a single square and on each of its n 
iterations adds new squares all round the outside? [Gar99], p. 88. (In the par
lance of cellular automata theory, the answer is the number of cells in the 
von Newmann neighborhood of range n.) The results for n = 0, 1, and 2 are 
illustrated below. 

Mathematical Analysis of Recursive Algorithms 

In this section, we will see how to apply the general framework for analysis 
of algorithms to recursive algorithms. We start with an example ofteu used to 
introduce novices to the idea of a recursive algorithm. 

EXAMPLE 1 Compute the factorial fuuction F(n) = n! for an arbitrary nonneg
ative integer n. Since 

n!=1· ... ·(n-l)·n=(n-l)!·n forn::o:l 

and 0! = 1 by definition, we can compute F(n) = F(n- 1) · n with the following 
recursive algorithm. 

https://hemanthrajhemu.github.io



70 Fundamentals of the Analysis of Algorithm Efficiency 

ALGORITHM F(n) 

//Computes n! recursively 
//Input: A nonnegative integer n 
//Output: The value of n! 
if n = 0 return 1 
else return F(n - 1) * n 

For simplicity, we consider n itself as an indicator of this algorithm's input size 
(rather than the number of bits in its binary expansion). The basic operation of the 
algorithm is multiplication,5 whose number of executions we denote M(n). Since 
the function F(n) is computed according to the formula 

F(n) = F(n- 1) · n for n > 0, 

the number of multiplications M (n) needed to compute it must satisfy the equality 

M(n) =M(n -1) + 
to compute 

F(tJ-·l) 

1 
to multiply 

F(n-1) by n 

for n > 0. 

Indeed, M(n- 1) multiplications are spent to compute F(n- 1), and one more 
multiplication is needed to multiply the result by n. 

The last equation defines the sequence M (n) that we need to find. This equa
tion defines M(n) not explicitly, i.e., as a function of n, but implicitly as a function 
of its value at another point, namely n - 1. Such equations are called recurrence 
relations or, for brevity, recurrences. Recurrence relations play an important role 
not only in analysis of algorithms b!lt also in some areas of applied mathematics. 
They are usually studied in detail in courses on discrete mathematics or discrete 
structures; a very brief tutorial on them is provided in Appendix B. Our goal now 
is to solve the recurrence relation M (n) = M (n - 1) + 1, i.e., to find an explicit 
formula for M(n) in terms of n only. 

Note, however, that there is not one but infinitely many sequences that satisfy 
this recurrence. (Can you give examples of, say, two of them?) To determine a 
solution uniquely, we need an initial condition that tells us the value with which 
the sequence starts. We can obtain this value by inspecting the condition that 
makes the algorithm stop its recursive calls: 

if n = 0 return 1. 

This tells us two things. First, since the calls stop when n = 0, the smallest value 
of n for which this algorithm is executed and hence M (n) defined is 0. Second, by 
inspecting the pseudocode's exiting line, we can see that when n = 0, the algorithm 
performs no multiplications. Thus, the initial condition we are after is 

5. Alternatively, we could count the number of times the comparison n = 0 is executed, which is the same 
as counting the total number of calls made by the algorithm (sec Problem 2 in Exercises 2.4). 

https://hemanthrajhemu.github.io



2.4 Mathematical Analysis of Recursive Algorithms 71 

M{O) =0. 

the calls stop when n = 0 ---- '---- no multiplications when n = 0 

Thus, we succeed in setting up the recurrence relation and initial condition 
for the algorithm's number of multiplications M (n): 

M(n) = M(n- 1) + 1 for n > 0, 

M(O) = 0. 
(2.2) 

Before we embark on a discussion of how to solve this recurrence, let us 
pause to reiterate an important point. We arc dealing here with two recursively 
defined functions. The first is the factorial function F(n) itself; it is defined by the 
recurrence 

F(n) = F(n- 1) · n for every n > 0, 

F(O) = L 

The second is the number of multiplications M(n) needed to compute F(n) by the 
recursive algorithm whose pseudocode was given at the beginning of the section. 
As we just showed, M(n) is defined by recurrence (2.2). And it is recurrence (2.2) 
that we need to solve now. 

Though it is not difficult to "guess" the solution (what sequence starts with 0 
when n = 0 and increases by 1 at each step?), it will be more useful to arrive at it in 
a systematic fashion. Among several techniques available for solving recurrence 
relations, we use what can be called the method of backward substitutions. The 
method's idea (and the reason for the name) is in1mediatcly clear from the way it 
applies to solving our particular recurrence: 

M(n) = M(n- 1) + 1 

= [M(n- 2) + 1] + 1 = M(n- 2) + 2 

= [M(n- 3) + 1] + 2 = M(n- 3) + 3. 

substitute M(n- 1) = M(n- 2) + 1 

substitute M (n - 2) = M (n - 3) + 1 

After inspecting the first three lines, we see an emerging pattern, which makes it 
possible to predict not only the next line (what would it be?) but also a general 
formula for the pattern: M(n) = M(n- i) + i. Strictly speaking, the correctness of 
this formula should be proved by mathematical induction, but it is easier to get 
the solution as follows and then verify its correctness. 

What remains to be done is to take advantage of the initial condition given. 
Since it is specified for n = 0, we have to substitute i = n in the pattern's formula 
to get the ultimate result of our backward substitutions: 

M(n) = M(n- 1) + 1 = · · · = M(n- i) + i = · · · = M(n- n) + n = n. 

You should not be disappointed after exerting so much effort to get this 
"obvious" answer. The benefits of the method illustrated in this sinlple example 
will become clear very soon, when we have to solve more difficult recurrences. 

https://hemanthrajhemu.github.io



72 Fundamentals of the Analysis of Algorithm Efficiency 

Also note that the simple iterative algorithm that accumulates the product of n 
consecutive integers requires the same number of multiplications, and it does so 
without the overhead of time and space used for maintaining the recursion's stack. 

The issue of time efficiency is actually not that important for the problem of 
computing n !, however. As we saw in Section 2.1, the function's values get so large 
so fast that we can realistically compute its values only for very small n 's. Again, we 
use this example just as a simple and convenient vehicle to introduce the standard 
approach to analyzing recursive algorithms. !II 

Generalizing our experience with investigating the recursive algorithm for 
computing n !, we can now outline a general plan for investigating recursive algo
rithms. 

General Plan for Analyzing Time Efficiency of Recursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input's size. 
2. Identify the algorithm's basic operation. 

3. Check whether the number of times the basic operation is executed can vary 
on different inputs of the same size; if it can, the worst -case, average-case, and 
best-case efficiencies must be investigated separately. 

4. Set up a recurrence relation, with an appropriate initial condition, for the 
number of times the basic operation is executed. 

5. Solve the recurrence or at least ascertain the order of growth of its solution. 

EXAMPLE 2 As our next example, we consider another educational workhorse 
of recursive algorithms: the Tower of Hanoi puzzle. In this puzzle, we (or mythical 
monks, if you do not like to move disks) have n disks of different sizes and three 
pegs. Initially, all the disks are on the first peg in order of size, the largest on the 
bottom and the smallest on top. The goal is to move all the disks to the third peg, 
using the second one as an auxiliary, if necessary. We can move on1y one disk at a 
time, and it is forbidden to place a larger disk on top of a smaller one. 

The problem has an elegant recursive solution that is illustrated in Figure 2.4. 
To move n > 1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first move 
recursively n - 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), then move the 
largest disk directly from peg 1 to peg 3, and, finally, move recursively n - 1 disks 
from peg 2 to peg 3 (using peg 1 as auxiliary). Of course, if n = 1, we can simply 
move the single disk directly from the source peg to the destination peg. 

Let us apply the general plan to the Tower of Hanoi problem. The number 
of disks n is the obvious choice for the input's size indicator, and so is moving 
one disk as the algorithm's basic operation. Clearly, the number of moves M(n) 
depends on n only, and we get the following recurrence equation for it: 

M(n) = M(n- 1) + 1 + M(n- 1) for n > 1. 

With the obvious initial condition M(1) = 1, we have the following recurrence 
relation for the number of moves M(n): 

https://hemanthrajhemu.github.io



I 

2.4 Mathematical Analysis of Recursive Algorithms 

3 

2 

FIGURE 2.4 Recursive solution to the Tower of Hanoi puzzle 

M(n) = 2M(n- 1) + 1 for 11 > 1, 

M(1) = 1. 

We solve this recurrence by the same method of backward substitutions: 

73 

(2.3) 

M(n) = 2M(n- 1) + 1 sub. M(n-1) = 2M(n- 2) + 1 

= 2[2M (n - 2) + 1] + 1 = 22M (n - 2) + 2 + 1 sub. M (n - 2) = 2M (n - 3) + 1 

= 22 [2M (n - 3) + 1] + 2 + 1 = 23M (n - 3) + 22 + 2 + 1. 

The pattern of the first three sums on the left suggests that the next one will be 
24M(n- 4) + 23 + 22 + 2 + 1 and, generally, after i substitutions, we get 

M(n) = z' M(n- i) + 2i-l + z'-2 + · · · + 2 + 1 = z' M(n- i) + zi- 1. 

Since the initial condition is specified for 11 = 1, which is achieved fori = n - 1, we 
get the following formula for the solution to recurrence (2.3): 

M(n)=2"-1M(n-(n-1))+2"-1 -1 

= 2"-1M(1) + 2"-1 -1 = 2"-1 + 2"-1 -1 = 2" -1. 

Thus, we have an exponential algorithm, which will run for an unimaginably 
long time even for moderate values of n (see Problem 5 in Exercises 2.4). This is 
not due to the fact that this particular algorithm is poor; in fact, it is not difficult 
to prove that this is the most efficient algorithm possible for this problem. It is 

https://hemanthrajhemu.github.io



74 Fundamentals of the Analysis of Algorithm Efficiency 

--------------- n ~ 
n-1 n-1 

/~ /~ 
n-2 n-2 n-2 n-2 

FIGURE 2.5 Tree of recursive calls made by the recursive algorithm for the Tower of 
Hanoi puzzle 

the problem's intrinsic difficulty that makes it so computationally hard. Still, this 
example makes an important general point: 

One should be careful with recursive algorithms because their succinct
ness may mask their inefficiency. 

When a recursive algorithm makes more than a single call to itself, it is 
useful for analysis purposes to construct a tree of its recursive calls. In this tree, 
nodes correspond to recursive calls, and we can label them with the value of the 
parameter (or, more generally, parameters) of the calls. For the Tower of Hanoi 
example, the tree is given in Figure 2.5. By counting the number of nodes in the 
tree, we can get the total number of talls made by the Tower of Hanoi algorithm: 

n-1 

C(n) = L zi (where lis the level in the tree above)= 2"- 1. 
t~o 

The number agrees, as it should, with the move count obtained earlier. !Ill 

EXAMPLE 3 As our next example, we investigate a recursive version of the 
algorithm discussed at the end of Section 2.3. 

ALGORITHM BinRec(11) 

//Input: A positive decimal integer 11 
//Output: The number of binary digits inn's binary representation 
if 11 = 1 return 1 
else return BinRec(L11/2J) + 1 

Let us set up a recurrence and an initial condition for the number of addi
tions A (11) made by the algorithm. TI1e number of additions made in computing 

https://hemanthrajhemu.github.io



2.4 Mathematical Analysis of Recursive Algorithms 75 

BinRec(Ln/2J) is A(Ln/2J), plus one more addition is made by the algorithm to 
increase the returned value by 1. This leads to the recurrence 

A(n) = A(Ln/2J) + 1 for 11 > 1. (2.4) 

Since the recursive calls end when n is equal to 1 and there are no additions made 
then, the initial condition is 

A(1) = 0. 

The presence of Ln/2J in the function's argument makes the method of back
ward substitutions stumble on values of n that are not powers of 2. Therefore, the 
standard approach to solving such a recurrence is to solve it only for 11 = 2' and 
then take advantage of the theorem called the smoothness rule (see Appendix B), 
which claims that under very broad assumptions the order of growth observed for 
n = 2' gives a correct answer about the order of growth for all values of n. (Al
ternatively, after obtaining a solution for powers of 2, we can sometimes fine-tune 
this solution to get a formula valid for an arbitrary n.) So let us apply this recipe 
to our recurrence, which for n = 2' takes the form 

A(2'J = A(2'-1J + 1 fork> 0, 

A(2°) = 0. 

Now backward substitutions encounter no problems: 

A(2'J = A(2'- 1J + 1 substitute A(2'- 1J = A(2'-2J + J 

= [A(2'-2J + 1] + 1 = A(2'-2
) + 2 substitute A(2'-2J = A(2'-3) + 1 

= (A(2'-3J + 1] + 2 = A(2'-3J + 3 

Thus, we end up with 

A (2') = A (1) + k = k 

or, after returning to the original variable n = 2' and hence k = log
2 

n, 

A(n) = log2 n E G(log n). 

In fact, we can prove (Problem 6 in Exercises 2.4) that the exact solution for an 
arbitrary value ofn is given by just a slightly more refined formula A(n) = Llog2 11j. 

!!I 

This section provides an introduction to analysis of recursive algorithms. 
These techniques will be used throughout the book and expanded further as 
necessary. In the next section, we discuss the Fibonacci numbers; their analysis 

https://hemanthrajhemu.github.io



;' 
'''i,~,,-_, __ 

76 Fundamentals of the Analysis of Algorithm Efficiency 

involves more difficult recurrence relations to be solved by a method different 
from backward substitutions. 

-----Exercises 2.4----------------

1. Solve the following recurrence relations. 

a. x(n)=x(n-1)+5 forn>1, x(l)=O 

b. x(n) = 3x(n- 1) for n > 1, x(1) = 4 

c. x(n) = x(n- 1) + n for n > 0, x(O) = 0 

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2k) 

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3k) 

2. Set up and solve a recurrence relation for the number of calls made by F(n), 
the recursive algorithm for computing n!. 

3. Consider the following recursive algorithm for computing the sum of the first 
n cubes: S(n) = 13 + 23 + ... + n3 

ALGORITHM S(n) 

//Input: A positive integer n 

//Output: The sum of the first n cubes 
if n = 1 return 1 
else return S(n - 1) + n * n * n 

a. Set up and solve a recurrence relation for the number of times the algo
rithm's basic operation is executed. 

b. How does this algorithm compare with the straightforward nonrecursive 
algorithm for computing this sum? 

4. Consider the following recursive algorithm. 

ALGORITHM Q(n) 

//Input: A positive integer n 

if n = 1 return 1 
else return Q(n - 1) + 2 * n - 1 

a. Set up a recurrence relation for this function's values and solve it to deter
mine what this algorithm computes. 

b. Set up a recurrence relation for the number of multiplications made by this 
algorithm and solve it. 

c. Set up a recurrence relation for the number of additions/subtractions made 
by this algorithm and solve it. 

https://hemanthrajhemu.github.io



2.4 Mathematical Analysis of Recursive Algorithms 77 

5. a. Tower of Hanoi In the original version of the Tower of Hanoi puzzle, as 
it was published by Edouard Lucas, a French mathematician, in the 1890s, 
the world will end after 64 disks have been moved from a mystical Tower 
of Brahma. Estimate the number of years it will take if mouks could move 
one disk per minute. (Assume that monks do uot eat, sleep, or die.) 

b. How many moves are made by the ith largest disk (1:<:: i :s n) in this algo
rithm? 

c. Design a nonrecursive algorithm for the Tower of Hanoi puzzle. 

6. a. Prove that the exact number of additions made by the recursive algorithm 
BinRec(n) for an arbitrary positive decimal integer n is [log

2 
nj. 

b. Set up a recurrence relation for the number of additions made by the 
nonrecursive version of this algorithm (see Section 2.3, Example 4) and 
solve it. 

7. a. Design a recursive algorithm for computing 211 for any nonnegative integer 
n that is based on the formula: zn = zn~ 1 + zn- [. 

b. Set up a recurrence relation for the number of additions made by the 
algorithm and solve it. 

c. Draw a tree of recursive calls for this algorithm and count the number of 
calls made by the algorithm. 

d. Is it a good algorithm for solving this problem? 

8. Consider the following recursive algorithm. 

ALGORITHM Minl(A[O .. n -1]) 

//Input: An array A[O .. n - 1] of real numbers 
if n = 1 return A [0] 
else temp+- Minl(A[O .. n- 2]) 

if temp :S A[n-1]returntemp 
else return A[n - 1] 

a. What does this algorithm compute? 

b. Set up a recurrence relation for the algorithm's basic operation count and 
solve it. 

9. Consider another algorithm for solving the problem of Exercise 8, which 
recursively divides an array into two halves: call Min2(A[O .. n - 1]) where 

ALGORITHM Min2(A[l .. r]) 

if l = r return A [l] 
else temp1 +- Min2(A[l .. L(l + r)j2J]) 

temp2 +- Min2(A[L(l + r)/2J+l..r]l 
if templ :S temp2 return templ 
else return temp2 

https://hemanthrajhemu.github.io



78 Fundamentals of the Analysis of Algorithm Efficiency 

a. Set up a recurrence relation for the algorithm's basic operation count and 
solve it. 

b. Which of the algorithms Mini or Min2 is faster? Can you suggest au 
algorithm for the problem they solve that would be more efficient than 
both of them? 

10. The determinant of an n-by-n matrix 

[

all 

a21 
A= 

a;li 
denoted det A, can be defined as a11 for n = 1 and, for n > 1, by the recursive 
formula 

" 
det A= L sjalj det A j• 

i=l 

where sj is+ 1 if j is odd and -1 if j is even, a1j is the element in row 1 and 
column j, and A j is the (n - 1)-by-(n - 1) matrix obtained from matrix A by 
deleting its row 1 and column j. 

a. Set up a recurrence relation for the number of multiplications made by the 
algorithm implementing this recursive definition. 

b. Without solving the recurrence, what can you say about the solution's order 
of growth as compared to n! ? 

11. von Newmann's neighborhood revisited Find the number of cells in the von 
Newmann neighborhood of range n (see Problem 11 in Exercises 2.3) by 
setting up and solving a recurrence relation. 

2.5 Example: Fibonacci Numbers 

In this section, we consider the Fibonacci numbers, a famous sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... (2,5) 

that can be defined by the simple recurrence 

F(n) = F(n -1) + F(n- 2) for n > 1 (2.6) 

and two initial conditions 

F(O) = 0, F(1) = 1. (2.7) 

The Fibonacci numbers were introduced by Leonardo Fibonacci in 1202 as a 
solution to a problem about the size of a rabbit population. Many more examples 

https://hemanthrajhemu.github.io



2.5 Example: Fibonacci Numbers 79 

of Fibonacci-like numbers have since been discovered in the natural world, and 
they have even been used in predicting the prices of stocks and commodities. 
There are some interesting applications of the Fibonacci numbers in computer 
science as well. For example, worst-case inputs for Euclid's algorithm happen to 
be consecutive elements of the Fibonacci sequence. Our discussion goals are quite 
limited here, however. First, we find an explicit formula for the nth Fibonacci 
number F (n), and then we briefly discuss algorithms for computing it. 

Explicit Formula for the nth Fibonacci Number 

If we try to apply the method of backward substitutions to solve recurrence (2.6), 
we will fail to get an easily discernible pattern. Instead, let us take advantage of a 
theorem that describes solutions to a homogeneous second-order linear recurrence 
with constant coefficients 

ax(n) + bx(n- 1) + cx(n- 2) = 0, (2.8) 

where a, b, and care some fixed real numbers (a -,f 0) called the coefficients of 
the recurrence and x (n) is the generic term of an unknown sequence to be found. 
According to this theorem-see T11eorem 1 in Appendix B-recurrence (2.8) has 
an infinite number of solutions that can be obtained by one of the three formulas. 
Which of the three formulas applies to a particular case depends on the number 
of real roots of the quadratic equation with the same coefficients as recurrence 
(2.8): 

ar2 + br + c = 0. (2.9) 

Quite logically, equation (2.9) is called the characteristic equation for recurrence 
(2.8). 

Let us apply this theorem to the case of the Fibonacci numbers. To do so, 
recurrence (2.6) needs to be rewritten as 

F(n)- F(n- 1)- F(n- 2) = 0. 

Its characteristic equation is 

with the roots 

r1,2 = 

r 2
- r -1 = 0, 

1± ,/1- 4(-1) 

2 

l±v'S 
2 

(2.10) 

Since this characteristic equation has two distinct real roots, we have to use the 
formula indicated in Case 1 of Theorem 1: 

F(n) = 0/ C +2 v'Sr + fJ C -2 v'Sr 

https://hemanthrajhemu.github.io



rr ... I 

!· ' 

80 

6. 

Fundamentals of the Analysis of Algorithm Efficiency 

So far, we have ignored initial conditions (2.7). Now we take advantage of 
them to find specific values of parameters a and f3. We do this by substituting 0 
and 1-the values of 11 for which the initial conditions are given-into the last 
formula and equating the results to 0 and 1 (the values of F(O) and F(1) according 
to (2. 7)), respectively: 

F(O) =a ( 1+2J5) 0 
+ f3 e-2J5t = 0 

F(1) =a ( l+zJ5Y + f3 e-zJS) 1 = 1. 

After some standard algebraic simplifications, we get the following system of two 
linear equations in two unknowns a and {3: 

a + f3 0 

( l+zJS) a + ( l-zJS) f3 1. 

Solving the system (e.g., by substituting f3 = -a into the second eq nation and 
solving the equation obtained for a), we get the values a = 1/ vis and f3 = -1/ vis 
for the unknowns. Thus, 

F(l1) = __.!:_ (1 +vis)" __ 1 (1- vis)"=__.!:_(¢"_¢,"), 
vis 2 .,j5 2 vis 

(2.11) 

where¢= (1 + vis)/2'" 1.61803 and if,= -11¢'" -0.618036 It is hard to believe 
that formula (2.11 ), which includes arbitrary integer powers of irrational numbers, 
yields nothing else but all the elements of Fibonacci sequence (2.5), but it does! 

One of the benefits offormula '(2.11) is that it i=ediately implies that F(n) 
grows exponentially (remember Fibonacci's rabbits?), i.e., F(11) E 8(¢"). Tbis 
follows from the observation that if, is between -1 and 0, and, hence, ¢" gets 
infinitely small as 11 goes to infinity. 1n fact, one can prove that the impact of the 
second term)<,¢" on the value of F(11) can be obtained by rounding off the value 
of the first term to the nearest integer. 1n other words, for every nonnegative 
integer n, 

F(11) = )s¢" rounded to the nearest integer. (2.12) 

Algorithms for Computing Fibonacci Numbers 

Though the Fibonacci numbers have many fascinating properties, we limit our 
discussion to a few remarks about algorithms for computing them. Actually, the 

Constant 4> is known as the golden ratio. Since antiquity, it has been considered the most pleasing ratio 
of a rectangle's two sides to the human eye and might have been consciously used by ancient architects 
and sculptors. 

•.. 1•.: 

11 

·.'1:.: J 
'I 
ill 
:ll 
li 

•.. t·.l! ,, 

I 
~ 
I 
I 
1 
~~. 
~: https://hemanthrajhemu.github.io



2.5 Example: Fibonacci Numbers 81 

sequence grows so fast that it is the size of the numbers rather than a time-efficient 
method for computing them that should be of primary concern here. Also, for the 
sake of simplicity, we consider such operations as additions and multiplications at 
unit cost in the algorithms that follow. Since the Fibonacci numbers grow infinitely 
large (and grow rapidly), a more detailed analysis than the one offered here is 
warranted. These caveats notwithstanding, the algorithms we outline and their 
analysis are useful examples for a student of the design and analysis of algorithms. 

To begin with, we can use recurrence (2.6) and initial condition (2.7) for the 
obvious recursive algorithm for computing F(n). 

ALGORITHM F(n) 

//Computes the nth Fibonacci number recursively by using its definition 
//Input: A nonnegative integer n 
//Output: The nth Fibonacci number 
ifn::::; 1 retumn 
else return F(n - 1) + F(n - 2) 

Before embarking on its formal analysis, can you tell whether this is an effi
cient algorithm? Well, we need to do a formal analysis anyway. The algorithm's ba
sic operation is clearly addition, so let A (n) be the number of additions performed 
by the algorithm in computing F(n). Then the numbers of additions needed for 
computing F(n- 1) and F(n- 2) are A(n- 1) and A(n- 2), respectively, and 
the algorithm needs one more addition to compute their sum. Thus, we get the 
following recurrence for A(n): 

A (n) = A (n - 1) + A (n - 2) + 1 for n > 1, 

A(O) = 0, A(l) = 0. 

(2.13) 

The recurrence A(n)- A(n- 1)- A(n- 2) = 1 is quite similar to recurrence 
(2.10), but its right-hand side is not equal to zero. Such recurrences are called 
inhomogeneous recurrences. There are general techniques for solving inhomoge
neous recurrences (see Appendix B or any textbook on discrete mathematics), 
but for this particular recurrence, a special trick leads to a faster solution. We can 
reduce our inhomogeneous recurrence to a homogeneous one by rewriting it as 

[A(n) + 1]- [A(n -1)+ 1]- [A(n- 2) + 1] = 0 

and substituting B(n) = A(n) + 1: 

B(n)- B(n -1)- B(n -2) =0 

B(O) = 1, B(1) = 1. 

Tills homogeneous recurrence can be solved exactly in the same manner as recur
rence (2.10) was solved to find an explicit formula for F(n). But it can actually be 
avoided by noting that B(n) is, in fact, the same recurrence as F(n) except that it 
starts with two ones and thus runs one step ahead of F(n). So B(n) = F(n + 1), 

https://hemanthrajhemu.github.io



rr-
1 

82 Fundamentals of the Analysis of Algorithm Efficiency 

Fl51 

F141~ ~FI31 
Fl31/ Fl21 Fl21/ ~FI11 
~ ~ ~ 

F121 Fl11 Fl11 FlO) Fl11 FlO) 

~ 
Fl11 FlO) 

FIGURE 2.6 Tree of recursive calls for computing the 5th Fibonacci number by the 
definition-based algorithm 

and 

A(n) = B(n)- 1 = F(n + 1)- 1 = ...!...cq,"+l_ ¢"+1)- 1. 
../5 

Hence, A(n) E EJ(¢") and, if we measure the size of n by the number of bits 
b = Llog2 nj + 1 in its binary representation, the efficiency class will be even worse, 
namely doubly exponential. . 

The poor efficiency class of the algorithm could be anticipated by the nature of 
recurrence (2.13). Indeed, it contains two recursive calls with the sizes of smaller 
instances only slightly smaller than size n. (Have you encountered such a situation 
before?) We can also see the reason behind the algorithm's inefficiency by looking 
at a recursive tree of calls tracing the algorithm's execution. An example of such 
a tree for n = 5 is given in Figure 2.6. Note that the same values of the function 
are being evaluated again and again, which is clearly extremely inefficient. 

We can obtain a much faster algorithm by simply computing the successive 
elements of the Fibonacci sequence iteratively, as is done in the following algo
rithm. 

ALGORITHM Fib(n) 

//Computes the nth Fibonacci number iteratively by using its definition 
//Input: A nonnegative integer n 
//Output: The nth Fibonacci number 
F[O] +- 0; F[1] +- 1 
for i +- 2 to n do 

F[i] +- F[i- 1] + F[i- 2] 
return F[n] 

This algorithm clearly makes n - 1 additions. Hence, it is linear as a func
tion of n and "only" exponential as a function of the number of bits b in n's 
binary representation. Note that using an extra array for storing all the preced-

1 
! 
' 

https://hemanthrajhemu.github.io



2.5 Example: Fibonacci Numbers 83 

ing elements of the Fibonacci sequence can be avoided: storing just two values is 
necessary to accomplish the task (see Problem 6 in Exercises 2.5). 

The third alternative for computing the nth Fibonacci numher lies in using 
formula (2.12). The efficiency of the algorithm will obviously be determined by 
the efficiency of an exponentiation algorithm used for computing¢". If it is done 
by simply multiplying ¢ by itself n - 1 times, the algorithm will be in 8 (n) = 
e (2b). There are faster algorithms for the exponentiation problem. For example, 
we discuss El(log n) = El(b) algorithms for this problem in Chapters 5 and 6. 
Note also that special care should be exercised in implementing this approach 
to computing the nth Fibonacci number. Since all its intermediate results are 
irrational numbers, we would have to make sure that their approximations in the 
computer are accurate enough so that the final round-off yields a correct result. 

Finally, there exists a El(log n) algorithm for computing the nth Fibonacci 
number that manipulates only integers. It is based on the equality 

[ 
F(n- 1) 

F(n) 
F(n) ] [0 1]" for n ::: 1 F(n+1) - 1 1 

and an efficient way of computing matrix powers. 

------Exercises 

1. Find a Web site dedicated to applications of the Fibonacci numbers and 
study it. 

2. Check by direct substitutions that the function }, (¢" - ¢") indeed satisfies 

recurrence (2.6) for every n > 1 and initial conditions (2.7) for n = 0 and 1. 

3. The maximum values of the Java primitive types i nt and long are 231 - 1 and 
263

- 1, respectively. Find the smallest n for which the nth Fibonacci number 
is not going to fit in a memory allocated for 

a. the type i nt. b. the type long. 

4. Climbing stairs Find the number of different ways to climb an n-stair stair
case if each step is either one or two stairs. (For example, a 3-stair staircase 
can be climbed three ways: 1-1-1,1-2, and 2-1.) [Tuc80], p. 112 

5. Consider the recursive definition-based algorithm for computing the nth Fi
bonacci number F (n). Let C (n) and Z (n) be the number of times F (1) and 
F(O), respectively, are computed. Prove that 

a. C(n) = F(n) b. Z(n) = F(n- 1). 

6. Improve algorithm Fib so that it requires only 8(1) space. 

7. Prove the equality 

[ 
F(n- 1) 

F(n) 
F(n) ] [0 1]" 

F(n + 1) - 1 1 for n 2: 1. 

https://hemanthrajhemu.github.io



84 Fundamentals of the Analysis of Algorithm Efficiency 

8. How many modulo divisious are made by Euclid's algorithm on two consec
utive Fibonacci numbers F(n) and F(n- 1) as the algorithm's input? 

9. a. Prove Cassini's identity: 

F(n + l)F(n -1)- [F(n)f = (-1)'' for n ':: 1. 

b. Disappearing square Consider the following paradox, which is based on 
Cassini's identity. Take an 8-by-8 chessboard (more generally, any F(n)

by-F(n) board divided into [F(n)]2 squares). Cut it into two trapezoids 
and two triangles as shown in the left portion of the figure below. Then 
reassemble it as shown in the right portion of the figure. The area of the 
left rectangle is 8 x 8 = 64 squares, while the area of the right rectangle is 
13 x 5 = 65 squares. Explain the paradox. 

1/ 1----
1'---

---- I 1'---
1---- 1/ 1----

-----
...._ 

I 1---- t-... 

10. In the language of your choice, implement two algorithms for computing the 
last five digits of the nth Fibonacci number that are based on (a) the recursive 
definition-based algorithm F(n); (b) the iterative definition-based algorithm 
Fih(n). Perform an experiment to find the largest value of n for which your 
programs run under 1 minute on your computer. 

2.6 Empirical Analysis of Algorithms 

In Sections 2.3 and 2.4, we saw how algorithms, both nonrecursive and recursive, 
can be analyzed mathematically. Though these techniques can be applied success
fully to many simple algorithms, the power of mathematics, even when enhanced 
with more advanced techniques (see [Sed96], [Pur85], [Gra94], and [Gre82]), is 
far from limitless. In fact, even some seemingly simple algorithms have proved 
to be very difficult to analyze with mathematical precision and certainty. As we 
pointed out in Section 2.2, this is especially true for average-case analysis. 

https://hemanthrajhemu.github.io



2.6 Empirical Analysis of Algorithms 85 

TIJe principal alternative to the mathematical analysis of an algorithm's effi
ciency is its empirical analysis. This approach implies the steps spelled out in the 
following plan. 

General Plan for Empirical Analysis of Algorithm Time Efficiency 

1. Understand the experiment's purpose. 

2. Decide on the efficiency metric M to be measured and the measurement unit 
(an operation's count vs. a time unit). 

3. Decide on characteristics of the input sample (its range, size, and so on). 
4. Prepare a program implementing the algorithm (or algorithms) for the exper

imentation. 

5. Generate a sample of inputs. 

6. Run the algorithm (or algorithms) on the sample's inputs and record the data 
observed. 

7. Analyze the data obtained. 

Let us discuss these steps one at a time. There are several different goals 
one can pursue in analyzing algorithms empirically. They include checking the 
accuracy of a theoretical assertion about the algorithm's efficiency, comparing the 
efficiency of several algorithms for solving the same problem or different imple
mentations of the same algorithm, developing a hypothesis about the algorithm's 
efficiency class, and ascertaining the efficiency of the program implementing the 
algorithm on a particular machine. Obviously, an experiment's design should de
pend on the question the experime~ter seeks to answer. 

In particular, the experiment's goal should influence, if not dictate, how the 
algorithm's efficiency is to be measured. The fu·st alternative is to insert a counter 
(or counters) into a program implementing the algorithm to count the number of 
times the algorithm's basic operation is executed. This is usually a straightforward 
operation; you should only be mindful of the possibility that the basic operation 
is located in several places in the program and that all its executions need to be 
accounted for. As straightforward as this task usually is, yon should always test the 
modified program to ensure that it works correctly, in terms of both the problem 
it solves and the counts it yields. 

The second alternative is to time the program implementing the algorithm in 
question. The easiest way to do this is to use a system's command, such as the 
time conunand in UNIX. Alternatively, we can measure the running time of a 
code fragment by asking for the system time right before the fragment's start 
Ctstarr) and just after its completion (t finish)) and then computing the difference 
between the two (tfinish- tstarr).? InC and C++) you can use the function clock 

7. If the system time is given in units called "ticks," the difference should be divided by a constant 
indicating the number of ticks per time unit. 

https://hemanthrajhemu.github.io



86 Fundamentals of the Analysis of Algorithm Efficiency 

for this purpose; in Java, the method cu rrentTi meMill is() in the System class 
is available. 

It is important to keep several facts in mind, however. First, a system's time 
is typically not very accurate, and you might get somewhat different results on 
repeated runs of the same program on the same inputs. An obvious remedy is 
to make several such measurements and then take their average (or the median) 
as the sample's observation point. Second, given the high speed of modern com
puters, the running time may fail to register at all and be reported as zero. The 
standard trick to overcome this obstacle is to run the program in an extra loop 
many times, measure the total running time, and then divide it by the number of 
the loop's repetitions. Third, on a computer running under a time-sharing system 
(such as UNIX), the reported time may include the time spent by the CPU on 
other programs, which obviously defeats the purpose of the experiment. There
fore, you should take care to ask the system for the time devoted specifically to 
execution of your program. (In UNIX, this time is called the "user time," and it is 
automatically provided by the time command.) 

Thus, measuring the physical running time has several disadvantages, both 
fundamental (dependence on a particular machine being the most important of 
them) and technical, not shared by counting the executions of a basic operation. 
On the other hand, the physical running time provides very specific information 
about an algorithm's performance in a particular computing environment, which 
can be of more importance to the experimenter than, say, the algorithm's asymp
totic efficiency class. In addition, measuring time spent on different segments of 
a program can pinpoint a bottleneck in the program's performance that can be 
missed by an abstract deliberation about the algorithm's basic operation. Getting 
such data-called profiling-is an important resource in the empirical analysis of 
an algorithm's running time; the data in question can usually be obtained from 
the system tools available in most computing environments. 

Whether you decide to measure the efficiency by basic operation counting 
or by time clocking, you will need to decide on a sample of inputs for the ex
periment. Often, the goal is to use a sample representing a "typical" input; so 
the challenge is to understand what a "typical" input is. For some classes of 
algorithms-e.g., algorithms for the traveling salesman problem discussed later in 
the book-researchers have developed a set of instances they use for benchmark
ing. But much more often than not, an input sample has to be developed by the 
experimenter. Typically, you will have to make decisions about the sample size (it is 
sensible to start with a relatively small sample and increase it later if necessary), the 
range of input sizes in your sample (typically neither trivially small nor excessively 
large), and a procedure for generating inputs in the range chosen. The instance 
sizes can either adhere to some pattern (e.g., 1000, 2000, 3000, ... , 10,000 or 
500, 1000, 2000, 4000, ... , 128000) or be generated randomly within the range 
chosen. 

The principal advantage of size changing according to a pattern is that its im
pact is easier to analyze. For example, if a sample's sizes are generated by doubling, 
we can compute the ratios M(2n)jM(n) of the observed metric M (the count or 

https://hemanthrajhemu.github.io



I 

2.6 Empirical Analysis of Algorithms 87 

the time) and see whether the ratios exhibit a behavior typical of algorithms in 
one of the basic efficiency classes (see Section 2.2). The major disadvantage of 
nonrandom sizes is the possibility that the algorithm under investigation exhibits 
atypical behavior on the sample chosen. For example, if all the sizes in a sample 
are even and an algorithm under investigation runs much more slowly on odd-size 
inputs, the empirical results will be quite misleading. 

Another important issue concerning sizes in an experiment's sample is 
whether several instances of the same size should be included. If you expect the 
observed metric to vary considerably on instances of the same size, it is probably 
wise to include several instances for every size in the sample. (TI1ere are well
developed methods in statistics to help the experimenter make such decisions; 
you will find no shortage of books on this subject.) Of course, if several instances 
of the same size are included in the sample, the averages or medians of the ob
served values for each size should be computed and investigated instead of or in 
addition to individual sample points. 

Much more often than not, an empirical analysis of an algorithm's efficiency 
requires generating random numbers. Even if we decide to use a pattern for in
put sizes, we typically want instances themselves generated randomly. Generating 
random numbers on a digital computer is known to present a difficult problem be
cause, in principle, the problem can be solved only approximately. This is the rea
son computer scientists prefer to call such numbers pseudorandom. As a practical 
matter, the easiest and most natural way of getting such numbers is to take ad
vantage of a random number generator available in computer language libraries. 
Typically, its output will be a value of a (pseudo )random variable uniformly dis
tributed in the interval between 0 and 1. If a different (pseudo )random variable 
is desired, an appropriate transformation needs to be made. For example, if x is a 
continuous random variable uniformly distributed on the interval 0 <( x < 1, the 
variable y = l + Lx(r -I)J will be uniformly distributed among the integer values 
between integers land r- 1 (I< r). 

Alternatively, you can implement one of several known algorithms for gener
ating (pseudo )random numbers. The most widely used and thoroughly studied of 
such algorithms is the linear congruential method. 

ALGORITHM Random(n, m, seed, a, b) 

//Generates a sequence of 11 pseudorandom numbers according to the linear 
//congruential method 
//Input: A positive integer n and positive integer parameters m, seed, a, b 
//Output: A sequence r1, ... , r, of 11 pseudorandom integers uniformly 
II distributed among integer values between 0 and m - 1 
//Note: Pseudorandom numbers between 0 and 1 can be obtained 
II by treating the integers generated as digits after the decimal point 
r0 +--seed 
for i <-- lto n do 

ri +----(a*ri-1 +b)modm 

https://hemanthrajhemu.github.io



" 
. 

. 

:1! . 88 Fundamentals of the Analysis of Algorithm Efficiency 

The simplicity of the algorithm's pseudocode is misleading because the devil 
lies in the details of choosing the algorithm's parameters. Here is a partial list of 
recommendations based on the results of a sophisticated mathematical analysis 
(see [Knuii], pp. 184-185, for details): seed may be chosen arbitrarily and is often 
set to the current date and time; m should be large and may be conveniently taken 
as zw, where w is the computer's word size; a should be selected as an integer 
between O.Olm and 0.99m with no particular pattern in its digits but such that 
a mod 8 = 5; the value of b can be chosen as 1. 

The empirical data obtained as the result of an experiment need to be recorded 
and then presented for an analysis. Data can be presented numerically in a table 
or graphically in a scatterplot, that is by points in a Cartesian coordinate system. 
It is a good idea to use both these options whenever it is feasible because both 
methods have their unique strengths and weaknesses. 

The principal advantage of tabulated data lies in the opportunity to manip
ulate it easily. For example, we can compute the ratios M(n)fg(n) where g(n) is 
a candidate to represent the efficiency class of the algorithm in question. If the 
algorithm is indeed in E>(g(n)), most likely these ratios will converge to some pos
itive constant as n gets large. (Note that careless novices sometimes assume that 
this constant must be 1, which is, of course, incorrect according to the definition 
of El(g(n)).) Or we can compute the ratios M(2n)/ M(n) and see how the running 
time reacts to doubling of its input size. As we discussed in Section 2.2, such ratios 
should change only slightly for logarithmic algorithms and most likely converge 
to 2, 4, and 8 for linear, quadratic, and cubic algorithms, respectively-to name 
the most obvious and convenient cases. 

On the other hand, the form of a scatterplot may also help in ascertaining 
the algorithm's probable efficiency class. For a logarithmic algorithm, the scat
terplot will have a concave shape (Figure 2.7a); this fact distinguishes it from 
all the other basic efficiency classes. For a linear algorithm, the points will tend 
to aggregate around a straight line or, more generally, to be contained between 
two straight lines (Figure 2.7b ). Scatterplots of functions in E>(n lg n) and E>(n2) 

will have a convex shape (Figure 2.7c), making them difficult to differentiate. A 
scatterplot of a cubic algorithm will also have a convex shape, but it will show a 
much more rapid increase in the metric's values. An exponential algorithm will 
most probably require a logarithmic scale for the vertical axis, in which the val
ues of log" M (n) rather than those of M (n) are plotted. (The commonly used 
logarithm base is 2 or 10.) In such a coordinate system, a scatterplot of a truly 
exponential algorithm should resemble a linear function because M (n) "" ca" im
plies 1ogb M (n) "" !ogb c + n !ogb a and vise versa. 

One of the possible applications of the empirical analysis is to predict the 
algorithm's performance on an instance not included in the experiment sample. 
For example, if we observe that the ratios M (n) f g(n) are close to some constant c 
for the sample instances, we can approximate M(n) by the product cg(n) for other 
instances, too. Though this approach is sensible, it should be used with caution, 
especially for values of n outside the sample range. (Mathematicians call such 

https://hemanthrajhemu.github.io



J 

2.6 Empirical Analysis of Algorithms 89 

count or time count or time 

•/ ·r 
• • • • 

• • • • • 
• • • • • • • 

• 

n 

(b) 

FIGURE 2.7 Typical scatterplots: (a) logarithmic; (b) linear; (c) one ofthe convex functions 

predictions extrapolation, as opposed to interpolation, which deals with values 
within the sample range.) Of course, we cau also try unleashing the standard 
techniques of statistical data analysis and prediction. Note, however, that the 
majority of such techniques are based on specific probabilistic assumptions that 
may or may not be valid for the experimental data in question. 

It seems appropriate to end this section hy pointing out the hasic differ
ences hetween mathematical and empirical analyses of algorithms. The princi
pal strength of the mathematical analysis is its independence of specific inputs; 
its principal weakness is its limited applicability, especially for investigating the 
average-case efficiency. The principal strength of the empirical analysis lies in its 
applicability to any algorithm, but its results can depend on the particular sample 
of instances and the computer used in the experiment. 

https://hemanthrajhemu.github.io



90 Fundamentals of the Analysis of Algorithm Efficiency 

----- Exet·cises 2 

1. Consider the following well-known sorting algorithm (we study it more closely 
later in the book) with a counter inserted to count the number of key com
parisons. 

ALGORITHM SortAnalysis(A[O .. n -1]) 

//Input: An array A[O .. n -1] of n orderable elements 
//Output: The total number of key comparisons made 
count +---- 0 
for i <-- 1 to n - 1 do 

v <-- A[i] 
j<--i-1 
while j 2: 0 and A[j] > v do 

count +-count + 1 
A[j + 1] <-- A[i] 
j<--j-1 

A[j+l]<--v 
return count 

Is the comparison counter inserted in the right place? If you believe it is, prove 
it; if you believe it is not, make an appropriate correction. 

2. a. Run the program of Problem 1, with a properly inserted counter (or coun
ters) for the number of key comparisons, on 20 random arrays of sizes 1000, 
1500, 2000, 2500, ... , 9000, 9500. 

b. Analyze the data obtained to form a hypothesis about the algorithm's 
average-case efficiency. 

c. Estimate the number of key comparisons one should expect for a randomly 
generated array of size 10,000 sorted by the same algorithm. 

3. Repeat Problem 2 by measuring the program's running time in milliseconds. 

4. Hypothesize a likely efficiency class of an algorithm based on the following 
empirical observations of its basic operation's count: 

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

count 11,966 24,303 39,992 53,010 67,272 78,692 91,274 113,063 129,799 140,538 

5. What scale transformation will make a logarithmic scatterplot look like a 
linear one? 

6. How can we distinguish a scatterplot for an algorithm in El(lg lg n) from a 
scatterplot for an algorithm in 0)(lg n)? 

https://hemanthrajhemu.github.io



I 
I 

I 

I 
I 

2 

2. 7 Algorithm Visualization 91 

7. a. Find empirically the largest number of divisions made by Euclid's algo
rithm for computing gcd(m, n) for 1::: n :S m :S 100. 

b. For each positive integer k, find empirically the smallest pair of integers 
1:S 11 :S m s 100 for which Euclid's algorithm needs to make k divisions in 
order to find gcd(m, n). 

8. The average-case efficiency of Euclid's algorithm on inputs of size 11 can be 
measured by the average number of divisions Da,g(n) made by the algorithm 
in computing gcd(n, 1), gcd(n, 2), ... , gcd(11, n). For example, 

1 
Da,g(S) = S(1 + 2 + 3 + 2 + 1) = 1.8. 

Produce a scatterplot of Da,,(n) and indicate the algorithm's likely average
case efficiency class. 

9. Run an experiment to ascertain the efficiency class of the sieve of Eratos
thenes (see Section l.J ). 

10. Run a timing experiment for the three algorithms for computing gcd(m, n) 
presented in Section l.l. 

Algorithm Visualization 

In addition to the mathematical and empirical analyses of algorithms, there is yet 
a third way to study algorithms. It is called algorithm visualization and can be 
defined as the use of images to convey some useful information about algorithms. 
That information can be a visual illustration of an algorithm's operation, of its per
formance on different kinds of inputs, or of its execution speed versus that of other 
algorithms for the same problem. To accomplish this goal, an algorithm visualiza
tion uses graphic elements (points, line segments, two- or three-dimensional bars, 
and so on) to represent some "interesting events" in the algorithm's operation. 

There are two principal variations of algorithm visualization: 

'" static algorithm visualization 
lli dynamic algorithm visualization, also called algorithm animation 

Static algorithm visualization shows an algorithm's progress through a series 
of still images. Algorithm animation, on the other hand, shows a continuous, 
movie-like presentation of an algorithm's operations. Animation is an arguably 
more sophisticated option, and it is, of course, much more difficult to implement. 

Early efforts in the area of algorithm visualization go back to the 1970s. The 
watershed event happened in 1981 with the appearance of a 30-minute color sound 
film titled Sorting Out Sorting. The algorithm visualization classic was produced at 
the University of Toronto by Ronald Baecker with the assistance of D. Sherman 
[Bae81, Bae98]. It contained visualizations of nine well-known sorting algorithms 

https://hemanthrajhemu.github.io



92 Fundamentals of the Analysis of Algorithm Efficiency 

(more than half of them are discussed later in the book) and provided quite a 
convincing demonstration of their relative speeds. 

The success of Sorting Out Sorting made sorting algorithms a perennial fa
vorite for algorithm animation. Indeed, the sorting problem lends itself quite 
naturally to visual presentation via vertical or horizontal bars or sticks of differ
ent heights or lengths, which are rearranged according to their sizes (Figure 2.8). 
This presentation is convenient, however, only for illustrating actions of a typical 
sorting algorithm on small inputs. For larger files, Sorting Out Sorting used the 
ingenious idea of presenting data by a scatterplot of points on a coordinate plane, 
with the first coordinate representing an item's position in the file and the second 
one representing the item's value; with such a representation, the process of sort
ing looks like a transformation of a "random" scatterplot of points into the points 
along a frame's diagonal (Figure 2.9). In addition, most sorting algorithms work 
by comparing and exchanging two given items at a time-an event that can be 
animated relatively easily. 

Since the appearance of Sorting Out Sorting, a great number of algorithm an
imations have been created. They range in scope from one particular algorithm to 
a group of algorithms for the same problem (e.g., sorting) or the same application 
area (e.g., geometric algorithms) to general-purpose animation systems. The most 
widely known of the general-purpose systems include BALSA [Bro84], TANGO 
[Sta90], and ZEUS [Bro91]; a· comparative review of their features, along with 
those of nine other packages, can be found in [Pri93]. A good general-purpose 
animation system should allow a user to not only watch and interact with exist
ing animations of a wide variety of algorithms; it should also provide facilities for 
creating new animations. Experience has shown that creating such systems is a 
difficult but not impossible task. 

The appearance of Java and the World Wiele Web has given a new impetus 
to algorithm animation. You are advised to start an exploration with an up-to
date site containing a collection of links to sites devoted to algorithm animation. 
Since the Web world is notorious for its instability, no specific Web addresses 
appear here; a search for the phrase "algorithm auimation" or "algorithm visu
alization" with a good search engine should do the trick. While you peruse and 
evaluate different algorithm animations, you may want to keep in mind the "ten 
commandments of algorithm animations." This list of desirable features of an ani
mation's user interface was suggested by Peter Gloor [ Glo98], who was a principal 
developer of Animated Algorithms, another well-known algorithm visualization 
system: 

1. Be consistent. 
2. Be interactive. 
3. Be clear and concise. 
4. Be forgiving to the user. 
5, Adapt to the knowledge level of the user. 

https://hemanthrajhemu.github.io



2.7 Algorithm Visualization 93 

FIGURE 2.8 Initial and final screens of a typical visualization of a sorting algorithm using 
the bar representation 

https://hemanthrajhemu.github.io



94 Fundamentals of the Analysis of Algorithm Efficiency 

R!ln II step II Back II 1'3 II Extt 

Run II step II Back liS II E•~ 

FIGURE 2.9 Initial and final screens of a typical visualization of a sorting algorithm using 
the scatterplot representation 

l 
II 

I 
·.·.•.11 .. 

.. 
' 

i 
II 
! 
I 
!! 
li ,, 

!i 
~li 
ll 
ful https://hemanthrajhemu.github.io



------·------ I 

Summary 95 

6. Emphasize the visual component. 
7. Keep the user interested. 

8. Incorporate both symbolic and iconic representations. 
9. Include algorithm's analysis (run statistics) and comparisons with other algo

rithms for the same problem. 
10. Include execution history. 

There are two principal applications of algorithm visualization: research and 
education. The application to education seeks to help students learning algo
rithms. Potential benefits for researchers are based on expectations that algorithm 
visualization may help uncover some unknown features of algorithms. For exam
ple, one researcher used a visualization of the recursive Tower of Hanoi algorithm 
in which odd- and even-numbered disks were two different colors. He noticed that 
two disks of the same color never came in direct contact during the algorithm's ex
ecution. This observation helped him in developing a better nonrecursive version 
of the classic algorithm. 

Although some successes in both education and research applications have 
been reported, they are not as impressive as one might expect. Experience has 
shown that creating sophisticated software systems is not going to be enough. A 
deeper understanding of hum~n perception of images will be required before the 
true potential of algorithm visualization is fulfilled. 

SUMMARY 

" 

" 

.. 

" 

'" 

There are two kinds of algorithm efficiency: time efficiency and space 
efficiency. Time efficiency indicates how fast the algorithm runs; space 
efficiency deals with the extra space it requires. 

An algorithm's time efficiency is principally measured as a function of its 
input size by counting the number of times its basic operation is executed. 
A basic operation is the operation that contributes most toward running 
time. Typically, it is the most time-consuming operation in the algorithm's 
innermost loop. 

For some algorithms, the running time may differ considerably for inputs of 
the same size, leading to worst-case efficiency, average-case efficiency, and 
best-case efficiency. 

The established framework for analyzing an algorithm's time efficiency is 
primarily grounded in the order of growth of the algorithm's running time as 
its input size goes to infinity. 

The notations 0, Q, and 8 are used to indicate and compare the asymptotic 
orders of growth of functions expressing algorithm efficiencies . 

. , --,( 

https://hemanthrajhemu.github.io



96 Fundamentals of the Analysis of Algorithm Efficiency 

m The efficiencies of a large number of algorithms fall into the following 
few classes: constant, logarithmic, linear, "n-log-n," quadratic, cubic, and 
exponential. 

" The main tool for analyzing the time efficiency of a nonrecursive algorithm 
is to set up a sum expressing the number of executions of its basic operation 
and ascertain the sum's order of growth. 

"' The main tool for analyzing the time efficiency of a recursive algorithm is to 
set up a recurrence relation expressing the number of executions of its basic 
operation and ascertain the solution's order of growth. 

il Succinctness of a recursive algorithm may mask its inefficiency. 

m The Fibonacci numbers are an important sequence of integers in which every 
element is equal to the sum of its two immediate predecessors. There are 
several algorithms for computing the Fibonacci numbers with drastically 
different efficiencies. 

" Empirical analysis of an algorithm is performed by running a program 
implementing the algorithm on a sample of inputs and analyzing the data 
observed (the basic operation's count or physical running time). This 
often involves generating pseudorandom numbers. The applicability to any 
algorithm is the principal strength of this approach; the dependence of results 
on the particular computer and instance sample is its main weakness. 

tm Algorithm visualization is the use of images to convey useful information 
about algorithms. The two principal variations of algorithm visualization are 
static algorithm visualization and dynamic algorithm visualization (also called 
algorithm animation). 

I 
I https://hemanthrajhemu.github.io


