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Divide-and-Conquer 

Whatever man prays for, he prays for a miracle. Every prayer reduces itself 
to this~Great God, grant that twice two be not four. 

-Ivan Turgenev {1818-1883), Russian novelist and short-story writer 

D ivide-and-conquer is probably the best-known general algorithm design 
technique. Though its fame may have something to do with its catchy name, it 

is well deserved: quite a few very efficient algorithms are specific implementations 
of this general strategy. Divide-and-conquer algorithms work according to the 
following general plan: 

1. A problem's instance is divided into several smaller instances of the same 
problem, ideally of about the same size. 

2. The smaller instances are solved (typically recursively, though sometimes a 
different algorithm is employed when instances become small enough). 

3. If necessary, the solutions obtained for the smaller instances are combined to 
get a solution to the original instance. 

The divide-and-conquer technique is diagrammed in Figure 4.1, which depicts the 
case of dividing a problem into two smaller subproblems, by far the most widely 
occurring case (at least for divide-and-conquer algorithms designed to be executed 
on a single-processor computer). 

As an example, let us consider the problem of computing the sum of n numbers 
a0 , ... , an-1· If n > 1, we can divide the problem into two instances of the same 
problem: to compute the sum of the first Ln/2J numbers and to compute the sum 
of the remaining f n /21 numbers. (Of course, if n = 1, we simply return a0 as the 
answer.) Once each of these two sums is computed (by applying the same method, 
i.e., recursively), we can add their values to get the sum in question: 

ao + · · · + an-1 = (ao + · · · + aln/2J-l) + (aln/2J + · · · + an-ll· 

Is this an efficient way to compute the sum of n numbers? A moment of 
reflection (why could it be more efficient than the brute-force summation?), a 
small example of summing, say, four numbers by this algorithm, a formal analysis 

123 
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124 Divide-and-Conquer 

subproblem 1 
of size n/2 

solution to 
subproblem 1 

problem of size n 

solution to 
the original problem 

FIGURE 4.1 Divide-and-conquer technique (typical case) 

subproblem 2 
of size n/2 

solution to 
subproblem 2 

(which follows), and common sense (we do not compute sums this way, do we?) 
all lead to a negative answer to this question. 

Thus, not every divide-and-conquer algorithm is necessarily more efficient 
than even a brute-force solution. But often our prayers to the Goddess of 
Algorithmics-see the chapter's epigraph-are answered, and the time spent on 
executing the divide-and-conquer plan turns out to be smaller than solving a prob­
lem by a different method. In fact, the divide-and-conquer approach yields some of 
the most important and efficient algorithms in computer science. We discuss a few 
classic examples of such algorithms in this chapter. Though we consider only se­
quential algorithms here, it is worth keeping in miud that the divide-and-conquer 
technique is ideally suited for parallel computations, in which each subproblem 
can be solved simultaneously by its own processor. 

As mentioned above, in the most typical case of divide-and-conquer, a prob­
lem's instance of size n is divided into two instances of size n/2. More generally, 
an instance of size n can be divided into b instances of size n/b, with a of them 
needing to be solved. (Here, a and b are constants; a 2: 1 and b > 1. ). Assuming 
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4.1 Mergesort 125 

that size n is a power of b, to simplify our analysis, we get the following recurrence 
for the running time T(n): 

T(n) = aT(11jb) + f(n), (4.1) 

where f(n) is a function that accounts for the time spent on dividing the problem 
into smaller ones and on combining their solutions. (For the summation example, 
a = b = 2 and f (n) = 1.) Recurrence ( 4.1) is called the geneml divide-and-conquer 
recurrence. Obviously, the order of growth of its solution T(n) depends on the 
values of the constants a and b and the order of growth of the function .f (n). The 
efficiency analysis of many divide-and-conquer algorithms is greatly simplified by 
the following theorem (see Appendix B). 

THEOREM (Master Theorem) If .f(n) E 8(11d) with d :> 0 in recurrence equa­
tion (4.1), then 

{ 

8(11d) if a< hd 

T(11) E 8(11d log n) if a= h" 

8(n10g" ") if a > bd 

(Analogous results hold for the 0 and Q notations, too.) 

For example, the recurrence equation for the number of additions A (11) made 
by the divide-and-conquer sum-computation algorithm (see above) on inputs of 
size n = 2k is 

A(11) = 2A(nj2) + 1. 

Thus, for this example, a= 2, b = 2, and d = 0; hence, since a> bd, 

A(11) E 8(n10g"") = 8(11log2 2) = G(n). 

Note that we were able to find the solution's efficiency class without going through 
the drudgery of solving the recurrence. But, of course, this approach can only es­
tablish a solution's order of growth to within an unknown multiplicative constant, 
while solving a recurrence equation with a specific initial condition yields an exact 
answer (at least for 11 's that are powers of b). 

4.1 Mergesort 

Mergesort is a perfect example of a successful application of the divide-and­
conquer technique. It sorts a given array A[O .. n - 1] by dividing it into two halves 
A[D .. L11/2J -1] and A[lnf2j .. n -1], sorting each of them recursively, and then 
merging the two smaller sorted arrays into a single sorted one. 
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126 Divide-and-Conquer 

ALGORITHM Mergesort(A[O .. n - 1]) 

//Sorts array A[O .. n - 1] by recursive mergesort 
//Input: An array A[O .. n - 1] of orderable elements 
//Output: Array A[O .. n - 1] sorted in nondecreasing order 
ifn > 1 

copy A[O .. Ln/2J -1]to B[O .. Ln/2J -1] 
copy A[Ln/2J .. n -1] to C[o .. rn/21 -1] 
Mergesort(B[O .. Ln/2J - 1]) 
Mergesort(C[O .. rn/21 -1]) 
Merge(B, C, A) 

The merging of two sorted arrays can be done as follows. Two pointers (array 
indices) are initialized to point to the first elements of the arrays being merged. 
The elements pointed to are compared, and the smaller of them is added to a new 
array being constructed; after that, the index of the smaller element is incremented 
to point to its immediate successor in the array it was copied from. This operation 
is repeated until one of the two given arrays is exhausted, and then the remaining 
elements of the other array are copied to the end of the new array. 

ALGORITHM Merge(B[O .. p- 1], C[O .. q -1], A[O .. p + q -1]) 

//Merges two sorted arrays into one sorted array 
//Input: Arrays B[O .. p -1] and C[O .. q -1] both sorted 
//Output: Sorted array A[O .. p + q -1] of the elements of Band C 
i +--0; j +--0; k +--0 

whilei <pandj <q do 
if B[i] :S C[j] 

A[k] +- B[i]; i +- i + 1 
else A[k] +- C[j]; j +- j + 1 
k+-k+1 

ifi = p 

copy C[j .. q -1] to A[k .. p +q -1] 
else copy B[i..p -1] to A[k .. p + q -1] 

The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in 
Figure 4.2. 

How efficient is mergesort? Assuming for simplicity that n is a power of 2, the 
recurrence relation for the number of key comparisons C(n) is 

C(n) = 2C(n/2) + C,,.,,(n) for n > 1, C(l) = 0. 

Let us analyze C,,.g,(n), the number of key comparisons performed during the 
merging stage. At each step, exactly one comparison is made, after which the total 
number of elements in the two arrays still needed to be processed is reduced 
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4.1 Mergesort 127 

8 3 2 9 7 1 5 4 

12345789 

FIGURE 4.2 Example of mergesort operation 

by one. In the worst case, neither of the two arrays becomes empty before the 
other one contains just one element (e.g., smaller elements may come from the 
alternating arrays). Therefore, for the worst case, Cmerge(n) = n- 1, and we have 
the recurrence 

1 ; 1 

Cwom(n) = 2Cwm-,1(nj2) + n- 1 for 11 > 1, 

Hence, according to the Master Theorem, Cwm-,Jn) E 8(11 log n) (why?). In fact, 
it is easy to find the exact solution to the worst-case recurrence for n = 2k: 

cwa>.>l(n) = 11 logz n- n + 1. 

The number of key comparisons made by mergesort in the worst case comes 
very close to the theoretical minimum1 that any general comparison-based sorting 
algorithm can have. The principal shortcoming of mergesort is the linear amount 

1. As we shall see in Section 11.2, this theoretical minimum is rtog2 n !l ~ r n log2 n - 1.44n 1. 
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128 Divide-and-Conquer 

of extra storage the algorithm requires. Though merging can be done in place, 
the resulting algorithm is quite complicated and, since it has a significantly larger 
multiplicative constant, the in-place mergesort is of theoretical interest only. 

-----Exercises 4.1 ----------------

'I 

'\ \ ': \ 

1. \;JWrite a pseudocode for a divide-and-conquer algorithm for finding a po­
sition of the l!'.!~~t .. ~ement in an array of n numbers. 

b. What will be your algorithm's output for arrays with several elements of 
the largest value? 

c. Set up and solve a recurrence relation for the number of key comparisons 
made by your algorithm. 

d. How does this algorithm compare with the brute-force algorithm for this 
problem? 

2. a. Write a pseudocode for a divide-and-conquer algorithm for finding values 
of both the largest and smallest elements in an array of n numbers. 

b. Set up and solve (for n = 2k) a recurrence relation for the number of key 
comparisons made by your algorithm. 

c. How does this algorithm compare with the brute-force algorithm for this 
problem? 

3. a. Write a pseudocode for a divide-and-conquer algorithm for the exponen­
tiation problem of computing a" where a > 0 and n is a positive integer. 

b. Set up and solve a recurrence relation for the number of multiplications 
made by this algorithm. 

c. How does this algorithm compare with the brute-force algorithm for this 
problem? 

4. We mentioned in Chapter 2, that logarithm bases are irrelevant in most 
contexts arising in the analysis of an algorithm's efficiency class. Is this true 
for both assertions of the Master Theorem that include logarithms? .. , 

5. Find the order of growth for solutions of the following recurrences . 
• 
a. T(n) = 4T(nf2) + n, T(1) = 1 

b. T(n) = 4T(n/2) + n2, T(1) = 1 

c. T(n) = 4T(nf2) + n3 , T(l) = 1 

6. Apply mergesort to sort the list E, X, A, M, P, L, E in alphabetical order. 

7. Is mergesort a stable sorting algorithm? 

)S._Ja. Solve the recurrence relation for the number of key comparisons made by 
mergesort in the worst case. (You may assume that n = 2k.) 

\ \ j\ \\ 
I. 

https://hemanthrajhemu.github.io



~ 
r 

I 
I 

j I 

4.2 

4.2 Quicksort 129 

b. Set up a recurrence relation for the number of key comparisons made by 
mergesort on best-case inputs and solve it for n = 2k. 

c. Set up a recurrence relation for the number of key moves made by the 
version of mergesort given in Section 4.1. Does taking the number of key 
moves into account change the algorithm's efficiency class? 

9. Let A[O .. n - 1] be an array of n distinct real numbers. A pair (A[i], A[j]) is said 
to be an inversion if these numbers are out of order, i.e., i < j but A[i] > A[j]. 
Design an 0 (n log n) algorithm for counting the number of inversions. 

10. One can implement mergesort without a recursion by starting with merging 
adjacent elements of a given array, then merging sorted pairs, and so on. Im­
plement this bottom-up version of mergesort in the language of your choice. 

11. Tromino puzzle A tromino is an L-shaped tile formed by 1-by-1 adjacent 
squares. The problem is to cover any 2"-by-2" chessboard with one missing 
square (anywhere on the board) with trominos. Trominos should cover all the 
squares except the missing one with no overlaps. 

I 

it 

Design a divide-and-conquer algorithm for this problem. 

Quicksort 

Quicksort is another important sorting algorithm that is based on the divide-and­
conquer approach. Unlike mergesort, which divides its input's elements according 
to their position in the array, quicksort divides them according to their value. 
Specifically, it rearranges elements of a given array A(O .. n - 1] to achieve its 
partition, a situation where all the elements before some position s are smaller 
than or equal to A[s] and all the elements after positions are greater than or equal 
toA[s]: 

A[O] ... A[s -1] A[s] A[s + 1] ... A[n -1] 

all are ~A(s] all arc ::::A[s] 
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Obviously, after a partition has been achieved, A[s] will be in its final position in 
the sorted array, and we can continue sorting the two subarrays of the elements 
preceding and following A[s] independently (e.g., by the same method). 

ALGORITHM Quicksort(A[Lr]) 

//Sorts a subarray by quicksort 
//Input: A subarray A[Lr] of A[O,n -1], defmed by its left and right indices 
II l and r 
//Output: Subarray A[l .. r] sorted in nondecreasing order 
if l < r 

s +-Partition(A[l .. r]) lis is a split position 
Quicksort(A[l .. s- 1]) 
Quicksort(A[s + l..r]) 

A partition of A[O .. n- 1] and, more generally, ofits subarray A[l .. r] (0::: l < 
r ::: n - 1) can be achieved by the following algorithm. First, we select an element 
with respect to whose value we are going to divide the subarray. Because of its 
guiding role, we call this element the pivot. There are several different strategies 
for selecting a pivot; we will return to this issue when we analyze the algorithm's 
efficiency. For now, we use the simplest strategy of selecting the subarray's first 
element: p = A[l]. 

There are also several alternative procedures for rearranging elements to 
achieve a partition. Here we use an efficient method based on two scans of the 
subarray: one is left-to-right and the other right-to-left, each comparing the sub­
array's elements with the pivot. The left-to-right scan, denoted below by index i, 
starts with the second element. Since we want elements smaller than the pivot to 
be in the first part of the subarray, this scan skips over elements that are smaller 
than the pivot and stops on encountering the first element greater than or equal 
to the pivot. The right-to-left scan, denoted below by index j, starts with the last 
element of the subarray. Since we want elements larger than the pivot to be in 
the second part of the sub array, this scan skips over elements that are larger than 
the pivot and stops on encountering the first element smaller than or equal to the 
pivot. 

After both scans stop, three situations may arise, depending on whether or not 
the scanning indices have crossed. If scanning indices i and j have not crossed, i.e., 
i < j, we simply exchange A[i] and A[j] and resume the scans by incrementing i 
and decrementing j, respectively: 

i~ 

all are ,; p I ~pI all are 2 p 

f f 
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If the scanning indices have crossed over, i.e., i > j, we will have partitioned 
the array after exchanging the pivot with A[J]: 

Finally, if the scanning indices stop while pointing to the same element, i.e., 
i = j, the value they are pointing to must be equal top (why?). Thus, we have the 
array partitioned, with the split positions = i = j: 

----i=j--
I p I all are s p 1- pI all are ~ p 

We can combine the last case with the case of crossed-over indices (i > j) by 
exchanging the pivot with A[J] whenever i 2" j. 

Here is a pseudocode implementing this partitioning procedure. 

ALGORITHM Partition(A[l .. r]) 

//Partitions a subarray by using its first element as a pivot 
//Input: A subarray A[l..r] of A[O .. n - 1], defined by its left and right 
II indices land r (! < r) 

//Output: A partition of A[l..r ], with the split position returned as 
II this ftmction's value 
p <-A[l] 
i +-l; j +- r + 1 
repeat 

repeat i <-- i + 1 until A[i]O> p 

repeat j <-- j - 1 until A[j] <( p 

swap(A[i], A[j]) 
until i 2" j 

swap(A[i], A[j]) //undo last swap when i 2" j 
swap(A[!], A[j]) 
return j 

Note that index i can go out of the subarray bounds in this pseudocode. Rather 
than checking for this possibility every time index i is incremented, we can append 
to array A[O .. n- 1] a "sentinel" that would prevent index i from advancing beyond 
position n. The more sophisticated method of pivot selection mentioned at the end 
of the section makes such a sentinel unnecessary. 

An example of sorting an array by quicksort is given in Figure 4.3. 
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0 2 
i 

5 3 

5 3 

5 3 

5 3 

5 3 

5 3 

2 3 
i 

2 3 
i 
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i j 

2 1 3 
j i 

2 1 3 
2 3 

3 
j 
3 

Divide-and-Conquer 

3 4 5 6 7 
j 

9 8 2 4 7 
i j 
9 8 2 4 7 
i j 
4 8 2 9 7 

i j 
4 8 2 9 7 

i j 
4 2 8 9 7 

j 
4 2 8 9 7 

4 5 8 9 7 
j 
4 

4 

4 

4 
4 

j j 
4 
i 
4 

4 
i j 

8 9 7 (b) 
i j 

8 7 9 
j i 

8 7 9 
7 8 9 

7 
9 

(a) 

FIGURE 4.3 Example of Quicksort operation. (a) The array's transformations with pivots 
shown in bold. (b) The tree of recursive calls to Quicksort with input values 
1 and r of subarray bounds and split positions of a partition obtained. 

We start our discussion of quicksort's efficiency by noting that the number of 
key comparisons made before a partition is achieved is n + 1 if the scanning indices 
cross over, n if they coincide (why?). If all the splits happ~ninthe middle of cor­
respondingsubarrays, we will have thelbesfcase:fheiiiimber of key comparisons 
inth€ best case will satisfy-the recurrence 

-r 
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4.2 Quicksort 133 

According to the Master Theorem, cb"t(n) E 8(n logz n); solving it exactly for 
11 = 2k yields cb"t(n) = n iogz n. 

In the worst case, all the splits will be skewed to the extreme: one of the two 
subarrays will be empty, while the size of the other will be just one less than the 
size of the subarray being partitioned. This unfortunate situation will happen, in 
particular, for increasing arrays, i.e., for inputs for which the problem is already 
solved! Indeed, if A[O .. n- 1] is a strictly increasing array and we use A(O] as the 
pivot, the left-to-right scan will stop on A[1] while the right-to-left scan will go all 
the way to reach A(O], indicating the split at position 0: 

j-- ----i 

I A[OJI A[lll I A[n-lll 

So, after making n + 1 comparisons to get to this partition and exchanging the 
pivot A(O] with itself, the algorithm will find itself with the strictly increasing array 
A(1 .. n - 1] to sort. This sorting of strictly increasing arrays of diminishing sizes will 
continue until the last one A[n- 2 .. n -1] has been processed. The total number 
of key comparisons made will be equal to 

(n + l)(n + 2) 2 
Cwm·,(n)=(n+1)+n+···+3= -3E8(n ). . 2 

Thus, the question about the utility of quicksort comes to its average-case be­
havior. Let Caag(n) be the average number of key comparisons made by quicksort 
on a randomly ordered array of size n. Assuming that the partition split can hap­
pen in each positions (0::: s::: n- 1) with the same probability ljn, we get the 
following recurrence relation 

1 11-1 

Caag(n) =- l)(n + 1) + Caag(s) + Cav8 (n -1- s)] for n > 1, 
n s=O 

Ca,8 (0) = 0, Caag(1) = 0. 

Though solving this recurrence is easier tban one might expect, it is still much 
trickier than the worst- and best-case analyses, and we willleave it for the exercises. 
Its solution turns out to be 

Caag(n) "'2n Inn"' 1.38n log2 n. 

Thus, on the average, quicksort makes only 38% more comparisons than in the 
best case. Moreover, its innermost loop is so efficient that it runs faster than 
mergesort (and heapsort, another n log n algorithm that we discuss in Chapter 
6) on randomly ordered arrays, justifying the name given to the algorithm by its 
inventor, the prominent British computer scientist C.A.R. Hoare.2 

2. The young Hoare invented his algorithm while trying to sort words of a Russian dictionary for a 
machine translation project from Russian to English. Says Hoare, "My first thought on how to do 
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Given the importance of quicksort, there have been persistent efforts over the 
years to refine the basic algorithm. Among several improvements discovered by 
researchers are: better pivot selection methods (such as the median-of-three par­
titioning that uses as a pivot the median of the leftmost, rightmost, and the middle 
element of the array); switching to a simpler sort on smaller subfiles; and recur­
sion elimination (so-called nonrecursive quicksort). According toR. Sedgewick 
[Sed98], the world's leading expert on quicksort, these improvements in combi­
nation can cut the running time of the algorithm by 20%-25%. 

We should also point out that the idea of partitioning can be useful in ap­
plications other than sorting. In particular, it underlines a fast algorithm for the 
important selection problem discussed in Section 5.6. 

-----Exercises 4.2 ----------------

1. Apply quicksort to sort the list 

E, X, A, M, P, L, E 

in alphabetical order. Draw the tree of the recursive calls made. 

2. For the partitioning procedure outlined in Section 4.2: 
a. Prove that if the scanning indices stop while pointing to the same element, 

i.e., i = j, the value they are pointing to must be equal top. 

b. Prove that when the scanning indices stop, j cannot point to an element 
more than one position to the left of the one pointed to by i. 

c. Why is it worth stopping the scans after encountering an element equal to 
the pivot? 

3. Is quicksort a stable sorting algorithm? 

4. Give an example of an array of n elements for which the sentinel mentioned 
in the text is actually needed. What should be its value? Also explain why a 
single sentinel suffices for any input. 

5. For the version of quicksort given in the text: 
a. Are arrays made up of all equal elements the worst-case input, the best­

case input, or neither? 

b. Are strictly decreasing arrays the worst-case input, the best-case input, or 
neither? 

6. a. For quicksort with the median-of-three pivot selection, are increasing ar­
rays the worst-case input, the best-case input, or neither? 

this was bubblesort and, by an amazing stroke of luck, my second thought was Quicksort." It is hard to 
disagree with his overall assessment: "I have been very lucky. What a wonderful way to start a career 
in Computing, by discovering a new sorting algorithm!" [Hoa96] 
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b. Answer the same question for decreasing arrays. 

7. Solve the average-case recurrence for quicksort. 

8. Design an algorithm to rearrange elements of a given array of n real num­
bers so that all its negative elements precede all its positive elements. Your 
algorithm should be both time- and space-efficient. 

(9) The Dutch flag problem is to rearrange any array of characters R, W, and 
'··· B (red, white, and blue are the colors of the Dutch national flag) so that all 

the R's come first, the W's come next, and the B's come last. Design a linear 
in-place algorithm for this problem. 

10. Implement quicksort in the language of your choice. Run your program on 
a sample of inputs to verify the theoretical assertions about the algorithm's 
efficiency. 

r[j)Nuts and bolts You are given a collection of n bolts of different widths and 
n corresponding nuts. You are allowed to try a nut and bolt together, from 
which you can determine whether the nut is larger than the bolt, smaller than 
the bolt, or matches the bolt exactly. However, there is no way to compare 
two nuts together or two bolts together. The problem is to match each bolt to 
its nut. Design an algorithm for this problem with average-case efficiency in 
G(n log n). [Raw91], p. 293 

Binary Search 

Binary search is a remarkably efficient algorithm for searching in a sorted array. It 
works by comparing a search key K with the array's middle element A[m].lfthey 
match, the algorithm stops; otherwise, the same operation is repeated recursively 
for the first half of the array if K < A[m], and for the second half if K > A[m]: 

K 

t 
A[O] ... A[m- 1] A[m] A[m + 1] ... A[n -1]. 

search here if 
K<A[m] 

search here if 
K>A[m] 

As an example, let us apply binary search to searching for K = 70 in the array 
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The iterations of the algorithm are given in the following table: 

index 

value 

iteration 1 

iteration 2 

iteration 3 

0 1 2 3 4 5 6 7 8 9 10 11 12 
3 II4 127131 139 l42lss 17o 1741 s1lss 193 l9sl 

m r 

m r 

l,m r 

Though binary search is clearly based on a recursive idea, it can he easily 
implemented as a nonrecursive algorithm, too. Here is a pseudocode for this 
nonrecursive version. 

ALGORITHM BinarySearch(A[O .. n -1], K) 

//Implements nonrecursive binary search 
//Input: An array A[O .. n - 1] sorted in ascending order and 
II a search key K 
//Output: An index of the array's element that is equal to K 

II or -1 if there is no such element 
l+-O;r+-n-1 

while l <:: r do 
m +- L(l + r)/2J 
ifK =A[m]returnm 
elseifK <A[m] r <--m-1 
else! <--m+1 

return -1 

The standard way to analyze the efficiency of binary search is to count the 
number of times the search key is compared with an element of the array. More­
over, for the sake of simplicity, we will count the so-called three-way comparisons. 
This assumes that after one comparison of K with A[m], the algorithm can deter­
mine whether K is smaller, equal to, or larger than A[m ]. 

How many such comparisons does the algorithm make on an array of n 
elements? The answer obviously depends not only on n but also on the specifics of 
a particular instance of the problem. Let us find the number of key comparisons 
in the worst case C'""'·"(n). The worst-case inputs include all arrays that do not 
contain a given search key (and, in fact, some cases of successful searches as well). 
Since after one comparison the algorithm faces the same situation but for an array 
half the size, we get the following recurrence relation for Cwa.·"(n): 

Cwm·.«(n) = Cw0 ,."(lnj2J) + 1 for n > 1, Cw"'""(1) = 1. (4.2) 

https://hemanthrajhemu.github.io



4.3 Binary Search 137 

(Stop and convince yourself that 11j2 must be, indeed, rounded down and that the 
initial condition must be written as specified.) 

As we discussed in Section 2.4, the standard way of solving recurrences such 
as recurrence ( 4.2) is to assume that 11 = 2k and solve the resulting recurrence 
by backward substitutions or another method. We leave this as a straightforward 
exercise to obtain the solution 

(4.3) 

Actually, one can prove that the solution given by formula ( 4.3) for 11 = 2k can be 
tweaked to get a solution valid for an arbitrary positive integer 11: 

(4.4) 

Let us verify by substitution that cwm·_,(11) = Llogz nJ + 1 indeed satisfies 
equation ( 4.2) for any positive even number 11. (You are asked to do this for odd 
11's in Exercises 4.3). If n is positive and even, n = 2i where i > 0. The left-hand 
side of equation ( 4.2) for 11 = 2i is 

cwm-,(11) = L1og2 11J + 1 = Llog2 2iJ + 1 = Llog2 2 + log2 iJ + 1 

= (1 + Llog2 ij) + 1 = Llog2 iJ + 2. 

The right-hand side of equation (4.2) for 11 = 2i is 

cwm-,1Cln/2J) + 1 = cwm·,(L2if2J) + 1 = cwm-,1(i) + 1 

= (Llog2 ij + 1) + 1 = Llog2 ij + 2. 

Since both expressions are the same, we proved the assertion. 
Formula ( 4.4) deserves attention. First, it implies that the worst-case efficiency 

of binary search is in E>(log n). (Incidentally, we could get this fact by applying the 
Master Theorem, but this approach would not give us the value of the multipli­
cative constant.) Second, it is the answer we should have fully expected: since the 
algorithm simply reduces the size of the remaining array by about half on each 
iteration, the number of such iterations needed to reduce the initial size 11 to the 
final size 1 has to be about log2 11. Third, to reiterate the point made in Section 2.1, 
the logarithmic function grows so slowly that its values remain small even for very 
large values of 11. In particular, according to formula ( 4.4), it will take no more than 
Llog2 103 J + 1 = 10 three-way comparisons to find an element of a given value (or 
establish that there is no such element) in any sorted array of 1000 elements, and 
it will take no more than Llog2 106j + 1 = 20 comparisons to do this for any sorted 
array of size one million! 

What can we say about the average-case efficiency of binary search? A so­
phisticated analysis shows that the average number of key comparisons made by 
binary search is only slightly smaller than that in the worst case: 
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(More accurate formulas for the average number of comparisons in a successful 
and an unsuccessful search are C~~~ (n) "" log2 n - 1 and C ;:~ (n) ""log2 (n + 1), 
respectively.) 

Though binary search is an optimal searching algorithm if we restrict our op­
erations only to comparisons between keys (see Section 10.2), there are searching 
algorithms (see interpolation search in Section 5.6 and hashing in Section 7.3) with 
a better average-case efficiency, and one of them (hashing) does not even require 
the array to be sorted! These algorithms do require some special calculations in 
addition to key comparisons, however. Finally, the idea behind binary search has 
several applications beyond searching (see, e.g., [BenOO]). In addition, it can be 
applied to solving nonlinear equations in one unknown; we discuss this continuous 
analogue of binary search, called the method of bisection, in Section 12.4. 

Before we leave this section, one other remark about binary search needs 
to be made. Binary search is sometimes presented as the quintessential example 
of a divide-and-conquer algorithm. This interpretation is flawed because, in fact, 
binary search is a very atypical case of divide-and-conquer. Indeed, according 
to the definition given at the beginning of this chapter, the divide-and-conquer 
technique divides a problem into several subproblems, each of which needs to 
be solved. That is not the case for binary search, where only one of the two 
subproblems needs to be solved. Therefore, if binary search is to be considered 
as a divide-and-conquer algorithm, it should be looked on as a degenerate case 
of this technique. As a matter of fact, binary search fits much better into the class 
of decrease-by-half algorithms, which we discuss in Section 5.5. Why then is this 
discussion of binary search in this chapter? Partly because of tradition and partly 
because a bad example can sometimes make a point that a good example cannot. 

-----Exercises 4.3---------------

1. a. What is the largest number of key comparisons made by binary search in 
searching for a key in the following array? 

b. List all the keys of this array that will require the largest number of key 
comparisons when searched for by binary search. 

c. Find the average number of key comparisons made by binary search in a 
successful search in this array. (Assume that each key is searched for with 
the same probability.) 

d. Find the average number of key comparisons made by binary search in an 
unsuccessful search in this array. (Assume that searches for keys in each of 
the 14 intervals formed by the array's elements are equally likely.) 
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2. Solve the recurrence Cwm.,(n) = Cwm·.,(ln/2J) + lfor n > 1, Cwm-,(1) = 1, for 
n = 2k by backward substitutions. 

3. a. Prove the equality 

[logz nJ + 1 = rlogz(n + 1)1 for n 2: 1. 

b. Prove that Cwm-,(n) = [log2 nj + 1 satisfies equation (4.2) for every posi­
tive odd integer n. 

4. Estimate how many times faster an average successful search will be in a 
sorted array of 100,000 elements if it is done by binary search versus sequential 
search. 

5. Sequential search can be used with about the same efficiency whether a list is 
implemented as an array or as a linked list. Is it also true for binary search? 
(Of course, we assume that a list is sorted for binary search.) 

6. How can one use binary search for range searching, i.e., for finding all the 
elements in a sorted array whose values fall between two given values L and 
U (inclusively), L :5: U? What is the worst-case efficiency of this algorithm? 

7. Write a pseudocode for a recursive version of binary search. 

8. Design a version of binary search that uses only two-way comparisons such 
as :5: and =. Implement your algorithm in the language of your choice and 
carefully debug it (such programs are notorious for being prone to bugs). 

9. Analyze the time efficiency of the two-way comparison version designed in 
Problem 8. 

10. Picture guessing A version of the popular problem-solving task involves 
presenting people with an array of 42 pictures-seven rows of six pictures 
each-and asking them to identify the target picture by asking questions that 
can be answered yes or no. Further, people are then required to identify the 
picture with as few questions as possible. Suggest the most efficient algorithm 
for this problem and indicate the largest number of questions that may be 
necessary. 

4.4 Binary Tree Traversals and 
Related Properties 

In this section, we see how the divide-and-conquer technique can be applied to 
binary trees. A binary tree T is defined as a finite set of nodes that is either empty 
or consists of a root and two disjoint binary trees TL and T11 called, respectively, the 
left and right subtree of the root. We usually think of a binary tree as a special case 
of an ordered tree (Figure 4.4). (This standard interpretation was an alternative 
definition of a binary tree in Section 1.4.) 
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FIGURE 4.4 Standard representation of a binary tree 

Since the definition itself divides a binary tree into two smaller structures of 
the same type, the left subtree and the right subtree, many problems about binary 
trees can be solved by applying the divide-conquer technique. As an example, let 
us consider a recursive algorithm for computing the height of a binary tree. Recall 
that the height is defined as the length of the longest path from the root to a leaf. 
Hence, it can be computed as the maximum of the heights of the root's left and 
right subtrees plus 1. (We add 1 to account for the extra level of the root.) Also 
note that it is convenient to define the height of the empty tree as -1. Thus, we 
have the following recursive algorithm. 

ALGORITHM Height(T) 

//Computes recursively the height of a binary tree 
//Input: A binary tree T 
//Output: The height ofT 
ifT = 0 return -1 
else return max(Height(TL), Height(TR)} + 1 

We measure the problem's instance size by the number of nodes n(T) in a 
given binary tree T. Obviously, the number of comparisons made to compute 
the maximum of two numbers and the number of additions A(n(T)) made by the 
algorithm are the same. We have the following recurrence relation for A(n(T)): 

A(n(T)) = A(n(TL)) + A(n(TR)) + 1 for n(T) > 0, 

A(O) = 0. 

Before we solve this recurrence (can you tell what its solution is?), let us note 
that addition is not the most frequently executed operation of this algorithm. What 
is? Checking-and this is very typical for binary tree algorithms-that the tree is 
not empty. For example, for the empty tree, the comparison T = 0 is executed 
once but there are no additions, and for a single-node tree, the comparison and 
addition numbers are three and one, respectively. 
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(a) (b) 

FIGURE 4.5 (a) Binary tree. (b) Its extension. Internal nodes are shown as circles; 
external nodes are shown as squares. 

It helps in the analysis of tree algorithms to draw the tree's extension by 
replacing the empty subtrees by special nodes. The extra nodes (shown by little 
squares in Figure 4.5) are called external; the original nodes (shown by little 
circles) are called internal. By definition, the extension of the empty binary tree 
is a single external node. 

It is easy to see that the height algorithm makes exactly one addition for 
every internal node of the extended tree, and it makes one comparison to check 
whether the tree is empty for every internal and external node. Thus, to ascertain 
the algorithm's efficiency, we need to know how many external nodes an extended 
binary tree with n internal nodes can have. Checking Figure 4.5 and a few similar 
examples, it is easy to hypothesize that the number of external nodes x is always 
one more than the number of internal nodes n: 

x=n+l. (4.5) 

To prove this formula, consider the total number of nodes, both internal and 
external. Since every node, except the root, is one of the two children of an internal 
node, we have the equation 

2n + l=x +n, 

which immediately implies equation (4.5). 
Note that equation ( 4.5) also applies to any nonempty full binary tree, in 

which, by definition, every node has either zero or two children: for a full binary 
tree, n and x denote the numbers of parental nodes and leaves, respectively. 

Returning to algorithm Height, the number of comparisons to check whether 
the tree is empty is 

C(n)=n+x=2n+l, 

while the number of additions is 

A(n) = n. 

i 
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b 

d e 

g 

a 

f 

c Preorder: a, b, d, g, e, c, f 
Inorder: d, g, b, e, a, f, c 

Postorder: g, d, e, b, f, c, a 

FIGURE 4.6 Binary tree and its traversals 

The most important divide-and-conquer algorithms for binary trees are the 
three classic traversals: preorder, inorder, and postorder. All three traversals visit 
nodes of a binary tree recursively, i.e., by visiting the tree's root and its left and 
right subtrees. They differ just by the timing of the root's visit: 

In the preorder traversal, the root is visited before the left and right subtrees 
are visited (in that order). 
In the inorder traversal, the root is visited after visiting its left subtree but 
before visiting the right subtree. 
In the postorder traversal, the root is visited after visiting the left and right 
subtrees (in that order). 

These traversals are illustrated in Figure 4.6. Their pseudocodes are quite 
straightforward, repeating the descriptions given above. (These traversals are also 
a standard feature of data structures textbooks.) As to their efficiency analysis, it 
is identical to the above analysis of the Height algorithm because a recursive call 
is made for each node of an extended binary tree. 

Finally, we should note that, obviously, not all questions about binary trees 
require traversals of both left and right subtrees. For example, the find and insert 
operations for a binary search tree require processing only one of the two subtrees. 
Hence, they should be considered not as applications of divide-and-conquer but 
rather as examples of the variable-size decrease techuique discussed in Section 5.6. 

-----Exercises 4.4----------------

1. Design a divide-and-conquer algorithm for computing the number of levels 
in a binary tree. (In particular, the algorithm must return 0 and l for the 
empty and single-node trees, respectively.) What is the efficiency class of your 
algorithm? 
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2. The following algorithm seeks to compute the number of leaves in a binary 
tree. 

ALGORITHM LeafCounter(T) 

//Computes recursively the number of leaves in a binary tree 
//Input: A binary tree T 
//Output: The number of leaves in T 
if T = 0 return 0 
else return LeafCounter(T1) + LeafCounter(TR) 

Is this algorithm correct? If it is, prove it; if it is not, make an appropriate 
correction. 

3. Prove equality ( 4.5) by mathematical induction. 

4. Traverse the following binary tree 
a. in preorder. b. in inorder. c. in postorder. 

a 

b c 

d e f 

5. Write a pseudocode for one of the classic traversal algorithms (preorder, 
inorder, and postorder) for binary trees. Assuming that your algorithm is 
recursive, find the number of recursive calls made. 

6. Which of the three classic traversal algorithms yields a sorted list if applied to 
a binary search tree? Prove this property. 

7. a. Draw a binary tree with ten nodes labeled 0, 1, 2, ... , 9 in such a way that 
the inorder and postorder traversals of the tree yield the following lists: 
9, 3, 1, 0, 4, 2, 7, 6, 8, 5 (inorder) and 9, 1, 4, 0, 3, 6, 7, 5, 8, 2 (postorder). 

b. Give an exampleoftwopermutationsofthesamen labelsO, 1, 2, ... , n -1 
that cannot be in order and postorder traversal lists of the same binary tree. 

c. Design an algorithm that constructs a binary tree for which two given lists 
of n labels 0, 1, 2, ... , n - 1 are generated by the inorder and postorder 
traversals of the tree. Your algorithm should also identify inputs for which 
the problem has no solution. 

8. The internal path length I of an extended binary tree is defined as the sum 
of the lengths of the paths-taken over all internal nodes-from the root to 

I 
h 
I 

I 
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each internal node. Similarly, the external path length E of an extended binary 
tree is defined as the sum of the lengths of the paths-taken over all external 
nodes-from the root to each external node. Prove that E = I + 2n where n 
is the number of internal nodes in the tree. 

9. Write a program for computing the internal path length of an extended binary 
tree. Use it to investigate empirically the average number of key comparisons 
for searching in a randomly generated binary search tree. 

10. Chocolate bar puzzle Given an n-by-m chocolate bar, you need to break it 
into nm r-by-r pieces. You can break a bar only in a straight line, and only one 
bar can be broken at a time. Design an algorithm that solves the problem with 
the minimum number of bar breaks. What is this minimum number? Justify 
your answer by using properties of a binary tree. 

Multiplication of large Integers and 
Strassen's Matrix Multiplication 

In this section, we examine two surprising algorithms for seemingly straightfor­
ward tasks: multiplying two numbers and multiplying two square matrices. Both 
seek to decrease the total number of multiplications performed at the expense of 
a slight increase in the number of additions. Both do this by exploiting the divide­
and-conquer idea. 

Multiplication of large Integers 

Some applications, notably modern cryptology, require manipulation of integers 
that are over roo decimal digits long. Since such integers are too long to fit in a 
single word of a modern computer, they require special treatment. This practical 
need supports investigations of algorithms for efficient manipulation of large 
integers. In this section, we outline an interesting algorithm for multiplying such 
numbers. Obviously, if we use the classic pen-and-pencil algorithm for multiplying 
two n-digit integers, each of the n digits of the first number is multiplied by each 
of the n digits of the second number for the total of n2 digit multiplications. (If 
one of the numbers has fewer digits than the other, we can pad a shorter number 
with leading zeros to equal their lengths.) Though it might appear that it would be 
impossible to design an algorithm with fewer than n2 digit multiplications, it turns 
out not to be the case. The miracle of divide-and-conquer comes to the rescue to 
accomplish this feat. 

To demonstrate the basic idea of the algorithm, let us start with a case of 
two-digit integers, say, 23 and 14. These numbers can be represented as follows: 

23 = 2. ro1 + 3. ro0 and r4 = r. 101 + 4. 10°. 
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Now let us multiply them: 

23 d4 = (2 . 101 + 3. 10°) * (1 . 101 + 4. 10°) 

= (2 * 1)10
2 

+ (2 * 4 + 3 * 1)101 + (3 * 4)10°. 

The last formula yields the correct answer of 322, of course, but it uses the same 
four digit multiplications as the pen-and-pencil algorithm. Fortunately, we can 
compute the middle term with just one digit multiplication by taking advantage 
of the products 2 * 1 and 3 * 4 that need to be computed anyway: 

2 * 4 + 3 * 1 = (2 + 3) * (1 + 4) - 2 * 1- 3 * 4. 

Of course, there is nothing special about the numbers we just multiplied. 
For any pair of two-digit integers a = a1a0 and b = b1b0 , their product c can be 
computed by the formula 

c =a* b = c2102 + c1101 + c0 , 

where 

c2 = a1 * b1 is the product of their first digits, 

co = ao * bo is the product of their second digits, 

c1 = (at+ ao) * (bt + bo) - (c2 +co) is the product of the sum of the a's digits 
and the sum of the b's digits minus the sum of c2 and c0. 

Now we apply this trick to multiplying two n-digit integers a and b where n is 
a positive even number. Let us divide both numbers in the middle-after all, we 
promised to take advantage of the divide-and-conquer technique. We denote the 
first half of the a's digits by a1 and the second half by a0; forb, the notations are b1 
and b0, respectively. In these notations, a= a1a0 implies that a= a110"12 + a0 , and 
b = btbo implies that b = b110"i2 + b0 . Therefore, taking advantage of the same 
trick we used for two-digit numbers, we get 

where 

c =a* b = (at10"/2 + ao) * (bt10"i2 + bo) 

= (at* ht)10" + (at* bo + ao * b1)10"/2 + (a0 * b0) 

= czlO" + C[ 10"12 +Co, 

cz = a1 * b1 is the product of their first halves, 

co = ao * bo is the product of their second halves, 

c1 =(at+ ao) * (bt + bo) - (c2 +co) is the product of the sum of the a's halves 
and the sum of the b's halves minus the sum of c2 and c0. 

If n/2 is even, we can apply the same method for computing the products c2, 

c0, and c1. Thus, if n is a power of 2, we have a recursive algorithm for computing 
the product of two n-digit integers. In its pure form, the recursion is stopped when 
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n becomes one. It can also be stopped when we deem n small enough to multiply 
the numbers of that size directly. 

How many digit multiplications does this algorithm make? Since multiplica­
tion of n-digit numbers requires three multiplications of n/2-digit numbers, the 
recurrence for the number of multiplications M (n) will be 

M(n) = 3M(n/2) for n > 1, M(l) = 1. 

Solving it by backward substitutions for n = 2k yields 

M(2k) = 3M(2k-l) = 3[3M(2k-2)] = 32M(2k-2) 

= ... = 3' M(2k-i) = ... = 3k M(2k-k) = 3k 

Since k = log2 n, 

(On the last step, we took advantage of the following property of logarithms: 
aiogh c = clogb a.) 

You should keep in mind that for moderately large integers, this algorithm will 
probably run longer than the classic one. Brassard and Bratley ([Bra96], pp. 70-
71) report that in their experiments the divide-and-conquer algorithm started to 
outperform the pen-and-pencil method on integers over 600 digits long. If you 
program in an object-oriented language such as Java, C++, or Smalltalk, you 
should also be aware that these languages have special classes for dealing with 
large integers. 

Strassen's Matrix Multiplication 

Now that we have seen that the divide-and-conquer approach can reduce the 
number of one-digit multiplications in multiplying two integers, we should not be 
surprised that a similar feat can be accomplished for multiplying matrices. Such 
an algorithm was published by V. Strassen in 1969 [Str69]. The principal insight 
of the algorithm lies in the discovery that we can find the product C of two 2-by-2 
matrices A and B with just seven multiplications as opposed to the eight required 
by the brute-force algorithm (see Example 3, Section 2.3). This is accomplished 
by using the following formulas: 

= ["oo "m] *[boo 
aw a11 bw 

bOl] 
bn 

[ m1+~-~+m7 m3+~ ] 
- m2 + m4 m1 + m3 - m2 + m 6 ' 
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where 

m1 = (aoo +au) * (boo+ b1 tl 
mz = (aw +au)* boo 

m3 ="no* (boJ - h11l 

m4 = a 11 * (b10- h0o) 

ms = (aoo + "tnl * bu 

m6 = (aw- "ool * (boo+ h01) 

m7 = (aot -au)* (bto + bu). 

147 

Thus, to multiply two 2-by-2 matrices, Strassen's algorithm makes seven multipli­
cations and 18 additions/subtractions, whereas the brute-force algorithm requires 
eight multiplications and four additions. These numbers should not lead us to mul­
tiplying 2-by-2 matrices by Strassen's algorithm. Its importance stems from its 
asymptotic superiority as matrix order n goes to infinity. 

Let A and B be two n-by-n matrices where n is a power of two. (If n is not a 
power of two, matrices can be padded with rows and columns of zeros.) We can 
divide A, B, and their product C into four n /2-by-n /2 submatrices each as follows: 

[

Coo 

Cto 
C01] = [~] * [--+---Boo B01] 
C11 A10 I A 11 B10 Bu 

It is not difficult to verify that one can treat these submatrices as numbers to get the 
correct product. For example, C00 can be computed either as A00 * B00 + A01 * Bw 
or as M 1 + M4 - Ms + M7 where M1, M4, M5, and M7 are found by Strassen's 
formulas, with the numbers replaced by the corresponding submatrices. If the 
seven products of n /2-by-n /2 matrices are computed recursively by the same 
method, we have Strassen's algorithm for matrix multiplication. 

Let us evaluate the asymptotic efficiency of this algorithm. If M (n) is the 
number of multiplications made by Strassen's algorithm in multiplying two n-by-n 
matrices (where n is a power of2), we get the following recurrence relation for it: 

M(n)=7M(n/2) forn>l, M(l)=l. 

M(2k) = 7M(2k-l) = 7[7 M(2k-2)] = 72M(2k-2) = ... 

= 7' M(2k-i) ... = 7k M(2k-k) = 7k 

Since k = log2 n, 

M(n) = 7log2 n = 11 log2 7 ~ 112.807, 

which is smaller than n3 required by the brute-force algorithm. 
Since this saving in the number of multiplications was achieved at the expense 

of making extra additions, we must check the number of additions A (n) made by 
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Strassen's algorithm. To multiply two matrices of order 11 > 1, the algorithm needs 
to multiply seven matrices of order 11/2 and make 18 additions of matrices of size 
n/2; when n = 1, no additions are made since two numbers are simply multiplied. 
These observations yield the following recurrence relation: 

A(11) = 7 A(n/2) + 18(11/2)2 for 11 > 1, A(1) = 0. 

Though one can obtain a closed-form solution to this recurrence (see Problem 
8), here we simply establish the solution's order of growth. According to the 
Master Theorem stated in the beginning of the chapter, A(n) E 8(n10g, 7). In other 
words, the number of additions has the same order of growth as the number 
of multiplications. This puts Strassen's algorithm in 8(1110g2 7), which is a better 
efficiency class than 8(n3) of the brute-force method. 

Since the time of Strassen's discovery, several other algorithms for multiplying 
two 11-by-n matrices of real numbers in O(n") time with progressively smaller 
constants a have been invented. The fastest algorithm so far is that of Coopersmith 
and Winograd [Coo87], with its efficiency in 0(112376). The decreasing values of 
the exponents have been obtained at the expense of increasing complexity of these 
algorithms. Because of large multiplicative constants, none of them is of practical 
value. However, they are interesting from a theoretical point of view. Although 
these algorithms get closer and closer to the best theoretical lower bound known 
for matrix multiplication, which is n2 multiplications, the gap between this bound 
and the best available algorithm remains unresolved. It is also worth mentioning 
that matrix multiplication is known to be computationally equivalent to some 
other important problems such as solving systems of linear equations. 

-----Exercises 4.5----------------

1. Wbat are the smallest and largest numbers of digits the product of two decimal 
n-digit integers can have? 

2. Compute 2101 * 1130 by applying the divide-and-conquer algorithm outlined 
in the text. 

3. a. Prove the equality a log, c = c10gb a, which was used twice in Section 4.5. 

b. Wby is 11logz 3 better than 3Iog,, as a closed-form formula for M(n)? 

4. a. Why did we not include multiplications by 10" in the multiplication count 
M(11) of the large-integer multiplication algorithm? 

b. In addition to assuming that 11 is a power of 2, we made, for the sake of 
simplicity, another, more subtle, assumption in setting up a recurrence 
relation for M (11), which is not always true (it does not change the final 
answer, however). What is this assumption? 
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5. How many one-digit additions are made by the pen-and-pencil algorithm in 
multiplying two n-digit integers? (You may disregard potential carries.) 

6. Verify the formulas underlying Strassen's algorithm for multiplying 2-by-2 
matrices. 

7. Apply Strassen's algorithm to compute 

[ 
1 0 2 1] [0 4 1 1 0 2 
0130*2 
5 0 2 1 1 

1 0 1] 1 0 4 
0 1 1 
3 5 0 

exiting the recursion when n = 2, i.e., computing the products of 2-by-2 ma­
trices by the brute-force algorithm. 

8. Solve the recurrence for the number of additions required by Strassen's algo­
rithm. (Assume that n is a power of 2.) 

9. V. Pan [Pan78] has discovered a divide-and-conquer matrix multiplication 
algorithm that is based on multiplying two 70-by-70 matrices using 143,640 
multiplications. Find the asymptotic efficiency of Pan's algorithm (you may 
ignore additions) and compare it with that of Strassen's algorithm. 

10. Practical implementations of Strassen 's algorithm usually switch to the brute­
force method after matrix sizes become smaller than some "crossover point." 
Run an experiment to determine such crossover point on your computer 
system. 

4.6 Closest-Pair and Convex-Hull Problems 
by Divide-and-Conquer 

In Section 3.3, we discussed the brute-force approach to solving two classic prob­
lems of computational geometry: the closest-pair problem and the convex-hull 
problem. We saw that the two-dimensional versions of these problems can be 
solved by brute-force algorithms in 8 (n 2) and 0 (n 3) time, respectively. In this sec­
tion, we discuss more sophisticated and asymptotically more efficient algorithms 
for these problems, which are based on the divide-and-conquer technique. 

Closest-Pair Problem 

Let Pt = (xt, y1), ... , Pn = (xn, y,) be a setS of n points in the plane, where n, 
for simplicity, is a power of two. With no loss of generality, we can assume that 
the points are ordered in ascending order of their x coordinates. (If they were not, 
we can sort them in O(n log n) time, e.g., by mergesort.) We can divide the points 
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given into two subsets S1 and S2 of 11(2 points each by drawing a vertical line x = c 
so that n/2 points lie to the left of or on the line itself, and 11/2 points lie to the 
right of or on the line. (One way of finding an appropriate value for constant c for 
doing this is to use the median I"' of the x coordinates.) 

Following the divide-and-conquer approach, we can find recursively the clos­
est pairs for the left subset S1 and the right subset S2. Let d1 and d2 be the smallest 
distances between pairs of points in S1 and S2, respectively, and let d = min{d1o 
d2). Unfortunately, d is not necessarily the smallest distance between all pairs of 
points in S1 and S2 because a closer pair of points can lie on the opposite sides 
of the separating line. So, as a step of combining the solutions to the smaller sub­
problems, we need to examine such points. Obviously, we can limit our attention 
to the points in the symmetric vertical strip of width 2d since the distance between 
any other pair of points is greater than d (Figure 4.7a). 

Let C1 and C2 be the subsets of points in the left and right parts of the strip, 
respectively. Now, for every point P(x, y) in C1o we need to inspect points in C2 that 
may be closer toP than d. Obviously, such points must have their y coordinates in 
the interval [y - d, y + d]. The critical insight here is an observation that there can 
be no more than six such points because any pair of points in C2 is at least d apart 
from each other. (Recall that d ::: d2 where d2 is the smallest distance between 
pairs of points to the right of the dividing line.) The worst case is illustrated in 
Figure 4.7b. 

Another important observation is that we can maintain lists of points in C1 
and C2 sorted in ascending order of their y coordinates. (You can think of these 
lists as projections of the points on the dividing line.) Moreover, this ordering can 
be maintained not by resorting points on each iteration but rather by merging two 
previously sorted lists (see algorithm Merge in Section 4.1). We can process the C1 
points sequentially while a pointer into the C2 list scans an interval of width 2d to 
fetch up to six candidates for computing their distances to a current point P of the 
C1list. The time M(11) for this "merging" of solutions to the smaller subproblems 
is in 0(11). 

We have the following recurrence for T (n), the running time of this algorithm 
on n presorted points: 

T(n) = 2T(11/2) + M(n). 

Applying the 0 version of the Master Theorem (with a= 2, b = 2, and d = 1), 
we get T (n) E 0 (11 log 11). The possible necessity to presort input points does not 
change the overall efficiency class if sorting is done by a O(n log n) algorithm. In 
fact, this is the best efficiency class we can achieve because it has been proved that 
any algorithm for this problem must be in i:2(11log 11) (see [Pre85], p. 188). 

Convex-Hull Problem 

Let us revisit the convex-hull problem introduced in Section 3.3: fmd the smallest 
convex polygon that contains 11 given points in the plane. We consider here a 
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FIGURE 4.7 (a) Idea of the divide-and-conquer algorithm for the closest-pair problem. 
(b) The six points that may need to be examined for point P. 

divide-and-conquer algorithm called quickhull because of its resemblance to 
quicksort. 

Let P1 = (xJ, y1), ... , P, = (x,, y,) be a setS of n > 1 points in the plane. We 
assume that the points are sorted in increasing order of their x coordinates, with 
ties resolved by increasing order of the y coordinates of the points involved. It 
is not difficult to prove the geometrically obvious fact that the leftmost point P1 

and the rightmost point P, are two distinct extreme points of the set's convex hull 
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• 
• • 

• 

FIGURE 4.8 Upper and lower hulls of a set of points 

(Figure 4.8). Let P;P n be the straight line through points P1 and Pn directed from 
P1 to P .. Tbis line separates the points of S into two sets: S1 is the set of points to 
the left of or on this line and S2 is the set of points to the right of or on this line. 
(We say that point p3 is to the left of the line P1P2 directed from point p 1 to point 
P2 if PtPzP3 forms a counterclockwise cycle. Later, we cite an analytical way to 
check this condition based on checking the sign of a determinant formed by the 
coordinates of the three points.) The points of S on the line P;P "' other than P1 
and Pn, cannot be extreme points of the convex hull and hence are excluded from 
further consideration. 

The boundary of the convex hull of S is made up of two polygonal chains: 
an "upper" boundary and a "lower" boundary. The "upper" boundary, called the 
upper hull, is a sequence of line segments with vertices at P1, some of the points 
in S1 (if S1 is not empty), and Pn- The "lower" boundary, called the lower hull, is 
a sequence of line segments with vertices at P1, some of the points in S2 (if S2 is 
not empty) and Pn-

The fact that the convex hull of the entire set S is composed of the upper and 
lower hulls, which can be constructed independently and in a similar fashion, is a 
very useful observation that is exploited by several algorithms for this problem. 

For concreteness, let us discuss how quickhull proceeds to construct the upper 
hull; the lower hull can be constructed in the same manner. If S1 is empty, the upper 
hull is simply the line segment with the endpoints at P1 and P .. If S1 is not empty, 
the algorithm identifies vertex p max in sj, which is the farthest from the line P;P n 

(Figure 4.9) If there is a tie, the point that maximizes the angle L P maxPJ Pn can 
be selected. (Note that point P max maximizes the area of the triangle with two 
vertices at P1 and Pn and the third at some other point of SJ-) Then the algorithm 
identifies all the points of set S1 that are to the left of the line P;P max; these are 
the points that, along with P1 and P max• will make up the set St.!· The points of St 
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• • 
• • • • 

FIGURE 4.9 The idea of quickhull 

to the left ofthe line p;;:;;P, will make up, along with Pmax and P,. the set S1.2. It 
is not difficult to prove that 

ill P max is a vertex of the upper hull; 

ill the points inside /',. P1 P max P, cannot be vertices of the upper hull (and hence 
can be eliminated from further consideration); and 

., there are no points to the left of both lines P;P max and p;;:;;P,. 
Therefore, the algorithm can continue constructing the upper hulls of ? 1 U Su U 
P max and P max U S1.2 U P, recursively and then simply concatenate them to getthe 
upper hull of the entire set P1 U S1 UP,. 

Now we have to figure out how the algorithm's geometric operations can be 
implemented. Fortunately, we can take advantage of the following very useful fact 
from analytical geometry: if p 1 = (x1, y1), p2 = (x1, y1), and p3 = (x3, y3) are three 
arbitrary points in the Cartesian plane, then the area of the triangle !',.p1p2p3 is 
equal to one half of the magnitude of the determinant 

1 
1 = XtYz + x3Y1 + XzY3- x3Y2- XzYl- XJY3· 
1 

while the sign of this expression is positive if and only if the point P3 = (x3, Y3) 
is to the left of the line p;P,. Using this formula, we can cheek in constant time 
whether a point lies to the left of the line determined by two other points as well 
as find the distance from the point to the line. 

Quickhull has the same 8 (n2
) worst -case efficiency as quicksort (Problem 8 

in the exercises). In the average case, however, we should expect a much better 
performance. First, the algorithm should benefit from the quicksort-like savings 
from the on-average balanced split of the problem into two smaller subproblems. 
Second, a siginificant fraction of the points-namely those inside b. P1 P maxPn (see 
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Figure 4.9)-are eliminated from further processing. Under a natural assumption 
that points given are chosen randomly from a uniform distribution over some 
convex region (e.g., a circle or a rectangle), the average-case efficiency of quickhull 
turns out to be linear [ Ove80]. 

-----Exercises 4J5 ----------------

1. a. For the one-dimensional version of the closest-pair problem, i.e., for the 
problem of finding two closest numbers among a given set of n real num­
bers, design an algorithm that is directly based on the divide-and-conquer 
technique and determine its efficiency class. 

b. Is it a good algorithm for this problem? 

2. Consider the version of the divide-and-conquer two-dimensional closest-pair 
algorithm in which we simply sort each of the two sets C 1 and C2 in ascending 
order of their y coordinates on each recursive call. Assuming that sorting is 
done by mergesort, set up a recurrence relation for the running time in the 
worst case and solve it for n = 2k 

3. Implement the divide-and-conquer closest-pair algorithm, outlined in this 
section, in the language of your choice. 

4. Find on the Web a visualization of an algorithm for the closest-pair problem. 
What algorithm does this visualization represent? 

5. The Voronoi polygon for a point P of a setS of points in the plane is defined 
to be the perimeter of the set of all points in the plane closer to P than to any 
other point in S. The union of all the Voronoi polygons of the points in S is 
called the Voronoi diagram of S. 
a. What is the Voronoi diagram for a set of three points? 

b. Find on the Web a visualization of an algorithm for generating the Voronoi 
diagram and study a few examples of such diagrams. Based on your obser­
vations, can you tell how the solution to the previous question is general­
ized to the general case? 

6. Explain how one can find point Pmax in the quickhull algorithm analytically. 

i7,, What is the best-case efficiency of quickhull? 
\ ; ·s: Give a specific example of inputs that make the quickhull algorithm run in 

quadratic time. 

9. Implement the quickhull algorithm in the language of your choice. 

10. Shortest path around There is a fenced area in the two-dimensional Eu­
clidean plane in the shape of a convex polygon with vertices at points P1 (x1, y1), 

P2(x2, y2), ... , PnCxn, Ynl (not necessarily in this order). There are two more 
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points, A(xA, YA) and B(x8 , y8 ), such that xA < min{x1, x2, ... , x,) and x8 > 
max{x1, x2, ... , x,). Design a reasonably efficient algorithm for computing 
the length of the shortest path between A and B. [0Ro98], p. 68 

SUMMARY 

" Divide-and-conquer is a general algorithm design technique that solves a 
problem's instance by dividing it into several smaller instances (ideally, 
of equal size), solving each of them recursively, and then combining their 
solutions to get a solution to the original instance of the problem. Many 
efficient algorithms are based on this technique, although it can be both 
inapplicable and inferior to simpler algorithmic solutions. 

" Running time T(11) of many divide-and-conquer algorithms satisfies the 
recurrence T (11) = aT(11 /h) + f (n ). The Master Theorem establishes the order 
of growth of its solutions. 

'" Mergesort is a divide-and-conquer sorting algorithm. It works by dividing an 
input array into two halves, sorting them recursively, and then merging the two 
sorted halves to get the original array sorted. The algorithm's time efficiency 
is in 8 (11 log n) in all cases, with the number of key comparisons being very 
close to the theoretical minimum. Its principal drawback is a significant extra 
storage requirement. 

" Quicksort is a divide-and-conquer sorting algorithm that works by partition­
ing its input's elements according to their value relative to some preselected 
element. Quicksort is noted for its superior efficiency among 11 log n al­
gorithms for sorting randomly ordered arrays but also for the quadratic 
worst-case efficiency. 

" Binary search is a 0 (log 11) algorithm for searching in sorted arrays. It is 
an atypical example of an application of the divide-and-conquer technique 
because it needs to solve just one problem of half the size on each of its 
iterations. 

11 The classic traversals of a binary tree-preorder, inorder, and postorder­
and similar algorithms that require recursive processing of both left and right 
subtrees can be considered examples of the divide-and-conquer technique. 
Their analysis is helped by replacing all the empty subtrees of a given tree 
with special external nodes. 

" There is a divide-and-conquer algorithm for multiplying two n-digit integers 
that requires about 11 t.sss one-digit multiplications. 
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,. Strassen 's algorithm needs only seven multiplications to multiply two 2-by-
2 matrices but requires more additions than the definition-based algorithm. 
By exploiting the divide-and-conquer technique, this algorithm can multiply 
two n-by-n matrices with about n2·807 multiplications. 

" The divide-and-conquer technique can be successfully applied to two impor­
tant problems of computational geometry: the closest-pair problem and the 
convex-hnll problem. 
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Plutarch says that Sertorius, in order to teach his soldiers that perseverance 
and wit are better than brute force, had two horses brought before them, 
and set two men to pull out their tails. One of the men was a burly Hercules, 
who tugged and tugged, but all to no purpose; the other was a sharp, weasel­
faced tailor, who plucked one hair at a time, amidst roars of laughter, and 
soon left the tail quite bare. 

-E. Cobham Brewer, Dictionary of Phrase and Fable, 1898 

The decrease-and-conquer technique is based on exploiting the relationship 
between a solution to a given instance of a problem and a solution to a smaller 

instance of the same problem. Once such a relationship is established, it can be 
exploited either top down (recursively) or bottom up (without a recursion). There 
are three major variations of decrease-and-conquer: 

" decrease by a constant 

" decrease by a constant factor 
!!Ill variable size decrease 

In the decrease-by-a-constant variation, the size of an instance is reduced by 
the same constant on each iteration of the algorithm. Typically, this constant is 
equal to one (Figure 5.1), although reduction-by-two cases do happen occasion­
ally, for example, in algorithms that have to act differently for instances of odd 
and even sizes. 

Consider, as an example, the exponentiation problem of computing a" for 
positive integer exponents. The relationship between a solution to an instance of 
sizen and an instance of size n- 1 is obtained by the obvious formula: an= an-t. a. 
So the function .f (n) =a" can be computed either "top down" by using its recursive 
definition 

.f(n) = { .f(n- 1) ·a if n > 1 
a Ifn=1 

(5.1) 

157 
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problem of size n 

subproblem 
ofsizen-1 

solution to 
the subproblem 

solution to 
the original problem 

FIGURE 5.1 Decrease (by one)-and-conquer technique 

or "bottom up" by multiplying a by itself n - 1 times. (Yes, it is the same as the 
brute-force algorithm, but we have come to it by a different thought process.) 
More interesting examples of decrease-by-one algorithms appear in Sections 5.1-
5.4. 

The decrease-by-a-constant-factor technique suggests reducing a problem's 
instance by the same constant factor on each iteration of the algorithm. In most 
applications, this constant factor is equal to two. (Can you give an example of such 
an algorithm?) The decrease-by-half idea is illustrated in Figure 5.2. 

For an example, let us revisit the exponentiation problem. If the instance of 
size n is to compute an, the instance of half its size will be to compute an/2 , with 
the obvious relationship between the two: a"= (a"/2)2 But since we consider here 
instances of the exponentiation problem with integer exponents only, the former 
does not work for odd n. If n is odd, we have to compute a"-1 byusingtherule for 
even-valued exponents and then multiply the result by a. To summarize, we have 
the following formula: 

! 
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problem of size n 

subproblem 
of size n/2 

solution to 
the subproblem 

solution to 
the original problem 

FIGURE 5.2 Decrease (by haiti-and-conquer technique 

{ 

(a"12)2 if n is even and positive 
a"= (aln-l)/2)2 . a if n is odd and greater than 1 

a if n = 1. 

159 

(5.2) 

If we compute a" recursively according to formula (5.2) and measure the algo­
rithm's efficiency by the number of multiplications, we should expect the algorithm 
to be in 0 (log n) because, on each iteration, the size is reduced by at least one half 
at the expense of no more than two multiplications. 

Note a difference between this algorithm and the one based on the divide­
and-conquer idea of solving two instances of the exponentiation problem of size 
nf2: 

ifn>l 
ifn=l. 

(5.3) 

The algorithm based on formula (5.3) is inefficient (why?), whereas the one based 
on (5.2) is much faster. 
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A few other examples of decrease-by-a-constant-factor algorithms are given 
in Section 5.5 and its exercises. Such algorithms are so efficient, however, that 
there are few examples of this kind. 

Finally, in the val'iable-size-decrease variety of decrease-and-conquer, a size 
reduction pattern varies from one iteration of an algorithm to another. Euclid's 
algorithm for computing the greatest common divisor provides a good example 
of such a situation. Recall that this algorithm is based on the formula 

gcd(m, n) = gcd(11, m mod 11). 

Though the arguments on the right-hand side are always smaller than those on the 
left-hand side (at least starting with the second iteration of the algorithm), they 
are smaller neither by a constant nor by a constant factor. A few other examples 
of such algorithms appear in Section 5.6. 

5.1 Insertion Sort 

In this section, we consider an application of the decrease-by-one technique to 
sorting an array A[0 .. 11- 1]. Following the technique's idea, we assume that tbe 
smaller problem of sorting the array A[O .. n- 2] has already been solved to give 
us a sorted array of size 11 - 1: A[O] :<' ... :<'A [11 - 2]. How can we take advantage 
of this solution to the smaller problem to get a solution to the original problem 
by taking into account the element A[n -1]? Obviously, all we need is to find an 
appropriate position for A[n - 1] among the sorted elements and insert it there. 

There are three reasonable alternatives for doing this. First, we can scan the 
sorted subarray from left to right until the first element greater than or equal 
to A[11 -1] is encountered and then insert A[11 -1] right before that element. 
Second, we can scan the sorted subarray from right to left until the first element 
smaller than or equal to A[n -1] is encountered and then insert A[n -1] right 
after that element. These two alternatives are essentially equivalent; usually, it is 
the second one that is implemented in practice because it is better for sorted and 
almost-sorted arrays (whf\). The resulting algorithm is called straight insertion 
sort or simply insertion sort. The third alternative is to use binary search to find an 
appropriate position for A [ n - 1] in the sorted portion of the array. The resulting 
algorithm is called binary insertion sort. We ask you to implement this idea and 
investigate the efficiency of binary insertion sort in the exercises to this section. 

Though insertion sort is clearly based on a recursive idea, it is more efficient 
to implement this algorithm bottom up, i.e., iteratively. As shown in Figure 5.3, 
starting with A[1] and ending with A[n - 1], A[i] is inserted in its appropriate place 
among the first i elements of the array that have been already sorted (but, unlike 
selection sort, are generally not in their final positions). 

Here is a pseudocode of this algorithm. 
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A[O] ::0 ... ::0 A[j] < A[j + 1] ::0 ... ::0 A[i -1] I A[i] ... A[n -1] 

smaller than or equal to A[i] greater than A[i] 

FIGURE 5.3 Iteration of insertion sort: A[i] is inserted in its proper position among the 
preceding elements previously sorted. 

ALGORITHM InsertionSort(A[O .. n - 1]) 

//Sorts a given array by insertion sort 
//lnput: An array A[O .. n- 1] of n orderable elements 
//Output: Array A[O .. n - 1] sorted in nondecreasing order 
for i <--- 1 to n - 1 do 

v <--- A[i] 
j<---i-1 
while j :>: 0 and A[j] > v do 

A[j + 1] <--- A[j] 
j<---j-1 

A[j+1]<-v 

(\ 

'2 

The operation of the algorithm is illustrated in Figure 5.4. 
c\""" The basic operation of the algorithm is the key comparison A[j] > v. (Why 

)not j :>: 0? Because it will almost certainly be faster than the former in an actual 
~'<~r 1 computer implementation. Moreover, it is not germane to the algorithm: a better 

implementation with a sentinel-see Problem 5 in the exercises-eliminates it 
altogether.) 

,.-,--~-----------

The number of key comparisons in this algorithm obviously depends on the 
nature of the input. In the worst case, A[j] > v is executed the largest number 
of times, i.e., for every j = i - 1, ... , 0. Since v = A[i], it happens if and only if 

89 I 45 68 90 29 34 17 
45 89 I 68 90 29 34 17 
45 68 89 I 90 29 34 17 
45 68 89 90 I 29 34 17 
29 45 68 89 90 I 34 17 
29 34 45 68 89 90 I 17 
17 29 34 45 68 89 90 

FIGURE 5.4 Example of sorting with insertion sort. A vertical bar separates the sorted 
part of the array from the remaining elements; the element being inserted 
is in bold. 
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A[j] > A[i] for j = i- 1, ... , 0. (Note that we are using the fact that on the ith 
iteration of insertion sort all the elements preceding A[i] are the first i elements in 
the input, albeit in the sorted order.) Thus, for the worst-case input, we get A[O] > 
A[1] (fori= 1), A[1] > A[2] (fori= 2), ... , A[n- 2] > A[n -1] (fori= n -1). 
In other words, the worst-case input is an array of strictly decreasing values. The 
number of key comparisons for such an input is 

n-1 i-l n-1 ( 1) 
'\''\' '\'· n- n 2 

Cw0 ,-,(n) = L... L...1 = L... l = 
2 

E E>(n ). 
i=l j=O i=l 

Thus, in the wo~st case, insertion sort makes exactly the same number of compar­
isons as selection sort (see Section 3.1). 

In the best case, the comparison A[j] > v is executed only once on every 
iteration of the outer loop. It happens if and only if A[i - 1]::: A[i] for every i = 
1, ... , n - 1, i.e., if the input array is already sorted in ascending order. (Though 
it "makes sense" that the best case of an algorithm happens when the problem 
is already solved, it is not always the case: recall our discussion of quicksort in 
Chapter 4.) Thus, for sorted arrays, the number of key comparisons is 

n-1 

ch,,,,(n) = L 1 = n- 1 E E>(n). 
i=l 

This very good performance in the best case of sorted arrays is not very useful 
by itself, because we cannot expect such convenient inputs. However, almost­
sorted files arise in a variety of applications, and insertion sort preserves its 
excellent performance on such inputs. For example, while sorting an array by 
quicksort, we can stop the algorithm's iterations after subarrays become smaller 
than some predefined size (say, 10 elements). By that time, the entire array is 
almost sorted and we can finish the job by applying insertion sort to it. This 
modification typically decreases the total running time of quicksort by about 10%. 

t c\.cc== ... A rigorous analysis of the algorithm's average-case efficiency is based on 
investigating the number of element pairs that are out of order (see Problem 8). 
It shows that on randomly ordered arrays, insertion sort makes on average half as 
many comparisons as on decreasing arrays, i.e., 

This twice-as-fast average-case performance coupled with an excellent efficiency 
on almost-sorted arrays makes insertion sort stand out among its principal com­
petitors among elementary sorting algorithms, selection sort and bubble sort. In 
addition, its extension named shellsort, after its inventor D. L. Shell [She59], gives 
us an even better algorithm for sorting moderately large files (see Problem 10). 
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-----Exercises 5.1 ----------------

1. Ferrying soldiers A detachment of n soldiers must cross a wide and deep 
river with no bridge in sight. They notice two 12-year-old boys playing in a 
rowboat by the shore. The boat is so tiny, however, that it can only hold two 
boys or one soldier. How can the soldiers get across the river and leave the 
boys in joint possession of the boat? How many times need the boat pass from 
shore to shore? 

2. Alternating glasses There are 2n glasses standing next to each other in a row, 
the first n of them filled with a soda drink, while the remaining n glasses are 
empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the 
minimum number of glass moves. (Gar78], p. 7 

0000 O'i/0 O'i/0 
3. Design a decrease-by-one algorithm for generating the power set of a set of n 

elements. (The power set of a set S is the set of all the subsets of S, including 
the empty set and S itself.) 

4. Apply insertion sort to sort the list E, X, A, M, P, L, E in alphabetical order. 

5. a. What sentinel should be put before the first element of an array being 
sorted to avoid checking the in-bound condition j 2: 0 on each iteration 
of the inner loop of insertion sort? 

b. Will the version with the sentinel be in the same efficiency class as the 
original version? 

6. Is it possible to implement insertion sort for sorting linked lists? Will it have 
the same O(n2) efficiency as the array version? 

7. Consider the following version of insertion sort. 

ALGORITHM InsertSort2(A[O .. n - 1]) 

fori <--lton-1do 
j<--i-1 

while j 2:0 and A(j] > A[j + 1] do 
swap( A(}], A(j + 1]) 
j<--j-1 

What is its time efficiency? How is it compared to that of the version given in 
the text? 

8. Let A[O .. n - 1] be an array of n sortable elements. (For simplicity, you can 
assume that all the elements are distinct.) A pair (A(i], A[j]) is called an 
inversion if i < j and A[i] > A[j]. 
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a. What arrays of size n have the largest number of inversions and what is this 
number? Answer the same questions for the smallest number of inversions. 

b. Show that the average-case number of key comparisons in insertion sort is 
given by the formula 

9. Binary insertion sort uses binary search to find an appropriate position to 
insert A[i] among the previously sorted A[O] :S ... :s A[i - 1]. Determine the 
worst-case efficiency class of this algorithm. 

10. Shellsort (more accurately Shell's sort) is an important sorting algorithm that 
works by applying insertion sort to each of several interleaving sublists of a 
given list. On each pass through the list, the sublists in question are formed 
by stepping through the list with an increment h, taken from some predefined 
decreasing sequence of step sizes, h1 > ... >hi > ... > 1, which must end with 
1. (The algorithm works for any such sequence, though some sequences are 
known to yield a better efficiency than others. For example, the sequence 1, 
4, 13, 40, 121, ... , used, of course, in reverse, is known to be among the best 
for this purpose.) 
a. Apply shellsort to the list 

S, H, E, L, L, S, 0, R, T, I, S, U, S, E, F, U, L 

b. Is shellsort a stable sorting algorithm? 

c. Implement shellsort, straight insertion sort, binary insertion sort, merge­
sort, and quicksort in the language of your choice and compare their per­
formance on random arrays of sizes 102, 103, 104, and 105 as well as on 
increasing and decreasing arrays of these sizes. 

!5.2 Depth-First Search and Breadth-First Search 

In the next two sections of this chapter, we deal with very important graph al­
gorithms that can be viewed as applications of the decrease-by-one technique. 
We assume familiarity with the notion of a graph, its main varieties (undirected, 
directed, and weighted graphs), the two principal representations of a graph (ad­
jacency matrix and adjacency lists), and such notions as graph connectivity and 
acyclicity. If needed, a brief review of this material can be found in Section 1.4. 

As pointed out in Section 1.3, graphs are interesting structures with a wide 
variety of applications. Many graph algorithms require processing vertices or 
edges of a graph in a systematic fashion. There are two principal algorithms for 
doing such traversals: depth-first search (DFS) and breadth-first search (BFS). In 
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addition to doing their main job of visiting vertices and traversing edges of a graph. 
these algorithms have proved to be very useful in investigating several important 
properties of a graph. 

Depth-First Search 

Depth-first search starts visiting vertices of a graph at an arbitrary vertex by mark­
ing it as having been visited. On each iteration, the algorithm proceeds to an 
unvisited vertex that is adjacent to the one it is currently in. (If there are sev­
eral such vertices. a tie can be resolved arbitrarily. As a practical matter, which 
of the adjacent unvisited candidates is chosen is dictated by the data structure 
representing the graph. In our examples, we will always break ties by the alpha­
betical order of the vertices.) This process continues until a dead end-a vertex 
with no adjacent unvisited vertices-is encountered. At a dead end, the algorithm 
backs up one edge to the vertex it came from and tries to continue visiting un­
visited vertices from there. The algorithm eventually halts after backing up to 
the starting vertex, with the latter being a dead end. By then, all the vertices in 
the same connected component as the starting vertex have been visited. If unvis­
ited vertices still remain, the depth-first search must be restarted at any one of 
them. 

It is convenient to use a stack to trace the operation of depth-first search. We 
push a vertex onto the stack when the vertex is reached for the first time (i.e., the 
visit of the vertex starts), and we pop a vertex off the stack when it becomes a 
dead end (i.e., the visit of the vertex ends). 

It is also very useful to accompany a depth-first search traversal by construct­
ing the so-called depth-first search forest. The traversal's starting vertex serves 
as the root of the first tree in such a forest. Whenever a new unvisited vertex is 
reached for the first time, it is attached as a child to the vertex from which it is being 
reached. Such an edge is called a tree edge because the set of all such edges forms 
a forest. The algorithm may also encounter an edge leading to a previously visited 
vertex other than its immediate predecessor (i.e., its parent in the tree). Such an 
edge is called a back edge because it connects a vertex to its ancestor, other than 
the parent, in the depth-first search forest. Figure 5.5 provides an example of a 
depth-first search traversal, with the traversal's stack and corresponding depth­
first search forest shown as well. 

Here is a pseudocode of the depth-first search. 

ALGORITHM DFS(G) 

//Implements a depth-first search traversal of a given graph 
//Input: Graph G = (V, E) 

//Output: Graph G with its vertices marked with consecutive integers 
//in the order they've been first encountered by the DFS traversal 
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FIGURE 5.5 Example of a DFS traversal. (a) Graph. (b) Traversal's stack (the first subscript 
number indicates the order in which a vertex was visited, i.e., pushed onto 
the stack; the second one indicates the order in which it became a dead­
end, i.e., popped off the stack). (c) DFS forest (with the tree edges shown 
with solid lines and the back edges shown with dashed lines). 

mark each vertex in V with 0 as a mark of being "unvisited" 

count+--- 0 
for each vertex v in V do 

if v is marked with 0 
dfs(v) 

dfs(v) 
//visits recursively all the unvisited vertices connected to vertex v hy a path 
//and numbers them in the order they are encountered 
//via global variable count 
count +---count + 1; mark v with count 

for each vertex w in V adjacent to v do 
if w is marked with 0 

df<(w) 

The brevity of the DFS pseudocode and the ease with which it can be per­
formed by hand may create a wrong impression about the level of sophistication 
of this algorithm. To appreciate its true power and depth, you should trace the 
algorithm's action by looking not at a graph's diagram but at its adjacency matrix 
or adjacency lists. (Try it for the graph in Figure 5.5 or a smaller example.) 

How efficient is depth-first search? It is not difficult to see that this algorithm 
is, in fact, quite efficient since it takes just the time proportional to the size of the 
data structure used for representing the graph in question. Thus, for the adjacency 
matrix representation, the traversal's time is in 8(1VI2), and for the adjacency 
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list representation, it is in El(IVI +lEI) where lVI and lEI are the number of the 
graph's vertices and edges, respectively. 

A DFS forest, which is obtained as a by-product of a DFS traversal, deserves a 
few comments, too. To begin with, it is not actually a forest. Rather, we can look at 
it as the given graph with its edges classified by the DFS traversal into two disjoint 
classes: tree edges and back edges. (No other types are possible for a DFS forest 
of an undirected graph.) Again, tree edges are edges used by the DFS traversal to 
reach previously unvisited vertices. If we consider only the edges in this class, we 
will indeed get a forest. Back edges connect vertices to previously visited vertices 
other than their immediate predecessors in the traversal. They connect vertices to 
their ancestors in the forest other than their parents. 

A DFS traversal itself and the forest-like representation of a graph it provides 
have proved to be extremely helpful for the development of efficient algorithms 
for checking many important properties of graphs1 Note that the DFS yields two 
orderings of vertices: the order in which the vertices are reached for the first 
time (pushed onto the stack) and the order in which the vertices become dead 
ends (popped off the stack). These orders are qualitatively different, and various 
applications can take advantage of either of them. 

Important elementary applications of DFS include checking connectivity and 
checking acyclicity of a graph. Since DFS halts after visiting all the vertices con­
nected by a path to the starting vertex, checking a graph's connectivity can be done 
as follows. Start a DFS traversal at an arbitrary vertex and check, after the algo· 
rithm halts, whether all the graph's vertices will have been visited. If they have, 
the graph is connected; otherwise, it is not connected. More generally, we can use 
DFS for identifying connected components of a graph (how?). 

As for checking for a cycle presence in a graph, we can take advantage of the 
graph's representation in the form of a DFS forest. If the latter does not have back 
edges, the graph is clearly acyclic. If there is a back edge from some vertex u to its 
ancestor v (e.g., the back edge from d to a in Figure 5.5c), the graph has a cycle 
that comprises the path from v to u via a sequence of tree edges in the DFS forest 
followed by the back edge from u to v. 

You will find a few other applications of DFS later in the book, although more 
sophisticated applications, such as finding articulation points of a graph, are not 
included. (A vertex of a connected graph is said to be its articulation point if its 
removal with all edges incident to it breaks the graph into disjoint pieces.) 

Breadth-First Search 

If depth-first search is a traversal for the brave (the algorithm goes as far from 
"home" as it can), breadth-first search is a traversal for the cautious. It proceeds in 

1. The discovery of several such applications was an important breakthrough achieved by the two 
American computer scientists John Hopcroft and Robert Tarjan in the 1970s. For this and other 
contributions, they subsequently won the Turing Award-the most important prize given in theoretical 
computer science [Hop87, Tar87]. 
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FIGURE 5.6 Example of a BFS traversal. (a) Graph. (b) Traversal's queue, with the 
numbers indicating the order in which the vertices were visited, i.e., added 
to (or removed from) the queue. (c) BFS forest (with the tree edges shown 
with solid lines and the cross edges shown with dotted lines). 

a concentric manner by visiting first all the vertices that are adjacent to a starting 
vertex, then all unvisited vertices two edges apart from it, and so on, until all 
the vertices in the same connected component as the starting vertex are visited. 
If there still remain unvisited vertices, the algorithm has to be restarted at an 
arbitrary vertex of another connected component of the graph. 

It is convenient to use a queue (note the difference from depth-first search!) 
to trace the operation of breadth-first search. The queue is initialized with the 
traversal's starting vertex, which is marked as visited. On each iteration, the 
algorithm identifies all unvisited vertices that are adjacent to the front vertex, 
marks them as visited, and adds them to the queue; after that, the front vertex is 
removed from the queue. 

Similarly to a DFS traversal, it is useful to accompany a BFS traversal by con­
structing the so-called breadth-first search forest. The traversal's starting vertex 
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex 
is reached for the first time, the vertex is attached as a child to the vertex it is being 
reached from with an edge called a tree edge. If an edge leading to a previously 
visited vertex other than its immediate predecessor (i.e., its parent in the tree) is 
encountered, the edge is noted as a cross edge. Figure 5.6 provides an example 
of a breadth-first search traversal, with the traversal's queue and corresponding 
breadth-first search forest shown. 

Here is a pseudocode of the breadth-first search. 

ALGORITHM BFS(G) 

//Implements a breadth-first search traversal of a given graph 
//Input: Graph G = (V, E) 
//Output: Graph G with its vertices marked with consecutive integers 
//in the order they have been visited by the BFS traversal 
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mark each vertex in V with 0 as a mark of being "unvisited" 
count +- 0 
for each vertex v in V do 

if v is marked with 0 
bfs(v) 

bfs(v) 

//visits all the unvisited vertices connected to vertex v by a path 
//and assigns them the numbers in the order they are visited 
//via global variable count 
count +-count + 1; mark v with count and initialize a queue with v 
while the queue is not empty do 

for each vertex w in V adjacent to the front vertex do 
if w is marked with 0 

count +-- count + 1; mark w with count 
add w to the queue 

remove the front vertex from the queue 

169 

Breadth-first search has the same efficiency as depth-first search: it is in 
8(1VI2) for the adjacency matrix representation and in 8(1VI +lEI) for the adja­
cency list representation. Unlike depth-first search, it yields a single ordering of 
vertices because the queue is a FIFO (first-in first-out) structure and hence the 
order in which vertices are added to the queue is the same order in which they 
are removed from it. As to the structure of a BFS forest of an undirected graph, 
it can also have two kinds of edges: tree edges and cross edges. Tree edges are the 
ones used to reach previously unvisited vertices. Cross edges connect vertices to 
those visited before, but, unlike back edges in a DFS tree, they connect vertices 
either on the same or adjacent levels of a BFS tree. 

Finally, BFS can be used to check connectivity and acyclicity of a graph, 
essentially in the same manner as DFS can. It is not applicable, however, for 
several less straightforward applications such as finding articulation points. On the 
other hand, it can be helpful in some situations where DFS cannot. For example, 
BFS can be used for finding a path with the fewest number of edges between two 
given vertices. We start a BFS traversal at one of the two vertices given and stop 
it as soon as the other vertex is reached. The simple path from the root of the BFS 
tree to the second vertex is the path sought. For example, path a-b-e-g in the 
graph in Figure 5.7 has the fewest number of edges among all the paths between 
vertices a and g. Although the correctness of this application appears to stem 
immediately from the way BFS operates, a mathematical proof of its validity is 
not quite elementary (see, e.g., [CarOl]). 

Table 5.1 summarizes the main facts about depth-first search and breadth-first 
search. 
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FIGURE 5.7 Illustration of the BFS-based algorithm for finding a minimum-edge path. 
(a) Graph. (b) Part of its BFS tree that identifies the minimum-edge path 

from a to g. 

TABLE 5.1 Main facts about depth-first search IDFS) and breadth-first search IBFS) 

Data structure 

No. of vertex orderings 

Edge types (undirected graphs) 

Applications 

Efficiency for adjacent matrix 

Efficiency for adjacent lists 

DFS 

stack 

2 orderings 

tree and back 
edges 

connectivity, 
acyclicity, 
articulation 
points 

El(IV 2 11 
E>IIVI +IE II 

BFS 

queue 

1 ordering 

tree and cross 
edges 

connectivity, 
acyclicity, 

minimum-edge 
paths 

E>(IV2 11 
E>IIVI +)E)) 

-----Exercises 5.2----------------

1. Consider the following graph. 
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a. Write down the adjacency matrix and adjacency lists specifying this graph. 
(Assume that the matrix rows and columns and vertices in the adjacency 
lists follow in the alphabetical order of the vertex labels.) 

b. Starting at vertex a and resolving ties by the vertex alphabetical order, 
traverse the graph by depth-first search and construct the corresponding 
depth-first search tree. Give the order in which the vertices were reached 
for the first time (pushed onto the traversal stack) and the order in which 
the vertices became dead ends (popped off the stack). 

2. If we define sparse graphs as graphs for which lEI E O(IVI), which implemen­
tation of DFS will have a better time efficiency for such graphs, the one that 
uses the adjacency matrix or the one that uses the adjacency lists? 

3. Let G be a graph with n vertices and m edges. 

a. True or false: All its DFS forests (for traversals starting at different ver­
tices) will have the same number of trees? 

b. True or false: All its DFS forests will have the same number of tree edges 
and the same number of back edges? 

4. Traverse the graph of Problem 1 by breadth-first search and construct the 
corresponding breadth-first search tree. Start the traversal at vertex a and 
resolve ties by the vertex alphabetical order. 

5. Prove that a cross edge in a BFS tree of an undirected graph can connect 
vertices only on either the same level or on two adjacent levels of a BFS tree. 

6. a. Explain how one can check a graph's acyclicity by using breadth-first 
search. 

b. Does either of the two traversals-DFS or BPS-always find a cycle faster 
than the other? If you answer yes, indicate which of them is better and 
explain why it is the case; if you answer no, give two examples supporting 
your answer. 

7. Explain how one can identify connected components of a graph by using 
a. a depth-first search. 

b. a breadth-first search. 

8. A graph is said to be bipartite if all its vertices can be partitioned into two 
disjoint subsets X and Y so that every edge connects a vertex in X with a vertex 
in Y. (One can also say that a graph is bipartite if its vertices can be colored in 
two colors so that every edge has its vertices colored in different colors; such 
graphs are also called 2-colorable). For example, graph (i) is bipartite while 
graph (ii) is not. 
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a. Design a DFS-based algorithm for checking whether a graph is bipartite. 

b. Design a BFS-based algorithm for checking whether a graph is bipartite. 

9. Write a program that, for a given graph, outputs 
a. vertices of each connected component; 

b. its cycle or a message that the graph is acyclic. 

10. One can model a maze by having a vertex for a starting point, a finishing point, 
dead ends, and all the points in the maze where more than one path can be 
taken, and then connecting the vertices according to the paths in the maze. 
a. Construct such a graph for the following maze. 

b. Which traversal-DFS or BFS-would you use if you found yourself in a 
maze and why? 

5.3 Topological Sorting 

In this section, we discuss an important problem for directed graphs. Before we 
pose this problem though, let us review a few basic facts about directed graphs 
themselves. A directed graph, or digraph for short, is a graph with directions 
specified for all its edges (Figure 5.8a is an example). The adjacency matrix and 
adjacency lists are still two principal means of representing a digraph. There are 
only two notable differences between undirected and directed graphs in repre­
senting them: (1) the adjacency matrix of a directed graph does not have to be 
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FIGURE 5.8 (a) Digraph. (b) DFS forest of the digraph for the DFS traversal started at a. 

symmetric; (2) an edge in a directed graph has just one (not two) corresponding 
nodes in the digraph's adjacency lists. 

Depth-first search and breadth-first search are principal traversal algorithms 
for traversing digraphs, but the structure of corresponding forests can be more 
complex. Thus, even for the simple example in Figure 5.8a, the depth-first search 
forest (Figure 5.8b) exhibits all four types of edges possible in a DFS forest of 
a directed graph: tree edges (ab, he, de), back edges (ba) from vertices to their 
ancestors, forward edges ( ac) from vertices to their descendants in the tree other 
than their children, and cross edges (de), which are none of the aforementioned 
types. 

Note that a back edge in a DFS forest of a directed graph can connect a vertex 
to its parent. Whether or not it is the case, the presence of a back edge indicates 
that the digraph has a directed cycle. (A directed cycle in a digraph is a sequence 
of three or more of its vertices that starts and ends with the same vertex and in 
which every vertex is connected to its inllllediate predecessor by an edge directed 
from the predecessor to the successor.) Conversely, if a DFS forest of a digraph 
has no back edges, the digraph is a dag, an acronym for directed acyclic graph. 

Directions on a graph's edges lead to new questions about the graph that are 
either meaningless or trivial for undirected graphs. In this section, we discuss one 
such problem. As a motivating example, consider a set of five required courses 
{Cl, C2, C3, C4, C5) a part-time student has to take in some degree program. The 
courses can be taken in any order as long as the following course prerequisites are 
met: Cl and C2 have no prerequisites, C3 requires C1 and C2, C4 requires C3, and 
C5 requires C3 and C4. The student can take only one course per term. In which 
order should the student take the courses? 

The situation can be modeled by a digraph in which vertices represent courses 
and directed edges indicate prerequisite requirements (Figure 5.9). In terms of this 
digraph, the question is whether we can list its vertices in such an order that for 
every edge in the graph, the vertex where the edge starts is listed before the vertex 
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FIGURE 5.9 Digraph representing the prerequisite structure of five courses 

where the edge ends. (Can you find such an ordering of this digraph's vertices?) 
This problem is called topological sorting. It can be posed for an arbitrary di­
graph, but it is easy to see that the problem cannot have a solution if a digraph 
has a directed cycle. Thus, for topological sorting to be possible, a digraph must 
be a dag. It turns out that being a dag is not only necessary but also sufficient for 
topological sorting to be possible; i.e., if a digraph has no cycles, the topological 
sorting problem for it has a solution. Moreover, there are two efficient algorithms 
that both verify whether a digraph is a dag and, if it is, produce an ordering of 
vertices that solves the topological sorting problem. 

The first algorithm is a simple application of depth-flrst search: perform a DFS 
traversal and note the order in which vertices become dead ends (i.e., are popped 
off the traversal stack). Reversing this order yields a solution to the topological 
sorting problem, provided, of course, no back edge has been encountered during 
the traversal. If a back edge has been encountered, the digraph is not a dag, and 
topological sorting of its vertices is impossible. 

Why does the algorithm work? When a vertex v is popped off a DFS stack, 
no vertex u with an edge from u to v can be among the vertices popped off before 
v. (Otherwise, (u, v) would have been a back edge.) Hence, any such vertex u will 
be listed after v in the popped-off order list, and before v in the reversed list. 

Figure 5.10 illustrates an application of this algorithm to the digraph in Fig­
ure 5.9. Note that in Figure 5.10c, we have drawn the edges of the digraph, and 
they all point from left to right as the problem's statement requires. It is a con-

C1 
C51 The popping-off order: 

C3 C42 C5, C4, C3, C1, C2 

C33 The topologically sorted list: 

C2 C14 C25 C2 C1--+C3->-C4_,.C5 
~~ 

(a) (b) (c) 

FIGURE 5.10 (a) Digraph for which the topological sorting problem needs to be solved. 

(b) DFS traversal stack with the subscript numbers indicating the popping­

off order. (c) Solution to the problem. 

T 
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C3 
delete C2 

delete C4 

The solution obtained is C1, C2, C3, C4, C5 

175 

delete C5 

FIGURE 5.11 Illustration of the source-removal algorithm for the topological sorting 
problem. On each iteration, a vertex with no incoming edges is deleted 
from the digraph. 

venient way to check visually the correctness of a solution to an instance of the 
topological sorting problem. 

The second algorithm is based on a direct implementation of the decrease (by 
one )-and-conquer technique: repeatedly, identify in a remaining digraph a source, 
which is a vertex with no incoming edges, and delete it along with all the edges 
outgoing from it. (If there are several sources, break the tie arbitrarily. If there is 
none, stop because the problem cannot be solved-see Problem 6a.) The order in 
which the vertices are deleted yields a solution to the topological sorting problem. 
The application of this algorithm to the same digraph representing the five courses 
is given in Figure 5.11. 

Note that the solution obtained by the source-removal algoritlun is different 
from the one obtained by the DFS-based algorithm. Both of them are correct, of 
course; the topological sorting problem may have several alternative solutions. 

The tiny size of the example we used might create a wrong impression about 
the topological sorting problem. But imagine a large project-e.g., in construction 
or research-that involves thousands of interrelated tasks with known prerequi­
sites. The first thing you should do in such a situation is to make sure that the set 
of given prereqnisites is not contradictory. The convenient way of doing this is 
to solve the topological sorting problem for the project's digraph. Only then can 
you start thinking about scheduling your tasks to, say, minimize the total com­
pletion time of the project. This would require, of course, other algorithms that 
you can find in general books on operations research or in special ones on so­
called CPM (Critical Path Method) and PERT (Program Evaluation and Review 
Technique) methodologies. 

--, 
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------Exercises 5.3-----------------

1. Apply the DFS-based algorithm to solve the topological sorting problem for 
the following digraphs. 

}--.{d 

e 

(a) (b) 

2. a. Prove that the topological sorting problem has a solution for a digraph if 
and only if it is a dag. 

b. For a digraph with n vertices, what is the largest number of distinct solutions 
the topological sorting problem can have? 

3. a. What is the time efficiency of the DFS-based algorithm for topological 
sorting? 

b. How can one modify the DFS-based algorithm to avoid reversing the 
vertex ordering generated by DFS? · 

4. Can one use the order in which vertices are pushed onto the DFS stack 
(instead of the order they are popped off it) to solve the topological sorting 
problem? 

5. Apply the source-removal algorithm to the digraphs of Prohlem 1. 

6. a. Prove that a dag must have at least one source. 

b. How would you find a source (or determine that such a vertex does not 
exist) in a digraph represented by its adjacency matrix? What is the time 
efficiency of this operation? 

c. How would you find a source (or determine that such a vertex does not 
exist) in a digraph represented by its adjacency lists? What is the time 
efficiency of this operation? 

7. Can you implement the source-removal algorithm for a digraph represented 
by its adjacency lists so that its running time is in O(IVI +lEI)? 

8. Implement the two topological sorting algorithms in the language of your 
choice. Run an experiment to compare their running times. 

9. A digraph is called strongly connected if for any pair of two distinct vertices u 
and v there exists a directed path from u to v and a directed path from v to u. In 
general, a digraph's vertices can be partitioned into disjoint maximal subsets 
of vertices that are mutually accessible via directed paths of the digraph; these 
subsets are called strongly connected components. There are two DFS-based 

T , 
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algorithms for identifying strongly connected components. Here is the simpler 
(but somewhat less efficient) one of the two. 

Step 1 Do a DFS traversal of the digraph given and number its vertices 
in the order that they become dead ends. 

Step 2 Reverse the directions of all the edges of the digraph. 

Step 3 Do a DFS traversal of the new digraph by starting (and, if nec­
essary, restarting) the traversal at the highest numbered vertex 
among still unvisited vertices. 

The strongly connected components are exactly the subsets of vertices in each 
DFS tree obtained during the last traversal. 

a. Apply this algorithm to the following digraph to determine its strongly 
connected components. 

d e 

b. What is the time efficiency class of this algorithm? Give separate answers 
for the adjacency matrix representation and adjacency list representation 
of an input graph. 

c. How many strongly connected components does a dag have? 

10. Celebrity problem A celebrity among a group of n people is a person who 
knows nobody but is known by everybody else. The task is to identify a 
celebrity by only asking questions to people of the form: "Do you know 
him/her?" Design an efficient algorithm to identify a celebrity or determine 
that the group has no such person. How many questions does your algorithm 
need in the worst case? 

5.4 Algorithms for Generating Combinatorial Objects 

In this section, we keep our promise to discuss algorithms for generating combi­
natorial objects. The most important types of combinatorial objects are permuta­
tions, combinations, and subsets of a given set. They typically arise in problems 
that require a consideration of different choices. We already encountered them in 
Chapter 3 when we discussed exhaustive search. Combinatorial objects are stud­
ied in a branch of discrete mathematics called combinatorics. Mathematicians, of 
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course, are primarily interested in different counting formulas; we should be grate­
ful for such formulas because they tell us how many items need to be generated. 
(In particular, they warn us that the number of combinatorial objects typically 
grows exponentially or even faster as a function of the problem's size.) But our 
primary interest here lies in algorithms for generating combinatorial objects, not 
just in counting them. 

Generating Permutations 

We start with permutations. For simplicity, we assume that the underlying set 
whose elements need to be permuted is simply the set of integers from 1 to n; 
more generally, they can be interpreted as indices of elements in ann-element set 
{a

1
, ... , anl· What would the decrease-by-one technique suggest for the problem 

of generating all n! permutations of {1, ... , n)? The smaller-by-one problem is to 
generate all (n - 1)! permutations. Assuming that the smaller problem is solved, 
we can get a solution to the larger one by inserting n in each of the n possible 
positions among elements of every permutation of n - 1 elements. All the permu­
tations obtained in this fashion will be distinct (why?), and their total number will 
be n(n- 1)! = n!. Hence, we will obtain all the permutations of {1, ... , n). 

We can insert n in the previously generated permutations either left to right 
or right to left. It turns out that it is beneficial to start with inserting n into 
12 ... (n - 1) by moving right to left and then switch direction every time a new 
permutation of {1, ... , n - 1] needs to be processed. An example of applying this 
approach bottom up for n = 3 is given in Figure 5.12. 

The advantage of this order stems from the fact that it satisfies the minimal­
change requirement: each permutation can be obtained from its immediate pre­
decessor by excha1;1ging just two elements in it. (Check this for the permutations 
generated in Figure 5.12.) The minimal-change requirement is beneficial both for 
the algorithm's speed and for applications using the permutations. For example, 
in Section 3.4, we needed permutations of cities to solve the traveling salesman 
problem by exhaustive search. If such permutations are generated by a minimal­
change algorithm, we can compute the length of a new tour from the length of its 
predecessor in constant rather than linear time (how?). 

start 
insert 2 into 1 right to left 

insert 3 into 21 right to left 

insert 3 into 21left to right 

1 
12 

123 
321 

21 
132 

231 

FIGURE 5.12 Generating permutations bottom up 

312 
213 
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It is possible to get the same ordering of permutations of n elements without 
explicitly generating permutations for smaller values of n. It can be done by 
associating a direction with each element k in a permutation. We indicate such 
a direction by a small arrow written above the element in question, e.g., 

---+~----++---

3 2 4 1. 

The element k is said to be mobile in such an arrow-marked permutation if its 
arrow points to a smaller number adjacent to it. For example, for the permutation 
---+ +-----++---
3 2 4 1 , 3 and 4 are mobile while 2 and 1 are not. Using the notion of a mobile 
element, we can give the following description of the Johnson-Trotter algorithm 
for generating permutations. 

ALGORITHM .TohnsonTrotter(n) 

//Implements Johnson-Trotter algorithm for generating permutations 
//Input: A positive integer n 

//Output: A list of all permutations of {1, ... , n) 
~~ ~ 

initialize the first permutation with 1 2 ... n 
while the last permutation has a mobile element do 

find its largest mobile element k , 

swap k and the adjacent integer k.'s arrow points to 
reverse the direction of all the elements that are larger thank 
add the new permutation to the list 

Here is an application of this algorithm for n = 3, with the largest mobile 
integer shown in bold: 

~~~ ~~~ --- --~ --- ---123 132 312 321 231 213. 

This algorithm is one of the most efficient for generating permutations; it can 
be implemented to run in time proportional to the number of permutations, i.e., 
in E>(n!). Of course, it is horribly slow for all but very small values of n; however, 
this is not the algorithm's fault but rather the "fault" of the problem: it simply asks 
to generate too many items. 

One can argue that the permutation ordering generated by the Johnson­
Trotter algorithm is not quite natural; e.g., the natural place for permutation n 
n - 1 ... 1 seems to be the last one on the list. This would be the case if permuta­
tions were listed in increasing order-also called the lexicographic order-which 
is the order in which they would be listed in a dictionary if the numbers were 
interpreted as letters of an alphabet: 

123 132 213 231 312 321. 
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So how can we generate the permutation following a1a2 ... a11 _ 1a11 in lexico­
graphic order? If a11 _ 1 < a11' we can simply transpose these last two elements. For 
example, 123 is followed by 132. If a,_1 >a,, we have to engage a,_2 . If a,_2 < 
a,_1, we should rearrange the last three elements by increasing the (n- 2)th ele­
ment as little as possible by putting there the next larger than a,_2 element chosen 
from a,_1 and a, and filling positions n - 1 and n with the remaining two of the 
three elements a11 _ 2 , a11 _ 1, and a11 in increasing order. For example, 132 is followed 
by 213 while 231 is followed by 312. In general, we sean a current permutation from 
right to left looking for the first pair of consecutive elements a; and a;+ 1 such that 
ai < ai+l (and, hence, ai+l > ... > a11 ). Then we find the smallest element in the 
tail that is larger than a;, i.e., min{ajl aj >a;, j > i}, and put it in position i; the 
positions from i + 1 through n are filled with the elements a;, a;+l• ... , a,, from 
which the element put in the ith position has been eliminated, in increasing order. 
For example, 163542 would be followed by 164235. We leave writing a complete 
pseudocode of this algorithm for the exercises. 

Generating Subsets 

Recall that in Section 3.4 we examined the knapsack problem that asks to find 
the most valuable subset of items that fits a knapsack of a given capacity. The 
exhaustive-search approach to solving this problem discussed there was based on 
generating all subsets of a given set of items. In this section, we discuss algorithms 
for generating all2" subsets of an abstract set A= {a1, ... , a,). (Mathematicians 
call the set of all subsets of a set its power set.) 

The decrease-by-one idea is immediately applicable to this problem, too. All 
subsets of A= {a1, ... , a,) can be divided into two groups: those that do not 
contain a, and those that do. The former group is nothing but all the subsets of 
{a1, ... , a,_1}, while each and every element of the latter can be obtained by 
adding a, to a subset of {a1, ... , a,_1). Thus, once we have a list of all subsets of 
{a1, •.. , a,_Jl, we can get all the subsets of {a1, ... , a,) by adding to the list all 
its elements with a, put into each of them. An application of this algorithm to 
generate all subsets of {a1, a2 , a3 ) is illustrated in Figure 5.13. 

n subsets 

0 0 

1 0 {aJ) 

2 0 {aJ) {a,) {a 1, a2} 

3 0 {all {a,) {a 1, a2} {a,) {a1, a3} {a2> a3} {a1, a2, a3} 

FIGURE 5.13 Generating subsets bottom up 

f 
! 
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Similarly to generating permutations. we do not have to generate power sets of 
smaller sets. A convenient way of solving the problem directly is based on a one-to­
one correspondence between all211 subsets of ann element set A= {a1, ... , a11 } 

and all 2" bit strings b1, ... , b, of length n. The easiest way to establish such a 
correspondence is to assign to a subset the bit string in which b, = l if a, belongs 
to the subset and b, = 0 if a, does not belong to it. (We mentioned this idea of 
bit vectors in Section 1.4.) For example, the bit string 000 will correspond to the 
empty subset of a three-element set, 111 will correspond to the set itself, i.e., 
{a1, a2 , a3), while 110 will represent {at, a2). With this correspondence in place, 
we can generate all the bit strings of length n by generating successive binary 
numbers from 0 to 2" - 1, padded, when necessary, with an appropriate number 
of leading O's. For example, for the case of n = 3, we obtain 

bit strings 000 001 010 011 100 101 
subsets 0 { a3] {a2J {a2, a3) {atl {at, a3) 

Note that while the bit strings are generated by this algorithm in the lexico­
graphic order (in the two-symbol alphabet of 0 and 1 ), the order of the subsets 
looks anything but natural. For example, we might want the so-called squashed 
order, in which any subset involving a j can be listed only after all the subsets 
involving a1, ... , aj-l• as was the case for the list of the three-element set in Fig­
ure 5.13. It is easy to adjust the bit string-based algorithm to yield a squashed 
ordering of the subsets involved (Problem 6). 

A more challenging question is whether there exists a minimal-change algo­
rithm for generating bit strings so that every one of them differs from its innnediate 
predecessor by only a single bit. (In the language of subsets, we want every subset 
to differ from its immediate predecessor by either an addition or a deletion, but 
not both, of a single element). The answer to this question is yes (Problem 9); for 
example, for n = 3, we can get 

000 001 011 010 110 111 101 100. 

Such a sequence of bit strings is called the binary reflected Gray code. Gray codes 
have many interesting properties and a few useful applications; you can read about 
them in such books as [Bru04]. 

-----Exercises !5.4 ----------------

1. Is it realistic to implement an algorithm that requires generating all permu­
tations of a 25-element set on your computer? What about all the subsets of 
such a set? 

2. Generate all permutations of {1, 2, 3, 4] by 
a. the bottom-up minimal-change algorithm. 
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b. the Johnson-Trotter algorithm. 

c. the lexicographic-order algorithm. 

3. Write a computer program for generating permutations in lexicographic 
order. 

4. Consider the following implementation of the algorithm for generating per­
mutations discovered by B. Heap [Hea63]. 

ALGORITHM HeapPermute(n) 

//Implements Heap's algorithm for generating permutations 
//Input: A positive integer n and a global array A[l..n] 
//Output: All permutations of elements of A 

ifn=1 

else 
write A 

for i <-- 1 to n do 
HeapPermute(n - 1) 

if n is odd 
swap A[1] and A[n] 

else swap A[i] and A[n] 

a. Trace the algorithm by hand for n = 2, 3, and 4. 

b. Prove correctness of Heap's algorithm. 

c. What is the time efficiency of Heap Permute? 

5. Generate all the subsets of a four-element set A = (a~o a2, a3, a4) by each of 
the two algorithms outlined in this section. 

6. What simple trick would make the bit string-based algorithm generate subsets 
in squashed order? 

7. Write a pseudocode for a recursive algorithm for generating all2n bit strings 
oflength n. 

8. Write a nonrecursive algorithm for generating 2n bit strings of length n that 
implements bit strings as arrays and does not use binary additions. 

9. a. Use the decrease-by-one technique to generate a Gray code for n = 4. 

b. Design a general decrease-by-one algorithm for generating a Gray code of 
order n. 

10. Design a decrease-and-conquer algorithm for generating all combinations of 
k items chosen from n, i.e., all k-element subsets of a given n-element set. Is 
your algorithm a minimal-change algorithm? 
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11. Gray code and the Tower of Hanoi 

a. Show that the disk moves made in the classic recursive algorithm for the 
Tower of Hanoi puzzle can be used for generating the binary reflected Gray 
code. 

b. Show how the binary reflected Gray code can be used for solving the Tower 
of Hanoi puzzle. 

5.5 Decrease-by-a-Constant-Factor Algorithms 

You may recall from the introduction to this chapter that decrease-by-a-constant­
factor is the second major variety of decrease-and-conquer. You have already 
encountered examples of this design technique in this book: binary search (Section 
4.3) and exponentiation by squaring (introduction to Section 5.1 ). In this section, 
you will find a few other examples of algorithms based on the decrease-by-a­
constant-factor idea. We should not expect a wealth of examples of this kind, 
however, because these algorithms are usually logarithmic and, being very fast, 
do not happen often; a reduction by a factor other than two is especially rare. 

Fake-Coin Problem 

Of several versions of the fake-coin identification problem, we consider the one 
that best illustrates the decrease-by-a-constant-factor strategy. Among n identi­
cally looking coins, one is fake. With a balance scale, we can compare any two sets 
of coins. That is, by tipping to the left, to the right, or staying even, the balance 
scale will tell whether the sets weigh the same or which of the sets is heavier than 
the other but not by how much. The problem is to design an efficient algorithm 
for detecting the fake coin. An easier version of the problem~the one we discuss 
here~assumes that it is known whether the fake coin is lighter or heavier than 
the genuine one2 (We assume that the fake coin is lighter.) 

The most natural idea for solving this problem is to divide n coins into two 
piles of Ln/2J coins each, leaving one extra coin apart if n is odd, and put the two 
piles on the scale. If the piles weigh the same, the coin put aside must be fake; 
otherwise, we can proceed in the same manner with the lighter pile, which must 
be the one with the fake coin. Note that even though we divide the coins into 
two subsets, after one weighing we are left to solve a single problem of half the 

2. A much more challenging version assumes no additional information about the relative weights of the 
fake and genuine coins or even the presence of the fake coin among n given coins. We pursue this more 
difficult version in the exercises to Section 11.2. 
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original size. Therefore, according to our classification of the design techniques, it 
is a decrease (by half)-and-conquer rather than a divide-and-conquer algorithm. 

We can easily set up a recurrence relation for the number of weighings W (n) 
needed by this algorithm in the worst case: 

W(n) = W(ln/2J) + 1 for n > 1, W(1) = 0. 

This recurrence should look familiar to you. Indeed, it is almost identical to the one 
for the worst-case number of comparisons in binary search. (The difference is in 
the initial condition.) This similarity is not really surprising, since both algorithms 
are based on the same technique of halving an instance size. The solution to the 
recurrence for the number of weighings is also very similar to the one we had for 
binary search: W(n) = llog2 nj. 

This stuff should look elementary by now, if not outright boring. But wait: 
the interesting point here is the fact that this algorithm is not the most efficient 
solution. We would be better off dividing the coins not into two but into three 
piles of about n/3 coins each. (Details of a precise formulation are developed in 
the exercises. Do not miss it! If your instructor forgets, demand the instructor to 
assign Problem 3.) After weighing two of the piles, we can reduce the instance size 
by a factor of three. Accordingly, we should expect the number of weighings to be 
about log3 n, which is smaller than log2 n. (Can you tell by what factor?) 

Multiplication a Ia Russe 

Now we consider a nonorthodox algorithm for multiplying two positive integers 
called multiplication a Ia russe, or the Russian peasant method. Let n and m 
be positive integers whose product we want to compute, and let us measure the 
instance size by the value of n. Now, if n is even, an instance of half the size has 
to deal with n/2, and we have an obvious formula relating the solution to the 
problem's larger instance to the solution to the smaller one: 

n 
n ·m =-·2m. 

2 

If n is odd, we need only a slight adjustment of this formula: 

n-1 
n·m=--·2m+m. 

2 

Using these formulas and the trivial case of 1· m = m to stop, we can compute 
product n · m either recursively or iteratively. An example of computing 50 · 65 
with this algorithm is given in Figure 5.14. Note that all the extra addends shown 
in parentheses in Figure 5.14a are in the rows that have odd values in the first 
column. Therefore we can find the product by simply adding all the elements in 
them column that have an odd number in then column (Figure 5.14b). 

Also note that the algorithm involves just the simple operations of halving, 
doubling, and adding-a feature that might be attractive, for example, to those 
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I! m 11 m 

50 65 50 65 
25 130 25 130 130 
12 260 ( +130) 12 260 

6 520 6 520 

3 1, 040 3 1,040 1, 040 
1 2,080 ( +1040) 1 2,080 2, 080 

2,080 +(130 + 1040) = 3, 250 3, 250 
----------

(a) (b) 

FIGURE 5.14 Computing 50. 65 by multiplication a Ia russe 

who do not want to memorize the table of multiplications. It is this feature of 
the algorithm that most prohably made it attractive to Russian peasants who, 
according to Western visitors, used it widely in the nineteenth century, and for 
whom the method is named. (In fact, the algorithm's idea was used by Egyptian 
mathematicians as early as 1650 B.C. [Cha98], p. 16.) It also leads to very fast 
hardware implementation since doubling and halving of binary numbers can be 
performed using shifts, which are among tbe most basic operations at the machine 
level. 

Josephus Problem 

Our last example is the Josephus problem, named for Flavius Josephus, a famous 
Jewish historian who participated in and chronicled the Jewish revolt of 66-70 
c.E. against the Romans. Josephus, as a general, managed to hold the fortress of 
Jotapata for 47 days, but after the fall of the city he took refuge with 40 diehards in 
a nearby cave. There, the rebels voted to perish rather than surrender. Josephus 
proposed that each man in turn should dispatch his neighbor, the order to be 
determined by casting lots. Josephus contrived to draw the last lot, and, as one 
of the two surviving men in the cave, he prevailed upon his intended victim to 
surrender to the Romans. 

So let n people numbered 1 to n stand in a circle. Starting the grim count 
with person number 1., we eliminate every second person until only one survivor 
is left. The problem is to determine the survivor's number J(n). For example 
(Figure 5 .15), ifn is 6, people in positions2, 4, and 6 will be eliminated on the first 
pass through the circle, and people in initial positions 3 and 1 will be eliminated 
on the second pass, leaving a sole survivor in initial position 5-thus, I (6) = 5. To 
give another example, if n is 7, people in positions 2, 4, 6, and 1 will be eliminated 
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1, 1, 
6, 2, 7 2, 

5 3, 6, 3, 

4, 5, 4, 

(a) (b) 

FIGURE 5.15 Instances of the Josephus problem for (a) n = 6 and (b) n = 7. Subscript 
numbers indicate the pass on which the person in that position is 
eliminated. The solutions are J(6) = 5 and 1(7) = 7, respectively. 

on the first pass (it is more convenient to include 1 in the first pass) and people in 
positions 5 and, for convenience, 3 on the second-thus, J (7) = 7. 

It is convenient to consider the cases of even and odd n's separately. If n is 
even, i.e., n = 2k, the first pass through the circle yields an instance of exactly the 
same problem but half its initial size. The only difference is in position numbering; 
for example, a person in initial position 3 will be in position 2 for the second pass, 
a person in initial position 5 will be in position 3, and so on (check Figure 5.15a). It 
is easy to see that to get the initial position of a person, we simply need to multiply 
his new position by two and subtract one. This relationship will hold, in particular, 
for the survivor, i.e., 

J(2k) = 2J(k) -1. 

Let us now consider the case of an odd n (n > 1 ), i.e., n = 2k + 1. The first pass 
eliminates people in all even positions. If we add to this the elimination of the 
person in position 1 right after that, we are left with an instance of size k. Here, to 
get the initial position that corresponds to the new position numbering, we have 
to multiply the new position number by two and add one (check Figure 5.15b). 
Thus, for odd values of n, we get 

J(2k + l) = 2J(k) + 1. 

Can we get a closed-form solution to the two-case recurrence (subject to the 
initial condition J(l) = 1)? The answer is yes, though getting it requires more 
ingenuity than just applying backward substitutions. In fact, one way to find a 
solution is to apply forward substitutions to get, say, the first 15 values of J(n), 
discern a pattern, and then prove its general validity by mathematical induction. 
We leave the execution of this plan to the exercises; alternatively, you can look it 
up in [Gra94], whose exposition of the Josephus problem we have been following. 
Interestingly, the most elegant form of the closed-form answer involves the binary 
representation of size n: J (n) can be obtained by a one-bit cyclic shift left of n itself! 
For example, 1(6) = 1(1102) = 1012 = 5 and J(7) = .1(1112) =1112 = 7. 
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-----Exercises 5.5----------------

1. Design a decrease-by-half algorithm for computing L log2 n J and determine its 
time efficiency. 

2. Consider ternary search-the following algorithm for searching in a sorted 
array A[O .. n- 1]. If n = 1, simply compare the search key K with the single 
element of the array; otherwise, search recursively by comparing K with 
A[Lnf3J], and if K is larger, compare it with A[L2nj3J] to determine in which 
third of the array to continue the search. 

a. What design technique is this algorithm based on? 

b. Set up a recurrence for the number of key comparisons in the worst case. 
(You may assume that n = 3' .) 

c. Solve the recurrence for n = 3k. 

d. Compare this algorithm's efficiency with that of binary search. 

3. a. Write a pseudocode for the divide-into-three algorithm for the fake-coin 
problem. (Make sure that your algorithm handles properly all values of n, 
not only those that are multiples of 3.) 

b. Set up a recurrence relation for the number ofweighings in the divide-into· 
three algorithm for the fake-coin problem and solve it for n = 3k 

c. For large values of n, about how many times faster is this algorithm than 
the one based on dividing coins into two piles? (Your answer should not 
depend on n.) 

4. Apply multiplication a Ia russe to compute 26 · 47. 

5. a. From the standpoint of time efficiency, does it matter whether we multiply 
n by m or m by n by the multiplication a Ia russe algorithm? 

b. What is the efficiency class of multiplication a Ia russe? 

6. Write a pseudocode for the multiplication a Ia russe algorithm. 

7. Find 1(40)-the solution to the Josephus problem for n = 40. 

8. Prove that the solution to the Josephus problem is 1 for every n that is a power 
of2. 

9. For the Josephus problem, 

a. compute J(n) for n = 1, 2, ... , 15. 

b. discern a pattern in the solutions for the first fifteen values of n and prove 
its general validity. 

c. prove the validity of getting J (n) by a one-bit cyclic shift left of the binary 
representation of n. 
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Variable-Size-Decrease Algorithms 

As mentioned in the introduction to this chapter, in the third principal variety 
of decrease-and-conquer, the size reduction pattern varies from one iteration of 
the algorithm to another, Euclid's algorithm for computing the greatest common 
divisor (Section L1) provides a good example of this kind of algorithm. In this 
section, we encounter a few more examples of this variety. 

Computing a Median and the Selection Problem 

The selection problem is the problem of finding the kth smallest element in a list 
of n numbers. This number is called the kth order statistic. Of course, for k = 1 
or k = n, we can simply scan the list in question to find the smallest or largest 
element, respectively. A more interesting case of this problem is for k = r n/21, 
which asks to find an element that is greater than one half of the list's elements 
and smaller than the other half. This middle value is called the median, and it is 
one of the most important quantities in mathematical statistics. Obviously, we can 
find the kth smallest element in a list by sorting the list first and then selecting the 
kth element in the output of a sorting algorithm. The time of such an algorithm 
is determined by the efficiency of the sorting algorithm used. Thus, with a good 
sorting algorithm such as mergesort, the algorithm's efficiency is in 0 (n log n). 

You should immediately suspect, however, that sorting the entire list is most 
likely overkill since the problem asks not to order the entire list but just to find 
its kth smallest element. Fortunately, we do have a very efficient (on average) 
algorithm for doing a similar task of partitioning an array's elements into two 
subsets: the one containing the elements that are less than or equal to some value 
p pivoting the partition and the other containing the elements that are greater 
than or equal to p: 

ait ... ais-1 p ais+l ... ai,. 
'----v---' ~ 

"S.p ?:.P 

Such partitioning was the principal part of quicksort, discussed in Chapter 4. 
How can we take advantage of a list's partition? Lets be the partition's split 

position. If s = k, the pivot p obviously solves the selection problem. (Had we 
indexed the list starting at 0, it would have been s = k - 1, of course.) If s > k, the 
kth smallest element in the entire list can be found as the kth smallest element in 
the left part of the partitioned array. And if s < k, we can proceed by searching 
for the (k - s )th smallest element in its right part. Thus, if we do not solve the 
problem outright, we reduce its instance to a smaller one, which can be solved by 
the same approach, i.e., recursively. In fact, the same idea can be implemented 
without recursion as well. For the nonrecursive version, we need not even adjust 
the value of k but just continue until s = k. 
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EXAMPLE Find the median of the following list of nine numbers: 4, 1, 10, 9, 7, 
12, 8, 2, 15. Here, k = [9/21 = 5 and our task is to find the fifth smallest element 
in the array. As earlier, we assume for the sake of convenience that the elements 
of the list are indexed from 1 to 9. 

We use the same version of array partitioning that we used in our discussion 
of quicksort in Chapter 4, which selects the first element as a pivot and rearranges 
elements by two oppositely directed scans of the array: 

4 1 10 9 7 12 8 2 15 
2 1 4 9 7 12 8 10 15 

Since s = 3 < k = 5, we proceed with the right part of the list: 

9 7 12 
8 7 9 

8 10 15 
12 10 15 

Since s = 6 > k = 5, we continue with the left part of the previous sublist: 

8 7 
7 8 

Now s = k = 5, and hence we can stop: the found median is 8, which is greater 
than 2, 1, 4, and 7 but smaller than 9, 12, 10, and 15. Ill 

How efficient is this algorithm? We should expect it to be more efficient than 
quicksort in the average case because it has to deal with just a single subarray 
after a partition while quicksort has to work on two of them. Had the splits always 
happened in the middle of a remaining array, the recurrence for the number of 
comparisons would have been 

C(n) = C(n/2) + (n + 1), 

whose solution, according to the Master Theorem (see Chapter 4), is in EJ(n). 
Although the array's size is actually reduced in an unpredictable fashion from one 
iteration of the algorithm to another (with some size reductions less than half and 
some larger), a careful mathematical analysis shows the average-case efficiency to 
be the same as it would be had the size always been reduced by one half. In other 
words, the algorithm turns out to be linear in the average case. In the worst case, 
we have the same embarrassing deterioration of efficiency into 8(n2). Though 
computer scientists have discovered an algorithm that works in linear time even 
in the worst case [Blo73], it is too complicated to be recommended for practical 
applications. 

Note also that the partitioning-based algorithm solves a somewhat more gen­
eral problem of identifying the k smallest and n - k largest clements of a given 
list, not just the value of its kth smallest element. 
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Interpolation Search 

As the next example of a variable-size-decrease algorithm, we consider an algo­
rithm for searching in a sorted array called interpolation search. Unlike binary 
search, which always compares a search key with the middle value of a given sorted 
array (and hence reduces the problem's instance size by half), interpolation search 
takes into account the value of the search key in order to find the array's element 
to be compared with the search key. In a sense, the algorithm mimics the way we 
search for a name in a telephone book: if we are searching for someone named 
Brown, we open the book not in the middle but very close to the beginning, unlike 
our action when searching for someone named, say, Smith. 

More precisely, on the iteration dealing with the array's portion between the 
leftmost element A[l] and the rightmost element A[r ], the algorithm assumes 
that the array's values increase linearly, i.e., along the straight line through the 
points (1, A[l]) and (r, A[r]). (The accuracy of this assumption can influence the 
algorithm's efficiency but not its correctness.) Accordingly, the search key's value 
v is compared with the element whose index is computed as (the roundoff of) 
the x coordinate of the point on the straight line through the points (1, A[l]) and 
(r, A[r]) whose y coordinate is equal to the search value v (Figure 5.16). 

Writing a standard equation for the straight line passing though the points 
(I, A[l]) and (r, A[r ]), substituting v for y, and solving it for x leads to the following 
formula: 

x =I+ l (v- A[l])(r -I) J. 
A[r ]- A[l] 

(5.4) 

value 

A lr I ------------------------------ ·-- -------

v~--------~----~ 

Alii ------------

L ______ _;_ ________ _L ____ _:_ ________ ..,. index 
x r 

FIGURE 5.16 Index computation in interpolation search 
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The logic behind this approach is quite straightforward. We know that the 
array values are increasing (more accurately, not decreasing) from A[l] to A[r ], but 
we do not know how they do it. Had the array's values increased linearly, which is 
the simplest manner possible, the index computed by formula (5.4) would be the 
expected location of the array's element with the value equal to v, Of course, if v 
is not between A[l] and A[r ], formula (5.4) need not be applied (why?). 

After comparing v with A[x ], the algorithm either stops (if they are equal) 
or proceeds by searching in the same manner among the elements indexed either 
between! andx- 1 orbetweenx + 1 andr, depending on whether A[x] is smaller 
or larger than v. Thus, the size of the problem's instance is reduced, but we cannot 
tell a priori by how much. 

The analysis of the algorithm's efficiency shows that interpolation search uses 
fewer than log2 log2 n + 1 key comparisons on the average when searching in a list 
of n random keys. This function grows so slowly that the number of comparisons 
will be a very small constant for all practically feasible inputs (see Problem 6). But 
in the worst case, interpolation search is only linear, which must be considered as a 
bad performance (why?). As a final assessment of the worthiness of interpolation 
search versus that of binary search, we can point to an opinion by R. Sedgewick 
[Sed88] that binary search is probably better for smaller ftles but interpolation 
search is worth considering for large files and for applications where comparisons 
are particularly expensive or access costs are very high. Note that in Section 12.4, 
we discuss a continuous counterpart of interpolation search, which can be seen as 
one more example of a variable-size-decrease algorithm. 

Searching and Insertion in a Binary Search Tree 

As the last example of this section, let us revisit the binary search tree. Recall 
that this is a binary tree whose nodes contain elements of a set of orderable items, 
one element per node, so that for every node all elements in the left subtree are 
smaller and all the elements in the right subtree are greater than the element 
in the subtree's root. When we need to search for an element of a given value 
(say, v) in such a tree, we do it recursively in the following manner. If the tree is 
empty, the search ends in failure. If the tree is not empty, we compare v with the 
tree's root K(r). If they match, a desired element is found and the search can be 
stopped; if they do not match, we continue with the search in the left subtree of the 
rootifv < K(r) and in therightsubtreeifv > K(r). Thus, oneachiterationofthe 
algorithm, the problem of searching in a binary search tree is reduced to searching 
in a smaller binary search tree. The most sensible measure of size of a search tree 
is its height; obviously, the decrease in a tree's height normally changes from one 
iteration to another of the binary tree search-thus giving us an excellent example 
of a variable-size-decrease algorithm. 

In the worst case of the binary tree search, the tree is severely skewed. 
This happens, in particular, if a tree is constructed by successive insertions of an 
increasing or decreasing sequence of keys (Figure 5.17). 
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FIGURE 5.17 Binary search trees for (a) an increasing sequence of keys and (b) a 
decreasing sequence of keys 

Obviously, the search for a11 _ 1 in such a tree requires n comparisons, making 
the worst-case efficiency of the search operation fall into El(n). Fortunately, the 
average-case efficiency turns out to be in El(log n). More precisely, the number of 
key comparisons needed for a search in a binary search tree built from n random 
keys is about 2ln n "' 1.39log2 n. Since the operation of insertion of a new key into 
a binary search tree is almost identical to that of searching there, it also exemplifies 
the variable-size-decrease technique and has the same efficiency characteristics as 
the search operation. 

The Game of Nim 

There are several well-known games that share the following features. There 
are two players, who move in turn. No randomness or hidden information is 
permitted: all players know all information about gameplay. A game is impartial: 
each player has the same moves available from the same game position. Each of 
a finite number of available moves leads to a smaller instance of the same game. 
The game ends with a win by one of the players (there are no ties). The winner is 
the last player who is able to move. 

A prototypical example of such games is Nim. Generally, the game is played 
with several piles of chips, but we consider the one-pile version first. Thus, there is 
a single pile of n chips. Two players take turns by removing from the pile at least 
one and at most m chips; the number of chips taken may vary from one move t6" 
another, but both the lower and upper limits stay the same. Who wins the game 
by taking the last chip, the player moving first or second, if both players make the 
best moves possible? 

Let us call an instance of the game a winning position for the player to 
move next if that player has a winning strategy, that is, a sequence of moves that 
results in a victory no matter what moves the opponent makes. Let us call an 
instance of the game a losing position for the player to move next if every move 
available for that player leads to a winning position for the opponent. The standard 
approach to determining which positions are winning and which are losing is to 
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6 
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8 

9 

FIGURE 5.18 Figure 5.18 Illustration of one-pile Nim with the maximum number of 
chips that may be taken on each move m = 4. The numbers indicate n, the 
number of chips in the pile. The losing positions for the player to move 

are circled. Only winning moves from the winning positions are shown (in 
bold). 

investigate small values of n first. It is logical to consider the instance of n = 0 as 
a losing one for the player to move next because this player is the first one who 
cannot make a move. Any instance with 1 .:=: n ::; m chips is obviously a winning 
position for the player to move next (why?). The instance with n = m + 1 chips 
is a losing one because taking any allowed number of chips puts the opponent in 
a winning position. (See an illustration form= 4 in Figure 5.18.) Any instance 
with m + 2 :0: n :0: 2m + 1 chips is a winning position for the player to move next 
because there is a move that leaves the opponent with m + 1 chips, which is a losing 
position; 2m + 2 = 2(m + 1) chips is the next losing position, and so on. It is not 
difficult to see the pattern that can be formally proved by mathematical induction: 
an instance with n chips is a winning position for the player to move next if and only 
if n is not a multiple of m + 1. The winning strategy is to taken mod (m + 1) chips 
on every move; any deviation from this strategy puts the opponent in a winning 
position. 

One-pile Nim has been known for a very long time. It appeared, in particular, 
as the summation game in the first published book on recreational mathematics, 
authored by Claude-Gaspar Bachet, a French aristocrat and mathematician, in 
1612: a player picks a positive integer less than, say, ten, and then his opponent 
and he take turns adding any integer less than ten; the first player to reach 100 
exactly is the winner [Dud70]. · 

In general, Nim is played with I > 1 piles of chips of sizes n1, n2 , ... , n1. On 
each move, a player can take any available number of chips, including all of them, 
from any single pile. The goal is the same-to be the last player able to make a 
move. Note that for I = 2, it is easy to figure out who wins this game and how. 
Here is a hint: the answer for the game's instances with n1 = n2 differs from the 
answer for those with n1 ,P n2 . 

A solution to the general case of Nim is quite unexpected because it is based 
on the binary representation of the pile sizes. Let b1, b2, ... , b1 be the pile sizes 
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in binary. Compute their binary digital sum, defined as the sum of binary digits 
discarding any carry. (In other words, a binary digits; in the sum is 0 if the number 
of 1 's in the i th position in the addends is even, and it is 1 if the number of 1 's is 
odd.) It turns out that an instance ofNim is a winning one (for the player to move 
next) if and only if its binary digital sum contains at least one 1; consequrntly, 
Nim's instance is a loosing instance if and only if its binary digit surn contains only 
zeros. For example, for the commonly played instance with n1 = 3, n2 = 4, n3 = 5, 
the binary digital sum is 

011 
100 
101 
010 

Since this sum contains a 1, the instance is a winning one for the payer moving 
first. To find a winning move from this position, the player needs to change one of 
the three bit strings so that the new binary digital sum contains only O's. It is not 
difficult to see that the only way to accomplish this is to remove two chips from 
the first pile. 

This ingenious solution to the game of Nim was discovered by Harvard math­
ematics professor C. L. Bouton more than 100 years ago. Since then, mathemati­
cians have developed a much more general theory of such games. An excellent 
account of this theory, with applications to many specific games, is given in the 
monograph by E. R. Berlekamp, J. H. Conway, and R. K. Guy [Ber03]. 

----~Exercises 5J5 ----------------

1. a. If we measure the size of an instance of the problem of computing the great­
est common divisor of m and n by the size of the second parameter n, by 
how much can the size decrease after one iteration of Euclid's algorithm? 

b. Prove that the size of an instance will always decrease at least by a factor 
of 2 after two successive iterations of Euclid's algorithm. 

2. a. Apply the partition-based algorithm to find the median of the list of num­
bers 9, 12, 5, 17, 20. 

b. Show that the worst -case efficiency of the partition-based algorithm for the 
selection problem is quadratic. 

3. a. Write a pseudocode for a nonrecursive implementation of the partition­
based algorithm for the selection problem. 

b. Write a pseudocode for a recursive implementation of this algorithm. 

4. Derive the formula underlying interpolation search. 

5. Give an example of the worst-case input for interpolation search and show 
that the algorithm is linear in the worst case. 

• r 
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Summary 

6. a. Find the smallest value o£ n for which log2 log2 n + 1 is greater than 6. 

b. Determine which, i£ any, of the following assertions are true: 
i. log log n E o(log n) ii. log log n E G(log n) 

iii. log log n E Q (log n) 

195 

7. a. Outline an algorithm for finding the largest key in a binary search tree. 
Would you classify your algorithm as a variable-size decrease algorithm? 

b. What is the time efficiency class of your algorithm in the worst case? 

8. a. Outline an algorithm for deleting a key from a binary search tree. Would 
you classify this algorithm as a variable-size decrease algorithm? 

b. What is the time efficiency class of your algorithm in the worst case? 

9. Misere one-pile Nim Consider the so-called misere version o£ the one-pile 
Nim, in which the player taking the last chip looses the game. All the other 
conditions of the game remain the same, i.e., the pile contains n chips and on 
each move a player takes at least one but no more than m chips. Identify the 
winning and loosing positions (for the player to move next) in this game. 

10. a. Moldy chocolate Two players take turns by breaking an m-by-n chocolate 
bar, which has one spoiled 1-by-1 square. Each break must be a single 
straight line cutting all the way across the bar along the boundaries between 
the squares. After each break, the player who broke the bar last eats the 
piece that does not contain the spoiled square. TI1e player left with the 
spoiled square looses the game. Is it better to go first or second in this 
game? 

b. Write an interactive program to play this game with the computer. Your 
program should make a winning move in a winning position and a random 
legitimate move in a losing position. 

11. Flipping pancakes There are n pancakes all of different sizes that are stacked 
on top of each other. You are allowed to slip a flipper under one of the pan­
cakes and flip over the whole sack above the flipper. The purpose is to arrange 
pancakes according to their size with the biggest at the bottom. (You can see 
a visualization of this puzzles on the Interactive Mathematics Miscellany and 
Puzzles site [Bog].) Design an algorithm for solving this puzzle. 

SUMMARY 

Iiiii Decrease-and-conquer is a general algorithm design technique, based on 
exploiting a relationship between a solution to a given instance of a problem 
and a solution to a smaller instance of the same problem. Once such a 
relationship is established, it can be exploited either top down (recursively) 
or bottom up (without a recursion). 
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!till There are three major variations of decrease-and-conquer: 

decrease-by-a-constant, most often by one (e.g., insertion sort); 
decrease-by-a-constant-factor, most often by the factor of two (e.g., binary 
search); 
variable-size-decrease (e.g., Euclid's algorithm). 

" Insertion sort is a direct application of the decrease (by one )-and-conquer 
technique to the sorting problem. It is a (.<) (n 2) algorithm both in the worst 
and average cases, but it is about twice as fast on average than in the worst case. 
The algorithm's notable advantage is a good performance on almost-sorted 
arrays. 

" Depth-first search (DFS) and breadth-first search (BFS) are two principal 
graph traversal algorithms. By representing a graph in a form of a depth-first 
or breadth-first search forest, they help in the investigation of many important 
properties of the graph. Both algorithms have the same time efficiency: 
8(1VI2) for the adjacency matrix representation and EJ(IVI +lEI) for the 
adjacency list representation. 

" A digraph is a graph with directions on its edges. The topological sorting 
problem asks to list vertices of a digraph in an order such that for every edge 
of the digraph, the vertex it starts at is listed before the vertex it points to. 
This problem has a solution if and only if a digraph is a dag (directed acyclic 
graph), i.e., it has no directed cycles. 

" There are two algorithms for solving the topological sorting problem. The 
first one is based on depth-first search; the second is based on the direct 
implementation of the decrease-by-one technique. 

OJ Decrease-by-one technique is a natural approach to developing algorithms 
for generating elementary combinatorial objects. The most efficient type 
of such algorithms are minimal-change algorithms. However, the number 
of combinatorial objects grows so fast that even the best algorithms are of 
practical interest only for very small instances of such problems. 

ill Identifying a fake coin with a balance scale, multiplication a Ia russe, and the 
Josephus problem are examples of problems that can be solved by decrease­
by-a-constant-factor algorithms. Two other and more important examples are 
binary search and exponentiation by squaring. 

till For some algorithms based on the decrease-and-conquer technique, the size 
reduction varies from one iteration of the algorithm to another. Examples 
of such variable-size-decrease algorithms include Euclid's algorithm, the 
partition-based algorithm for the selection problem, interpolation search, 
and searching and insertion in a binary search tree. Nim exemplifies games 
that proceed through a series of diminishing instances of the same game. 

-..,. 
I 
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