

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Introduction to The Design &
Analysis of Algorithms ~ ~

IND EDITION "
~

Anany Levitin
Villanova University

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

https://hemanthrajhemu.github.io

Contents xiii

Greedy Technique 307

9.1 Prim's Algorithm 308
Exercises 9.1 313

9.2 Kruskal's Algorithm 315
Disjoint Subsets and Union-Find Algorithms 317

Exercises 9.2 321

9.3 Dijkstra's Algorithm 323

Exercises 9.3 327

9.4 Huffman Trees 328

Exercises 9.4 332

Summary 333

10 Iterative Improvement 335

10.1 The Simplex Method 336
Geometric Interpretation of Linear Programming 337
An Outline of the Simplex Method 341
Further Notes on the Simplex Method 347

Exercises 10.1 349

10.2 The Maximum-Flow Problem 351
Exercises 10.2 361

10.3 Maximum Matching in Bipartite Graphs 363
Exercises 10.3 369

10.4 The Stable Marriage Problem 371

Exercises 10.4 375

Summary 376

11 Limitations of Algorithm Power 379

11.1 Lower-Bound Arguments 380
Trivial Lower Bounds 381
Information-Theoretic Arguments 382

https://hemanthrajhemu.github.io

Greedy Technique

Greed, for lack of a better word, is good! Greed is right! Greed works!

-Michael Douglas, U.S. actor in the role of Gordon Gecko,

in the film Wall Street, 1987

Let us start with the change-making problem faced by millions of cashiers all
over the world (at least subconsciously): give change for a specific amount

n with the least number of coins of the denominations d 1 > d2 > ... > dm used
in that locale. For example, the widely used coin denominations in the United
States are d1 = 25 (quarter), d2 = 10 (dime), d3 = 5 (nickel), and d

4
= 1 (penny).

How would you give change with coins of these denominations of, say, 48 cents?
If you came up with the answer 1 quarter, 2 dimes, and 3 pennies, yon followed­
consciously or not-a logical strategy of making a sequence of best choices among
the currently available alternatives. Indeed, in the first step, you could have given
one coin of any of the four denominations. "Greedy" thinking leads to giving one
quarter because it reduces the remaining amount the most, namely, to 23 cents. In
the second step, you had the same coins at your disposal, but you could not give
a quarter because it would have violated the problem's constraints. So your best
selection in this step was one dime, reducing the remaining amount to 13 cents.
Giving one more dime left you with 3 cents to be given with three pennies.

Is this solution to the instance of the change-making problem optimal? Yes, it
is. In fact, it is possible to prove that the greedy algorithm yields an optimal solution
for every positive integer amount with these coin denominations. At the same
time, it is easy to give an example of "weird" coin denominations-e.g., d

1
= 7,

d2 = 5, d3 = 1-that may not yield an optimal solution for some amounts. (It is
the reason you were asked to develop a dynamic programming algorithm for this
problem in Exercises 8.4: that algorithm works for any set of coin denominations
by either returning an optimal solution or reporting that no solution exists.)

The approach applied in the opening paragraph to the change-making prob­
lem is called greedy. Computer scientists consider it a general design technique
despite the fact that it is applicable to optimization problems only. The greedy

307

https://hemanthrajhemu.github.io

308 Greedy Technique

approach suggests constructing a solution through a sequence of steps, each ex­
panding a partially constructed solution obtained so far, until a complete solution
to the problem is reached. On each step-and this is the central point of this
technique-the choice made must be

''""' feasible, i.e., it has to satisfy the problem's constraints
.,,,,.. locally optimal, i.e., it has to be the best local choice among all feasible choices

available on that step

, '"'"''"'"' irrevocable, i.e., once made, it cannot be changed on subsequent steps of the
algorithm

These requirements explain the technique's name: on each step, it suggests
a "greedy" grab of the best alternative available in the hope that a sequence
of locally optimal choices will yield a (globally) optimal solution to the entire
problem. We refrain from a philosophical discussion of whether greed is good
or bad. (If you have not seen the movie from which the chapter's epigraph is
taken, its hero did not end up well.) From our algorithmic perspective, the ques­
tion is whether a greedy strategy works or not. As we shall see, there are prob­
lems for which a sequence of locally optimal choices does yield an optimal solu­
tion for every instance of the problem in question. However, there are others
for which this is not the case; for such problems, a greedy algorithm can still
be of value if we are interested in or have to be satisfied with an approximate
solution.

In the first two sections of the chapter, we discuss two classic algorithms for the
minimum spanning tree problem: Prim's algorithm and Kruskal's algorithm. What
is remarkable about these algorithms is the fact that they solve the same problem
by applying the greedy approach in two different ways, and both of them always
yield an optimal solution. In Section 9.3, we introduce another classic algorithm­
Dijkstra's algorithm for the shortest-path problem in a weighted graph. Section 9.4
is devoted to Huffman trees and their principal application, Huffman codes-an
important data compression method that can be interpreted as an application of
the greedy technique. Finally, a few examples of approximation algorithms based
on the greedy approach are discussed in Section 12.3.

As a rule, greedy algorithms are both intuitively appealing and simple. Despite
their apparent simplicity, there is a rather sophisticated theory behind the tech­
nique, which is based on the abstract combinatorial structure called "matroid."
We are not going to discuss it here; an interested reader can check such sources
as [Cor01].

9.1 Prim's Algorithm

The following problem arises naturally in several practical situations: given n
points, connect them in the cheapest possible way so that there will be a path
between every pair of points. We can represent the points by vertices of a graph,

__,.
I

https://hemanthrajhemu.github.io

9.1 Prim's Algorithm 309

possible connections by the graph's edges, and the connection costs by the edge
weights. Then the question can be posed as the minimum spanning tree problem,
defined formally as follows.

DEFINITION A spanning tree of a connected graph is its connected acyclic
subgraph (i.e., a tree) that contains all the vertices of the graph. A minimum
spanning tree of a weighted connected graph is its spanning tree of the smallest
weight, where the weight of a tree is defined as the sum of the weights on all its
edges. The minimum spanning tree problem is the problem of finding a minimum
spanning tree for a given weighted connected graph.

Figure 9.1 presents a simple example illustrating these notions.
If we were to try an exhaustive-search approach to constructing a minimum

spanning tree, we would face two serious obstacles. First, the number of spanning
trees grows exponentially with the graph size (at least for dense graphs). Second,
generating all spanning trees for a given graph is not easy; in fact, it is more difficult
than finding a minimum spanning tree for a weighted graph by using one of several
efficient algorithms available for this problem. In this section, we outline Prim's
algorithm, which goes back to at least 1957 [Pri57].

Prim's algorithm constructs a minimum spanning tree through a sequence
of expanding subtrees. The initial subtree in such a sequence consists of a single
vertex selected arbitrarily from the set V of the graph's vertices. On each iteration,
we expand the current tree in the greedy manner by simply attaching to it the
nearest vertex not in that tree. (By the nearest vertex, we mean a vertex not in
the tree connected to a vertex in the tree by an edge of the smallest weight.~
can be broken arbitrarily.) The algorithm stops after all the graph's vertices have
been included in the tree being constructed. Since the algorithm expands a tree
by exactly one vertex on each of its iterations, the total number of such iterations
is n - 1, where n is the number of vertices in the graph. The tree generated by the
algorithm is obtained as the set of edges used for the tree expansions.

~ r:
graph w(T2) ~ 9 w(T3) ~ 8

FIGURE 9.1 Graph and its spanning trees; T1 is the minimum spanning tree

https://hemanthrajhemu.github.io

310 Greedy Technique

Here is a pseudocode of this algorithm.

ALGORITHM Prim(G)

//Prim's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = (V, E)

//Output: Er, the set of edges composing a minimum spanning tree of G
Vr <- { v0] //the set of tree vertices can be initialized with any vertex

Er <- 0
for i <- 1 to IV I - 1 do

find a minimum-weight edge e* = (v*, u') among all the edges (v, u)

such that vis in Vr and u is in V - Vr
Vr <- Vr U {u*]

Er <- Er U {e*]

return Ey

The nature of Prim's algorithm makes it necessary to provide each vertex not
in the current tree with the information about the shortest edge connecting the
vertex to a tree vertex. We can provide such information by attaching two labels
to a vertex: the name of the nearest tree vertex and the length (the weight) of the
corresponding edge. Vertices that are not adjacent to any of the tree vertices can
be given the oo label indicating their "infinite" distance to the tree vertices and
a null label for the name of the nearest tree vertex. (Alternatively, we can split
the vertices that are not in the tree into two sets, the "fringe" and the "unseen."
The fringe contains only the vertices that are not in the tree but are adjacent to at
least one tree vertex. These are the candidates from which the next tree vertex
is selected. The unseen vertices are all the other vertices of the graph, called
"unseen" because they are yet to be affected by the algorithm.) With such labels,
finding the next vertex to be added to the current tree T = (VT, Er) becomes a
simple task of finding a vertex with the smallest distance label in the set V- Vy.
Ties can be broken arbitrarily.

After we have identified a vertex u* to be added to the tree, we need to perform
two operations:

Ill Move u* from the set V - Vr to the set of tree vertices Vr.

m For each remaining vertex u in V - v,. that is connected to u* by a shorter
edge than the u's current distance label, update its labels by u* and the weight
of the edge between u* and u, respectively1

Figure 9.2 demonstrates the application of Prim's algorithm to a specific graph.
Does Prim's algorithm always yield a minimum spanning tree? The answer

to this question is yes. Let us prove by induction that each of the subtrees T,,
i = 0, ... , n- 1, generated by Prim's algorithm is a part (i.e., a subgraph) of some

1. If the implementation with the fringe-unseen split is pursued, all the unseen vertices adjacent to u*
must also be moved to the fringe.

https://hemanthrajhemu.github.io

;c,,p;
'

Tree vertices

a(-, -)

b(a, 3)

c(b, 1)

f(b, 4)

e(f, 2)

d(f, 5)

3 4 4

Remaining vertices

b(a, 3) c(-, oo) d(-, oo)
e(a, 6) f(a, 5)

c(b, 1) d(-, oo) e(a, 6)
f(b, 4)

d(c, 6) e(a, 6) f(b, 4)

d(f, 5) e(f, 2)

d(f, 5)

6

Illustration

FIGURE 9.2 Application of Prim's algorithm. The parenthesized labels of a vertex in the
middle column indicate the nearest tree vertex and edge weight; selected
vertices and edges are shown in bold.

311

https://hemanthrajhemu.github.io

312 Greedy Technique

v' ---------- u'

v e, u

FIGURE 9.3 Correctness proof of Prim's algorithm

minimum spanning tree. (This immediately implies, of course, that the last tree in
the sequence, T11 _ 1, is a minimum spanning tree itself because it contains all n
vertices of the graph.) The basis of the induction is trivial, since T0 consists of a
single vertex and hence must be a part of any minimum spanning tree. For the
inductive step, let us assume that Ti~1 is part of some minimum spanning tree T.
We need to prove that T;, generated from T; _1 by Prim's algorithm, is also a part
of a minimum spanning tree. We prove this by contradiction by assuming that no
minimum spanning tree of the graph can contain T1• Let e1 = (v, u) be the minimum
weight edge from a vertex in T; _1 to a vertex not in T1_ 1 used by Prim's algorithm to
expand T1_ 1 to 1;. By our assumption, e1 cannot belong to the minimum spanning
tree T. Therefore, if we add e; to T, a cycle must be formed (Figure 9.3).

In addition to edge e1 = (v, u), this cycle must contain another edge (v', u')
connecting a vertex v' E T1_ 1 to a vertex u' that is not in T1_ 1. (It is possible that
v' coincides with v or u' coincides with u but not both.) If we now delete the edge
(v', u') from this cycle, we obtain another spanning tree of the entire graph whose
weight is less than or equal to the weight ofT since the weight of e1 is less than or
equal to the weight of (v', u'). Hence, this spanning tree is a minimum spanning
tree, which contradicts the assumption that no minimum spanning tree contains
T1• This completes the correctness proof of Prim's algorithm.

How efficient is Prim's algorithm? The answer depends on the data structures
chosen for the graph itself and for the priority queue of the set V - Vr whose
vertex priorities are the distances to the nearest tree vertices. (You may want
to take another look at the example in Figure 9.2 to see that the set V - Vr
indeed operates as a priority queue.) In particular, if a graph is represented by
its weight matrix and the priority queue is implemented as an unordered array,
the algorithm's running time will be in El(IV[2). Indeed, on each of the [V[-1
iterations, the array implementing the priority queue is traversed to find and delete
the minimum and then to update, if necessary, the priorities of the remaining
vertices.

We can also implement the priority queue as a min-heap. A min-heap is a
mirror image of the heap structure discussed in Section 6.4. (In fact, it can be im­
plemented by constructing a heap after negating all the key values given.) Namely,
a min-heap is a complete binary tree in which every element is less than or equal

https://hemanthrajhemu.github.io

~

I

9.1 Prim's Algorithm 313

to its children. All the principal properties of heaps remain valid for min-heaps,
with some obvious modifications. For example, the root of a min-heap contains the
smallest rather tban the largest element. Deletion of the smallest element from
and insertion of a new element into a min-heap of size n are O(log n) operations,
and so is the operation of changing an element's priority (see Problem 10).

If a graph is represented by its adjacency lists and the priority queue is imple­
mented as a min-heap, the running time of the algorithm is in 0(1 E I log 1 VI). 1bis
is because the algorithm performs lVI- 1 deletions of the smallest element and
makes lEI verifications and, possibly, changes of an element's priority in a min­
heap of size not greater than IV 1. Each of these operations, as noted earlier, is a
O(log lVI) operation. Hence, the running time of this implementation of Prim's
algorithm is in

(IVI-1 + IEIJO(log lVI) = O(!Eilog JVI)

because, in a connected graph, lVI -1 :S lEI.
In the next section, you will find another greedy algorithm for the minimum

spanning tree problem, which is "greedy" in a manner different from that of Prim's
algorithm.

-----Exercises 9.1 ----------~-----

1. Give an instance of the change-making problem for which the greedy algo­
rithm does not yield an optimal solution.

2. Write a pseudocode of the greedy algorithm for the change-making problem
with an amount nand coin denominations d1 > d2 > ... > dm as its input. What
is the time efficiency class of your algorithm?

3. Consider the problem of schedulingn jobs of known durations t1, t
2

, ... , t,. for
execution by a single processor. The jobs can be executed in any order, one job
at a time. You want to find a schedule that minimizes the total time spent by
all the jobs in the system. (The time spent by one job in the system is the sum
of the time spent by this job in waiting plus the time spent on its execution.)
Design a greedy algorithm for this problem. Does the greedy algorithm always
yield an optimal solution?

4. Design a greedy algorithm for the assignment problem (see Section 3.4). Does
your greedy algorithm always yield an optimal solution?

5. Bridge crossing revisited Consider the generalization of the bridge crossing
puzzle (Problem 2 in Exercises l.2) in which we have n > 1 people whose
bridge crossing times are t1, t2 , ... , t,. All the other conditions of the problem
remain the same: only two people at the time can cross the bridge (and they
move with the speed of the slower of the two) and they must carry with them
the only flashlight the group has.

Design a greedy algorithm for this problem and find how long it will
take to cross the bridge by using this algorithm. Does your algorithm yield a

https://hemanthrajhemu.github.io

314 Greedy Technique

minimum crossing time for every instance of the problem? If it does-prove it;
if it does not-find an instance with the smallest number of people for which
this happens.

6. Bachet-Fibonacci weighing problem Find an optimal set ofn weights (wl, w2,
... , wn) so that it would be possible to weigh on a balance scale any integer
load in the largest possible range from 1 to W, provided
a. weights can be put only on the free cup of the scale.

b. weights can be put on both cups of the scale.

7. a. Apply Prim's algorithm to the following graph. Include in the priority
queue all the vertices not already in the tree.

5

b. Apply Prim's algorithm to the following graph. Include in the priority
queue only the fringe vertices (the vertices not in the current tree which
are adjacent to at least one tree vertex).

5 6

6 9

8. The notion of a minimum spanning tree is applicable to a connected weighted
graph. Do we have to check a graph's connectivity before applying Prim's
algorithm or can the algorithm do it by itself?

9. a. How can we use Prim's algorithm to find a spanning tree of a connected
graph with no weights on its edges?

b. Is it a good algorithm for this problem?

10. Prove that any weighted connected graph with distinct weights has exactly
one minimum spanning tree.

11. Outline an efficient algorithm for changing an element's value in a min-heap.
What is the time efficiency of your algorithm?

https://hemanthrajhemu.github.io

9.2 Kruskal's Algorithm 315

9.2 Kruskal's Algorithm

In the previous section, we considered the greedy algorithm that "grows" a min­
imum spanning tree through a greedy inclusion of the nearest vertex to the vertices
already in the tree. Remarkably, there is another greedy algorithm for the min­
imum spanning tree problem that also always yields an optimal solution. It is
namedKruskal's algorithm [Kru56], after Joseph Kruskal, who discovered the al­
gorithm when he was a second-year graduate student. Kruskal's algorithm looks at
a ntinimum spanning tree for a weighted connected graph G = (V, E) as an acyclic
subgraph with IV I - 1 edges for wltich the sum of the edge weights is the smallest.
(It is not difficult to prove that such a subgraph must be a tree.) Consequently,
the algorithm constructs a minimum spanning tree as an expanding sequence of
subgraphs, which are always acyclic but are not necessarily connected on the in­
termediate stages of the algorithm.

The algorithm begins by sorting the graph's edges in nondecreasing order
of their weights. Then, starting with the empty subgraph, it scans this sorted list
adding the next edge on the list to the current sub graph if such an inclusion does
not create a cycle and simply skipping the edge otherwise.

ALGORITHM Kruskal(G)

//Kruskal's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = (V, E)

//Output: Er, the set of edges composing a minimum spanning tree of G
sort E in nondecreasing order of the edge weights w(e;) ::S ... ::S w(e,l£

1

)

Er +-- 0; ecounter +-- 0 //initialize the set of tree edges and its size
k +-- 0 //initialize the number of processed edges
while ecounter < lVI- 1 do

k <--k+l

if Er U [e;,} is acyclic

Er +--- ET U {ei); ecounter +--- ecounter + 1
returnEr

The correctness of Kruskal's algorithm can be proved by repeating the essen­
tial steps of the proof of Prim's algorithm given in the previous section. The fact
that Er is actually a tree in Prim's algorithm but generally just an acyclic subgraph
in Kruskal's algorithm turns out to be an obstacle that can be overcome.

Figure 9.4 demonstrates the application of Kruskal's algorithm to the same
graph we used for illustrating Prim's algorithm in Section 9.1. As you trace the
algorithm's operations, note the disconnectedness of some of the intermediate
graphs.

Applying Prim's and Kruskal's algorithms to the same small graph by hand
may create an impression that the latter is simpler than the former. This impression
is wrong because, on each of its iterations, Kruskal's algorithm has to check
whether the addition of the next edge to the edges already selected would create

https://hemanthrajhemu.github.io

316

Tree edges

be
1

ef
2

ab
3

bf
4

df
5

3

Sorted list of edges

be ef ab bf ef af df ae ed de
1 2 3 4 4 5 5 6 6 8

be ef ab bf cf af df ae cd de
1 2 3 4 4 5 5 6 6 8

be ef ab bf cf af df ae ed de
1234455668

be ef ab bf cf af df ae ed de
1234455668

be ef ab bf cf af df ae cd de
1234455668

6

Illustration

3 4 4 6

6

3 4 4 6

FIGURE 9.4 Application of Kruskal's algorithm. Selected edges are shown in bold.

1
I

https://hemanthrajhemu.github.io

9.2 Kruskal's Algorithm 317

v

(a) (b)

FIGURE 9.5 New edge connecting two vertices may (a) or may not (b) create a cycle

a cycle. It is not difficult to see that a new cycle is created if and only if the new
edge connects two vertices already connected by a path, i.e., if and only if the two
vertices belong to the same connected component (Figure 9.5). Note also that
each connected component of a subgraph generated by Kruskal's algorithm is a
tree because it has no cycles.

In view of these observations, it is convenient to use a slightly different
interpretation of Kruskal's algorithm. We can consider the algorithm's operations
as a progression through a series of forests containing all the vertices of a given
graph and some of its edges. The initial forest consists of IV 1 trivial trees, each
comprising a single vertex of the graph. The final forest consists of a single tree,
which is a minimum spanning tree of the graph. On each iteration, the algorithm
takes the next edge (u, v) from the sorted list of the graph's edges, finds the trees
containing the vertices u and v, and, if these trees are not the same, unites them
in a larger tree by adding the edge (u, v).

Fortunately, there are efficient algorithms £or doing so, including the crucial
check whether two vertices belong to the same tree. They are called union-find
algorithms. We discuss them in the following subsection. With an efficient union­
find algorithm, the running time of Kruskal's algorithm will be dominated by
the time needed for sorting the edge weights of a given graph. Hence, with an
efficient sorting algorithm, the time efficiency of Kruskal's algorithm will be in
O(IEilog lEI).

Disjoint Subsets and Union-Find Algorithms

Kruskal's algorithm is one of a number of applications that require a dynamic
partition of some n-element setS into a collection of disjoint subsets Sl> S2, ... , Sk.
After being initialized as a collection of n one-element subsets, each containing
a different element of S, the collection is subjected to a sequence of intermixed
union and find operations. (Note that the number of union operations in any such
sequence must be bounded above by n - 1 because each union increases a subset's
size at least by 1 and there are only n elements in the entire setS.) Thus, we are

https://hemanthrajhemu.github.io

318 Greedy Technique

dealing here with an abstract data type of a collection of disjoint subsets of a finite
set with the following operations:

makeset(x) creates a one-element set {x].It is assumed that this operation can
be applied to each of the elements of set S only once;
find(x) returns a subset containing x;
union(x, y) constructs the union of the disjoint subsets Sx and Sy containing
x andy, respectively, and adds it to the collection to replace Sx and Sy, which
are deleted from it.

For example, letS= {1, 2, 3, 4, 5, 6]. Then makeset(i) creates the set {i] and
applying this operation six times initializes the structure to the collection of six
singleton sets:

{1], {2], {3}, {4], {5], {6].

Performing union(l, 4) and union(5, 2) yields

{1, 4], {5, 2], {3], {6],

and, if followed by union(4, 5) and then by union(3, 6), we end up with the disjoint
subsets

{1, 4, 5, 2], {3, 6].

Most implementations of this abstract data type use one element from each of
the disjoint subsets in a collection as that subset's representative. Some implemen­
tations do not impose any specific constraints on such a representative; others do
so by requiring, say, the smallest element of each subset to be used as the subset's
representative. Also, it is usually assumed that set elements are (or can be mapped
into) integers.

There are two principal alternatives for implementing this data structure. The
first one, called the quick find, optimizes the time efficiency of the fmd operation;
the second one, called the quick union, optimizes the union operation.

The quick find uses an array indexed by the elements of the underlying set
S; the array's values indicate the representatives of the subsets containing those
elements. Each subset is implemented as a linked list whose header contains the
pointers to the first and last elements of the list along with the number of elements
in the list (see Figure 9.6 for an example).

Under this scheme, the implementation of makeset(x) requires assigning the
corresponding element in the representative array to x and initializing the corre­
sponding linked list to a single node with the x value. The time efficiency of this
operation is obviously in 8 (1), and hence the initialization of n singleton subsets is
in EJ(n). The efficiency ofjind(x) is also in 8(1): all we need to do is to retrieve the
x's representative in the representative array. Executing union(x, y) takes longer.
A straightforward solution would simply append the y's list to the end of the x's
list, update the information about their representative for all the elements in the

https://hemanthrajhemu.github.io

9.2 Kruskal's Algorithm 319

size last first

list 1 I 4
1 r 1·1 . I 1·1 ·I 4

1·1 ·I 5 1·1 ·I 2 I null[
t

list 21 0 I null! null[

list 31 2 I r 1·1 ·I 3
1·1 ·I 6 I null!

f
subset representatives

list 41 0 [null! null! element index representative

1 1

list sJ I null! null!
2 1

0 3 3
4 1

list 61 I null! null!
5 1

0
6 3

FIGURE 9.6 Linked-list representation of subsets (1. 4, 5, 2) and (3, 6) obtained by quick
find after performing union(1, 4), union(5, 2), union(4, 5), and union(3, 6).
The lists of size 0 are considered deleted from the collection.

y list, and then delete the y's list from the collection. It is easy to verify, however,
that with this algorithm the sequence o£ union operations

union(2, 1), union(3, 2), ... , union(i + 1, i), ... , union(n, n- 1)

runs in E>(n2
) time, which is slow compared with several known alternatives.

A simple way to improve the overall efficiency of a sequence of union op­
erations is to always append the shorter of the two lists to the longer one, with
ties broken arbitrarily. Of course, the size of each list is assumed to be available
by, say, storing the number of elements in the list's header. This modification is
called the union by size. Though it does not improve the worst-case efficiency of
a single application of the union operation (it is still in E>(n)), the worst-case run­
ning time of any legitimate sequence of union-by-size operations turns out to be
in O(n log n) 2

Here is a proof of this assertion. Let a; be an element of set S whose disjoint
subsets we manipulate and let Ai be the number of times ai's representative is

2. This is a specific example of the usefulness of the amortized efficiency we mentioned back in Chapter 2.
The time efficiency of any sequence of n union-by-size operations is more efficient than the worst-case
efficiency of its single application times n.

https://hemanthrajhemu.github.io

320 Greedy Technique

4 5
4

2

(a) (b)

FIGURE 9.7 (a) Forest representation of subsets [1, 4, 5, 2) and [3, 6) used by quick
union. (b) Result of union(S, 6).

updated iu a sequence of union-by-size operations. How large can A; get if setS
has n elements? Each time ai 's representative is updated, a1 must be in a smaller
subset involved in computing the union whose size will be at least twice as large as
the size of the subset containing a,. Hence, when a, 's representative is updated for
the first time, the resulting set will have atleast two elements; when it is updated for
the second time, the resulting set will have at least four elements; and, in general,
if it is updated A, times, the resulting set will have at least zA; elements. Since the
entire set S has n elements, 2A; .:::=: n and hence Ai ::: log2 n. Therefore, the total
number of possible updates of the representatives for all n elements in S will not
exceed n log2 n.

Thus, for union by size, the time efficiency of a sequence of at most n - 1
unions and m finds is in O(n log n + m).

The quick union~the second principal alternative for implementing disjoint
subsets~represents each subset by a rooted tree. The nodes of the tree contain
the subset's elements (one per node), with the root's element considered the
subset's representative; the tree's edges are directed from children to their parents
(Figure 9.7). (In addition, a mapping of the set elements to their tree nodes~
implemented, say, as an array of pointers~is maintained. This mapping is not
shown in Figure 9.7 for the sake of simplicity.)

For this implementation, makeset(x) requires the creation of a single-node
tree, which is a E>(l) operation; hence the initialization of n singleton subsets is in
E>(n). A union(x, y) is implemented by attaching the root of the y's tree to the root
of the x 's tree (and deleting the y's tree from the collection by making the pointer
to its root null). The time efficiency of this operation is clearly 8(1). Afind(x) is
performed by following the pointer chain from the node containing x to the tree's
root (whose element is returned as the subset's representative). Accordingly, the
time efficiency of a single find operation is in 0 (n) because a tree representing a
subset can degenerate into a linked list with n nodes.

This time bound can be improved. The straightforward way for doing so is to
always perform a union operation by attaching a smaller tree to the root of a larger

--,
'

https://hemanthrajhemu.github.io

9.2 Kruskal's Algorithm 321

FIGURE 9.8 Path compression

one, with ties broken arbitrarily. The size of a tree can be measured either by the
number of nodes (this version is called union by size) or by its height (this version
is called union by rank). Of course, these options require storing, for each node
of the tree, either the number of node descendants or the height of the subtree
rooted at that node, respectively. One can easily prove that in either case the
height of the tree will be logarithmic, making it possible to execute each find in
0 (log n) time. Thus, for quick union, the time efficiency of a sequence of at most
n- 1 unions and m finds is in O(n + m log n).

In fact, an even better efficiency can be obtained by combining either vari­
ety of quick union with path compression. This modification makes every node
encountered during the execution of a fmd operation point to the tree's root (Fig­
ure 9.8).

According to a quite sophisticated analysis that goes beyond the level of
this book (see (Tar84]), this and similar techniques improve the efficiency of a
sequence of at most n - 1 unions and m finds to only slightly worse than linear.

-----Exercises 9.2 ----------------

1. Apply Kruskal's algorithm to find a minimum spanning tree of the following
graphs.
a.

~ 6 2

https://hemanthrajhemu.github.io

322 Greedy Technique

b.

2. Indicate whether the following statements are true or false:
a. If e is a minimum-weight edge in a connected weighted graph, it must be

among edges of at least one minimum spanning tree of the graph.

· b. If e is a minimum-weight edge in a connected weighted graph, it must be
among edges of each minimum spanning tree of the graph.

c. If edge weights of a connected weighted graph are all distinct, the graph
must have exactly one minimum spanning tree.

d. If edge weights of a connected weighted graph are not all distinct, the graph
must have more than one minimum spanning tree.

/;

(_3yWhat changes, if any, need to be made in algorithm Kruskal to make it find
a minimum spanning forest for an arbitrary graph? (A minimum spanning
forest is a forest whose trees are minimum spanning trees of the graph's
connected components.)

4. Will either Kruskal's or Prim's algorithm work correctly on graphs that have
negative edge weights?

5. Design an algorithm for finding a maximum spanning tree-a spanning tree
with the largest possible edge weight-of a weighted connected graph.

6. Rewrite the pseudocode of Kruskal's algorithm in terms of the operations of
the disjoint subsets' ADT.

7. Prove the correctness of Kruskal's algorithm.

8. Prove that the time efficiency offind(x) is in O(logn) for the union-by-size
version of quick union.

9. Find at least two Web sites with animations ofKruskal's and Prim's algorithms.
Discuss their merits and demerits.

10. Design and conduct an experiment to empirically compare the efficiencies
-""' of Prim's and Kruskal's algorithms on random graphs of different sizes and

densities.

+

https://hemanthrajhemu.github.io

9.3

9.3 Dijkstra's Algorithm 323

11. Steiner tree Four villages are located at the vertices o£ a unit square in the
Euclidean plane. You are asked to connect them by the shortest network of
roads so that there is a path between every pair of the villages along those
roads. Find such a network.

Dijkstra's Algorithm

In this section, we consider the single-source shortest-paths problem: for a given
vertex called the source in a weighted connected graph, find shortest paths to all
its other vertices. It is important to stress that we are not interested here in a
single shortest path that starts at the source and visits all the other vertices. This
would have been a much more difficult problem (actually, a version of the traveling
salesman problem mentioned in Section 3.4 and discussed again later in the book).
The single-source shortest-paths problem asks for a family of paths, each leading
from the source to a different vertex in the graph, though some paths may, of
course, have edges in common.

A variety of practical applications of the shortest-paths problem have made
the problem a very popular object o£ study. There are several well-known algo­
rithms for solving it, including Floyd's algorithm for the more general all-pairs
shortest-paths problem discussed in Chapter 8. Here, we consider the best-known
algorithm for the single-source shortest-paths problem, called Dijkstra's algo­
rithm3 This algorithm is applicable to graphs with nonnegative weights only. Since
in most applications this condition is satisfied, the limitation has not impaired the
popularity of Dijkstra's algorithm.

Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of
their distance from a given source. First, it finds the shortest path from the source
to a vertex nearest to it, then to a second nearest, and so on. In general, before its
ith iteration commences, the algorithm has already identified the shortest paths
to i - 1 other vertices nearest to the source. These vertices, the source, and the
edges of the shortest paths leading to them from the source form a subtree T,
of the given graph (Figure 9.9). Since all the edge weights are nonnegative, the
next vertex nearest to the source can be found among the vertices adjacent to the
vertices of 1j. The set of vertices adjacent to the vertices in Ti can be referred to as
"fringe vertices"; they are the candidates from which Dijkstra's algorithm selects
the next vertex nearest to the source. (Actually, all the other vertices can be treated
as fringe vertices connected to tree vertices by edges of infinitely large weights.)
To identify the ith nearest vertex, the algorithm computes, for every fringe vertex

3. Edsger W. Dijkstra (1930-2002), a noted Dutch pioneer of the science and industry of computing,
discovered this algroithm in the mid-1950s. Dijkstra said of his algorithm: "This was the first graph
problem I ever posed myself and solved. The amazing thing was that I didn't publish it. It was not
amazing at the time. At the time, algorithms were hardly considered a scientific topic.''

https://hemanthrajhemu.github.io

324 Greedy Technique

FIGURE 9.9 Idea of Dijkstra's algorithm. The subtree of the shortest paths already found
is shown in bold. The next nearest to the source v0 vertex, u*, is selected
by comparing the lengths of the subtree's paths increased by the distances
to vertices adjacent to the subtree's vertices.

u, the sum of the distance to the nearest tree vertex v (given by the weight of the
edge (v, u)) and the length d., of the shortest path from the source to v (previously
determined by the algorithm) and then selects the vertex with the smallest such
sum. The fact that it suffices to compare the lengths of such special paths is the
central insight of Dijkstra's algorithm.

To facilitate the algorithm's operations, we label each vertex with two labels.
The numeric label d indicates the length of the shortest path from the source to
this vertex found by the algorithm so far; when a vertex is added to the tree, d
indicates the length of the shortest path from the source to that vertex. The other
label indicates the name of the next-to-last vertex on such a path, i.e., the parent of
the vertex in the tree being constructed. (It can be left unspecified for the source
s and vertices that are adjacent to none of the current tree vertices.) With such
labeling, finding the next nearest vertex u* becomes a simple task of finding a
fringe vertex with the smallest d value. Ties can be broken arbitrarily.

After we have identified a vertex u* to be added to the tree, we need to perform
two operations:

"' Move u* from the fringe to the set of tree vertices.
"' For each remaining fringe vertex u that is connected to u* by an edge of

weight w(u*, u) such that d.,.+ w(u*, u) <d.,, update the labels of u by u*
and du* + w(u*, u), respectively.

Figure 9.10 demonstrates the application of Dijkstra's algorithm to a specific
graph.

The labeling and mechanics of Dijkstra 's algorithm are quite similar to those
used by Prim's algorithm (see Section 9.1). Both of them construct an expanding
subtree of vertices by selecting the next vertex from the priority queue of the
remaining vertices. It is important not to mix them up, however. They solve

https://hemanthrajhemu.github.io

9.3 Dijkstra's Algorithm

Tree vertices Remaining vertices Illustration

a(-, 0) b(a, 3) c(-, oo) d(a, 7) e(-, oo)

b(a, 3) c(b, 3+4) d(b, 3+2) e(-, oo)

d(b, 5) c(b, 7) e(d, 5 + 4)

c(b, 7) e(d, 9)

e(d, 9)

The shortest paths (identified by following nonnumeric labels
backward from a destination vertex in the left column to the
source) and their lengths (given by numeric labels of the tree
vertices) are

fromatob: a-b of length 3
fromatod: a-b-d of length 5
from a to c: a-b-c of length 7
from a toe: a-b-d-e of length 9

325

FIGURE 9.10 Application of Dijkstra's algorithm. The next closest vertex is shown in
bold.

https://hemanthrajhemu.github.io

326 Greedy Technique

different problems and therefore operate with priorities computed in a different
manner: Dijkstra's algorithm compares path lengths and therefore must add edge
weights, while Prim's algorithm compares the edge weights as given.

Now we can give a pseudocode of Dijkstra's algorithm. It is spelled out­
in more detail than Prim's algorithm was in Section 9.1-in terms of explicit
operations on two sets oflabeled vertices: the set VT of vertices for which a shortest
path has already been found and the priority queue Q of the fringe vertices. (Note
that in the following pseudocode, Vr contains a given source vertex and the fringe
contains the vertices adjacent to it after iteration 0 is completed.)

ALGORITHM Dijkstra(G, s)

//Dijkstra's algorithm for single-source shortest paths
//Input: A weighted connected graph G = (V, E) with nonnegative weights
II and its vertex s
//Output: The length d" of a shortest path from s to v
II and its penultimate vertex p" for every vertex v in V
lnitialize(Q) //initialize vertex priority queue to empty
for every vertex v in V do

dv +- oo; Pv +-- null
Insert(Q, v, d") //initialize vertex priority in the priority queue

d, <-- 0; Decrease(Q, s, d,) //update priority of s with d,

Vr <-- 0
fori <-Oto IVI-1do

u* <-- DeleteMin(Q) //delete the minimum priority element
Vr <-- Vr U {u*)
for every vertex u in V - Vr that is adjacent to u* do

ifdu*+w(u*, u) <du
du +-- du* + w(u*, u); p11 +-- u*
Decrease(Q, u, d,)

The time efficiency of Dijkstra's algorithm depends on the data structures
used for implementing the priority queue and for representing an input graph it­
self. For the reasons explained in the analysis of Prim's algorithm in Section 9.1, it
is in 8(1 V 12) for graphs represented by their weight matrix and the priority queue
implemented as an unordered array. For graphs represented by their adjacency
lists and the priority queue implemented as a min-heap, it is in O(IEilog lVI). A
still better upper bound can be achieved for both Prim's and Dijkstra's algorithms
if the priority queue is implemented using a sophisticated data structure called
the Fibonacci heap (e.g., (Wei98]). However, its complexity and a considerable
overhead make such an improvement primarily of theoretical value.

https://hemanthrajhemu.github.io

9.3 Dijkstra's Algorithm 327

-----Exercises 9"3 ----------------

1. Explain what adjustments, if any, need to be made in Dijkstra's algorithm
and/or in an underlying graph to solve the following problems.

a. Solve the single-source shortest-paths problem for directed weighted
graphs.

b. Find a shortest path between two given vertices of a weighted graph or
digraph. (This variation is called the single-pair shortest-path problem.)

c. Find the shortest paths to a given vertex from each other vertex of a
weighted graph or digraph. (This variation is called the single-destination
shortest-paths problem.)

d. Solve the single-source shortest-paths problem in a graph with nonnegative
numbers assigned to its vertices (and the length of a path defined as the sum
of the vertex numbers on the path).

2. Solve the following instances of the single-source shortest-paths problem with
vertex a as the source:
a.

c-1~
b.

5 6

2
d

2
f c e

5 4 5

3
h 6 3

6 9

3. Give a counterexample that shows that Dijkstra's algorithm may not work for
a weighted connected graph with negative weights.

4. Let T be a tree constructed by Dijkstra"s algorithm in the process of solving
the single-source shortest-paths problem for a weighted connected graph G.
a. True or false: Tis a spanning tree of G?

b. True or false: T is a minimum spanning tree of G?

https://hemanthrajhemu.github.io

I 328 Greedy Technique

5. Write a pseudocode of a simpler version of Dijkstra's algorithm that finds
only the distances (i.e., the lengths of shortest paths but not shortest paths
themselves) from a given vertex to all other vertices of a graph represented
by its weight matrix.

6. Prove the correctness of Dijkstra's algorithm for graphs with positive weights.

QDesign a linear-time algorithm for solving the single-source shortest -paths
problem for dags (directed acyclic graphs) represented by their adjacency lists.

Design an efficient algorithm for finding the length of a longest path in a dag.
(This problem is important because it determines a lower bound on the total
time needed for completing a project composed of precedence-constrained
tasks.)

9. Shortest-path modeling Assume that you have a model of a weighted con­
nected graph made of balls (representing the vertices) connected by strings
of appropriate lengths (representing the edges).
a. Describe how you can solve the single-pair shortest -path problem with this

model.

b. Describe how you can solve the single-source shortest-paths problem with
this model.

10. Revisit Problem 6 in Exercises 1.3 about determining the best route for a
subway passenger to take from one designated station to another in a well­
developed subway system like those in Washington, DC, and London, UK.
Write a program for this task.

9.4 Huffman Trees

Suppose we have to encode a text that comprises characters from some n-character
alphabet by assigning to each of the text's characters some sequence of bits called
the codeword. For example, we can use a fixed-length encoding that assigns to
each character a bit string of the same length m (m 2: log2 n). This is exactly what
the standard ASCII code does. One way of getting a coding scheme that yields
a shorter bit string on the average is based on the old idea of assigning shorter
codewords to more frequent characters and longer codewords to less frequent
characters. (This idea was used, in particular, in the telegraph code invented in
the mid-19th century by Samuel Morse. In that code, frequent letters such as e
O and a (--) are assigned short sequences of dots and dashes while infrequent
letters such as q (- - ·-) and z (- - ..) have longer ones.)

Variable-length encoding, which assigns codewords of different lengths
to different characters, introduces a problem that fixed-length encoding does
not have. Namely, how can we tell how many bits of an encoded text repre­
sent the first (or, more generally, the ith) character? To avoid this complica­
tion, we can limit ourselves to prefix-free (or simply prefix) codes. In a prefix

l

https://hemanthrajhemu.github.io

9.4 Huffman Trees 329

code, no codeword is a prefix of a codeword of another character. Hence, with
such an encoding, we can simply scan a bit string until we get the first group
of bits that is a codeword for some character, replace these bits by this character,
and repeat this operation until the bit string's end is reached.

If we want to create a binary prefix code for some alphabet, it is natural to
associate the alphabet's characters with leaves of a binary tree in which all the
left edges are labeled by 0 and all the right edges are labeled by 1 (or vice versa).
The codeword of a character can then be obtained by recording the labels on the
simple path from the root to the character's leaf. Since there is no simple path
to a leaf that continues to another leaf, no codeword can be a prefix of another
codeword; hence, any such tree yields a prefix code.

Among the many trees that can be constructed in this manner for a given
alphabet with known frequencies of the character occurrences, how can we con­
struct a tree that would assign shorter bit strings to high-frequency characters and
longer ones to low-frequency characters? It can be done by the following greedy
algorithm, invented by David Huffman while he was a graduate student at MIT
[Hu£52].

Huffman's Algorithm

Step 1 Initialize n one-node trees and label them with the characters of the
alphabet. Record the frequency of each character in its tree's root to
indicate the tree's weight. (More generally, the weight of a tree will be
equal to the sum of the frequencies in the tree's leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two
trees with the smallest weight (ties can be broken arbitrarily, but see
Problem 2 in the exercises). Make them the left and right subtree of
a new tree and record the snm of their weights in the root of the new
tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It
defines-in the manner described-a Huffman code.

EXAMPLE Consider the five-character alphabet {A, B, C, D, _}with the following
occurrence probabilities:

character A B c D

probability 0.35 0.1 0.2 0.2 0.15

The Huffman tree construction for this input is shown in Figure 9.11. The
resulting codewords are as follows:

character

probability

codeword

A

0.35

11

B

0.1

100

c
0.2

00

D

0.2

01

0.15

101

https://hemanthrajhemu.github.io

330 Greedy Technique

·s LJ
3

! '
'~.

Eij 10~51 I 0~21 I o: I 10:51

I 0~21 I 0~21 10:51

0.6

0

,~p

FIGURE 9.11 Example of constructing a Huf1man codiRg tree

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.
With the occurrence probabilities given and the codeword lengths obtained,

the expected number of bits per character in this code is

2. 0.35 + 3. 0.1 + 2. 0.2 + 2. 0.2 + 3. 0.15 = 2.25.

I
I

I
https://hemanthrajhemu.github.io

9.4 Huffman Trees 331

Had we used a fixed-length encoding for the same alphabet, we would have to
use at least three bits per each character. Thus, for this toy example, Huffman's
code achieves the compression ratio-a standard measure of a compression al­
gorithm's effectiveness-of (3- 2.25)/3 · 100% = 25%. In other words, we should
expect that Huffman's encoding of a text will use 25% less memory than its fixed­
length encoding. (Extensive experiments with Huffman codes have shown that the
compression ratio for tbis scheme typically falls between 20% and 80%, depending
on the characteristics of the text being compressed.) Ill

Huffman's encoding is one of the most important file compression methods. In
addition to its simplicity and versatility, it yields an optimal, i.e., minimal-length,
encoding (provided the probabilities of character occurrences are independent
and known in advance). The simplest version of Huffman compression calls, in
fact, for a preliminary scanning of a given text to count the frequencies of character
occurrences in it. Then these frequencies are used to construct a Huffman coding
tree and encode the text as described above. This scheme makes it necessary,
however, to include the information about the coding tree into the encoded text
to make its decoding possible. This drawback can be overcome by using dynamic
Huffman encoding, in which the coding tree is updated each time a new character
is read from the source text (see, e.g., [SayOO]).

It is important to note that applications of Huffman's algorithm are not limited
to data compression. Suppose we have n positive numbers wb w

2
, ... , w

11
that

have to be assigned to 11 leaves of a binary tree, one per node. If we define the
weighted path length as the sum I:;'~ 1 liw1 , where li is tbe length of the simple
path from the root to the ith leaf, how can we construct a binary tree with
minimum weighted path length? It is this more general problem that Huffman's
algorithm actually solves. (For the coding application, li and w

1
are the length of

the codeword and the frequency of the ith character, respectively.) This problem
arises in many situations involving decision making. Consider, for example, the
game of guessing a chosen object from 11 possibilities (say, an integer between 1
and 11) by asking questions answerable by yes or no. Different strategies for playing
this game can be modeled by decision trees4 such as those depicted in Figure 9.12
forn =4.

The length of the simple path from the root to a leaf in such a tree is equal
to the number of questions needed to get to the chosen number represented by
the leaf. If number i is chosen with probability Pi· the sum I:;'~ 1 liPi• where li is
the length of the simple path from the root to the ith leaf, indicates the average
number of questions needed to "guess" the chosen number witb a game strategy
represented by its decision tree. If each of the numbers is chosen with the same
probability of 1/n, the best strategy is to successively eliminate half (or almost half)
the candidates as binary search does. This may not be the case for arbitrary Pi's,

4. Decision trees are discussed in more detail in Section 11.2.

https://hemanthrajhemu.github.io

332 Greedy Technique

n=4
no yes

n>3 n=3

no yes no yes

FIGURE 9.12 Two decision trees for guessing an integer between 1 and 4

however. (For example. if n = 4 and Pt = 0.1. P2 = 0.2. p 3 = 0.3. and P4 = 0.4. the
minimum weighted path tree is the rightmost one in Figure 9.12.) Thus. we need
Huffman's algorithm to solve this problem in its general case.

In conclusion, it is worthwhile to remember that this is the second time we
are encountering the problem of constructing an optimal binary tree. In Section
8.3, we discussed the problem of constructing an optimal binary search tree with
positive numbers (the search probabilities) assigned to every node of the tree. In
this section, given numbers are assigned just to leaves. The latter problem turns
out to be easier: it can be solved by the greedy algorithm whereas the former is
solved by the more complicated dynamic programming algorithm.

-----Exercises 9.4----------------

1. a. Construct a Huffman code for the following data:

character A B c D

probability 0.4 0.1 0.2 0.15 0.15

b. Encode the text ABACABAD using the code of question (a).

c. Decode the text whose encoding is 100010111001010 in the code of ques­
tion (a).

2. For data transmission purposes, it is often desirable to have a code with a
minimum variance of the codeword lengths (among codes of the same average
length). Compute the average and variance of the codeword length in two
Huffman codes that result from a different tie breaking during a Huffman
code construction for the following data:

character A B c D E

probability 0.1 0.1 0.2 0.2 0.4

https://hemanthrajhemu.github.io

Summary 333

3. Indicate whether each of the following properties are true for every Huffman
code.

a. The codewords of the two least frequent characters have the same length.

b. The codeword's length of a more frequent character is always smaller than
or equal to the codeword's length of a less frequent one.

4. What is the maximal length of a codeword possible in a Huffman encoding of
an alphabet of n characters?

5. a. Write a pseudocode for the Huffman-tree construction algorithm.

b. What is the time efficiency class of the algorithm for constructing a Huff­
man tree as a function of the alphabet's size?

! 6. Show that a Huffman tree can be constructed in li11ear ti111e if the alphabet's
--- 'characters are given in a sorted order of their freqUe~n·ci;;s:- ~-

'•, 7J Given a Huffman coding tree, wbich algorithm would you use to get the
codewords for all the characters? What is its time-efficiency class as a function
of the alphabet's size?

s:' Explain how one can generate a Huffman code without an explicit generation
of a Huffman coding tree.

9. a. Write a program that constructs a Huffman code for a given English text
and encode it.

b. Write a program for decoding an English text that has been encoded with
a Huffman code.

c. Experiment with your encoding program to find a range of typical compres­
sion ratios for Huffman's encoding of English texts of, say, 1000 words.

d. Experiment with your encoding program to find out how sensitive the
compression ratios are to using standard estimates o£ frequencies instead
of actual frequencies of character occurrences in English texts.

10. Card guessing Design a strategy that minimizes the expected number of
questions asked in the following game [Gar94], #52. You have a deck of cards
that consists of one ace of spades, two deuces of spades, three threes, and on up
to nine nines, making 45 cards in all. Someone draws a card from the shuffled
deck, which you have to identify by asking questions answerable with yes or
no.

SUMMARY

I! The greedy technique suggests constructing a solution to an optimization
problem through a sequence of steps, each expanding a partially constructed
solution obtained so far, until a complete solution to the problem is reached.

https://hemanthrajhemu.github.io

334 Greedy Technique

On each step, the choice made must be feasible, locally optimal, and
irrevocable.

" Prim's algorithm is a greedy algorithm for constructing a minimum spanning
tree of a weighted connected graph. It works by attaching to a previously
constructed subtree a vertex closest to the vertices already in the tree.

101 Kruskal's algorithm is another greedy algorithm for the minimum spanning
tree problem. It constructs a minimum spanning tree by selecting edges in
increasing order of their weights provided that the inclusion does not create a
cycle. Checking the latter condition efficiently requires an application of one
of the so-called union-find algorithms.

101 Dijkstra's algorithm solves the single-source shortest-paths problem of finding
shortest paths from a given vertex (the source) to all the other vertices of a
weighted graph or digraph. It works as Prim's algorithm but compares path
lengths rather than edge lengths. Dijkstra's algorithm always yields a correct
solution for a graph with nonnegative weights.

101 A Huffman tree is a binary tree that minimizes the weighted path length from
the root to the leaves of predefined weights. The most important application
of Huffman trees are Huffman codes.

101 A Huffman code is an optimal prefix-free variable-length encoding scheme
that assigns bit strings to characters based on their frequencies in a given
text. This is accomplished by a greedy construction of a binary tree whose
leaves represent the alphabet characters and whose edges are labeled with
O's and l's.

https://hemanthrajhemu.github.io

