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Dynamic Programming 

An idea, like a ghost ... must be spoken to a little before it will explain itself. 

-Charles Dickens 11812-1870) 

Dynamic programming is an algorithm design technique with a rather inter­
esting history. It was invented by a prominent U.S. mathematician, Richard 

Bellman, in the 1950s as a general method for optimizing multistage decision pro­
cesses. Thus, the word "programming" in the name of this technique stands for 
"planning" and does not refer to computer programming. After proving its worth 
as an important tool of applied mathematics, dynamic programming has even­
tually come to be considered, at least in computer science circles, as a general 
algorithm design technique that does not have to be limited to special types of 
optimization problems. It is from this point of view that we will consider this tech­
nique here. 

Dynamic programming is a technique for solving problems with overlapping 
subproblems. Typically, these subproblems arise from a recurrence relating a 
solution to a given problem with solutions to its smaller subproblems of the same 
type. Rather than solving overlapping subproblems again and again, dynamic 
programming suggests solving each of the smaller subproblems only once and 
recording the results in a table from which we can then obtain a solution to the 
original problem. 

This technique can be illustrated by revisiting the Fibonacci numbers dis­
cussed in Section 2.5. (If you have not read that section, you will be able to follow 
the discussion anyway. But it is a beautiful topic, so if you feel a temptation to read 
it, do succumb to it.) The Fibonacci numbers are the elements of the sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... , 

which can be defined by the simple recurrence 

F(n) = F(n- 1) + F(n- 2) for n )> 2 (8.1) 

and two initial conditions 

F(O) = 0, F(1) = 1. (8.2) 

279 
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280 Dynamic Programming 

If we try to use recurrence (8.1) directly to compute the nth Fibonacci number 
F (n), we would have to recompute the same values of this function many times 
(see Figure 2.6 for a specific example). Note that the problem of computing F(n) 
is expressed in terms of its smaller and overlapping subproblems of computing 
F(n- 1) and F(n- 2). So we can simply fill elements of a one-dimensional array 
with then+ 1 consecutive values of F(n) by starting, in view of initial conditions 
(8.2), with 0 and 1 and using equation (8.1) as the rule for producing all the other 
elements. Obviously, the last element of this array will contain F (n ). A single-loop 
pseudocode for this very simple algorithm can be found in Section 2.5. 

Note that we can, in fact, avoid using an extra array to accomplish this task 
by recording the values of just the last two elements of the Fibonacci sequence 
(see Problem 6 in Exercises 2.5). This phenomenon is not unusual, and we shall 
encounter it in a few more examples in this chapter. Thus, although a straightfor­
ward application of dynamic programming can be interpreted as a special variety 
of space-for-time tradeoff, a dynamic programming algorithm can sometimes be 
refined to avoid using extra space. 

Certain algorithms compute the nth Fibonacci number without computing 
all the preceding elements of this sequence (see Section 2.5). It is typical of an 
algorithm based on the classic bottom-up dynamic programming approach, how­
ever, to solve all smaller subproblems of a given problem. One variation of the 
dynamic programming approach seeks to avoid solving unnecessary subproblems. 
This technique, illustrated in Section 8.4, exploits so-called memory functions and 
can be considered a top-down variation of dynamic programming. 

Whether we use the classical bottom-up version of dynamic programming or 
its top-down variation, the crucial step in designing such an algorithm remains the 
same: namely, deriving a recurrence relating a solution to the problem's instance to 
solutions of its smaller (and overlapping) subinstances. The immediate availability 
of equation (8.1) for computing the nth Fibonacci number is one of the few 
exceptions to this rule. 

In the sections and exercises of this chapter are a few standard examples of 
dynamic programming algorithms. (Some of them, in fact, were invented before or 
independent of the discovery of dynamic programming and only later came to be 
viewed as examples of this technique's applications.) Numerous other applications 
range from the optimal way of breaking text into lines (e.g., [BaaOO]) to an 
optimal triangulation of a polygon (e.g., [Ski98]) to a variety of applications to 
sophisticated engineering problems (e.g., [Bel62], [Ber01]). 

8.1 Computing a Binomial Coefficient 

Computing a binomial coefficient is a standard example of applying dynamic 
programming to a nonoptimization problem. You may recall from your studies 
of elementary combinatorics that the binomial coefficient, denoted C(n, k) or 
G), is the number of combinations (subsets) of k elements from an n-element 

I 
i 

https://hemanthrajhemu.github.io



8.1 Computing a Binomial Coefficient 281 

set (0 :<= k :<= n). The name "binomial coefficients" comes from the participation of 
these numbers in the binomial formula: 

(a+ b)"= C(n, O)a" +. · · + C(n, k)a"-kbk + · · · + C(n, n)b". 

Of the numerous properties of binomial coefficients, we concentrate on two: 

C(n, k) = C(n- 1, k- 1) + C(n- 1, k) for n > k > 0 (8.3) 

and 

C(n, 0) = C(n, n) = 1. (8.4) 

The nature of recurrence (8.3), which expresses the problem of comput­
ing C(n, k) in terms of the smaller and overlapping problems of computing 
C (n - 1, k - 1) and C (n - 1, k), lends itself to solving by the dynamic program­
ming technique. To do this, we record the values of the binomial coefficients in 
a table of n + 1 rows and k + 1 columns, numbered from 0 to n and from 0 to k, 
respectively (Figure 8.1). 

To compute C(n, k), we fill the table in Figure 8.1 row by row, starting with 
row 0 and ending with row n. Each row i (0 :<= i :<= n) is filled left to right, starting 
with 1 because C(n, 0) = 1. Rows 0 through k also end with 1 on the table's 
main diagonal: C(i, i) = 1 for 0 :<= i :<= k. We compute the other entries by formula 
(8.3), adding the contents of the cells in the preceding row and the previous 
column and in the preceding row and the same column. (If you recognize Pascal's 
triangle-a fascinating mathematical structure usually studied in conjunction with 
the notion of a combination-you are right: this is exactly what it is.) The following 
pseudocode implements this algorithm. 

0 

0 

2 2 

k 

n-1 

n 

2 ... k-1 k 

C(n-1, k-1) C(n-1, k) 
C(n, k) 

FIGURE 8.1 Table for computing the binomial coefficient C(n, k) by the dynamic 
programming algorithm 
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282 Dynamic Programming 

ALGORITHM Binomial(n, k) 

//Computes C(n, k) by the dynamic programming algorithm 
//Input: A pair of nonnegative integers n ": k ": 0 
//Output: The value of C(n, k) 

for i <--- 0 to n do 
for j <--- 0 to min(i, k) do 

if j = 0 or j = i 
C[i, j] <---1 

else C[i, J] <--- C[i -1, j -1] + C[i -1, j] 
return C[n, k] 

What is the time efficiency of this algorithm? Clearly, the algorithm's basic 
operation is addition, so let A (n, k) be the total number of additions made by this 
algorithm in computing C(n, k). Note that computing each entry by formula (8.3) 
requires just one addition. Also note that because the first k + 1 rows of the table 
form a triangle while the remaining n - k rows form a rectangle, we have to split 
the sum expressing A (n, k) into two parts: 

k i-1 11 k k II 

A(n, k) =I: 2:) + I: I: 1 = I;u- 1) + I: k 
i=l j=l i=k+l j=l i=1 

(k- 1)k 
= + k(n- k) E EJ(nk). 

2 

You are asked to ascertain whether this is an efficient algorithm by comparing it 
with the running times of a few other algorithms for this problem in the exercises. 
Another problem in the exercises is to analyze whether or not the extra space used 
by the dynamic programming algorithm is actually necessary. 

-----Exercises 8.1 ---------------

1. a. What does dynamic programming have in common with divide-and­
conquer? 

b. What is a principal difference between the two techniques? 

2. a. Compute C(6, 3) by applying the dynamic programming algorithm. 

b. Is it also possible to compute C(n, k) by filling the algorithm's dynamic 
programming table column by column rather than row by row? 

3. Prove the following assertion made in the text while investigating the time 
efficiency of the dynamic programming algorithm for computing C(n, k): 

(k -1)k 

2 
+ k(n- k) E EJ(nk). 

:;::: 
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8.1 Computing a Binomial Coefficient 283 

4. a. What is the space efficiency of Binomial, the dynamic programming algo­
rithm for computing C(n, k)? 

b. Explain how the space efficiency of this algorithm can be improved. (Try 
to make as much of an improvement as you can.) 

5. a. Find the order of growth of the following functions. 

i. C(n, 1) ii. C(n, 2) iii. C(n, n/2) for even n's 

b. What major implication for computing C(n, k) do the answers to the ques­
tions in part (a) have? 

6. Find the exact number of additions made by the following recursive algorithm 
based directly on formulas (8.3) and (8.4). 

ALGORITHM BinomCoeff(n, k) 

if k = 0 or k = n return 1 
else return BinomCoeff(n - 1, k - 1)+BinomCoeff(n - 1, k) 

7. Which of the following algorithms for computing a binomial coefficient is most 
efficient? 

a. Use the formula 

C n k = n! 
(,) k!(n-k)! 

b. Use the formula 

C( k) n(n - 1) ... (n - k + 1) 
n, = k! . 

c. Apply recursively the formula 

C(n, k) = C(n- 1, k- 1) + C(n- 1, k) for n > k > 0, 

C(n, 0) = C(n, n) = 1. 

d. Apply the dynamic programming algorithm. 

8, Prove that 

C(n, k) = C(n, n - k) for n 0: k 0: 0 

and explain how this formula can be utilized in computing C(n, k). 

9, Shortest path counting A chess rook can move horizontally or vertically to 
any square in the same row or in the same column of a chessboard. Find the 
number of shortest paths by which a rook can move from one corner of a 
chessboard to the diagonally opposite corner. [Gar78], p. 10 

a. by a dynamic programming algorithm. 

b. by using elementary combinatorics. 
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284 Dynamic Programming 

10. World Series odds Consider two teams, A and B, playing a series of games 
until one of the teams wins n games. Assume that the probability of A winning 
a game is the same for each game and equal to p, and the probability of 
A losing a game is q = 1- p. (Hence, there are no ties.) Let P(i, j) be the 
probability of A winning the series if A needs i more games to win the series 
and B needs j more games to win the series. 
a. Set up a recurrence relation for P(i, j) that can be used by a dynamic 

programming algorithm. 

b. Find the probability of team A winning a seven-game series if the proba­
bility of the team winning a game is 0.4. 

c. Write a pseudocode of the dynamic programming algorithm for solving 
this problem and determine its time and space efficiencies. 

8.2 Warshall's and Floyd's Algorithms 

In this section, we look at two well-known algorithms: Warshall's algorithm for 
computing the transitive closure of a directed graph and Floyd's algorithm for the 
all-pairs shortest-paths problem. These algorithms are based on essentially the 
same idea, which we can interpret as an application of the dynamic programming 
technique. 

Warshall's Algorithm 

Recall that the adjacency matrix A= {au} of a directed graph is the boolean matrix 
that has 1 in its ith row and jth column if and only if there is a directed edge from 
the ith vertex to the jth vertex. We may also be interested in a matrix containing 
the information about the existence of directed paths of arbitrary lengths between 
vertices of a given graph. 

DEFINITION The transitive closure of a directed graph with n vertices can be 
defined as the n-by-n boolean matrix T = !tu}, in which the element in the ith row 
(1 ::0 i ::0 n) and the jth column (1 ::0 j ::0 n) is 1 if there exists a nontrivial directed 
path (i.e., a directed path of a positive length) from the ith vertex to the jth vertex; 
otherwise, tij is 0. 

An example of a digraph, its adjacency matrix, and its transitive closure is given 
in Figure 8.2. 

We can generate the transitive closure of a digraph with the help of depth-first 
search or breadth-first search. Performing either traversal starting at the ith vertex 
gives the information about the vertices reachable from the ith vertex and hence 
the columns that contain ones in the ith row of the transitive closure. Thus, doing 
such a traversal for every vertex as a starting point yields the transitive closure in 
its entirety. 

--., 
tl 
! 

I! 
li 
1: 
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8.2 Warshall's and Floyd's Algorithms 285 

:sl 
a b c d a b c d 

T 
0 

1] T il b 0 0 0 b 1 1 
A= c 0 0 0 

T= 
c 0 0 0 

d d 1 0 d 1 

(a) (b) (c) 

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure. 

Since this method traverses the same digraph several times, we should hope 
that a better algorithm can be found. Indeed, such an algorithm exists. It is called 
Warshall's algorithm after S. Warshall [War62]. Warshall's algorithm constructs 
the transitive closure of a given digraph with n vertices through a series of n-by-n 
boolean matrices: 

(8.5) 

Each of these matrices provides certain information about directed paths in the 
digraph. Specifically, the element rg1 in the ith row and jth column of matrix R(k) 

(k = 0, 1, ... , n) is equal to 1 if and only if there exists a directed path (of a positive 
length) from the ith vertex to the jth vertex with each intermediate vertex, if any, 
numbered not higher thank. Thus, the series starts with Ri01, which does not allow 
any intermediate vertices in its paths; hence, Ri01 is nothing else but the adjacency 
matrix of the digraph. (Recall that the adjacency matrix contains the information 
about one-edge paths, i.e., paths with no intermediate vertices.) RID contains the 
information about paths that can use the first vertex as intermediate; thus, with 
more freedom, so to speak, it may contain more ones than Ri01. In general, each 
subsequent matrix in series (8.5) has one more vertex to use as intermediate for 
its paths than its predecessor and hence may, but does not have to, contain more 
ones. The last matrix in the series, Ri"l, reflects paths that can use all n vertices of 
the digraph as intermediate and hence is nothing else but the digraph's transitive 
closure. 

The central point of the algorithm is that we can compute all the elements of 
each matrix R(k) from its immediate predecessor R(k-l) in series (8.5). Let r

1
j 1, 

the element in the ith row and jth column of matrix R(kJ, be equal to 1. This 
means that there exists a path from the i th vertex v1 to the jth vertex vi with each 
intermediate vertex numbered not higher thank: 

v1, a list of intermediate vertices each numbered not higher than k, vi. (8.6) 

Two situations regarding this path are possible. In the first, the list of its inter­
mediate vertices does not contain the kth vertex. Then this path from v; to vi has 

intermediate vertices numbered not higher thank - 1, and therefore r1j- 11 is equal 
to 1 as well. The second possibility is that path (8.6) does contain the kth vertex vk 
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among the intermediate vertices. Without loss of generality, we may assume that 
vk occurs only once in that list. (If it is not the case, we can create a new path from 
vi to v j with this property by simply eliminating all the vertices between the first 
and last occurrences of vk in it.) With this caveat, path (8.6) can be rewritten as 
follows: 

vi, vertices numbered.::: k- 1, vk> vertices numbered::=:: k- 1, vj. 

The first part of this representation means that there exists a path from v, to vk with 
each intermediate vertex numbered not higher thank- 1 (hence r,~-l) = 1), and 
the second part means that there exists a path from vk to v j with each intermediate 

vertex numbered not higher thank- 1 (hence r~~-l) = 1). 

What we have just proved is that if r,~) = 1, then either rg-l) = 1 or both 

r,~-l) = 1 and r ~~-!) = 1. It is easy to see that the converse of this assertion is also 
true. Thus, we have the following formula for generating the elements of matrix 
R(k) from the elements of matrix Rlk-1): 

r(k) = r(k-l) or (r<kk-l)and rk(k-l)) . 
I} I} I } 

(8.7) 

Formula (8.7) is at the heart of Warshall's algorithm. This formula implies 
the following rule for generating elements of matrix R(k) from elements of matrix 
Rlk-l), which is particularly convenient for applying Warshall's algorithm by hand: 

,. If an element rij is 1 in Rlk-l), it remains 1 in Rlk) 

,. If an element rij is 0 in R(k-l), it has to be changed to 1 in R(k) if and only if 
the element in its row i and column k and the element in its column j and row 
k are both 1's in R(k-l)_ (This rule is illustrated in Figure 8.3.) 

As an example, the application ofWarshall's algorithm to the digraph in Figure 8.2 
is shown in Figure 8.4. 

j k j k . 
~ 

Rlk-11 = k 1 I 
t 

i 0 _., 1 

'--

FIGURE 8.3 Rule tor changing zeros in Warshall's algorithm 

+ 
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a b c d 
Ones reflect the existence of paths 1 0 

b 0 0 0 with no intermediate vertices 
RIDI= 

c 0 0 (R!DJ is just the adjacency matrix); :sl l 1l 0 
d 1 0 boxed row and column are used for getting R(1J. 

d 
a b c d Ones reflect the existence of paths 

f' 0 

1j 
with intermediate vertices numbered 

Rl11= 
b 0 0 0 not higher than 1, i.e., just vertex a 
c 0 0 0 (note a new path from dto b); 
d 1 L...!_ boxed row and column are used for getting R(2J. 

a b c d Ones reflect the existence of paths 

r 
1'0"" 

iJ 

with intermediate vertices numbered 

Ri'l= 
b 0 0 0 not higher than 2, i.e., a and b 
c 0 0 0 (note two new paths); 
d 1 1L.!._ boxed row and column are used for getting R!3l_ 

a b c d Ones reflect the existence of paths 

r 
0 

i~ 
with intermediate vertices numbered 

Rl31= 
b 0 0 0 not higher than 3, i.e., a, b, and c 
c 0 0 0 (no new paths); 
d 1 boxed row and column are used for getting R(4J. 

a b c d 

l 
1 

i I 
Ones reflect the existence of paths 

b 1 1 1 with intermediate vertices numbered Rl41= 
c 0 0 0 not higher than 4, i.e., a, b, c, and d 
d 1 (note five new paths). 

FIGURE 8.4 Application of Warshall's algorithm to the digraph shown. New ones are in 
bold. 

Here is a pseudocode of Warshall's algorithm. 

ALGORITHM Warshall(A[l..n, l..n]) 

//Implements Warshall's algorithm for computing the transitive closure 
//Input: The adjacency matrix A of a digraph with n vertices 
//Output: The transitive closure of the digraph 
R(O) ~A 

fork ~ 1 to n do 
fori ~Hondo 

for j ~ 1 to n do 

return R(n) 

R(kl[i, j] ~ R(k-l)[i, j] or (RCk-ll[i, k] and R(k-ll[k, j]) 
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288 Dynamic Programming 

Several observations need to be made about Warshall's algorithm. First, it is 
remarkably succinct, is it not? Still, its time efficiency is only in E>(n3). In fact, for 
sparse graphs represented by their adjacency lists, the traversal-based algorithm 
mentioned at the beginning of this section has a better asymptotic efficiency 
than Warshall's algorithm (why?). We can speed np the above implementation 
of Warshall's algorithm for some inputs by restructuring its innermost loop (see 
Problem 4 in the exercises). Another way to make the algorithm run faster is to 
treat matrix rows as bit strings and employ the bitwise or operation available in 
most modern computer languages. 

As to the space efficiency of Warshall's algorithm, the situation is similar to 
that of the two earlier examples in this chapter: computing a Fibonacci number and 
computing a binomial coefficient. Although we used separate matrices for record­
ing intermediate results of the algorithm, this is, in fact, unnecessary. (Problem 3 in 
the exercises asks you to find a way of avoiding this wasteful use of the computer 
memory.) Finally, we shall see below how the underlying idea of Warshall's algo­
rithm can be applied to the more general problem of finding lengths of shortest 
paths in weighted graphs. 

Floyd's Algorithm for the All-Pairs Shortest-Paths Problem 

Given a weighted connected graph (undirected or directed), the all-pairs shortest­
paths problem asks to find the distances (the lengths of the shortest paths) from 
each vertex to all other vertices. It is convenient to record the lengths of shortest 
paths in an n-by-n matrix D called the distance matrix: the element diJ in the ith 
row and the jth column of this matrix indicates the length of the shortest path 
from the ith vertex to the jth vertex (1 :=:: i, j :=:: n ). For an example, see Figure 8.5. 

We can generate the distance matrix with an algorithm that is very similar 
to Warshall's algorithm. It is called Floyd's algorithm, after its inventor R. Floyd 
[Flo62]. It is applicable to both undirected and directed weighted graphs provided 
that they do not contain a cycle of a negative length. (Of course, in the case of a 
directed graph, by a path or cycle we mean a directed path or a directed cycle.) 

t8: 
a b c d a b c d 

T 
3 

~] T 
10 3 

i] 7 w = b 2 0 b 2 0 5 
D= 

c = 7 0 c 7 7 0 

1 d 6 d 6 16 9 

(a) (b) (c) 

FIGURE 8.5 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix. 

--, ,, 
I 
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8.2 Warshall's and Floyd's Algorithms 289 

Floyd's algorithm computes the distance matrix of a weighted graph with n 
vertices through a series of n-by-n matrices: 

(8,8) 

Each of these matrices contains the lengths of shortest paths with certain con­
straints on the paths considered for the matrix in question. Specifically, the element 
d,~J in the ith row and the jth column of matrix n<k) (k = 0, 1, ... , n) is equal to 
the length of the shortest path among all paths from the ith vertex to the jth vertex 
with each intermediate vertex, if any, numbered not higher thank. In particular, 
the series starts with n<0l, which does not allow any intermediate vertices in its 
paths; hence, n<OJ is nothing but the weight matrix of the graph. The last matrix 
in the series, nrn), contains the lengths of the shortest paths among all paths that 
can use all n vertices as intermediate and hence is nothing but the distance matrix 
being sought. 

As in Warshall's algorithm, we can compute all the elements of each matrix 
n<'l from its immediate predecessor n<'-1l in series (8.8). Let d,jl be the element 

in the ith row and the jth column of matrix n<'l. This means that d,~J is equal to 
the length of the shortest path among all paths from the ith vertex v; to the jth 
vertex v1 with their intermediate vertices numbered not higher thank: 

V;, a list of intermediate vertices each numbered not higher than k, v 
1

. (8.9) 

We can partition all such paths into two disjoint subsets: those that do not use the 
kth vertex v, as intermediate and those that do. Since the paths of the first subset 
have their intermediate vertices numbered not higher thank- 1, the shortest of 
them is, by definition of our matrices, of length d,j- 1) 

What is the length of the shortest path in the second subset? If the graph does 
not contain a cycle of a negative length, we can limit our attention only to the 
paths in the second subset that use vertex v, as their intermediate vertex exactly 
once (because visiting v, more than once can only increase the path's length). All 
such paths have the following form: 

vi, vertices numbered::; k -1, vk> vertices numbered::; k -1., v
1

. 

In other words, each of the paths is made up of a path from v, to v, with each 
intermediate vertex numbered not higher than k - 1 and a path from v, to v 

1 with each intermediate vertex numbered not higher thank- 1. The situation is 
depicted symbolically in Figure 8.6. 

Since the length of the shortest path from v; to v, among the paths that use 
intermediate vertices numbered not higher than k - 1 is equal to d,~- 1) and the 
length of the shortest path from v, to v 1 among the paths that use intermediate 

vertices numbered not higher thank - 1 is equal to d;t 1\ the length of the shortest 
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d
(k-1) 
lk 

d~.k-1) 
'I 

FIGURE 8.6 Underlying idea of Floyd's algorithm 

d
lk-1) 
kj 

path among the paths that use the kth vertex is equal to d1~-1) + d~]- 1). Taking into 
account the lengths of the shortest paths in both subsets leads to the following 
recurrence: 

d(k) = min{dlk-1) ik-t) + dlk-1)) fork> 1 
I) I} ' tk k} - ' (8.10) 

To put it another way, the element in the ith row and the jth column of the current 
distance matrix Dlk-1) is replaced by the sum of the elements in the same row i 
and the kth column and in the same column j and the kth column if and only if 
the latter sum is smaller than its current value. 

The application of Floyd's algorithm to the graph in Figure 8.5 is illustrated 
in Figure 8.7. 

Here is a pseudocode of Floyd's algorithm. It takes advantage of the fact that 
the next matrix in sequence (8.8) can be written over its predecessor. 

ALGORITHM Floyd(W[l..n, l..n]) 

//Implements Floyd's algorithm for the all-pairs shortest -paths problem 
//Input: The weight matrix W of a graph with no negative-length cycle 
//Output: The distance matrix of the shortest paths' lengths 
D <-- W /lis not necessary if W can be overwritten 
for k <-- 1 to n do 

for i <-- 1 to n do 
for j <-- 1 to n do 

D[i. j] <-- min{D[i, j], D[i, k] + D[k, j]) 
retnrn D 

Obviously, the time efficiency of Floyd's algorithm is cubic-as is the time 
efficiency of Warshall's algorithm. In the next chapter, we examine Dijkstra's 
algorithm-another method for finding shortest paths. 
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~ 
a b c d 

T 
3 

~~ 
Lengths of the shortest paths 

7 OIOl~ 
b 2 0 with no intermediate vertices 
c = 7 0 (O(Ol is simply the weight matrix). 

1 
d 6 

a b c d 

r~ 
3 II Lengths of the shortest paths 

b 2 0 5 with intermediate vertices numbered 
Ol1l~ 

c = 7 0 not higher than 1, i.e. just a 

d 6 = 9 
(note two new shortest paths from 

~ b to c and from d to c). 
a b c d 

T 
='3 

Il 
Lengths of the shortest paths 

b 2 0 5 with intermediate vertices numbered 
012}~ 

c 9 7 0 not higher than 2, i.e. a and b 

d 6 =~ 
(note a new shortest path from c to a). 

a b c d 

r 10 3 

l~ 
Lengths of the shortest paths 

b 2 0 5 with intermediate vertices numbered 
0131~ 

c 9 7 0 not higher than 3, i.e. a, b, and c 

d 6 16 9 
(note four new shortest paths from a to b, 
from a to d, from b to d, and from d to b). 

a b c d 

T 
10 3 

1] 
Lengths of the shortest paths 

b 2 0 5 with intermediate vertices numbered 
0141~ 

c 7 7 0 not higher than 4, i.e. a, b, c, and d 

d 6 16 9 
{note a new shortest path from c to a). 

FIGURE 8.7 Application of Floyd's algorithm to the graph shown. Updated elements are 
shown in bold. 

We finish this section with an important general comment. It deals with a gen­
eral principle that underlines dynamic programming algorithms for optinlization 
problems. Richard Bellman called it the principle of optimality. In terms some­
what different from its original formulation, it says that an optimal solution to 
any instance of an optimization problem is composed of optimal solutions to its 
subinstances. The principle of optimality holds more often than not. (To give a 
rather rare example, it fails for finding longest simple paths.) Although its appli­
cability to a particular problem needs to be verified, of course, such a verification 
is usually not a principal difficulty in developing a dynamic programming algo­
rithm. The challenge typically lies in figuring out what smaller subinstances need 
to be considered and in deriving an equation relating a solution to any instance 
to solutions to its smaller subinstances. We consider a few more examples in the 
remaining sections of this chapter and their exercises. 

: 
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-----Exercises 8.2----------------

1. Apply Warshall"s algorithm to find the transitive closure of the digraph de­
fined by the following adjacency matrix 

2. a. Prove that the time efficiency of Warshall's algorithm is cubic. 

b. Explain why the time efficiency of Warshall's algorithm is inferior to that 
of the traversal-based algorithm for sparse graphs represented by their 
adjacency lists. 

Explain how to implement Warshall's algorithm without using extra memory 
for storing elements of the algorithm's intermediate matrices. 

4. Explain how to restructure the innermost loop of the algorithm Warshall to 
make it run faster at least on some inputs. 

5. Rewrite the pseudocode of Warshall's algorithm assuming that the matrix 
rows are represented by bit strings on which the bitwise or operation can be 
performed. 

6. a. Explain how Warshall's algorithm can be used to determine whether a 
given digraph is a dag (directed acyclic graph). Is it a good algorithm for 
this problem? 

b. Is it a good idea to apply Warshall's algorithm to find the transitive closure 
of an undirected graph? 

7. Solve the all-pairs shortest-path problem for the digraph with the weight 
matrix 

00 00 

00 00 

00 

3 
0 
2 

1 
2 
4 
0 [ 

~ ~ 

3 00 00 00 
7] 

8. Prove that the next matrix in sequence (8.8) of Floyd's algorithm can be 
written over its predecessor. 

{'!.\ Give an example of a graph or a digraph with negative weights for which 
Floyd's algorithm does not yield the correct resnlt. 

. _1«: Enhance Floyd's algorithm so that shortest paths themselves, not just their 
· lengths, can be found. 

f 
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11. Jack Straws In the game of Jack Straws, a number of plastic or wooden 
"straws" are dumped on the table and players try to remove them one-by­
one without disturbing the other straws. Here, we are only concerned with 
whether various pairs of straws are connected by a path of touching straws. 
Given a list of the endpoints for n > 1 straws (as if they were dumped on a large 
piece of graph paper), determine all the pairs of straws that are connected. 
Note that touching is connecting, but also that two straws can be connected 
indirectly via other connected straws [1994 East-Central Regionals of the 
ACM International Collegiate Programming Contest]. 

Optimal Binary Search Trees 

A binary search tree is one of the most important data structures in computer 
science. One of its principal applications is to implement a dictionary, a set of 
elements with the operations of searching, insertion, and deletion. If probabilities 
of searclting for elements of a set are known (e.g., from accumulated data about 
past searches), it is natural to pose a question about an optimal binary search 
tree for which the average number of comparisons in a search is the smallest 
possible. (For simplicity, we limit our discussion to minimizing the average number 
of comparisons in a successful search. The method can be extended to include 
unsuccessful searches as well.) 

As an example, consider four keys A, B, C, and D to be searched for with 
probabilities 0.1, 0.2, 0.4, and 0.3, respectively. Figure 8.8 depicts two out of 
14 possible binary search trees containing these keys. The average number of 
comparisons in a successful search in the first of these trees is 0.1·1 + 0.2·2 + 0.4-3 
+ 0.3-4 = 2.9, while for the second one it is 0.1·2 + 0.2·1 + 0.4-2 + 0.3-3 = 2.1. Neither 
of these two trees is, in fact, optimal. (Can you tell which binary tree is optimal?) 

A 8 

8 A c 

c 0 

0 

FIGURE 8.8 Two out of 14 possible binary search trees with keys A, B, C, 
and D 
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Optimal 
BST for 

a;, ... , ak-1 

Optimal 
BST for 

ak+1, ... , ai 

FIGURE 8.9 Binary search tree (BSTI with root a, and two optimal binary search subtrees 

T k-1 d Tj 
i an k+1 

For our tiny example, we could find the optimal tree by generating all 14 
binary search trees with these keys. As a general algorithm, this exhaustive-search 
approach is unrealistic: the total number of binary search trees with n keys is equal 
to the nth Catalan number 

c(n) = (
2
n) -

1
- for n > 0, c(O) = 1, 

n n+1 

which grows to infinity as fast as 4" I nl.5 (see Problem 7 in the exercises). 
So let a

1 
•... , a,. be distinct keys ordered from the smallest to the largest and 

let p
1

, ... , p,. be the probabilities of searching for them. Let C[i, j] be the smallest 
average number of comparisons made in a successful search in a binary search tree 
T/ made up of keys ai, ... , aj, where i, j are some integer indices, 1::; i:::; j::::; n. 
Thus, following the classic dynamic programming approach, we will find values of 
C[i, j] for all smaller instances of the problem, although we are interested just in 
C[1, n ]. To derive a recurrence underlying the dynamic programming algorithm, 
we will consider all possible ways to choose a root ak among the keys a,, ... , aj. 

For such a binary search tree (Figure 8.9), the root contains key ak> the left subtree 
r,'-1 contains keys a;, ... , a,_1 optimally arranged, and the right subtree T/+1 
contains keys ak+1, ...• aj also optimally arranged. (Note how we are taking 
advantage of the principle of optimality here.) 

If we count tree levels starting with 1 (to make the comparison numbers equal 
the keys' levels), the following recurrence relation is obtained: 
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k-1 

C(i, j] = min{pk · 1 + L p, ·(level of a, in rk-l + 1) 
I;Sk:SJ . I 

S=l 

j 

+ L p_, ·(level of a, in T./+1 + 1)} 
s=k+l 

k-1 k-1 

= min{pk + '\' p,. ·level of a, in rk-1 + '\' P., 
t:SkS) ~ 1 0 

S=/ ~·=l 

j j 

+ L p,·levelofa,inT.{H+ L p,) 
s=k+1 .v=k+l 

k-1 j j 

295 

= i~i~.{L P.1• ·level of as in T/-
1 + L Ps ·level of a5 in Tk~l + L Ps} 

- _J s=i s=k+ 1 s=i 

j 

= min{C[i, k -1]+ C[k + 1, J]) + L P.,. 
t;Sk;S:j . 

S=l 

Thus, we have the recurrence 

} 

C(i, j] = min(C[i, k -1] + C[k + 1, j]) + L p, for 1:5; :5 j :5 n. (8.11) 
t:Sk:Sj . 

S=l 

We assume in formula (8.11) that C[i, i- 1] = 0 for 1 :5 i :5 n + 1, which cau be 
interpreted as the number of comparisons in the empty tree. Note that this formula 
implies that 

C[i, i] =Pi for 1 :5 i :5 n, 

as it should be for a one-node binary search tree containing a;. 
The two-dimensional table in Figure 8.10 shows the values needed for com­

puting C(i, j] by formula (8.11): they are in row i and the columns to the left of 
column j and in column j and the rows below row i. The arrows point to the 
pairs of entries whose sums are computed in order to find the smallest one to be 
recorded as the value of C[i, j]. This suggests filling the table along its diagonals, 
starting with all zeros on the main diagonal and given probabilities Pi, 1 :5 i :5 n, 
right above it and moving toward the upper right corner. 

The algorithm we sketched computes C[1, n ]-the average number of com­
parisons for successful searches in the optimal binary tree. If we also want to get the 
optimal tree itself, we need to maintain another two-dimensional table to record 
the value of k for which the minimum in (8.11) is achieved. The table has the same 
shape as the table in Figure 8.10 and is filled in the same manner, starting with 
entries R[i, i] = i for 1 :5 i :5 n. When the table is filled, its entries indicate indices 
of the roots of the optimal subtrees, which makes it possible to reconstruct an 
optimal tree for the entire set given. 
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0 j n 

0 P, goal 

0 p2 

t Cli,il 

\_ 

'--I-+ Pn 

n + 1 0 

FIGURE 8.10 Table of the dynamic programming algorithm for constructing an optimal 

binary search tree 

EXAMPLE Let us illustrate the algorithm by applying it to the four-key set we 
used at the beginning of this section: 

key A B c D 

probability 0.1 0.2 0.4 0.3 

The initial tables look like this: 

main table root table 

0 2 3 4 0 1 2 3 4 

0 0.1 
2 0 0.2 2 2 

3 0 0.4 3 3 

4 0 0.3 4 4 

5 0 5 

Let us compute C[1, 2]: 

. k = 1: C[1, o] + C[2, 21 + L:;d p, = o + 0.2 + o.3 = o.s 
C[1, 2] = mm 2 = 0.4. 

k = 2: C[1, 1] + C[3, 2] + L:,~l p, = 0.1 + 0 + 0.3 = 0.4 
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c 

B D 

A 

FIGURE 8.11 Optimal binary search tree for the example 

Thus, out of two possible binary trees containing the first two keys, A and B, the 
root of the optimal tree has index 2 (i.e., it contains B), and the average number 
of comparisons in a successful search in this tree is 0.4. 

We will ask you to finish the computations in the exercises. You should arrive 
at the following final tables: 

main table root table 
0 2 3 4 0 1 2 3 4 
0 0.1 0.4 1.1 1.7 2 3 3 

2 0 0.2 0.8 1.4 2 2 3 3 
3 0 0.4 1.0 3 3 3 
4 0 0.3 4 4 
5 0 5 

Thus, the average number of key comparisons in the optimal tree is equal to 
1.7. Since R[1, 4] = 3, the root of the optimal tree contains the third key, i.e., C. Its 
left subtree is made up of keys A and B, and its right subtree contains just key D 
(why?). To find the specific structure of these subtrees, we find first their roots by 
consulting the root table again as follows. Since R[l, 2] = 2, the root ofthe optimal 
tree containing A and B is B, with A being its left child (and the root of the one­
node tree: R[1, 1] = 1). Since R[4, 4] = 4, the root of this one-node optimal tree is 
its only key D. Figure 8.11 presents the optimal tree in its entirety. 113 

Here is a pseudocode of the dynamic programming algorithm. 

ALGORITHM OptimalBST(P[l..n]) 

//Finds an optimal binary search tree by dynamic programming 
//Input: An array P[l..n] of search probabilities for a sorted list of n keys 
//Output: Average number of comparisons in successful searches in the 
II optimal EST and table R of subtrees' roots in the optimal EST 
for i +- 1 to n do 

C[i, i -1]+-0 
C[i, i] +- P[i] 
R[i, i] +- i 

https://hemanthrajhemu.github.io



298 Dynamic Programming 

C[n + 1, n] <- 0 
for d <- 1 to n - 1 do //diagonal count 

for i <- 1 to n - d do 
}<-i+d 
minval +- oo 
for k <- i to j do 

ifC[i, k -1] + C[k + 1, j] < minval 
min val<- C[i, k- 1] + C[k + 1, }]; kmin <- k 

R[i, j] <- kmin 
sum <- P[i]; for s <- i + 1 to j do sum <-sum+ P[s] 
C[i, j] <-min val+ sum 

return C[1, n ], R 

The algoritlun's space efficiency is clearly quadratic; the time efficiency of this 
version of the algoritlun is cubic (why?). A more careful analysis shows that entries 
in the root table are always non decreasing along each row and column. This limits 
values for R[i, j] to the range R[i, j - 1], ... , R[i + 1, j] and makes it possible to 
reduce the running time of the algorithm to 8(n2). 

-----Exercises 8.3----------------

1. Finish the computations started in the section's example of constructing an 
optimal binary search tree. 

2. a. Why is the time efficiency of algorithm Optima/EST cubic? 

b. Why is the space efficiency of algoritlun Optima/EST quadratic? 

3. Write a pseudocode for a linear-time algorithm that generates the optimal 
binary search tree from the root table. 

4. Devise a way to compute the smns I:~~; p,, which are used in the dynantic 
programming algoritlun for constructing an optimal binary search tree, in 
constant time (per sum). 

5. True or false: The root of an optimal binary search tree always contains the 
key with the highest search probability? 

6. How would you construct an optimal binary search tree for a set of n keys if 
all the keys are equally likely to be searched for? What will be the average 
number of comparisons in a successful search in such a tree if n = 2k? 

7. a. Show that the number of distinct binary search trees b(n) that can be 
constructed for a set of n orderable keys satisfies the recurrence relation 

n-1 

b(n) = L b(k)b(n- 1- k) for n > 0, b(O) = 1. 
k~O 
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b. It is known that the solution to this recurrence is given by the Catalan 
numbers. Verify this assertion for n = 1, 2, ... , 5. 

c. Find the order of growth of b(n). What implication does the answer to 
this question have for the exhaustive-search algorithm for constructing an 
optimal binary search tree? 

8. Design a e (n2
) algorithm for finding an optimal binary search tree. 

9. Generalize the optimal binary search algorithm by taking into account unsuc­
cessful searches. 

~~ Matrix chain multiplication Consider the problem of minimizing the total 
- number of multiplications made in computing the product of n matrices 

At· A2 ..... An 

whose dimensions are do by dt, dt by d2, ... , dn-t by dn, respectively. Assume 
that all intermediate products oftwo matrices are computed by the brute-force 
(definition-based) algorithm. 

a. Give an example of three matrices for which the number of multiplications 
in (At· A2) · A3 and A1 · (A2 · A3) differ at least by a factor 1000. 

b. How many different ways are there to compute the chained product of n 
matrices? 

c. Design a dynamic programming algorithm for finding an optimal order of 
multiplying n matrices. 

8.4 The Knapsack Problem and Memory Functions 

We start this section with designing the dynamic programming algorithm for 
the knapsack problem: given n items of known weights Wt, ... , wn and values 
Vt, ... , vn and a knapsack of capacity W, find the most valuable subset of the items 
that fit into the knapsack. (Tiris problem was introduced in Section 3.4, where we 
discussed solving it by an exhaustive-search algorithm.) We assume here that all 
the weights and the knapsack's capacity are positive integers; the item values do 
not have to be integers. 

To design a dynamic programming algorithm, we need to derive a recurrence 
relation that expresses a solution to an instance of the knapsack problem in terms 
of solutions to its smaller subinstances. Let us consider an instance defined by the 
first i items, 1:::; i.::::; n, with weights w1, ... , wi, values v1, ... , vi, and knapsack 
capacity j, 1 S j S W. Let V[i, jJ be the value of an optimal solution to this 
instance, i.e., the value of the most valuable subset of the first i items that fit into 
the knapsack of capacity j. We can divide all the subsets of the first i items that fit 
the knapsack of capacity j into two categories: those that do not include the ith 
item and those that do. Note the following: 
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0 j-wi j w 
0 0 0 0 0 

i-1 0 Vli-1, j-w;l Vli-1, il 
wi, vi 0 VIi, il 

n 0 goal 

FIGURE 8.12 Table for solving the knapsack problem by dynamic programming 

1. Among the subsets that do not include the ith item, the value of an optimal 
subset is, by definition, V[i - 1, j]. 

2. Among the subsets that do include the ith item (hence, j - w; ?: 0), an optimal 
subset is made up of this item and an optimal subset of the first i - 1 items that 
fit into the knapsack of capacity j- w;. The value of such an optimal subset 
is v; + V[i - 1, j - w;]. 

Thus, the value of an optimal solution among all feasible subsets of the first i 
items is the maximum of these two values. Of course, if the ith item does not fit 
into the knapsack, the value of an optimal subset selected from the first i items 
is the same as the value of an optimal subset selected from the first i - 1 items. 
These observations lead to the following recurrence: 

[ . { max{ V[i - 1, j], V; + V[i - 1, j. -. w. ;]) if j - w; ?: 0 
v l, J l = V[i -1, J] ' l if j- W; < 0. (S.U) 

It is convenient to define the initial conditions as follows: 

V[O, j] = 0 for j?: 0 and V[i, 0] = 0 fori?: 0. (8.13) 

Our goal is to find V[n, W], the maximal value of a subset of then given items that 
fit into the knapsack of capacity W, and an optimal subset itself. 

Figure 8.12 illustrates the values involved in equations (8.12) and (8.13). For 
i, j > 0, to compute the entry in the ith row and the jth column, V[i, J], we 
compute the maximum of the entry in the previous row and the same column 
and the sum of v; and the entry in the previous row and w; columns to the left. 
The table can be filled either row by row or column by column. 

EXAMPLE 1 Let us consider the instance given by the following data: 

item weight value 

1 2 $12 

2 1 $10 capacity W = 5 

3 3 $20 

4 2 $15 

;: 
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capacity j 
0 2 3 4 5 

0 0 0 0 0 0 0 
w1 = 2, v1 = 12 0 0 12 12 12 12 
w2 = 1, v2 = 10 2 0 10 12 22 22 22 
w3 ~ 3, v3 ~ 20 3 0 10 12 22 30 32 
W4=2,V4=15 4 0 10 15 25 30 37 

FIGURE 8.13 Example of solving an instance of the knapsack problem by the dynamic 
programming algorithm 

The dynamic programming table, filled by applying formulas (8.12) and (8.13), is 
shown in Figure 8.13. 

Thus, the maximal value is V[4, 5] = $37. We can find the composition of an 
optimal subset by tracing back the computations of this entry in the table. Since 
V[4, 5] I= V[3, 5], item 4 was included in an optimal solution along with an optimal 
subset for filling 5 - 2 = 3 remaining units of the knapsack capacity. The latter is 
represented by element V[3, 3]. Since V[3, 3] = V[2, 3], item 3 is not a part of an 
optimal subset. Since V[2, 3] I= V[l, 3], item 2 is a part of an optimal selection, 
which leaves element V[l, 3 -1] to specify its remaining composition. Similarly, 
since V[1, 2] 1= l?[O, 2], item 1 is the final part of the optimal solution {item 1, item 
2, item 4). Ill 

The time efficiency and space efficiency of this algorithm are both in 8 (n W). 
The time needed to find the composition of an optimal solution is in O(n + W). 
You are asked to prove these· assertions in the exercises. 

Memory Functions 

As we discussed at the beginning of this chapter and illustrated in subsequent 
sections, dynamic programming deals with problems whose solutions satisfy a 
recurrence relation with overlapping subproblems. The direct top-down approach 
to finding a solution to such a recurrence leads to an algorithm that solves common 
subproblems more than once and hence is very inefficient (typically, exponential 
or worse). The classic dynamic programming approach, on the other hand, works 
bottom-up: it fills a table with solutions to all smaller subproblems, but each of 
them is solved only once. An unsatisfying aspect of this approach is that solutions 
to some of these smaller subproblems are often not necessary for getting a solution 
to the problem given. Since this drawback is not present in the top-down approach, 
it is natural to try to combine the strengths of the top-down and bottom-up 
approaches. ~.ggf!l!~.t0 geta.method thatsolves.only subproblems.which.'!fe. 
':'ec!'S§'lJ)randdoesitonlyonce.-Such a method exists; it is based on using memory 
fUnctions [Bra96]. 
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This method solves a given problem in the top-down manner but, in addition, 
maintains a table of the kind that would have been used by a bottom-up dynamic 
programming algorithm. Initially, all the table's entries are initialized with a spe­
cial "null" symbol to indicate that they have not yet been calculated. Thereafter, 
whenever a new value needs to be calculated, the method checks the correspond­
ing entry in the table first: if this entry is not "null," it is simply retrieved from the 
table; otherwise, it is computed by the recursive call whose result is then recorded 
in the table. 

The following algorithm implements this idea for the knapsack problem. After 
initializing the table, the recursive function needs to be called with i = n (the 
number of items) and j = W (the capacity of the knapsack). 

ALGORITHM MFKnapsack(i, j) 

//Implements the memory function method for the knapsack problem 
//Input: A nonnegative integer i indicating the number of the first 
II items being considered and a nonnegative integer j indicating 
II the knapsack's capacity 
//Output: The value of an optimal feasible subset of the first i items 
//Note: Uses as global variables input arrays Weights[l .. n ], V alues[l .. n ], 
//and table V[O .. n, O .. W] whose entries are initialized with -l's except for 
//row 0 and column 0 initialized with O's 
ifV[i,j]<O 

if j < Weights[i] 
value<-- MFKnapsack(i- 1, j) 

else 
value<-- max(MFKnapsack(i- 1, j), 

V[i, j] <--value 
return V[i, j] 

Values[i] + MFKnapsack(i - 1, j - Weights[i]l) 

EXAMPLE 2 Let us apply the memory function method to the instance consid­
ered in Example 1. Figure 8.14 gives the results. Only 11 out of20 nontrivial values 
(i.e., not those in row 0 or in column 0) have been computed. Just one nontrivial 
entry, V[1, 2], is retrieved rather than being recomputed. For larger instances, the 
proportion of such entries can be significantly larger. II! 

In general, we cannot expect more than a constant-factor gain in using the 
memory function method for the knapsack problem because its time efficiency 
class is the same as that of the bottom-up algorithm (why?). A more significant 
improvement can be expected for dynamic programming algorithms in which a 
computation of one value takes more than constant time. You should also keep 
in mind that a memory function method may be less space-efficient than a space­
efficient version of a bottom-up algorithm. 
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capacity j 
i 0 2 3 4 5 
0 0 0 0 0 0 0 

w1 = 2, v1 = 12 0 0 12 12 12 12 
W2= 1, V2= 10 2 0 12 22 22 
W3 = 3, v3 = 20 3 0 22 32 
W4 = 2, v4 = 15 4 0 37 

FIGURE 8.14 Example of solving an instance of the knapsack problem by the memory 
function algorithm 

-----Exercises 8.4---------------

1. a. Apply the bottom-up dynamic programming algorithm to the following 
instance of the knapsack problem: 

item weight value 

1 3 $25 
2 2 $20 
3 1 $15 capacity W = 6. 
4 4 $40 
5 5 $50 

b. How many different optimal subsets does the instance of part (a) have? 

c. In general, how can we use the table generated by the dynamic program­
ming algorithm to tell whether there is more than one optimal subset for 

-<I the knapsack problem's instance? 

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm for 
,•. \ . '· · /· the knapsack problem. 

b. Write a pseudocode of the algorithm that finds the composition of an 
optimal subset from the table generated by the bottom-up dynamic pro­

:· gramming algorithm for the knapsack problem. 

3. For the bottom-up dynamic programming algorithm for the knapsack prob­
lem, prove that 
a. its time efficiency is in El(nW). 

b. its space efficiency is in El(nW). 

c. the time needed to find the composition of an optimal subset from a filled 
dynamic programming table is in O(n + W). 

4. a. True or false: A sequence of values in a row of the dynamic programming 
table for an instance of the knapsack problem is always nondecreasing? 
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b. True or false: A sequence of values in a column of the dynamic program­
ming table for an instance of the knapsack problem is always nondecreas­
ing? 

5. Apply the memory function method to the instance of the knapsack problem 
given in Problem 1. Indicate the entries of the dynamic programming table 
that are: (i) never computed by the memory function method on this instance; 
(ii) retrieved without a recomputation. 

6. Prove that the efficiency class of the memory function algorithm for the knap­
sack problem is the same as tbat of the bottom-up algorithm (see Problem 3). 

~rite a pseudocode of a memory function for the optimal binary search tree 
Vrroblem. (You may limit your function to finding the smallest number of key 

comparisons in a successful search.) 

8. Give two reasons why the memory function approach is unattractive for the 
problem of computing a binomial coefficient. 

9. Design a dynamic programming algorithm for the change-making problem: 
given an amount n and unlimited quantities of coins of each of the denomi­
nations d1, d2 , ... , dm, find the smallest number of coins that add upton or 
indicate that the problem does not have a solution. 

10. Write a research report on one of the following well-known applications of 
dynamic programming: 
a. finding the longest common subsequence in two sequences 

b. optimal string editing 

c. minimal triangulation of a polygon 

SUMMARY 

" Dynamic programming is a technique for solving problems with overlapping 
subproblems. Typically, these subproblems arise from a recurrence relating 
a solution to a given problem with solutions to its smaller subproblems of the 
same type. Dynamic programming suggests solving each smaller subproblem 
once and recording the results in a table from which a solution to the original 
problem can be then obtained. 

" Applicability of dynamic programming to an optimization problem requires 
the problem to satisfy the principle of optimality: an optimal solution to any 
of its instances must be made up of optimal solutions to its subinstances. 

"' Computing a binomial coefficient via constructing the Pascal triangle can 
be viewed as an application of the dynamic programming technique to a 
nonoptirnization problem. 
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,. Warshall's algorithm for finding the transitive closure and Floyd's algorithm 
for the all-pairs shortest -paths problem are based on the idea that can be 
interpreted as an application of the dynamic programming technique. 

,. Dynamic programming can be used for constructing an optimal binary search 
tree for a given set of keys and known probabilities of searching for them. 

"' Solving a knapsack problem by a dynamic programming algorithm exempli­
fies an application of this technique to difficult problems of combinatorial 
optimization. 

,. The memory function technique seeks to combine strengths of the top­
down and bottom-up approaches to solving problems with overlapping 
subproblems. It does this by solving, in the top-down fashion but only once, 
just necessary subproblems of a given problem and recording their solutions 
in a table. 
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