

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Introduction to The Design &
Analysis of Algorithms ~ ~

IND EDITION "
~

Anany Levitin
Villanova University

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

https://hemanthrajhemu.github.io

~~

xiv Contents

Adversary Arguments 382

Problem Reduction 383

Exercises 11.1 385

11.2 Decision Trees 386
Decision Trees for Sorting Algorithms 387

Decision Trees for Searching a Sorted Array 390

Exercises 11.2 392

11.3 P, NP, and NP-complete Problems 393
P and NP Problems 394
NP-Complete Problems 398

Exercises 11.3 401

11.4 Challenges of Numerical Algorithms 404

Exercises 11.4 411

Summary 413

12 Coping with the Limitations of Algorithm Power 415

12.1 Backtracking 416

n-Oueens Problem 417

Hamiltonian Circuit Problem 418

Subset-Sum Problem 419

General Remarks 421

Exercises 12.1 422

12.2 Branch-and-Bound 424

Assignment Problem 425

Knapsack Problem 428
Traveling Salesman Problem 430

Exercises 12.2 432

12.3 Approximation Algorithms for NP-hard Problems 434
Approximation Algorithms for the Traveling Salesman Problem 436
Approximation Algorithms for the Knapsack Problem 446

Exercises 12.3 451

12.4 Algorithms for Solving Nonlinear Equations 452

Bisection Method 454

Method of False Position 457

https://hemanthrajhemu.github.io

Newton's Method

Exercises 12.4

Summary

Epilogue

APPENDIX A

Contents XV

458

461

462

465

Useful formulas for the Analysis of Algorithms 469
Properties of Logarithms 469
Combinatorics 469
Important Summation Formulas 470
Sum Manipulation Rules 470
Approximation of a Sum by a Definite Integral 471
Floor and Ceiling Formulas 471
Miscellaneous 471

APPENDIX 18

Short Tutorial on Recurrence Relations
Sequences and Recurrence Relations
Methods for Solving Recurrence Relations
Common Recurrence Types in Algorithm Analysis

Bibliography

Hints to Exercises

Index

473
473
474
479

487

497

541

https://hemanthrajhemu.github.io

Coping with the
limitations of
Algorithm Power

Keep on the lookout for novel ideas that others have used successfully.
Your idea has to be original only in its adaptation to the problem you're
working on.

-Thomas Edison (1847-1931)

As we saw ill the previous chapter, there are problems that are difficult to
solve algorithmically. At the same time, some of them are so important that

we cannot just sigh in resignation and do nothing. This chapter outlines several
ways of dealing with such difficult problems.

Sections 12.1 and 12.2 introduce two algorithm design techniques-back­
tracking and branch-and-bound-that often make it possible to solve at least
some large instances of difficult combinatorial problems. Both strategies can be
considered an improvement over exhaustive search, discussed in Section 3.4.
Unlike exhaustive search, they construct candidate solutions one component at a
time and evaluate the partially constructed solutions: if no potential values of the
remaining components can lead to a solution, the remaining components are not
generated at all. This approach makes it possible to solve some large instances of
difficult combinatorial problems, though, in the worst case, we still face the same
curse of exponential explosion encountered in exhaustive search.

Both backtracking and branch-and-bound are based on the construction of a
state-space tree whose nodes reflect specific choices made for a solution's compo­
nents. Both techniques terminate a node as soon as it can be guaranteed that no
solution to the problem can be obtained by considering choices that correspond
to the node's descendants. The techniques differ in the nature of problems they
can be applied to. Branch-and-bound is applicable only to optimization problems
because it is based on computing a bound on possible values of the problem's ob­
jective function. Backtracking is not constrained by this demand, but more often

415

https://hemanthrajhemu.github.io

I'

I
I

416 Coping with the Limitations of Algorithm Power

than not, it applies to nonoptimization problems. The other distinction between
backtracking and branch-and-bound lies iu the order in which nodes of the state­
space tree are generated. For backtracking, this tree is usually developed depth
first (i.e., similar to DFS). Branch-and-bound can generate nodes according to
several rules; the most natural one is the so-called best -first rule explained in Sec­
tion 12.2.

Section 12.3 takes a break from the idea of solving a problem exactly. The
algorithms presented there solve problems approximately but fast. Specifically,
we consider a few approximation algorithms for the traveling salesman and knap­
sack problems. For the traveling salesman problem, we discuss basic theoretical
results and pertinent empirical data for several well-known approximation algo­
rithms. For the knapsack problem, we first introduce a greedy algorithm and then
a parametric family of polynomial-time algorithms that yield arbitrarily good ap­
proximations.

Section 12.4 is devoted to algorithms for solving nonlinear equations. After a
brief discussion of this very important problem, we examine three classic methods
for approximate root finding: the bisection method, the method of false position,
and Newton's method.

12.1 Backtracking

Throughout the book (see in particular Sections 3.4 and 11.3), we have encoun­
tered problems that require finding an element with a special property in a domain
that grows exponentially fast (or faster) with the size of the problem's input: a
Hamiltonian circuit among all permutations of a graph's vertices, the most valu­
able subset of items for an instance of the knapsack problem, and the like. We
addressed in Section 11.3 the reasons for believing that many such problems might
not be solvable in polynomial time. Also recall that we discussed in Section 3.4
how such problems can be solved, at least in principle, by exhaustive search. The
exhaustive-search technique suggests generating all candidate solutions and then
identifying the one (or the ones) with a desired property.

Backtracking is a more intelligent variation of this approach. The principal
idea is to construct solutions one component at a time and evaluate such partially
constructed candidates as follows. If a partially constructed solution can be de­
veloped further without violating the problem's constraints, it is done by taking
the first remaining legitimate option for the next component. If there is no legiti­
mate option for the next component, no alternatives for any remaining component
need to be considered. In this case, the algorithm backtracks to replace the last
component of the partially constructed solution with its next option.

It is convenient to implement this kind of processing by constructing a tree
of choices being made, called the state-space tree. Its root represents an initial
state before the search for a solution begins. The nodes of the first level in the
tree represent the choices made for the first component of a solution, the nodes
of the second level represent the choices for the second component, and so

https://hemanthrajhemu.github.io

12.1 Backtracking 417

on. A node in a state-space tree is said to be promising if it corresponds to a
partially constructed solution that may still lead to a complete solution; otherwise,
it is called nonpmmising. Leaves represent either nonpromising dead ends or
complete solutions found by the algorithm. In the majority of cases, a state­
space tree for a backtracking algorithm is constructed in the manner of depth­
first search. If the current node is promising, its child is generated by adding the
first remaining legitimate option for the next component of a solution, and the
processing moves to this child. If the current node turns out to be nonpromising,
the algorithm backtracks to the node's parent to consider the next possible option
for its last component; if there is no such option, it backtracks one more level up
the tree, and so on. Finally, if the algorithm reaches a complete solution to the
problem, it either stops (if just one solution is required) or continues searching
for other possible solutions.

n-Oueens Problem

As our first example, we use a perennial favorite of textbook writers, then-queens
problem. The problem is to place n queens on an n-by-n chessboard so that no two
queens attack each other by being in the same row or in the same column or on
the same diagonal. For n = 1, the problem has a trivial solution, and it is easy to
see that there is no solution for n = 2 and n = 3. So let us consider the four-queens
problem and solve it by the backtracking technique. Since each of the four queens
has to be placed in its own row, all we need to do is to assign a column for each
queen on the board presented in Figure 12.1.

We start with the empty board and then place queen 1 in the first possible
position of its row, which is in column 1 of row 1. Then we place queen 2, after
trying unsuccessfully colunms 1 and 2, in the first acceptable position for it, which
is square (2,3), the square in row 2 and column 3. This proves to be a dead end
because there is no acceptable position for queen 3. So, the algorithm backtracks
and puts queen 2 in the next possible position at (2,4). Then queen 3 is placed at
(3,2), which proves to be another dead end. The algorithm then backtracks all the
way to queen 1 and moves it to (1,2). Queen 2 then goes to (2,4), queen 3 to (3,1),
and queen 4 to (4,3), which is a solution to the problem. The state-space tree of
this search is shown in Figure 12.2.

2 3 4

l~
+-- queen 1

+-- queen 2

+-- queen 3

+-- queen 4

FIGURE 12.1 Board for the four-queens problem

https://hemanthrajhemu.github.io

418

X

Coping with the Limitations of Algorithm Power

0

1 5

Q Q

2/ ~ j \ 6

2 Q Q 1 Q
X

Q Q
X X X Q

/l \ l/ 4 7/
1 3 4 Q
X X X X X Q X X

Q Q

Q Q

/ j \ / i ~8
4 1 2 Q

X X X X X X
Q

Q
Q

solution

FIGURE 12.2 State-space tree of solving the four-queens problem by backtracking.
x denotes an unsuccessful attempt to place a queen in the indicated
column. The numbers above the nodes indicate the order in which the

nodes are generated.

If other solutions need to be found (how many of them are there for the four­
queens problem?), the algorithm can simply resume its operations at the leaf at
which it stopped. Alternatively, we can use the board's symmetry for this purpose.

Hamiltonian Circuit Problem
As our next example, let us consider the problem of finding a Hamiltonian circuit
in the graph in Figure 12.3a.

https://hemanthrajhemu.github.io

dead end

(a)

12.1 Backtracking

2

c
6
e

7 8
d f

dead end dead end

(b)

1
b

419

0
a

9

solution

FIGURE 12.3 (a) Graph. (b) State-space tree for finding a Hamiltonian circuit. The

numbers above the nodes of the tree indicate the order in which the
nodes are generated.

Without loss of generality, we can assume that if a Hamiltonian circuit exists,
it starts at vertex a. Accordingly, we make vertex a the root of the state-space
tree (Figure 12.3b). The first component of our future solution, if it exists, is a first
intermediate vertex of a Hamiltonian circuit to be constructed. Using the alphabet
order to break the three-way tie among the vertices adjacent to a, we select vertex
b. From b, the algorithm proceeds to c, then to d, then toe, and finally to f, which
proves to be a dead end. So the algorithm backtracks from f toe, then to d, and
then to c, which provides the first alternative for the algorithm to pursue. Going
from c toe eventually proves useless, and the algorithm has to backtrack from e
to c and then to b. From there, it goes to the vertices f, e, c, and d, from which it
can legitimately return to a, yielding the Hamiltonian circuit a, b, f, e, c, d, a. If
we wanted to find another Hamiltonian circuit, we could continue this process by
backtracking from the leaf of the solution found.

Subset-Sum Problem

As our last example, we consider the subset-sum problem: fmd a subset of a given
setS= {s1, ... , sn) of n positive integers whose sum is equal to a given positive
integer d. For example, for S = {1, 2, 5, 6, 8] and d = 9, there are two solutions: {1,
2, 6] and {1, 8]. Of course, some instances of this problem may have no solutions.

https://hemanthrajhemu.github.io

420 Coping with the Limitations of Algorithm Power

It is convenient to sort the set's elements in increasing order. So we will assume
that

The state-space tree can be constructed as a binary tree like that in Figure 12.4 for
the instanceS= (3, 5, 6, 7} and d = 15. The root of the tree represents the starting
point, with no decisions about the given elements made as yet. Its left and right
children represent, respectively, inclusion and exclusion of s1 in a set being sought.
Similarly, going to the left from a node of the first level corresponds to inclusion
of s2 , while going to the right corresponds to its exclusion, and so on. Thus, a path
from the root to a node on the ith level of the tree indicates which of the first i
numbers have been included in the subsets represented by that node.

We record the value of s', the sum of these numbers, in the node. If s' is equal
to d, we have a solution to the problem. We can either report this result and stop
or, if all the solutions need to be found, continue by backtracking to the node's
parent. If s' is not equal to d, we can terminate the node as non promising if either
of the following two inequalities holds:

with 5

8
with 6 w/o6

14 8
X with 7

14+7>15
15

solution

s' + si+! > d (the sums' is too large)

"
s' + L s j < d (the sum s' is too small).

j=i+l

0
with 3 w/o3

3 0
w/o 5 with 5

3 5
with 6 w/o6 with 6 w/o 6

9 3 11 5
w/o 7 X X X X

9+7>15 3+7<15 11+7>15 5+7<15
8
X

8<15

w/o5

0
X

0+13<15

FIGURE 12.4 Complete state-space tree of the backtracking algorithm applied to the
instance S = {3, 5, 6, 7} and d = 15 of the subset-sum problem. The
number inside a node is the sum of the elements already included in
subsets represented by the node. The inequality below a leaf indicates
the reason for its termination.

+

https://hemanthrajhemu.github.io

12.1 Backtracking 421

General Remarks

From a more general perspective, most backtracking algorithms fit the follow­
ing description. An output of a backtracking algorithm can be thought of as an
n-tuple (xt, x2 , ... , X11) where each coordinate xi is an element of some finite lin­
early ordered set S;. For example, for then-queens problem, each S; is the set
of integers (column numbers) 1 through n. The tuple may need to satisfy some
additional constraints (e.g., the nona !tacking requirements in then-queens prob­
lem). Depending on the problem, all solution tuples can be of the same length
(then-queens and the Hamiltonian circuit problem) or of different lengths (the
subset-sum problem). A backtracking algorithm generates, explicitly or implic­
itly, a state-space tree; its nodes represent partially constructed tuples with the
first i coordinates defined by the earlier actions of the algorithm. If such a tuple
(x1, x2 , ... , x;) is not a solution, the algorithm finds the next element in S;+J that
is consistent with the values of (x1, x2 , ... , x1) and the problem's constraints and
adds it to the tuple as its (i + 1)st coordinate. If such an element does not exist,
the algorithm backtracks to consider the next value of x;, and so on.

To start a backtracking algorithm, the following pseudocode can be called for
i = 0; X[l..O] represents the empty tuple.

AlGORITHM Backtrack(X[l..i])

//Gives a template of a generic backtracking algorithm
//Input: X[Li] specifies first i promising components of a solution
//Output: All the tuples representing the problem's solutions
if X[Li] is a solution write X[l..i]
else //see Problem 8 in the exercises

for each element x E S;+J consistent with X[Li] and the constraints do
X[i + 1] *-X

Backtrack(X[1..i + 1]J

Our success in solving small instances of three difficult problems earlier in
this section should not lead you to the false conclusion that backtracking is a
very efficient technique. In the worst case, it may have to generate all possible
candidates in an exponentially (or faster) growing state space of the problem at
hand. The hope, of course, is that a backtracking algorithm will be able to prune
enough branches of its state-space tree before running out of time or memory or
both. The success of this strategy is known to vary widely, not only from problem
to problem but also from one instance to another of the same problem.

There are several tricks that might help reduce the size of a state-space tree.
One is to exploit the symmetry often present in combinatorial problems. For
example, the board of then-queens problem has several symmetries so that some
solutions can be obtained from others by reflection or rotation. This implies, in
particular, that we need not consider placements of the first queen in the last l n j2j
columns, because any solution with the first queen in square (1, i), r n/21 co i con,

https://hemanthrajhemu.github.io


~~~ 1 il 1 : 
i-'i ill 

1.''•.'·'".'. I" . 'I' 

I 

422 Coping with the Limitations of Algorithm Power 

can be obtained by reflection (which?) from a solution with the first queen in 
square (1, n- i + 1). This observation cuts the size of the tree by about half. 
Another trick is to preassign values to one or more components of a solution, 
as we did in the Hamiltonian circuit example. Data presorting in the subset -sum 
example demonstrates potential benefits of yet another opportunity: rearrange 
data of an instance given. 

It would be highly desirable to be able to estimate the size of the state-space 
tree of a backtracking algorithm. As a rule, this is too difficult to do analytically, 
however. Knuth [Knu75] suggested generating a random path from the root to 
a leaf and using the information about the number of choices available during 
the path generation for estimating the size of the tree. Specifically, let c1 be the 
number of values of the first component x1 that are consistent with the problem's 
constraints. We randomly select one of these values (with equal probability llct) 
to move to one of the root's c1 children. Repeating this operation for cz possible 
values for x2 that are consistent with x1 and the other constraints, we move to one 
of the c2 children of that node. We continue this process until a leaf is reached 
after randomly selecting values for x1, x2, ... , x,. By assuming that the nodes on 
level i has ci children on average, we estimate the number of nodes in the tree as 

Generating several such estimates and computing their average yields a useful 
estimation of the actual size of the tree, although the standard deviation of this 
random variable can be large. 

In conclusion, three things on behalf of backtracking need to be said. First, it 
is typically applied to difficult combinatorial problems for which no efficient algo­
rithms for finding exact solutions possibly exist. Second, unlike the exhaustive­
search approach, which is doomed to be extremely slow for all instances of a 
problem, backtracking at least holds a hope for solving some instances of nontriv­
ial sizes in an acceptable amount of time. This is especially true for optimization 
problems, for which the idea of backtracking can be further enhanced by evaluat­
ing the quality of partially constructed solutions. How this can be done is explained 
in the next section. Third, even if backtracking does not eliminate any elements 
of a problem's state space and ends up generating all its elements, it provides a 
specific technique for doing so, which can be of value in its own right. 

-----Exercises 12.1 ---------------

1. a. Continue the backtracking search for a solution to the four-queens prob­
lem, which was started in this section, to find the second solution to the 
problem. 

b. Explain how the board's symmetry can be used to find the second solution 
to the four-queens problem. 

https://hemanthrajhemu.github.io



12.1 Backtracking 423 

2. a. Which is the last solution to the five-queens problem found by the back­
tracking algorithm? 

b. Use the board's symmetry to find at least four other solutions to the 
problem. 

3. a. Implement the backtracking algorithm for the n-queens problem in the 
language of your choice. Run your program for a sample of n values to 
get the numbers of nodes in the algorithm's state-space trees. Compare 
these numbers with the numbers of candidate solutions generated by the 
exhaustive-search algorithm for this problem. 

b. For each value of n for which you run your program in part (a), estimate 
the size of the state-space tree by the method described in Section 12.1 and 
compare the estimate with the actual number of nodes you obtained. 

4. Apply backtracking to the problem of finding a Hamiltonian circuit in the 
following graph. 

c e 

5. Apply backtracking to solve the 3-coloring problem for the graph in Figure 
12.3a. 

6. Generate all permutations of {1, 2, 3, 4] by backtracking. 

7. a. Apply backtracking to solve the following instance of the subset-sum prob­
lem: S = {1, 3, 4, 5] and d = 11. 

b. Will the backtracking algorithm work correctly if we use just one of the 
two inequalities to terminate a node as nonpromising? 

8. The general template for backtracking algorithms, which was given in Section 
11.1, works correctly only if no solution is a prefix to another solution to the 
problem. Change the pseudocode to work correctly for such problems as well. 

9. Write a program implementing a backtracking algorithm for 
a. the Hamiltonian circuit problem. 

b. them-coloring problem. 

10. Puzzle pegs Tills puzzle-like game is played on a triangular board with 15 
small holes arranged in an equilateral triangle. In an initial position, all but 
one of the holes are occupied by pegs, as in the example shown below. A legal 
move is a jump of a peg over its immediate neighbor into an empty square 
opposite; the jump removes the jumped-over neighbor from the board. 

https://hemanthrajhemu.github.io



424 Coping with the Limitations of Algorithm Power 

Design and implement a backtracking algorithm for solving the following 
versions of this puzzle. 
a. Starting with a given location of the empty hole, find a shortest sequence 

of moves that eliminates 14 pegs with no limitations on the final position 
of the remaining peg. 

b. Starting with a given location of the empty hole, find a shortest sequence 
of moves that eliminates 14 pegs with the remaining one at the empty hole 
of the initial board. 

12 Branch-and-Bound 

Recall that the central idea of backtracking, discussed in the previous section, is 
to cut off a branch of the problem's state-space tree as soon as we can deduce 
that it cannot lead to a solution. This idea can be strengthened further if we 
deal with an optimization problem, one that seeks to minimize or maximize 
an objective function, usually subject to some constraints (a tour's length, the 
value of items selected, the cost of an assignment, and the like). Note that in 
the standard terminology of optimization problems, a feasible solution is a point 
in the problem's search space that satisfies all the problem's constraints (e.g., a 
Hamiltonian circuit in the traveling salesman problem or a subset of items whose 
total weight does not exceed the knapsack's capacity in the knapsack problem), 
while an optimal solution is a feasible solution with the best value of the objective 
function (e.g., the shortest Hamiltonian circuit or the most valuable subset ofitems 
that fit the knapsack). 

Compared to backtracking, branch-and-bound requires two additional items: 

" a way to provide, for every node of a state-space tree, a bound on the best 
value of the objective function1 on any solution that can be obtained by adding 
further components to the partially constructed solution represented by the 
node 

" the value of the best solution seen so far 

1. This bound should be a lower bound for a minimization problem and an upper bound for a maximiza­
tion problem. 

'i 
i 

https://hemanthrajhemu.github.io



12.2 Branch-and-Bound 425 

If this information is available. we can compare a node's bound value with the 
value of the best solution seen so far: if the bound value is not better than the best 
solution seen so far-i.e., not smaller for a minimization problem and not larger 
for a maximization problem-the node is nonpromising and can be terminated 
(some people say the branch is "pruned") because no solution obtained from it 
can yield a better solution than the one already available. This is the principal idea 
of the branch-and-bound technique. 

In general, we terminate a search path at the current node in a state-space 
tree of a branch-and-bound algorithm for any one of the following three reasons: 

"' The value of the node's bound is not better than the value of the best solution 
seen so far. 

"' The node represents no feasible solutions because the constraints of the 
problem are already violated. 

" The subset of feasible solutions represented by the node consists of a single 
point (and hence no further choices can be made )-in this case we compare 
the value of the objective function for this feasible solution with that of the 
best solution seen so far and update the latter with the former if the new 
solution is better. 

Assignment Problem 

Let us illustrate the branch-and-bound approach by applying it to the problem o£ 
assigning n people to n jobs so that the total cost of the assignment is as small 
as possible. We introduced this problem in Section 3.4, where we solved it by 
exhaustive search. Recall that an instance of the assignment problem is specified 
by an n-by-n cost matrix C so that we can state the problem as follows: select one 
element in each row of the matrix so that no two selected elements are in the 
same column and their sum is the smallest possible. We will demonstrate how this 
problem can be solved using the branch-and-bound technique by considering the 
same small instance we investigated in Section 3.4: 

job 1 job2 job 3 job 4 

c{ 2 7 

ll 
person a 

4 3 person b 
5 8 1 person c 
7 6 9 person d 

How can we find a lower bound on the cost of an optimal selection without 
actually solving the problem? We can do this by several methods. For example, it 
is clear that the cost of any solution, including an optimal one, cannot be smaller 
than the sum of the smallest elements in each of the matrix's rows. For the instance 
here, this sum is 2 + 3 + 1 + 4 = 10. It is important to stress that this is not the cost 
of any legitimate selection (3 and 1 came from the same column of the matrix); 
it is just a lower bound on the cost of any legitimate selection. We can and will 

https://hemanthrajhemu.github.io



426 Coping with the Limitations of Algorithm Power 

apply the same thinking to partially constructed solutions. For example, for any 
legitimate selection that selects 9 from the first row, the lower bound will be 
9+3+1+4=17. 

One more comment is in order before we embark on constructing the prob­
lem's state-space tree. It deals with the order in which the tree's nodes will be 
generated. Rather than generating a single child of the last promising node as 
we did in backtracking, we will generate all the children of the most promising 
node among nonterminated leaves in the current tree. (Nonterrninated, i.e., still 
promising, leaves are also called live.) How can we tell which of the nodes is most 
promising? We can do this by comparing the lower bounds of the live nodes. It 
is sensible to consider a node with the best bound as most promising, although 
this does not, of course, preclude the possibility that an optimal solution will ul­
timately belong to a different branch of the state-space tree. This variation of the 
strategy is called the best-first branch-and-bound. 

Returning to the instance of the assignment problem given earlier, we start 
with the root that corresponds to no elements selected from the cost matrix. As 
we already discussed, the lower-bound value for the root, denoted lb, is 10. The 
nodes on the first level of the tree correspond to selections of an element in the 
first row of the matrix, i.e., a job for person a (Figure 12.5). 

So we have four live leaves (nodes 1 through 4) that may contain an optimal 
solution. The most promising of them is node 2 because it has the smallest lower­
bound value. Following our best-first search strategy, we branch out from that 
node first by considering the three different ways of selecting an element from the 
second row and not in the second column-the three different jobs that can be 
assigned to person b (Figure 12.6). 

Of the six live leaves (nodes 1, 3, 4, 5, 6, and 7) that may contain an optimal 
solution, we again choose the one with the smallest lower bound, node 5. First, we 

0 

start 

3 
a -> 3 

FIGURE 12.5 Levels 0 and 1 of the state-space tree for the instance of the assignment 
problem being solved with the best-first branch-and-bound algorithm. The 
number above a node shows the order in which the node was generated. 
A node's fields indicate the job number assigned to person a and the 
lower bound value, lb, for this node. 

+ 

https://hemanthrajhemu.github.io



12.2 Branch-and-Bound 427 

FIGURE 12.6 Levels 0, 1, and 2 of the state-space tree for the instance of the assignment 

problem being solved with the best-first branch-and-bound algorithm 

consider selecting the third column's element from c's row (i.e., assigning person 
c to job 3); this leaves us with no choice but to select the element from the fourth 
column of d's row (assigning person d to job 4). This yields leaf 8 (Figure 12.7), 
which corresponds to the feasible solution {a-> 2, b-> 1, c-> 3, d-> 4] with the 
total cost of 13. Its sibling, node 9, corresponds to the feasible solution {a -> 2, 
b-> 1, c-> 4, d-> 3} with the total cost of 25. Since its cost is larger than the cost 

8 9 
c~3 c---74 

d-->4 d--.3 

cost=13 cost= 25 

solution inferior solution 

FIGURE 12.7 Complete state-space tree for the instance of the assignment problem 
solved with the best-first branch-and-bound algorithm 

https://hemanthrajhemu.github.io



428 Coping with the Limitations of Algorithm Power 

of the solution represented by leaf 8, node 9 is simply terminated. (Note that if 
its cost were smaller than 13, we would have to replace the information about the 
best solution seen so far with the data provided by this node.) 

Now, as we inspect each of the live leaves of the last state-space tree (nodes 
1, 3, 4, 6, and 7 in Figure 12.7), we discover that their lower-bound values are 
not smaller than 13, the value of the best selection seen so far (leaf 8). Hence, 
we terminate all of them and recognize the solution represented by leaf 8 as the 
optimal solution to the problem. 

Before we leave the assignment problem, we have to remind ourselves again 
that, unlike for our next examples, there is a polynomial-time algorithm for this 
problem called the Hungarian method (e.g., [Pap82]). In the light of this efficient 
algorithm, solving the assignment problem by branch-and-bound should be con­
sidered a convenient educational device rather than a practical recommendation. 

Knapsack Problem 

Let us now discuss how we can apply the branch-and-bound technique to solving 
the knapsack problem. This problem was introduced in Section 3.4: given 11 items 
of known weights w1 and values v1, i = 1, 2, ... , 11, and a knapsack of capacity W, 
find the most valuable subset of the items that fit in the knapsack. It is convenient 
to order the items of a given instance in descending order by their value-to-weight 
ratios. Then the first item gives the best payoff per weight unit and the last one 
gives the worst payoff per weight unit, with ties resolved arbitrarily: 

It is natural to structure the state-space tree for this problem as a binary tree 
constructed as follows (Figure 12.8). Each node on the ith level of this tree, 0 s 
i s 11, represents all the subsets of n items that include a particular selection made 
from the first i ordered items. This particular selection is uniquely determined 
by the path from the root to the node: a branch going to the left indicates the 
inclusion of the next item, while a branch going to the right indicates its exclusion. 
We record the total weight w and the total value v of this selection in the node, 
along with some upper bound ub on the value of any subset that can be obtained 
by adding zero or more items to this selection. 

A simple way to compute the upper bound ub is to add to v, the total value of 
the items already selected, the product of the remaining capacity of the knapsack 
W - w and the best per unit payoff among the remaining items, which is v1+1/ w1+l: 

(12.1) 

As a specific example, let us apply the branch-and-bound algorithm to the 
same instance of the knapsack problem we solved in Section 3.4 by exhaustive 
search. (We reorder the items in descending order of their value-to-weight ratios, 
though.) 

https://hemanthrajhemu.github.io



with 2 

12.2 Branch-and-Bound 429 

item weight value 
value 

weight 

1 4 $40 10 
2 7 $42 6 
3 5 $25 5 The knapsack's capacity W is 10. 
4 3 $12 4 

At the root of the state-space tree (see Figure 12.8), no items have been 
selected as yet. Hence, both the total weight o£ the items already selected w and 
their total value v are equal to 0. The value of the upper bound computed by 
formula (12.1) is $100. Node 1, the left child of the root, represents the subsets 
that include item 1. The total weight and value of the items already included are 4 

with 3 

5 
W= 9, V= 65 

ub= 69 

with 1 

w/o2 

4 
W=4, V=40 

ub = 70 

w/o3 

inferior to node 8 

optimal solution 

w/o 1 

inferior to 
node 8 

FIGURE 12.8 State-space tree of the branch-and-bound algorithm for the instance of 
the knapsack problem 

https://hemanthrajhemu.github.io



430 Coping with the Limitations of Algorithm Power 

and $40, respectively; the value of the upper bound is 40 + (10- 4) * 6 ~ $76. 
Node 2 represents the subsets that do not include item 1. Accordingly, w = 0, 
v = $0, and ub ~ 0 + (10- 0) * 6 ~ $60. Since node 1 has a larger upper bound than 
the upper bound of node 2, it is more promising for this maximization problem, 
and we branch from node 1 first. Its children-nodes 3 and 4-represent subsets 
with item 1 and with and without item 2, respectively. Since the total weight w 
of every subset represented by node 3 exceeds the knapsack's capacity, node 3 
can be terminated immediately. Node 4 has the same values of w and v as its 
parent; the upper bound ub is equal to 40 + (10- 4) * 5 ~ $70. Selecting node 4 
over node 2 for the next branching (why?), we get nodes 5 and 6 by respectively 
including and excluding item 3. The total weights and values as well as the upper 
bounds for these nodes are computed in the same way as for the preceding nodes. 
Branching from node 5 yields node 7, which represents no feasible solutions, and 
node 8, which represents just a single subset (1, 3). (As there are no additional 
items to consider, the upper bound for node 7 is simply equal to the total value of 
these two items.) The remaining live nodes 2 and 6 have smaller upper-bound 
values than the value of the solution represented by node 8. Hence, both can 
be terminated making the subset (1, 3) of node 8 the optimal solution to the 

problem. 
Solving the knapsack problem by a branch-and-bound algorithm has a rather 

unusual characteristic. Typically, internal nodes of a state-space tree do not define 
a point of the problem's search space, because some of the solution's components 
remain undefined. (See, for example, the branch-and-bound tree for the assign­
ment problem discussed in the preceding subsection.) For the knapsack problem, 
however, every node of the tree represents a subset of the items given. We can use 
this fact to update the information about the best subset seen so far after gener­
ating each new node in the tree. If we had done this for the instance investigated 
above, we could have terminated nodes 2 and 6 before node 8 was generated, 
because they both are inferior to the subset of value $65 of node 5. 

Traveling Salesman Problem 
We will be able to apply the branch-and-bound technique to instances of the 
traveling salesman problem if we come up with a reasonable lower bound on tour 
lengths. One very simple lower bound can be obtained by finding the smallest 
element in the intercity distance matrix D and multiplying it by the number of 
cities n. But there is a less obvious and more informative lower bound, which 
does not require a lot of work to compute. It is not difficult to show (Problem 8 
in Exercises 12.2) that we can compute a lower bound on the length l of any tour 
as follows. For each city i, 1 ::: i ::: n, find the sums; of the distances from city i to 
the two nearest cities; compute the sum s of these n numbers; divide the result by 
2; and, if all the distances are integers, round up the result to the nearest integer: 

lb= [s/21- (12,2) 

https://hemanthrajhemu.github.io



~ 

I 
8 

(a) 

3 

8 
a, b, c, d, 

(e, a) 

I= 24 

9 

12.2 Branch-and-Bound 

a, b, d, e, 
(c, a) 

I= 16 
first tour better tour inferior tour optimal tour 

(b) 

431 

FIGURE 12.9 (a) Weighted graph. (b) State-space tree of the the branch-and-bound 

algorithm to find the shortest Hamiltonian circuit in this graph. The list of 
vertices in a node specifies a beginning part of the Hamiltonian circuits 
represented by the node. 

For example, for the instance in Figure 12.9a, formula (12.2) yields 

lb = rw + 3) + 13 + 6) + 11 + 2) + 13 + 4J + 12 + 3JJ/21 = 14. 

Moreover, for any subset of tours that must include particular edges of a given 
graph, we can modify lower bound (12.2) accordingly. For example, for all the 
Hamiltonian circuits of the graph in Figure 12.9a that must include edge (a, d), we 
get the following lower bound by summing the lengths of the two shortest edges 
incident with each of the vertices, with the required inclusion of edges (a, d) and 
(d, a): 

r[(l+ 5) + (3 + 6) + (1+ 2) + (3 + 5) + (2 + 3)]/21 = 16. 

We now apply the branch-and-bound algorithm, with the bounding function 
given by formula (12.2), to find the shortest Hamiltonian circuit for the graph in 
Figure 12.9a. To reduce the amount of potential work, we take advantage of two 
observations made in Section 3.4. First, without loss of generality, we can consider 
only tours that start at a. Second) because our graph is undirected, we can generate 

https://hemanthrajhemu.github.io



I 

432 Coping with the Limitations of Algorithm Power 

only tours in which b is visited before c. In addition, after visiting n - 1 = 4 cities, 
a tour has no choice but to visit the remaining unvisited city and return to the 
starting one. The state-space tree tracing the algorithm's application is given in 
Figure 12.9b. 

The comments we made at the end of the preceding section about the strengths 
and weaknesses of backtracking are applicable to branch-and-bound as well. To 
reiterate the main point: these state-space tree techniques enable us to solve 
many large instances of difficult combinatorial problems. As a rule, however, it is 
virtually impossible to predict which instances will be solvable in a realistic amount 
of time and which will not. 

Incorporation of additional information, such as a symmetry of a game's 
board, can widen the range of solvable instances. Along this line, a branch-and­
bound algorithm can be sometimes accelerated by a knowledge of the objective 
function's value of some nontrivial feasible solution. The information might be 
obtainable-say, by exploiting specifics of the data or even, for some problems, 
generated randomly-before we start developing a state-space tree. Then we can 
use such a solution immediately as the best one seen so far rather than waiting for 
the branch-and-bound processing to lead us to the first feasible solution. 

In contrast to backtracking, solving a problem by branch-and-bound has 
both the challenge and opportunity of choosing an order of node generation and 
finding a good bounding function. Though the best-first rule we used above is a 
sensible approach, it may or may not lead to a solution faster than other strategies. 
(The branch of computer science called artificial intelligence (AI) is particularly 
interested in different strategies for developing state-space trees.) 

Finding a good bounding function is usually not a simple task. On the one 
hand, we want this function to be easy to compute. On the other hand, it cannot 
be too simplistic-otherwise, it would fail in its principal task to prune as many 
branches of a state-space tree as soon as possible. Striking a proper balance be­
tween these two competing requirements may require intensive experimentation 
with a wide variety of instances of the problem in question. 

-----Exercises 12 

1. What data structure would you use to keep track of live nodes in a best-first 
branch-and-bound algorithm? 

2. Solve the same instance of the assignment problem as the one solved in 
the section by the best-first branch-and-bound algorithm with the bounding 
function based on matrix columns rather than rows. 

3. a. Give an example of the best-case input for the branch-and-bound algo­
rithm for the assigmnent problem. 

https://hemanthrajhemu.github.io



~ 
I I 12.2 Branch-and-Bound 433 

b. In the best case, how many nodes will be in the state-space tree of the 
branch-and-bound algorithm for the assignment problem? 

4. Write a program for solving the assignment problem by the branch-and-bound 
algorithm. Experiment with your program to determine the average size of 
the cost matrices for which the problem is solved in under one minute on 
your computer. 

5. Solve the following instance of the knapsack problem by the branch-and­
bound algorithm. 

item 

1 
2 

3 

4 

weight 

10 

7 

8 

4 

value 

$100 
$63 

$56 

$12 

W=16 

6. a. Suggest a more sophisticated bounding function for solving the knapsack 
problem than the one used in the section. 

b. Use your bounding function in the branch-and-bound algorithm applied 
to the instance of Problem 5. 

7. Write a program to solve the knapsack problem with the branch-and-bound 
algorithm. 

8. a. Prove the validity of the lower bound given by formula (12.2) for instances 
of the traveling salesman problem with symmetric matrices of integer 
intercity distances. 

b. How would you modify lower bound (12.2) for nonsymmetric distance 
matrices? 

9. Apply the branch-and-bound algorithm to solve the traveling salesman prob­
lem for the following graph. 

2 a )--....C.---{b 

5 
8 7 

3 

c)-----{d 

(We solved this problem by exhaustive search in Section 3.4.) 

https://hemanthrajhemu.github.io



434 Coping with the Limitations of Algorithm Power 

10. As a research project, write a report on how state-space trees are used for 
programming such games as chess, checkers, and tic-tac-toe. The two principal 
algorithms you should read about are the minimax algorithm and alpha-beta 
pruning. 

12 Approximation Algorithms for 
NP-hard Problems 

In this section, we discuss a different approach to handling difficult problems of 
combinatorial optimization, such as the traveling salesman problem and the knap­
sack problem. As we pointed out in Section 11.3, the decision versions of these 
problems are NP-complete. The optimization versions of such difficult combina­
torial problems fall in the class of NP-hard problems-problems that are at least 
as hard as NP-complete problems2 Hence, there are no known polynomial-time 
algorithms for these problems, and there are serious theoretical reasons to be­
lieve that such algorithms do not exist. What then are our options for handling 
such problems, many of which are of significant practical importance? 

If an instance of the problem in question is very small, we might be able to 
solve it by an exhaustive-search algorithm (Section 3.4). Some such problems can 
be solved by the dynamic programming technique as demonstrated in Section 
8.4. But even when this approach works in principle, its practicality is limited by 
dependence on the instance parameters being relatively small. The discovery of 
the branch-and-bound technique has proved to be an important breakthrough, 
because this technique makes it possible to get solutions to many large instances 
of difficult problems of combinatorial optimization in an acceptable amount of 
time. However, such good performance cannot usually be guaranteed. 

There is a radically different way of dealing with difficult optimization prob­
lems: solve them approximately by a fast algorithm. This approach is particularly 
appealing for applications where a good but not necessarily optimal solution will 
suffice. Besides, in real-life applications, we often have to operate with inaccurate 
data to begin with. Under such circumstances, going for an approximate solution 
can be a particularly sensible choice. 

Although approximation algorithms run a gamut in level of sophistication, 
most of them are based on some problem-specific heuristic. A heuristic is a 
common-sense rule drawn from experience rather than from a mathematically 
proved assertion. For example, going to the nearest unvisited city in the traveling 

2. The notion of an NP-hard problem can be defined more formally by extending the notion of polynomial 
reducability to problems that arc not necessarily in class NP, including optimization problems of the 
type discussed in this section (see [Gar79], Chapter 5). 

https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP-hard Problems 435 

salesman problem is a good illustration of this notion. We discuss an algorithm 
based on this heuristic later in this section. 

Of course, if we use an algorithm whose output is just an approximation of the 
actual optimal solution, we would like to know how accurate this approximation 
is. We can quantify the accuracy of an approximate solution sa to a problem 
minimizing some function f by the size of the relative error of this approximation 

re(sa) = f(sa)- f(s*), 
f(s*) 

where s* is an exact solution to the problem. Alternatively, smce re(sc) = 
f(s0 )/f(s'') -1, we can simply use the accuracy ratio 

r(s ) = f(sa) 
a f(s*) 

as a measure of accuracy of sa· Note that for the sake of scale uniformity, the 
accuracy ratio of approximate solutions to maximization problems is often com­
puted as 

r(sa) = f(s') 
f(sa) 

to make this ratio greater than or equal to 1, as it is for minimization problems. 
Obviously, the closer r(s0 ) is to 1, the better the approximate solution is. 

For most instances, however, we cannot compute the accuracy ratio, because we 
typically do not know .f(s*), the true optimal value of the objective function. 
Therefore, our hope should lie in obtaining a good upper bound on the values 
of r(s0 ). This leads to the following definition. 

DEFINITION A polynomial-time approximation algorithm is said to be a c­
approximation algorithm, where c::: 1, if the accuracy ratio of the approximation 
it produces does not exceed c for any instance of the problem in quesiton: 

(12.3) 

The best (i.e., the smallest) value of c for which inequality (12.3) holds for all 
instances of the problem is called the peiformance ratio of the algorithm and 
denoted RA· 

The performance ratio serves as the principal metric indicating the quality of 
the approximation algorithm. We would like to have approximations algorithms 
with RA as close to 1 as possible. Unfortunately, as we shall see, some approxima­
tion algorithms have infinitely large performance ratios (RA = oo). This does not 
necessarily rule out using such algorithms, but it does call for a cautious treatment 
of their outputs. 

There are two important facts about difficult problems of combinatorial opti­
mization worth keeping in mind. First, although the difficulty level of solving most 

https://hemanthrajhemu.github.io



. 

}, .. I. I 

n.l': 
I 

I 
436 Coping with the Limitations of Algorithm Power 

such problems exactly is the same to within a polynomial-time transformation of 
one problem to another, this equivalence does not translate into the realm of ap­
proximation algorithms. Finding approximate solutions with a reasonable level of 
accuracy is much easier for some of these problems than for the others. Second, 
some of the problems have special classes of instances that are both particularly 
important for real-life applications and easier to solve than their general counter­
parts. The traveling salesman problem is a prime example of this situation. 

Approximation Algorithms for the Traveling Salesman 
Problem 

We solved the traveling salesman problem by exhaustive search in Section 3.4, 
mentioned its decision version as one of the most well-known NP-complete prob­
lems in Section 11.3, and saw how its instances can be solved by a branch-and­
bound algorithm in Section 12.2. Here, we consider several approximation al­
gorithms, a small sample of dozens of such algorithms suggested over the years 
for this famous problem. (For a much more detailed discussion of the topic, see 
[Law85], [Hoc97], [Joh97], and [Gut02].) 

But first let us answer the question of whether we should hope to find a 
polynomial-time approximation algorithm with a finite performance ratio on all 
instances of the traveling salesman problem. As the following theorem [Sah76] 
shows, the answer turns out to be no, unless P = N P. 

THEOREM 1 If P i" NP, there exists no c-approximation algorithm for the 
traveling salesman problem, i.e., there exists no polynomial-time approximation 
algorithm for this problem so that for all instances 

f(s") :" cf(s') 

for some constant c. 

PROOF By way of contradiction, suppose that such an approximation algorithm 
A and a constant e exist. (Without loss of generality, we can assume that e is a 
positive integer.) We will show that this algorithm could then be used for solving 
the Hamiltonian circuit problem in polynomial time. We will take advantage of 
a variation of the transformation used in Section 11.3 to reduce the Hamiltonian 
circuit problem to the traveling salesman problem. Let G be an arbitrary graph 
with n vertices. We map G to a complete weighted graph G' by assigning weight 
1 to each edge in G and adding an edge of weight en + 1 between each pair of 
vertices not adjacent in G. If G has a Hamiltonian circuit, its length in G' is 
n; hence, it is the exact solution s' to the traveling salesman problem for G'. 
Note that if s" is an approximate solution obtained for G' by algorithm A, then 
f(s") :"en by the assumption. If G does not have a Hamiltonian circuitinG, the 
shortest tour in G' will contain at least one edge of weight en + 1, and hence 
f(sa)?: f(s') >en. Taking into account the two derived inequalities, we could 

https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP.!nard Problems 437 

a )----"---{ b 

6 2 
3 3 

dl-----{c 

FIGURE 12.10 Instance of the traveling salesman problem for illustrating the nearest­
neighbor algorithm. 

solve the Hamiltonian circuit problem for graph Gin polynomial time by mapping 
G toG', applying algorithm A to get tour sa in G'. and comparing its length with en. 
Since the Hamiltonian circuit problem is NP-complete, we have a contradiction 
unless P = NP. llil 

Nearest-neighbor algorithm 

The following simple greedy algorithm is based on the nearest-neighbor heuristic: 
the idea of always going to the nearest unvisited city next. 

Step 1 Choose an arbitrary city as the start. 

Step 2 Repeat the following operation until all the cities have been visited: 
go to the unvisited city nearest the one visited last (ties can be broken 
arbitrarily). 

Step 3 Return to the starting city. 

EXAMPLE 1 For the instance represented by the graph in Figure 12.10, with a as 
the starting vertex, the nearest -neighbor algorithm yields the tour (Hamiltonian 
circuit) sa: a - b - c- d -a of length 10. 

The optimal solution, as can be easily checked by exhaustive search, is the tour 
s': a - b- d- c -a oflength 8. Thus, the accuracy ratio of this approximation is 

r(s ) = /(sa) = 10 = 1.25 
a f(s') 8 

(i.e., tour sa is 25% longer than the optimal tours'). • 
Unfortunately, except for its simplicity, not many good things can be said 

about the nearest-neighbor algorithm. In particular, nothing can be said in general 
about the accuracy of solutions obtained by this algorithm because it can force us 
to traverse a very long edge on the last leg of the tour. Indeed, if we change the 
weight of edge (a, d) from 6 to an arbitrary large number w 2: 6 in Example 1, 
the algorithm will still yield the tour a - b- c- d- a of length 4 + w, while the 

https://hemanthrajhemu.github.io



438 Coping with the Limitations of Algorithm Power 

optimal solution will still be a - b - d - c - a of length 8. Hence, 

r(s ) = f(sa) = 4 + w, 
" f(s*) 8 

which can be made as large as we wish by choosing an appropriately large value 
of w. Hence, RA = oo for this algorithm (as it should be according to Theorem 1). 

Another natural greedy algorithm for the traveling salesman problem consid­
ers it as the problem of finding a minimum-weight collection of edges in a given 
complete weighted graph so that all the vertices have degree 2. (With this empha­
sis on edges rather than vertices, what other greedy algorithm does it remind you 
of?) An application of the greedy technique to this problem leads to the following 
algorithm [Ben90]. 

Multifragment-heuristic algorithm 

Step 1 Sort the edges in increasing order of their weights. (Ties can be broken 
arbitrarily.) Initialize the set of tour edges to be constructed to the 
empty set. 

Step 2 Repeat this step until a tour of length n is obtained, where n is the 
number of cities in the instance being solved: add the next edge on the 
sorted edge list to the set of tour edges, provided this addition does not 
create a vertex of degree 3 or a cycle of length less than n; otherwise, 
skip the edge. 

Step 3 Return the set of tour edges. 

As an example, applying the algorithm to the graph in Figure 12.10 yields 
[(a, b), (c, d), (b, c), (a, d)}. Thissetofedgesformsthesametourastheonepro­
duced by the nearest-neighbor algorithm. In general, the multifragment-heuristic 
algorithm tends to produce significantly better tours than the nearest-neighbor 
algorithm, as we are going to see from the experimental data quoted at the end of 
this section. But the performance ratio of the multifragment-heuristic algorithm 
is also unbounded, of course. 

There is, however, a very important subset of instances, called Euclidean, for 
which we can make a nontrivial assertion about the accuracy of both the nearest­
neighbor and mutifragment-heuristic algorithms. These are the instances in which 
intercity distances satisfy the following natural conditions: 

" triangle inequality 
d[i, j] :s d[i, k] + d[k, j] for any triple of cities i, j, and k 
(the distance between cities i and j cannot exceed the length of a two-leg path 
from i to some intermediate city k to j); 

11 symmetry 
d[i, j] = d[j, i] for any pair of cities i and j 
(the distance from ito j is the same as the distance from j to i). 

https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP-hard Problems 439 

A substantial majority of practical applications of the traveling salesman prob­
lem are its Euclidean instances. They include, in particular, geometric ones, where 
cities correspond to points in the plane and distances are computed by the standard 
Euclidean formula. Although the performance ratios of the nearest-neighbor and 
multifragment-heuristics algorithms remain unbounded on Euclidean instances, 
their accuracy ratios satisfy the following inequality for any such instance with 
n ~ 2 cities: 

f(sa) 1 
-- < -(flog2 nl + 1), 
f(s') - 2 

where f(sa) and f(s*) are the lengths of the heuristic tour and shortest tour, 
respectively (see [Ros77] and [Ong84]). 

Minimum-spanning-tree-based algorithms There are approximation algor­
ithms for the traveling salesman problem that exploit a connection between 
Hamiltonian circuits and spanning trees of the same graph. Since removing an 
edge from a Hamiltonian circuit yields a spanning tree, we can expect that the 
structure of a minimum spanning tree provides a good basis for constructing a 
shortest tour approximation. Here is an algorithm that implements this idea in a 
rather straightforward fashion. 

Twice-around-the-tree algorithm 

Step 1 Construct a minimum spanning tree of the graph corresponding to a 
given instance of the traveling salesman problem. 

Step 2 Starting at an arbitrary vertex, perform a walk around the minimum 
spanning tree recording all the vertices passed by. (This can be done 
by a DFS traversal.) 

Step 3 Scan the vertex list obtained in Step 2 and eliminate from it all repeated 
occurrences of the same vertex except the starting one at the end of 
the list. (This step is equivalent to making shortcuts in the walk.) The 
vertices remaining on the list will form a Hamiltonian circuit, which is 
the output of the algorithm. 

EXAMPLE 2 Let us apply this algorithm to the graph in Figure 12.1la. The 
minimum spanning tree of this graph is made up of edges (a, b), (b, c), (b, d), 
and (d, e) (Fig. 12.1lb ). A twice-around-the-tree walk that starts and ends at a is 

a, b, c, b, d, e, d, b, a. 

Eliminating the second b (a shortcut from c to d), the second d, and the third b (a 
shortcut from e to a) then yields the Hamiltonian circuit 

a, b, c, d, e, a 

of length 39. 

https://hemanthrajhemu.github.io



440 Coping with the Limitations of Algorithm Power 

a ----------- e 

8 11 

6 10 

c 

(a) (b) 

FIGURE 12.11 Illustration of the twice-around-the-tree algorithm. (a) Graph. (b) Walk 
around the minimum spanning tree with the shortcuts. 

The tour obtained in Example 2 is not optimal. Although that instance is small 
enough to find an optimal solution by either exhaustive search or branch-and­
bound, we refrained from doing so to reiterate a general point. As a rule, we do 
uot know what the length of an optimal tour actually is, and therefore we cannot 
compute the accuracy ratio .f(sa)/ f(s'). For the twice-around-the-tree algorithm, 
we can at least estimate it above, provided the graph is Euclidean. 

THEOREM 2 The twice-around-the-tree algorithm is a 2-approximation algo­
rithm for the traveling salesman problem with Euclidean distances. 

PROOF Obviously, the twice-around-the-tree algorithm is polynomial time if we 
use a reasonable algorithm such as Prim's or Kruskal's in Step 1. We need to show 
that for any Euclidean instance of the traveling salesman problem, the length of a 
tour sa obtained by the twice-around-the-tree algorithm is at most twice the length 
of the optimal tour s*; that is, 

f(sa) :":: 2f(s*). 

Since removing any edge from s* yields a spanning tree T of weight w(T), which 
must be greater than or equal to the weight of the graph's minimum spanning tree 
w(T*), we get the inequality 

.f(s*) > w(T) ": w(T'). 

This inequality implies that 

2.f(s') > 2w(T*) = the length of the walk obtained in Step 2 of the algorithm. 

--, 
! 

https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP-hard Problems 441 

The possible shortcuts outlined in Step 3 of the algorithm to obtaiu sa cannot 
iucrease the total length of the walk in a Euclidean graph; that is, 

the length of the walk obtained in Step 2 2: the length of the tour sa. 

Combining the last two iuequalities, we get the inequality 

2f(s'') > f(sa), 

which is, in fact, a slightly stronger assertion than the one we needed to prove. 
11!1 

Christofides algorithm There is an approximation algorithm with a better per­
formance ratio for the Euclidean traveling salesman problem-the well-known 
Christofides algorithm [Chr76]. It also uses a minimum spanning tree but does 
this in a more sophisticated way than the twice-around-the-tree algorithm. Note 
that a twice-around-the-tree walk generated by the latter algorithm is an Eule­
rian circuit in the multigraph obtaiued by doubling every edge in the graph given. 
Recall that an Eulerian circuit exists in a connected multigraph if and only if all 
its vertices have even degrees. The Christofides algorithm obtains such a multi­
graph by addiug to the graph the edges of a minimum-weight matchiug of all the 
odd-degree vertices in its minimum spanning tree. (The number of such vertices 
is always even and hence this can always be done.) Then the algorithm finds an 
Eulerian circuit in the multigraph and transforms it into a Hamiltonian circuit by 
shortcuts, exactly the same way it is done in the last step of the twice-around-the­
tree algorithm. 

EXAMPLE 3 Let us trace the Christofides algorithm in Figure 12.12 on the same 
iustance (Figure 12.12a) used for tracing the.twice-around-the-tree algorithm in 
Figure 12.11. The graph's minimum spanning tree is shown iu Figure 12.12b. It has 
four odd-degree vertices: a, b, c, and e. The minimum-weight matching of these 
four vertices consists of edges (a, b) and (c, e). (For this tiny iustance, it can be 
found easily by compariug the total weights of just three alternatives: (a, b) and 
(c, e), (a, c) and (b, e), (a, e) and (b, c).) The traversal of the multigraph, startiug 
at vertex a, produces the Eulerian circuit a - b - c - e - d - b - a, which, after 
one shortcut, yields the tour a - b - c - e - d- a of length 37. 

T11e performance ratio of the Christofides algorithm on Euclidean iustances 
is 1.5 (see, e.g., [Pap82]). It tends to produce significantly better approximations 
to optimal tours than the twice-around-the-tree algorithm does iu empirical tests. 
(We quote some results of such tests at the end of this subsection.) The quality of 
a tour obtaiued by this heuristic can be further improved by optimizing shortcuts 
made on the last step of the algorithm as follows: examine the multiply-visited 
cities iu some arbitrary order and for each make the best possible shortcut. This 
enhancement would not have improved the tour a - b- c- e- d- a obtained in 

https://hemanthrajhemu.github.io



442 Coping with the Limitations of Algorithm Power 

8 11 

6 10 

c 

(a) 

' 
a e -' a e 

I 
I ' ' I ' I ' 

4 I I 
4 7 \11 4 9 7 11 

I 
I I 
I I 
I I 

' ' I 
b d I b d 

8 I 
I 

I 

' 6 / 6 
c ------- c 

(b) (c) 

FIGURE 12.12 Application of the Christofides algorithm. (a) Graph. (b) Minimum 
spanning tree with added edges (in dash) of a minimum-weight matching 

of all odd-degree vertices. (c) Hamiltonian circuit obtained. 

Example 3 from a - b - c - e - d - b - a because shortcutting the second occur­
rence of b happens to be better than shortcutting its first occurrence. In general, 
however, this enhancement tends to decrease the gap between the heuristic and 
optimal tour lengths from about 15% to about 10%, at least for randomly gener­
ated Euclidean instances [Joh02]. 

Local search heuristics For Euclidean instances, surprisingly good approxima- i 
tions to optimal tours can be obtained by iterative-improvement algorithms, which ~~ 
are also called local search heuristics. The best-known of these are the 2-opt, 3-
opt, and Lin-Kernighan algorithms. These algorithms start with some initial tour, 
e.g., constructed randomly or by some simpler approximation algorithm such as 
the nearest-neighbor. On each iteration, the algorithm explores a neighborhood 
of the current tour by replacing a few edges in the current tour by other edges. 
If the changes produce a shorter tour, the algorithm makes it the current tour 
and continues by exploring its neighborhood in the same manner; otherwise, the 
current tour is returned as the algorithm's output and the algorithm stops. 

https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP-hard Problems 443 

c, c, 

c, c, c, c, 
{a) (b) 

FIGURE 12.13 2-change: (a) Original tour. (b) New tour. 

The 2-opt algorithm works by deleting a pair of nonadjacent edges in a tour 
and reconnecting their endpoints by the different pair of edges to obtain another 
tour (see Figure 12.13). This operation is called the2-change. Note that there is 
only one way to reconnect the endpoints because the alternative produces two 
disjoint fragments. 

EXAMPLE 4 If we start with the nearest-neighbor tour a - b- c- d - e -a in 
the graph in Figure 12.11, whose length l,, is equal to 39, the 2-opt algorithm will 
move to the next tour as shown in Figure 12.14. I! 

To generalize the notion of the 2-change, one can consider the k-change for 
any k :0: 2. This operation replaces up to k edges in a current tour. In addition to 
2-changes, only the 3-changes have proved to be of practical interest. The two 
principal possibilities of 3-changes are shown in Figure 12.15. 

There are several other local search algorithms for the traveling salesman 
problem. The most prominent of them is the Lin-Kernighan algorithm [Liu73], 
which for two decades after its publication in 1973 was considered the best algo­
rithm to obtain high-quality approximations of optimal tours. The Lin-Kernighan 
algorithm is a variable-opt algorithm: its move can be viewed as a 3-opt move 
followed by a sequence of 2-opt moves. Because of its complexity, we have to re­
frain from discussing this algorithm here. The excellent surveys by Johnson and 
McGeoch ([Joh97], [Joh02]) contain an outline of the algorithm and its modern 
extensions, as well as methods for its efficient implementation. These surveys 
also contain results from the important empirical studies about performance of 
many heuristics for the traveling salesman problem, including, of course, the Lin­
Kernighan algorithm. We conclude our discussion by quoting some of these data. 

Empirical results The traveling salesman problem has been the subject of in­
tense study for the last fifty years. This interest was driven by a combination of 
pure theoretical interest and serious practical needs stemming from such newer 

https://hemanthrajhemu.github.io



444 Coping with the Limitations of Algorithm Power 

12 12 
a e a e 

I 
I 

41 
I 7 7 
I l = 42 > Inn = 39 
I 

~-
d 

//1o 6 
c 

e ~ 
I I 
I I 

41 
I :7 9 9 
I I l = 46 > Inn = 39 
I I 

v b d 

6 10 0 
c 

12 12 
a e a e 

I 
I 

4 :7 4 11 l = 45 > Inn = 39 
I 
I 

b ·~) b 

12 
a ------ e a e 

4 7 8 9 7 I = 38 < lnn = 39 
(new tour) 

b d d 

' 6', 10 10 
c 

FIGURE 12.14 2-changes from the nearest-neighbor tour of the graph in Figure 12.11 

I 
I 
I: 
I https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP-hard Problems 445 

c, 

c, c, 
(a) 

c, c, 
(b) 

c, 

c, c, 
(c) 

FIGURE 12.15 3-change: (al Original tour. (b). (cl New tours. 

applications as circuit-board and VLSI-chip fabrication. X-ray crystallography, 
and genetic engineering. Progress in developing effective heuristics, their efficient 
implementation by using sophisticated data structures, and the ever-increasing 
power of computers have led to a situation that differs drastically from a pes­
simistic picture painted by the worst-case theoretical results. This is especially 
true for the most important applications class of instances of the traveling sales­
man problem: points in the two-dimensional plane with the standard Euclidean 
distances between them. 

https://hemanthrajhemu.github.io



446 Coping with the Limitations of Algorithm Power 

It used to be the case that instances with a few hundred cities were considered 
too large to be solved exactly. Nowadays, instances with up to 1,000 cities can be 
solved exactly in a quite reasonable amount of time-typically, in minutes or less 
on a good workstation-by such optimization packages as Concord [App]. In fact, 
according to the information on the Web site maintained by the authors of that 
package, the largest instance of the traveling salesman problem solved exactly 
as of May 2004 was the shortest tour through all 24,978 cities in Sweden. There 
should be little doubt that this record will eventually be superseded and our ability 
to solve ever larger instances exactly will continue to expand. This remarkable 
progress does not eliminate the usefulness of approximation algorithms for such 
problems, however. First, some applications lead to instances that are still too large 
to be solved exactly in a reasonable amount of time. Second, one may well prefer 
spending seconds to find a tour that is within a few percent of optimum than to 
spend many hours or even days of computing time to find the shortest tour exactly. 

But how can one tell how good or bad the approximate solution is if we do not 
know the length of an optimal tour? A convenient way to overcome this difficulty 
is to solve the linear programming problem describing the instance in question by 
ignoring the integrality constraints. This provides a lower bound-called theHeld­
Kwp bound-on the length of the shortest tour. The Held-Karp bound is typically 
very close (less than J%) to the length of an optimal tour, and this bound can be 
computed in seconds or minutes unless the instance is truly huge. Thus, for a tour 
s, obtained by some heuristic, we estimate the accuracy ratio r(s,) = f(s,)/f(s') 
from above by the ratio f(s,)/ H K (s*), where f(s,) is the length of the heuristic 
tours, and H K (s') is the Held-Karp lower bound on the shortest-tour length. 

The results (see Table 12.1) from a large empirical study [Joh02] indicate the 
average tour quality and running times for the discussed heuristics3. The instances 
in the reported sample have 10,000 cities generated randomly and uniformly as 
integral-coordinate points in the plane, with the Euclidean distances rounded 
to the nearest integer. The quality of tours generated by the heuristics remain 
about the same for much larger instances (up to a million cities) as long as they 
belong to the same type of instances. The running times quoted are for expert 
implementations run on a Compaq ES40 with 500 Mhz Alpha processors and 2 
gigabytes of main memory or its equivalents. 

Approximation Algorithms for the Knapsack Problem 

The knapsack problem, another well-known NP-hard problem, was also intro­
duced in Section 3.4: given n items of known weights w1, ... , W11 and values 
v1, ... , v, and a knapsack of weight capacity W, find the most valuable sub-

3. We did not include the results for the twice-around-the-tree heuristic because of the inferior quality 
of its approximations with the average excess of about 40%. Nor did we quote the results for the 
most sophisticated local search heuristics with the average excess over optimum of less than a fraction 
of 1%. 

~ 
1)1 

I 
I 

I 
»' https://hemanthrajhemu.github.io



T 
. 

! 

I 
12.3 Approximation Algorithms for NP-hard Problems 

TABLE 12.1 Average tour quality and running times for 
various heuristics on the 1 0,000-city random 
uniform Euclidean instances [Joh02] 

0/o excess over the Running time 
Heuristic Held-Karp bound (seconds) 

nearest neighbor 24.79 0.28 
multifragment 16.42 0.20 
Christofides 9.81 1.04 
2-opt 4.70 1.41 
3-opt 2.88 1.50 
Lin-Kernighan 2.00 2.06 

447 

set of the items that fits into the knapsack. We saw how this problem can be 
solved by exhaustive search (Section 3.4), dynamic programming (Section 8.4), 
and branch-and-bound (Section 12.2). Now we will solve this problem by approx­
imation algorithms. 

Greedy algorithms for the knapsack problem We can think of several greedy 
approaches to this problem. One is to select the items in decreasing order of 
their weights; however, heavier items may not be the most valuable in the set. 
Alternatively, if we pick up the items in decreasing order of their value, there is 
no guarantee that the knapsack's capacity will be used efficiently. Can we find a 
greedy strategy that takes into account both the weights and values? Yes, we can, 
by computing the value-to-weight ratios v,jw,, i = 1, 2, ... , n, and selecting the 
items in decreasing order of these ratios. (In fact, we already used this approach in 
designing the branch-and-bound algorithm for the problem in Section 12.2.) Here 
is the algorithm based on this greedy heuristic. 

Greedy algorithm for the discrete knapsack problem 

Step 1 Compute the value-to-weight ratios r; = v,jw,, i = 1, ... , n, for the 
items given. 

Step 2 Sort the items in nonincreasing order of the ratios computed in Step 
1. (Ties can be broken arbitrarily.) 

Step 3 Repeat the following operation until no item is left in the sorted list: 
if the current item on the list fits into the knapsack, place it in the 
knapsack; otherwise, proceed to the next item. 

EXAMPLE 5 Let us consider the instance of the knapsack problem with the 
knapsack's capacity equal to 10 and the item information as follows: 

https://hemanthrajhemu.github.io



448 Coping with the Limitations of Algorithm Power 

item weight value 

1 7 $42 

2 3 $12 

3 4 $40 

4 5 $25 

Computing the value-to-weight ratios and sorting the items in nonincreasing order 
of these efficiency ratios yields 

value 
item weight value 

weight 

1 4 $40 10 

2 7 $42 6 
3 5 $25 5 

4 3 $12 4 

The greedy algorithm will select the first item of weight 4, skip the next item of 
weight 7, select the next item of weight 5, and skip the last item of weight 3. The 
solution obtained happens to be optimal for this instance (see Section 12.2, where 
we solved the same instance by the branch-and-bound algorithm). 1111 

Does this greedy algorithm always yield an optimal solution? The answer, of 
course, is no: if it did, we would have a polynomial-time algorithm for the NP­
hard problem. In fact, the following example shows that no finite upper bound on 
the accuracy of its approximate solutions can be given either. 

EXAMPLE 6 

value 
item weight value 

weight 

1 1 2 2 The knapsack's capacity is W > 2. 

2 w w 1 

Since the items are already ordered as required, the algorithm takes the first 
item and skips the second one; the value of this subset is 2. The optimal selection 
is item 2, whose value is W. Hence, the accuracy ratio r(sa) of this approximate 
solution is W /2, which is unbounded above. 1111 

https://hemanthrajhemu.github.io



12.3 Approximation Algorithms for NP-hard Problems 449 

It is surprisingly easy to tweak this greedy algorithm to get an approximation 
algorithm with a finite performance ratio. All it takes is to choose the better of 
two alternatives: the one obtained by the greedy algorithm or the one consisting 
of a single item of the largest value that fits into the knapsack. (Note that for 
the instance of the preceding example, the second alternative is better than the 
first one.) It is not difficult to prove that the performance ratio of this enhanced 
greedy algorithm is 2. That is, the value of an optimal subsets* will never be more 
than twice as large as the value of the subset sa obtained by this enhanced greedy 
algorithm, and 2 is the smallest multiple for which such an assertion can be made. 

It is instructive to consider the continuous version of the knapsack problem, 
as well. In this version, we are permitted to take arbitrary fractions of the items 
given. For this version of the problem, it is natural to modify the greedy algorithm 
as follows. 

Greedy algorithm for the continuous knapsack problem 

Step 1 Compute the value-to-weight ratios v;!w,, i = 1, ... , n. for the items 
given. 

Step 2 Sort the items in nonincreasing order of the ratios computed in Step 
1. (Ties can be broken arbitrarily.) 

Step 3 Repeat the following operation until the knapsack is filled to its full 
capacity or no item is left in the sorted list: if the current item on the 
list fits into the knapsack in its entirety, take it and proceed to the next 
item; otherwise, take its largest fraction to fill the knapsack to its full 
capacity and stop. 

For example, for the four-item instance used in Example 5 to illustrate the 
greedy algorithm for the discrete version, the algorithm will take the first item of 
weight 4 and then 6/7 of the next item on the sorted list to fill the knapsack to its 
full capacity. 

It should come as no surprise that this algorithm always yields an optimal 
solution to the continuous knapsack problem. Indeed, the items are ordered 
according to their efficiency in using the knapsack's capacity. If the first item on 
the sorted list has weight w1 and value v1, no solution can use w1 units of capacity 
with a higher payoff than v1. If we cannot fill the knapsack with the first item 
or its fraction, we should continue by taking as much as we can of the second­
most efficient item, and so on. A formal rendering of this proof idea is somewhat 
involved, and we will leave it for the exercises. 

Note also that the optimal value of the solution to an instance of the contin­
uous knapsack problem can serve as an upper bound on the optimal value of the 
discrete version of the same instance. This observation provides a more sophisti­
cated way of computing upper bounds for solving the discrete knapsack problem 
by the branch-and-bound method than the one used in Section 12.2. 

https://hemanthrajhemu.github.io



450 Coping with the Limitations of Algorithm Power 

Approximation schemes We now retnrn to the discrete version of the knapsack 
problem. For this problem, unlike the traveling salesman problem, there exist 
polynomial-time approximation schemes, which are parametric families of algo­
rithms that allow us to get approximations s~k) with any predefined accuracy level: 

f (s*) 1 1/ k f · f · ~ ::=: + or any mstance o size n, 
f(sa ) 

where k is an integer parameter in the range 0::: k < n. The first approximation 
scheme was suggested by S. Sahni in 1975 [Sah75]. This algorithm generates all 
subsets of k items or less, and for each one that fits into the knapsack, it adds 
the remaining items as the greedy algorithm would (i.e., in nonincreasing order 
of their value-to-weight ratios). The subset of the highest value obtained in this 
fashion is returned as the algorithm's output. 

EXAMPLE 7 A small example of an approximation scheme with k = 2 is pro­
vided in Figure 12.16. The algorithm yields (1, 3, 4}, which is the optimal solution 
for this instance. 1111 

You can be excused for not being overly impressed by this example. And, 
indeed, the importance of this scheme is mostly theoretical rather than practical. 
It lies in the fact that, in addition to approximating the optimal solution with any 
predefined accuracy level, the time efficiency of this algorithm is polynomial inn. 

subset added items value 

0 1,3,4 $69 

item weight value 
value {1} 3,4 $69 

weight [2} 4 $46 

[3} 1, 4 $69 
1 4 $40 10 {4} 1, 3 $69 
2 7 $42 6 {1, 2} not feasible 
3 5 $25 5 {1, 3} 4 $69 
4 I $ 4 4 {1, 4} 3 $69 

[2, 3} not feasible 
capacity W = 10 {2, 4} $46 

{3, 4} 1 $69 

(a) (b) 

FIGURE 12.16 Example of applying Sahni"s approximation scheme fork= 2. (a} Instance. 
(b) Subsets generated by the algorithm. 

https://hemanthrajhemu.github.io



r 
\ 

12.3 Approximation Algorithms for NP-hard Problems 451 

Indeed, the total number of subsets the algorithm generates before adding extra 
elements is 

k k . k k L (~) = L n(n -1) .. ·.,(n- J + 1) :<:: L nl :<:: L nk = (k + 1)1l. 

J~O } J~O } jdl J~O 

For each of those subsets, it needs 0 (n) time to determine the subset's possible 
extension. Thus, the algorithm's efficiency is in O(knk+1). Note that while being 
polynomial inn, the time efficiency of Sahni's scheme is exponential ink. More 
sophisticated approximation schemes, called fully polynomial schemes, do not 
have this shortcoming. Among several books that discuss such algorithms, the 
monographs [Mar90] amd [Kel04] are especially recommended for their wealth 
of other material about the knapsack problem. 

-----Exercises 12.3---------------

1. a. Apply the nearest-neighbor algorithm to the instance defined by the dis· 
tance matrix below. Start the algorithm at the first city, assuming that the 
cities are numbered from 1 to 5. 

[ 

0 14 
14 0 
4 5 
10 8 
00 7 

~ ¥ zl 
9 0 32 
16 32 0 

b. Compute the accuracy ratio of this approximate solution. 

2. a. Write a pseudocode for the nearest-neighbor algorithm. Assume that its 
input is given by an n-by-n distance matrix. 

b. What is the time efficiency of the nearest-neighbor algorithm? 

3. Apply the twice-around-the-tree algorithm to the graph in Figure 12.11a with 
a walk around the minimum spanning tree that starts at the same vertex a but 
differs from the walk in Figure 12.1lb. Is the length of the obtained tour the 
same as the length of the tour in Figure 12.11b? 

4. Prove that making a shortcut of the kind used by the twice-around-the-tree 
algorithm cannot increase the tour's length in an Euclidean graph. 

5. What is the time efficiency class of the greedy algorithm for the knapsack 
problem? 

6. Prove that the performance ratio RA of the enhanced greedy algorithm for 
the knapsack problem is equal to 2. 

7. Consider the greedy algorithm for the bin-packing problem, which is called 
the first-fit (FF) algorithm: place each of the items in the order given into the 

https://hemanthrajhemu.github.io



452 Coping with the Limitations of Algorithm Power 

first bin the item fits in; when there are no such bins, place the item in a new 
bin and add this bin to the end of the bin list 
a. Apply FF to the instance 

s1 = 0.4, s2 = 0.7, s3 = 0.2, s4 = 0.1, ss = 0.5 

and determine whether the solution obtained is optimal. 

b. Determine the worst-case time efficiency of FF. 

c. Prove that FF is a 2-approximation algorithm. 

8. The first-fit decreasing (FFD) approximation algorithm for the bin-packing 
problem starts by sorting the items in nonincreasing order of their sizes and 
then acts as the first-fit algorithm. 

a. Apply FFD to the instance 

s1 = 0.4, s2 = 0.7, s3 = 0.2, s4 = 0.1, s5 = 0.5 

and determine whether the solution obtained is optimal. 

b. Does FFD always yield an optimal solution? Justify your answer. 

c. Prove that FFD is a 1.5-approximation algorithm. 

d. Run an experiment to determine which of the two algorithms-FF or 
FFD-yields more accurate approximations on a random sample of the 
problem's instances. 

9. a. Design a simple 2-approximation algorithm for finding a minimum vertex 
cover (a vertex cover with the smallest number of vertices) in a given graph. 

b. Consider the following approximation algorithm for finding a maximum 
independent set (an independent set with the largest number of vertices) in 
a given graph. Apply the 2-approximation algorithm of part a and output 
all the vertices that are not in the obtained vertex cover. Can we claim that 
this algorithm is a 2-approximation algorithm, too? 

10. a. Design a polynomial-time greedy algorithm for the graph-coloring prob­
lem. 

b. Show that the performance ratio of your approximation algorithm is in­
finitely large. 

12.4 Algorithms for Solving Nonlinear Equations 

In this section, we discuss several algorithms for solving nonlinear equations in 
one unknown, 

f(x) = 0. (12.4) 

+ i 

https://hemanthrajhemu.github.io



12.4 Algorithms for Solving Nonlinear Equations 453 

There are several reasons for this choice among subareas of numerical analysis. 
First of all, this is an extremely important problem from the practical and theo­
retical points of view. It arises as a mathematical model of numerous phenomena 
in the sciences and engineering, both directly and indirectly. (Recall, for example, 
that the standard calculus technique for finding extremum points of a function 
f(x) is based on finding its critical points, which are the roots of the equation 
J'(x) = 0.) Second, it represents the most accessible topic in numerical analysis 
and, at the same time, exhibits its typical tools and concerns. Third, some meth­
ods for solving equations closely parallel algorithms for array searching and hence 
provide examples of applying general algorithm design techniques to problems of 
continuous mathematics. 

Let us start with dispelling a misconception you might have about solving 
equations. Your experience with equation solving from middle school to calculus 
courses might have led you to believe that we can solve equations by "factoring" 
or by applying a readily available formula. Sorry to break it to you, but you have 
been deceived (with the best of educational intentions, of course): you were able 
to solve all those equations only because they had been carefully selected to make 
it possible. In general, we cannot solve equations exactly and need approximatiou 
algorithms to do so. 

This is true even for solving the quadratic equation 

ax2 + hx + c = 0 

because the standard formula for its roots 

2a 

requires computing the square root, which can be done only approximately for 
most positive numbers. In addition, as we discussed in Section 11.4, this canonical 
formula needs to be modified to avoid the possibility of low-accuracy answers. 

What about formulas for roots of polynomials of degrees higher than two? 
Such formulas for third- and fourth-degree polynomials exist, but they are too 
cumbersome to be of practical value. For polynomials of degrees higher than 
four, there can be no general formula for their roots that would involve only the 
polynomial's coefficients, arithmetical operations, and radicals (taking roots). This 
remarkable result was published first by the Italian mathematician and physician 
Paolo Ruffini (1765-1822) in 1799 and rediscovered a quarter century later by the 
Norwegian mathematician Niels Abel (1802-1829); it was developed further by 
the French mathematician Evariste Galois (1811-1832).4 

4. Ruffini's discovery was completely ignored by almost all prominent mathematicians of that time. Abel 
died young after a difficult life of poverty. Galois was killed in a duel when he was only 21 years old. 
Their results on the solution of higher-degree equations are now considered to be among the crowning 
achievements in the history of mathematics. 

https://hemanthrajhemu.github.io



454 Coping with the Limitations of Algorithm Power 

The impossibility of such a formula can hardly be considered a great disap­
pointment. As the great German mathematician Carl Friedrich Gauss (1777-1855) 
put it in his thesis of 1801, the algebraic solution of an equation was no better than 
devising a symbol for the root of the equation and then saying that the equation 
had a root equal to the symbol (0Co98]. 

We can interpret solutions to equation (12.4) as points at which the graph 
of the function .f(x) intersects with the x-axis. The three algorithms we discuss 
in this section take advantage of this interpretation. Of course, the graph of .f (x) 

may intersect the x-axis at a single point (e.g., x 3 = 0), at multiple or even infinitely 
many points (sin x = 0), or at no point (ex+ 1 = 0). Equation (12.3) would then 
have a single root, several roots, and no roots, respectively. It is a good idea to 
sketch a graph of the function before starting to approximate its roots. It can help 
to determine the number of roots and their approximate locations. In general, it 
is a good idea to isolate roots, i.e., to identify intervals containing a single root of 
the equation in question. 

Bisection Method 

This algorithm is based on an observation that the graph of a continuous function 
must intersect with the x-axis between two points a and b at least once if the 
function's values have opposite signs at these two points (Figure 12.17). 

The validity of this observation is proved as a theorem in calculus courses, and 
we take it for granted here. It serves as the basis of the following algorithm, called 
the bisection method, for solving equation (12.4). Starting with an interval [a, b] 
at whose endpoints f(x) has opposite signs, the algorithm computes the value of 
.f(x) at the middle point x,;d = (a+ h)/2. If .f (x,;d) = 0, a root was found and the 
algorithm stops. Otherwise, it continues the search for a root either on [a, xmid] or 
on [xmid• b ], depending on which of the two halves the values of .f(x) have opposite 
signs at the endpoints of the new interval. 

Since we cannot expect the bisection algorithm to stumble on the exact value 
of the equation's root and stop, we need a different criterion for stopping the algo­
rithm. We can stop the algorithm after the interval [an, h,] bracketing some rootx' 
becomes so small that we can guarantee that the absolute error of approximating 

fix) 

--~-----,L-----~----------~b~--.x a 1 x1 
I 
I 

FIGURE 12.17 First iteration of the bisection method: x1 is the middle point of interval 
[a, b]. 

https://hemanthrajhemu.github.io



12.4 Algorithms for Solving Nonlinear Equations 455 

x' by x,,. the middle point of this interval, is smaller than some small preselected 
number e > 0. Since x, is the middle point of [a,, b,] and x* lies within this interval 
as well, we have 

IX - x*l < bn -an, 
II - 2 (U.S) 

Hence, we can stop the algorithm as soon as (b,- a,)/2 < e or, equivalently, 

(12.6) 
It is not difficult to prove that 

* bl - a1 lx, - x I :<: ~ for n = 1, 2, .... (12.7) 

This inequality implies that the sequence of approximations {x,) can be made as 
close to root x* as we wish by choosing n large enough. In other words, we can say 
that {x,) converges to root x*. Note, however, that because any digital computer 
represents extremely small values by zero (Section 11.4), the convergence asser­
tion is true in theory but not necessarily in practice. In fact, if we choose£ below 
a certain machine-dependent threshold, the algorithm may never stop! Another 
source of potential complications is round-off errors in evaluating values of the 
function in question. Therefore it is a good practice to include in a program imple­
menting the bisection method a limit on the number of iterations the algorithm is 
allowed to run. 

Here is a pseudocode for the bisection method. 

ALGORITHM Bisection(f(x), a, h, eps, N) 

//Implements the bisection method for finding a root of f(x) = 0 
//Input: Two real numbers a and b, a< h, 

II a continuous function f(x) on [a, b], f(a)f(b) < 0, 
II an upper bound on the absolute error eps > 0, 
II an upper bound on the number of iterations N 

//Output: An approximate (or exact) value x of a root in (a, b) 

//or an interval bracketing tbe root if the iteration number limit is reached 
n +-- 1 //iteration count 
while n :<: N do 

x +--(a+ b)/2 
ifx- a< eps returnx 
fval +-- f(x) 
if.fval = 0 return x 

if.fval * f(a) < 0 
b+--x 

else a +- x 

n+--n+1 

return "iteration limit", a, b 

https://hemanthrajhemu.github.io



456 Coping with the Limitations of Algorithm Power 

y 

FIGURE 12.18 Graph of function f(x) = x 3 - x -1 

Note that we can use inequality (12.7} to find in advance the number of itera­
tions that should suffice, at least in theory, to achieve a preselected accuracy level. 
Indeed, choosing the number of iterations 11 large enough to satisfy inequality 
(bt- at)/2" < e, i.e., 

does the trick. 

b1 -at 
11 > log2 --­

£ 

EXAMPLE 1 Let us consider equation 

x3 - x -1 = 0. 

(12.8) 

(12.9) 

It has one real root. (See Figure 12.18 for the graph of .f(x) = x3 - x- 1.) Since 
.f(O) < 0 and .f(2) > 0, the root must lie within interval (0, 2). If we choose the 
error tolerance level as E = 10-2 , inequality (12.8) would require n > log2(2/1 o-2

) 

or n :::: 8 iterations. 
Figure 12.19 contains a trace of the first eight iterations of the bisection 

algorithm applied to solving equation (12.9). Thus, we obtained x8 = 1.3203125 
as an approximate value for the root x' of equation (12.9), and we can guarantee 
that 

11.3203125- x'l < w-2 

Moreover, if we take into account the signs of the left -hand side of equation (12.9} 
at a8, b8 , and x8, we can assert that the root lies between 1.3203125 and 1.328125. 

II 

The principal weakness of the bisection method as a general algorithm for 
solving equations is its slow rate of convergence compared with other known 
methods. It is for this reason that the method is rarely used. Also, it cannot be 

https://hemanthrajhemu.github.io



12.4 Algorithms for Solving Nonlinear Equations 457 

n an b, x, f(x,) 

1 0.0- 2.0+ 1.0 -1.0 

2 1.0- 2.0+ 1.5 0.875 

3 UJ- 1.5+ 1.25 -0.296875 

4 1.25- 1.5+ 1.375 0.224609 

5 1.25- 1.375+ 1.3125 -0.051514 

6 1.3125- 1.375+ 1.34375 0.082611 

7 1.3125- 1.34375+ 1.328125 0.014576 

8 1.3125- 1.328125+ 1.3203125 -0.018711 

FIGURE 12.19 Trace of the bisection method for solving equation (12.91. The signs 
after the numbers in the second and third columns indicate the sign of 
f(x) = x 3 - x - 1 at the corresponding endpoints of the intervals. 

extended to solving more general equations and systems of equations. But it does 
have several strong points. It always converges to a root whenever we start with an 
interval whose properties are very easy to check. And it does not use derivatives 
of the function f (x) as some faster methods do. 

What important algorithm does the method of bisection remind you of? ffyou 
have found it to closely resemble binary search, you are correct. Both of them solve 
variations of the searching problem, and they are both divide-by-half algorithms. 
The principal difference lies in the problem's domain: discrete for binary search 
and continuous for the bisection method. Also note that while binary search 
requires its input array to be sorted, the bisection method does not require its 
function to be nondecreasing or nonincreasing. Finally, while binary search is very 
fast, the bisection method is slow. 

Method of false Position 

The method of false position (also known by its name in Latin, regula falsi) is to 
interpolation search as the bisection method is to binary search. Like the bisection 
method, it has, on each iteration, some interval [a,, b,] bracketing a root of a 
continuous function f(x) that has opposite-sign values at a, and b,. Unlike the 
bisection method, however, it computes the next root approximation not as the 
middle of [a,, b,] but as the x-intercept of the straight line through the points 
(a,, f(a,)) and (b,, f(b,)) (Figure 12.20). 

You are asked in the exercises to show that the formula for this x-intercept 
can be written as 

a,J(b,)- b,.f(a,) 
Xn= 

f(h,)- f(a,) 
(12.10) 

https://hemanthrajhemu.github.io



458 Coping with the Limitations of Algorithm Power 

FIGURE 12.20 Iteration of the method of false position 

an bn Xn f(xn) 

1 0.0- 2.0+ 0.333333 -1.296296 

2 0.333333- 2.0+ 0.676471 -1.366909 

3 0.676471- 2.0+ 0.960619 -1.074171 

4 0.960619- 2.0+ 1.144425 -0.645561 

5 1.144425- 2.0+ 1.242259 -0.325196 

6 1.242259- 2.0+ 1.288532 -0.149163 

7 1.288532- 2.0+ 1.309142 -0.065464 

8 1.309142- 2.0+ 1.318071 -0.028173 

FIGURE 12.21 Trace of the method of false position for equation (12.9). The signs 

after the numbers in its second and third columns indicate the sign of 
f(x) = x 3 - x -1 at the corresponding endpoints of the intervals. 

EXAMPLE 2 Figure 12.21 contains the results of the first eight iterations of this 
method for solving equation (12.9). 

Although for this example the method of false position does not perform 
as well as the bisection method, for many instances it yields a faster converging 
sequence. m 

Newton's Method 

Newton's method, also called the Newton-Raphson method, is one of the most 
important general algorithms for solving equations. When applied to equation 
(12.4) in one unknown, it can be illustrated by Figure 12.22: the next element 

https://hemanthrajhemu.github.io



12.4 Algorithms for Solving Nonlinear Equations 459 

FIGURE 12.22 Iteration of Newton's method 

x,+l of the method's approximation sequence is obtained as the x-intercept of the 
tangent line to the graph of function f (x) at x .. 

The analytical formula for the elements of the approximation sequence turns 
out to be 

f(x,) 
Xn+l = Xn - f'(xn) for n = 0, 1, .... (12.11) 

In most cases, Newton's algorithm guarantees convergence of sequence (12.11) if 
an initial approximation x0 is chosen "close enough" to the root. (Precisely defined 
prescriptions for choosing xo can be found in numerical analysis textbooks.) It may 
converge for initial approximations far from the root as well, but this is not always 
true. 

EXAMPLE 3 Computing Fa for a 2: 0 can be done by finding a nonnegative root 
ofequationx

2
- a= 0. Ifweuseformnla (12.11) forthiscaseof f(x) =x2 - a and 

f'(x) = 2x, we obtain 

f(x11 ) x;- a X1~ +a 1 a 
Xn+l =Xn- -- =Xn- -- = -- = -(Xn + -), 

f'(x1) 2x11 2x
11 

2 X
11 

which is exactly the formula we used in Section 11.4 for computing approximate 
values of square roots. ill 

EXAMPLE 4 Let us apply Newton's method to equation (12.9), which we previ­
ously solved with the bisection method and the method of false position. Formula 
( 12.11) for this case becomes 

https://hemanthrajhemu.github.io



460 Coping with the Limitations of Algorithm Power 

n x, Xn+l f(x,+l) 

0 2.0 1.545455 1.145755 

1 1.545455 1.359615 0.153705 

2 1.359615 1.325801 0.004625 

3 1.325801 1.324719 4.Ho-6 

4 1.324719 1.324718 5·10-12 

FIGURE 12.23 Trace of Newton's method for equation (12.9) 

As an initial element of the approximation sequence, we take, say, x0 = 2. Figure 
12.23 contains the results of the first five iterations of Newton's method. 1111 

You cannot fail to notice how much faster Newton's approximation sequence 
converges to the root than the approximation sequences of both the bisection 
method and the method of false position. This very fast convergence is typical of 
Newton's method if an initial approximation is close to the equation's root. Note, 
however, that on each iteration of this method we need to evaluate new values of 
the function and its derivative, whereas the previous two methods require only one 
new value of the function itself. Also, Newton's method does not bracket a root as 
these two method' do. Moreover, for an arbitrary function and arbitrarily chosen 
initial approximation, its approximation sequence may diverge. And, because 
formula (12.11) has the function's derivative in the denominator, the method may 
break down if it is equal to zero. In fact, Newton's method is most effective when 
J'(x) is bounded away from zero near root x'. In particular, if 

1/'(x)l 2: m1 > 0 

on the interval between x11 and x*, we can estimate the distance between x11 and 
x* by using the Mean Value Theorem of calculus as follows: 

f(x,)- f(x') = f'(c)(x,- x'), 

where cis some point between x, and x'. Since f(x') = 0 and 1/'(c)l": m1, we 
obtain 

lx,- x'l ::0 lf(x,)l. (12.12) 
ml 

Formula (12.12) can be used as a criterion for stopping Newton's algorithm when 
its right-hand side becomes smaller than a preselected accuracy level e. Other 
possible stopping criteria are 

https://hemanthrajhemu.github.io



12.4 Algorithms for Solving Nonlinear Equations 461 

and 

l.f(x,)l < E, 

where c is a small positive number. Since the last two criteria do not necessarily 
imply closeness of x, to root x*, they should be considered inferior to the one 
based on (12.12). 

The shortcomings of Newton's method should not overshadow its principal 
strengths: fast convergence for an appropriately chosen initial approximation and 
applicability to much more general types of equations and systems of equations. 

-----Exercises 1 

1. a. Find on the Internet or in your library a procedure for finding a real root 
of the general cubic equation ax3 + bx2 +ex + d = 0 with real coefficients. 

b. What general algorithm design technique is it based on? 

2. Indicate how many roots each of the following equations has. 
a. xex- 1 = 0 b. x -In x = 0 c. x sin x- 1 = 0 

3. a. Prove that if p(x) is a polynomial of an odd degree, then it must have at 
least one real root. 

b. Prove that if x0 is a root of ann-degree polynomial p(x), the polynomial 
can be factored into 

p(x) = (x- x0)q(x), 

where q (x) is a polynomial of degree n - 1. Explain what significance this 
theorem has for finding roots of a polynomial. 

c. Prove that if x 0 is a root of ann-degree polynomial p(x), then 

p'(xo) = q(xo). 

where q(x) is the quotient of the division of p(x) by x- x
0

. 

4. Prove inequality (12.7). 

5. Apply the bisection method to find the root of the equation 

x 3 +x -1 =0 

with an absolute error smaller than w-2 

6. Derive formula (12.10) underlying the method of false position. 

7. Apply the method of false position to find the root of the equation 

x 3 + x -1 = 0 

with an absolute error smaller than w-2 

https://hemanthrajhemu.github.io



462 Coping with the Limitations of Algorithm Power 

8. Derive formula (12.11) underlying Newton's method. 

9. Apply Newton's method to find the root of the equation 

x 3 + x -1 = 0 

with an absolute error smaller than Jo-2
• 

10. Give an example that shows that the approximation sequence of Newton's 
method may diverge. 

11. Gobbling goat There is a grassy field in the shape of a circle with a radius of 
100 feet. A goat is attached by a rope to a hook at a fixed point on the field's 
border. How long should the rope be to let the goat reach only half of the 
grass in the field? 

SUMMARY 

" Backtracking and branch-and-bound are two algorithm design techniques for 
solving problems in which the number of choices grows at least exponentially 
with their instance size. Both techniques construct a solution one component 
at a time, trying to tenninate the process as soon as one can ascertain that no 
solution can be obtained as a result of the choices already made. This approach 
makes it possible to solve many large instances of NP-hard problems in an 
acceptable amount of time. 

" Both backtracking and branch-and-bound employ, as their principal mech­
anism, a state-space tree-a rooted tree' whose nodes represent partially 
constructed solutions to the problem in question. Both techniques terminate 
a node as soon as it can he guaranteed that no solution to the problem can be 
obtained by considering choices that correspond to the node's descendants. 

" Backtracking constructs its state-space tree in the depth-first search fashion 
in the majority of its applications. If the sequence of choices represented by a 
current node of the state-space tree can be developed further without violating 
the problem's constraints, it is done by considering the first remaining 
legitimate option for the next component. Otherwise, the method backtracks 
by undoing the last component of the partially built solution and replaces it 
by the next alternative. 

" Branch-and-bound is an algorithm design technique that enhances the idea 
of generating a state-space tree with the idea of estimating the best value 
obtainable from a current node of the decision tree: if such an estimate is not 
superior to the best solution seen up to that point in the processing, the node 
is eliminated from further consideration. 

https://hemanthrajhemu.github.io



Summary 463 

Ill Approximation algorithms are often used to find approximate solutions to 
difficult problems of combinatorial optimization. The performance ratio is the 
principal metric for measuring the accuracy of such approximation algorithms. 

Ill The nearest-neighbor and multifragment heuristic are two simple greedy 
algorithms for approximating a solution to the traveling salesman problem. 
The performance ratios of these algorithms are unbounded above, even for 
the important subset of Euclidean graphs. 

"' The twice-around-the-tree and Christophides algorithms exploit the graph's 
minimum spanning tree to construct an Eulerian circuit and then transform it 
into a Hamiltonian circuit (an approximate solution to the TSP) by shortcuts. 
For Euclidean graphs, the performance ratios of these algorithms are 2 and 
1.5, respectively . 

., Local search heuristics-the 2-opt, 3-opt, and Lin-Kernighan algorithms­
work by replacing a few edges in the current tour to find a shorter one until 
no such replacement can be found. These algorithms are capable of finding 
in seconds a tour that is within a few percent of optimum for large Euclidean 
instances of the traveling salesman problem. 

"' A sensible greedy algorithm for the knapsack problem is based on processing 
an input's items in descending order of their value-to-weight ratios. For the 
continuous version of the problem, this algorithm always yields an exact 
optimal solution. 

"' Polynomial approximation schemes for the knapsack problem are polynomial­
time parametric algorithms that approximate solutions with any predefined 
accuracy level. 

II Solving nonlinear equations is one of the most important areas of numerical 
analysis. While there are no formulas for roots of nonlinear equations (with 
a few exceptions), several algorithms can solve them approximately . 

., The bisection method and the method of false position are continuous 
analogues of binary search and interpolation search, respectively. Their 
principal advantage lies in bracketing a root on each iteration of the algorithm. 

m Newton's method generates a sequence of root approximations that are 
x-intercepts of tangent lines to the function's graph. With a good initial 
approximation, it typically requires just a few iterations to obtain a high­
accuracy approximation to the equation's root. 

https://hemanthrajhemu.github.io



l
,jl1 

I 
,: I ' 

II , 
t : 
I' 

I 
i: 

i i https://hemanthrajhemu.github.io


