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Chapter 1

INTRODUCTION

1.1 WHAT IS AN ALGORITHM?

The word algorithm comes from the name of a Persian author, Abu Ja’far
Mohammed ibn Musa al Khowarizmi (c. 825 A.D.), who wrote a textbook
on mathematics. This word has taken on a special significance in computer
science, where “algorithm” has come to refer to a method that can be used
by a computer for the solution of a problem. This is what makes algorithm
different from words such as process, technique, or method.

Definition 1.1 [Algorithm]: An algorithm is a finite set of instructions that,
if followed, accomplishes a particular task. In addition, all algorithms must
satisfy the following criteria:

Input. Zero or more quantities are externally supplied.

Output. At least one quantity is produced.

Definiteness. Each instruction is clear and unambiguous.

Pr
wo
N
P

Finiteness. If we trace out the instructions of an algorithm, then for
all cases, the algorithm terminates after a finite numberof steps.

5. Effectiveness. Every instruction must be very basic so that it can be
carried out, in principle, by a person using only pencil and paper. It
is not enough that each operation be definite as in criterion 3; it also
must be feasible. gO

Analgorithm is composed of a finite set of steps, each of which may
require one or more operations. The possibility of a computer carrying out
these operations necessitates that certain constraints be placed on the type
of operations an algorithm can include.

1https://hemanthrajhemu.github.io



2 CHAPTER 1. INTRODUCTION

Criteria 1 and 2 require that an algorithm produce one or more outputs
and have zero or more inputs that are externally supplied. According tocri-
terion 3, each operation must be definite, meaning that it must be perfectly
clear what should be done. Directions such as “add 6 or 7 to x” or “compute
5/0” are not permitted because it is not clear which of the two possibilities
should be done or what the result is.

The fourth criterion for algorithms we assume in this bookis that they
terminate after a finite number of operations. A related consideration is
that the time for termination should be reasonably short. For example, an
algorithm could be devised that decides whether any given position in the
gameof chess is a winning position. The algorithm works by examining all
possible moves and countermoves that could be made from the starting po-
sition. The difficulty with this algorithm is that even using the most modern
computers, it may take billions of years to make the decision. We must be
very concerned with analyzing the efficiency of each of our algorithms.

Criterion 5 requires that each operation be effective; each step must be
such that it can, at least in principle, be done by a person using pencil and
paper in a finite amount of time. Performing arithmetic on integers is an
example of an effective operation, but arithmetic with real numbersis not,
since some values may be expressible only by infinitely long decimal expan-
sion. Adding two such numbers would violate the effectiveness property.

Algorithms that are definite and effective are also called computational
procedures. One important example of computational procedures is the op-
erating system of a digital computer. This procedure is designed to control
the execution of jobs, in such a way that when no jobs are available, it
does not terminate but continues in a waiting state until a new job is en-
tered. Though computational procedures include important examples such
as this one, we restrict our study to computational procedures that always
terminate.

To help us achieve the criterion of definiteness, algorithms are written in a
programming language. Such languages are designed so that each legitimate
sentence has a unique meaning. A program is the expression of an algorithm
in a programming language. Sometimes words such as procedure, function,
and subroutine are used synonymously for program. Most readers of this
book have probably already programmed and run somealgorithms on a
computer. This is desirable because before you study a concept in general,
it helps if you had somepractical experience with it. Perhaps you had some
difficulty getting started in formulating an initial solution to a problem, or
perhaps you were unable to decide which of two algorithms was better. The
goal of this book is to teach you how to make these decisions.

The study of algorithms includes many important and active areas of
research. There are four distinct areas of study one can identify:

1. How to devise algorithms — Creating an algorithm is an art which
may never be fully automated. A major goal of this book is to study vari-
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1.1. WHAT IS AN ALGORITHM? 3

ous design techniques that have proven to be useful in that they have often
yielded good algorithms. By mastering these design strategies, it will become
easier for you to devise new and useful algorithms. Many of the chapters
of this book are organized around what we believe are the major methods
of algorithm design. The reader may now wish to glance back at the table
of contents to see what these methods are called. Some of these techniques

may already be familiar, and some have been found to be so useful that
books have been written about them. Dynamic programming is one such
technique. Some of the techniques are especially useful in fields other than
computer science such as operations research andelectrical engineering. In
this book we can only hope to give an introduction to these many approaches
to alyorithm formulation. All of the approaches we consider have applica-
tions in a variety of areas including computer science. But some important
design techniques such as linear, nonlinear, and integer programming are not
covered here as they are traditionally covered in other courses.

2. How to validate algorithms — Once an algorithm is devised, it is
necessary to show that it computes the correct answer for all possible legal
inputs. We refer to this process as algorithm validation. The algorithm
need not as yet be expressed as a program. It is sufficient to state it in any
precise way. The purposeof the validationis to assure us that this algorithm
will work correctly independently of the issues concerning the programming
language it will eventually be written in. Once the validity of the method
has been shown, a program can be written and a second phase begins. This
phaseis referred to as program proving or sometimes as program verification.
A proof of correctness requires that the solution be stated in two forms.
One formis usually as a program which is annotated by a set of assertions
about. the input and output variables of the program. These assertions
are often expressed in the predicate calculus. The second form is called a
specification, and this may also be expressed in the predicate calculus. A
proof consists of showing that these two forms are equivalent in that for
every given legal input, they describe the same output. A complete proof
of program correctness requires that each statement of the programming
language be precisely defined andall basic operations be proved correct. All
these details may cause a proof to be very much longer than the program.

3. How to analyze algorithms — This field of study is called analysis
of alyorithms. As an algorithm is executed, it uses the computer’s central
processing, unit (CPU) to perform operations and its memory (both imme-
diate and auxiliary) to hold the program and data. Analysis of algorithms
or performance analysis refers to the task of determining how much com-
puting time and storage an algorithm requires. This is a challenging area
which sometimes requires great mathematical skill. An important result of
this study is that it allows you to make quantitative judgments about the
value of one algorithm over another. Another result is that it allows you to
predict whether the software will meet any efficiency constraints that exist.
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4 CHAPTER 1. INTRODUCTION

Questions such as how well does an algorithm perform in the best case, in
the worst case, or on the average are typical. For each algorithm in the text,
an analysis is also given. Analysis is more fully described in Section 1.3.2.

4. How to test a program — Testing a program consists of two phases:
debugging and profiling (or performance measurement). Debugging is the
process of executing programs on sample data sets to determine whether
faulty results occur and, if so, to correct them. However, as E. Dijkstra
has pointed out, “debugging can only point to the presence of errors, but
not to their absence.” In cases in which we cannot verify the correctness of
output on sample data, the following strategy can be employed: let more
than one programmer develop programs for the same problem, and compare
the outputs produced by these programs. If the outputs match, then there
is a good chance that they are correct. A proof of correctness is much more
valuable than a thousandtests (if that proof is correct), since it guarantees
that the program will work correctly for all possible inputs. Profiling or
performance measurement is the process of executing a correct program on
data sets and measuring the time and spaceit takes to compute the results.
These timing figures are useful in that they may confirm a previously done
analysis and point out logical places to perform useful optimization. A
description of the measurement of timing complexity can be foundin Section
1.3.5. For some of the algorithms presented here, we show how to devise a
range of data sets that will be useful for debugging and profiling.

These four categories serve to outline the questions we ask about algo-
rithms throughout this book. As we can’t hope to cover all these subjects
completely, we content ourselves with concentrating on design and analysis,
spending less time on program construction and correctness.

EXERCISES

1. Look up the words algorism and algorithm in your dictionary and write
down their meanings.

2. The name al-Khowarizmi(algorithm) literally means “from the town
of Khowarazm.” This city is now known as Khiva, and is located in
Uzbekistan. See if you can find this country in an atlas.

3. Use the WEBto find out more about al-Khowarizmi, e.g., his dates, a
picture, or a stamp.

https://hemanthrajhemu.github.io



1.2. ALGORITHM SPECIFICATION 5

1.2 ALGORITHM SPECIFICATION

1.2.1 Pseudocode Conventions

In computational theory, we distinguish between an algorithm and a pro-
gram. The latter does not have to satisfy the finiteness condition. For ex-
ample, we can think of an operating system that continues in a “wait” loop
until more jobs are entered. Such a program does not terminate unless the
system crashes. Since our programs always terminate, we use “algorithm”
and “program” interchangeably in this text.

We can describe an algorithm in many ways. We can use a natural
language like English, although if we select this option, we must make sure
that the resulting instructions are definite. Graphic representations called
flowcharts are another possibility, but they work well only if the algorithm
is small and simple. In this text we present most of our algorithms using a
pseudocode that resembles C and Pascal.

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces: { and }. A compound
statement (ie., a collection of simple statements) can be represented
as a block. The body of a procedure also forms a block. Statements
are delimited by ;.

3. Anidentifier begins with a letter. The data types of variables are
not explicitly declared. The types will be clear from the context.
Whethera variable is global or local to a procedure will also be evident
from the context. We assume simple data types such as integer, float,
char, boolean, and so on. Compound data types can be formed with
records. Here is an example:

node = record

{ datatype.1 data.1;

datatype.n data.n;
node «link;

}
In this example, link is a pointer to the record type node. Individual
data items of a record can be accessed with — and period. For instance
if p points to a record of type node, p — data.1 stands for the value of
the first field in the record. On the other hand,if g is a record of type
node, q.data_1 will denoteits first field.

https://hemanthrajhemu.github.io



CHAPTER 1. INTRODUCTION

. Assignment of values to variables is done using the assignment state-
ment

(variable) := (expression);

. There are two boolean values true and false. In order to produce
these values, the logical operators and, or, and not and therelational
operators <,<,=,#,>, and > are provided.

. Elements of multidimensional arrays are accessed using [ and ]. For
example, if A is a two dimensional array, the (7,7)th element of the
array is denoted as Ali, 7]. Array indices start at zero.

. The following looping statements are employed: for, while, and repeat-
until. The while loop takes the following form:

while (condition) do

{
(statement 1)

(statement n)

}

As long as (condition) is true, the statements get executed. When
(condition) becomes false, the loop is exited. The value of (condition)
is evaluated at the top of the loop.

The general form of a for loop is

for variable := valuel to value2 step step do

(statement 1)

(statement n)

}

Here valuel, value2, and step are arithmetic expressions. A variable
of type integer or real or a numerical constant is a simple form of an
arithmetic expression. The clause “step step” is optional and taken
as +1 if it does not occur. step could either be positive or negative.
variable is tested for termination at the start of each iteration. The
for loop can be implemented as a while loop as follows:

https://hemanthrajhemu.github.io



1.2. ALGORITHM SPECIFICATION 7

variable := valuel;
fin := value2;
incr := step;

while ((variable — fin) * step < 0) do

{
{staternent 1)

(statement n)
variable := variable + incr;

}

A repeat-until statement is constructed as follows:

repeat

(statement 1)

(statement n)
until (condition)

The statements are executed as long as (condition) is false. The value
of (condition) is computed after executing the statements.

The instruction break; can be used within any of the above looping
instructions to force exit. In case of nested loops, break; results in
the exit of the innermost loop that it is a part of. A return statement
within any of the above also will result in exiting the loops. A return
statement results in the exit of the function itself.

8. A conditional statement has the following forms:

if (condition) then (statement)
if (condition) then (statement 1) else (statement 2)

Here (condition) is a boolean expression and (statement), (statement 1),
and (statement 2) are arbitrary statements (simple or compound).

Wealso employ the following case statement:

case

{
s(condition 1): (statement 1)

(condition n): (statement n)
else: (statement n+ 1)

https://hemanthrajhemu.github.io



8 CHAPTER 1. INTRODUCTION

Here (statement 1), (statement 2), etc. could be either simple state-
ments or compound statements. A case statement is interpreted as
follows. If (condition 1) is true, (statement 1) gets executed and
the case statement is exited. If (statement 1) is false, (condition 2)
is evaluated. If (condition 2) is true, (statement 2) gets executed
and the case statement exited, and so on. If none of the conditions
(condition 1), ..., (condition n) are true, (statement n+1) is executed
and the case statement is exited. The else clause is optional.

9. Input and output are done using the instructions read and write. No
format is used to specify the size of input or output quantities.

10. There is only one type of procedure: Algorithm. An algorithm con-
sists of a heading and a body. The heading takes the form

Algorithm Name ((parameter list))

where Nameis the name of the procedure and ((parameter list)) is
a listing of the procedure parameters. The body has one or more
(simple or compound) statements enclosed within braces { and }. An
algorithm may or may not return any values. Simple variables to
procedures are passed by value. Arrays and records are passed by
reference. An array name or a record nameis treated as a pointer to
the respective data type.

As an example, the following algorithm finds and returns the maximum
of n given numbers:

Algorithm Max(A, 7)
// Ais an array ofsize n.

Result := A[1};
for i := 2 to n do

if Ali] > Result then Result := Alt];
return Result;

S
I
n
o
p

w
n
w
r
e

}

In this algorithm (named Max), A and n are procedure parameters.
Result and 7 are local variables.

Next we present two examples to illustrate the process of translating a
problem into an algorithm.

Example 1.1 [Selection sort] Suppose we must devise an algorithm that
sorts a collection of n > 1 elements of arbitrary type. A simple solution is
given by the following

https://hemanthrajhemu.github.io



1.2. ALGORITHM SPECIFICATION 9

From those elements that are currently unsorted, find the smallest
and place it next in the sorted list.

Although this statement adequately describes the sorting problem,it is
not an algorithm because it leaves several questions unanswered. For exam-
ple, it does not tell us where and how the elements are initially stored or
where we should place the result. We assume that the elements are stored
in an array a, such that the ith integer is stored in the th position a[t],
1<i<n. Algorithm 1.1 is our first attempt at deriving a solution.

 

for 1:=1tondo

Examineali] to a[n] and suppose
the smallest element is at a[j];
Interchange a[2] and a{,);

O
o
k
W
N

}
 

Algorithm 1.1 Selection sort algorithm

To turn Algorithm 1.1 into a pseudocode program, two clearly defined
subtasks remain: finding the smallest element (say a[j]) and interchanging
it with ali]. We can solve the latter problem using the code

t = ail; afi] := aly); aff] s= t:
Thefirst subtask can be solved by assuming the minimumis a[t], checking

alt] with a{i + 1],a[¢ + 2],..., and, whenever a smaller element is found,
regarding it as the new minimum. Eventually a[n] is compared with the
current minimum, and we are done. Putting all these observations together,
we get the algorithm SelectionSort (Algorithm 1.2).

The obvious question to ask at this point is, Does SelectionSort work
correctly? Throughout this text we use the notation al? : 7] to denote the
array elements a|i] through aly].

Theorem 1.1 Algorithm SelectionSort(a,n) correctly sorts a set of n > 1
elements; the result remains in a[1 : n] such that a[1} < a[2] <--- < a[n).

Proof: We first note that for any 7, say 1 = q, following the execution of
lines 6 to 9, it is the case that alg] < alr], gq <r <n. Also observe that
when i becomes greater than g, a[1 : g] is unchanged. Hence, following the
last execution of these lines (that is, i = n), we have a[1] < a[2] <--- < a[n].

Weobserve at this point that the upper limit of the for loop in line 4 can
be changed to n — 1 without damaging the correctness of the algorithm. O

https://hemanthrajhemu.github.io



10 CHAPTER 1. INTRODUCTION

 

1 Algorithm SelectionSort(a,n)
2  // Sort the array a[1 : n] into nondecreasing order.
3
4 for 1:=—1tondo

5 {
6 JH 45
7 for k:=1+1tondo
8 if (a[k] < alj|) then j := k;

9 t= ali); aft] = aly); a[j] = t5
10
11 }

 

Algorithm 1.2 Selection sort

1.2.2 Recursive Algorithms

A recursive function is a function that is defined in termsofitself. Similarly,
an algorithm is said to be recursive if the same algorithm is invoked in the
body. An algorithm that calls itself is direct recursive. Algorithm is said to
be indirect recursiveif it calls another algorithm which in turn calls A. These
recursive mechanisms are extremely powerful, but even more importantly,
many times they can express an otherwise complex process very clearly. For
these reasons we introduce recursion here.

Typically, beginning programmers view recursion as a Somewhat mystical
technique that is useful only for some very special class of problems (such
as computing factorials or Ackermann’s function). This is unfortunate be-
cause any algorithm that can be written using assignment, the if-then-else
statement, and the while statement can also be written using assignment,
the if-then-else statement, and recursion. Of course, this does not say that
the resulting algorithm will necessarily be easier to understand. However,
there are many instances when this will be the case. Whenis recursion an
appropriate mechanism for algorithm exposition? One instance is when the
problem itself is recursively defined. Factorial fits this category, as well as
binomial coefficients, where

n\ — f{n-1 nm-1\ _ n!

mp m t m-1}  m(n-—m)!

The following two examples show how to develop a recursive algorithm.
In the first example, we consider the Towers of Hanoi problem, and in the
second, we generate all possible permutationsof a list of characters.

https://hemanthrajhemu.github.io



1.2. ALGORITHM SPECIFICATION 11

Example 1.2 [Towers of Hanoi] The Towers of Hanoi puzzle is fashioned
after the ancient Tower of Brahmaritual (see Figure 1.1). According to leg-
end, at the time the world was created, there was a diamond tower (labeled
A) with 64 golden disks. The disks were of decreasing size and were stacked
on the tower in decreasing order of size bottom to top. Besides this tower
there were two other diamond towers (labeled B and C). Since the time
of creation, Brahman priests have been attempting to move the disks from
tower A to tower B using tower C for intermediate storage. As the disks are
very heavy, they can be moved only one at a time. In addition, at no time
can a disk be on top of a smaller disk. According to legend, the world will
come to an end whenthe priests have completed their task.

 

T/T

oath i

‘Tower A Tower B Tower C

 

                

 

Figure 1.1 Towers of Hanoi

A very elegant solution results from the use of recursion. Assume that
the number of disks is n. To get the largest disk to the bottom of tower B,
we move the remaining n — 1 disks to tower C and then move the largest
to tower B. Now weare left with the task of moving the disks from tower
C to tower B. To do this, we have towers A and B available. The fact
that tower B has a disk on it can be ignored as the disk is larger than the
disks being moved from tower C and so any disk can be placed on top ofit.
The recursive nature of the solution is apparent from Algorithm 1.3. This
algorithm is invoked by TowersOfHanoi(n,A,B,C). Observe that our solution
for an n-disk problemis formulated in terms of solutions to two (n — 1)-disk
problems. Oo

Example 1.3 [Permutation generator] Given a set of n > 1 elements, the
problemis to print all possible permutations of this set. For example, if
the set is {a,b,c}, then the set of permutationsis {(a, b,c), (a,c,6), (b, a,c),
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12 CHAPTER 1. INTRODUCTION

 

1 Algorithm TowersOfHanoi(n, z,y, z)
2  // Movethe top n disks from tower x to towery.
3

4 if (n > 1) then

5 {
6 TowersOfHanoi(n — 1, x, z,y)3
7 write ("move top disk from tower", 2,
8 "to top of tower", y);
9 TowersOfHanoi(n — 1, z, y, 2);
10
11 }

 

Algorithm 1.3 Towers of Hanoi

(b, c,a), (c, a, 6), (c,6,a)}. It is easy to see that given n elements, there are
n! different permutations. A simple algorithm can be obtained by looking
at the case of four elements (a,b,c,d). The answer can be constructed by
writing

1. a followed by all the permutationsof(0, c, d)

2. b followed by all the permutationsof(a,c, d)

3. c followed by all the permutationsof (a,b, d)

4. d followed by all the permutationsof(a,b,c)

The expression “followed by all the permutations” is the clue to recursion.
It implies that we can solve the problem for a set with n elements if we have
an algorithm that works on n — 1 elements. These considerations lead to
Algorithm 1.4, which is invoked by Perm(a,1,n). Try this algorithm out
on sets of length one, two, and three to ensure that you understand how it
works. Oo

EXERCISES

1. Horner’s rule is a means for evaluating a polynomial at a point zo
using a minimum numberof multiplications. If the polynomial is A(z)

= On2" + Gn_12""! +++++ a,x + a9, Horner’s rule is

https://hemanthrajhemu.github.io



 

1.2. ALGORITHM SPECIFICATION 13

1 Algorithm Perm(a, k, 7)
2
3 if (k = n) then write (a[1:7]); // Output permutation.
4 else // alk : n] has more than one permutation.
5 // Generate these recursively.
6 for 1:= k to n do

7 {
8 t := alk]; alk] := aft]; aft] := t;
9 Perm(a, k + 1,1);
10 // All permutations of a[k +1: n]
1] t := alk]; alk] := az]; alt] <= t;
12 }
13 }

 

Algorithm 1.4 Recursive permutation generator

q
n

A(zo) = (+--+ (@n%0 + Gn—1)Z0 + +++ + a1) zo + ao

Write an algorithm to evaluate a polynomial using Horner’s rule.

Given nm boolean variables 21, %2,..., and xp, we wish to print all
possible combinations of truth values they can assume. For instance,
ifn = 2, there are four possibilities: true, true; true, false; false, true;
and false, false. Write an algorithm to accomplish this.

Devise an algorithm that inputs three integers and outputs them in
nondecreasing order.

. Present an algorithm that searches an unsorted array a[1 : n] for the
element x. If x occurs, then return a position in the array; else return
zero.

The factorial function n! has value 1 when n < 1 and value n*(n— 1)!
when n > 1. Write both a recursive and an iterative algorithm to
compute n!.

The Fibonacci numbers are defined as fo = 0, f; =1, and f; = fi_1+
fi-2 for i > 1. Write both a recursive and an iterative algorithm to
compute f;.

Give both a recursive and an iterative algorithm to compute the bino-
mialcoefficient (7°) as defined in Section 1.2.2, where (9) = (7) =1.

https://hemanthrajhemu.github.io
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Ackermann’s function A(m,n) is defined as follows:

n+1 ifm =0
A(m,n) = A(m—1, 1) ifn =0

A(m—1, A(m, n-1)) otherwise

This function is studied because it grows very fast for small values of m
and n. Write a recursive algorithm for computing this function. Then
write a nonrecursive algorithm for computingit.

. The pigeonhole principle states that ifa function f has n distinct inputs
but less than n distinct outputs, then there exist two inputs a and b
such that a # 6 and f(a) = f(b). Present an algorithm to find a and
b such that f(a) = f(b). Assume that the function inputs are 1,2,...,
and n.

Give an algorithm to solve the following problem: Given n, a positive
integer, determine whether n is the sum ofall of its divisors, that is,
whether n is the sum of all ¢ such that 1 < t <n, and ¢ divides n.

Consider the function F(z) that is defined by “if x is even, then F(z) =
xz/2; else F(x) = F(F(3x2+1)).” Prove that F(z) terminates for
all integers z. (Hint: Considerintegers of the form (2i + 1)2* — 1 and
use induction.)

If S is a set of n elements, the powerset of S' is the set of all possible
subsets of S. For example, if S = (a,6,c), then powerset(S) = {( ),
(a), (b), (ce), (a,b), (a,¢), (b,c), (a,b, ¢e)}. Write a recursive algorithm
to compute powerset(S).

1.3 PERFORMANCE ANALYSIS

One goal of this book is to develop skills for making evaluative judgments
about algorithms. There are many criteria upon which we can judge an
algorithm. For instance:

1.

2.

Does it do what we want it to do?

Does it work correctly according to the original specifications of the
task?

Is there documentation that describes how to use it and how it works?
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1.3. PERFORMANCE ANALYSIS 15

4. Are procedures created in such a way that they perform logical sub-
functions?

5. Is the code readable?

These criteria are all vitally important when it comes to writing soft-
ware, most especially for large systems. Though we do not discuss how to
reach these goals, we try to achieve them throughout this book with the
pseudocode algorithms we write. Hopefully this more subtle approach will
gradually infect your own program-writing habits so that you will automat-
ically strive to achieve these goals.

There are other criteria for judging algorithms that have a moredirect
relationship to performance. These have to do with their computing time
and storage requirements.

Definition 1.2 [Space/Time complexity] The space complezity of an algo-
rithm is the amount of memory it needs to run to completion. The tzme
complerity of an algorithm is the amount of computer time it needs to run
to completion. Oo

Performance evaluation can be loosely divided into two major phases:
(1) a priori estimates and (2) a posteriori testing. We refer to these as
performance analysis aud performance measurement respectively.

1.3.1 Space Complexity

Algorithmabc (Algorithm 1.5) computes a+b+6«*c+ (a+b—c)/(a+b)+4.0;
Algorithm Sum (Algorithm 1.6) computes 5°, ali] iteratively, where the
a[t]’s are real numbers; and RSum (Algorithm 1.7) is a recursive algorithm
that computes 7, a[é].

 

| lgorithm abc(a,b,c)

3

d

A

{
return a+b+b*c+(a+b-c)/(a+6)4 40;

}

 

Algorithm 1.5 Computes a+6+6*c+(a+b-c)/(a+ 6) +40

The space needed by each of these algorithms is seen to be the sum of
the following components:
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1 Algorithm Sum(a, 7)
2
3 8 := 0.0;
4 for 1:= 1 to ndo
5 s:=8+talil;
6 return 3s;

7 }

 

Algorithm 1.6 Iterative function for sum

 

Algorithm RSum(a, 7)

if (n < 0) then return 0.0;
else return RSum(a,n— 1) + a[nj;

o
R
W
D

r
e

}

 

Algorithm 1.7 Recursive function for sum
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1. A fixed part that is independent of the characteristics (e.g., number,
sive) of the inputs and outputs. This part typically includes the in-
struction space (i.e., space for the code), space for simple variables
and fixed-size component variables (also called aggregate), space for
constants, and so on.

2. A variable part that consists of the space needed by component vari-
ables whose size is dependent on the particular problem instance being
solved, the space needed by referenced variables (to the extent that this
dependson instance characteristics), and the recursion stack space (in-
sofar as this space depends on the instance characteristics).

The space requirement S(P) of any algorithm P may therefore be written
as S(P) = c+ Sp(instance characteristics), where c is a constant.

When analyzing the space complexity of an algorithm, we concentrate
solely on estimating Sp(instance characteristics). For any given problem, we
need first to determine which instance characteristics to use to measure the
space requirements. This is very problem specific, and we resort to examples
to illustrate the various possibilities. Generally speaking, our choices are
limited to quantities related to the number and magnitude of the inputs to
and outputs from the algorithm. At times, more complex measures of the
interrelationships among the data items are used.

Example 1.4 For Algorithm 1.5, the problem instance is characterized by
the specific values of a, 6, and c. Making the assumption that one word
is adequate to store the values of each of a, 6, c, and the result, we see
that the space needed by abc is independent of the instance characteristics.
Consequently, Sp(instance characteristics) = 0. oO

Example 1.5 The problem instances for Algorithm 1.6 are characterized
by n, the number of elements to be summed. The space needed by n is one
word, since it is of type integer. The space needed by a is the space needed
by variables of type array of floating point numbers. Thisis at least n words,
since a must be large enough to hold the n elements to be summed. So, we
obtain Ssum(m) > (n+ 3) (n for al], one each for n, 2, and s). Oo

Example 1.6 Let us consider the algorithm RSum (Algorithm 1.7). As in
the case of Sum, the instances are characterized by n. The recursion stack
space includes space for the formal parameters, the local variables, and the
return address. Assume that the return address requires only one word of
memory. Each call to RSum requires at least three words (including space
for the values of n, the return address, and a pointer to a|). Since the depth
of recursion is n + 1, the recursion stack space needed is > 3(n + 1). Oo
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1.3.2 Time Complexity

The time T(P) taken by a program P is the sum of the compile time and
the run (or execution) time. The compile time does not depend on the
instance characteristics. Also, we may assume that a compiled program
will be run several times without recompilation. Consequently, we concern
ourselves with just the run time of a program. This run time is denoted by
tp(instance characteristics).

Because many of the factors tp depends on are not known at the time
a program is conceived, it is reasonable to attempt only to estimate tp. If
we knew the characteristics of the compiler to be used, we could proceed to
determine the numberof additions, subtractions, multiplications, divisions,
compares, loads, stores, and so on, that would be made by the codefor P.
So, we could obtain an expression for tp(n) of the form

tp(n) = @ADD(n) +¢,SUB(n) + enMUL(n) + caDIV(n) +--+:

where n denotes the instance characteristics, and Cg, Cs, Cm, Cq, aud so on,

respectively, denote the time needed for an addition, subtraction, multipli-
cation, division, and so on, and ADD, SUB, MUL, DIV,and so on,are
functions whose values are the numbersof additions, subtractions, multipli-
cations, divisions, and so on, that are performed when the code for P is used
on an instance with characteristic n.

Obtaining such an exact formula is in itself an impossible task, since the
time needed for an addition, subtraction, multiplication, and so on, often
depends on the numbers being added, subtracted, multiplied, and so on.
The value of tp(n) for any given n can be obtained only experimentally.
The program is typed, compiled, and run on a particular machine. The
execution time is physically clocked, and tp(n) obtained. Even with this
experimental approach, one could face difficulties. In a multiuser system,
the execution time depends on such factors as system load, the number of
other programs running on the computer at the time program P is run, the
characteristics of these other programs, and so on.

Given the minimal utility of determining the exact number of additions,
subtractions, and so on, that are needed to solve a problem instance with
characteristics given by n, we might as well lump all the operations together
(provided that the time required by each is relatively independent of the
instance characteristics) and obtain a count for the total number of opera-
tions. We can go one step further and count only the number of program
steps.

A program step is loosely defined as a syntactically or semantically mean-
ingful segment of a program that has an execution time that is independent
of the instance characteristics. For example, the entire statement

return a+6+6*c+ (a+b—-c)/(a+6)+4+ 4.0;
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of Algorithm 1.5 could be regarded as a step since its execution time is
independent of the instance characteristics (this statement is not strictly
true, since the time for a multiply and divide generally depends on the
numbers involved in the operation).

The number of steps any program statement is assigned depends on the
kind of statement. For example, comments count as zero steps; an as-

signment statement which does not involve any calls to other algorithms
is counted as one step; in an iterative statement such as the for, while, and
repeat-until statements, we consider the step counts only for the control
part of the statement. The control parts for for and while statements have
the following forms:

for i := (expr) to (expr1) do

while ({expr)) do

Each execution of the control part of a while statement is given a step
count equal to the number of step counts assignable to (expr). The step
count. for each execution of the control part of a for statement is one, unless
the counts attributable to (expr) and (expr1) are functions of the instance
characteristics. In this latter case, the first execution of the control part
of the for has a step count equal to the sum of the counts for (expr) and
(ezpr1) (note that these expressions are computed only when the loop is
started). Remaining executions of the for statement have a step count of
one; andso on.

We can determine the number of steps needed by a program to solve a
particular problem instance in one of two ways. In the first method, we
introduce a new variable, count, into the program. This is a global vari-
able withinitial value 0. Statements to increment count by the appropriate
amount are introduced into the program. This is done so that each time a
statement in the original program is executed, count is incremented by the
step count of that statement.

Example 1.7 Whenthe statements to increment courit are introduced into
Algorithm 1.6, the result is Algorithm 1.8. The changein the value of count
by the time this program terminates is the number of steps executed by
Algorithm 1.6.

Since we are interested in determining only the change in the value of
count, Algorithm 1.8 may be simplified to Algorithm 1.9. For every initial
value of count, Algorithms 1.8 and 1.9 compute the same final value for
count. It is easy to see that in the for loop, the value of count will increase
by a total of 2n. If count is zero to start with, then it will be 2n + 3 on
termination. So each invocation of Sum (Algorithm 1.6) executes a total of
2n + 3 steps. Oo
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1 Algorithm Sum(a,n)
2
3 & := 0.0;

4 count := count + 1; // countis global; it is initially zero.
5 for 1:= 1 ton do

6 {
7 count := count + 1; // For for
8 s:=s8-+alt]; count := count+ 1; // For assignment
9
10 count := count +1; // For last time of for
11 count := count + 1; // For the return
12 return 5;

13 }

 

Algorithm 1.8 Algorithm 1.6 with count statements added

 

Algorithm Sum(a, 7)

for 1:= 1 to n do count := count + 2;
count := count + 3;

o
R
W
N

F
E

 

Algorithm 1.9 Simplified version of Algorithm 1.8
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Example 1.8 When the statements to increment count are introduced into
Algorithm 1.7, Algorithm 1.10 is obtained. Let trsum(n) be the increase in
the value of count when Algorithm 1.10 terminates. We see that trsum(0)
= 2. When n > 0, count increases by 2 plus whatever increase results from
the invocation of RSum from within the else clause. From the definition of
trsum, it follows that this additional increase is trsum(m — 1). So, if the value
of count is zeroinitially, its value at the time of termination is 2+trsum(n—1),

n> 0.

 

1 Algorithm RSum(a, n)
2
3 count := count + 1; // For the if conditional
4 if (n < 0) then

5 {
6 count := count + 1; // For the return
7 return 0.0;

sj
i] else
10 {
11 count := count+1; // For the addition, function
12 // vocation and return
13 return RSum(a,n — 1) + a[n];
14
15 }

 

Algorithm 1.10 Algorithm 1.7 with count statements added

When analyzing a recursive program for its step count, we often obtain
a recursive formula for the step count, for example,

' _f2 ifn=0
RSum(™) =) 24 treum(n— 1) ifn > 0

These recursive formulas are referred to as recurrence relations. One way
of solving any such recurrencerelation is to make repeated substitutions for
each occurrence of the function trsym on the right-handside until all such
occurrences disappear:
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2+ trsum(n — 1)

2+2+4 trsum(n — 2)

2(2) + trsum(n — 2)

trsum(7)

n(2) + trsum(0)
2n + 2, n>0

So the step count for RSum (Algorithm 1.7) is 2n + 2. Oo

The step count is useful in that it tells us how the run timefor a program
changes with changes in the instance characteristics. From the step count for
Sum, we see that ifn is doubled, the run time also doubles (approximately);
if n increases by a factor of 10, the run time increases by a factor of 10; and
so on. So, the run time growslinearly in n. We say that Sum is a linear time
algorithm (the time complexity is linear in the instance characteristic n).

Definition 1.3 [Input size] One of the instance characteristics that is fre-
quently used in the literature is the input size. The input size of any instance
of a problem is defined to be the number of words (or the numberofele-
ments) needed to describe that instance. The input size for the problem
of summing an array with n elements is n +1, n for listing the n elements
and 1 for the value of n (Algorithms 1.6 and 1.7). The problem tackled in
Algorithm 1.5 has an input size of 3. If the input to any problem instance
is a single element, the input size is normally taken to be the number of
bits needed to specify that element. Run times for many of the algorithms
presented in this text are expressed as functions of the corresponding input
sizes.

Example 1.9 [Matrix addition] Algorithm 1.11 is to add two m x n matrices
a and 6 together. Introducing the count-incrementing statements leads to
Algorithm 1.12. Algorithm 1.13 is a simplified version of Algorithm 1.12
that computes the same value for count. Examining Algorithm 1.13, we see
that line 7 is executed n times for each value of i, or a total of mn times;
line 5 is executed m times; and line 9 is executed once. If count is 0 to begin
with, it will be 2mn + 2m +1 when Algorithm 1.13 terminates.

From this analysis we see that if m > n, then it is better to interchange
the two for statements in Algorithm 1.11. If this is done, the step count
becomes 2mn+2n+1. Note that in this example the instance characteristics
are given by m and n and the inputsize is 2mn + 2. Oo

The second method to determine the step count of an algorithm is to
build a table in which welist the total numberof steps contributed by each
statement. This figure is often arrived at by first determining the numberof
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1 Algorithm Add(a, b,c,m,n)

2 {
3 for 1:=—1 to mdo
4 for j := 1 to n do

5 cli, J] = alt, 9] + ble, a);
6 }

 

Algorithm 1.11 Matrix addition

 

! Algorithm Add(a,},c,m,n)

2 {
3 for 1:= 1 to m do

1 {
5 count := count + 1; // For ‘for 7’
6 for 7 := 1tondo
7
& count := count + 1; // For ‘for j’

9 cli, i] := afi, ] +l,J
10 count := count + 1; // For the assignment
11 }
12 count := count + 1;// For loop initialization and
13 // \ast time of ‘for 7’
14 }
15 count := count + 1; // For loop initialization and
16 // \ast time of ‘for 7”
17 }

 

Algorithm 1.12 Matrix addition with counting statements
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Algorithm Add(a, b,c, m,n)

{
for 1 :=1to mdo

{
count := count + 2;

for j :=1 to ndo
count := count + 2;

}
count := count + 1;

F
O
O
N
O
o
o
h
w
n
r
e

0 }

 

Algorithm 1.13 Simplified algorithm with counting only

steps per execution (s/e) of the statement and the total numberoftimes(i.e.,
frequency) each statement is executed. The s/e of a statement is the amount
by which the count changes as a result of the execution of that statement.
By combining these two quantities, the total contribution of each statement
is obtained. By adding the contributions of all statements, the step count
for the entire algorithm is obtained.

In Table 1.1, the number of steps per execution and the frequency of
each of the statements in Sum (Algorithm 1.6) have been listed. The total
numberof steps required by the algorithm is determined to be 2n + 3. It is
important to note that the frequency of the for statement is n + 1 and not
n. This is so because 7 has to be incremented to n + 1 before the for loop
can terminate.

Table 1.2 gives the step count for RSum (Algorithm 1.7). Notice that
under the s/e (steps per execution) column, the else clause has been given
a count of 1+ trsum(n — 1). This is the total cost of this line each time
it is executed. It includes all the steps that get executed as a result of the
invocation of RSum from the else clause. The frequency and total steps
columns havebeen split into two parts: one for the case n = 0 and the other
for the case n > 0. This is necessary because the frequency (and hencetotal
steps) for some statements is different for each of these cases.

Table 1.3 corresponds to algorithm Add (Algorithm 1.11). Once again,
note that the frequency of the first for loop is m+ 1 and not m. This is
so as 7 needs to be incremented up to m+ 1 before the loop can terminate.
Similarly, the frequency for the second for loop is m(n 1).

When you have obtained sufficient experience in computing step counts,
you can avoid constructing the frequency table and obtain the step count as
in the following example.
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|| Statement | s/e | frequency | total steps |]

1 Algorithm Sum(a,n) 0 — 0)
2 0 — 0
3s := 0.05 1 1 1
4 fori:=1ltondo 1 n+1 n+ 1
5 si=s+alil; 1 n n
6 return s; 1 1 1
7 } 0 - 0

| Total | —[2n+3 |

Table 1.1 Step table for Algorithm 1.6

frequency total steps
Statement s/e n=0 n>O0|/n=0 n>0

1 Algorithm RSum(a, n) 0 — = 0 0
2

3 if (n < 0) then 1 1 1 1 1
4 return 0.0; 1 1 0 1 0
5 else return
6 RSum(a,n —1)+a[n]; 1+2 0 1 0 l+¢
7 } 0 ~ = jo 0
|Total | | 2 24+|
 
 

z = trsum(n — 1)

 

Table 1.2 Step table for Algorithm 1.7
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Statement | s/e | frequency | total steps |

1 Algorithm Add(a,},c,m,n) 0 — 0
2 0 — 0

3 for i:=1to mdo 1 mt+tl mt+tl

4 for 7 := 1 to n do 1 m(n +1) mn+m
5 c[t, J] = afi, 7] + Olt, 7]3 1 mn mn
6 0 — 0

Total | | | 2mn+2m+1|}
 

 

 

Table 1.3 Step table for Algorithm 1.11

Example 1.10 [Fibonacci numbers] The Fibonacci sequence of numbersstarts
as

0,1,1,2,3,5,8, 13, 21,34, 55,...

Each new term is obtained by taking the sum of the two previous terms. If
wecall the first term of the sequence fp, then fo = 0, f; = 1, and in general

fn = fn-1 + fn—2, n> 2

Fibonacci (Algorithm 1.14) takes as input any nonnegative integer n and
prints the value f,,.

To analyze the time complexity of this algorithm, we need to consider the
two cases (1) n = or 1 and (2) n > 1. When n = or1, lines 4 and 5 get
executed once each. Since each line has an s/e of 1, the total step count for
this case is 2. When n > 1, lines 4, 8, and 14 are each executed once. Line
9 gets executed n times, and lines 11 and 12 get executed n — 1 times each
(note that the last time line 9 is executed, 7 is incremented to n+ 1, and the
loop exited). Line 8 has an s/e of 2, line 12 has an s/e of 2, and line 13 has
an s/e of 0. The remaining lines that get executed have s/e’s of 1. The total
steps for the case n > 1 is therefore 4n + 1. Oo

Summary of Time Complexity

The time complexity of an algorithm is given by the numberof steps taken
by the algorithm to compute the function it was written for. The numberof
stepsis itself a function of the instance characteristics. Although any specific
instance may have several characteristics (e.g., the number of inputs, the
numberof outputs, the magnitudes of the inputs and outputs), the number
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1 Algorithm Fibonacci(n)
2  // Compute the nth Fibonacci number.
3

4 if (n <1) then
5 write (n);
6 else

7 {
& fnm2 :=0; fnml1 := 1;
9 for 1 :=2 to n do
10
11 fni= fnml1 t+ fnm2;
12 fnm2 := fnml; fnml := fn;
13
14 write (fn);
15
16 }

 

Algorithm 1.14 Fibonacci numbers

of steps is computed as a function of some subset of these. Usually, we
choose those characteristics that are of importance to us. For example, we
miglit wish to know how the computing (or run) time(i-e., time complexity)
increases as the number of inputs increase. In this case the number ofsteps
will be computed as a function of the numberof inputs alone. For a different
algorithm, we might be interested in determining how the computing time
increases as the magnitude of one of the inputs increases. In this case the
number of steps will be computed as a function of the magnitude of this
input alone. Thus, before the step count of an algorithm can be determined,
we need to know exactly which characteristics of the problem instance are
to be used. These define the variables in the expression for the step count.
In tlie case of Sum, we chose to measure the time complexity as a function
of the number n of elements being added. For algorithm Add, the choice of
characteristics was the number m of rows and the number n of columns in
the inatrices being added.

Once the relevant characteristics (n,m, p,q,7T,...) have been selected, we
can clefine what a step is. A step is any computation unit that is independent
of tle characteristics (n,m, p,q,7,...). Thus, 10 additions can be one step;
100 inultiplications can also be one step; but n additions cannot. Nor can
m/2 additions, p + q subtractions, and so on, be counted as onestep.
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A systematic way to assign step counts was also discussed. Once this has
been done, the time complexity (i.e., the total step count) of an algorithm
can be obtained using either of the two methods discussed.

The examples we have looked at so far were sufficiently simple that the
time complexities were nice functions of fairly simple characteristics like the
number of inputs and the number of rows and columns. For many algo-
rithms, the time complexity is not dependent solely on the numberof inputs
or outputs or some other easily specified characteristic. For example, the
searching algorithm you wrote for Exercise 4 in Section 1.2, may terminate
in one step if x is the first element examined by your algorithm, or it may
take two steps (this happens if x is the second element examined), and so
on. In other words, knowing n aloneis not enough to estimate the run time
of your algorithm.

Wecan extricate ourselves from the difficulties resulting from situations
when the chosen parameters are not adequate to determine the step count
uniquely by defining three kinds of step counts: best case, worst case, and
average. The best-case step count is the minimum number of steps that
can be executed for the given parameters. The worst-case step count is the
maximum number of steps that can be executed for the given parameters.
The average step count is the average numberof steps executed on instances
with the given parameters.

Our motivation to determine step counts is to be able to compare the
time complexities of two algorithms that compute the same function and
also to predict the growth in run time as the instance characteristics change.

Determining the exact step count (best case, worst case, or average) of an
algorithm can prove to be an exceedingly difficult task. Expending immense
effort to determine the step count exactly is not a very worthwhile endeavor,
since the notion of a step is itself inexact. (Both the instructions x := y;
and g := y+z+(a£/y) + (x4*y* z—2/z); count as one step.) Because of
the inexactness of what a step stands for, the exact step count is not very
useful for comparative purposes. An exception to this is when the difference
between the step counts of two algorithmsis very large, as in 3n + 3 versus
100n + 10. We might feel quite safe in predicting that the algorithm with
step count 3n+3 will run in less time than the one with step count 100n+10.
But even in this case, it is not necessary to know that the exact step count
is 100n + 10. Somethinglike, “it’s about 80n or 85n or 75n,” is adequate to
arrive at the same conclusion.

For most situations, it is adequate to be able to make a statement like
en? < tp(n) < cyn? or tg(n,m) = cn + com, where c, and cp are non-
negative constants. This is so because if we have two algorithms with a
complexity of cyn? + can and c3n respectively, then we know that the one
with complexity c3n will be faster than the one with complexity cn? + con
for sufficiently large values of n. For small values of n, either algorithm could
be faster (depending on c), c2, and c3). If cq, = 1, co = 2, and cz = 100, then
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cyn? teen < can for n < 98 and cn? + con > c3n for n > 98. If e = 1,
co = 2, and c3 = 1000, then cn? + con < e3n for n < 998.

No matter what the values of cy, c2, and cs, there will be an n beyond
which the algorithm with complexity c3n will be faster than the one with
complexity cyn? + con. This value of n will be called the break-even point.
If the break-even point is zero, then the algorithm with complexity c3n is

always faster (or at least as fast). The exact break-even point cannot be
determined analytically. The algorithms have to be run on a computer in
order to determine the break-even point. To know that there is a break-even
point, it is sufficient to know that one algorithm has complexity cn? + con
and the other c3n for some constants c,, co, and c3. Thereis little advantage
in determining the exact values of ¢,, co, and c3.

1.3.3 Asymptotic Notation (O, 2, 0)

With the previous discussion as motivation, we introduce some terminology
that enables us to make meaningful (but inexact) statements about the time
and space complexities of an algorithm. In the remainder of this chapter,
the functions f and g are nonnegative functions.

Definition 1.4 [Big “oh"] The function f(n) = O(g(n)) (read as “f of n is
big oh of g of n”) iff (if and only if) there exist positive constants c and no
such that f(n) < c* g(n) for all n, n > no. Oo

Example 1.11 The function 3n +2 = O(n) as 3n+2 < 4n for all n > 2.
3n +3 = O(n) as 3n+3 < 4nfor all n > 3. 100n+6 = O(n) as
100n +6 < 101nfor all n > 6. 10n?+4n+2 = O(n?) as 10n?+4n4+2 < 11n?
for all > 5. 1000n? + 100n — 6 = O(n?) as 1000n? + 100n — 6 < 1001n? for
n> 100. 6*2"+4+n? = O(2") as 6*2" +n? < 7*2” forn > 4. 3n4+3 = O(n”)
as 37. +3 < 3n? for n > 2. 10n? + 4n +2 = O(n4) as 10n? +4n+2< 10n4
for n > 2. 3n +2 4 O(1) as 3n +4 2 is not less than or equal to c for any
constant cand alln > no. 10n?+4n+2 4 O(n). Oo

We write O(1) to mean a computing time that is a constant. O(n) is
called linear, O(n?) is called quadratic, O(n*) is called cubic, and O(2”)
is called exponential. If an algorithm takes time O(log), it is faster, for
sufficiently large n, than if it had taken O(n). Similarly, O(n log n) is better
than O(n”) but not as good as O(n). These seven computing times—O(1),

O(log n), O(n), O(nlogn), O(n”), O(n3), and O(2”)-are the ones we see
most often in this book.

As illustrated by the previous example, the statement f(n) = O(g(n))
states only that g(n) is an upper bound on the value of f(n) for all n,
n > ng. It does not say anything about how good this bound is. Notice
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that n = O(2"), n =on), n = O(n3), n = O(2"), and so on. For
the statement f(n) = O(g(n)) to be.informative,g(n) should be as small a
function of n as one can come up with for which f(n) = O(g(n)). So, while
we often say that 3n + 3 = O(n), we almost never say that 3n +3 = O(n?),
even though this latter statement is correct.

From the definition of O, it should be clear that f(n) = O(g(n)) is not
the same as O(g(n)) = f(n). In fact, it is meaningless to say that O(g(n)) =
f(n). The use of the symbol = is unfortunate because this symbol commonly
denotes the equals relation. Someof the confusion that results from the use
of this symbol (which is standard terminology) can be avoided by reading
the symbol = as “is” and not as “equals.”

Theorem 1.2 obtains a very useful result concerning the order of f(n)
(that is, the g(n) in f(n) = O(g(n))) when f(n) is a polynomial in n.

Theorem 1.2 If f(n) =ann™ +---+a1n+4+ ao, then f(n) = O(n™).

Proof:

fn) < Vimo lain’
Seeo lain™
< nm re5 |as| forn > 1

So, f(n) = O(n™) (assuming that m is fixed). Oo

Definition 1.5 [Omega] The function f(n) = Q(g(n)) (read as “f of n
is omega of g of n”) iff there exist positive constants c and no such that
f(n) > cx g(n) for all n, n > no. oO

Example 1.12 The function 3n + 2 = Q(n) as 3n +2 > 3n for n > 1
(the inequality holds for n > 0, but the definition of Q requires an ng > 0).
3n4+3 = Qn) as 38n+3 > 3n for n > 1. 100n+6 = Q(n) as 100n +6 > 100n
for n > 1. 10n? + 4n4+ 2 = Q(n?) as 10n? + 4n+2 > n? for n > 1.

6 «2% 4 n? = 022") as 6 * 2” + n? > 2” for n > 1. Observe also that
3n +3 = Q(1), 10n? + 4n 42 = Q(n), 10n? + 4n +2 = (1), 6* 2" +n? =
Q(n1), 6 * 2" +n? = O(n), 6 * 2" +n? = O(n?), 6 *2" +n? = O(n), and
6* 2” +n? =Q(1). Oo

As in the case of the big oh notation, there are several functions g(n) for
which f(n) = Q(g(n)). The function g(n) is only a lower bound on f(n).
For the statement f(n) = Q(g(n)) to be informative, g(n) should be as large
a function of n as possible for which the statement f(n) = Q(g(n)) is true.
So, while we say that 3n + 3 = Q(n) and 6 *« 2" + n? = 0(2"), we almost
never say that 3n +3 = Q(1) or 6 * 2" +n? = Q(1), even though both of
these statements are correct.

Theorem 1.3 is the analogue of Theorem 1.2 for the omega notation.
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Theorem 1.3 If f(n) = amn™+---+ajn+ ao and am > 0, then f(n) =
Q(n™),

Proof: Left as an exercise. O

Definition 1.6 [Theta] The function f(n) = O(g(n)) (read as “f of n is
theta of g of n”) iff there exist positive constants c),c2, and no such that

cig(n) < f(n) < cag(n) for all n, n > no. Oo

Example 1.13 Thefunction 3n + 2 = O(n) as 3n + 2 > 3n for all n > 2
and $n +2 < 4nforall n > 2, so Cc) = 3, co = 4, and ng = 2. 8n +3 = O(n),
10n? + 4n+2 = O(n”), 6*2" +n? = O(2"), and 10 * logn + 4 = O(log n).
3n+2 4 O(1), 3n+3 4 O(n?), 10n?+4n+2 4 O(n), 10n?tant+2 # OU ),
6 * 2" +n? £ O(n), 6* 2" +n? £ O(n”), and 6 x 2" + n? 4 O(1). Oo

The theta notation is more precise than both the the big oh and omega
notations. The function f(n) = O(g(n)) iff g(m) is both an upper and lower
boundon f(n).

Notice that the coefficients in all of the g(n)’s used in the preceding three
examples have been 1. This is in accordance with practice. We almost
neverfind ourselves saying that 3n + 3 = O(3n), that 10 = O(100), that
10n? + 4n +2 = Q(4n?), that 6 * 2” +n? = O(6 * 2"), or that 6* 2" +n? =
O(4 « 2”), even thougheach of these statements is true.

Theorem 1.4 If f(n) =a,n"™+---+a,;n+ aand am > 0, then f(n) =
O(n").

Proof: Left as an exercise. O

Definition 1.7 [Little “oh"] The function f(n) = o(g(n)) (read as “f of n
is little oh of g of n”) iff

f(r)
noc g(n)

O

Example 1.14 The function 3n + 2 = o(n?) since limp+o suse =0. 3n+

2 = o(nlogn). 3n+2 = o(nloglogn). 6 * 2" +n? = 0(3”). 6* 2" +n? =
0(2” log n). 8n +2 £ o(n). 6 * 2” + n? F o(2"). Oo

Analogous to o is the notation w defined as follows.
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Definition 1.8 [Little omega] The function f(n) = w(g(n)) (read as “f of
n is little omega of g of n”) iff

g(n)
lim
n—00 f(n)

O

Example 1.15 Let us reexamine the time complexity analyses of the pre-
vious section. For the algorithm Sum (Algorithm 1.6) we determined that
tsum(r) = 2n + 3. So, tsum(r) = O(n). For Algorithm 1.7, trsum(n) =
2n+2 = O(n). O

Although we mightall see that the O, Q, and © notations have been used
correctly in the preceding paragraphs, wearestill left with the question, Of
what use are these notations if we have to first determine the step count
exactly? The answer to this question is that the asymptotic complexity
(i.e., the complexity in terms of O, 9, and ©) can be determined quite
easily without determining the exact step count. This is usually done by
first determining the asymptotic complexity of each statement (or group of
statements) in the algorithm and then adding these complexities. Tables 1.4
through 1.6 do just this for Sum, RSum, and Add (Algorithms 1.6, 1.7, and
1.11).

 
  

  

         

|| Statement | s/e | frequency | total steps||

1 Algorithm Sum(a,n) 0 — 0(0)
2 { 0 |- O(0)
3 $ := 0.0; 1 1 O(1)
4 fori:=1tondo 1 n+1 O(n)
5 s:=stalil; 1 |n O(n)
6 return 8; 1 1 O(1)
7 4} 0 |- 0(0)

[| Total || | O(n) l  
 

Table 1.4 Asymptotic complexity of Sum (Algorithm 1.6)

Although the analyses of Tables 1.4 through 1.6 are carried out in terms
of step counts, it is correct to interpret tp(n) = O(g(n)), tp(n) = Q(g(n)),
or tp(n) = O(g(n)) as a statement about the computing time of algorithm
P. This is so because each step takes only O(1) time to execute.
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frequency total steps

Statement s/e n=0 n>0|[n=0 n>O

1 Algorithm RSum(a,n) 0 = — 0 ©(0)
2 0 — - 0 oO

3 if (n < 0) then 1 1 1 1 0
4 return 0.0; 1 1 0 1 0
5 else return

6 RSum(a,n —1)+al[n]); l+a 0 1 0 O(1 2)
7 0 = — 0 O

|| Total | | 2 O(1 +z)|

x = trsum(n — 1)

 

Table 1.5 Asymptotic complexity of RSum (Algorithm 1.7).

 

 

 

| Statement | s/e | frequency | total steps ||
 

 

        
 

| Algorithm Add(a,},c,m,n) 0 — 0(0)
2 0 - (0)
3 for i:= 1 to mdo 1 O(m) O(m)
4 for i:=1 to ndo 1 O(mn) O(mn)

5 cli, j] = afi, j] +f, js 1 O(mn) O(mn)
6 QO |= Q(0)

{| Total | O(mn) I
 

 

 

Table 1.6 Asymptotic complexity of Add (Algorithm 1.11)
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After you have had some experience using the table method, you will
be in a position to arrive at the asymptotic complexity of an algorithm by
taking a more global approach. We elaborate on this methodin the following
examples.

Example 1.16 [Permutation generator] Consider Perm (Algorithm 1.4). When
k =n, we see that the time taken is O(n). When k < n, the else clause is
entered. At this time, the second for loop is entered n — k +1 times. Each
iteration of this loop takes O(n + tperm(k+1,7)) time. So, tpem(k, m) =
O((n-—k4+1)(n4+ tpem(kK +1, n))) whenk < n. Since tpem(k+1, n) is at
least n when k+1 <n, we get tperm(k, n) = O((n—k+1)tpem(kK+1, )) for
k <n. Using the substitution method, we obtain tpem(1,n) = O(n(n!})),
n>. Oo

Example 1.17 [Magic square] The next example we consider is a problem
from recreational mathematics. A magic square is an n X n matrix of the
integers 1 to n? such that the sum of every row, column, and diagonalis the
same. Figure 1.2 gives an example magic square for the case n = 5. In this
example, the common sum is 65.

 

 

15 8 1 24 17

 

16 14 7 5 23

 

22 20 13 6 4

 

        
 

Figure 1.2 Example magic square

H. Coxeter has given the following simple rule for generating a magic
square when n is odd:

Start with 1 in the middle of the top row; then go up andleft,
assigning numbers in increasing order to empty squares; if you
fall off the square imagine the same square astiling the plane
and continue; if a square is occupied, move down instead and
continue.
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The magic square of Figure 1.2 was formed using this rule. Algorithm 1.15
is for creating an n xX n magic square for the case in which n is odd. This
results from Coxeter’s rule.

The magic square is represented using a two-dimensional array having n
rows and n columns. For this application it is convenient to number the
rows (and columns) from 0 to n—1 rather than from 1 to n. Thus, when the
algorithm “falls off the square,” the mod operator sets i and/or j back to
Oorn—1.

Thetimeto initialize and output the square is O(n”). The third for loop

(in which key ranges over 2 through n”)is iterated n? — 1 times and each

iteration takes O(1) time. So, this for loop takes O(n”) time. Hence the
overall time complexity of Magic is Q(n?). Since there are n? positions in

which the algorithm must place a number, we see that O(n”) is the best
boundan algorithm for the magic square problem can have. Oo

Example 1.18 [Computing x”] Our final example is to compute «” for any
real number z andinteger n > 0. A naive algorithm for solving this problem
is to perform n — 1 multiplications as follows:

power = Ly

for 1:= 1 to n—1 do power := power * z;

This algorithm takes O(n) time. A better approach is to employ the “re-
peated squaring” trick. Consider the special case in which n is an integral
powerof 2 (that is, in which n equals 2" for some integer &). The following
algorithm computes x”.

power := x3

for i:= 1 to k do power := power’;

The value ofpowerafter g iterations of the for loop is z?’. Therefore, this al-
gorithm takes only O(k) = O(log n) time, whichis a significant improvement
over the run time of the first algorithm.

Can the same algorithm be used when n is not an integral power of 2?
Fortunately, the answer is yes. Let 6,b,_1--- 6169 be the binary representa-

tion of the integer n. This means that n = Yio bg2?. Now,

k ‘
gg? = powa=0 bg2t (x) * (x?) * (x) een (x2ys

Also observe that bp is nothing but n mod 2 and that |n/2| is bybg_1 ++ - by
in binary form. These observations lead us to Exponentiate (Algorithm 1.16)
for computing 2”.
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1 Algorithm Magic(n)
2 // Create a magic square of size n, n being odd.
3
4 if ((n mod 2) = 0) then

5 {
6 write (''n is even"); return;

7 }
8 else
9
10 for i:=0 to n-—1do // Initialize square to zero.
11 for j :=O0ton—1do squarefi,j] := 0;
12 square[0, (n — 1)/2] := 1; // Middleoffirst row
13 // (4,7) is the current position.
14 j= (n—-1)/2;
15 for key := 2 to n? do
16 {
17 // Move up andleft. The next two if statements
18 // may be replaced by the mod operatorif
19 // —\1 mod n hasthe value n — 1.
20 if (¢ > 1) then k:=i-—1; else k:=n—-1;
21 if (j > 1) then 1:= j — 1; else l:=n—-1;
22 if (square[k, 1] > 1) then i:= (i+ 1) mod n;
23 else // square[k,1] is empty.
24
25 ti=ky7g =];
26
27 squareli, j] := key;
28 }
29 // Output the magic square.
30 for 7:=0 to n—1 do
31 for j := 0 to n—1 do write (square[t,j]);
32
33 }

 

Algorithm 1.15 Magic square
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Algorithm Exponentiate(z, n)
// Return x” for an integer n > 0.

Mm i= nN; power := 13 z:= 2;

while (m > 0) do

while ((m mod 2) = 0) do

m= |m/2|3 2:= 273

e
r
e

O
N
n
o
o
n
k
W
w
W
N
e

—

{

}
m i= m— 1; power := power * z3

12 }
13 return power;

lt }

 

Algorithm 1.16 Computation of x”

Proving the correctness of this algorithm is left as an exercise. The vari-
able 7starts with the value of n, and after every iteration of the innermost
while loop (line 7), its value decreases by a factor of at least 2. Thus there
will be only O(log n) iterations of the while loop of line 7. Each suchitera-
tion takes O(1) time. Whenever control exits from the innermost while loop,
the value of mis odd and the instructions m := m— 1; power := power * z3
are executed once. After this execution, since m becomes even, either the
innermost while loop is entered again or the outermost while loop (line
5) is exited (in case m = 0). Therefore the instructions m := m— 1;
power := power * z3 can only be executed O(logn) times. In summary,
the overall run time of Exponentiate is O(log n). Oo

1.3.4 Practical Complexities

We have seen that the time complexity of an algorithm is generally some
function of the instance characteristics. This function is very useful in de-
termining how the time requirements vary as the instance characteristics
change, The complexity function can also be used to compare two algo-
rithms P and Q that perform the same task. Assume that algorithm P has
complexity ©(n) and algorithm Q has complexity @(n”). We can assert that
algorithin P is faster than algorithm Q for sufficiently large n. To see the
validity of this assertion, observe that the computing time of P is bounded
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from above by cn for some constant c andfor all n, n > n,, whereas that of
Q is bounded from below by dn? for some constant d and all n,n > ng. Since
cn < dn? for n > c/d, algorithm P is faster than algorithm Q whenever n
> max{n,, 72, c/d}.

You should always be cautiously aware of the presence of the phrase “suf-
ficiently large” in an assertion like that of the preceding discussion. When
deciding which of the two algorithms to use, you must know whether the
n you are dealing with is, in fact, sufficiently large. If algorithm P runs in
10°n milliseconds, whereas algorithm Q runs in n? milliseconds, and if you
always have n < 10°, then, other factors being equal, algorithm Q is the one
to use.

To get a feel for how the various functions grow with n, you are advised
to study Table 1.7 and Figure 1.3 very closely. It is evident from Table 1.7
and Figure 1.3 that the function 2” grows very rapidly with n. In fact, if
an algorithm needs 2” steps for execution, then when n = 40, the number
of steps needed is approximately 1.1 « 10!*. On a computer performing one
billion steps per second, this would require about 18.3 minutes. If n = 50,
the samealgorithm would run for about 13 days on this computer. When n
= 60, about 310.56 years are required to execute the algorithm and when n
= 100, about 4« 10!° years are needed. So, we may conclude that the utility
of algorithms with exponential complexity is limited to small n (typically
n < 40).

 

 

 

 

 

         

|logn | n{[nlogn] nn? {| n3 | 2” |
0 1 0 1 1 2

1] 2 2 4 8 4
2| 4 8 16 64 16
3] 8 24 64 512 256
4 16 64 256 4,096 65,536
5} 32} 160 1,024 32.768 4,294,967,296
 

 

 

Table 1.7 Function values

Algorithms that have a complexity that is a polynomial of high degree
are also oflimitedutility. For example,if an algorithm needs n° steps, then
using our 1-billion-steps-per-second computer, we need 10 seconds when n
= 10, 3171 years when n = 100, and 3.17 * 1918 years when n = 1000. If the
algorithm’s complexity had been n° steps instead, then we would need one
second when rn = 1000, 110.67 minutes when nr = 10,000, and 11.57 days
when n = 100,000.
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60 __

50 |

40 |_

30 |

20 |_

10 | 
n logn

 

Figure 1.3 Plot of function values
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Table 1.8 gives the time needed by a one-billion-steps-per-second com-
puter to execute an algorithm of complexity f(n) instructions. You should
note that currently only the fastest computers can execute about 1 billion
instructions per second. From a practical standpoint, it is evident that for
reasonably large n (say n > 100), only algorithms of small complexity (such
as n, nlogn, n”, and n3) are feasible. Further, this is the case even if you

could build a computer capable of executing 10!” instructions per second.
In this case, the computing times of Table 1.8 would decrease by a factor of
1000. Now, when n = 100, it would take 3.17 years to execute n!° instruc-
tions and 4+ 10!° years to execute 2” instructions.

 

 

 

 

 
 

Time for f(m) instructions on a 10%instr/sec computer I

ll n Liman ] fm) =nioggn | fy=nr® Liman? T pman*® [| fan” [ fm =2" |
10 -OT ps -03 ps -T ps Tus 10 ys 10's BS
20 -02 us .09 us A pes 8 us 160 ys 2.84 hr 1 ms
30 .03 ps 15 ps 9 ps 27 ps 810 ps 6.83 d ls
40 .04 ps -21 ps 1.6 ps 64 ps 2.56 ms 121.36 d 18.3 min
50 05 pes -28 ps 2.5 ps 125 pes 6.25 ms 3.1 yr 13

100 wl ps .66 us 10 ps 1 ms 100 ms 3171 yr 4*10!5 yr
1,000 1 ps 9.96 ps 1 ms 1s 16.67 min 3.17*10!3 yr 32*10283 yr
10,000 10 ps 130 ps 100 ms 16.67 min 115.74 3.17*1023 yr
100,000 100 ps 1.66 ms 10 s 11.57 a 3171 yr 3.17*1033 yr
1,000,000 1 ms 19.92 ms 16.67 min 31.71 yr 3.17*10" yr 3.17*104% yr        
 
 

  
 

Table 1.8 Times on a 1-billion-steps-per-second computer

1.3.5 Performance Measurement

Performance measurement is concerned with obtaining the space and time
requirements of a particular algorithm. These quantities depend on the
compiler and options used as well as on the computer on which the algorithm
is run. Unless otherwise stated, all performance values provided in this book
are obtained using the Gnu C++ compiler, the default compiler options, and
the Sparc 10/30 computer workstation.

In keeping with the discussion of the preceding section, we do not concern
ourselves with the space and time needed for compilation. We justify this
by the assumption that each program (after it has been fully debugged) is
compiled once and then executed several times. Certainly, the space and
time needed for compilation are important during program testing, when
more time is spent on this task than in running the compiled code.

We do not consider measuring the run-time space requirements of a pro-
gram. Rather, we focus on measuring the computing time of a program.
To obtain the computing (or run) time of a program, we need a clocking
procedure. We assumethe existence of a program GetTime() that returns
the current time in milliseconds.
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Suppose we wish to measure the worst-case performance of the sequential
search algorithm (Algorithm 1.17). Before we can do this, we need to (1)
decide on the values of n for which the times are to be obtained and (2)
determine, for each of the above values of n, the data that exhibit the worst-

case behavior.

 

1 Algorithm SeqSearch(a, x, n)
2  // Search for x in a{1: n]. a[0] is used as additional space.
3
4 i:= nj a[0] := 2;
5 while (a[i] 4 7) doi:=i-1;
6 return 3;
7 }
 

Algorithm 1.17 Sequential search

The decision on which values of n to use is based on the amount of timing
we wish to perform and also on what we expect to do with the times once
they are obtained. Assume that for Algorithm 1.17, our intent is simply to
predict how long it will take, in the worst case, to search for x, given the
size » of a. An asymptotic analysis reveals that this time is O(n). So, we
expect a plot of the times to be a straight line. Theoretically, if we know the
times for any two values of n, the straight line is determined, and we can
obtain the time for all other values of n from this line. In practice, we need
the times for more than two values of n. This is so for the following reasons:

1. Asymptotic analysis tells us the behavior only for sufficiently large
values of n. For smaller values of n, the run time may not follow the
asymptotic curve. To determine the point beyond which the asymp-
totic curve is followed, we need to examine the times for several values
of n.

2. Even in the region where the asymptotic behavior is exhibited, the
times may not lie exactly on the predicted curve (straight line in
the case of Algorithm 1.17) because of the effects of low-order terms
that are discarded in the asymptotic analysis. For instance, an al-
gorithm with asymptotic complexity O(n) can have time complexity
cnt c2logn+ez3 or, for that matter, any other function of n in which
the highest-order term is cjn for some constant c,, c, > 0.

It is reasonable to expect that the asymptotic behavior of Algorithm 1.17
begins for some n that is smaller than 100. So, for n > 100, we obtain the
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run time for just a few values. A reasonable choice is n = 200, 300, 400, ...

, 1000. There is nothing magical about this choice of values. We can just
as well use n = 500,1,000,1,500,..., 10,000 or n = 512, 1,024, 2,048,...,
2'5, Tt costs us more in terms of computer time to use the latter choices,
and we probably do not get any better information about the run time of
Algorithm 1.17 using these choices.

For n in the range [0, 100] we carry out a more-refined measurement, since
we are not quite sure where the asymptotic behavior begins. Of course, if
our measurements show that the straight-line behavior does not begin in this
range, we have to perform a more-detailed measurement in the range [100,
200], and so on, until the onset of this behavior is detected. Times in the
range [0, 100] are obtained in steps of 10 beginning at n = 0.

Algorithm 1.17 exhibits its worst-case behavior when x is chosen such that
it is not one of the a[?]’s. For definiteness, we set ali] = i, 1 <i <n, and
xz = 0. At this time, we envision using an algorithm such as Algorithm 1.18
to obtain the worst-case times.
 

1 Algorithm TimeSearch()
2

3 for j := 1 to 1000 do alj] := j;
4 for j:=1 to 10 do
5
6 n{j] = 10 *« (f — 1); n[7 + 10] := 100 « 9;
7
8 for j := 1 to 20 do
9
10 h := GetTime();
11 := SeqSearch(a, 0, n[j]);
12 hl := GetTime();
13 t:=h1l—h;

14 write (n[j], t);
15
16 }

 

Algorithm 1.18 Algorithm to time Algorithm 1.17

The timing results of this algorithm is summarized in Table 1.9. The
times obtained are too small to be of any use to us. Most of the times are
zero; this indicates that the precision of our clock is inadequate. The nonzero
times are just noise and are not representative of the time taken,
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| m | time | n | time ||

0 0 100 0

10 0 200 0

20 0 300 1
30 0 400 0

40 0}; 500 1
90 0 600 0

60 0 700 0
70 0 800 1
80 0 900 0
90 0 1000 0         
 

 

Table 1.9 Timing results of Algorithm 1.18. Times are in milliseconds,

To time a short event, it is necessary to repeat tt several times and
divide the total time for the event by the number of repetitions.

Since our clock has an accuracy of about one-tenth of a second, we should
not attempt to time any single event that takes less than about one second.
With an event time of at least ten seconds, we can expect our observed times
to be accurate to one percent.

Thebody of Algorithm 1.18 needs to be changed to that of Algorithm 1.19.
In this algorithm, r[é] is the numberof times the search is to be repeated
when the number of elements in the array is n[i]. Notice that rearranging
the timing statements as in Algorithm 1.20 or 1.21 does not produce the de-
sired results, For instance, from the data of Table 1.9, we expect that with
the structure of Algorithm 1.20, the value output for n = 0 will still be 0.
This is because there is a chance that in every iteration of the for loop, the
clock docs not change between the two times GetTime() is called. With the
structure of Algorithm 1.21, we expect the algorithm never to exit the while
loop when n = (in reality, the loop will be exited because occasionally the
measured time will turn out to be a few milliseconds).

Yet. another alternative is shown in Algorithm 1.22. This approach can
be expected to yield satisfactory times. It cannot be used when the timing
procedure available gives us only the time since the last invocation of Get-
Time. Another difficulty is that the measured time includes the time needed
to read the clock. For small n, this time may be larger than the time to run
SeqSearch. This difficulty can be overcome by determining the time taken
by the timing procedure and subtracting this timelater.
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1 Algorithm TimeSearch()
2

3 // Repetition factors
4 r[21] := {0, 200000, 200000, 150000, 100000, 100000, 100000,
5 50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000,
6 50000, 50000, 25000, 25000, 25000, 25000};
7 for 7 :=1 to 1000 do aly] := J;
8 for 7 := 1 to 10 do
9
10 nig] = 10 * (f — 1); n[j + 10] := 100 * 9;
11

12 for j := 1 to 20 do
13 {
14 h := GetTime();
15 for i:= 1 to r[j] do k := SeqSearch(a, 0, n{j]);
16 hl := GetTime();
17 tl:=hl—h;
18 t:= t1; t:=t/r[j];
19 write (n[j], t1, );
20
21 }

 

Algorithm 1.19 Timing algorithm

 

1 ¢:=0;
2 for i:=1 to r[j| do

3 {
4 h := GetTime();
5 k := SeqSearch(a,0, n[y]);
6 hl := GetTime();
7 t:=t+hl—-h;

8 }
9 t:= t/r[J];

 

Algorithm 1.20 Improper timing construct
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1 ¢:=0;
2 while (t < DESIRED-TIME)do
3
4 h := GetTime();
5 k := SeqSearch(a, 0, n[7])3
6 hl := GetTime();
7 t:=t+hl—h;
8

 

Algorithm 1.21 Another improper timing construct

 

h := GetTime(); t := 0;
while (¢ << DESIRED_TIME) do

k, := SeqSearch(a,0, n[j]);
hl := GetTime();
t:=hl—h;

N
O
O
B
W
N

R
E

}
 

Algorithm 1.22 An alternate timing construct
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Timingresults of Algorithm 1.19, is given in Table 1.10. The times for n
in the range [0, 1000] are plotted in Figure 1.4. Values in the range [10, 100]
have not been plotted. The linear dependence of the worst-case time on n
is apparent from this graph.

 

  

[in] af ¢ | nj af] t |
0] 308 0.002 100 1683 0.034

10} 923 0.005 200 3359 0.067
20 1181 0.008 300 4693 0.094
30 1087 0.011 400 6323 0.126
40 1384 0.014 500 7799 0.156
50 1691 0.017 600 9310 0.186
60 999 0.020 700 5419 0.217
70 1156 0.023 800 6201 0.248
80 1306 0.026 900 6994 0.280
90 1460 0.029 1000 7725 0.309

  

            
Times are in milliseconds

 

Table 1.10 Worst-case run times for Algorithm 1.17

The graph of Figure 1.4 can be used to predict the run time for other
values of n. We can go one step further and get the equation of the straight
line. The equation of this line is t = c + mn, where m is the slope and c
the value for n = 0. From the graph, we see that c = 0.002. Using the point
n = 600 and t = 0.186, we obtain m = (t — c)/n = 0.184/600 = 0.0003067.
So the line of Figure 1.4 has the equation t = 0.002 + 0.0003067n, where t
is the time in milliseconds. From this, we expect that when n = 1000, the
worst-case search time will be 0.3087 millisecond, and when n = 500,it will
be 0.155 millisecond. Compared to the observed times of Table 1.10, we see
that these figures are very accurate!

Summary of Running Time Calculation

To obtain the run time of a program, we need to plan the experiment. The
following issues need to be addressed during the planning stage:

1. What is the accuracy of the clock? How accurate do ourresults have to
be? Once the desired accuracy is known, we can determine the length
of the shortest event that should be timed.
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Figure 1.4 Plot of the data in Table 1.10
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2. For each instancesize, a repetition factor needs to be determined. This
is to be chosen such that the event time is at least the minimum time
that can be clocked with the desired accuracy.

3. Are we measuring worst-case or average performance? Suitable test
data need to be generated.

4, What is the purpose of the experiment? Are the times being obtained
for comparative purposes, or are they to be used to predict run times?
If the latter is the case, then contributions to the run time from such
sources as the repetition loop and data generation need to be sub-
tracted (in case they are included in the measured time). If the former
is the case, then these times need not be subtracted (provided they are
the samefor all programs being compared).

5. In case the times are to be used to predict run times, then we needto fit
a curve through the points. For this, the asymptotic complexity should
be known. If the asymptotic complexity is linear, then a least-squares
straight line can befit; if it is quadratic, then a parabola can be used
(that is, t = a9 + ain + an’). If the complexity is O(nlogn), then a
least-squares curve of the form t = a9 + ain + agnlogsn can befit.

Whenobtaining the least-squares approximation, one should discard
data corresponding to small values of n, since the program does not
exhibit its asymptotic behavior for these n.

Generating Test Data

Generating a data set that results in the worst-case performanceof an algo-
rithm is not always easy. In some cases, it is necessary to use a computer
program to generate the worst-case data. In other cases, even this is very
difficult. In these cases, another approach to estimating worst-case perfor-
mance is taken. For each set of values of the instance characteristics of
interest, we generate a suitably large number of random test data. The run
times for each of these test data are obtained. The maximum of these times
is used as an estimate of the worst-case time for this set of values of the
instance characteristics.

To measure average-case times, it is usually not possible to average over
all possible instances of a given characteristic. Although it is possible to do
this for sequential search, it is not possible for a sort algorithm. If we assume
that all keys are distinct, then for any given n, n! different permutations
need to be used to obtain the average time. Obtaining average-case data is
usually much harder than obtaining worst-case data. So, we often adopt the
strategy outlined above and simply obtain an estimate of the average time
on a suitable set of test data.
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Whether we are estimating worst-case or average time using random data,
the number of instances that we can try is generally much smaller than
the total number of such instances, Hence, it is desirable to analyze the
algorithin being tested to determine classes of data that should be generated
for the experiment. This is a very algorithm-specific task, and we do not go
into it here.

EXERCISES

1. Compare the two functions n? and 2”/4 for various values of n. De-
termine when the second becomes larger than thefirst.

2. Prove by induction:

(a) St = n(nt+1)/2, n>1

(b) Si = n(n +1)(2n+1)/6, n>1

(c) Dos = @™1-1)/(e@-1), c 41, n 20

3. Determine the frequency counts for all statements in the following two
algorithm segments:

li]
| fori:=1tondo 2 while (i <n) do
2 for j :=1toido 3 {
3 for k:=1to 7 do 4 gs=at+l
4 gi=at+; 5 t:=t4+];

6 }

(a) (b)

4, (a) Introduce statements to increment count at all appropriate points
in Algorithm 1.23.

(b) Simplify the resulting algorithm by eliminating statements. The
simplified algorithm should compute the same value for count as
computed by the algorithm of part (a).

(c) What is the exact value of count when the algorithm terminates?
You may assume that the initial value of countis 0.

(d) Obtain the step count for Algorithm 1.23 using the frequency
method. Clearly show the step count table.

5. Do Exercise 4 for Transpose (Algorithm 1.24).

6. Do Exercise 4 for Algorithm 1.25. This algorithm multiplies two n x n
inatrices a and b.
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1 Algorithm D(z,n)

2 {
3 t:= 1;
4 repeat
5
6 rt] := alt] + 23 t:= 44 2;
7 } until (i > n);
8 w= 1;
9 while (i < |n/2|) do
10
11 zt] := ¢[i) t+ a¢fi+ 1); 2:=74+1;
12

13 }

 

Algorithm 1.23 Example algorithm

 

1 Algorithm Transpose(a, 7)
2

3 t for 1:=1ton—1do
4 for j :=7+1 ton do

5 {
6 t:= alt, J]; aft, J] = aff, i; al9, 4] = t5
7 }
8

 

Algorithm 1.24 Matrix transpose
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1 Algorithm Mult(a,b,c, n)

2 {
3 for i:=1tondo
4 for j := 1 to ndo
5
6 c[t, J] = 0;
7 for k:=1 to ndo

8 cli, j] = eli, j] + ali, k] * [kj
9 }
10 }

 

Algorithm 1.25 Matrix multiplication

7. (a) Do Exercise 4 for Algorithm 1.26. This algorithm multiplies two
matrices a and b, where a is an m x n matrix and 0 is an n x p
matrix.
 

1 Algorithm Mult(a, b,c, m,n, p)
2

3 for i:=1to mdo
4 for j := 1 to pdo
5

6 ci, j] = 05
7 for k:=1tondo

8 cli,== eft, j] + aft, kl « Of, jh
9
10 }

 

Algorithm 1.26 Matrix multiplication

(b) Under what conditionsis it profitable to interchange the two out-
ermost for loops?

8. Show that the following equalities are correct:

(a) 5n?-—6n = O(n?)

(b) nl = O(n")
(c) 2n?2" + nlogn = O(n?2")

(1) Do? = O(n’)

https://hemanthrajhemu.github.io



92 CHAPTER 1. INTRODUCTION

)

)

)
h) 6n3/(logn+1) = O(n?)

(i) nl 4 nlogn = O(n!-001)

) nkt+€4n*logn = O(n*+*) for all fixed k and «, k >0 ande>0

)

)

)

33n3 + 4n? = O(n?)

33n3 + 4n? = O(n)

9. Show that the following equalities are incorrect:

(a) 10n?+9 = O(n)

(b) n?logn = O(n?)

(c) n?/logn = O(n?)
(d) n°2" + 6n?3" = O(n32")

10. Prove Theorems 1.3 and 1.4.

11. Analyze the computing time of SelectionSort (Algorithm 1.2).

12. Obtain worst-case run times for SelectionSort (Algorithm 1.2). Do this
for suitable values of n in the range [0, 100]. Your report must include
a plan for the experiment as well as the measured times. These times
are to be provided both in a table and as a graph.

13. Consider the algorithm Add (Algorithm 1.11).

(a) Obtain run times for n = 1,10,20,..., 100.

(b) Plot the times obtained in part (a).

14. Do the previous exercise for matrix multiplication (Algorithm 1.26).

15. A complex-valued matrix X is represented by a pair of matrices (A, B),
where A and B contain real values. Write an algorithm that computes
the product of two complex-valued matrices (A, B) and (C, D), where
(A, B) * (C,D) = (A+7B)*(C+iD) = (AC -— BD) +i(AD+ BC).
Determine the number of additions and multiplications if the matrices
arealln x n.
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1.4 RANDOMIZED ALGORITHMS

1.4.1 Basics of Probability Theory

Probability theory has the goal of characterizing the outcomes of natural or
conceptual “experiments.” Examples of such experiments include tossing a

coin ten times, rolling a die three times, playing a lottery, gambling, picking
a ball from an urn containing white and red balls, and so on.

Each possible outcome of an experimentis called a sample point and the
set of all possible outcomes is known as the sample space S. In this text
we assuine that S is finite (such a sample spaceis called a discrete sample
space). An event E is a subset of the sample space S. If the sample space
consists of n sample points, then there are 2” possible events.

Example 1.19 [Tossing three coins] When a coin is tossed, there are two
possible outcomes: heads (H) and tails (7). Consider the experiment of
throwing three coins. There are eight possible outcomes: HHH, HHT,
ATH, HTT,THH,THT,TTH, and TTT. Each such outcomeis a sample
point. The sets {HHT, HTT, TTT}, {HHH, TTT}, and { } are three
possible events. The third event has no sample points and is the emptyset.
For this experiment there are 2° possible events. Oo

Definition 1.9 [Probability] The probability of an event E is defined to be

ee where S' is the sample space. Oo

Exaniple 1.20 [Tossing three coins] The probability of the event {HHT,

HTT, TTT}is 3. The probability of the event {HHH,TTT}is 2 and that
of the event { } is zero. o

Note that the probability of S, the sample space, is 1.

Example 1.21 [Rolling two dice] Let us look at the experiment of rolling
two (six-faced) dice. There are 36 possible outcomes some of which are
(1,1), (1,2), (1,3),.... What is the probability that the sum of the two faces
is 10? The event that the sum is 10 consists of the following sample points:

(1,9), (2,8), (3, 7), (4,6), (5,5), (6,4), (7,3), (8,2), and (9,1). Therefore, the
1probability of this event is = = 7; oO

Definition 1.10 [Mutual exclusion] Two events E, and E» are said to be
mutually exclusive if they do not have any common sample points, that is,
iff,fg = ©. o
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Example 1.22 [Tossing three coins] When wetoss three coins, let FE, be the
event that there are two H’s and let Es be the event that there are at least

two T’s. These two events are mutually exclusive since there are no common
sample points. On the other hand,if £4 is defined to be the event that there
is at least one T, then E, and E5 will not be mutually exclusive since they
will have THH, HTH, and HHT as common sample points. Oo

The probability of event E’ is denoted as Prob.[E]. The complement of
E, denoted E£, is defined to be S — &. If FE, and Eo are two events, the
probability of FE, or Ey or both happening is denoted as Prob.[E, U Eo].
The probability of both £, and 2 occurring at the same time is denoted as
Prob.[E, ME]. The corresponding event is E) 9 Es.

Theorem 1.5

1. Prob[E]
2. Prob.[E, U Eo}

= 1-Prob.[E].
= Prob|E,]+ Prob.[E2] — Prob.Ey N E>]
< Prob.[E| + Prob.|E>|

Definition 1.11 [Conditional probability] Let E; and HE, be any two events
of an experiment. The conditional probability of E, given E., denoted by
Prob. {E\|E], is defined as oral

o

Example 1.23 [Tossing four coins] Consider the experiment of tossing four
coins. Let &, be the event that the number of H’s is even and let E» be

the event that there is at least one H. Then, £2 is the complement of the
event that there are no H’s. The probability of no H’s is 4. Therefore,16°
Prob[E2| = 1—- % = 2. Prob.[E, N Es] is it since the event Ey M E>
has the seven sample points HHHH, HHTT, HTHT, HTTH, THHT,

THTH, and TTHH. Thus, Prob.[E,|Ey] is ig = 1 o

Definition 1.12 [Independence] Two events E; and E» are said to be inde-
pendent if Prob.[E, N Ex] = Prob.[E\] * Prob.[E]. Oo

Example 1.24 [Rolling a die twice] Intuitively, we say two events E, and
Ep» are independentif the probability of one event happening is in no wayaf-
fected by the occurrenceof the other event. In other words, if Prob.[E,|E2] =
Prob.[E,], these two events are independent. Suppose weroll a die twice.
What is the probability that the outcome of the second roll is 5 (call this
event E,), given that the outcome ofthe first roll is 4 (call this event E2)?
The answeris é no matter what the outcomeof thefirst roll is. In this case

E, and E» are independent. Therefore, Prob.[E, 0 Ex] = %* % = a Oo
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Example 1.25 [Flipping a coin 100 times] If a coinis flipped 100 times what
is the probability that all of the outcomesare tails? The probability that the
first outcome is T is 5. Since the outcome of the second flip is independent
of the outcome of the first flip, the probability that the first two outcomes
are Ts can be obtained by multiplying the corresponding probabilities to
get i Extending the argument to all 100 outcomes, we conclude that the

100
probability of obtaining 100 T’s is (4 . In this case we say the outcomes2 Y

of the 100 coin flips are mutually independent. Oo

Definition 1.13 [Random variable] Let S be the sample space of an exper-
iment. A random variable on S is a function that maps the elements of S
to the set of real numbers. For any sample point s € S, X(s) denotes the
image of s under this mapping. If the range of X, that is, the set of values
X can take, is finite, we say X is discrete.

Let the range of a discrete random variable X be {rj,r2,...,7m}-. Then,
Prob.[X = ri], for any i, is defined to be the the number of sample points
whoscimage is r; divided by the number of sample points in S. In this text
we are concerned mostly with discrete random variables. o

Example 1.26 We flip a coin four times. The sample space consists of 24
sample points. We can define a random variable X on S as the number
of heads in the coin flips. For this random variable, then, X(HTHH) = 3,
X(HHHH) = 4, and so on. The possible values that X can take are 0, 1, 2, 3,

and 4. Thus X is discrete. Prob.[X = 0] is iE since the only sample point

whoseimage is 0 is TTTT. Prob.X = 1] is roo since the four sample points
ATTT,THTT, TTHAT, and TTTH have 1 as their image. Oo

Definition 1.14 [Expected value] If the sample space of an experiment is
S = {81,52,--.,5n}, the expected value or the mean of any random variable

X is defined to be Y7_; Prob.[s;] * X(si) = 4 NL X(s2)- Oo

Example 1.27 [Coin tosses] The sample space corresponding to the exper-
iment of tossing three coins is S = {HHH, HHT, HTH, HTT, THH,
THT, TTH, TTT}. If X is the numberof heads in the coin flips, then the
expected value of X is $(3+2+2+1+2+4+1+4+140)=155. Oo

Definition 1.15 [Probability distribution] Let X be a discrete random vari-
able defined over the sample space S. Let {ri,r2,...,rm} be its range.
Then, the probability distribution of X is the sequence Prob..X = ri],
Prob.[.X = ro], ..., Prob[X =r»). Notice that 77, Prob..X = rj] = 1.

O

https://hemanthrajhemu.github.io



56 CHAPTER 1. INTRODUCTION

Example 1.28 [Coin tosses] If a coin is flipped three times and X is the
number of heads, then X can take on four values, 0, 1, 2, and 3. The
probability distribution of X is given by Prob.[X = 0] = $, Prob[X =1|=
3, Prob.[X = 2] = 3, and Prob.[X = 3] = . o

Definition 1.16 [Binomial distribution] A Bernoulli trial is an experiment
that has two possible outcomes, namely, success and failure. The probability
of success is p. Consider the experiment of conducting the Bernoulli trial n
times. This experiment has a sample space S with 2” sample points. Let X
be a random variable on S defined to be the numbers of successes in the n
trials. The variable X is said to have a binomial distribution with parameters
(n, p). The expected value of X is np. Also,

Prob.[.X =i] = ("0 —p)r

O

In several applications, it is necessary to estimate the probabilities at the
tail ends of probability distributions. One such estimate is provided by the
following lemma.

Lemma1.1 [Markov’s inequality] If X is any nonnegative random variable
whose meanis ps, then

Prob[|X >a] <

S
l
e

O

Example 1.29 Let ys be the mean of a random variable X. We can use
Markov’s lemma (also called Markov’s inequality) to make the following

statement: “The probability that the value of X exceeds 2: is < 5 Con-
sider the example: if we toss a coin 1000 times, what is the probability that
the numberof heads is > 600? If X is the number of heads in 1000 tosses,
then, the expected value of X, E[X], is 500. Applying Markov’s inequality
with z = 600 and pz = 500, we infer that PX > 600] < 2. Oo

Though Markov’s inequality can be applied to any nonnegative random
variable, it is rather weak. We can obtain tighter bounds for a numberof
important distributions including the binomial distribution. These bounds
are due to Chernoff. Chernoff bounds as applied to the binomial distribution
are employed in this text to analyze randomized algorithms.
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Lemma 1.2 [Chernoff bounds] If X is a binomial with parameters (n, p),
and rr. > np is an integer, then

m

Prob(X >m) < (=2) e(m—TP)| (1.1)
m

Also, Prob.(X < |(1—e)pn]) < e(-@ne/?) (1.2)

and Prob.(X >[(1+e)np]) < e(—enp/3) (1.3)

for all 0 <e <1. oO

Example 1.30 Consider the experiment of tossing a coin 1000 times. We
want to determine the probability that the number X of heads is > 600. We
can use Equation 1.3 to estimate this probability. The value for ¢« here is
0.2. Also, n = 1000 and p = 5. Equation 1.3 now becomes

P[X > 600] < ef(-2)?(500/3)] = 620/83 < 9.901273

This cstimate is more precise than that given by Markov’s inequality. Oo

1.4.2 Randomized Algorithms: An Informal Description

A randomized algorithm is one that makes use of a randomizer (such as a
random number generator). Some of the decisions made in the algorithm
depend on the output of the randomizer. Since the output of any random-
izer might differ in an unpredictable way from run to run, the output of a
randomized algorithm could also differ from run to run for the same input.
The cxecution time of a randomized algorithm could also vary from run to
run for the same input.

Randomized algorithms can be categorized into two classes: Thefirst
is algorithms that always produce the same(correct) output for the same
input. These are called Las Vegas algorithms. The execution time of a Las
Vegas algorithm depends on the output of the randomizer. If we are lucky,
the algorithm might terminate fast, and if not, it might run for a longer
period of time. In general the execution time of a Las Vegas algorithm is
characterized as a random variable (see Section 1.4.1 for a definition). The
secondis algorithms whose outputs might differ from run to run (for the same
input). These are called Monte Carlo algorithms. Consider any problem for
whichthere are only two possible answers, say, yes and no. If a Monte Carlo
algorithm is employed to solve such a problem, then the algorithm might give
incorrect answers depending on the output of the randomizer. We require
that the probability of an incorrect answer from a Monte Carlo algorithm be
low. Typically, for a fixed input, a Monte Carlo algorithm does not display
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much variation in execution time between runs, whereas in the case of a Las
Vegas algorithm this variation is significant.

We can think of a randomized algorithm with one possible randomizer
output to be different from the same algorithm with a different possible
randomizer output. Therefore, a randomized algorithm can be viewed as a
family of algorithms. For a given input, some of the algorithms in this family
may runfor indefinitely long periods of time (or may give incorrect answers).
The objective in the design of a randomized algorithm is to ensure that the
number of such bad algorithms in the family is only a small fraction of the
total numberof algorithms. If for any input we can show that at least 1 — «
(e being very close to 0) fraction of algorithms in the family will run quickly
(respectively give the correct answer) on that input, then clearly, a random
algorithm in the family will run quickly (or output the correct answer) on
any input with probability > 1 —. In this case we say that this family of
algorithms (or this randomized algorithm) runs quickly (respectively gives
the correct answer) with probability at least 1—«, where « is called the error
probability.

Definition 1.17 [The O()] Just like the O() notation is used to characterize

the run times of non randomized algorithms, O() is used for characterizing
the run times of Las Vegas algorithms. We say a Las Vegas algorithm has a

resource (time, space, and so on.) bound of O(g(n)) if there exists a constant
c such that the amount of resource used by the algorithm (on any input of

size n) is no more than cag(n) with probability > 1 — -. Weshall refer to
these bounds as high probability bounds.

Similar definitions apply also to such functions as 0(), Q(), o(), ete. O

Definition 1.18 [High probability] By high probability we mean a probability
of > 1— n° for any fixed a. Wecall a the probability parameter. oO

As mentioned above, the run time T of any Las Vegas algorithm is typi-
cally characterized as a random variable over a sample space S. The sample
points of S are all possible outcomes for the randomizer used in the algo-
rithm. Though it is desirable to obtain the distribution of T, often this is
a challenging and unnecessary task. The expected value of T often suffices
as a good indicator of the run time. We can do better than obtaining the
mean of T but short of computing the exact distribution by obtaining the
high probability bounds. The high probability bounds of our interest are of
the form “With high probability the value of T will not exceed Ty,” for some
appropriate Tp.

Several results from probability theory can be employed to obtain high
probability bounds on any random variable. Two of the more useful such
results are Markov’s inequality and Chernoff bounds.
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Next we give two examples of randomized algorithms. Thefirst is of the
Las Vegas type and the secondis of the Monte Carlo type. Other examples
are presented throughout the text. We say a Monte Carlo (Las Vegas) al-
gorithm has failed if it does not give a correct answer (terminate within a
specified amount of time).

1.4.3 Identifying the Repeated Element

Consider an array a[ ] of n numbers that has $ distinct elements and 5
copies of another element. The problem is to identify the repeated element.

Any deterministic algorithm for solving this problem will need at least
& +2 time steps in the worst case. This fact can be argued as follows:
Gonsider an adversary who has perfect knowledge about the algorithm used
and who is in charge of selecting the input for the algorithm. Such an
adversary can make sure that the first ++ 1 elements examined by the
algorithmare all distinct. Even after having looked at 5 +1 elements, the
algorithmwill not be in a position to infer the repeated element. It will have
to examineat least 5 +2 elements and hence take at least 5 + 2 time steps.

In contrast thereis a simple and elegant randomized Las Vegas algorithm

that takes only O(logn) time. It randomly picks two array elements and
checks whether they come from twodifferent cells and have the same value.
If they do, the repeated element has been found. If not, this basic step
of sainpling is repeated as many times as it takes to identify the repeated
element.

In this algorithm, the sampling performed is with repetitions; that is, the
first and second elements are randomly picked from out of the n elements
(each elernent being equally likely to be picked). Thus there is a probability

(equal to 7) that the same array element is picked each time. If we just check
for the equality of the two elements picked, our answer might be incorrect
(in case the algorithm picked the same array index each time). Therefore, it
is essential to make sure that the two array indices picked are different and
the two array cells contain the same value.

This algorithm is given in Algorithm 1.27. The algorithm returns the
array index of one ofthe copies of the repeated element. Now we prove that

the run time of the above algorithm is O(logn). Any iteration of the while
loop will be successful in identifying the repeated numberif 7 is any one the
5 array indices corresponding to the repeated element and j is any one of
the same 3 indices other than 7. In other words, the probability that the

algorithm quits in any given iteration of the while loop is P = nfPinfo-l)

which is > t for all n > 10. This implies that the probability that the

algorithmdoes not quit in a given iteration is < t.
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RepeatedElement(a, n)
// Finds the repeated element from a[1 : n].

while (true) do

:= Random() mod n+ 1; 7 := Random() mod n+ 1;1
// i and j are random numbersin the range[1,7].
if ((¢ Aj) and (a[?] = a[j])) then return i;

r
e
O
C
O
N
O
O
R
W
N
R

 

Algorithm 1.27 Identifying the repeated array number

Therefore, the probability that the algorithm does not quit in 10 iterations
10

is < (4) < 1074. So, Algorithm 1.27 will terminate in 10 iterations or
less with probability > .8926. The probability that the algorithm does not

100
terminate in 100 iterations is < (4) < 2.04 * 10-!©. That is, almost

certainly the algorithm will quit in 100 iterations or less. If n equals 2 * 10°,
for example, any deterministic algorithm will have to spend at least one
million time steps, as opposed to the 100 iterations of Algorithm 1.27!

In general, the probability that the algorithm does not quit in thefirst
ca logn (c is a constant to be fixed) iterations is

< (4/5)co los” _ nce log (5/4)

which will be < n~® if we pick c > BID:

Thus the algorithm terminates in eyo logn iterations or less with

probability > 1—n~®%. Since each iteration of the while loop takes O(1)

time, the run time of the algorithm is O(log).
Note that this algorithm,if it terminates, will always output the correct

answer and henceis of the Las Vegas type. The above analysis shows that
the algorithm will terminate quickly with high probability.

The same problem of inferring the repeated element can be solved using
many deterministic algorithms. For example, sorting the array is one way.
But sorting takes Q(n log n) time (proved in Chapter 10). An alternative is

nto partition the array into [}] parts, where each part (possibly except for
one part) has three array elements, and to search the individual parts for
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the repeated element. At least one of the parts will have two copies of the
repeated element. (Prove this!) The run timeof this algorithm is O(n).

1.4.4 Primality Testing

Any integer greater than one is said to be a primeif its only divisors are 1
and the integer itself. By convention, we take 1 to be a nonprime. Then
2, 3,5, 7,11, and 13 are the first six primes. Given an integer n, the problem
of deciding whether n is a prime is known as primality testing. It has a
numberof applications including cryptology.

If a number n is composite (i-e., nonprime), it must have a divisor < |./n].
This observation leads to the following simple algorithm for primality testing:
Consider each number @ in the interval [2, |/n|] and check whether @ divides
n. Tf none of these numbers divides n, then n is prime; otherwise it is
composite.

Assumingthat it takes Q(1) time to determine whether oneinteger divides
another, the naive primality testing algorithm has a run time of O(/n).
The input size for this problemis [(logm + 1)], since n can be represented
in binary form with these many bits. Thus the run time of this simple

algorithm is exponential in the input size (notice that Yn = 27 loen)

Wecan devise a Monte Carlo randomized algorithm for primality testing
that runs in time O((logn)*). The output of this algorithm is correct with
high probability. If the input is prime, the algorithm never gives an incorrect
answer. However, if the input number is composite (i.e., nonprime), then
there is a small probability that the answer may be incorrect. Algorithms
of this kind are said to have one-sided error.

Before presenting further details, we list two theorems from numberthe-
ory that will serve as the backbone of the algorithm. The proofs of these
theorems can be found in the references supplied at the end of this chapter.

Theorem 1.6 [Fermat] If n is prime, then a’~' = 1 (mod n) for any in-
teger a <n. O

Theorem 1.7 The equation 2? = 1 (mod n) has exactly two solutions,
namely 1 and n — 1, if n is prime. Oo

Corollary 1.1 If the equation x? =1 (mod n) has roots other than 1 and
n—1, then n is composite. Oo

Note: Any integer x which is neither 1 nor n — 1 but which satisfies x? = 1
(modn) is said to be a nontrivial square root of 1 modulo n.

Fermat’s theorem suggests the following algorithm for primality testing:
Randomly choose an a <n and check whether a”~!=1 (mod n)(call this
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Fermat’s equation). If Fermat’s equation is not satisfied, n is composite.
If the equation is satisfied, we try some more random a’s. If on each a
tried, Fermat’s equation is satisfied, we output “n is prime”; otherwise we
output “n is composite.” In order to compute a”~! mod n, we could employ
Exponentiate (Algorithm 1.16) with some minor modifications. The resultant
primality testing algorithm is given as Algorithm 1.28. Here large is a
numbersufficiently large that ensures a probability of correctness of > 1 —
n-®,

 

1 Prime0(n, a)
2 // Returns trueif n is a prime and false otherwise.
3. // ais the probability parameter.
4
i) qi=n-1;
6 for i1:= 1 to large do // Specify large.

7
8 mi=gqgy:=1;s
9 a := Random() mod q+ 1;
10 // Choose a random numberin the range [1,n — 1].
11 ZI= a;

12 // Compute a”~! mod n.
13 while (m > 0) do
14
15 while (m mod 2 = 0) do
16 {
17 z:= 27 mod n; m:= |m/2];
18 }
19 m:=m-—1; y:= (y*z) mod n;
20 }
21 if (y 4 1) then return false;
22 // Ifa"! mod is not 1, n is not a prime.
23 }
24 return true;
25 }

 

Algorithm 1.28 Primality testing: first attempt

If the input is prime, Algorithm 1.28 will never output an incorrect an-
swer. If n is composite, will Fermat’s equation never be satisfied for any a
less than n and greater than one? If so, the above algorithm has to examine
just one a before coming up with the correct answer. Unfortunately, the
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answer to this question is no. Evenifn is composite, Fermat’s equation may
be satisfied depending on the a chosen.

Is it the case that for every n (that is composite) there will be some
nonzero constant fraction of a’s less than n that will not satisfy Fermat’s
equation? If the answer is yes and if the above algorithmtries a sufficiently
large numberof a’s, there is a high probability that at least one a violating
Fermat’s equation will be found and hence the correct answer be output.
Here again, the answer is no. There are composite numbers (known as
Carniichael numbers) for which every a that is less than and relatively prime
to n will satisfy Fermat’s equation. (The numberof a’s that do not satisfy
Fermat’s equation need not be a constant fraction.) The numbers 561 and
1105 are examples of Carmichael numbers.

Fortunately, a slight modification of the above algorithm takes care of
these problems. The modified primality testing algorithm (also known as
Miller-Rabin’s algorithm) is the same as PrimeO (Algorithm 1.28) except
that within the body of Prime0, we also look for nontrivial square roots of n.
The modified version is given in Algorithm 1.29. We assume that n is odd.

Miller-Rabin’s algorithm will never give an incorrect answer if the input
is prime, since Fermat’s equation will always be satisfied and no nontrivial
square root of 1 modulo n can be found. If 7 is composite, the above
algorithin will detect the compositeness of n if the randomly chosena either
leads to the discovery of a nontrivial square root of 1 or violates Fermat’s
equation. Call any such a a witness to the compositeness of n. What is the
probability that a randomly chosen a will be a witness to the compositeness
of n? This question is answered by the following theorem (the proof can be
found in the references at the end of this chapter).

Theorem 1.8 There are at least net witnesses to the compositeness of n
if n is composite and odd. Oo

Assume that n is composite (since if n is prime, the algorithm will always
be correct). The probability that a randomly chosen a will be a witness is

> et which is very nearly equal to 5. This means that a randomly chosen

a will fail to be a witness with probability < 5:

Therefore, the probability that none of the first alogn a’s chosen is a
. . 1 alogn

witness is < (4)

give an incorrect answer with only probability < n~°.

The run time of the outermost while loop is nearly the sameas that of
Exponentiate (Algorithm 1.16) and equal to O(log). Since this while loop

is executed O(log n) times, the run time of the wholealgorithm is O(log? n).

—a= n~%. In other words, the algorithm Prime will
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5. Given a 2-sided coin. Using this coin, how will you simulate an n-sided
coin

(a) when n is a powerof 2?.

(b) when 7 is not a power of 2?.

6. Compute the run time analysis of the Las Vegas algorithm given in

Algorithm 1.30 and express it using the O() notation.

 

C
O
N
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e LasVegas()

while (true) do

i := Random() mod 2;
if (i > 1) then return;

 

Algorithm 1.30 A Las Vegas algorithm

7. There are \/n copies of an element in the array c. Every other element

10.

11.

of ¢ occurs exactly once. If the algorithm RepeatedElement is used to

identify the repeated element of c, will the run timestill be O(log n)?
If so, why? If not, what is the new run time?

What is the minimum number of times that an element should be
repeated in an array (the other elements of the array occurring exactly

once) so that it can be found using RepeatedElement in O(log n) time?

nm. An array a has 7 copies of a particular unknown element z. Every

other element in a has at most % copies. Present an O(logn) time
Monte Carlo algorithm to identify z. The answer should be correct

with high probability. Can you develop an O(logn) time Las Vegas
algorithm for the same problem?

Consider the naive Monte Carlo algorithm for primality testing pre-
sented in Algorithm 1.31. Here Power(z, y) computes +¥. What should
be the value of ¢ for the algorithm’s output to be correct with high
probability?

Let A be a Monte Carlo algorithm that solves a decision problem 7 in
time T. The output of A is correct with probability > 5. Show how
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Primel(n)

{
// Specify t.
for i:=1totdo

m := Power(n,0.5);
j := Random() mod m + 2;
if ((n mod j) = 0) then return false;
// Vf j divides n, n is not prime.C

O
N
O
o
h
W
N
e

10 }
1l return true;

12 }

 

Algorithm 1.31 Another primality testing algorithm

12.

13.

you can modify A so that its answer is correct with high probability.
The modified version can take O(T logn) time.

In general a Las Vegas algorithm is preferable to a Monte Carlo algo-
rithm, since the answer given by the former is guaranteed to be correct.
There may becritical situations in which even a very small probability
of an incorrect answer is unacceptable. Say there is a Monte Carlo
algorithm for solving a problem a in T, time units whose output is
correct with probability > 5: Also assume that there is another algo-
rithm that can check whether a given answeris valid for 7 in T> time
units. Show how you use these two algorithms to arrive at a Las Vegas

algorithm for solving 7 in time O((T; + T2) log n).

The problem considered here is that of searching for an element x in
an array a{l : nj. Algorithm 1.17 gives a deterministic O(n) time
algorithm for this problem. Show that any deterministic algorithm
will have to take Q(n) time in the worst case for this problem. In
contrast a randomized Las Vegas algorithm that searches for x is given
in Algorithm 1.32. This algorithm assumes that x is in a[ ]. What is

the O() run time ofthis algorithm?
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Algorithm RSearch(a, z,n)
// Searches for x in a[1:n]. Assume that «x is in af J.

while (true) do

i := Random() mod n+ 1;
// 7 is random in the range[1,n].
if (a[i] =x) then return 3;
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Algorithm 1.32 Randomized search
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