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Chapter 3

DIVIDE-AND-CONQUER

3.1 GENERAL METHOD

Given a function to compute on n inputs the divide-and-conquer strategy
suggests splitting the inputs into & distinct subsets, 1 < k <n, yielding k
subprobleis. These subproblems must be solved, and then a method must
be found to combine subsolutions into a solution of the whole. If the sub-
problemsare still relatively large, then the divide-and-conquer strategy can
possibly be reapplied. Often the subproblems resulting from a divide-and-
conquerdesignare of the same type as the original problem. For those cases
the reapplication of the divide-and-conquerprinciple is naturally expressed
by a recursive algorithm. Now smaller and smaller subproblems of the same
kind are generated until eventually subproblems that are small enough to be
solved without splitting are produced.

To be more precise, suppose we consider the divide-and-conquerstrategy
whenit splits the input into two subproblems of the same kindas theoriginal
problem. This splitting is typical of many of the problems we examine
here. We canwrite a control abstraction that mirrors the way an algorithm
based ou divide-and-conquer will look. By a control abstraction we mean
a procedure whose flow of control is clear but whose primary operations
are specified by other procedures whose precise meanings are left undefined.
DAndC (Algorithm 3.1) is initially invoked as DAndC(P), where P is the
problemto be solved.

Small(P) is a Boolean-valued function that determines whether the input
size is sinall enough that the answer can be computed without splitting. If
this is so, the function S is invoked. Otherwise the problem P is divided
into smaller subproblems. These subproblems P,, P2,...,P, are solved by
recursive applications of DAndC. Combine is a function that determines the
solution to P using the solutions to the k subproblems. If the size of P is n
and the sizes of the & subproblems are n1,2,...,n,%, respectively, then the

127
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128 CHAPTER 3. DIVIDE-AND-CONQUER

 

Algorithm DAndC(P)

if Small(P) then return S(P);
else

divide P into smaller instances P;, P2,...,P,, k > 1;
Apply DAndCto each of these subproblems;
return Combine(DAndC(P;),DAndC(P2),...,DAndC(P;));

}
0 3F
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Algorithm 3.1 Control abstraction for divide-and-conquer

computing time of DAndCis described by the recurrence relation

n n small
T(n) = { ve +T7(n2)+-+-+T (ng) +. f(n) otherwise (3.1)

where T'(n) is the time for DAndC on any inputof size n and g(n)is the time
to compute the answerdirectly for small inputs. The function f(n) is the
time for dividing P and combiningthe solutions to subproblems. For divide-
and-conquer-based algorithms that produce subproblems of the same type
as the original problem, it is very natural to first describe such algorithms
using recursion.

The complexity of many divide-and-conqueralgorithms is given by recur-
rences of the form

T(1 n=l

T(n)={ ob(a/o) + f(a) nod (3.2)
where a and 6 are known constants. We assume that T(1) is known and n
is a power of b (i.e., n = b*).

One of the methods for solving any such recurrence relation is called the
substitution method. This method repeatedly makes substitution for each
occurrenceof the function T in the right-handside until all such occurrences
disappear.

https://hemanthrajhemu.github.io



3.1. GENERAL METHOD 129

Example 3.1 Consider the case in which a = 2 and b = 2. Let T(1) = 2
and f(n) =n. We have

T(n) 2T(n/2) +n
2/2T(n/4) + n/2] +n
AT (n/4) + 2n
A[2T(n/8) + n/4] + 2n
8T (n/8) + 3n

In general, we see that T(n) = 2'T(n/2') + in, for any loggn >i > 1. In

particular, then, T(n) = 2!°82"T(n/2!°82") + nlogy n, corresponding to the
choice of i = logy n. Thus, T(n) = nT(1) + nlogyn = nlogyn + 2n. Oo

Beginning with the recurrence (3.2) and using the substitution method,
it can be shown that

T(n) = n'°8“(T(1) + u(n)]

where u(n) = i h(b)) and h(n) = f(n)/ni&*. Table 3.1 tabulates the
asymptotic value of u(m) for various values of h(n). This table allows one to
easily obtain the asymptotic value of T(n) for many of the recurrences one
encounters when analyzing divide-and-conquer algorithms. Let us consider
some examples using this table.

 

 

 

 

| h(n) | u(n) i

)
 

 

   

O(n"), r <0 O(1

O((logn)'), 1 > 0 O((logn)'**/(i +1)
O(n"), r > 0 O(h(n))   
 

 

Table 3.1 u(n) values for various h(n) values

Example 3.2 Look at the following recurrence when n is a power of 2:

T(1 =1

T(n) = { Tiny) +e n> 1
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130 CHAPTER 3. DIVIDE-AND-CONQUER

Comparing with (3.2), we see that a = 1, b = 2, and f(n) =. So, log,(a) =
0 and A(n) = f(n)/ni&* = ¢ = c(logn)° = O((logn)°). From Table 3.1, we
obtain u(n) = O(log n). So, T(n) = ni%o*[e + O(logn)] = O(log n). Oo

Example 3.3 Next consider the case in which a = 2, 6 = 2, and f(n) = cn.

For this recurrence, log, a = 1 and h(n) = f(n)/n = ¢ = O((logn)°). Hence,
u(n) = O(logn) and T(n) = n[T(1) + O(log n)| = O(n log n). Oo

Example 3.4 As another example, consider the recurrence T(n) = 7T(n/2)+
18n?, n > 2 and a power of 2. We obtain a = 7, b = 2, and f(n) = 18n?.

So, log,a = logy 7 * 2.81 and A(n) = 18n?/n!827 = 18n?2—!827 = O(n"),
where r = 2 — log, 7 < 0. So, u(n) = O(1). The expression for T(n) is

T(n) = nee (71) + O(1)]
— O(nl°e2 7)

as T'(1) is assumed to be a constant. Oo

Example 3.5 Asa final example, consider the recurrence T(n) = 9T(n/3)+
4n®, n > 3 and a power of 3. Comparing with (3.2), we obtain a = 9, b = 3,

and f(n) = 4n®. So, log,a = 2 and h(n) = 4n®/n? = 4n* = Q(n4). From
Table 3.1, we see that u(n) = O(h(n)) = O(n*). So,

T(n) = n?(T(1) + O(n4)]
= O(n°)

as T(1) can be assumed constant. O

EXERCISES

1. Solve the recurrence relation (3.2) for the following choices of a,b, and
f(n) (c being a constant):

(a) a=1, b= 2, and f(n) =c

(b) a=5, b= 4, and f(n) cn?

(c) a = 28, b= 3, and f(n) = cn?

2. Solve the following recurrence relations using the substitution method:

(a) All three recurrences of Exercise 1.

(b)
1 n<A

T(n) = { T(/n) +e n>4
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3.2. BINARY SEARCH 131

()
T(n) = { 1 n<A4

2T(./n)+logn n>A4

(1)
T _ 1 nm<a4

(n) = 2T(/n) + eka n>

3.2 BINARY SEARCH

Let aj, 1 <i <n, bea list of elements that are sorted in nondecreasing order.

Considerthe problem of determining whethera given element x is present in
the list. If x is present, we are to determine a value j such that a; = x. If zx
is not in thelist, then j is to be set to zero. Let P = (n,aj;,...,a¢, 2) denote
an arbitrary instance of this search problem(n is the number of elements in
the list, a;,...,a@¢ is the list of elements, and x is the element searched for).

Divide-and-conquer can be used to solve this problem. Let Small(P) be
true if= 1. In this case, S(P) will take the value i if ¢ = a;; otherwiseit
will take the value 0. Then g(1) = O(1). If P has more than one element,it
can be divided (or reduced) into a new subproblem as follows. Pick an index
q (in the range [#, 4]) and compare # with ag. There are three possibilities:
(1) = a,: In this case the problem P is immediately solved. (2) © < ag:
In this case x has to be searched for only in the sublist aj, aj41,...,@g—-1.

Therefore, P reduces to (q — i,aj,...,@g-1,£). (3) © > ag: In this case the
sublist. to be searched is aji1,...,@¢. P reduces to (¢ — q, @q41,.--,@e, 2).

In this example, any given problem P gets divided (reduced) into one
new subproblem. This division takes only O(1) time. After a compari-
son with a,, the instance remaining to be solved (if any) can be solved
by using this divide-and-conquer scheme again. If g is always chosen such
that a, is the middle element (that is, g = |(n+1)/2]), then the result-
ing search algorithm is known as binary search. Note that the answer to
the new subproblem is also the answer to the original problem P; there
is no need for any combining. Algorithm 3.2 describes this binary search
method, where BinSrch has four inputs a[ ],i,1, and «. It is initially invoked
as BinSrch(a, 1,n, x).

A nonrecursive version of BinSrch is given in Algorithm 3.3. BinSearch
has three inputs a,n, and xz. The while loop continues processing as long
as there are more elements left to check. At the conclusion of the procedure
0 is returned if x is not present, or j is returned, such that a[j] = x.

Is BinSearch an algorithm? We must be sure that all of the operations
such as comparisons between x and a[mid] are well defined. The relational
operators carry out the comparisons among elements of a correctly if these
operators are appropriately defined. Does BinSearch terminate? We observe

https://hemanthrajhemu.github.io
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1 Algorithm BinSrch(a,i, 1, 2)
2  // Given an array ali: 1] of elements in nondecreasing
3. // order, 1 <i <1, determine whether x is present, and
4 // ifso, return j such that x = a[j]; else return 0.
5
6 if (i= 7) then // If Small(P)
7
8 if (x = a[t]) then return j;
9 else return 0;
10 }
11 else
12 { // Reduce P into a smaller subproblem.
13 mid := |(¢+ 1)/2];
14 if (x = almid]) then return mid;
15 else if (x < almid]) then
16 return BinSrch(a, 7, mid — 1,2);
17 else return BinSrch(a, mid + 1,1, 2);
18
19 }

 

Algorithm 3.2 Recursive binary search

 

1 Algorithm BinSearch(a,n, x)
2  // Given an array a[1 :n] of elements in nondecreasing
3 // order, n > 0, determine whether z is present, and
4 // if so, return j such that x = aly]; else return 0.
5
6 low := 1; high := n;
7 while (low < high) do
8
9 mid := | (low + high)/2];
10 if (x < almid]) then high := mid — 1;
11 else if (x > almid]) then low := mid 1;
12 else return mid;
13
14 return 0;

15 }

 

Algorithm 3.3 Iterative binary search
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3.2. BINARY SEARCH 133

that low and high are integer variables such that each time through the loop
either x is found or low is increased by at least one or high is decreased by
at least one. Thus we have two sequences of integers approaching each other
and eventually low becomes greater than high and causes termination in a
finite number of steps if x is not present.

Example 3.6 Let us select the 14 entries

—15, --6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151

place them in a[l : 14], and simulate the steps that BinSearch goes through
as it searches for different values of z. Only the variables low, high, and
mad need to be traced as we simulate the algorithm. We try the following
values for x: 151,14, and 9 for two successful searches and one unsuccessful

 

search. Table 3.2 shows the traces of BinSearch on these three inputs. O

e£=151 low high mid z=-14 low high mid
I 14 7 1 14 7
8 14 11 1 6 3
12 14 13 1 2 1
14 14 14 2 2 2

found 2 1 not found

z=9 low high mid
1 14 7
1 6 3
4 6 5

found

 

Table 3.2 Three examples of binary search on 14 elements

These examples may give us a little more confidence about Algorithm
3.3, but they by no means prove that it is correct. Proofs of algorithms are
very useful because they establish the correctness of the algorithm for all
possible inputs, whereas testing gives much less in the way of guarantees.
Unfortunately, algorithm proving is a very difficult process and the complete
proof of an algorithm can be many times longer than the algorithm itself.
We content ourselves with an informal “proof” of BinSearch.

Theorem 3.1 Algorithm BinSearch(a,n, xz) works correctly.

Proof: We assume that all statements work as expected and that compar-
isons such as x > a[{mid] are appropriately carried out. Initially low = 1,
high == n, n > 0, and a[1] < a[2] <--- < a[n]. If n = 0, the while loop is
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134 CHAPTER 3. DIVIDE-AND-CONQUER

not entered and 0 is returned. Otherwise we observe that each time through
the loop the possible elements to be checked for equality with x are allow],
allow + 1], ..., a[mid], ..., a[high]. If « = a[mid], then the algorithm ter-
minates successfully. Otherwise the range is narrowed by either increasing
low to mid+ 1 or decreasing high to mid — 1. Clearly this narrowing of
the range does not affect the outcomeof the search. If low becomes greater
than high, then x is not present and hence the loop is exited. oO

Notice that to fully test binary search, we need not concern ourselves with
the values of a[1 : n]. By varying x sufficiently, we can observe all possible
computation sequences of BinSearch without devising different values for a.
To test all successful searches, x must take on the n values in a. To test all
unsuccessful searches, x need only take on n + 1 different values. Thus the
complexity of testing BinSearch is 2n + 1 for each n.

Now let’s analyze the execution profile of BinSearch. The two relevant
characteristics of this profile are the frequency counts and space required for
the algorithm. For BinSearch, storage is required for the n elements of the
array plus the variables low, high, mid, and xz, or n+ locations. As for the
time, there are three possibilities to consider: the best, average, and worst
cases.

Suppose we begin by determining the time for BinSearch on the previ-
ous data set. We observe that the only operations in the algorithm are
comparisons and some arithmetic and data movements. We concentrate on
comparisons between x and the elements in a[ |, recognizing that the fre-
quency count of all other operations is of the same order as that for these
comparisons. Comparisons between x and elements of a[ ] are referred to
as element comparisons. We assume that only one comparison is needed to
determine which of the three possibilities of the if statement holds. The
number of element comparisons needed to find each of the 14 elementsis

a: {1] [2] {3) [4] [5] {6) [7] {8) [9] [10] {11} [12] [13] [14]
Elements: -15 —6 0 7 9 23 54 82 101 112 125 131 142 151
Comparisons: 3 4 2 4 3 4 1 4 3 4 2 4 3 4

No element requires more than 4 comparisons to be found. The average
is obtained by summing the comparisons needed to find all 14 items and
dividing by 14; this yields 45/14, or approximately 3.21, comparisons per
successful search on the average. There are 15 possible ways that an unsuc-
cessful search may terminate depending on the value of x. If x < a[l1], the
algorithm requires 3 element comparisons to determine that x is not present.
For all the remaining possibilities, BinSearch requires 4 element comparisons.
Thus the average number of element comparisons for an unsuccessful search
is (3 + 14 * 4)/15 = 59/15 & 3.93.

The analysis just done applies to any sorted sequence containing 14 ele-
ments. But the result we would prefer is a formula for n elements. A good
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3.2. BINARY SEARCH 135

way to derive such a formula plus a better way to understand the algorithm
is to consider the sequence of values for mid that are produced by BinSearch
for all possible values of «. These values are nicely described using a binary
decision tree in which the value in each node is the value of mid. For ex-
ample, ifn = 14, then Figure 3.1 contains a binary decision tree that traces
the way in which these values are produced by BinSearch.

 

 

 

Figure 3.1 Binary decision tree for binary search, n = 14

Thefirst comparisonis x with a[7]. If x < a[7], then the next comparison
is with a[3]; similarly, if x > a[7], then the next comparison is with a[11].
Each path through the tree represents a sequence of comparisons in the
binary search method. If % is present, then the algorithm will end at one
of the circular nodes that lists the index into the array where « was found.
If x is not present, the algorithm will terminate at one of the square nodes.
Circular nodesare called internal nodes, and square nodesarereferred to as
external nodes.

Theorem 3.2 Ifisin the range [2*~', 2*), then BinSearch makes at most k
element comparisons for a successful search and either k—1 or & comparisons
for an unsuccessful search. (In other words the time for a successful search
is O(logn) and for an unsuccessful search is O(log n)).

Proof: Consider the binary decision tree describing the action of BinSearch
on n clements. All successful searches end at a circular node whereas all
unsuccessful searches end at a square node. If 2*-! < n < 2, then all
circular nodes are at levels 1,2,...,& whereas all square nodesare at levels
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136 CHAPTER 3. DIVIDE-AND-CONQUER

k and k +1 (note that the root is at level 1). The number of element
comparisons needed to terminate at a circular node on level 7 is i whereas
the numberof element comparisons needed to terminate at a square node at
level 7 is only i — 1. The theorem follows. oO

Theorem 3.2 states the worst-case time for binary search. To determine
the average behavior, we need to look moreclosely at the binary decision tree
and equate its size to the number of element comparisons in the algorithm.
The distance of a node from the root is one less than its level. The internal
path length I is the sum of the distances of all internal nodes from the root.
Analogously, the ezternal path length E is the sum of the distances ofall
external nodes from the root. It is easy to show by induction that for any
binary tree with n internal nodes, F and J are related by the formula

E=I+2n

It turns out that there is a simple relationship between E,J/, and the
average number of comparisons in binary search. Let A,(n) be the average
number of comparisonsin a successful search, and A,,(n) the average number
of comparisons in an unsuccessful search. The number of comparisons needed
to find an element represented by an internal node is one more than the
distance of this node from the root. Hence,

A,(n) =1+I1/n

The number of comparisons on any path from the root to an external node
is equal to the distance between the root and the external node. Since every
binary tree with n internal nodes has n+ 1 external nodes, it follows that

A,(n) = E/(n +1)

Using these three formulas for EF, As(n), and A,(n), we find that

Ag(n) = (1+1/n)Ay(n) ~ 1
From this formula we see that A;(n) and A,(n) are directly related. The

minimum value of As(n) (and hence A,,(n)) is achieved by an algorithm
whose binary decision tree has minimum external and internal path length.
This minimum is achieved by the binary tree all of whose external nodes are
on adjacent levels, and this is precisely the tree that is produced by binary
search. From Theorem 3.2 it follows that E is proportional to nlogn. Using
this in the preceding formulas, we conclude that As(n) and A,,(n) are both
proportional to log n. Thus we conclude that the average- and worst-case
numbers of comparisons for binary search are the same to within a constant
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3.2. BINARY SEARCH 137

factor. The best-case analysis is easy. For a successful search only one
element comparison is needed. For an unsuccessful search, Theorem 3.2
states that |logn| element comparisons are needed in the best case.

In conclusion we are now able to completely describe the computing time
of binary search by giving formulas that describe the best, average, and
worst cases:

successful searches unsuccessful searches
Q(1), O(logn), O(log n) O(log n)
best, average, worst best, average, worst

Can we expect another searching algorithm to besignificantly better than

binary search in the worst case? This question is pursued rigorously in

Chapter 10. But we can anticipate the answer here, which is no. The

method for proving such an assertion is to view the binary decision tree as

a general model for any searching algorithm that depends on comparisons

of entire elements. Viewed in this way, we observe that the longest path to

discover any element is minimized by binary search, and so any alternative

algorithmis no better from this point of view.

Before we end this section, there is an interesting variation of binary
search that makes only one comparison per iteration of the while loop.
This variation appears as Algorithm 3.4. The correctness proof of this vari-
ation is left as an exercise.

BinSearch will sometimes make twice as many element comparisons as
BinSearch1 (for example, when x > a[n|). However, for successful searches
BinSearchl may make (logn)/2 more element comparisons than BinSearch
(for example, when x = a[mid]). The analysis of BinSearch1 is left as an ex-
ercise. It should be easy to see that the best-, average-, and worst-case times
for BinSearchl are O(logn) for both successful and unsuccessful searches.

These two algorithms were run on a Sparc 10/30. The first two rows in
Table 3.3 represent the average time for a successful search. The second set
of two rows give the average times for all possible unsuccessful searches. For
both successful and unsuccessful searches BinSearchl did marginally better
than BinSearch.

EXERCISES

1. Run the recursive and iterative versions of binary search and compare
the times. For appropriate sizes of n, have each algorithm find every
clement in the set. Then try all n + 1 possible unsuccessful searches.

2. Prove by induction the relationship & = I + 2n for a binary tree with
+ internal nodes. The variables & and J are the external and internal
path length, respectively.
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C
O
n
n
o
b

w
n
w
r
e Algorithm BinSearch1(a, n, x)

// Samespecifications as BinSearch except n > 0

low := 1; high :=n+1;
// high is one more than possible.
while (low < (high — 1)) do

mid := | (low + high) /2]};
if (x < almid]) then high := mid;

10 // Only one comparison in the loop.
11 else low := mid; // x > a[mid]
12
13 if (x = allow]) then return low; // x is present.
14 else return 0; // x is not present.
15 }

 

Algorithm 3.4 Binary search using one comparison per cycle

 

 

 

| Array sizes | 5,000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000||
 

 

 

 

 

 

 

         

successful searches

BinSearch 51.30 67.95 67.72 73.85 76.77 73.40
BinSearch1 47.68 53.92 61.98 67.46 68.95 71.11

unsuccessful searches

BinSearch 50.40 66.36 76.78 79.54 78.20) 81.15
BinSearchl 41.93 52.65 63.33 66.86 69.22 72.26
 

 

 

Table 3.3 Computing times for two binary search algorithms; times are in
microseconds
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3. In aninfinite array, the first n cells contain integers in sorted order
andthe rest of the cells are filled with oo. Present an algorithm that
takes x as input and finds the position of x in the array in O(log n)
time. You are not given the value of n.

4, Devise a “binary” search algorithm that splits the set not into two sets
of (almost) equal sizes but into two sets, one of which is twice the size
of the other. How does this algorithm compare with binary search?

5. Devise a ternary search algorithm that first tests the element at posi-
tion n/3 for equality with somevalue x, and then checks the element
at 2n/3 and either discovers x or reduces the set size to one-third the
size of the original. Compare this with binary search.

6. (a) Prove that BinSearchl works correctly.

(b) Verify that the following algorithm segment functions correctly
according to the specifications of binary search. Discuss its com-
puting time.

low := 1; high := n;
repeat {

mid := |(low + high)/2];
if (x > almid]) then low := mid;
else high := mid;

} until ((low + 1) = high)

3.3. FINDING THE MAXIMUM
AND MINIMUM

Let us consider another simple problem that can be solved by the divide-
and-conquer technique. The problem is to find the maximum and minimum
items in a set of n elements. Algorithm 3.5 is a straightforward algorithm
to accomplish this.

In analyzing the time complexity of this algorithm, we once again con-
centrate on the number of element comparisons. The justification for this
is that. the frequency count for other operations in this algorithm is of the
same order as that for element comparisons. More importantly, when the
elements in a[1 : ] are polynomials, vectors, very large numbers, or strings
of characters, the cost of an element comparison is much higher than the
cost of the other operations. Hence the time is determined mainly by the
total cost of the element comparisons.

StraightMaxMin requires 2(n — 1) element comparisonsin the best, aver-
age, and worst cases. An immediate improvement is possible by realizing
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Algorithm StraightMaxMin(a,n, maz, min)
// Set maz to the maximum and min to the minimum of a[1 : n].

maz := min := all);
for 1:= 2 to n do

{
if (a[i] > max) then maz := alt];
if (ali] < min) then min := a[t];

}

F
P
W
O
O
N
D
O
B
R
W
N
H

0 }

 

Algorithm 3.5 Straightforward maximum and minimum

that the comparison ali] < min is necessary only when ali] > maz is false.
Hence we can replace the contents of the for loop by

if (a[?] > max) then maz := ali];
else if (a[i] < min) then min := alt];

Now the best case occurs when the elements are in increasing order.
The number of element comparisons is n — 1. The worst case occurs when
the elements are in decreasing order. In this case the number of element
comparisons is 2(n — 1). The average numberof element comparisonsis less
than 2(n — 1). On the average, ali}] is greater than max half the time, and
so the average number of comparisons is 3n/2 — 1.

A divide-and-conquer algorithm for this problem would proceed as fol-
lows: Let P = (n,ali],...,a[j]) denote an arbitrary instance of the problem.
Here n is the number of elements in thelist a[i],...,a[j] and we are inter-
ested in finding the maximum and minimum ofthis list. Let Small(P)/ be
true when n < 2. In this case, the maximum and minimumarea[i] ifn = 1.
If n = 2, the problem can be solved by making one comparison.

If the list has more than two elements, P has to be divided into smaller
instances. For example, we might divide P into the two instances P, =
([n/2] ,a[1],..., a[|n/2]]) and Py = (n— [n/2] ,a[[n/2] + 1],...,a[n]). AE
ter having divided P into two smaller subproblems, we can solve them by
recursively invoking the same divide-and-conquer algorithm. How can we
combinethe solutions for P, and P, to obtain a solution for P? If MAX(P)
and MIN(P) are the maximum and minimum of the elements in P, then
MAX(P) is the larger of MAX(P,) and MAX(P,). Also, MIN(P) is the
smaller of MIN(P,) and MIN(P,).
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Algorithm 3.6 results from applying the strategy just described. MaxMin
is a recursive algorithm that finds the maximum and minimum of theset
of elements {a(i), a(t + 1),...,a(7)}. The situation of set sizes one (i = j)
and two (i = 7 — 1) are handled separately. For sets containing more than
two elements, the midpoint is determined (just as in binary search) and two
new subproblems are generated. When the maxima and minima of these
subproblems are determined, the two maxima are compared and the two
minima, are compared to achieve the solution for the entire set.
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Algorithm MaxMin(i, j, max, min)
// a{1:n] is a global array. Parameters 7 and j are integers,
/[/1<t<j <n. The effect is to set max and min to the
// \argest and smallest values in ali : 7], respectively.

if (i = 7) then max := min := alt]; // Small(P)
else if (¢ = 7-1) then // Another case of Small(P)

if (a[é] < a[j]) then

max := alj]; min := ali];

}
else

{

}
max := alt]; min := aly];

}
else
{ // If P is not small, divide P into subproblems.

// Find whereto split the set.
mid := |(t+ 7) /2]3

// Solve the subproblems.
MaxMin(i, mid, max, min);
MaxMin(mid + 1,7, marl, min1);

// Combine the solutions.
if (maz < maz1) then maz := mazl;
if (min > min1) then min := minl;

}
 

Algorithm 3.6 Recursively finding the maximum and minimum
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The procedureis initially invoked by the statement

MaxMin(1, 7, x, y)

Suppose we simulate MaxMin on the following nine elements:

a: [1] [2] [3] [4] [5] (6) [7 8} [9
22.13 -5 -8 15 60 17 31 47

A good way of keeping track of recursive calls is to build a tree by adding a
node each time a new call is made. For this algorithm each node has four
items of information: i, 7, maz, and min. On the array a[ | above, the tree
of Figure 3.2 is produced.

 

) 
   

  

  

    

         

  

1,9,60,-8

6) 8)
1,5,22,-8 6,9,60,17

1,3,22,-5 4,5,15,-8 6.7,60,17 8,9,47,31

Qo Oo
1,2,22,13 3,3,-5,-5      

 

Figure 3.2 Trees of recursive calls of MaxMin

Examining Figure 3.2, we see that the root node contains 1 and 9 as the
values of 7 and 7 corresponding to the initial call to MaxMin. This execution
produces two new calls to MaxMin, where i and 7 have the values 1, 5 and
6, 9, respectively, and thus split the set into two subsets of approximately
the same size. From the tree we can immediately see that the maximum
depth of recursion is four (including thefirst call). The circled numbers in
the upper left corner of each node represent the orders in which maz and
min are assigned values.
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Now what is the number of element comparisons needed for MaxMin? If
T(n) represents this number, then the resulting recurrence relation is

1 n= 2

0 nal

T([n/21) +T([n/2]) +2 n>2
T(n) =

Whennis a powerof two, n = 2* for some positive integer k, then

T(n) 2T(n/2) +2
2(2T(n/4) +2) +2
AT(n/4) +442

(3.3)

= 2k-17T(2) + Le <i<k-1 2
= Qk149k 9 —3n/2—2

Note that 3n/2 — 2 is the best-, average-, and worst-case number of com-
parisons when n is a power of two.

Compared with the 2n — 2 comparisons for the straightforward method,
this is a saving of 25% in comparisons. It can be shown that no algorithm
based on comparisons uses less than 3n/2 — 2 comparisons. So in this sense
algorithm MaxMin is optimal (see Chapter 10 for more details). But does
this imply that MaxMin is better in practice? Not necessarily. In terms
of storage, MaxMin is worse than the straightforward algorithm because it
requires stack space for i, 7, max,min,mazl, and min1. Given n elements,
there will be [logy n| +1 levels of recursion and we need to save seven values
for each recursive call (don’t forget the return address is also needed).

Let. us see what the count is when element comparisons have the same
cost as comparisons between i and j. Let C'(n) be this number. First, we
observe that lines 6 and 7 in Algorithm 3.6 can be replaced with

if (6 > j —1) { // Small(P)

to achieve the same effect. Hence, a single comparison between 7 and 7 — 1
is adequate to implement the modified if statement. Assuming n = 2* for
some positive integer k, we get

C(n) = { 20(n/2) +3 noe
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Solving this equation, we obtain

C(n) 2C(n/2) +3
AC(n/4) +643ho

d

2k-lC(2) +3 Ye? 2
2k 4+ 3% 2k} — 3
5n/2—3

Il
o
d

The comparative figure for StraightMaxMin is 3(n — 1) (including the com-
parison needed to implement the for loop). This is larger than 5n/2 — 3.
Despite this, MaxMin will be slower than StraightMaxMin because of the
overhead of stacking 7,7, maz, and min for the recursion.

Algorithm 3.6 makes several points. If comparisons among the elements
of a[ | are much more costly than comparisons of integer variables, then the
divide-and-conquer technique has yielded a moreefficient (actually an opti-
mal) algorithm. On the other hand,if this assumption is not true, the tech-
niqueyields a less-efficient algorithm. Thus the divide-and-conquerstrategy
is seen to be only a guide to better algorithm design which may not always
succeed. Also we see that it is sometimes necessary to work out the con-
stants associated with the computing time bound for an algorithm. Both
MaxMin and StraightMaxMin are O(n), so the use of asymptotic notation is
not enough of a discriminator in this situation. Finally, see the exercises
for another way to find the maximum and minimum using only 3n/2 — 2
comparisons.

Note: In the design of any divide-and-conquer algorithm, typically, it is a
straightforward task to define Small(P) and S(P). So, from now on, we only
discuss how to divide any given problem P and how to combinethe solutions
to subproblems.

EXERCISES

1. Translate algorithm MaxMin into a computationally equivalent proce-
dure that uses no recursion.

2. Test your iterative version of MaxMin derived above against Straight-
MaxMin. Count all comparisons.

3. Thereis an iterative algorithm for finding the maximum and minimum
which, though not a divide-and-conquer-based algorithm, is proba-
bly more efficient than MaxMin. It works by comparing consecutive
pairs of elements and then comparing the larger one with the current
maximum and the smaller one with the current minimum. Write out
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the algorithm completely and analyze the number of comparisonsit
requires.

4, In Algorithm3.6, what happensif lines 7 to 17 are dropped? Does the
resultant function still compute the maximum and minimum elements
correctly?

3.4 MERGE SORT

As another example of divide-and-conquer, we investigate a sorting algo-
rithm that has the nice property that in the worst case its complexity is
O(nlogn). This algorithm is called merge sort. We assume throughout that
the elements are to be sorted in nondecreasing order. Given a sequence of
n elements (also called keys) a[1],...,a[n], the general idea is to imagine
them split into two sets al1],.. a{|n/2]] and a[|n/2| + 1],...,a[n]. Each
set is individually sorted, and the resulting sorted sequences are merged to
producea single sorted sequence of n elements. Thus we have another ideal
example of the divide-and-conquer strategy in which the splitting is into two
equal-sized sets and the combining operation is the merging of two sorted
sets into one.

MergeSort (Algorithm 3.7) describes this process very succinctly using
recursion and a function Merge (Algorithm 3.8) which merges two sorted
sets. Before executing MergeSort, the n elements should be placed in a[1 : n].
Then MergeSort(1,n) causes the keys to be rearranged into nondecreasing
orderin a.

Example 3.7 Consider the array of ten elements a[1 : 10] = (310, 285, 179,
652, 351, 423, 861, 254, 450, 520). Algorithm MergeSort begins by splitting
a[ | into two subarrays eachofsize five (a[1 : 5] and a[6 : 10]). The elements
in a{l : 5] are then split into two subarrays of size three (a[1 : 3]) and two
(a[4 : 5]). Then the items in a[1 : 3] are split into subarrays of size two
(a[1 : 2]) and one (a[3 : 3]). The two values in a[l : 2] are split a final
time into one-element subarrays, and now the merging begins. Note that
no movement of data has yet taken place. A record of the subarrays is
implicitly maintained by the recursive mechanism. Pictorially the file can
now be viewed as

(310 | 285 | 179 | 652, 351 | 423, 861, 254, 450, 520)

wherevertical bars indicate the boundaries of subarrays. Elements a[1] and
a{2] are merged to yield

(285, 310 | 179 | 652, 351 | 423, 861, 254, 450, 520)
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1 Algorithm MergeSort(low, high)
2 // allow : high] is a global array to be sorted.
3 // Small(P)is true if there is only one element
4  // to sort. In this case thelist is already sorted.
5
6 if (low < high) then // If there are more than one element
7
8 // Divide P into subproblems.
9 // Find whereto split theset.
10 mid := |(low + high)/2|;
11 // Solve the subproblems.
12 MergeSort(low, mid);
13 MergeSort(mid + 1, high);
14 // Combine the solutions.
15 Merge(low, mid, high);
16
17 }

 

Algorithm 3.7 Merge sort

Then a[3] is merged with a[1 : 2] and

(179, 285, 310 | 652, 351 | 423, 861, 254, 450, 520)

is produced. Next, elements a[4] and a[5] are merged:

(179, 285, 310 | 351, 652 | 423, 861, 254, 450, 520)

and then a[l1 : 3] and a4 5):

(179, 285, 310, 351, 652 | 423, 861, 254, 450, 520)

At this point the algorithm has returned to thefirst invocation of MergeSort
and is about to process the second recursive call. Repeated recursive calls
are invoked producing the following subarrays:

(179, 285, 310, 351, 652 | 423 | 861 | 254 | 450, 520)

Elements a[6] and a[7] are merged. Then a[8] is merged with a[6 : 7]:
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Algorithm Merge(low, mid, high)
// allow : high] is a global array containing two sorted
// subsets in allow : mid] and in a[mid +1: high]. The goal
// is to merge these two sets into a single set residing
// in allow : high}. 6[ ] is an auxiliary global array.

h:= low; 7 := low; 7 = mid+1;
while ((h < mid) and (j < high)) do

if (a[h] < a[y]) then

blz] :-= a[h];h = h+1;

}
else

{ oo.
bli] = aly]; 9 =F +15

wi=ithl;

}
if (h > mid) then

for k := 7 to high do

{
blt] := a[k]; ¢:= 74+ 1;

}
else

for k :=hto mid do

{
b[2] = a[k]; 2:= 74+;

}
for k := low to high do a[k] := b[k];

}
 

Algorithm 3.8 Merging two sorted subarrays using auxiliary storage

https://hemanthrajhemu.github.io



148 CHAPTER 3. DIVIDE-AND-CONQUER

(179, 285, 310, 351, 652 | 254, 423, 861 | 450, 520)

Next a[9| and a{10] are merged, and then a[6 : 8] and a[9 : 10):

(179, 285, 310, 351, 652 | 254, 423, 450, 520, 861)

At this point there are two sorted subarrays and the final merge produces
the fully sorted result

(179, 254, 285, 310, 351, 423, 450, 520, 652, 861)

 

 

 

 

Figure 3.3 Tree of calls of MergeSort(1, 10)

Figure 3.3 is a tree that represents the sequenceof recursive calls that are
produced by MergeSort whenit is applied to ten elements. The pair of values
in each node are the values of the parameters low and high. Notice how
the splitting continues until sets containing a single element are produced.
Figure 3.4 is a tree representing the calls to procedure Merge by MergeSort.
For example, the node containing 1, 2, and 3 represents the merging of
a{1 : 2] with a[3]. 0

If the time for the merging operation is proportional to n, then the com-
puting time for merge sort is described by the recurrence relation

Tin) —£ @ n = 1,a@ a constant
(n) = 2T(n/2)+cn n> 1,c a constant
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When rn. is a power of 2, n = 2*, we can solve this equation by successive
substitutions:

T(n) 2(2T(7/4) + en/2) + en
AT(r./4) + 2cn
4(2T(n/8) + cn/4) + 2enfe

o
ll

2*T(1) + ken
an+ cnlogn

It is easy to see that if 2° <n <2**!, then T(n) < T(2**1). Therefore

T(n) = O(n log n)

 

 

 

Figure 3.4 Tree of calls of Merge

Though Algorithm 3.7 nicely captures the divide-and-conquer nature of
merge sort, there remain several inefficiencies that can and should be elimi-
nated. We present these refinements in an attempt to produce a version of
merge sort that is good enough to execute. Despite these improvements the
algorithm’s complexity remains O(n logn). We see in Chapter 10 that no
sorting algorithm based on comparisons of entire keys can do better.

One complaint we might raise concerning merge sort is its use of 2n
locations. The additional n locations were needed because we couldn’t rea-
sonably merge two sorted sets in place. But despite the use of this space the
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algorithm must still work hard and copy the result placed into bilow : high]
back into allow : high] on each call of Merge. An alternative to this copying
is to associate a new field of information with each key. (The elements in
a[ | are called keys.) This field is used to link the keys and any associated
information together in a sorted list (keys and related information are called
records). Then the merging of the sorted lists proceeds by changing the link
values, and no records need be movedat all. A field that contains only a link
will generally be smaller than an entire record, so less space will be used.

Along with the original array a[ ], we define an auxiliary array link[1 : n]
that contains integers in the range [0,n]. These integers are interpreted as
pointers to elements of a[ ]. A list is a sequence of pointers ending with a
zero. Below is one set of values for link that contains two lists: Q and R.
The integer Q = 2 denotes the start of one list and R = 5 the start of the
other.

link: [1] [2] [3] [4] (5) [6 [7 [8]
6 4 7 8 0

The twolists are @ = (2, 4, 1, 6) and R = (5, 3, 7, 8). Interpreting theselists
as describing sorted subsets of a[1 : 8], we conclude that a[2] < a[4] < a[1]
< a[6] and a[5] < a[3] < a[7] < a[g}.

Another complaint we could raise about MergeSort is the stack space that
is necessitated by the use of recursion. Since merge sort splits each set into
two approximately equal-sized subsets, the maximum depthof the stack is
proportional to log n. The need for stack space seems indicated by the top-
down mannerin which this algorithm was devised. The need for stack space
can be eliminated if we build an algorithm that works bottom-up; see the
exercises for details.

As can be seen from function MergeSort and the previous example, even
sets of size two will cause two recursive calls to be made. For small set sizes
most of the time will be spent processing the recursion instead of sorting.
This situation can be improved by not allowing the recursion to go to the
lowest level. In terms of the divide-and-conquer control abstraction, we are
suggesting that when Small is true for merge sort, more work should be done
than simply returning with no action. We use a second sorting algorithm
that works well on small-sized sets.

Insertion sort works exceedingly fast on arrays of less than, say, 16 el-
ements, though for large n its computing time is O(n”). Its basic idea for
sorting the items in a[1 : n] is as follows:

for j :=2 to ndo {
place a[j] in its correct position in the sorted set a[l : 7 — 1];
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Thoughall the elements in a[1 : j—1] may have to be moved to accommodate
alj|, for small values of n the algorithm works well. Algorithm 3.9 has the
details.

 

Algorithm InsertionSort(a, n)
// Sort the array a{1 : n] into nondecreasing order, n > 1.

{
for j := 2 to n do

{
// a{1: 7 —1] is already sorted.
item := alg]; t:= 7-15
while ((¢ > 1) and (item < alz])) do

{
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alt + 1] := ale]; 7:= 4-1;
11
12 ali + 1] := item;
13
it}
 

Algorithm 3.9 Insertion sort

The statements within the while loop can be executed zero up to a
maximumof 7 times. Since 7 goes from 2 to n, the worst-case time of this
procedure is bounded by

S- j =n(n+1)/2-—1= O(n’)

2<j<n

Its best-case computing time is O(n) under the assumption that the body of
the while loop is never entered. This will be true when the data is already
in sorted order.

Weare now ready to present the revised version of merge sort with the
inclusion of insertion sort and the links. Function MergeSortl (Algorithm
3.10) is initially invoked by placing the keys of the records to be sorted in
a{l : n] and setting link[1 : n] to zero. Then one says MergeSort1(1,n). A
pointer to a list of indices that give the elements of a[ ] in sorted orderis
returned. Insertion sort is used whenever the numberof items to be sorted
is less than 16. The version of insertion sort as given by Algorithm 3.9 needs
to bealtered so that it sorts allow : high] into a linkedlist. Call the altered
version InsertionSortl. The revised merging function, Mergel, is given in
Algorithin 3.11.
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1 Algorithm MergeSort1 (low, high)
2  // The global array allow : high] is sorted in nondecreasing order
3 // using the auxiliary array link|low : high]. The values in link
4 // represent a list of the indices low through high giving a[ ] in
5 // sorted order. A pointer to the beginning of the list is returned.
6
7 if ((high — low) < 15) then
8 return InsertionSort1(a, link, low, high);
9 else
10 {
11 mid := |(low + high) /2|;
12 q := MergeSort1 (low, mid);
13 r := MergeSort1(mid + 1, high);
14 return Mergel(q,1r);
15
16 }

 

Algorithm 3.10 Mergesort using links

Example 3.8 As an aid to understanding this new version of merge sort,
supposewe simulate the algorithm as it sorts the eight-element sequence (50,
10, 25, 30, 15, 70, 35, 55). We ignorethe fact that less than 16 elements would
normally be sorted using InsertionSort. The link array is initialized to zero.
Table 3.4 shows how the link array changes after each call of MergeSort1
completes. On each row the value of p points to the list in link that was
created by the last completion of Mergel. To the right are the subsets of
sorted elements that are represented by these lists. For example, in the last
row p = 2 which beginsthelist of links 2, 5, 3, 4, 7, 1, 8, and 6; this implies
a[2] < a[5] < a[3] < af[4] < a[7] < afl] < a[8] < a6). Oo

EXERCISES

1. Whyis it necessary to have the auxiliary array b[low : high] in function
Merge? Give an example that shows why in-place mergingis inefficient.

2. The worst-case time of procedure MergeSort is O(n logn). What is its
best-case time? Can we say that the time for MergeSort is O(n log n)?

3. A sorting method is said to be stable if at the end of the method,
identical elements occur in the same order as in the original unsorted
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Algorithm Mergel(g,r)
// q and r are pointers to lists contained in the global array
// Vink[0: n]. link[0] is introduced only for convenience and need
// not be initialized. The lists pointed at by g and r are merged
// and a pointer to the beginning of the mergedlist is returned.

ti=qj:=7rj3 k:=0;
// The newlist starts at link[O].
while ((i 40) and (7 #0)) do
{ // While both lists are nonempty do

if (a[¢] < aly]) then
{ // Find the smaller key.

link[k] := i; k := i; 7 := link/i];
// Add a new key to thelist.

else

link|[k] := j3 k= 93 9 = link{j];

y |
if (i = 0) then link[k] := 9;
else link[k] := 4;
return link(0];

 

Algorithm 3.11 Merginglinked lists of sorted elements
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0 @ 2 8 @® © © @ (8)
a: - 50 16 25 30 15 35 55
links 0 0 0 0 060 0 0 06 @
qr p
122 2 0 1 6 60 60 60 6 06 (10, 50)
343 3 0 1 4 0 060 0 0 0 (16, 80), (25, 30)
232 2 0 3 4 +1 +060 0 0 06 (10, 25, 30, 50)
565 5 O 3 4 1 6 0 0 0 (16, 25, 30, 50), (15, 70)
787 7 O 3 4 1 6 O 8 0 (10, 25, 30, 50), (15, 70), (35, 55)
575 5 0 3 4 #1 7 0 8 6 (10, 25, 30, 50) (15, 35, 55, 70)
252 2 8 5 4 #7 3 0 1. 6 (10, 15, 25, 30, 35, 50, 55, 70)

 

MergeSort1 applied to a[1 : 8] = (50, 10, 25, 30, 15, 70, 35, 55)

Table 3.4 Example of link array changes

set. Is merge sort a stable sorting method?

4. Suppose a[l : m] and 0{1 : n] both contain sorted elements in non-
decreasing order. Write an algorithm that merges these items into
c{l : m+n]. Your algorithm should be shorter than Algorithm 3.8
(Merge) since you can now place a large value in a[m +1] and 8[n +1].

5. Given file of n records that are partially sorted as 71 < 4g <---<am

and %m41 <--* < Xp, is it possible to sort the entire file in time O(n)
using only a small fixed amount of additional storage?

6. Another way to sort file of n recordsis to scan thefile, merge consec-
utive pairs of size one, then merge pairs of size two, and so on. Write
an algorithm that carries out this process. Show how your algorithm
works on the data set (100, 300, 150, 450, 250, 350, 200, 400, 500).

7. A version of insertion sort is used by Algorithm 3.10 to sort small
subarrays. However, its parameters and intent are slightly different
from the procedure InsertionSort of Algorithm 3.9. Write a version of
insertion sort that will work as Algorithm 3.10 expects.

8. The sequences X,, X2,...,X¢ are sorted sequences such that ye, |X;| =
n. Show how to merge these @ sequences in time O(n log £).

3.5 QUICKSORT

The divide-and-conquer approach can be usedto arrive at an efficient sorting
method different from merge sort. In mergesort, the file a[1 : n] was divided
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at its midpoint into subarrays which were independently sorted and later
merged. In quicksort, the division into two subarrays is made so that the
sorted subarrays do not need to be merged later. This is accomplished by
rearranging the elements in a[1 : n] such that ali] < a[j] for all ¢ between 1
and mm. and all 7 between m+ 1 and n for some m, 1 <m <n. Thus, the
elements in a{l : mJ] and a[r +1: n] can be independently sorted. No merge
is necded. The rearrangement of the elements is accomplished by picking
some element of al |, say ¢ = als], and then reordering the other elements
so that all elements appearing before ¢ in a[1 : n] are less than or equal to
t and all elements appearing after t are greater than or equal to t. This
rearranging is referred to as partitioning.

Function Partition of Algorithm 3.12 (due to C. A. R. Hoare) accomplishes
an in-place partitioning of the elements of a[m: p— 1]. It is assumed that
a{p] > alr] and that a[m] is the partitioning element. Ifm = 1 and p—1=n,
then alr + 1] must be defined and must be greater than or equal to all
elemeuts in a[1 : nm]. The assumption that a[m] is the partition element is
merely for convenience; other choices for the partitioning element than the
first item in the set are better in practice. The function Interchange(a, 2, 7)
exchanges ali] with al].

Example 3.9 As an example of how Partition works, consider the following
array of nine elements. The functionis initially invoked as Partition(a, 1, 10).
The ends of the horizontal line indicate those elements which were inter-
changed to produce the next row. The element a[1] = 65 is the partitioning
element and it is eventually (in the sixth row) determined to bethe fifth
smallest element of the set. Notice that the remaining elements are unsorted
but partitioned about a[5] = 65. O

(1) (2) (3) (4) (5) (6) (8) (9) (10)
65 70 80. 85 60 50 45 +o 2 9

— ~
~ ~I —

o
r
q
r

3 3

o
r

 

65 45 75 80 85 60 55 50 70 +0 3 8
 

6 45 50 80 85 60 55 75 70 +0 4 7

65 45 50 55 85 60 80 7 70 +0 5 6

65 45 50 55 60 85 80 75 70 +0 6 5
 

60 45 350 55 65 85 80 75 70 +0

Using Hoare’s clever method of partitioning a set of elements about a
chosen element, we can directly devise a divide-and-conquer method for
completely sorting n elements. Following a call to the function Partition,
two scts S, and Sy are produced. All elements in S; are less than or equal
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1 Algorithm Partition(a, m,p)
2 // Within a[m],a[m +t 1],...,a[p — 1] the elements are
3 // rearranged in such a mannerthatif initially ¢ = a[m],
4 // then after completion alg] = t for some g between m
5 // and p—1, alk] <t form<k <q, and alk] >t
6 // forg<k<p. qis returned. Set alp] =
7 {
8 v:=alm); t= mM; 7 = p;
9 repeat
10
11 repeat

12 i:=itl;
13 until (a[i] > v);

14 repeat

15 g:= 9-13
16 until (a[j] < 0);

17 if (¢ < j) then Interchange(a, i, 7);

18 } until (i > 7);

19 alm] := aly]; aly] := v3 return 7;
20 }

1 Algorithm Interchange(a,z, j)
2  // Exchange ali] with al].

3 {
4 = ali];
5 ali = aly]; aly] -= p;
6 }

 

Algorithm 3.12 Partition the array alm: p — 1] about a[m|]
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to the elements in S2. Hence S; and $2 can be sorted independently. Each

set is sorted by reusing the function Partition. Algorithm 3.13 describes the
complete process,

 

1 Algorithm QuickSort(p, ¢)
2 // Sorts the elements alp],...,a[gq] which reside in the global
3. // array all: n] into ascending order; a[n + 1] is considered to
4 // be defined and must be > all the elements in a[1 : J.
5
6 if (p< q) then // If there are more than one element
7
8 // divide P into two subproblems.
9 j := Partition(a, p,q + 1);
10 // j is the position of the partitioning element.
11 // Solve the subproblems.
12 QuickSort(p, 7 — 1);
13 QuickSort(y + 1, q);
14 // There is no need for combining solutions.
r

16 }

 

Algorithm 3.13 Sorting by partitioning

In analyzing QuickSort, we count only the numberof element comparisons
C(n). It is easy to see that the frequency count of other operationsis of the
same order as C(n). We make the following assumptions: the n elements to
be sorted are distinct, and the input distribution is such that the partition
element v = a[m] in the call to Partition(a,m,p) has an equal probability of
being the 7th smallest element, 1 <7 <p—m, inalm: p-— I].

First, let us obtain the worst-case value C.,(n) of C(n). The number of
element comparisons in each call of Partition is at most p—m+1. Let r
be the total number of elements in all the calls to Partition at any level of
recursion. At level one only onecall, Partition(a,1,n+1), is made and r = n;
at level two at most two calls are made and r = n — 1; and so on. At each
level of recursion, O(r) element comparisons are made byPartition. At each
level, r is at least one less than the r at the previous level as the partitioning
elements of the previous level are eliminated. Hence C,,(n) is the sum on r
as r varies from 2 to n, or O(n”). Exercise 7 examines input data on which

QuickSort uses 2(n”) comparisons.
The average value C'4(n) of C(n) is much less than C,,(n). Under the

assumptions madeearlier, the partitioning element v has an equal probability
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of being the ith-smallest element, 1 <i < p—m, in al[m: p—1]. Hence the
two subarrays remaining to be sorted are alm : 7] and a[j + 1: p— 1] with
probability 1/(p — m),m <j < p. From this we obtain the recurrence

Ca(n) =n+1++ S> [Ca(k—1)) + Ca(n —k)] (3.5)
1<k<n

The number of element comparisons required by Partition on itsfirst call
isn+1. Note that C4(0) = C4(1) = 0. Multiplying both sides of (3.5) by
n, we obtain

nCa(n) = n(n +1) + 2[C4(0) + Ca(1) +--+ + Ca(n —1)] (3.6)

Replacing n by n — 1 in (3.6) gives

(n —1)Ca(n = 1) = n(n —1) + 2ICa(0) ++ + Caln — 2)
Subtracting this from (3.6), we get

nCa(n) —(n-1)Ca(n—1) = 2n+2Cy4(n—-1)

Ca(n)/(n +1) = Ca(n—1)/n+2/(n +1)

Repeatedly using this equation to substitute for C4(n —1),Ca(n—2),...,
we get

Ca(n _ Ca(n—2) 1 24 2
n+l ~~ n-1 n n+1

Ca(n-3)
a + 2+ 2+

(3.7)

C
= Gal) +2 3<k<n41 k

= 2 3s<k<nt+l k

Since

1 n+1q1

S- .</ — dx = log,(n + 1) — log, 2
k 2 £

( 3.7) yields
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Ca(n) < 2(n + 1)[log,(n + 2) — log, 2] = O(n log n)

Even though the worst-case time is O(n”), the average time is only O(n log n).
Let us now look at the stack space needed by the recursion. In the worst case
the maximum depth of recursion may be n — 1. This happens, for example,
when the partition element on each call to Partition is the smallest value in
a[m:p—1]. The amount of stack space needed can be reduced to O(log n)
by using an iterative version of quicksort in which the smaller of the two
subarrays alp: j — 1] and alj +1 : q] is always sorted first. Also, the second
recursive call can be replaced by some assignment statements and a jump
to the beginning of the algorithm. With these changes, QuickSort takes the
form of Algorithm 3.14.

Wecan now verify that the maximum stack space needed is O(log n). Let
S(n) he the maximumstack space needed. Then it follows that

sin< { 2* SUDA) nel

whichis less than 2 log n.

As remarked in Section 3.4, InsertionSort is exceedingly fast for n less than
about 16. Hence InsertionSort can be used to speed up QuickSort2 whenever
g—p < 16. The exercises explore various possibilities for selection of the
partition element.

3.5.1 Performance Measurement

QuickSort and MergeSort were evaluated on a SUN workstation 10/30. In
both cases the recursive versions were used. For QuickSort the Partition func-

tion was altered to carry out the median of three rule (i.e. the partitioning
element was the median of a[m], a[|(m+p—1)/2]] and a[p—1]). Each data
set cousisted of random integers in the range (0, 1000). Tables 3.5 and 3.6
record the actual computing times in milliseconds. Table 3.5 displays the
average computing times. For each n, 50 random data sets were used. Table
3.6 shows the worst-case computing times for the 50 data sets.

Scanning the tables, we immediately see that QuickSort is faster than
MergeSort for all values. Even though both algorithms require O(n log n)
time on the average, QuickSort usually performs well in practice. The exer-
cises discuss other tests that would make useful comparisons.

3.5.2 Randomized Sorting Algorithms

Though algorithm QuickSort has an average time of O(n log n) on n elements,

its worst-case time is O(n”). On the other hand it does not make use of any
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1 Algorithm QuickSort2(p, q)
2 // Sorts the elements in alp: q].
3
4 // stack is a stack of size 2 log(n).
5 repeat
6
7 while (p < g) do
8
9 j := Partition(a, p,q + 1);

10 if ((j —p) < (q—j)) then
12 Add(j +1); // Add 7 +1 to stack.
13 Add(q); ¢g:=j —1; // Add q to stack
14

15 else
16 {
17 Add(p); // Add p to stack.
18 Add(j — 1); p:=7 +1; // Add j —1 to stack
19
20 } // Sort the smaller subfile.
21 if stack is empty then return;
22 Delete(q); Delete(p); // Delete g and p from stack.
23 } until (false);
24

 

Algorithm 3.14 Iterative version of QuickSort

additional memory as does MergeSort. A possible input on which QuickSort
displays worst-case behavior is one in which the elements are already in
sorted order, In this case the partition will be such that there will be only
one element in one part and the rest of the elements will fall in the other
part. The performance of any divide-and-conqueralgorithm will be good if
the resultant subproblems are as evenly sized as possible. Can QuickSort be
modified so that it performs well on every input? The answer is yes. Is the
technique of using the median of the three elements a[p], a[|(q¢+p)/2|], and
alg] the solution? Unfortunately it is possible to construct inputs for which

even this method will take Q(n”) time, as is explored in the exercises.

The solution is the use of a randomizer. While sorting the array alp : q],
instead of picking a[m], pick a random element (from among a[p], ... ,a[q])
as the partition element. The resultant randomized algorithm (RQuickSort)
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[x [ 1000 | 2000 | 3000 | 4000 | 5000 |
MergeSort 72.8 167.2 275.1 378.5 500.6
QuickSort 36.6 85.1 138.9 205.7 269.0

[x [ 6000 | 7000 | 8000 | 9000 | 10000 |
MergeSort 607.6 723.4 811.5 949.2 1073.6
uickSort 339.4 411.0 487.7 556.3 645.2

 

 

 

 

 

  

           
 

 

Table 3.5 Average computing times for two sorting algorithms on random
inputs

 

 

 

[nm [ 1000 | 2000 | 3000 4000 | 5000 |
MergeSort 105.7 206.4 335.2 422.1 589.9
QuickSort 41.6 [97.1 158.6 244.9 3978

[x | 6000 | 7000 | 8000 9000 | 10000 |
MergeSort 691.3 794.8 889.5 1067.2 1167.6
QuickSort 383.8 497.3 569.9 616.2 738.1

 
 

 

 

 

 
 

           
 

 

Table 3.6 Worst-case computing times for two sorting algorithms on ran-
dom inputs
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works on any input and runs in an expected O(nlogn) time, where the
expectation is over the space of all possible outcomes for the randomizer
(rather than the space of all possible inputs). The code for RQuickSort is
given in Algorithm 3.15. Note that this is a Las Vegas algorithm since it
will always output the correct answer. Every call to the randomizer Random
takes a certain amount of time. If there are only a very few elements to
sort, the time taken by the randomizer may be comparableto therest of the
computation. For this reason, we invoke the randomizer only if (q¢ — p) > 5.
But 5 is not a magic number; in the machine employed, this seems to give
the best results. In general this number should be determined empirically.

 

1 Algorithm RQuickSort(p, q)
2  // Sorts the elements alp],...,a[q] which reside in the global
3. // array a[1 : n] into ascending order. a[n + 1] is considered to
4 // be defined and must be > all the elements in a[1 : nl].
5
6 if (p < q) then
7
8 if ((¢ — p) > 5) then
9 Interchange(a, Random() mod (q —p+1)+p,p);
10 q := Partition(a, p,q +1);
11 // j is the position of the partitioning element.
12 RQuickSort(p, 7 — 1);
13 RQuickSort(7 + 1, ¢);
14
15 }

 

Algorithm 3.15 Randomized quick sort algorithm

The proof of the fact that RQuickSort has an expected O(n log n) time
is the same as the proof of the average time of QuickSort. Let A(n) be the
average time of RQuickSort on any input of n elements. Then the numberof
elements in the secondpart will be 0,1,2,...,n—2, or n—1, all with an equal
probability of 4 (in the probability space of outcomes for the randomizer).

Thusthe recurrence relation for A(n) will be

1
A(n)=— SO (A(k-1) + A(n—k)) +n41

n
1<k<n

This is the same as Equation 3.4, and henceits solution is O(n logn).

RQuickSort and QuickSort (without employing the median of three ele-
ments rule) were evaluated on a SUN 10/30 workstation. Table 3.7 displays
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the times for the two algorithms in milliseconds averaged over 100 runs. For
each 7, the input considered was the sequence of numbers 1,2,...,”. As
we can see from the table, RQuickSort performs much better than QuickSort.

Note that the times shown in this table for QuickSort are much more than
the corresponding entries in Tables 3.5 and 3.6. The reason is that Quick-

Sort makes O(n?) comparisons on inputs that are already in sorted order.
However, on random inputs its average performance is very good.

 

  
[nr | 1000 | 2000 [3000 [ 4000|5000 |
QuickSort 195.5 759.2 1728 3165 4829
RQuickSort 9.4 21.0 30.5 41.6 52.8

  

 

           

 

Table 3.7 Comparison of QuickSort and RQuickSort on the input a[i] =
i, 1<a< n; times are in milliseconds.

The performance of RQuickSort can be improved in various ways. For
example, we could pick a small number (say 11) of the elements in the
array a[ |] randomly and use the median of these elements as the partition
element. These randomly chosen elements form a random sample of the
array clements. We would expect that the median of the sample would also
be an npproximate mediauof the array and henceresult in an approximately
even partitioning of the array.

An even more generalized version of the above random sampling technique
is shownin Algorithm 3.16. Here we choose a random sample S of s elements
(wheres is a function of n) from the input sequence X and sort them using
HeapSort, MergeSort, or any other sorting algorithm. Let £1, 22,...,£, be the
sorted sample. We partition X into s+ 1 parts using the sorted sample as
partition keys. In particular X, = {a € X|x < &)}; X; = {w@ € X|G4 <a<
é;}, for i = 2,3,...,8; and X,4; = {x € X|x > @,}. After having partitioned
X into s+1 parts, we sort each part recursively. For a proper choice of s, the
number of comparisons madein this algorithm is only nlogn + 0(n log n).
Note the constant 1 before nlogn. We see in Chapter 10 that this number
is very close to the information theoretic lower boundforsorting.

Choose s = jog? The sample can be sorted in O(s log s) = Olen

and comparisons if we use HeapSort or MergeSort. If we store the sorted
sample clements in an array, say 6[ |, for each x € X, we can determine
which part X; it belongs to in < logn comparisons using binary search on
é[ ]. Thus the partitioning process takes nlogn + O(n) comparisons. In the
exercises you are asked to show that with high probability the cardinality

 ) time
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Algorithm RSort(a, 7)
// Sort the elements a[1 : nl].

Randomly sample s elements from al ];
Sort this sample;
Partition the input using the sorted sample as partition keys;
Sort each part separately;

C
O
N
O
R
W
N
H

}
 

Algorithm 3.16 A randomized algorithm for sorting

of each X; is no more than o(2 logn) = O(log*n). Using HeapSort or
MergeSort to sort each of the X;’s (without employing recursion on any of
them), the total cost of sorting the X;’s is

a
s+1

» O(|Xi] log |Xil) = ,max{log |X|} y OXI)

Since each |.X;| is O(log? n), the cost of sorting the s+1 parts is O(n log log n) =
o(nlogn). In summary, the number of comparisons madein this randomized
sorting algorithm is nlogn + 0(n logn).

EXERCISES

1. Show how QuickSort sorts the following sequences of keys: 1, 1, 1, 1,
1,1, 1 and 5, 5, 8, 3, 4, 3, 2.

2. QuickSort is not a stable sorting algorithm. However,if the key in a[¢]
is changed to ali] *n+i-— 1, then the new keysare all distinct. After
sorting, which transformation will restore the keys to their original
values?

3. In the function Partition, Algorithm 3.12, discuss the merits or de-
merits of altering the statement if (i < j) to if (i < 7). Simulate both
algorithms on the data set (5, 4, 3, 2, 5, 8, 9) to see the difference in
how they work. ‘

4. Function QuickSort uses the output of function Partition, which returns
the position where the partition element is placed. If equal keys are
present, then two elements can be properly placed instead of one. Show
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how you might change Partition so that QuickSort can take advantage
of this situation.

5. In addition to Partition, there are many other ways to partition a set.
Consider modifying Partition so that 4 is incremented while alt] < v
instead of ali] < v. Rewrite Partition making all of the necessary
changes to it and then compare the new version with the original.

6. Compare the sorting methods MergeSort1 and QuickSort2 (Algorithm
3.10 and 3.14, respectively). Devise data sets that compare both the
average- and worst-case times for these two algorithms.

7. (a) On which input data does the algorithm QuickSort exhibit its
worst-case

behavior?

(b) Answer part (a) for the case in which the partitioning elementis
selected according to the median of three rule.

8. With MergeSort we included insertion sorting to eliminate the book-
keeping for small merges. How would you use this technique to improve
QuickSort?

9. ‘Take the iterative versions of MergeSort and QuickSort and compare
them for the same-size data sets as used in Section 3.5.1.

10. Let. S be a sample of s elements from X. If X is partitioned into
s +1 parts as in Algorithm 3.16, show that the size of each part is

O(2 log n).

3.6 SELECTION

The Partition algorithm of Section 3.5 can also be used to obtain an efficient
solution for the selection problem. In this problem, we are given n elements
a[l : n] and are required to determine the kth-smallest element. If the
partitioning element v is positioned at a[j], then 7 — 1 elementsare less than
or equal to a[j] and n — j elements are greater than or equal to a[j]. Hence
if k < j, then the kth-smallest element is in all : j — 1]; if k = j, then
al[j] is the kth-smallest element; and if k > j, then the kth-smallest element
is the (k — j)th-smallest element in a[j +1: n]. The resulting algorithm
is function Select1 (Algorithm 3.17). This function places the kth-smallest
element into position a[k] and partitions the remaining elements so that
alt] < alk], 1<«t<k, and ali] > alk], k<i<n.

Example 3.10 Let us simulate Selectl as it operates on the same array
used to test Partition in Section 3.5. The array has the nine elements 65, 70,
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1 Algorithm Select1(a,n,k)
2  // Selects the kth-smallest element in a[1 :n] and places it
3. // inthe kth position of a[ ]. The remaining elements are
4 // rearranged such that a[m] < a[k] for 1 <m<k, and
5 /[/ alm] > alk] fork <<m<n.
6
7 low := 1; up:=n4+1,;
8 a[n + 1] := co; // a[n + 1] is set to infinity.
9 repeat
10
11 // Each time the loop is entered,
12 [{[1<low<k<up<nt+l.
13 7 := Partition(a, low, up);
14 // j is such that aly] is the jth-smallest value in a| J.
15 if (k = j) then return;
16 else if (k <j) then up:= j; // j is the new upperlimit.
17 else low := 7 +1; // 7 +1 is the new lowerlimit.
18 } until (false);
19 }

 

Algorithm 3.17 Finding the kth-smallest element

75, 80, 85, 60, 55, 50, and 45, with a[10] = oo. If k = 5, then thefirst call of
Partition will be sufficient since 65 is placed into a[5]. Instead, assumethat
we are looking for the seventh-smallest element of a, that is, k = 7. The
next invocation of Partition is Partition(6, 10).

a: (5) (6) (7) (8) (9) (10)
65 85 80 75 70 +00

65 70 80 75 85 +00

This last call of Partition has uncovered the ninth-smallest element of a. The

next invocation is Partition(6, 9).

a: (5) (6) (7) (8) (9) (10)
- 65 70 80 75 85 +00

65 70 80 75 85 +00

This time, the sixth element has been found. Since k # j, anothercall to
Partition is made, Partition(7, 9).
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a: (5) (6) (7) (8) (9) (10)
65 70 80 75 85 +00

65 70 75 80 85 +00

Now 80 is the partition value andis correctly placed at a[8]. However, Select1
has still not found the seventh-smallest element. It needs one more call to
Partition, which is Partition(7, 8). This performs only an interchange between
a[7] and a[8] and returns, having found the correct value. O

In analyzing Selectl, we make the same assumptions that were made for
QuickSort:

1. The n elements are distinct.

2. The input distribution is such that the partition element can be the
ith-smallest element of a[m : p — 1] with an equal probability for each
14,1<t1<p-—m™.

Partition requires O(p — m) time. On each successive call to Partition,
either m increases by at least one or 7 decreases by at least one. Initially
m= | andj =n+1. Hence, at most n calls to Partition can be made.
Thus, the worst-case complexity of Selectl is O(n”). The time is 2.(n7), for
example, when the input a[1 : n] is such that the partitioning element on

the zth call to Partition is the ith-smallest element and k = n. In this case,
m increases by one following each call to Partition and 7 remains unchanged.
Hence, 7 calls are made for a total cost of O()77 i) = O(n”). The average
computing time of Select1 is, however, only O(n). Before proving this fact,
we specify more precisely what we mean by the average time.

Let T*(n) be the average timeto find the kth-smallest element in a[1 : n].
This average is taken over all n! different permutations of n distinct elements.
Now define T4(n) and R(n) as follows:

Ta(n)=— > TH(n)
1<k<n

and

R(n) = max {Th (n)}

Ta(n) is the average computing timeof Select1. It is easy to see that T4(n) <
R(n). We are now ready to show that T4(n) = O(n).

Theorem 3.3 The average computing time T4(n) of Select1 is O(n).
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Proof: Onthefirst call to Partition, the partitioning element v is the ith-
smallest element with probability 4-,1 < i <n (this follows from the as-

sumption on the input distribution). The time required by Partition and the
if statement in Select1 is O(n). Hence, there is a constant c,c > 0, such that

TK(n) < en+= [So Tel(n-i)+ SO THG-1), n>2
"Sick k<i<n

So, R(n) < eon+—“max { > R(n—a)+ S/R(i—1)}
1<i<k k<i<n

n-1

R(n) < ent “max { > R + S°R(i)}, n>2 (3.8)
n—-k+1 k

We assumethat c is chosen such that R(1) < ¢ and show, by induction on
n, that R(n) < 4en.
Induction Base: For n = 2, (3.8) gives

R(n) IA

1
2e+ 5 max {R(1), R(1)}

< 2.5¢ < 4en

Induction Hypothesis: Assume R(n) < 4cn for alln,2<n<m.
Induction Step: For n = m, (3.8) gives

m—k+1 k

m-1 m-1

R(m) <cm+ - max S> Ri) + =o|

Since we know that R(n) is a nondecreasing function of n, it follows that

m—-1 m-1

S> Ri) + So RU)
m—k+1 k

is maximized if k = 5 when m is even and k = ma} when ™ is odd. Thus,
if m is even, we obtain

R(m) < cm4+—2’Rt)
mM n/2
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8c)

cm + — 4><
m/2

< dem
9 m—1

If m is odd, R(m) < cem+— S- R(t)
 m+A)/2

c 8c >
cm + —

m+)/2
< 4em

Since T4(n) < R(n), it follows that T4(n) < 4en, and so T4(n) is O(n). O

The space needed by Select1 is O(1).

Algorithm 3.15 is a randomized version of QuickSort in which the partition
element is chosen from the array elements randomly with equal probability.
The same technique can be applied to Select1 and the partition element can
be chosen to be a random array element. The resulting randomized Las
Vegas algorithm (call it RSelect) has an expected time of O(n) (where the
expectation is over the space of randomizer outputs) on any input. The
proof of this expected time is the same as in Theorem 3.3.

3.6.1 A Worst-Case Optimal Algorithm

By choosing the partitioning element v more carefully, we can obtain a se-
lection algorithm with worst-case complexity O(n). To obtain such an al-
gorithin, v must be chosen so that at least some fraction of the elements
is smaller than v and at least some (other) fraction of elements is greater
than v. Such a selection of v can be made using the median of medians
(mm) rule. In this rule the n elements are divided into |n/r| groups of r
elements each (for some r,r > 1). The remaining n — r |n/r| elements are
not used. The median m, of each of these |n/r| groups is found. Then, the
median mm of the m,’s, 1 <i < |n/r], is found. The median mm is used
as the partitioning element. Figure 3.5 illustrates the m;’s and mm when
n = 35 and r = 7. Thefive groups of elements are B;,1 <i < 5. The

seven elements in each group have been arranged into nondecreasing order
down the column. The middle elements are the m,’s. The columns have
been arranged in nondecreasing order of m;. Hence, the m; corresponding
to column 3 is mm.

Since the median of r elements is the [r/2]th-smallest element, it follows
(see Figure 3.5) that at least [|n/r| /2] of the m,’s are less than or equal to
mm and at least [n/r| —[|n/r| /2] +1 > [|n/r]| /2] of the m,’s are greater
than or equal to mm. Hence, at least [r/2][|n/r| /2] elementsare less than
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Figure 3.5 The median of medians when r = 7, n = 35

or equal to (or greater than or equal to) mm. When r = 5, this quantity is
at least 1.5 |n/5|. Thus, if we use the median of medians rule with r = 5 to
select v = mm, weare assured that at least 1.5 |n/5| elements will be greater
than or equal to v. This in turn implies that at most n—1.5 |n/5| < .7n+1.2
elements are less than v. Also, at most .7n + 1.2 elements are greater than
v. Thus, the median of mediansrule satisfies our earlier requirement on v.

The algorithm to select the kth-smallest element uses the median of me-
dians rule to determine a partitioning element. This element is computed by
a recursive application of the selection algorithm. A high-level description
of the new selection algorithm appears as Select2 (Algorithm 3.18). Select2
can now be analyzed for any given r. First, let us consider the case in which
r = andall elementsin a[ | are distinct. Let T(n) be the worst-case time
requirement of Select2 when invoked with up—fow +1 =n. Lines 4 to 9 and
11 to 12 require at most O(n) time (note that since r = is fixed, each m{[t]
(lines 8 and 9) can be found in O(1) time). The timefor line 10 is T(n/5).
Let S and R, respectively, denote the elements a[low : 7-1] and alj+1 : up].
We see that |S] and |R] are at most .7n + 1.2, which is no more than 3n/4
for n > 24. So, the timefor lines 13 to 16 is at most T(3n/4) when n > 24.
Hence, for n > 24, we obtain
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1 Algorithm Select2(a, k,low, up)
2 // Find the k-th smallest in allow : up].
3
4 ni= up —-low+1;
5 if (n <r) then sort allow : up| and return the k-th element;
6 Divide allow : up] into n/r subsets of size r each;
7 Ignore excess elements;
8 Let mt], 1 <i < (n/r) be the set of medians of
9 the above n/r subsets.
10 v = Select2(m, [(n/r)/2],1,n/r)3
1] Partition allow : up] using v as the partition element;
12 Assuine that v is at position 7;
13 if (k = (7 —low +1)) then return 1;
14 elseif (k < (j —low+1)) then
15 return Select2(a,k,low,j — 1);
16 else return Select2(a,k — (j —low+1),7 + 1,up);
17 }

 

Algorithm 3.18 Selection pseudocode using the median of medians rule

T(n) < T(n/5) + T(3n/4) + cn (3.9)

where ¢ is chosen sufficiently large that

T(n)<cn for n < 24

A proof by inductioneasily establishes that T(m) < 20cn for n > 1.
Algorithin Select2 with r = 5 is a linear time algorithm for the selection
problein on distinct elements! The exercises examine other values of r that
also yield this behavior. Let us now see what. happens whenthe elements of
a[ | are not all distinct. In this case, following a use of Partition (line 11), the
size of S or R may be more than .7n + 1.2 as some elements equal to v may
appearin both S and R. One way to handle the situation is to partition a||
into three sets U,S, and R such that U contains all elements equal to v, S
has all elernents smaller than v, and R has the remainder. Lines 11 to 16
become:

Partition a[ |] into U,S, and R as above.
if (|S| > k) then return Select2(a,k,low,low + |S|— 1);
else if ((|S|+|U|) >) then return v;

else return Select2(a,k — [S| — |U|,low +|S| + |U|, up);
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When this is done, the recurrence (3.9) is still valid as [S| and |R| are <
.7n +1.2. Hence, the new Select2 will be of linear complexity even when
elements are not distinct.

Another way to handle the case of nondistinct elementsis to use a different
r. To see why a different r is needed, let us analyze Select2 with r = 5 and
nondistinct elements. Consider the case when .7n+1.2 elements are less than
v and the remaining elements are equal to v. An examination of Partition
reveals that at most half the remaining elements may be in S. We can verify
that this is the worst case. Hence, |S] < .7n +1.2+ (.8n—1.2)/2 = .85n+.6.
Similarly, |R| < .85n + .6. Since, the total number of elements involved in
the two recursive calls (in lines 10 and 15 or 16) is now 1.05n + .6 > n, the
complexity of Select2 is not O(n). If we try r = 9, then at least 2.5 |n/9|
elements will be less than or equal to v and at least this many will be
greater than or equal to v. Hence, the size of S and R will be at most
n — 2.5 |n/9| +1/2(2.5 |[n/9]) = n — 1.25 [n/9| < 31/36n + 1.25 < 63n/72
for n > 90. Hence, we obtain the recurrence

T(n) <
T(n/9) + T(63n/72) +an n> 90
cin n < 90

where c; is a suitable constant. An inductive argument shows that T(n) <
72c;n,n > 1. Other suitable values of r are obtained in the exercises.

As far as the additional space needed by Select2 is concerned, we see
that space is needed for the recursion stack. The recursive call from line
15 or 16 is easily eliminated as this call is the last statement executed in
Select2. Hence, stack space is needed only for the recursion from line 10.
The maximum depth of recursion is log n. The recursion stack should be
capable of handling this depth. In addition to this stack space, space is
needed only for some simple variables.

3.6.2 Implementation of Select2

Before attempting to write a pseudocode algorithm implementing Select2,
we need to decide how the median of a set of size r is to be found and where
we are going to store the |n/r| mediansof lines 8 and 9. Since, we expect
to be using a small r (say r = 5 or 9), an efficient way to find the median
of r elements is to sort them using InsertionSort(a,7,7). This algorithm is
a modification of Algorithm 3.9 to sort ali : j]. The median is now the
middle element in alt: j]. A convenient place to store these mediansis at
the front of the array. Thus, if we are finding the kth-smallest element in
allow : up], then the elements can be rearranged so that the medians are
a{low], allow+1], a[low +2], and so on. This makesit easy to implementline
10 as a selection on consecutive elementsof a[ ]. Function Select2 (Algorithm
3.19) results from the above discussion and the replacement of the recursive
calls of lines 15 and 16 by equivalent code to restart the algorithm.
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Algorithm Select2(a, k, low, up)
// Return i such that afi] is the kth-smallest element in
// allow : up]; r is a global variable as described in the text.

}

repeat

n:= up — low +1; // Number of elements
if (n <r) then

InsertionSort(a, low, up);
return low +k—1;

for 1:= 1 to |n/r| do

InsertionSort(a, low + (¢—1)*r, low tixr—1);
// Collect medians in the front part of allow : up].
Interchange(a, low +7 —1,

low + (i—1) *r+ [r/2] —1);

}
4g := Select2(a, [|n/r]/2], low, low + |n/r| —1); // mm
Interchange(a, low, 7);
j= Partition(a, low, up +1);
if (k = (j —low + 1)) then return j;
else if (k < (j —low+1)) then up := j —1;

else

{
k:=k—(j —low+1); low:=j +1;

}
} until (false);

 

Algorithm 3.19 AlgorithmSelect2
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Analternative to moving the medians to the front of the array allow :
up] (as in the Interchange statement within the for loop) is to delete this
statement and use the fact that the mediansare located at low + (i —1)r +
[r/2]-1,1 <i< |n/r|. Hence, Select2, Partition, and InsertionSort need to
be rewritten to work on arrays for which the interelement distanceis 6, b > 1.
At the start of the algorithm, all elements are a distance of one apart, 1.e.,
a(1],a[2], ... , a[n]. On the first call of Select2 we wish to use only elements
that are r apart starting with a[[r/2]]. At the next level of recursion, the
elements will be r? apart and so on. This idea is developed further in the
exercises. We refer to arrays with an interelement distance of b as 6-spaced
arrays.

Algorithms Select1 (Algorithm 3.17) and Select2 (Algorithm 3.19) were
implemented and run on a SUN Sparcstation 10/30. Table 3.8 summarizes
the experimental results obtained. Times shown are in milliseconds. These
algorithms were tested on random integers in the range [0, 1000] and the
average execution times (over 500 input sets) were computed. Select1 out-
performs Select2 on random inputs. But if the input is already sorted (or
nearly sorted), Select2 can be expected to be superior to Select1.

 

  
[n [1,000 | 2,000 | 3,000 | 4,000 | 5,000 |
Select] 7.42 23.50 30.44 39.24 52.36
elect2 49.54 104.02 174.54 233.56 288.64

n 6,000 7,000 8,000 9,000 10,000
Select 70.88 83.14 95.00 101.32 111.92
Select? 341.34 414.06 476.98 532.30 604.40

  

 

 

  

           
 

Table 3.8 Comparison of Selectl and Select2 on random inputs

EXERCISES

1. Rewrite Select2, Partition, and InsertionSort using 5-spaced arrays.

2. (a) Assume that Select2 is to be used only whenall elements in a are
distinct. Which of the following values of r guarantee O(n) worst-
case performance: r = 3,5,7,9, and 11? Prove your answers.

(b) Do you expect the computing timeof Select2 to increase or de-
crease if a larger (but still eligible) choice for r is made? Why?
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. Do Exercise 2 for the case in which a is not restricted to distinct

clements. Let r = 7,9,11,13, and 15 in part (a).

. section 3.6 describes an alternative way to handle the situation when
«a[ | is not restricted to distinct elements. Using the partitioning ele-
inent v, a[ | is divided into three subsets. Write algorithms correspond-
ing to Selectl and Select2 using this idea. Using your new versionof
Select2 show that the worst-case computing time is O(n) even when
rao.

. Determine optimal r values for worst-case and average performances
of function Select2.

. [Shamos] Let z[1 : n] and y[1 : n] contain two sets of integers, each
sorted in nondecreasing order. Write an algorithm that finds the me-
dian of the 22 combined elements. What is the time complexity of
your algorithm? (Hint: Use binary search.)

. Let S' be a (not. necessarily sorted) sequence of n keys. A key k in S
is said to be an approximate median of S if |{k’ € S: k' < k}| > F
md |{k’ € S: k' > k}| > 4. Devise an O(n) time algorithm to find
il the approximate mediansof S.

. Input are a sequence S of n distinct keys, not necessarily in sorted
order, and two integers m, and m2 (1 < m,mz2 <n). For any x in
S, we define the rank of x in S to be |{k € S: k < x}|. Show how
to output all the keys of S whose ranks fall in the interval [m, mo] in
O(n) time.

. The kth quantiles of an n-element set are the  — 1 elements from the
set. that divide the sorted set into k equal-sized sets. Give an O(n log k)
time algorithm to list the kth quantiles of a set.

Input is a (not necessarily sorted) sequence S = k1,ko,...,kn of n
arbitrary numbers. Consider the collection C of n? numbers of the
form min{k;,kj}, for 1 < i,j <n. Present an O(n)-time and O(n)-
space algorithm to find the median of C.

Given two vectors X = (21,...,2,) and Y = (y,...,yn), X < Y if
there exists an7z,1 <7 <n, such that 2; = y; for 1 <j <iand 2; < yj.

Given m vectors each of size n, write an algorithm that determines the
imiuimum vector. Analyze the time complexity of your algorithm.

Present an O(1) time Monte Carlo algorithm to find the median of
an array of n numbers. The answer output should be correct with
probability > 1,
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Input is an array a[ | of n numbers. Present an O(logn) time Monte
Carlo algorithm to output any memberofa[ | that is greater than or
equal to the median. The answer should be correct with high proba-
bility. Provide a probability analysis.

Given a set X of n numbers, how will you find an element of X whose
rank in X is at most Ftny using a Monte Carlo algorithm? Your

algorithm should run in time O(f(n)logn). Prove that the output
will be correct with high probability.

In addition to Selectl and Select2, we can think of at least two more
selection algorithms. Thefirst of these is very straightforward and
appears as Algorithm 3.20 (Algorithm Select3). The time complexity
of Select3 is

O(nmin {k,n —k +4 1})

Hence,it is very fast for values of k close to 1 or close to n. In the worst
case, its complexity is O(n”). Its average complexity is also O(n?).

Anotherselection algorithm proceeds by first sorting the n elements
into nondecreasing order and then picking out the kth element. A com-
plete sort can be avoided by using a minheap. Now, only k elements
need to be removed from the heap. The timeto set up the heap is O(n).
An additional O(k log n) time is needed to make k deletions. The total
complexity is O(n + klogn). This basic algorithm can be improved
further by using a maxheap when k > n/2 and deleting n — k + 1 ele-
ments. The complexity is now O(n+logn min {k,n—k+1}). Call the
resulting algorithm Select4. Now that we have four plausible selection
algorithms, we would like to know which is best. On the basis of the
asymptotic analyses of the four selection algorithms, we can make the
following qualitative statements about our expectations on the relative
performance of the four algorithins.

e Because of the overhead involved in Select1, Select2, and Select4
and the relative simplicity of Select3, Select3 will be fastest both
on the average and in the worst case for small values of n. It
will also be fastest for large n and very small or very large k, for
example, k = 1,2,n, or n—1.

e For larger values of n, Select1 will have the best behavior on the
average.

e As far as worst-case behavior is concerned, Select2 will out-perform
the others when n is suitably large. However, there will probably
be a range of n for which Select4 will be faster than both Se-
lect2 and Select3. We expect this because of the relatively large
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Algorithm Select3(a, n, k)
// Rearrange a[ | such that a[k] is the k-th smallest.

if (k < |n/2]) then
for 1:=1tokdo

{ — .
gq := 13; min := ali];
for j:=i+1tondo

if (alj] < min) then

q:= j3 min := aly];

Interchange(a, q, 2);
}

else
for i:=ntok step —1 do

{ | .
q:= 13 max := ali];
for j :=(i-—1) tol step —1 do

if (a[j] > max) then

q:= j3 max := aly];

Interchange(a, q, 7);

 

Algorithm 3.20 Straightforward selection algorithm

overhead in Select2 (i.e., the constant term in O(n) is relatively
large).

As a result of the above assertions, it is desirable to obtain com-
posite algorithms for good average and worst-case performances.
The composite algorithm for good worst-case performance will
have the form of function Select2 but will include the following
after the first if statement.

if (n <c,) then return Select3(a, m, p, k);
else if (n < cg) then return Select4(a, m, p, *);

Since the overheads in Selectl and Select4 are about the same, the
constants associated with the average computing times will be about
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the same. Hence, Select] may always be better than Select4 or there
may be a small c3 such that Select4 is better than Selectl for n < c3.
In any case, we expect there is a c4,c4 > 0, such that Select3 is faster
than Selectl on the average for n < cy.

To verify the preceding statements and determine c1, c2,¢3, and cq, it
is necessary to program the four algorithms in some programming lan-
guage and run the four corresponding programs on a computer. Once
the programs have been written, test data are needed to determine
average and worst-case computing times. So, let us now say some-
thing about the data needed to obtain computing times from which
cj, 1<i< 4, can be determined. Since we would also like information
regarding the average and worst-case computing times of the resulting
composite algorithms, we need test data for this too. We limit our
testing to the case of distinct elements.

To obtain worst-case computing times for Selectl, we change the al-
gorithm slightly. This change will not affect its worst-case computing
time but will enable us to use a rather simple data set to determine
this time for various values of n. We dispense with the random selec-
tion rule for Partition and instead use a[m] as the partitioning element.
It is easy to see that the worst-case time is obtained with ali] = 7,
1<i<n,andk =n. As far as the average time for any given n
is concerned, it is not easy to arrive at one data set and a k that ex-
hibits this time. On the other hand, trying out all n! different input
permutations and k = 1,2,...,n for each of these is not a feasible way
to find the average. An approximation to the average computing time
can be obtained by trying out a few (say ten) random permutations
of the numbers 1,2,...,7 and for each of these using a few (say five)
random values of k. The average of the times obtained can be used
aS an approximation to the average computing time. Of course, using
more permutations and more k values results in a better approxima-
tion. However, the numberof permutations and k values we can use is
limited by the amount of computational resources (in terms of time)
we have available.

For Select2, the average time can be obtained in the same way as for
Select1. For the worst-case time we can either try to figure out an input
permutation for which the numberof elements less than the median of
medians is always as large as possible and then use k = 1. A simpler
approachis to find just an approximation to the worst-case time. This
can be done by taking the max of the computing times for all the
tests used to obtain the average computing time. Since the computing
times for Select2 vary with r, it is first necessary to determine an r
that yields optimum behavior. Note that the r’s for optimum average
and worst-case behaviors may bedifferent.
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Wecan verify that the worst-case data for Select3 are afi] =n+1—i,
for 1 <i <n, and k = 5. The computing timefor Select3 is relatively
insensitive to the input permutation. This permutation affects only the
numberof times the second if statement of Algorithm 3.20 is executed.
On the average, this will be done about half the time. This can be
achieved by using afi] = n+1—7,1 <i < n/2, and aff] = n+4+1,
n/2<i<n. The k value needed to obtain the average computing
time is readily seen to be n/4.

a) What test data would you use to determine worst-case and aver-U y
age times for Select4?

(bb) Use the ideas above to obtain a table of worst-case and average
times for Select1, Select2, Select3, and Select4.

16. Program Selectl and Select3. Determine whenalgorithm Select1 be-
comes better than Select3 on the average and also when Select2 better
than Select3 for worst-case performance.

17. [Project] Program the algorithms of Exercise 4 as well as Select3 and
Select4. Carry out a complete test along the lines discussed in Exercise
15. Write a detailed report together with graphs explaining the data
sets, test strategies, and determination of c,,...,c4. Write the final

composite algorithms and give tables of computing times for these
alyorithms.

3.7 STRASSEN’S MATRIX MULTIPLICATION

Let A and B be two n x n matrices. The product matrix C = AB is also an
n Xn matrix whose i, 7th element is formed by taking the elements in the
ith row of A and the jth column of B and multiplying them to get.

Cli,j) = >> Ali, k)B(k,j) (3.10)
1<k<n

for all i and 7 between 1 and n. To compute C(i,7) using this formula,

we need 7m multiplications. As the matrix C has n? elements, the time
for the resulting matrix multiplication algorithm, which we refer to as the
conventional method is O(n’).

The divide-and-conquer strategy suggests another way to compute the
product. of two n x n matrices. For simplicity we assume that n is a power
of 2, that is, that there exists a nonnegative integer k such that n = 2". In
case 1. is not a power of two, then enough rows and columnsof zeros can be
added to both A and B so that the resulting dimensionsare a power of two
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(see the exercises for more on this subject). Imagine that A and B are each
partitioned into four square submatrices, each submatrix having dimensions
n2 x 2. Then the product AB can be computed by using the above formula
for the product of 2 x 2 matrices: if AB is

| Ai, Aj | By Bip _ | Ci, Che (3.11)
Ag, A22 By, Bz ~ Co Coa ‘

then

Cy) = AuBiy + AjBoi
Crp = AyBi2+ Aj2Bo2 (3.12)
Cy, = AgBy + AgeBoi ‘
Co2 = Ar Big + AoeBoo

If n = 2, then formulas (3.11) and (3.12) are computed using a multipli-
cation operation for the elements of A and B. These elements are typically
floating point numbers. For n > 2, the elements of C can be computed
using matrix multiplication and addition operations applied to matrices of
size n/2 x n/2. Since n is a power of 2, these matrix products can berecur-
sively computed by the same algorithm weare using for the n x n case. This
algorithm will continue applying itself to smaller-sized submatrices until n
becomessuitably small (n = 2) so that the product is computed directly.

To compute AB using (3.12), we need to perform eight multiplications
of n/2 x n/2 matrices and four additions of n/2 x n/2 matrices. Since two
n/2xn/2 matrices can be added in time cn? for some constant c, the overall
computing time T(n) of the resulting divide-and-conquer algorithm is given
by the recurrence

b n<2
T(n) = { 8T(n/2) +cn? n >2

where 6 and c are constants.

This recurrence can be solved in the same way as earlier recurrences to
obtain T(n) = O(n?). Hence no improvement over the conventional method
has been made. Since matrix multiplications are more expensive than matrix
additions (O(n*) versus O(n?)), we can attempt to reformulate the equations
for Ci; so as to have fewer multiplications and possibly more additions.
Volker Strassen has discovered a way to compute the Cj,’s of (3.12) using
only 7 multiplications and 18 additions or subtractions. His method involves
first computing the seven n/2 x n/2 matrices P, Q, R, S, T, U, and V as
in (3.13). Then the Cj;’s are computed using the formulas in (3.14). As
can be seen, P, Q, R, S, T, U, and V can be computed using 7 matrix
multiplications and 10 matrix additions or subtractions. The C;;’s require
an additional 8 additions or subtractions.
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P = (Ay, + Ag2)(Bi1 + Bog)
Q = (Ag + Ar2)Bi
R = Aj1(Bi2 — Bez)
S = Aoo(Bo, — By) (3.13)
T = (Au + Aig) Boo

U = (Ag — Ani)(Bi + Biz)
Vo= (Aj2 — Age)(Bai + Boo)

Cy) = P+S-T4+V

Cy = RAT
Cn = Q+8 (3.14)

Coo = PH+R- Q +U

The resulting recurrence relation for T(n) is

b n<o2 ‘
Tn) = { 7T(n/2)+an? n>2 (3.15)

where a and b are constants. Working with this formula, we get

T(n) an?[L + 7/44 (7/4)? +--+» + (7/4)*1] + FT(1)

<n?(7/4)!82" + 7182", © a constant
cpO82 4+logs T—logs 4 4 no82 7

O(n!) = O(n?8")

il

EXERCISES

1. Verify by hand that Equations 3.13 and 3.14 yield the correct values

for Ci1, C12, Co1, and C2.

Write an algorithm that multiplies two n x n matrices using O(n?) op-
erations. Determine the precise numberof multiplications, additions,
and array element accesses.

If k is a nonnegative constant, then prove that the recurrence

k n=1
Pn) = { 37(n/2)+kn n>]

has the following solution (for n a power of 2):

T(n) = 3kn!823 — 2kn (3.17)

(3.16)
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Figure 3.6 Convex hull: an example

(1) obtain the vertices of the convex hull (these vertices are also called ez-
treme points), and (2) obtain the vertices of the convex hull in some order
(clockwise, for example).

Here is a simple algorithm for obtaining the extreme points of a given
set S of points in the plane. To check whether a particular point p € S
is extreme, look at each possible triplet of points and see whether p lies in
the triangle formed by these three points. If p lies in any such triangle, it
is not extreme; otherwise it is. Testing whether p lies in a given triangle
can be done in O(1) time (using the methods described in Section 3.8.1).
Since there are O(n?) possible triangles, it takes O(n) time to determine
whether a given point is an extreme point or not. Since there are n points,
this algorithm runsin a total of O(n*) time.

Using divide-and-conquer, we can solve both versions of the convex hull
problem in O(n log n) time. We develop three algorithms for the convex hull
in this section. The first has a worst-case time of @(n”) whereas its aver-
age time is O(nlogn). This algorithm has a divide-and-conquer structure
similar to that of QuickSort. The second has a worst-case time complexity

of O(nlogn) and is not based on divide-and-conquer. The third algorithm
is based on divide-and-conquer and has a time complexity of O(nlogn) in
the worst case. Before giving further details, we digress to discuss some
primitive geometric methods that are used in the convex hull algorithms.

3.8.1 Some Geometric Primitives

Let A be an n X n matrix whose elements are {aij}, 1 <i, 7 <n. The ijth
minor of A, denoted as Ajj, is defined to be the submatrix of A obtained
by deleting the ith row and jth column. The determinant of A, denoted
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det(A), is given by

fan
n=l

det(A) = { a1 det(A1,) — arp det(A12) foeee be (-1)""? det (Ain) n>1

Consider the directed line segment (p;,p2) from some point p; = (21, 91)
to some other point po = (x2, y2). If g = (x3, y3) is another point, we say q
is to the left (right) of (p1,p2) if the angle p,pog is a left (right) turn. [An
angle is said to be a left (right) turn if it is less than or equal to (greater
than or equal to) 180°.) We can check whether gq is to the left (right) of
(p1,p2) by evaluating the determinant of the following matrix:

Ly, LO £3

Yl Yo YB
1 1 1

If this determinant is positive (negative), then q is to the left (right)
of (pi,pz). If this determinant is zero, the three points are colinear. This
test can be used, for example, to check whether a given point p is within a
triangle formed by three points, say p,p2, and p3 (in clockwise order). The
point p is within the triangle iff p is to the right of the line segments (p,, po),

(p2,p3), and (p3,p1)-
Also, for any three points (21, yi), (2, y2), and (x3, y3), the signed area

formed by the corresponding triangle is given by one-half of the above
determinant.

Let. p,p2,..-;Pn be the vertices of the convex polygon Q in clockwise
order. Let p be any other point. It is desired to check whether p lies in
the interior of Q or outside. Consider a horizontal line h that extends from
—oo to co and goes through p. There are two possibilities: (1) h does not
intersect any of the edges of Q, (2) h intersects some of the edges of Q. If
case (1) is true, then, p is outside Q. In case (2), there can be at most two
points of intersection. If h intersects Q at a single point, it is counted as
two. Count the numberof points of intersections that are to the left of p.
If this numberis even, then p is external to Q; otherwise it is internal to Q.
This method of checking whetherp is interior to Q takes O(n) time.

3.8.2 The QuickHull Algorithm

An algorithm that is similar to QuickSort can be devised to compute the

convex hull of a set X of m points in the plane. This algorithm, called
QuickHull, first identifies the two points (call them p; and pz) of X with
the sinallest and largest x-coordinate values. Assume now that there are no
ties. Later we see how to handle ties. Both p; and po are extreme points
and part of the convex hull. The set X is divided into X, and X2 so that
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X, has all the points to the left of the line segment (pi, p2) and X2 has all
the points to the right of (p|,p2). Both X, and X2 include the two points
p, and po. Then, the convex hulls of X; and X2 (called the upper hull and
lower hull, respectively) are computed using a divide-and-conqueralgorithm
called Hull. The union of these two convex hulls is the overall convex hull.

If there is more than one point with the smallest x-coordinate, let pi, and
p{ be the points from among these with the least and largest y-coordinates,
respectively. Similarly define p, and p for the points with the largest 2x-
coordinate values. Now Xj, will be all the points to the left of (p/,p4)
(including p{ and p}) and X2 will be all the points to the right of (p}, p5)
(including p{, and p}). In the rest of the discussion we assumefor simplicity
that there are no ties for p, and po. Appropriate modifications are needed
in the event ofties.

Wenow describe how Hull computes the convex hull of X;. We determine
a point of X, that belongs to the convex hull of X; and use it to partition
the problem into two independent subproblems. Such a point is obtained by
computing the area formed by pj), p, and pg for each p in X, and picking the
one with the largest (absolute) area. Ties are broken by picking the point p
for which the angle pp,p2 is maximum. Let p3 be that point.

Now X, is divided into two parts; the first part contains all the points of
X, that are to the left of (pi,p3) (including p; and ps), and the second part
contains all the points of X, that are to the left of (p3, pe) (including ps and
p2) (see Figure 3.7). There cannot be any point of X, that is to the left of
both (p;,p3) and (p3,p2). Also, all the other points are interior points and
can be dropped from future consideration. The convex hull of each part is
computed recursively, and the two convex hulls are merged easily by placing
one next to the other in the right order.

If there are m points in X,, we can identify the point of division p3 in
time O(m). Partitioning X, into two parts can also be done in O(m) time.
Merging the two convex hulls can be done in time O(1). Let T(m) stand
for the run time of Hull on a list of m points and let m, and m2 denote the

sizes of the two resultant parts. Note that m, + m2 <m. The recurrence

relation for T(m) is T(m) = T(m1) +T(m2) + O(m), whichis similar to the
one for the run time of QuickSort. The worst-case run time is thus O(m?)
on an input of m points. This happens when the partitioning at each level
of recursion is highly uneven.

If the partitioning is nearly even at each level of recursion, then the run
time will equal O(mlogm) as in the case of QuickSort. Thus the average
run time of QuickHull is O(n logn), on an input of size n, under appropriate
assumptions on the input distribution.
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Figure 3.7 Identifying a point on the convex hull of X4

3.8.3 Graham’s Scan

If S is a set of points in the plane, Graham’s scan algorithm identifies the
point p from S with the lowest y-coordinate value (ties are broken by picking
the leftmost among these). It then sorts the points of S according to the
angle subtended by the points and p with the positive z-axis. Figure 3.8
gives an example. After having sorted the points, if we scan through the
sorted list starting at p, every three successive points will form a left turn
if all of these points lie on the hull. On the other hand if there are three
successive points, say 71, P2, and p3, that form a right turn, then we can
immediately eliminate p2 since it cannot lie on the convex hull. Notice that
it will be an internal point because it lies within the triangle formed byp, p1,
and p3.

Wecan eliminateall the interior points using the above procedure. Start-
ing from p, we consider three successive points p;,p2, and p3 at a time. To
begin with, p,; = p. If these points form a left turn, we move to the next
point in the list (that is, we set p; = po, and so on). If these three points
form a right turn, then pg is deleted since it is an interior point. We move
one point behind in the list by setting p,; equal to its predecessor. This
process of scanning ends when wereach the point p again.

Example 3.11 In Figure 3.8, the first three points looked at are p,1, and 2.
Since these form a left turn, we move to 1,2, and 3. These forma right turn
and hence 2 is deleted. Next, the three points p,1, and 3 are considered.
These form a left turn and hence the pointer is moved to point 1. The points
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P
 

Figure 3.8 Graham’s scan algorithm sorts the pointsfirst

1,3, and 4 also form a left turn, and the scan proceeds to 3,4, and 5 and
then to 4,5, and 6. Now point 5 gets deleted. The triplets 3,4,6; 4, 6, 7;
and 6,7,8 form left turns whereas the next triplet 7,8, 9 forms a right turn.
Therefore, 8 gets deleted and in the next round 7 also gets eliminated. The
next three triplets examined are 4,6, 9; 6,9, 10; and 9,10, p, all of which are
left turns. The final hull obtained is p, 1,3, 4,6,9, and 10, which are points
on the hull in counterclockwise (ccw) order. oO

This scan process is given in Algorithm 3.21. In this algorithm the set of
points is realized as a doubly linked list ptslist. Function Scan runs in O(n)
time since for each triplet examined, either the scan moves one node ahead
or one point gets removed. In the latter case, the scan moves one node back.
Also note that for each triplet, the test as to whether a left or right turn is
formed can be done in O(1) time. Function Area computes the signed area
formed by three points. The major work in the algorithm is in sorting the
points. Since sorting takes O(n log n) time, the total time of Graham’s scan
algorithm is O(n log n).

3.8.4 An O(nlogn) Divide-and-Conquer Algorithm

In this section we present a simple divide-and-conquer algorithm, called
DCHull, which also takes O(n log n) time and computes the convex hull in
clockwise order.
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point = record{
float x; float y;
point *prev; point «next;

hs

1 Algorithm Scan(list)
2 // list is a pointer to the first node in the inputlist.
3

4 *p = list; «pl := list;
5 repeat

6 {
7 p2 := (pl > next);
8 if ((p2 > next) # 0) then p3 := (p2 > next);
9 else return; // End ofthe list
10 temp := Area((pl > x), (pl > y), (p2— 2),

II (p2 > y), (p38 > x), (p3 > y));
12 if (ternp > 0.0) then pl := (pl > next);
13 // lf pl, p2, p3 forma left turn, move one point ahead;
14 // If not, delete p2 and move back.
1h else
16

17 (pl + next) := p3; (p3 > prev) := pl; delete p2;
18 pl := (pl > prev);
19

20 } until (false);
21 }

1 Algorithm ConvexHull(ptslist)
2

3 // ptslist is a pointer to the first item of the input list. Find
4 // the point p in ptslist of lowest y-coordinate. Sort the
5 // points according to the angle made with p andthe z-axis.

6 Sort(ptslist); Scan(ptslist); PrintList(ptslist);

7 3

 

Algorithm 3.21 Graham’s scan algorithm
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Given a set X of n points, like that in the case of QuickHull, the problem
is reduced to finding the upper hull and the lower hull separately and then
putting them together. Since the computations of the upper and lower hulls
are very similar, we restrict our discussion to computing the upper hull. The
divide-and-conquer algorithm for computing the upperhull partitions X into
two nearly equal halves. Partitioning is done according to the x-coordinate
values of points using the median x-coordinateas the splitter (see Section 3.6
for a discussion on median finding). Upper hulls are recursively computed
for the two halves. These two hulls are then merged by finding the line of
tangent (i.e., a straight line connecting a point each from the two halves,
such that all the points of X are on oneside of the line) (see Figure 3.9).

 

 

 

Figure 3.9 Divide and conquer to compute the convex hull

To begin with, the points p; and po are identified [where p; (p2) is the
point with the least (largest) «-coordinate value]. This can be done in O(n)
time. Ties can be handled in exactly the same manner as in QuickHull. So,

assume that there are no ties. All the points that are to the left of the
line segment (p1,p2) are separated from those that are to the right. This
separation also can be done in O(n) time. From here on, by ”input” and
”X” we mean all the points that are to the left of the line segment (p,p2).
Also let |X| = N.

Sort the input points according to their x-coordinate values. Sorting
can be done in O(N log N) time. This sorting is done only once in the
computation of the upper hull. Let q1,qo,...,q@~ be the sorted order of these
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points. Now partition the input into two equal halves with m1, q2,-.-,@N/2
in the first half and qyjo41,9N/2+2)---,@n in the second half. The upper

hull of each half is computed recursively. Let H, and Hy be the upperhulls.
Upper hulls are maintained as linked lists in clockwise’ order. We refer to
the first element in the list as the leftmost point and the last element as the
rightmost point.

The line of tangent is then found in O(log? N) time. If (u,v) is the line
of tangent, then all the points of H, that are to the right of u are dropped.
Similarly, all the points that are to the left of v in Hy are dropped. The
remaining part of H,, the line of tangent, and the remaining part of H2
form the upper hull of the given input set.

If 7(N) is the run time of the above recursive algorithm for the upper
hull on an input of N points, then we have

T(N) = 2T(N/2) + O(log? N)

which solves to T(N) = O(N). Thus the run time is dominated by the initial
sorting step.

The only part of the algorithm that remains to be specified is how to find
the line of tangent (u,v) in O(log? N) time. The way to find the tangent is
to start from the middle point, call it p, of H;. Here the middle point refers
to the middle element of the corresponding list. Find the tangent of p with
Hy, Let (p,q) be the tangent. Using (p,q), we can determine whether u is
to the left of, equal to, or to the right of p in H;. A binary search in this
fashion on the points of H; reveals u. Use a similar procedure to isolate v.

Lemma3.1 Let Hy, and Hy» be two upper hulls with at most m points
each, If p is any point of Ay, its point q of tangency with H2 can be found
in O(log m) time.

Proof. [f q’ is any point in Hg, we can check whether q’ is to theleft of,
equal to, or to the right of g in O(1) time (see Figure 3.10). In Figure 3.10,
x and y are theleft and right neighbors of q’ in Ho, respectively. If Zpq’x is
aright turn and /pq’y is a left turn, theng is to the right of q’ (see case 1 of
Figure 3.10). If Zpq’x and Zpq'y are both right turns, then q’ = q (see case
2 of Figure 3.10); otherwise q is to the left of gq’ (see case 3 of Figure 3.10).
Thus we can perform a binary search on the points of Hz and identify q in
O(log m) time. oO

Lemma3.2 If H, and A» are two upperhulls with at most 7m points each,

their common tangent can be computed in O(log” m) time.

Proof. Let wu € H, and v € Hy» be such that (u,v) is the line of tangent.
Also let p be an arbitrary point of H, and let g € H2 be such that (p,q) isa
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Figure 3.10 Proof of Lemma3.1

tangent of Hj. Given p and q, we can check in O(1) time whether u is to the
left of, equal to, or to the right of p (see Figure 3.11). Here x andy areleft
and right neighbors, respectively, of p in Hy. If (p,q) is also tangential to
Ay, then p=. If Zxpq is a left turn, then wu is to the left of p; otherwise u
is to the right of p. This suggests a binary search for u. For each point p of
A, chosen, we have to determine the tangent from p to Hy and then decide
the relative positioning of p with respect to u. We can do this computation
in O(logm x logm) = O(log? m) time. Oo

In summary, given two upperhulls with x points each, the line of tangent

can be computed in O(log” N) time.

Theorem 3.4 A convex hull of n points in the plane can be computed in
O(n log n) time. Oo
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Figure 3.11 Proof of Lemma 3.2

EXERCISES

1. Write an algorithm in pseudocode that implements QuickHull and test
it using suitable data.

2. Code the divide-and-conquer algorithm DCHull and test it using ap-
propriate data.

3. Run the three algorithms for convex hull discussed in this section on
various random inputs and comparetheir performances.

4, Algorithm DCHull can be modified as follows: Instead of using the
median as the splitter, we could use a randomly chosen point as the
splitter. Then X is partitioned into two around this point. Therest of
the function DCHull is the same. Write code for this modified algorithm
and compare it with DCHull empirically.

5. Let S be a set of m points in the plane. It is given that there is only a
coustant (say c) numberof points on the hull of S. Can you devise a
convex hull algorithm for S that runs in time o(nlogn)? Conceive of
special algorithms for c = 3 and c = 4 first and then generalize.
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tiplication via arithmetic progressions,” by D. Coppersmith and S. Wino-
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3.10 ADDITIONAL EXERCISES

1. What happens to the worst-case run time of quicksort if we use the
median of the given keys as the splitter key? (Assumethat the selection
algorithm of Section 3.6 is employed to determine the median).

2. The sets A and B have n elements each given in the form of sorted
arrays. Present an O(n) time algorithm to compute AUB and ANB.

3. The sets A and B have m and n elements (respectively) from a linear
order. These sets are not necessarily sorted. Also assume that m <n.
Show how to compute AU B and AN in O(nlogm)time.

4. Consider the problem of sorting a sequence X of n keys where each
key is either zero or one (i.e., each key is a bit). One way of sorting
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X is to start with two empty lists Ey and L,. Let X = ky, ko,...,kn.-
For each 1 <i <7 do: If k; = 0, then append &; to Lo. If kj = 1, then
append k; to L,. After processing all the keys of X in this manner,
output thelist Lp followed by the list Ly.

The above idea of sorting can be extended to the case in which each key
is of length more than onebit. In particular, if the keys are integers in
the range (0, m-1], then we start with mm emptylists, Lo, £),...,Lm~1,
onelist (or bucket) for each possible value that a key can take. Then
the keys are processed in a similar fashion. In particular, if a key has
a value @, then it will be appended to the thlist.

Write an algorithmthat employs this idea to sort n keys assuming that
cach key is in the range [0,m — 1]. Show that the run time of your
algorithm is O(n +m). This algorithm is known as the bucket sort.

5. Consider the problem of sorting n two-digit integers. The idea of radiz
sort can be employed. We first sort the numbers only with respect to
their least significant digits (LSDs). Followed by this, we apply a sort
with respect to their second LSDs. More generally, d-digit numbers
cau be sorted in d phases, where in the ith phase (1 < i < d) we
sort the keys only with respect to their ith LSDs. Will this algorithm
always work?

As an example, let the input be &; = 12,k9 = 45,k3 = 23,k4 =
14, ks = 32, and kg = 57. After sorting these keys with respect to their
LSDs, we end up with: ks = 32,k, = 12,k3 = 23,k4 = 14,ko = 45,
and kg = 57. When we sort the resultant sequence with respect to
the keys’ second LSDs(i.e., the next-most significant digits), we get
Ay = 12,kq = 14, k3 = 23,h5 = 32, ko = 45, and kg = 57, which is the

correct answer!

But note that in the second phase of the algorithm, k4 = 14,4, =
12,k3 = 23,k5 = 32,k2 = 45,ke = 57 is also a valid sort with respect
to the second LSDs. The result in any phase of radix sorting can be
forced to be correct by enforcing the following condition on the sorting
algorithm to be used. “Keys with equal values should remain in the
same relative order in the output as they were in the input.” Any
sorting algorithm that satisfies this is called a stable sort.

Note that in the above example, if the algorithm used to sort the
keys in the second phase is stable, then the output will be correct.
In summary, radix sort can be employed to sort d-digit numbers in d
phases such that the sort applied in each phase (except the first phase)
is stable.

More generally, radix sort can be used to sort integers of arbitrary
length. As usual, the algorithm will consist of phases in each of which
the keys are sorted only with respect to certain parts of their keys.
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The parts used in each phase could be single bits, single digits, or
more generally, £ bits, for some appropriate 2.

In Exercise 4, you showed that n integers in the range [0,m — 1] can
be sorted in O(n + m) time. Is your algorithm stable? If not, make
it stable. As a special case, your algorithm can sort n integers in the
range [0,n — 1] in O(n) time. Use this algorithm together with the
idea of radix sorting to develop an algorithm that can sort n integers
in the range [0,n° — 1] (for any fixed c) in O(n) time.

. Two sets A and B have n elements each. Assume that each element is

an integer in the range [0,n!°°]. These sets are not necessarily sorted.
Show how to check whether these two sets are disjoint in O(n) time.
Your algorithm should use O(n) space.

Input are the sets $1,.S,..., and S, (where € < n). Elements of these
sets are integers in the range [0,n° — 1] (for some fixed c). Alsolet

sf, |S;| = n. The goal is to output S$; in sorted order, then 5»
in sorted order, and so on. Present an O(n) time algorithm for this
problem.

. Input is an array of n numbers where each numberis an integer in the
range [0, N] (for some N >> n). Present an algorithm that runs in the

worst case in time O (nex) and checks whetherall these n numbers

are distinct. Your algorithm should use only O(n) space.

. Let S be a sequence of n? integers in the range [1,n]. Let R(i) be
the numberof 7’s in the sequence (for i = 1,2,...,n). Given S, we
have to compute an approximate value of R(¢) for each 2. If N(i) is an
approximation to R(i),i = 1,...,n, it should be the case that (with
high probability) N(é) > R(i) for each 7 and 3X%_, N(i) = O(n?).
Of course we can do this computation in deterministic O(n?) time.
Design a randomized algorithm for this problem that runs in time

O(n log?n),
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