

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

COMPUTER ALGORITHMS

Ellis Horowitz
University of Southern California

Sartaj Sahni
University of Florida

Sanguthevar Rajasekaran
University of Florida

@
ComputerScience Press

An imprint of W. H. Freeman and Company

New York

https://hemanthrajhemu.github.io

CONTENTS ix

4.5.2 Kruskal’s Algorithm 220

4.5.3 An Optimal Randomized Algorithm (*) 225

4.66 OPTIMAL STORAGE ON TAPES 229

4.7 OPTIMAL MERGE PATTERNS................ 234

4.8 SINGLE-SOURCE SHORTEST PATHS 241

4.9 REFERENCES AND READINGS 249

4.10 ADDITIONAL EXERCISES 250

5 DYNAMIC PROGRAMMING 253

5.1 THE GENERAL METHOD................... 203

5.2 MULTISTAGE GRAPHS 0.0000 - 207

5.38 ALL PAIRS SHORTEST PATHS 265

5.4 SINGLE-SOURCE SHORTEST PATHS:............

GENERAL WEIGHTS22000- 270

5.5 OPTIMAL BINARY SEARCH TREES(*) 275

5.6 STRING EDITING00040. 284

5.7 O/1-KNAPSACK0.0.02..2.. 0.2.02. 0020 000. 287

5.8 RELIABILITY DESIGN..................... 295

5.9 THE TRAVELING SALESPERSON PROBLEM 298

5.10 FLOW SHOP SCHEDULING. 301

5.11 REFERENCES AND READINGS 307

5.12 ADDITIONAL EXERCISES 308

6 BASIC TRAVERSAL AND SEARCH TECHNIQUES 313

6.1 TECHNIQUES FOR BINARY TREES 313

6.2 TECHNIQUES FOR GRAPHS 318

6.2.1 Breadth First Search and Traversal. 320

6.2.2. Depth First Search and Traversal...2.. 323

6.3 CONNECTED COMPONENTS AND SPANNING TREES . 325

6.4 BICONNECTED COMPONENTS AND DFS......... 329

6.5 REFERENCES AND READINGS 338

7 BACKTRACKING 339

7.1 THE GENERAL METHOD................... 339

7.2 THE 8-QUEENS PROBLEM-.....- 353

7.3 SUM OF SUBSETS0200- 307

7.4 GRAPH COLORING00. 000058 360

7.5 HAMILTONIAN CYCLES0.-. 364

7.6 KNAPSACK PROBLEM+2+04 368https://hemanthrajhemu.github.io

CONTENTS

7.7 REFERENCES AND READINGS 374

7.8 ADDITIONAL EXERCISES006. 375

BRANCH-AND-BOUND 379

8.1 THEMETHOD 0.0.00 eee eee 379

8.1.1 Least Cost (LC) Search0....0..0.24. 380
8.1.2 The 15-puzzle: An Example............... 382

8.1.3 Control Abstractions for LC-Search 386

8.14 Bounding0..2..-. 020004 388

8.1.5 FIFO Branch-and-Bound 391

8.1.6 LC Branch-and-Bound...............000. 392

8.2 0/1 KNAPSACK PROBLEM-. 393

8.2.1. LC Branch-and-Bound Solution. 394

8.2.2 FIFO Branch-and-Bound Solution 397

8.3. TRAVELING SALESPERSON(4)...0...04. 403

8.4 EFFICIENCY CONSIDERATIONS 412

8.5 REFERENCES AND READINGS 416

ALGEBRAIC PROBLEMS 417

9.1 THE GENERAL METHOD................... 417

9.2 EVALUATION AND INTERPOLATION 420

9.3 THE FAST FOURIER TRANSFORM 430

9.3.1 An In-place Version of the FFT............. 435

9.3.2 Some Remaining Points4. 438

9.4 MODULAR ARITHMETIC.................-. 440

9.5 EVEN FASTER EVALUATION AND INTERPOLATION . 448

9.6 REFERENCES AND READINGS 456

10 LOWER BOUND THEORY 457

10.1 COMPARISON TREES 0.0000 ae 458

10.1.1 Ordered Searching000- 459

10.1.2 Sorting ... 2... .. 2.2... 02. eee eee 459

10.1.3 Selection 2... 0.0.0... ee ee es 464

10.2 ORACLES AND ADVERSARY ARGUMENTS........ 466

10.2.1 Merging 0.00. eee ee ee ee 467

10.2.2 Largest and Second Largest2.. 468

10.2.3 State Space Method06- 470

10.2.4 Selection 2... . 0. ee ee ee ee 471

10.3 LOWER BOUNDS THROUGH REDUCTIONS 474

https://hemanthrajhemu.github.io

Chapter 4

THE GREEDY METHOD

4.1 THE GENERAL METHOD

The greedy method is perhaps the most straightforward design technique we
consider in this text, and what’s more it can be applied to a wide variety of
problems. Most, though not all, of these problems have n inputs and require
us to obtain a subset that satisfies some constraints. Any subset that satis-
fies these constraints is called a feasible solution. We need to find a feasible
solution that either maximizes or minimizes a given objective function. A
feasible solution that does this is called an optimal solution. There is usu-
ally an obvious way to determine a feasible solution but not necessarily an
optimal solution.

Thegreedy method suggests that one can devise an algorithm that works
in stages, considering one input at a time. At each stage, a decision is made
regarding whether a particular input is in an optimal solution. This is done
by considering the inputs in an order determined by someselection proce-
dure. If the inclusion of the next input into the partially constructed optimal
solution will result in an infeasible solution, then this input is not added to
the partial solution. Otherwise, it is added. The selection procedure itself
is based ou some optimization measure. This measure may be the objective
function. In fact, several different optimization measures may be plausible
for a given problem. Most of these, however, will result in algorithms that
generate suboptimal solutions. This version of the greedy techniqueis called
the subset paradigm.

Wecan describe the subset paradigm abstractly, but more precisely than
above, by considering the control abstraction in Algorithm 4.1.

Thefunction Select selects an input from a[] and removesit. The selected
input’s value is assigned to x. Feasible is a Boolean-valued function that
determines whether x can be includedinto the solution vector. The function
Union combines x with the solution and updates the objective function. The

197https://hemanthrajhemu.github.io

198 CHAPTER 4. THE GREEDY METHOD

1 Algorithm Greedy(a,n)
2 // all: n] contains the n inputs.
3
4 solution := 0; // Initialize the solution.
5 for 1:=— 1 to ndo
6
7 x := Select(a);
8 if Feasible(solution, x) then
9 solution := Union(solution, x)3
10 }
11 return solution;
12 }

Algorithm 4.1 Greedy method control abstraction for the subset paradigm

function Greedy describes the essential way that a greedy algorithm will look,
once a particular problem is chosen and the functions Select, Feasible, and
Union are properly implemented.

For problems that do not call for the selection of an optimal subset, in the
greedy method we make decisions by considering the inputs in someorder.
Each decision is made using an optimization criterion that can be computed
using decisions already made. Call this version of the greedy method the
ordering paradigm. Sections 4.2, 4.3, 4.4, and 4.5 consider problemsthat fit
the subset paradigm, and Sections 4.6, 4.7, and 4.8 consider problems that
fit the ordering paradigm.

EXERCISE

1. Write a control abstraction for the ordering paradigm.

4.2 KNAPSACK PROBLEM

Let us try to apply the greedy method to solve the knapsack problem. We
are given n objects and a knapsack or bag. Object 7 has a weight w; and the
knapsack has a capacity m. Ifa fraction x;, 0 < 2; < 1, of object 7 is placed
into the knapsack, then a profit of pjx; is earned. The objective is to obtain
a filling of the knapsack that maximizes the total profit earned. Since the
knapsack capacity is m, we require the total weight of all chosen objects to
be at most m. Formally, the problem can be stated as

https://hemanthrajhemu.github.io

4.2. KNAPSACK PROBLEM 199

maximize s- Dili (4.1)
1<i<n

subject to S- wx, <™m (4.2)
1<i<n

andQ<a;<1, Il<i<n (4.3)

The profits and weights are positive numbers.

A feasible solution (or filling) is any set (2,,...,@,) satisfying (4.2) and
(4.3) above. An optimal solution is a feasible solution for which (4.1) is
maxiniized.

Example 4.1 Consider the following instance of the knapsack problem:
n = 3,m = 20, (pi, p2,p3) = (25,24,15), and (wi, we,w3) = (18,15, 10).
Four feasible solutions are:

(21, £2, £3) wie, DI Dix;
1. (1/2, 1/3, 1/4) 16.5 24.25
2 (1,2/15,0) 20 28.9
3. (0, 2/3, 1) 20 31
4. (0, 1, 1/2) 20 31.5

Of these four feasible solutions, solution 4 yields the maximum profit. As
we shall soon see, this solution is optimal for the given probleminstance. 0

Lemma 4.1 In case the sum ofall the weights is < m, then «1; = 1, 1 <
7 <n is an optimal solution. 0

So let. us assume the sum of weights exceeds m. Nowall the x;’s cannot
be 1. Another observation to makeis:

Lemma4.2 All optimal solutions willfill the knapsack exactly. Oo

Leinma 4.2 is true because we can always increase the contribution of
some object 2 by a fractional amount until the total weight is exactly m.

Note that the knapsack problem calls for selecting a subset of the ob-
jects and hence fits the subset paradigm. In addition to selecting a subset,
the knapsack problem also involves the selection of an x; for each object.
Several simple greedy strategies to obtain feasible solutions whose sums are
identically m suggest themselves. First, we can try to fill the knapsack by in-
cluding next the object with largest profit. If an object under consideration
doesn'tfit, then a fraction of it is included to fill the knapsack. Thus each
time an object is included (except possibly when the last object is included)

https://hemanthrajhemu.github.io

200 CHAPTER 4. THE GREEDY METHOD

into the knapsack, we obtain the largest possible increase in profit value.
Note that if only a fraction of the last object is included, then it may be
possible to get a bigger increase by using a different object. For example, if
we have two units of space left and two objects with (p; = 4, w; = 4) and
(pj; = 3,w; = 2) remaining, then using j is better than using half of 7. Let
us use this selection strategy on the data of Example 4.1.

Object one has the largest profit value (p1 = 25). So it is placed into the
knapsack first. Then x; = 1 and a profit of 25 is earned. Only 2 units of
knapsack capacity are left. Object two has the next largest profit (po = 24).
However, w2 = 15 and it doesn’t fit into the knapsack. Using x2 = 2/15 fills
the knapsack exactly with part of object 2 and the value of the resulting
solution is 28.2. This is solution 2 andit is readily seen to be suboptimal.
The method used to obtain this solution is termed a greedy method because
at each step (except possibly the last one) we chose to introduce that object
which would increase the objective function value the most. However, this
greedy method did notyield an optimal solution. Note that even if we change
the above strategy so that in the last step the objective function increases
by as much as possible, an optimal solution is not obtained for Example 4.1.

We can formulate at least two other greedy approaches attempting to
obtain optimal solutions. From the preceding example, we note that consid-
ering objects in order of nonincreasing profit values does not yield an optimal
solution because even though the objective function value takes on large in-
creases at each step, the numberof steps is few as the knapsack capacity is
used up at a rapid rate. So, let us try to be greedy with capacity and useit
up as slowly as possible. This requires us to consider the objects in order of
nondecreasing weights w;. Using Example 4.1, solution 3 results. This too
is suboptimal. This time, even though capacity is used slowly, profits aren’t
coming in rapidly enough.

Thus, our next attempt is an algorithm that strives to achieve a balance
between the rate at which profit increases and the rate at which capacity is
used. At each step we include that object which has the maximum profit
per unit of capacity used. This means that objects are considered in order
of the ratio p;/w;. Solution 4 of Example 4.1 is produced by this strategy. If
the objects have already been sorted into nonincreasing order of p;/w;, then
function GreedyKnapsack (Algorithm 4.2) obtains solutions corresponding to
this strategy. Note that solutions corresponding to the first two strategies
can be obtained using this algorithm if the objects are initially in the appro-
priate order. Disregarding the timeto initially sort the objects, each of the
three strategies outlined above requires only O(n) time.
We have seen that when one applies the greedy method to the solution

of the knapsack problem, there are at least three different measures one can
attempt to optimize when determining which object to include next. These
measures are total profit, capacity used, and the ratio of accumulated profit
to capacity used. Once an optimization measure has been chosen, the greedy

https://hemanthrajhemu.github.io

4.3. TREE VERTEX SPLITTING 203

2. [0/1 Knapsack] Consider the knapsack problem discussed in this sec-
tion. We add the requirement that x; = 1 or 7; = 0,1 <i <n; that

is, an object is either included ornot. includedinto the knapsack. We
wish to solve the problem

nm

max S Pili

1

n

subject to>~ wen, <n
1

and 2;=O0orl, 1<i<n

One greedy strategy is to consider the objects in order of nonincreasing
density p;/w; and add the object into the knapsack ifit-fits. Show that
this strategy doesn’t necessarily yield an optimal solution.

4.3 TREE VERTEX SPLITTING

Consider a directed binary tree each edge of which is labeled with a real
number (called its weight). Trees with edge weights are called weighted
trees. A weighted tree can be used, for example, to model a distribution
network in which electric signals or commodities such as oil are transmitted.
Nodes in the tree correspond to receiving stations and edges correspond to
transmissionlines. It is conceivable that in the process of transmission some
loss occurs (drop in voltage in the case of electric signals or drop in pressure
in the case of oil). Each edge in the tree is labeled with the loss that occurs
in traversing that edge. The network may not be able to tolerate losses
beyond a certain level. In places where the loss exceeds the tolerance level,
boosters have to be placed. Given a network and a loss tolerance level, the
Tree Vertex Splitting Problem (TVSP) is to determine an optimal placement
of boosters. It is assumed that the boosters can only be placed in the nodes
of the tree.

The TVSP can be specified more precisely as follows: Let T = (V, £,w)
be a weighted directed tree, where V is the vertex set, F is the edge set, and
w is the weight function for the edges. In particular, w(i,7) is the weight of
the edge (1,7) € E. The weight w(i,7) is undefined for any (i,j) ¢ E. A
source vertex is a vertex with in-degree zero, and a sink vertex is a vertex
with out-degree zero. For any path P in the tree, its delay, d(P), is defined
to be the sum of the weights on that path. The delay of the tree T, d(T), is
the maximumofall the path delays.

Let T/X be the forest that results when each vertex u in X is split into

two nodes u' and u® such that all the edges (u,j) € E ((j,u) € E) are

https://hemanthrajhemu.github.io

204 CHAPTER 4. THE GREEDY METHOD

My,
Figure 4.1 A tree before and after splitting the node 3

replaced by edges of the form (u°,7) ((j,u’)). In other words, outbound
edges from u now leave from u? and inbound edges to u now enter at u’.
Figure 4.1 shows a tree before and after splitting the node 3. A node that
gets split corresponds to a booster station. The TVSPis to identify a set
X C V of minimum cardinality for which d(T/X) < 6, for some specified
tolerance limit 6. Note that the TVSP has a solution only if the maximum
edge weight is < 6. Also note that the TVSP naturally fits the subset
paradigm.

Given a weighted tree T(V, EF, w) and a tolerance limit J, any subset X of
V is a feasible solution if d(T'/X) < 6. Given an X, we can compute d(T/X)
in O(|V|) time. A trivial way of solving the TVSP is to compute d(T/X)
for each possible subset X of V. But there are 2'”! such subsets! A better
algorithm can be obtained using the greedy method.

For the TVSP, the quantity that is optimized (minimized) is the number
of nodes in X. A greedy approach to solving this problem is to compute for
each node u € V, the maximum delay d(u) from u to any other nodein its
subtree. If u has a parent v such that d(u) + w(v,u) > 6, then the node
u gets split and d(u) is set to zero. Computation proceeds from the leaves
toward the root.

In the tree of Figure 4.2, let 6 = 5. For each of the leaf nodes 7, 8,5, 9,
and 10 the delay is zero. The delay for any node is computed only after the
delays for its children have been determined. Let u be any node and C(u)
be the set of all children of u. Then d(u) is given by

d(u) = max{dv) + w(u, v)}

Using the above formula, for the tree of Figure 4.2, d(4) = 4. Since
d(4) + w(2,4) = 6 > 6, node 4 gets split. We set d(4) = 0. Now d(2) can be

https://hemanthrajhemu.github.io

4.3. TREE VERTEX SPLITTING 205

Figure 4.2 An exampletree

computed andis equal to 2. Since d(2) + w(1,2) exceeds 6, node 2 gets split
and d(2) is set to zero. Then d(6) is equal to 3. Also, since d(6)+w(3, 6) > 46,
node 6 has to be split. Set d(6) to zero. Now d(3) is computed as 3. Finally,
d(1) is computedas 5.

Figure 4.3 shows the final tree that results after splitting the nodes2,4,
and 6. This algorithm is described in Algorithm 4.3, which is invoked as
TVS(root, 6), root being the root of the tree. The order in which TVSvisits
(ie., computes the delay values of) the nodes of the tree is called the post
order and is studied again in Chapter6.

C)
S C3)

OROF
Figure 4.3 The final tree after splitting the nodes 2, 4, and 6

https://hemanthrajhemu.github.io

206 CHAPTER 4. THE GREEDY METHOD

Algorithm TVS(T,6)
// Determine and output the nodesto besplit.
// w() is the weighting function for the edges.

if (T £0) then

d(T] := 0;

for each child v of T do

w
o
o
n
N
n
o
h
w
n
r
e

TVS(v, 6)3

d{T] = max{a{T), d[v] + w(T,»)};
if ((T is not the root) and

(d[T'] + w(parent(T),T) > 6)) then

write (T); d[T] := 0;

}

e
e
e
e
e
e
e
e
e
e

W
m
o
n
n
o
h
w
o
n
N
n
r
o

—
—

Algorithm 4.3 The tree vertex splitting algorithm

Algorithm TVS takes O(n) time, where n is the numberof nodes in the
tree. This can be seen as follows: When TVS is called on any node 7, only
a constant number of operations are performed (excluding the time taken
for the recursive calls). Also, TVS is called only once on each node T in the
tree.

Algorithm 4.4 is a revised version of Algorithm 4.3 for the special case
of directed binary trees. A sequential representation of the tree (see Section
2.2) has been employed. Thetree is stored in the array tree[] with the root
at tree[1]. Edge weights are stored in the array weight|]. If tree[] has a tree
node, the weight of the incoming edge from its parent is stored in weight/i].
The delay of node 7 is stored in d[i]. The array d[] is initialized to zero
at the beginning. Entries in the arrays tree[| and weight| | corresponding
to nonexistent nodes will be zero. As an example, for the tree of Figure
4.2, tree[| will be set to {1, 2,3, 0,4, 5,6, 0,0, 7,8,0,0,9, 10} starting at cell
1. Also, weight[| will be set to {0,4,2,0,2,1,3,0,0,1,4,0, 0,2,3} at the
beginning, starting from cell 1. The algorithm is invoked as TVS(1, 6). Now
we show that TVS (Algorithm 4.3) will always split a minimal number of
nodes.

https://hemanthrajhemu.github.io

4.3. TREE VERTEX SPLITTING 207

1 Algorithm TVS(i, 6)
2 // Determine and output a minimum cardinality split set.
3 // Thetree is realized using the sequential representation.
4 // Root is at tree[1]. N is the largest number such that
5 // tree[N| has a tree node.
6
7 if (tree[i] #0) then // If the tree is not empty
8 if (2i > N) then d[i] :=0; // 7 is a leaf.
9 else
10 {
1 TVS(2i, 5)3
12 ali] := max(d[#], d[2i] + weight|2i]);
13 if (28+1< N) then
14 {
15 TVS(2z + 1, 6);
16 d{i] := max(d[i], d[2i + 1] + wetght[2i + 1]);
17
18 }
19 if ((tree[t] 41) and (d[t] + wetght|i] > 6)) then
20 {
21 write (tree[t]); d[z] := 0;
22 }

Algorithm 4.4 TVSfor the special case of binary trees

Theorem 4.2 Algorithm TVS outputs a minimum cardinality set U such
that d(T’/U) <6 on any tree T, provided no edge of T has weight > 6.

Proof: The proof is by induction on the numberof nodesin the tree. If the
tree has a single node, the theoremis true. Assume the theorem for all trees
of size < n. We proveit for trees of size n + 1 also.

Let T be anytree of size n +1 and let U bethe set of nodes split by TVS.
Also let W be a minimum cardinality set such that d(T/W) < 6. We have
to show that |U| < |W]. If |U| = 0, this is true. Otherwise, let x be thefirst
vertex split by TVS. Let T; be the subtree rooted at x. Let T’ be the tree
obtained from T by deleting T’, except for «. Note that W has to have at
least one node, say y, from T,. Let W’ = W — {y}. If there is a W* such
that |W*| < |W’'| and d(I’/W*) < 6, then since d(T'/(W* + {z})) < 6, W is
not a minimum cardinality split set for T. Thus, W’ has to be a minimum
cardinality split set such that d(T’/W') < 6.

https://hemanthrajhemu.github.io

208 CHAPTER 4. THE GREEDY METHOD

If algorithm TVSis run on tree T’, the set of split nodes output is U—{z}.
Since T’ has < n nodes, U — {x} is a minimum cardinality split set for T’.
This in turn means that |W’| > |U| — 1. In other words, |W| > |U|. Oo

EXERCISES

1. For the tree of Figure 4.2 solve the TVSP when (a) 6 = 4 and (b)
6 = 6.

2. Rewrite TVS (Algorithm 4.3) for general trees. Make use of pointers.

44 JOB SEQUENCING WITH DEADLINES

We are given a set of n jobs. Associated with job 7 is an integer deadline
d; > 0 and a profit pj > 0. For any job 7 the profit p; is earned iff the job is
completed by its deadline. To complete a job, one has to process the job on
a machine for one unit of time. Only one machineis available for processing
jobs. A feasible solution for this problem is a subset J of jobs such that each
job in this subset can be completed by its deadline. The value of a feasible
solution J is the sum of the profits of the jobs in J, or }7j-7 p;. An optimal
solution is a feasible solution with maximum value. Here again, since the
problem involves the identification of a subset, it fits the subset paradigm.

Example 4.2 Let n = 4, (p1,pe,p3,p4) = (100, 10, 15, 27) and (dj, dz, d3, ds)
(2,1,2,1). The feasible solutions and their values are:

feasible processing
solution sequence value

1, 2) 2,1 110
3) 1, 3 or 3,1 115

127
25
42
100
10
15
27

2

w
w
e

C
R
O
N
S
O
R
w
W
N

B
R
w
W
r
N
e
H
w

w
e

Solution 3 is optimal. In this solution only jobs 1 and 4 are processed and
the value is 127. These jobs must be processed in the order job 4 followed
by job 1. Thus the processing of job 4 begins at time zero and that of job 1
is completed at time 2. Oo

https://hemanthrajhemu.github.io

4.4. JOB SEQUENCING WITH DEADLINES 209

To formulate a greedy algorithm to obtain an optimal solution, we must
formulate an optimization measure to determine how the next job is chosen.
As a first attempt we can choose the objective function >°;-, p; as our op-
timization measure. Using this measure, the next job to includeis the one
that increases }°;-p; the most, subject to the constraint that the resulting
J is a feasible solution. This requires us to consider jobs in nonincreasing

order of the p;’s. Let us apply this criterion to the data of Example 4.2. We
begin with J = @ and >°,;<;p; = 0. Job 1 is added to J asit has the largest
profit and J = {1} is a feasible solution. Next, job 4 is considered. The
solution J = {1,4} is also feasible. Next, job 3 is considered and discarded
as J = {1,3,4} is not feasible. Finally, job 2 is considered for inclusion into
J. It is discarded as J = {1,2,4} is not feasible. Hence, we are left with
the solution J = {1,4} with value 127. This is the optimal solution for the
given problem instance. Theorem4.4 proves that the greedy algorithm just
described always obtains an optimal solution to this sequencing problem.

Before attempting the proof, let us see how we can determine whether
a given J is a feasible solution. One obvious way is to try out all possible
permutations of the jobs in J and check whether the jobs in J can be pro-
cessed in any one of these permutations (sequences) without violating the
deadlines. For a given permutation o = 71,%9,73,...,%, this is easy to do,
since the earliest time job 77,1 <q < k, will be completed is qg. If g > dj,,
then using a, at least job 7, will not be completed by its deadline. However,
if |J| = i, this requires checking i! permutations. Actually, the feasibility
of a set J can be determined by checking only one permutation of the jobs
in J. This permutation is any one of the permutations in which jobs are
ordered in nondecreasing order of deadlines.

Theorem 4.3 Let J be a set of & jobs and o = 71, %2,...,%, a permutation
of jobs in J such that dj, < dj, <--- <dj;,. Then J is a feasible solution iff
the jobs in J can be processed in the order o without violating any deadline.

Proof: Clearly, if the jobs in J can be processed in the order o without
violating any deadline, then J is a feasible solution. So, we have only to
show that if J is feasible, then o represents a possible order in which the
jobs can be processed. If J is feasible, then there exists o/ = r1,r2,...,1Tk
such that d,, >q, 1<q<k. Assume o’ #0. Thenlet a be the least index

such that rg 4 ig. Let rp = ig. Clearly, 6 > a. In o’ we caninterchange
ra and r,. Since d,, > d,,, the resulting permutation o” = 81, s9,..., 8%
represents an order in which the jobs can be processed without violating
a deadline. Continuing in this way, o’ can be transformed into o without
violating any deadline. Hence, the theorem is proved. Oo

Theorem 4.3 is true even if the jobs have different processing times ¢; > 0
(see the exercises).

https://hemanthrajhemu.github.io

210 CHAPTER 4. THE GREEDY METHOD

Theorem 4.4 The greedy method described above always obtains an opti-
mal solution to the job sequencing problem.

Proof: Let (p;,d;),1 <i <n, define any instance of the job sequencing
problem. Let J be the set of jobs selected by the greedy method. Let J
be the set of jobs in an optimal solution. We now show that both I and J
have the same profit values and so J is also optimal. We can assume I #4 J
as otherwise we have nothing to prove. Note that if J C J, then J cannot
be optimal. Also, the case I C J is ruled out by the greedy method. So,
there exist jobs a and 6 such that ae J, ag J, b€ J, and 6 ¢ TI. Let a be
a highest-profit job such that a € J anda ¢ J. It follows from the greedy
method that pg > pp for all jobs 6 that are in J but not in J. To see this,
note that if pp > pe, then the greedy method would consider job b before job
a andincludeit into J.

Now, consider feasible schedules S; and Sy; for J and J respectively. Let
2 be a job such that 7 € J andi € J. Let 7 be scheduled from ¢ to ¢+ 1 in
S; and t’ to t’ +1 in Sj. If t < t’, then we can interchange the job (if any)
scheduled in[t’, t’ + 1] in S; with 7. If no job is scheduledin [t’, ¢’ + 1] in J,
then i is movedto[#’, t’ +1]. The resulting scheduleis also feasible. If t' < t,
then a similar transformation can be made in Sj. In this way, we can obtain
schedules S; and S’, with the property that all jobs commonto J and J are
scheduled at the same time. Consider the interval [ta,t_ + 1] in S} in which
the job a (defined above) is scheduled. Let b be the job (if any) scheduled
in S’, in this interval. From the choice of a,pa > pp. Scheduling a from tg
to tg + 1 in S‘, and discarding job 6 gives us a feasible schedule for job set
J' = J— {b} U{a}. Clearly, J’ has a profit value no less than that of J and
differs from J in one less job than J does.

By repeatedly using the transformation just described, J can be trans-
formed into J with no decrease in profit value. So J must be optimal. Oo

A high-level description of the greedy algorithm just discussed appears
as Algorithm 4.5. This algorithm constructs an optimal set J of jobs that
can be processed by their due times. The selected jobs can be processed in
the order given by Theorem 4.3.

Now, let us see how to represent the set J and how to carry out the test
of lines 7 and 8 in Algorithm 4.5. Theorem 4.3 tells us how to determine
whetherall jobs in J U {7} can be completed by their deadlines. We can
avoid sorting the jobs in J each time by keeping the jobs in J ordered by
deadlines. We can use an array d[l : n] to store the deadlines of the jobs
in the order of their p-values. The set J itself can be represented by a one-
dimensional array J[1 : k] such that J[r], 1 <r < k are the jobs in J and
d[J[1]] < d[J[2]] < --- < d[J|k]]. To test whether JU {i} is feasible, we have
just to insert 7 into J preserving the deadline ordering and then verify that
d[J[r]] <r, 1<r<k+1. The insertion of 7 into J is simplified by the use
of a fictitious job 0 with d[0] = 0 and J[0] = 0. Note also that if job 7 is
to be inserted at position g, then only the positions of jobs J[q], J[¢ + 1],

https://hemanthrajhemu.github.io

4.4. JOB SEQUENCING WITH DEADLINES 211

Algorithm GreedyJob(d, J, 7)
// J isa set of jobs that can be completed by their deadlines.

J := {1};
for i := 2 ton do

if (all jobs in J U {i} can be completed
by their deadlines) then J := JU {i};

F
P
O
o
n
n
m
D
o
b
w
n
N
r
e

Algorithm 4.5 High-level description of job sequencing algorithm

. , J[K] are changed after the insertion. Hence, it is necessary to verify
only that these jobs (and also job 2) do not violate their deadlines following
the insertion. The algorithm that results from this discussion is function
JS (Algorithm4.6). The algorithm assumes that the jobs are already sorted
suchthat py > py > --- > pp. Further it assumes that n > 1 and the deadline

d[i] of job 7 is at least 1. Note that no job with d[i] < 1 can ever befinished
by its deadline. Theorem 4.5 proves that JS is a correct implementation of
the greedy strategy.

Theorem 4.5 Function JS is a correct implementation of the greedy-based
method described above.

Proof: Since d[i] > 1, the job with the largest p; will always be in the
greedy solution. As the jobs are in nonincreasing order of the p;’s, line
8 in Algorithm 4.6 includes the job with largest p;. The for loop of line
10 considers the remaining jobs in the order required by the greedy method
describedearlier. At all times, the set of jobs already included in the solution
is maintained in J. If J[z], 1 <7 < k, is the set already included, then J is
such that. d[J[¢]] < d[J[¢+ 1], 1 <i < k, This allows for easy application
of the feasibility test of Theorem 4.3, When job 7 is being considered, the
while loop of line 15 determines where in J this job has to be inserted. The
use of a fictitious job 0 (line 7) allows easy insertion into position 1. Let w
be such that d[J[w]] < d[t] and d[J[q]] > d[i],w <q <-k. If job i is included
into J, then jobs J[q], w <q < k, have to be moved oneposition up in J
(line 19). From Theorem 4.3, it follows that such a move retains feasibility
of J iff d[J[q]] 4 g, w <q < k. This condition is verified in line 15. In
addition, 7 can beinserted at position w + iff d[7] > w. This is verified in
line 16 (note r = w onexit from the while loopif d[J[q]] 4¢, w<q<k).
The correctness of JS follows from these observations, oO

https://hemanthrajhemu.github.io

212 CHAPTER 4. THE GREEDY METHOD

1 Algorithm JS(d, j,7)
2 // di] > 1,1 <7 <n are the deadlines, n > 1. The jobs
3 // are ordered such that p[1] > p[2] >--->Pin|. Ji]
4 // is the ith job in the optimal solution, 1<i<k.
5 // Also, at termination d[J[i]] < d[J[i+ 1],1 <i<k
6
7 d[0] := J[0] := 0; // Initialize.
8 J({1] := 1; // Include job 1.
9 k:=1;
10 for 1:= 2 to n do
11 {
12 // Consider jobs in nonincreasing order of p[i]. Find
13 // position for ¢ and check feasibility of insertion.
14 ri=k;
15 while ((d[Jir] > dli]) and (d[J[r]] #7r)) dor :=r— 1;
16 if ((d[J[r]] < d[i]) and (d[i] > r)) then
17
18 // Insert i into J[}.
19 for g:=k to (r+ 1) step —1 do J[qg+ 1] := J[q);
20 J[r+isi ki=k+];
21
22
23 return k;
24 }

Algorithm 4.6 Greedy algorithm for sequencing unit time jobs with dead-
lines and profits

For JS there are two possible parameters in terms of which its complexity
can be measured. We can use n, the number of jobs, and s, the numberof
jobs included in the solution J. The while loop of line 15 in Algorithm 4.6 is
iterated at most k times. Each iteration takes O(1) time. If the conditional
of line 16 is true, then lines 19 and 20 are executed. These lines require
O(k — r) time to insert job i. Hence, the total time for each iteration of
the for loop of line 10 is O(k). This loop is iterated n — 1 times. If s is
the final value of k, that is, s is the number of jobs in the final solution,
then the total time needed by algorithm JS is O(sn). Since s < n, the
worst-case time, as a function of n alone is O(n”). If we consider the job

set pj = dj = n-it+1, 1 <i <n, then algorithm JS takes O(n”) time
to determine J. Hence, the worst-case computing time for JS is Q(n?). In
addition to the space needed for d, JS needs O(s) amount of space for J.

https://hemanthrajhemu.github.io

4.4. JOB SEQUENCING WITH DEADLINES 213

Note that the profit values are not needed by JS. It is sufficient to know that

Piz Pi41,1<St<n
The computing time of JS can be reduced from O(n) to nearly O(n)

by using the disjoint set union and find algorithms (see Section 2.5) and a
different method to determine the feasibility of a partial solution. If J is a
feasible subset of jobs, then we can determine the processing times for each
of the jobs using the rule: if job 7 hasn’t been assigned a processing time,
then assign it to the slot [a — 1,a], where a is the largest integer r such
that 1 <r < d; and theslot [a — 1,a] is free. This rule simply delays the
processing of job 7 as much as possible. Consequently, when J is being built
up job by job, jobs already in J do not have to be moved from their assigned
slots to accommodate the new job. If for the new job being considered there
is no @ as defined above, then it cannot be included in J. The proof of the
validity of this statement is left as an exercise.

Example 4.3 Let n = 5,(pi,...,ps) = (20,15,10,5,1) and (dj,...,d5)
= (2,2,1,3,3). Using the above feasibility rule, we have

J assigned slots job considered action profit
0 none 1 assign to [1, 2] 0

{1} [1, 2] 2 assign to [0, 1] 20
{1, 2} (0, 1], [1, 2] 3 cannot fit; reject 35
{1, 2} (0, 1], [1, 2] 4 assign to [2, 3] 35

{1, 2,4} [0, 1], [1, 2], [2, 3] 5 reject 40

The optimal solution is J = {1,2,4} with a profit. of 40. Oo

Since there are only m jobs and each job takes one unit of time, it is
necessary only to consider the time slots [i — 1,7], 1 < i < 6, such that

b= min {n,max {d;}}. One way to implement the above scheduling ruleis
to partition the timeslots [¢— 1,7], 1 < i < 6, into sets. We use 7 to represent
the timeslots [i — 1,7]. For any slot 7, let nj be the largest integer such that
nj, <7 and slot n; is free. To avoid end conditions, we introduce a fictitious
slot [—1,0] which is always free. Two slots 7 and j are in the sameset iff
nj = nj. Clearly, if and j, 7 < j, are in the sameset, then 7,7+1,7+2,...,9
are in the same set. Associated with each set k of slots is a value f(k). Then
f(k) =n, for all slots i in set k. Using the set representation of Section 2.5,
each set is represented as a tree. The root node identifies the set. The
function f is defined only for root nodes. Initially, all slots are free and we
have b+ 1 sets corresponding to the 6 + 1 slots [i — 1,i], 0 <i< 6. At this
time f(i) = i, 0 <i <b. We use p(z) to link slot i into its set tree. With
the conventions for the union and find algorithms of Section 2.5, p(i) = —1,
0<i< 6},initially. If a job with deadline d is to be scheduled, then we need

to find the root of the tree containing the slot min{n,d}. If this root is j,

https://hemanthrajhemu.github.io

214 CHAPTER 4. THE GREEDY METHOD

then f(j) is the nearest free slot, provided f(j) #4 0. Having used this slot,
the set with root j should be combined with the set containing slot f(j)—1.

Example 4.4 The trees defined by the p(i)’s for the first three iterations

in Example 4.3 are shown in Figure 4.4. O

job .
trees considereqaction

J f 0 1 2 3 4 5 1,d;=2 select

© oD A DD @
pO) pl) p2) pG) p4)_ pis)

{1} f 0 1 3 4 5 2,d,=2 select

cD on Dd ad
p(0) CD) p3) p(4) pS)

p(2)

{1,2} f(1)=0 {(3)=3 f(4)=4 f(5)=5 3,d3=1 reject

Oo Dd &
p33) p(4)_—s pS)

Figure 4.4 Fast job scheduling

The fast algorithm appears as FJS (Algorithm 4.7). Its computing time
is readily observed to be O(na(2n,n)) (recall that a(2n,n) is the inverse
of Ackermann’s function defined in Section 2.5). It needs an additional 2n
words of space for f and p.

https://hemanthrajhemu.github.io

4.4. JOB SEQUENCING WITH DEADLINES 215

1 Algorithm FJS(d,n,b,j)
2 // Find an optimalsolution J[1:k]. It is assumed that
3. // pil] > p[2) > --- > pln] and that 6 = min{n, max;(d[7])}.
4
5 // Initially there are b +1 single nodetrees.
6 for i := 0 to bdo f{i]:= 7;
7 k := 0; // Initialize.
8 for 1:= 1 to n do
9 { // Use greedy rule.
10 q := CollapsingFind(min(n,d[#]));
11 if (f[q] 4 0) then
12
13 k:=k+1; J[k] := 7%; // Select job i.
14 m := CollapsingFind(f[q} — 1);
15 WeightedUnion(m, ¢);
16 fla] := fm]; // ¢ may be new root.
17
18
19 }

Algorithm 4.7 Faster algorithm for job sequencing

EXERCISES

1. You are given a set of n jobs. Associated with each job 7 is a processing
time ¢; and a deadline d; by which it must be completed. A feasible

schedule is a permutation of the jobs such that if the jobs are processed
in that order, then each job finishes by its deadline. Define a greedy
schedule to be one in which the jobs are processed in nondecreasing
order of deadlines. Show that if there exists a feasible schedule, then

all greedy schedules are feasible.

2. [Optimal assignment] Assume there are n workers and n jobs. Let v;;
be the value of assigning workeri to job 7. An assignment of workers to
jobs corresponds to the assignment of 0 or 1 to the variables z;;, 1 < i,
j <n. Then x;; =1 means worker 7 is assigned to job j, and z;; = 0
means that. worker 7 is not assigned to job j. A valid assignmentis
one in which each worker is assigned to exactly one job and exactly
one workeris assigned to any one job. The value of an assignment is

yi Day Vij ip.

https://hemanthrajhemu.github.io

216 CHAPTER 4. THE GREEDY METHOD

For example, assume there are three workers w1, wa, and wz and three

jobs #1, j2, and jg. Let the values of assignment be v1; = 11, viz = 5,

U13 = 8, va = 3, v29 = 7, v23 = 15, U31 = 8, U32 = 12, and U33 = 9.

Then, a valid assignmentis 712 = 1, 293 = 1, and 73, = 1. Therest of
the xz;;’s are zeros. The value of this assignment is 5 + 15 + 8 = 28.

An optimal assignmentis a valid assignment of maximum value. Write
algorithms for two different greedy assignment schemes. One of these
assigns a worker to the best possible job. The other assigns to a job the
best possible worker. Show that neither of these schemes is guaranteed
to yield optimal assignments. Is either scheme always better than the
other? Assume v;; > 0.

3. (a) What is the solution generated by the function JS when n =

7, (pi, p2,---5P7) = (3, 5, 20, 18, 1,6, 30), and (di, dg,...,d7) =

(1,3, 4,3, 2, 1,2)?
(b) Show that Theorem 4.3 is true even if jobs have different process-

ing requirements. Associated with job 7 is a profit p; > 0, a time
requirement ¢; > 0, and a deadline d; > t;.

(c) Show that for the situation of part (a), the greedy method ofthis
section doesn’t necessarily yield an optimal solution.

4. (a) For the job sequencing problem of this section, show that the
subset J represents a feasible solution iff the jobs in J can be
processed according to the rule: if job 7 in J hasn’t been assigned
a processing time, then assign it to the slot [a — 1,a], where a is
the least integer r such that 1 <r < d; and theslot [a — 1, al is
free.

(b) For the problem instance of Exercise 3(a) draw the trees and give
the values of f(i),0 <7 <n, after each iteration of the for loop
of line 8 of Algorithm 4.7.

4.55 MINIMUM-COST SPANNING TREES

Definition 4.1 Let G = (V, E) be an undirected connected graph. A sub-
graph t = (V, E’) of G is a spanning tree of G iff t is a tree. Oo

Example 4.5 Figure 4.5 shows the complete graph on four nodes together
with three of its spanning trees. Oo

Spanning trees have many applications. For example, they can be used
to obtain an independent set of circuit equations for an electric network.
First, a spanning tree for the electric network is obtained. Let B be the
set of network edges not in the spanning tree. Adding an edge from B to

https://hemanthrajhemu.github.io

4.5. MINIMUM-COST SPANNING TREES 217

ro ye otTt yw ol
Figure 4.5 An undirected graph and three of its spanning trees

the spanning tree creates a cycle. Kirchoff’s second law is used on each
cycle to obtain a circuit equation. The cycles obtained in this way are
independent(i.e., none of these cycles can be obtained by taking a linear
combination of the remaining cycles) as each contains an edge from B that
is not contained in any other cycle. Hence, the circuit equations so obtained
are also independent. In fact, it can be shown that the cycles obtained by
introducing the edges of B one at a time into the resulting spanning tree
form a cycle basis, and so all other cycles in the graph can be constructed
by taking a linear combination of the cycles in the basis.

Another application of spanning trees arises from the property that a
spanningtree is a minimal subgraph G’ of G such that V(G’) = V(G) and G’
is connected. (A minimal subgraphis one with the fewest numberof edges.)
Any connected graph with n vertices must have at least n — 1 edges and all
connected graphs with n — 1 edges are trees. If the nodes of G represent
cities and the edges represent possible communication links connecting two
cities, then the minimum number of links needed to connect the n cities is
n—1. The spanning trees of G represent all feasible choices.

In practical situations, the edges have weights assigned to them. These
weights may represent the cost of construction, the length of the link, and
so on. Given such a weighted graph, one would then wishto select cities to
have minimum total cost or minimum total length. In either case the links
selected have to form a tree (assumingall weights are positive). If this is not
so, then the selection of links contains a cycle. Removal of any one of the
links on this cycle results in a link selection of less cost connectingall cities.
Weare therefore interested in finding a spanning tree of G with minimum
cost. (The cost of a spanning tree is the sum of the costs of the edges in
that tree.) Figure 4.6 shows a graph and one of its minimum-cost spanning
trees. Since the identification of a minimum-cost spanning tree involves the
selection of a subset of the edges, this problem fits the subset paradigm.

https://hemanthrajhemu.github.io

218 CHAPTER 4. THE GREEDY METHOD

Figure 4.6 A graph and its minimum cost spanning tree

4.5.1 Prim’s Algorithm

A greedy method to obtain a minimum-cost spanning tree builds this tree
edge by edge. The next edge to includeis chosen according to some optimiza-
tion criterion. The simplest such criterion is to choose an edge that results
in a minimum increase in the sum of the costs of the edges so far included.
There are two possible ways to interpret this criterion. In the first, the set
of edges so far selected form a tree. Thus, if A is the set of edges selected
so far, then A forms a tree. The next edge (u,v) to be included in A is a
minimum-cost edge not in A with the property that AU {(u,v)} is also a
tree. Exercise 2 showsthat this selection criterion results in a minimum-cost
spanning tree. The corresponding algorithm is known as Prim’s algorithm.

Example 4.6 Figure 4.7 shows the working of Prim’s method on the graph
of Figure 4.6(a). The spanning tree obtained is shown in Figure 4.6(b) and
has a cost of 99. Oo

Having seen how Prim’s method works, let us obtain a pseudocode algo-
rithm to find a minimum-cost spanning tree using this method. The algo-
rithm will start with a tree that includes only a minimum-cost edge of G.
Then, edges are added to this tree one by one. The next edge (i,j) to be
added is such that 7 is a vertex already includedin the tree, j is a vertex not
yet included, and the cost of (7,7), cost[i,j], is minimum among all edges
(k,l) such that vertex k is in the tree and vertex / is not in the tree. To
determine this edge (i, 7) efficiently, we associate with each vertex j not yet
included in the tree a value near|j]. The value near|j] is a vertex in the tree
such that cost[j, near|[j]] is minimum amongall choices for near|j]. We de-
fine near|j] = 0 for all vertices j that are already in the tree. The next edge

https://hemanthrajhemu.github.io

4.5. MINIMUM-COST SPANNING TREES 219

© ® @ © a ® DD @
25\ 25\

5 5

© @ 2 De
(a) (b) (c)

Do om
° mg

. ma \ \

6 DQ @ QO ® 6
A225 , 25_ A2 25 12

SB) / By / on
22 4) 22 (4) 224

(d) (e) (f)

Figure 4.7 Stages in Prim’s algorithm

to includeis defined by the vertex j such that near|j] 4 0 (j not already in
the tree) and cost|j, near[j]] is minimum.

In function Prim (Algorithm 4.8), line 9 selects a minimum-cost edge.
Lines 10 to 15 initialize the variables so as to represent a tree comprising
only the edge (k,/). In the for loop of line 16 the remainder of the spanning
tree is built up edge by edge. Lines 18 and 19 select (j, near[j]) as the next
edge to include. Lines 23 to 25 update near| |.

The time required by algorithm Prim is O(n”), where n is the number of
vertices in the graph G. To see this, note that line 9 takes O(|E|) time and
line 10 takes O(1) time. The for loop of line 12 takes O(n) time. Lines 18
and 19 and the for loop of line 23 require O(n) time. So, each iteration of
the for loop of line 16 takes O(n) time. The total time for the for loop of
line 16 is therefore O(n”). Hence, Prim runs in O(n) time.

https://hemanthrajhemu.github.io

220 CHAPTER 4. THE GREEDY METHOD

If we store the nodes not yet included in the tree as a red-black tree (see
Section 2.4.2), lines 18 and 19 take O(logn) time. Note that a red-black
tree supports the following operations in O(logn) time: insert, delete (an
arbitrary element), find-min, and search (for an arbitrary element). The
for loop of line 23 has to examine only the nodes adjacent to 7. Thusits
overall frequency is O(|E|). Updating in lines 24 and 25 also takes O(log n)
time (since an update can be doneusing a delete and an insertion into the
red-black tree). Thus the overall run time is O((n + |E|) log n).

The algorithm can be speeded a bit by making the observation that a
minimum-cost spanning tree includes for each vertex v a minimum-cost edge
incident to v. To see this, suppose ¢ is a Minimum-cost spanning tree for G =
(V, E). Let v be any vertex in ¢. Let (v,w) be an edge with minimum cost
among all edges incident to v. Assume that (v,w) ¢ E(t) and cost[v, w] <
cost|v,z] for all edges (v,z) € E(t). The inclusion of (v,w) into t creates
a unique cycle. This cycle must include an edge (v,x), « # w. Removing
(v,z) from E(t)U {(v,w)} breaks this cycle without disconnecting the graph
(V, E(t) U{(v, w)}). Hence, (V, E(t) U {(v, w)} — {(v, z)}) is also a spanning
tree. Since cost|v, w] < cost|v,z], this spanning tree has lower cost than t.
This contradicts the assumption that t is a minimum-cost spanning tree of
G. So, ¢ includes minimum-cost edges as stated above.

From this observation it follows that we can start the algorithm with a
tree consisting of any arbitrary vertex and no edge. Then edges can be added
one by one. The changes needed are to lines 9 to 17. These lines can be
replaced by the lines

9 mincost := 0;
10° for i := 2 to n do near|i] := 1;
11’ // Vertex 1 is initially in t.
12 near[1] := 0;
13’-16° for i:=1ton-—-1do
17’ { // Find n — 1 edgesfort.

4.5.2. Kruskal’s Algorithm

There is a second possible interpretation of the optimization criteria men-
tioned earlier in which the edges of the graph are considered in nondecreasing
order of cost. This interpretation is that the set t of edges so far selected for
the spanning tree be such that it is possible to complete t into a tree. Thus
t may not be tree at all stages in the algorithm. In fact, it will generally
only be a forest since the set of edges t can be completed into a tree iff there
are no cycles in t. We show in Theorem 4.6 that this interpretation of the
greedy methodalso results in a minimum-cost spanning tree. This method
is due to Kruskal.

https://hemanthrajhemu.github.io

4.5. MINIMUM-COST SPANNING TREES 221

1 Algorithm Prim(£, cost, n,t)
2 // Eis the set of edges in G. cost{1:n,1:] is the cost
3. // adjacency matrix of an n vertex graph such that cost|i, j] is
4 // either a positive real number or oo if no edge (i, j) exists.
5 // A minimum spanningtree is computed and stored as a set of
6 // edges in the array ¢{/1:n — 1,1: 2). (¢[i, 1], t[¢,2]) is an edge in
7 // the minimum-cost spanning tree. Thefinal cost is returned.
8
9 Let (k,1) be an edge of minimum cost in £3
10 mincost := cost|k, |];
11 t{1, 1] := ks t{1, 2] := 0;
12 for i:=1tondo // Initialize near.
13 if (costli,l] < costli,k]) then near[i] := |;
14 else near|i] := k;
15 near[k] := near(l] := 0;
16 for 1:= 2 to n—1do
17 { // Find n — 2 additional edgesfor t.
18 Let j be an index such that near[j] 4 0 and
19 cost[j, near|j]] is minimum;
20 ti, 1] := 93 t[z, 2] := near|j];
21 mincost := mincost + cost[j, near|j]];
22 near|j] := 03
23 for k:=1tondo // Update near| |.
24 if ((near[k] 4 0) and (cost[k, near|k]| > cost[k, j]))
25 then near|k] := 33
26 }
27 return mincost;
28 }

Algorithm 4.8 Prim’s minimum-cost spanning tree algorithm

https://hemanthrajhemu.github.io

222 CHAPTER 4. THE GREEDY METHOD

Example 4.7 Consider the graph of Figure 4.6(a). We begin with no edges
selected. Figure 4.8(a) shows the current graph with no edgesselected. Edge
(1,6) is the first edge considered. It is included in the spanning tree being
built. This yields the graph of Figure 4.8(b). Next, the edge (3, 4) is selected
and included in the tree (Figure 4.8(c)). The next edge to be consideredis
(2,7). Its inclusion in the tree being built does not create a cycle, so we get
the graph of Figure 4.8(d). Edge (2,3) is considered next and included in
the tree Figure 4.8(e). Of the edges not yet considered, (7,4) has the least
cost. It is considered next. Its inclusion in the tree results in a cycle, so this
edge is discarded. Edge (5,4) is the next edge to be addedto the tree being
built. This results in the configuration of Figure 4.8(f). The next edge to be
considered is the edge (7,5). It is discarded, as its inclusion creates a cycle.
Finally, edge (6,5) is considered and included in the tree being built. This
completes the spanning tree. The resulting tree (Figure 4.6(b)) has cost 99.

O

For clarity, Kruskal’s method is written out more formally in Algorithm
4.9. Initially E is the set of all edges in G. The only functions we wish
to perform on this set are (1) determine an edge with minimum cost (line
4) and (2) delete this edge (line 5). Both these functions can be performed
efficiently if the edges in EF are maintained as a sorted sequential list. It is
not essential to sort all the edges so long as the next edge for line 4 can be
determinedeasily. If the edges are maintained as a minheap, then the next
edge to consider can be obtained in O(log ||) time. The construction of the
heap itself takes O(|E|) time.

To be able to perform step 6 efficiently, the vertices in G should be
grouped together in such a way that one can easily determine whether the
vertices v and w are already connected by the earlier selection of edges. If
they are, then the edge (v, w) is to be discarded. If they are not, then (v, w)
is to be added to t. Onepossible groupingis to place all vertices in the same
connected componentof ¢ into a set (all connected componentsof t will also
be trees). Then, two vertices v and w are connected in ¢ iff they are in the
same set. For example, when the edge (2,6) is to be considered, the sets are
{1,2}, {3,4,6}, and {5}. Vertices 2 and 6 are in different sets so these sets
are combinedto give {1,2,3,4,6} and {5}. The next edge to be considered
is (1,4). Since vertices 1 and 4 are in the sameset, the edge is rejected. The
edge (3,5) connects vertices in different sets and results in the final span-
ning tree. Using the set representation and the union and find algorithms
of Section 2.5, we can obtain an efficient (almost linear) implementation of
line 6. The computing time is, therefore, determined by the timefor lines 4
and 5, which in the worst case is O(|E| log |E]).

If the representations discussed above are used, then the pseudocode of
Algorithm 4.10 results. In line 6 an initial heap of edges is constructed. In
line 7 each vertex is assigned to a distinct set (and hence to a distinct tree).
The set t is the set of edges to be included in the minimum-cost spanning

https://hemanthrajhemu.github.io

4.5. MINIMUM-COST SPANNING TREES 223

(a) (b) (c)

a) a) i
2 2 2

10 10 10
14 14 16 14 16

7xDe ms Oo
a /* 3) é

(d) (e) (f)

Figure 4.8 Stages in Kruskal’s algorithm

tree and 7 is the number of edges in t. The set ¢ can be represented as a
sequential list using a two-dimensionalarray t[1 : n—1,1: 2]. Edge (u,v) can
be added to ¢ by the assignments ¢[7, 1] := u; and ¢[i, 2] := v;. In the while
loop of line 10, edges are removed from the heap one by one in nondecreasing
order of cost. Line 14 determines the sets containing u and v. If 7 4 k, then
vertices u and v are in different sets (and so in different trees) and edge
(u, v) is included into ¢. The sets containing u and v are combined(line 20).
If u = v, the edge (u,v) is discarded as its inclusion into t would create a
cycle. Line 23 determines whether a spanning tree was found. It follows
that 1 A n — 1 iff the graph G is not connected. One can verify that the
computing time is O(|E|log|E|), where E is the edge set of G.

Theorem 4.6 Kruskal’s algorithm generates a minimum-cost spanning tree
for every connected undirected graph G.

https://hemanthrajhemu.github.io

224 CHAPTER 4. THE GREEDY METHOD

1 ¢t:=9;
2 while ((¢ has less than n — 1 edges) and (E 4 9)) do

3. {
4 Choose an edge (v,w) from E of lowest cost;
5 Delete (v,w) from E;
6 if (v,w) does not create a cycle in ¢ then add (v,w) to #5
7 else discard (v, w);

8 }

Algorithm 4.9 Early form of minimum-cost spanning tree algorithm due

to Kruskal

1 Algorithm Kruskal(£, cost, n,t)
2 // Eis the set of edges in G. G has n vertices. cost[u, v] is the
3 // cost of edge (u,v). t is the set of edges in the minimum-cost
4 // spanning tree. Thefinal cost is returned.
5
6 Construct a heap out of the edge costs using Heapify;
7 for i := 1 to n do parent|i] := —1;
8 // Each vertex is in a different set.
9 i := 0; mincost := 0.0;
10 while ((i <n—1) and (heap not empty)) do
11
12 Delete a minimum cost edge (u,v) from the heap
13 and reheapify using Adjust;
14 j u= Find(u); k := Find(v);
15 if (j Ak) then
16
17 t:=i+;
18 tli, 1] := us tli, 2} = v3
19 mincost := mincost + costlu, v]}
20 Union(j, k);
21 }
22
23 if (¢ A n— 1) then write ("No spanning tree");
24 else return mincost;
25 }

Algorithm 4.10 Kruskal’s algorithm

https://hemanthrajhemu.github.io

4.5. MINIMUM-COST SPANNING TREES 225

Proof: Let G be any undirected connected graph. Let t be the spanning tree
for G generated by Kruskal’s algorithm. Let t’ be a minimum-cost spanning
tree for G. We show that both ¢ and t’ have the samecost.

Let E(t) and E(t’) respectively be the edges in t and ¢’. If n is the number
of vertices in G, then both ¢ and t’ have n — 1 edges. If E(t) = E(t’), then
t is clearly of minimum cost. If E(t) € E(t’), then let g be a minimum-cost
edge such that q € E(t) and q ¢ E(t’). Clearly, such a q must exist. The
inclusion of q into t’ creates a unique cycle (Exercise 5). Let q,e,,€2,...,e€%
be this unique cycle. At least one of the e;’s, 1 <i < k, is not in E(t) as
otherwise ¢ would also contain the cycle q,e1,¢€2,...,¢,;. Let e; be an edge
on this cycle such that e; ¢ E(t). Ife; is of lower cost than g, then Kruskal’s
algorithm will consider e; before q and include e; into t. To see this, note
that all edges in E(t) of cost less than the cost of g are also in E(t’) and do
not form a cycle with e;. So cost(e;) > cost(q).

Now, reconsider the graph with edge set E(t’) U {qg}. Removal of any
edge onthe cycle g,e€),€2,...,e, will leave behind a tree ¢” (Exercise 5). In
particular, if we delete the edge e;, then the resulting tree t” will have a
cost no more than the cost of t’ (as cost(e;) > cost(e)). Hence, t” is also a
minimum-cost tree.

By repeatedly using the transformation described above, tree t’ can be
transformedinto the spanning tree t without any increase in cost. Hence, ¢
is a minimum-cost spanning tree. O

4.5.3 An Optimal Randomized Algorithm (x)

Any algorithmfor finding the minimum-cost spanning tree of a given graph
G(V, E) will have to spend 2(|V| + |E|) time in the worst case, since it
has to examine each node and each edge at least once before determining
the correct. answer. A randomized Las Vegas algorithm that runs in time

O(|V|+|£|) can be devised as follows: (1) Randomly sample medges from
G (for some suitable m). (2) Let G’ be the induced subgraph; that is, G’
has V as its node set and the sampled edges in its edge set. The subgraph
G' need not be connected. Recursively find a minimum-cost spanning tree
for each component of G’. Let F' be the resultant minimum-cost spanning
forest of G'. (3) Using F, eliminate certain edges (called the F'-heavy edges)
of G that cannot possibly be in a minimum-cost spanning tree. Let G” be
the graph that results from G after elimination of the F-heavy edges. (4)
Recursively find a minimum-cost spanning tree for G”. This will also be a
minimum-cost spanning tree for G.

Steps 1 to 3 are useful in reducing the number of edges in G. The al-
gorithm can be speeded up further if we can reduce the numberof nodes
in the input graph as well. Such a node elimination can be effected using
the Boruvka steps. In a Borivka step, for each node, an incident edge with
minimum weight is chosen. For example in Figure 4.9(a), the edge (1,3) is

https://hemanthrajhemu.github.io

226 CHAPTER 4. THE GREEDY METHOD

chosen for node 1, the edge (6,7) is chosen for node 7, and so on. All the
chosen edges are shown with thick lines. The connected components of the
induced graph are found. In the example of Figure 4.9(a), the nodes 1, 2,
and 3 form one component, the nodes 4 and 5 form a second component,
and the nodes 6 and 7 form another component. Replace each component
with a single node. The component with nodes 1, 2, and 3 is replaced with
the node a. The other two components are replaced with the nodes b and c,
respectively. Edges within the individual components are thrown away. The
resultant graph is shown in Figure 4.9(b). In this graph keep only an edge
of minimum weight between any two nodes. Delete any isolated nodes.

Since an edge is chosen for every node, the number of nodes after one
Bortivka step reduces by a factor of at least two. A minimum-cost span-
ning tree for the reduced graph can be extendedeasily to get a minimum-
cost spanning tree for the original graph. If E’ is the set of edges in the
minimum-cost spanning tree of the reduced graph, we simply include into
E’ the edges chosen in the Bortvka step to obtain the minimum-cost span-
ning tree edges for the original graph. In the example of Figure 4.9, a
minimum-cost spanning tree for (c) will consist of the edges (a,b) and (b,c).
Thus a minimum-cost spanning tree for the graph of (a) will have the edges:
(1,3), (3, 2), (4,5), (6, 7), (3,4), and (2,6). More details of the algorithmsare
given below.

Definition 4.2 Let F bea forest that forms a subgraph of a given weighted
graph G(V, £). Ifu and v are any two nodesin F,, let F’'(u,v) denote the path
(if any) connecting u and v in F andlet Fcost(u,v) denote the maximum
weight of any edge in the path F(u,v). If there is no path between u and
v in F, Fcost(u,v) is taken to be oo. Any edge (z,y) of G is said to be
F-heavyif cost|z, y] > Fcost(z,y) and F-light otherwise. Oo

Note that all the edges of F' are F-light. Also, any F-heavy edge cannot
belong to a minimum-cost spanning tree of G. The proof of this is left as
an exercise. The randomized algorithm applies two Bortivka steps to reduce
the numberof nodesin the input graph. Next, it samples the edges of G and
processes them to eliminate a constant fraction of them. A minimum-cost
spanning tree for the resultant reduced graph is recursively computed. From
this tree, a spanning tree for G is obtained. A detailed description of the
algorithm appears as Algorithm 4.11.

Lemma 4.3 states that Step 4 can be completed in time O(|V| + |E]).
The proof of this can be found in the references supplied at the end of this
chapter. Step 1 takes O(|V|+|£|) time and step 2 takes O(|E]|) time. Step 6
takes O(|E}) time as well. The time taken in all the recursive calls in steps 3
and 5 can be shown to be O(|V|+|E|). For a proof, see the references at the
end of the chapter. A crucial fact that is used in the proof is that both the
number of nodes and the numberof edges are reduced by a constant factor,
with high probability, in each level of recursion.

https://hemanthrajhemu.github.io

4.5. MINIMUM-COST SPANNING TREES 227

(b) (c)

Figure 4.9 A Boruvka step

Lemma 4.3 Let G(V,E) be any weighted graph and let F be a subgraph
of G that forms a forest. Then, all the F-heavy edges of G can be identified
in time O(|V| + |E£]). Oo

Theorem 4.7 A minimum-weight spanning tree for any given weighted

graph can be computedin time O(|V] + |E]). Oo

EXERCISES

1. Compute a minimumcost spanning tree for the graph of Figure 4.10
using (a) Prim’s algorithm and (b) Kruskal’s algorithm.

2. Prove that Prim’s method of this section generates minimum-cost
spanning trees.

https://hemanthrajhemu.github.io

228 CHAPTER 4. THE GREEDY METHOD

Step 1. Apply two Bortvka steps. At the end, the number of
nodes will have decreased by a factor at least 4. Let the resultant

graph be G(V, E).

Step 2. Form a subgraph G’(V", E’) of G, where each edge of G
is chosen randomly to be in E’ with probability > The expected

|B
number of edges in E’is '.

Step 3. Recursively find a minimum-cost spanning forest F’ for
G".

Step 4. Eliminate all the F-heavy edges from G. With high

probability, at least a constant fraction of the edges of G will be
eliminated. Let G” be the resultant graph.

Step 5. Compute a minimum-cost spanning tree (call it T”)
for G" recursively. The tree T” will also be a minimum-cost
spanning tree for G.

Step 6. Return the edges of T” together with the edges chosen in
the Bortvka steps of step 1. These are the edges of a minimum-
cost spanning tree for G.

Algorithm 4.11 An optimal randomized algorithm

3.

4,

5.

(a) Rewrite Prim’s algorithm under the assumption that the graphs
are represented by adjacencylists.

(b) Program and run the above version of Prim’s algorithm against
Algorithm 4.9. Compare the two on a representative set of graphs.

(c) Analyze precisely the computing time and space requirements of
your new version of Prim’s algorithm using adjacencylists.

Program and run Kruskal’s algorithm, described in Algorithm 4.10.
You will have to modify functions Heapify and Adjust of Chapter 2. Use
the sametest data you devised to test Prim’s algorithm in Exercise 3.

(a) Show that ift is a spanning tree for the undirected graph G, then
the addition of an edge q, q ¢ E(t) and q € E(G), to t creates a
unique cycle.

https://hemanthrajhemu.github.io

4.6. OPTIMAL STORAGE ON TAPES 229

Figure 4.10 Graph for Exercise 1

(b) Show that if any of the edges on this unique cycle is deleted from
E(t) U {q}, then the remaining edges form a spanningtree of G.

6. In Figure 4.9, find a minimum-cost spanningtree for the graph of part
(c) and extend the tree to obtain a minimum cost spanningtree for the
graph of part (a). Verify the correctness of your answer by applying
either Prim’s algorithm or Kruskal’s algorithm on the graph of part

(a).

7. Let G(V, £) be any weighted connected graph.

(a) If C is any cycle of G, then show that the heaviest edge of C’
cannot belong to a minimum-cost spanning tree of G.

(b) Assumethat F is a forest that is a subgraph of G. Show that any
F-heavy edge of G cannot belong to a minimum-cost spanning
tree of G.

8. By considering the complete graph with n vertices, show that the num-
ber of spanning trees in an n vertex graph can begreater than 2"~!—2.

4.6 OPTIMAL STORAGE ON TAPES

There are n programs that are to be stored on a computer tape of length
I. Associated with each program 7 is a length 1;,1 <i <n. Clearly, all
programs can be stored on the tape if and only if the sumof the lengths of

https://hemanthrajhemu.github.io

230 CHAPTER 4. THE GREEDY METHOD

the programs is at most !. We assume that whenever a program is to be
retrieved from this tape, the tape is initially positioned at the front. Hence,
if the programsare stored in the order J = 7, 19,...,%n, the time t; needed
to retrieve program 7; is proportional to Vij<,<,;li,. If all programs are

retrieved equally often, then the expected or mean retrieval time (MRT) is
(1/n) Vicj<ntj. In the optimal storage on tape problem, we are required
to find apermutation for the n programs so that when they are stored
on the tape in this order the MRT is minimized. This problem fits the
ordering paradigm. Minimizing the MRTis equivalent to minimizing d(J) =

Vi<j<n Li<k<j lie:

Example 4.8 Let n = 3 and (l;,/9,/3) = (5,10,3). There are n! = 6
possible orderings. These orderings and their respective d values are:

ordering / d(I)
1,2,3 9+5+104+5+10+3 = 38
1,3,2 5+54+34+54+34+10 = 31
2,1,3 10+104+54+10+5+3 = 4
2, 3,1 10+10+3+10+3+5 = 41
3,1,2 34+34+54+3+4+5410 = 29
3,2,1 34+34+104+3+4+104+5 = 34

The optimal ordering is 3,1, 2. Oo

A greedy approach to building the required permutation would choose
the next program on the basis of some optimization measure. One possible
measure would be the d value of the permutation constructed so far. The
next program to be stored on the tape would be one that minimizes the
increase in d. If we have already constructed the permutation 4),79,...,%,,

then appending program j gives the permutation 71, 29,...,%7,2r41 = j. This
increases the d value by Sycpp li, +1). Since Dy<pep li, is fixed and in-
dependent of 7, we trivially observe that the increase in d is minimizedif
the next program chosen is the one with the least length from among the
remaining programs.

The greedy algorithm resulting from the above discussion is so simple
that we won’t bother to write it out. The greedy method simply requires us
to store the programs in nondecreasing order of their lengths. This ordering
can be carried out in O(nlogn) time using an efficient sorting algorithm
(e.g., heap sort from Chapter 2). For the programs of Example 4.8, note
that the permutation that yields an optimal solution is the one in which the
programs are in nondecreasing order of their lengths. Theorem 4.8 shows
that the MRT is minimized when programs are stored in this order.

https://hemanthrajhemu.github.io

4.6. OPTIMAL STORAGE ON TAPES 231

Theorem 4.8 If i, < ly <--- < ly, then the ordering 1; = 7,1 <j <n,
minimizes

over all possible permutations of the 2).

Proof: Let J = 1, 7i2,...,in be any permutationof the index set {1,2,...,n}.
Then

nook n

d(1) = SO S04, = Vn -k + Dk,
k=1j=l k=1

If there exist a and 6} such that a < b and [;, > |;,, then interchanging %,
and i, results in a permutation J’ with

d(I') = |S -(n-k+Dhi,] +(n-a4 Dl, +(n—b+ Vi,

beg

k¢b

Subtracting d(Z’) from d(I), we obtain

d(I) _ d(I') = (n —at 1)(d;, _ li,) + (n —b+ 1) (li, _ Fe)

= (Oa) —li,)
>

Hence, no permutation that is not in nondecreasing order of the J,’s can
have minimum d. It is easy to see that all permutations in nondecreasing
order of the J;’s have the same d value. Hence, the ordering defined by
4; = 9,1 <j <n, minimizes the d value. oO

The tape storage problem can be extended to several tapes. If there are
m > 1 tapes, To,...,7m_—1, then the programs are to be distributed over
these tapes. For each tape a storage permutation is to be provided. If I;
is the storage permutation for the subset of programs on tape j, then d(;)
is as defined earlier. The total retrieval time (I'D) is Mo<j<m_1 dj). The
objective is to store the programs in such a way as to minimize TD.

The obvious generalization of the solution for the one-tape case is to
consider the programs in nondecreasing orderof l;’s. The program currently

https://hemanthrajhemu.github.io

232 CHAPTER 4. THE GREEDY METHOD

1 Algorithm Store(n,m)
2 // nis the numberof programs and m the numberof tapes.
3
4 j :=0; // Next tape to store on
5 for i1:=1tondo
6
7 write ("append program", i,
8 "to permutation for tape", 7);
9 j:=(9 +1) mod m;
10

11 }

Algorithm 4.12 Assigning programs to tapes

being considered is placed on the tape that results in the minimum increase
in TD. This tape will be the one with the least amount of tape used so
far. If there is more than one tape with this property, then the one with
the smallest index can be used. If the jobs are initially ordered so that 1, <

lg <---<1,, then the first m programs are assigned to tapes To,...,7Tm_—1
respectively. The next m programs will be assigned to tapes To,...,Tim_1
respectively. The general rule is that program 7 is stored on tape T; mod m-
On any given tape the programs are stored in nondecreasing order of their
lengths. Algorithm 4.12 presents this rule in pseudocode. It assumes that
the programs are ordered as above. It has a computing time of O(n) and
does not need to know the program lengths. Theorem 4.9 proves that the
resulting storage pattern is optimal.

Theorem 4.9 If 1, < Ig < --- < l,, then Algorithm 4.12 generates an
optimal storage pattern for m tapes.

Proof: In any storage pattern for m tapes, let r; be one greater than the
number of programsfollowing program i on its tape. Then the total retrieval
time T'D is given by

In any given storage pattern, for any given n, there can be at most m pro-
grams for which r; = 7. From Theorem 4.8 it follows that T’D is minimized
if the m longest programs have r; = 1, the next m longest programs have

https://hemanthrajhemu.github.io

4.6. OPTIMAL STORAGE ON TAPES 233

r; = 2, and so on. When programsare ordered by length, that is, l) < lo <

-+- <I,, then this minimization criteria is satisfied if ry; = [(n —i+1)/m}.
Observe that Algorithm 4.12 results in a storage pattern with these r;’s. O

The proof of Theorem 4.9 shows that there are many storage patterns
that minimize TD. If we compute r; = [(n —71+1)/m] for each program1,
then so long as all programs with the same r; are stored on different tapes

and have r; — 1 programs following them, TD is the same. If n is a multiple

of m, then there are at least (m!)”/™ storage patterns that minimize TD.
Algorithm 4.12 produces one of these.

EXERCISES

1. Find an optimal placement for 13 programs on three tapes Jo, 7), and
Ty, where the programs are of lengths 12,5, 8,32, 7,5, 18, 26, 4,3, 11, 10,
and 6.

2. Show that replacing the code of Algorithm 4.12 by

for i:=1tondo
write ("append program", 7, "to permutation for

tape", (i - 1) mod m);

does not affect the output.

3. Let P,, Po,..., Pn be aset of rn programs that are to be stored on a tape
of length 1. Program P; requires a; amount of tape. If So a; < J, then
clearly all the programscan bestored on the tape. So, assume)> a; > [.
The problem is to select a maximum subset Q of the programs for
storage on the tape. (A maximum subset is one with the maximum
numberof programs in it). A greedy algorithmfor this problem would
build the subset Q by including programs in nondecreasing orderof a;.

(a) Assume the P; are ordered such that a; < ag <--- < dn. Write

a function for the above strategy. Your function should output
an array s[{1 : nj such that s[i] = 1 if P; is in Q and s[i] = 0
otherwise.

(b) Show that this strategy always finds a maximum subset Q such
that. Peg a, <b.

(c) Let Q@ be the subset obtained using the above greedy strategy.
How small can the tape utilization ratio (Y’p.<g ai)/I get?

(d) Suppose the objective now is to determine a subset of programs
that maximizes the tape utilization ratio. A greedy approach

https://hemanthrajhemu.github.io

234 CHAPTER 4. THE GREEDY METHOD

would be to consider programs in nonincreasing order of a;. If
there is enough spaceleft on the tape for P;, then it is included in
@. Assume the programs are ordered so that a; > ag >--- > ay.
Write a function incorporating this strategy. Whatis its time and
space complexity?

(e) Show that the strategy of part (d) doesn’t necessarily yield a
subset that maximizes ()°p¢gai)/l. How small can this ratio
get? Prove your bound.

4. Assume n programsof lengths 1, l2,...,l, are to be stored on a tape.
Program i is to be retrieved with frequency f;. If the programs are
stored in the order 7, i2,...,%n, the expected retrieval time (ERT) is

Su. Soli | IS fi
j k=1

(a) Show that storing the programs in nondecreasing order of 1; does
not necessarily minimize the ERT.

(b) Show that storing the programs in nonincreasing order of f; does
not necessarily minimize the ERT.

(c) Show that the ERT is minimized when the programs are stored
in nonincreasing order of fj;/1;.

Consider the tape storage problem of this section. Assume that two
tapes Tl and T2, are available and we wish to distribute n given
programsof lengths 1, lo,...,l, onto these two tapes in such a manner
that the maximumretrieval time is minimized. That is, if A and B are
the sets of programs on the tapes T1 and T2 respectively, then we wish
to choose A and B such that max { Vje4 li, View li } is minimized. A
possible greedy approach to obtaining A and B would beto start with
A and B initially empty. Then consider the programs one at a time.
The program currently being consideredis assigned to set A if Wye, li
=min { Vieali, Niepli }; otherwise it is assigned to B. Show that
this does not guarantee optimal solutions even iff; < lg <--- < In.

Show that the same is true if we require ly > [lg >--- > In.

4.7 OPTIMAL MERGE PATTERNS

In Section 3.4 we saw that two sorted files containing n and m records
respectively could be merged together to obtain onesortedfile in time O(n +
m). When more than twosorted files are to be merged together, the merge
can be accomplished by repeatedly merging sorted files in pairs. Thus, if

https://hemanthrajhemu.github.io

4.7. OPTIMAL MERGE PATTERNS 235

files 2|,29,%3, and x4 are to be merged, we could first merge x; and x
to get a file y;. Then we could merge y; and x3 to get yo. Finally, we
could merge yo and x4 to get the desired sorted file. Alternatively, we could
first merge x, and xy getting yi, then merge x3 and x4 and get yo, and

finally merge y; and y2 and get the desired sorted file. Given n sortedfiles,
there are many ways in which to pairwise merge them into a single sorted

file. Different pairings require differing amounts of computing time. The
problem we address ourselves to now is that of determining an optimal way
(one requiring the fewest comparisons) to pairwise merge n sorted files. Since
this problemcalls for an ordering among the pairs to be merged,it fits the
ordering paradigm.

Example 4.9 Thefiles 7, 72, and x3 are three sorted files of length 30, 20,

and 10 records each. Merging x, and x2 requires 50 record moves. Merging
the result with x3 requires another 60 moves. The total number of record
moves required to merge the three files this way is 110. If, instead, wefirst
merge x2 and x3 (taking 30 moves) and then x; (taking 60 moves), the total
record moves made is only 90. Hence, the second merge pattern is faster
than thefirst. O

A greedy attempt to obtain an optimal merge pattern is easy to formulate.
Since merging an n-record file and an m-recordfile requires possibly n +
m record moves, the obvious choice for a selection criterion is: at each
step merge the two sinallest size files together. Thus, if we have five files
(v1,...,£5) with sizes (20, 30, 10,5, 30), our greedy rule would generate the
following merge pattern: merge x4 and «3 to get 2) (|z1| = 15), merge z; and
x1 to get 2 (|z2| = 35), merge zy and z5 to get 23 (|z3| = 60), and merge
zg and z3 to get the answer z4. The total number of record moves is 205.

One canverify that this is an optimal merge pattern for the given problem
instance.

The merge pattern such as the one just described will be referred to
as a two-way merge pattern (each merge step involves the merging of two
files). The two-way merge patterns can be represented by binary merge
trees. Figure 4.11 shows a binary merge tree representing the optimal merge
pattern obtained for the abovefive files. The leaf nodes are drawn as squares
and represent the given five files. These nodes are called external nodes. The
remaining nodes are drawn as circles and are called internal nodes. Each
internal node has exactly two children, and it represents the file obtained
by merging the files represented by its two children. The number in each
nodeis the length (i-e., the numberof records) of the file represented by that
node.

The external node x4 is at a distance of 3 from the root node z4 (a node
at level i is at a distance of i — 1 from the root). Hence, the recordsof file
£4 are moved three times, once to get 21, once again to get z2, and finally
one more time to get z4. If d; is the distance from the root to the external

https://hemanthrajhemu.github.io

236 CHAPTER 4. THE GREEDY METHOD

X4 X3

Figure 4.11 Binary merge tree representing a merge pattern

nodefor file x; and q;, the length of x; is then the total numberof record
movesfor this binary merge tree is

n

So digi
i=1

This sum is called the weighted external path length of the tree.

An optimal two-way merge pattern corresponds to a binary merge tree
with minimum weighted external path length. The function Tree of Algo-
rithm 4.13 uses the greedy rule stated earlier to obtain a two-way merge
tree for n files. The algorithm has as input a list list of n trees. Each node
in a tree has three fields, lchild, rchild, and weight. Initially, each tree in
list has exactly one node. This nodeis an external node and has [child and
rchild fields zero whereas weight is the length of one of the n files to be
merged. During the course of the algorithm, for any tree in list with root
node t, t > weight is the length of the mergedfile it represents (¢ > weight
equals the sum of the lengths of the external nodes in tree ¢). Function Tree
uses two functions, Least(list) and Insert(list,t). Least(/ist) finds a tree in
list whose root has least weight and returns a pointer to this tree. This tree
is removed from list. Insert(list, ¢) inserts the tree with root t into list. The-
orem 4.10 shows that Tree (Algorithm 4.13) generates an optimal two-way
merge tree.

https://hemanthrajhemu.github.io

4.7. OPTIMAL MERGE PATTERNS 237

treenode = record {
treenode * Ichild; treenode « rchild;
integer weight;

}s

1 Algorithm Tree(n)
2 // list is a globallist of n single node
3 // binary trees as described above.
4
5 for i:=1ton—1do

6 {
7 pt := new treenode; // Get a new tree node.
8 (pt + Ichild) := Least(list); // Merge two trees with
9 (pt > rchild) := Least(list); // smallest lengths.
10 (pt > weight) := ((pt > Ichild) > weight)
11 +((pt + rchild) > weight);
12 Insert (list, pt);
13
14 return Least(list); // Tree left in list is the mergetree.
15 }

Algorithm 4.13 Algorithm to generate a two-way merge tree

Example 4.10 Let us see how algorithm Tree works whenlist initially rep-
resents six files with lengths (2,3,5,7,9,13). Figure 4.12 showslist at the
end of each iteration of the for loop. The binary merge tree that results at
the end of the algorithm can be used to determine which files are merged.
Merging is performed on those files which are lowest (have the greatest
depth) in the tree.

The main for loop in Algorithm 4.13 is executed n — 1 times. If list
is kept in nondecreasing order according to the weight value in the roots,
then Least(Jist) requires only O(1) time and Insert(Jist,t) can be done in
O(n) time. Hence the total time taken is O(n”). In case list is represented
as a minheap in which the root value is less than or equal to the values of
its children (Section 2.4), then Least(list) and Insert(list,¢) can be done in
O(log n) time. In this case the computing time for Tree is O(n logn). Some
speedup may be obtained by combining the Insert of line 12 with the Least
of line 9.

https://hemanthrajhemu.github.io

238 CHAPTER 4. THE GREEDY METHOD

Theorem 4.10 If list initially contains n > 1 single node trees with weight
values (q1,92,---;n), then algorithm Tree generates an optimal two-way

merge tree for n files with these lengths.

Proof: The proof is by induction on n. For n = 1, a tree with no internal
nodesis returned andthis tree is clearly optimal. For the induction hypoth-
esis, assume the algorithm generates an optimal two-way mergetree for all
(41, 92,---;9m), 1 <m <n. We show that the algorithm also generates op-
timaltrees for all (q1,q2,.--,¢@n). Without loss of generality, we can assume
that q) < qo <--- < qm and q; and qo are the values of the weight fields

of the trees found by algorithm Least in lines 8 and 9 duringthefirst itera-
tion of the for loop. Now, the subtree T of Figure 4.13 is created. Let T’
be an optimal two-way merge tree for (q1,q2,---;@n). Let p be an internal
node of maximum distance from the root. If the children of p are not q
and gq, then we can interchange the present children with q, and gg with-
out increasing the weighted external path length of T’. Hence, T is also a
subtree in an optimal mergetree. If we replace T' in T’ by an external node
with weight q, + qo, then the resulting tree T” is an optimal merge tree for

(qi +92, 93;---,Qn)- From the induction hypothesis, after replacing T’ by the
external node with value gq; + qo, function Tree proceeds to find an optimal
merge tree for (qi + q2,q3,---;4n). Hence, Tree generates an optimal merge
tree for (q1,G2,---54n)- oO

The greedy method to generate merge trees also works for the case of k-
ary merging. In this case the corresponding mergetree is a k-ary tree. Since
all internal nodes must have degree k, for certain values of n there is no
corresponding k-ary merge tree. For example, when k = 3, there is no k-ary
merge tree with n = 2 external nodes. Hence, it is necessary to introduce
a certain number of dummy external nodes. Each dummy nodeis assigned
aq of zero. This dummy value does not affect the weighted external path
length of the resulting k-ary tree. Exercise 2 shows that a k-ary tree with
all internal nodes having degree & exists only when the number of external
nodesn satisfies the equality n mod(&—1) = 1. Hence, at most k—-2 dummy
nodes have to be added. The greedy rule to generate optimal merge trees
is: at each step choose k subtrees with least length for merging. Exercise 3
proves the optimality of this rule.

Huffman Codes

Another application of binary trees with minimal weighted external path
length is to obtain an optimal set of codes for messages Mj,...,My+41. Each
code is a binary string that is used for transmission of the corresponding
message. At the receiving end the code is decoded using a decodetree.
A decodetree is a binary tree in which external nodes represent messages.

https://hemanthrajhemu.github.io

4.7. OPTIMAL MERGE PATTERNS 239

after

iteration

initial [2] [9]

(o., 2058
2 3

list

2 (10) (7) {9} {13

5
By

Figure 4.12 Trees in list of Tree for Example 4.10

https://hemanthrajhemu.github.io

240 CHAPTER 4. THE GREEDY METHOD

ee
q\ 9q2

Figure 4.13 The simplest binary mergetree

Figure 4.14 Huffman codes

The binary bits in the code word for a message determine the branching
needed at each level of the decode tree to reach the correct external node.
For example, if we interpret a zero as a left branch and a one as a right
branch, then the decode tree of Figure 4.14 corresponds to codes 000, 001,
01, and 1 for messages Mj), Mo, M3, and My, respectively. These codes are
called Huffman codes. The cost of decoding a code word is proportional to
the number of bits in the code. This number is equal to the distance of
the corresponding external node from the root node. If q; is the relative
frequency with which message M; will be transmitted, then the expected
decode time is }ij<icn41 Gidi, Where dj is the distance of the external node
for message M; fromthe root node. The expected decode time is minimized
by choosing code words resulting in a decode tree with minimal weighted
external path length! Note that >7)<j<n41q@di is also the expected length
of a transmitted message. Hence thecode that minimizes expected decode
time also minimizes the expected length of a message.

https://hemanthrajhemu.github.io

4.8. SINGLE-SOURCE SHORTEST PATHS 241

EXERCISES

1. Find an optimal binary merge pattern for ten files whose lengths are
28, 32, 12, 5, 84, 53, 91, 35,3, and 11.

2. (a) Show that if all internal nodes in a tree have degree k, then the
number 7 of external nodes is such that n mod (k — 1) = 1.

Show that for every n such that n mod (k —1) = 1, there exists a
k-ary tree T with n external nodes (in a k-ary tree all nodes have
degree at most /&). Also show that all internal nodes of T’ have
degree k.

Show that ifm mod (k — 1) = 1, then the greedy rule described
following Theorem 4.10 generates an optimal k-ary merge tree for

all (41, 425+++54n):
Draw the optimal three-way merge tree obtained using this rule
when (gq, d2,.-. .01) = (3, 7, 8, 9, 15, 16, 18, 20, 23, 25, 28).

4. Obtain a set of optimal Huffman codes for the messages (Mj,..., M7)
with relative frequencies (q),...,9¢7) = (4,5, 7, 8,10, 12,20). Draw the
decode tree for this set of codes.

5. Let T be a decode tree. An optimal decode tree minimizes)* qjd;. For
a given set of q’s, let D denote all the optimal decode trees. For any tree
T € D,let L(T) = max {d;} and let SL(T’) = 0 d;. Schwartz has shown
that there exists a tree T* € D such that L(T*) = minrep {L(T)}
and SL(7*) = minrep {SL(T)}.

(a)

(b)

(c)

For (q@,.--,98) = (1,1, 2, 2,4,4,4,4) obtain trees T1 and T2 such
that L(T1) > L(T2).

Using the data of a, obtain T1 and T2 € D such that L(T1) =
L(T2) but SL(T1) > SL(T2).

Show that if the subalgorithm Least used in algorithm Tree is such
that in case of a tie it returns the tree with least depth, then Tree
generates a tree with the properties of T*.

4.8 SINGLE-SOURCE SHORTEST PATHS

Graphs can be used to represent the highway structure of a state or country
with vertices representing cities and edges representing sections of highway.
The edges can then be assigned weights which may beeither the distance
between the two cities connected by the edge or the average time to drive
along that section of highway. A motorist wishing to drive from city A to B
would be interested in answers to the following questions:

https://hemanthrajhemu.github.io

242 CHAPTER 4. THE GREEDY METHOD

Path Length

1) 1,4 10

2) 1,4,5 25

3) 1,4,5,2 45

4) 1,3 45

(a) Graph (b) Shortest paths from 1

Figure 4.15 Graph and shortest paths from vertex 1 to all destinations

e Is there a path from A to B?

e If there is more than one path from A to B, which is the shortest path?

The problems defined by these questions are special cases of the path
problem we study in this section. The length of a path is now defined to
be the sum of the weights of the edges on that path. The starting vertex
of the path is referred to as the source, and the last vertex the destination.
The graphs are digraphs to allow for one-way streets. In the problem we
consider, we are given a directed graph G = (V,£), a weighting function
cost for the edges of G, and a source vertex vg. The problem is to determine
the shortest paths from vp to all the remaining vertices of G. It is assumed
that all the weights are positive. The shortest path between vg and some
other node v is an ordering among a subset of the edges. Hence this problem
fits the ordering paradigm.

Example 4.11 Consider the directed graph of Figure 4.15(a). The numbers
on the edges are the weights. If node 1 is the source vertex, then the shortest
path from 1 to 2 is 1,4,5,2. The length of this path is 10 + 15 + 20 = 45.
Even though there are three edges on this path, it is shorter than the path
1,2 which is of length 50. There is no path from 1 to 6. Figure 4.15(b)
lists the shortest paths from node 1 to nodes4, 5, 2, and 3, respectively. The
paths have been listed in nondecreasing order of path length. oO

To formulate a greedy-based algorithm to generate the shortest paths,
we must conceive of a multistage solution to the problem and also of an
optimization measure. One possibility is to build the shortest paths one by

https://hemanthrajhemu.github.io

4.8. SINGLE-SOURCE SHORTEST PATHS 243

one. As an optimization measure we can use the sum of the lengths ofall
paths so far generated. For this measure to be minimized, each individual
path must be of minimum length. If we have already constructed 2 shortest
paths, then using this optimization measure, the next path to be constructed
should be the next shortest minimumlength path. The greedy way (and also
a systematic way) to generate the shortest paths from vp to the remaining

vertices is to generate these paths in nondecreasing order of path length.
First, a shortest path to the nearest vertex is generated. Then a shortest
path to the second nearest vertex is generated, and so on, For the graph

of Figure 4.15(a) the nearest vertex to v9 = 1 is 4 (cost[1,4] = 10). The
path 1,4 is the first path generated. The second nearest vertex to node 1
is 5 and the distance between 1 and 5 is 25. The path 1,4,5 is the next
path generated. In order to generate the shortest paths in this order, we
need to be able to determine (1) the next vertex to which a shortest path
must be generated and (2) a shortest path to this vertex. Let S denote the
set of vertices (including v9) to which the shortest paths have already been
generated. For wnot in S, let dist[w] be the length of the shortest path
starting from vo, going through only those vertices that are in S, and ending
at w. We observe that:

1. If the next shortest path is to vertex u, then the path begins at vo,

ends at u, and goes through only those vertices that are in S. To prove
this, we must show that all the intermediate vertices on the shortest
path to u are in S. Assumethere is a vertex w on this path that is not
in S. Then, the vp to u path also contains a path from vo to w that is
of length less than the vo to u path. By assumption the shortest paths
are being generated in nondecreasing order of path length, and so the
shorter path v9 to w must already have been generated. Hence, there
can be no intermediate vertex that is not in S.

2. The destination of the next path generated must be that of vertex u
which has the minimum distance, dist[u], among all vertices not in S.
This follows fromthe definition of dist and observation 1. In case there
are several vertices not in S with the samedist, then any of these may
be selected.

3. Having selected a vertex u as in observation 2 and generated the short-
est. vg to u path, vertex u becomes a member of S. At this point the
length of the shortest paths starting at vp, going though vertices only
in S, and ending at a vertex w not in S may decrease; that is, the
value of dist[w] may change. If it does change, then it must be due
to a shorter path starting at vg and going to u and then to w. The
intermediate vertices on the vg to u path and the u to w path must
all be in S. Further, the vg to u path must be the shortest such path;
otherwise dist[w] is not defined properly. Also, the u to w path can
be chosen so as not to contain any intermediate vertices. Therefore,

https://hemanthrajhemu.github.io

244 CHAPTER 4. THE GREEDY METHOD

we can concludethat if dist[w] is to change(i-e., decrease), then it is
because of a path from vp to u to w, where the path from vg to u is
the shortest such path and the path from u to w is the edge (u, w).
The length of this path is dist[u] + cost[u, w].

The above observations lead to a simple Algorithm 4.14 for the single-
source shortest path problem. This algorithm (known as Dijkstra’s algo-
rithm) only determines the lengths of the shortest paths from vo to all other
vertices in G. The generation of the paths requires a minor extension to this
algorithm andis left as an exercise. In the function ShortestPaths (Algorithm
4.14) it is assumed that the n vertices of G are numbered 1 through n. The
set S is maintained as a bit array with S[7i] = 0 if vertex 7 is not in S and
Si] = if it is. It is assumed that the graphitself is represented by its cost
adjacency matrix with cost/i,j]’s being the weight of the edge (i,j). The
weight cost|i, j] is set to some large number, oo, in case the edge (i, j) is not
in E(G). For i = 7, cost|i, 7] can be set to any nonnegative number without
affecting the outcomeof the algorithm.

From ourearlier discussion, it is easy to see that the algorithm is correct.
The time taken by the algorithm on a graph with n vertices is O(n). To
see this, note that the for loop of line 7 in Algorithm 4.14 takes O(n) time.
The for loop of line 12 is executed n — 2 times. Each execution of this loop
requires O(n) time at lines 15 and 16 to select the next vertex and again
at the for loop of line 18 to update dist. So the total time for this loop is
O(n). In case a list t of vertices currently not in s is maintained, then the
number of nodes on this list would at any time be n — num. This would
speed up lines 15 and 16 and the for loop of line 18, but the asymptotic
time would remain O(n2). This and other variations of the algorithm are
explored in the exercises,

Any shortest path algorithm must examine each edge in the graph at
least once since any of the edges could be in a shortest path. Hence, the
minimum possible time for such an algorithm would be Q(|E£|). Since cost
adjacency matrices were used to represent the graph, it takes O(n”) time
just to determine which edges are in G, and so any shortest path algorithm
using this representation must take Q(n*) time. For this representation then,
algorithm ShortestPaths is optimal to within a constant factor. If a change
to adjacencylists is made, the overall frequency of the for loop of line 18 can
be brought down to O(|E|) (since dist can change only for vertices adjacent
from u). If V — S is maintained as a red-black tree (see Section 2.4.2), each
execution of lines 15 and 16 takes O(logn) time. Note that a red-black
tree supports the following operations in O(logn) time: insert, delete (an
arbitrary element), find-min, and search (for an arbitrary element). Each
update in line 21 takes O(logn) time as well (since an update can be done
using a delete and an insertion into the red-black tree). Thus the overall run
time is O((n + |E]) log n).

https://hemanthrajhemu.github.io

4.8. SINGLE-SOURCE SHORTEST PATHS 245

1 Algorithm ShortestPaths(v, cost, dist,n)
2 // dist[j], 1 <j <n, is set to the length of the shortest
3 // path from vertex v to vertex j in a digraph G with n
4 // vertices. dist[v] is set to zero. G is represented by its
5 // cost adjacency matrix cost[1:n,1: nl].
6
7 for 7:=1tondo
8 { // Initialize S.
9 Sli] := false; dist|i] := cost{v, i];
10
11 Sv] := true; dist[v] := 0.0; // Put v in S.
12 for num := 2 to n—1 do
13 {
14 // Determine n — 1 paths from v.
15 Choose u from among those vertices not
16 in S such that dist[u] is minimum;
17 Slu] := true; // Put u in S.
18 for (each w adjacent to u with S[w] = false) do
19 // Update distances.
20 if (dist[w] > dist[u] + cost[u, w])) then
21 dist|w] := dist[u] + cost[u, w];
22
23 }

Algorithm 4.14 Greedy algorithm to generate shortest paths

Example 4.12 Consider the eight vertex digraph of Figure 4.16(a) with
cost adjacency matrix as in Figure 4.16(b). The values of dist and the
vertices selected at each iteration of the for loop of line 12 in Algorithm 4.14
for finding all the shortest paths from Boston are shown in Figure 4.17. To
begin with, S contains only Boston. In thefirst iteration of the for loop
(that is, for num = 2), the city u that is not in S and whose dist[u] is
minimumis identified to be New York. New York enters the set S. Also the
dist| | values of Chicago, Miami, and New Orleansget altered since there are
shorter paths to these cities via New York. In the next iteration of the for
loop, the city that enters S is Miami since it has the smallest dis¢[] value
from among all the nodes not in S. Noneof the dist[|] values are altered.
The algorithm continues in a similar fashion and terminates when only seven
of the eight vertices are in S. By the definition of dist, the distance of the
last vertex, in this case Los Angeles, is correct as the shortest path from
Boston to Los Angeles can go through only the remaining six vertices. O

https://hemanthrajhemu.github.io

246 CHAPTER 4. THE GREEDY METHOD

Boston

Chicago 1500

iw250
New York

900

San Francisca,

=.300 enver

1000 1700

 1

Los Angeles New Orleans

Miami

(a) Digraph

1 2 3 4 5 6 7 8

1 | 0 |
2 300 0

3 100 ~=—-800 0

4 1200 0

5 1500 0 250

6 1000 0 900 1400

7 0 1000

8 1700 0
(b) Length-adjacency matrix

Figure 4.16 Figures for Example 4.12

One can easily verify that the edges on the shortest paths from a ver-
tex v to all remaining vertices in a connected undirected graph G form a
spanning tree of G. This spanningtree is called a shortest-path spanning
tree. Clearly, this spanning tree may be different for different root vertices
v. Figure 4.18 shows a graph G, its minimum-cost spanning tree, and a
shortest-path spanning tree from vertex 1.

https://hemanthrajhemu.github.io

4.8. SINGLE-SOURCE SHORTEST PATHS 247

Distance

Iteration S Vertex LA SF DEN CHI BOST NY MIA NO

selected | [1] [2] [3] [4] [5] [6] [7] [8]

Initial | -- a | +00 +00 too 1500 QO 250 +00 +oo |

1 {5} 6 | p00 +00 +eo 1250 0 250 1150 1650

2! {56) 7 +00 +00 +eo 1250 0 250 1150 1650

3 {5,6,7} | 4 foo +o0 2450) 1250 0 250 1150 1650

4 {5,6,7,4} 8 3350 too 2450 1250 QO 250 1150 1650

5 {5,6,7,4,8} | 3 3350 =3250 =6©2450 1250 0 250 1150 1650

6 {5,6,7,4,8,3 } 2 3350 3250 2450 1250 O 250 1150 1650

6,7,4,8,3,2 :{ {5,6,7, } | i!

Figure 4.17 Action of ShortestPaths

EXERCISES

1. Use algorithmShortestPaths to obtain in nondecreasing orderthe lengths
of the shortest paths from vertex 1 to all remaining vertices in the di-
graph of Figure 4.19.

2. Using the directed graph of Figure 4.20 explain why ShortestPaths will
not work properly. What is the shortest path between vertices v, and
v7?

3. Rewrite algorithm ShortestPaths under the following assumptions:

(a) G is represented by its adjacency lists. The head nodes are
HEAD(1),..., HEAD(m) and each list node has threefields: VER-
TEX, COST, and LINK. COSTis the length of the corresponding
edge and n the numberof vertices in G.

(b) Instead of representing S, the set of vertices to which the shortest
paths have already been found, the set T = V(G) — S is repre-
sented using a linked list. What can you say about the computing
time of your new algorithmrelative to that of ShortestPaths?

4. Modify algorithm ShortestPaths so that it obtains the shortest paths
in addition to the lengths of these paths. What is the computing time
of your algorithm?

https://hemanthrajhemu.github.io

248 CHAPTER 4. THE GREEDY METHOD

(c) Shortest path spanning tree from vertex 1.

Figure 4.18 Graphs and spanning trees

Figure 4.19 Directed graph

https://hemanthrajhemu.github.io

4.9. REFERENCES AND READINGS 249

Figure 4.20 Another directed graph

4.9 REFERENCES AND READINGS

The linear time algorithmin Section 4.3 for the tree vertex splitting problem
can be found in “Vertex upgrading problems for VLSI,” by D. Paik, Ph.D.
thesis, Department of Computer Science, University of Minnesota, October
1991.

The two greedy methods for obtaining minimum-cost spanning trees are
due to R. C. Prim and J. B. Kruskal, respectively.

An O(e log logv) time spanning tree algorithm has been given by A. C.
Yao.

The optimal randomized algorithm for minimum-cost spanning trees pre-
sented in this chapter appears in “A randomized linear-time algorithm for
finding minimum spanning trees,” by P. N. Klein and R. E. Tarjan, in Pro-
ceedings of the 26th Annual Symposium on Theory of Computing, 1994, pp.
9-15. See also “A randomized linear-time algorithm to find minimum span-
ning trees,” by D. R. Karger, P. N. Klein, and R. E. Tarjan, Journal of the
ACM 42, no, 2 (1995): 321-328.

Proof of Lemma, 4.3 can be found in “Verification and sensitivity analysis
of minimuin spanningtreesin linear time,” by B. Dixon, M. Rauch, and R.E.
Tarjan, SIAM Journal on Computing 21 (1992): 1184-1192, and in “A simple
minimum spanning tree verification algorithm,” by V. King, Proceedings of
the Workshop on Algorithms and Data Structures, 1995.

A very nearly linear time algorithm for minimum-cost spanning trees ap-
pears in “Efficient algorithms for finding minimum spanningtrees in undi-
rected and directed graphs,” by H. N. Gabow, Z. Galil, T. Spencer, and
R. E. Tarjan, Combinatorica 6 (1986): 109-122.

https://hemanthrajhemu.github.io

200 CHAPTER 4. THE GREEDY METHOD

A linear time algorithm for minimum-cost spanning trees on a stronger
model where the edge weights can be manipulated in their binary form is
given in “Trans-dichotomous algorithms for minimum spanning trees and
shortest paths,” by M. Fredman and D. E. Willard, in Proceedings of the
31st Annual Symposium on Foundations of Computer Science, 1990, pp.
719-725.

The greedy method developed here to optimally store programs on tapes
was first devised for a machine scheduling problem. In this problem n jobs
have to be scheduled on m processors. Job i takes ¢; amount of time. The
time at which a job finishes is the sum of the job times for all jobs preced-
ing and including job 7. The average finish time corresponds to the mean

access time for programs on tapes. The (m!)"/™ schedules referred to in
Theorem 4.9 are known as SPT (shortest processing time) schedules. The
rule to generate SPT schedules as well as the rule of Exercise 4 (Section 4.6)
are due to W. E. Smith.

The greedy algorithm for generating optimal merge trees is due to D.
Huffman.

For a given set {q1,-.-,@n} there are many sets of Huffman codes mini-
mizing >> g;d;. From amongst these codesets there is one that has minimum
>> d; and minimum max {d;}. An algorithm to obtain this code set was
given by E. 5. Schwartz.

The shortest-path algorithm of the text is due to E. W. Dijkstra.

For planar graphs, the shortest-path problem can be solvedin linear time
as has been shown in “Faster shortest-path algorithms for planar graphs,”
by P. Klein, 5. Rao, and M. Rauch, in Proceedings of the ACM Symposium
on Theory of Computing, 1994.

The relationship between greedy methods and matroids is discussed in
Combinatorial Optimization, by E. Lawler, Holt, Rinehart and Winston,
1976.

410 ADDITIONAL EXERCISES

1. [Coin changing] Let An = {@1,a2,..-,@n} be a finite set of distinct
coin types (for example, a) = 50¢, a2 = 25¢, a3 = 10¢, and so on.) We
can assume each a; is an integer and a, > a2 > --: > Gy. Each typeis

available in unlimited quantity. The coin-changing problem is to make
up an exact amount C using a minimum total numberofcoins. C’ is
an integer > 0.

https://hemanthrajhemu.github.io

4.10. ADDITIONAL EXERCISES 251

(a) Show that if a, 4 1, then there exists a finite set of coin types and
a C' for which there is no solution to the coin-changing problem.

(b) Show that there is always a solution when a, = 1.

(c) When a, = 1, a greedy solution to the problem makes change
by using the coin types in the order a1, 49,...,@,. When coin
type a, is being considered, as many coinsof this type as possible
are given. Write an algorithm based on this strategy. Show that
this algorithm doesn’t necessarily generate solutions that use the
minimumtotal numberof coins.

(d) Show that if An = {k"-1,k"-?,...,k°} for some k > 1, then the
greedy methodof part (c) always yields solutions with a minimum
numberof coins.

2. [Set cover] You are given a family S of m sets S;,1 <i <m. Denote
by |A| the size of set A. Let [Sj] = ji; that is, S; = {s1,82,...,5;,}.
A subset T = {T),T,...,T,} of S is a family of sets such that for
each i,1 <i <k, T; = S, for some r,1 <7 < m. The subset 7 is
a cover of S iff UT; = US;. Thesize of T, |T'|, is the number ofsets
in T. A minimumcover of S is a cover of smallest size. Consider
the following greedy strategy: build T' iteratively, at the Ath iteration
T = {T%,...,Tk_-1}, now add to T a set S; from S$ that contains the
largest numberof elements not already in T,, and stop when UT; = US;.

(a) Assume that US; = {1,2,...,} and m <n. Using the strategy
outlined above, write an algorithm to obtain set covers. How
much time and space does your algorithmrequire?

(b) Show that the greedy strategy above doesn’t necessarily obtain a
minimumset cover.

(c) Suppose now that a minimumcoveris defined to be one for which

y*_, |Z;| is minimum. Does the above strategy always find a
minimum cover?

3. [Node cover] Let G = (V, E) be an undirected graph. A node cover of
G is asubset U of the vertex set V such that every edge in EF is incident
to at least one vertex in U. A minimum nodecover is one with the
fewest numberof vertices. Consider the following greedy algorithm for
this problem:

https://hemanthrajhemu.github.io

252 CHAPTER 4. THE GREEDY METHOD

Algorithm Cover(V, E)

U :=9;
repeat

Let g be a vertex from V of maximum degree;
Add q to U; Eliminate q from V;
E:= E — {(x,y) such that x =q or y= q};

} until (FE = 9); // U is the node cover.

E
P
e
E
a
o
n
o
o
u
h
w
n
N
r
e

0 }

Does this algorithm always generate a minimum node cover?

[Traveling salesperson] Let G be a directed graph with n vertices. Let
length(u,v) be the length of the edge (u,v). A path starting at a given
vertex vg, going through every other vertex exactly once, and finally
returning to vo is called a tour. The length of a tour is the sum of the
lengths of the edges on the path defining the tour. We are concerned
with finding a tour of minimum length. A greedy way to construct
such a touris: let (P,v) represent the path so far constructed; it starts
at vg and endsat v. Initially P is empty and v = vo, if all vertices in G
are on P, then include the edge (v, vo) and stop; otherwise include an
edge (v,w) of minimum length among all edges from v to a vertex w
not on P. Show that this greedy method doesn’t necessarily generate
a minimum-length tour.

https://hemanthrajhemu.github.io

