

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

COMPUTER ALGORITHMS

Ellis Horowitz
University of Southern California

Sartaj Sahni
University of Florida

Sanguthevar Rajasekaran
University of Florida

@
ComputerScience Press

An imprint of W. H. Freeman and Company

New York

https://hemanthrajhemu.github.io

CONTENTS ix

4.5.2 Kruskal’s Algorithm 220

4.5.3 An Optimal Randomized Algorithm (*) 225

4.66 OPTIMAL STORAGE ON TAPES 229

4.7 OPTIMAL MERGE PATTERNS................ 234

4.8 SINGLE-SOURCE SHORTEST PATHS 241

4.9 REFERENCES AND READINGS 249

4.10 ADDITIONAL EXERCISES 250

5 DYNAMIC PROGRAMMING 253

5.1 THE GENERAL METHOD................... 203

5.2 MULTISTAGE GRAPHS 0.0000 - 207

5.38 ALL PAIRS SHORTEST PATHS 265

5.4 SINGLE-SOURCE SHORTEST PATHS:............

GENERAL WEIGHTS22000- 270

5.5 OPTIMAL BINARY SEARCH TREES(*) 275

5.6 STRING EDITING00040. 284

5.7 O/1-KNAPSACK0.0.02..2.. 0.2.02. 0020 000. 287

5.8 RELIABILITY DESIGN..................... 295

5.9 THE TRAVELING SALESPERSON PROBLEM 298

5.10 FLOW SHOP SCHEDULING. 301

5.11 REFERENCES AND READINGS 307

5.12 ADDITIONAL EXERCISES 308

6 BASIC TRAVERSAL AND SEARCH TECHNIQUES 313

6.1 TECHNIQUES FOR BINARY TREES 313

6.2 TECHNIQUES FOR GRAPHS 318

6.2.1 Breadth First Search and Traversal. 320

6.2.2. Depth First Search and Traversal...2.. 323

6.3 CONNECTED COMPONENTS AND SPANNING TREES . 325

6.4 BICONNECTED COMPONENTS AND DFS......... 329

6.5 REFERENCES AND READINGS 338

7 BACKTRACKING 339

7.1 THE GENERAL METHOD................... 339

7.2 THE 8-QUEENS PROBLEM-.....- 353

7.3 SUM OF SUBSETS0200- 307

7.4 GRAPH COLORING00. 000058 360

7.5 HAMILTONIAN CYCLES0.-. 364

7.6 KNAPSACK PROBLEM+2+04 368https://hemanthrajhemu.github.io

Chapter 5

DYNAMIC
PROGRAMMING

5.1 THE GENERAL METHOD

Dynamic programming is an algorithm design method that can be used
when the solution to a problem can be viewed as the result of a sequence of
decisions. In earlier chapters we saw many problems that can be viewed this
way. Here are some examples:

Example 5.1 [Knapsack] The solution to the knapsack problem (Section
4.2) can be viewed as the result of a sequence of decisions. We have to
decide the values of 4;,1 <a<n. First we make a decision on 21, then on

xo, then on x3, and so on. An optimal sequence of decisions maximizes the
objective function 5° p;z;. (It also satisfies the constraints }> wry << m and

0<4,< 1.) QO

Example 5.2 [Optimal merge patterns] This problem was discussed in Sec-
tion 4.7. An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair
third, and so on. An optimal sequenceof decisions is a least-cost sequence.

O

Example 5.3 [Shortest path] One way to find a shortest path from vertex
ito vertex j in a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex 7
is reached. An optimal sequence of decisions is one that results in a path of
least length. 0

253https://hemanthrajhemu.github.io

254 CHAPTER 5. DYNAMIC PROGRAMMING

For some of the problems that may be viewed in this way, an optimal
sequence of decisions can be found by making the decisions one at a time
and never making an erroneousdecision. This is true for all problems solvable
by the greedy method. For many other problems,it is not possible to make
stepwise decisions (based only on local information) in such a manner that
the sequence of decisions made is optimal.

Example 5.4 [Shortest path] Suppose we wish to find a shortest path from
vertex 7 to vertex j. Let A; be the vertices adjacent from vertex 1. Which of
the vertices in A; should be the second vertex on the path? There is no way
to make a decision at this time and guarantee that future decisions leading
to an optimal sequence can be made. If on the other hand we wishtofind
a shortest path from vertex i to all other vertices in G, then at each step, a
correct decision can be made (see Section 4.8). oO

One way to solve problems for which it is not possible to make a sequence
of stepwise decisions leading to an optimal decision sequenceis to try all pos-
sible decision sequences. We could enumerate all decision sequences and then
pick out the best. But the time and space requirements may be prohibitive.
Dynamic programming often drastically reduces the amount of enumeration
by avoiding the enumeration of some decision sequences that cannot possibly
be optimal. In dynamic programming an optimal sequence of decisions is
obtained by making explicit appeal to the principle of optimality.

Definition 5.1 [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from thefirst
decision. 0

Thus, the essential difference between the greedy method and dynamic
programming is that in the greedy method only one decision sequence is
ever generated. In dynamic programming, many decision sequences may be
generated. However, sequences containing suboptimal subsequences cannot
be optimal (if the principle of optimality holds) and so will not (as far as
possible) be generated.

Example 5.5 [Shortest path] Consider the shortest-path problem of Exam-
ple 5.3. Assume that 7,71, %2,...,%%,7 is a shortest path from i to 7. Starting
with the initial vertex 7, a decision has been made to go to vertex 1. Fol-
lowing this decision, the problem state is defined by vertex 1; and we need
to find a path from 7, to 7. It is clear that the sequence 71, 72,..-,%,j must
constitute a shortest 21 to 7 path. If not, let 41,71, 72,-..,7q,j be a shortest
i, to j path. Then 2,71,11,°++,7q,J is ant to 7 path that is shorter than the
path 7,21, %2,-..,%%,7. Therefore the principle of optimality applies for this
problem. 0

https://hemanthrajhemu.github.io

5.1. THE GENERAL METHOD 255

Example 5.6 [0/1 knapsack] The 0/1 knapsack problemis similar to the
knapsack problem of Section 4.2 except that the x;’s are restricted to have
a value of either 0 or 1. Using KNAP(I, 7, y) to represent the problem

maximize)))<;<; Pi:

subject to Vy<jcj Wiki SY (5.1)
oj =Oorl,l<i<g

the knapsack problem is KNAP(1,n,m). Let yi, y2,..-,Yn be an optimal
sequence of 0/1 values for x1, %2,.--,%n, respectively. If y,; = 0, then
Y2,Y3,-+-;Yn must constitute an optimal sequence for the problem KNAP(2,
n, m). If it does not, then y1,y2,---,Yn is not an optimal sequence for
KNAP(1,n,m). If y. = 1, then y2,...,y, must be an optimal sequence
for the problem KNAP(2,n,m — w1). If it isn’t, then there is another 0/1
sequence 22, 23,.--,2n such that locjcy Wizi < M— Wy and Nocjen Piz >

Yo<icn Pi¥i- Hence, the sequence yj, 22,23,---,2n 18 a sequence for (5.1)
with greater value. Again the principle of optimality applies. Oo

Let So be the initial problem state. Assume that n decisions d;, 1 <1 <n,
have to be made. Let D,; = {ri,r2,...,rj} be the set of possible decision
values for d,. Let S$; be the problem state following the choice of decision
rz, 1<ai<j. Let T; be an optimal sequence of decisions with respect to the

problem state S;. Then, when the principle of optimality holds, an optimal
sequence of decisions with respect to So is the best of the decision sequences

ri, Vi, 1 < a < J:

Example 5.7 [Shortest path] Let A; be the set of vertices adjacent to vertex
a. For each vertex k € Aj, let Ty, be a shortest path from k to 7. Then, a
shortest 4 to j path is the shortest of the paths {i,T,|k € A;}. Oo

Example 5.8 [0/1 knapsack] Let g;(y) be the value of an optimal solution
to KNAP(j + 1,n,y). Clearly, go(m) is the value of an optimal solution to
KNAP(1,n,m). The possible decisions for x; are 0 and 1 (D, = {0,1}).
From the principle of optimality it follows that

go(m) = max {gi(m), gi(m—wi) + pi} (5.2)
oO

While the principle of optimality has been stated only with respect to
the initial state and decision, it can be applied equally well to intermediate
states and decisions. The next two examples show how this can be done.

Example 5.9 [Shortest path] Let & be an intermediate vertex on a shortest
i to j path 1,11, 12,...,k,p1,p,---,j- The paths 2,21,...,k and k,pi,...,7
must, respectively, be shortest 7 to k and k to 7 paths. 0

https://hemanthrajhemu.github.io

256 CHAPTER 5. DYNAMIC PROGRAMMING

Example 5.10 [0/1 knapsack] Let y1,y2,--.,Yn be an optimal solution to
KNAP(1,n,m). Then, for each 7, 1 <j <n, yt,-.-, yj, and Yj4i,---5 Yn
must be optimal solutions to the problems KNAP(1, j, Li<i<y wiy;) and

KNAP(j +1,n,m— Vi<j<; wiyi) respectively. This observation allows us to
generalize (5.2) to

gi(y) = max {gi+i(¥), g41(y — wi41) + piti} (5.3)

oO

The recursive application of the optimality principle results in a recur-
rence equation of type (5.3). Dynamic programming algorithms solve this
recurrence to obtain a solution to the given problem instance. The recur-
rence (5.3) can be solved using the knowledge gn(y) = 0 for all y > 0 and
gn{¥) = —oo for y < 0. From gn(y), one can obtain gn_1(y) using (5.3) with
i =n-—1. Then, using gn_i(y), one can obtain gn_2(y). Repeating in this
way, one can determine gi(y) and finally go(m) using (5.3) with 2 = 0.

Example 5.11 [0/1 knapsack] Consider the case in which n = 3, w, =
2,w2 = 3,w3 = 4, p. = 1,po = 2,p3 = 5, and m = 6. Wehave to compute
go(6). The value of go(6) = max {gi(6), gi(4) + 1}.

In turn, gi(6) = max {g2(6), go(3)+2}. But go(6) = max {g3(6), g3(2)+
5} = max {0,5} = 5. Also, go(3) = max {g3(3), 93(3 — 4) a =
max {0,~oo} = 0. Thus, gi(6) = max {5,2} =5.

Similarly, 91 (4) = max {g2(4), g2(4—3) +2}. But go(4) = max {93(4),
g3(4— 4) + 5} = max {0,5} = 5. The value of go(1) = max {g3(1), g3(1 —
4) + 5} = max {0,—00} = 0. Thus, g|(4) = max {5,0} =5.

Therefore, g9(6) = max {5,5+1} =6. Oo

Example 5.12 {Shortest path] Let P; be the set of vertices adjacent to ver-
tex j (that is, k € P; iff (k,7) € E(Q)). For each k € P;, let I’, be a shortest
i to k path. The principle of optimality holds and a shortest i to 7 path is
the shortest of the paths {T,,j|k € P;}.

To obtain this formulation, we started at vertex 7 and looked at thelast
decision made. The last decision was to use one of the edges (k,j), k € Pj.
In a sense, we are looking backward on the 7 to 7 path. 0

Example 5.13 {0/1 knapsack] Looking backward on the sequence of deci-
sions £1, £2,---,2%n, we see that

fi(y) = max {fj-1(y), fy-1(y — wy) + py} (5.4)

where f;(y) is the value of an optimal solution to KNAP(1, j, y).

https://hemanthrajhemu.github.io

5.2. MULTISTAGE GRAPHS 257

The value of an optimalsolution to KNAP(1, n,m)is f,(m). Equation 5.4
can be solved by beginning with fo(y) = 0 forall y, y > 0, and fo(y) = —o,
for all y, y <0. From this, f,, fo,...,f, can be successively obtained. 0

The solution method outlined in Examples 5.12 and 5.13 may indicate
that one has to look at all possible decision sequences to obtain an optimal

decision sequence using dynamic programming. This is not the case. Be-
cause of the use of the principle of optimality, decision sequences containing
subsequences that are suboptimal are not considered. Although the total
numberofdifferent decision sequences is exponential in the numberof deci-
sions (if there are d choices for each of the n decisions to be made then there
are d” possible decision sequences), dynamic programming algorithms often
have a polynomial complexity.

Another important feature of the dynamic programming approachis that
optimal solutions to subproblems are retained so as to avoid recomputing
their values. The use of these tabulated values makes it natural to recast
the recursive equations into an iterative algorithm. Most of the dynamic
programming algorithms in this chapter are expressed in this way.

The remaining sections of this chapter apply dynamic programming to a
variety of problems. These examples should help you understand the method
better and also realize the advantage of dynamic programming over explicitly
enumerating all decision sequences.

EXERCISES

1. The principle of optimality does not hold for every problem whose
solution can be viewed as the result of a sequence of decisions. Find
two problems for which the principle does not hold. Explain why the
principle does not hold for these problems.

2. For the graph of Figure 5.1, find the shortest path between the nodes
1 and 2. Use the recurrence relations derived in Examples 5.10 and
5.13.

5.2 MULTISTAGE GRAPHS

A multistage graph G = (V, E£) is a directed graph in which the vertices are
partitioned into k > 2 disjoint sets V;, 1 <i <k. In addition,if (u,v) is an
edge in E, then u € V; and uv € Viz; for some 21,1 <i <k. The sets V; and
Vp are such that |Vi| = |Vz| = 1. Let s and t, respectively, be the vertices in
V, and V;,. The vertex s is the source, and t the sink. Let c(i,7) be the cost
of edge (i, 7). The cost of a path from s to t is the sum of the costs of the
edges on the path. The multistage graph problem is to find a minimum-cost

https://hemanthrajhemu.github.io

258 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.1 Graph for Exercise 2 (Section 5.1)

path from s to t. Each set V; defines a stage in the graph. Because of the
constraints on &, every path from s to ¢ starts in stage 1, goes to stage 2,
then to stage 3, then to stage 4, and so on, and eventually terminates in
stage k. Figure 5.2 showsa five-stage graph. A minimum-cost s to ¢ path is
indicated by the broken edges.

Many problems can be formulated as multistage graph problems. Wegive
only one example. Consider a resource allocation problem in which n units
of resource are to be allocated to r projects. If 7, 0 <7 <n, units of the
resource are allocated to project i, then the resulting net profit is N(2,7).
The problem is to allocate the resource to the r projects in such a way as to
maximize total net profit. This problem can be formulated as an r+ 1 stage
graph problem as follows. Stage i, 1 <7i< r, represents project 7. There are
n+1 vertices V(i,j), 0 <7 <n, associated with stage 7, 2 <i <r. Stages 1
and r+ 1 each have one vertex, V(1,0) = s and V(r+1,n) = t, respectively.
Vertex V(i,7), 2 <4< 1, represents the state in which a total of 7 units
of resource have been allocated to projects 1,2,...,7 1. The edges in G
are of the form (V (i,j), V(i+1,1)) for all 7 <1 and 1<i<pr. The edge
V(G,7),VG@+1,)), 7 <1, is assigned a weight or cost of N(i,/ — 7) and
corresponds to allocating | — 7 units of resource to project 1, 1<a<r. In
addition, G has edges of the type (V(r, 7), V(r +. 1,n)). Each such edgeis
assigned a weight of maxo<p<n_j{N(r,p)}. The resulting graph for a three-
project problem with n = 4 is shown in Figure 5.3. It should be easy to see
that an optimal allocation of resources is defined by a maximum cost s to
t path. This is easily converted into a minimum-cost problem by changing
the sign of all the edge costs.

https://hemanthrajhemu.github.io

5.2. MULTISTAGE GRAPHS 259

V 1 V> V3 V4 Vs

Figure 5.2 Five-stage graph

A dynamic programming formulation for a k-stage graph problem is ob-
tained by first noticing that every s to t path is the result of a sequence
of k — 2 decisions. The ith decision involves determining which vertex in
Vier, 1 <i <k—-—2, is to be on the path. It is easy to see that the principle
of optimality holds. Let p(i,7) be a minimum-cost path from vertex j in Vj
to vertex t. Let cost(i,7) be the cost of this path. Then, using the forward
approach, we obtain

cost(i, j) = min {c(j, 1) + cost(t + 1,1)} (5.5)
eV;

GeE

Since, cost(k — 1,7) = c(j,t) if (j,t) © E and cost(k — 1,7) = oc if
(j,t)ZE, (5.5) may be solved for cost(1,s) by first computing cost(k — 2,7)
for all 7 € Ve_a, then cost(k— 3,7) for all 7 € V~_3, and so on, and finally
cost(1,s). Trying this out on the graph of Figure 5.2, we obtain

cost(3,6) = min {6+ cost(4,9),5 + cost(4, 10)}

= 7

cost(3,7) = min {4+ cost(4,9),3 4+ cost(4, 10)}

= 5

https://hemanthrajhemu.github.io

260 CHAPTER 5. DYNAMIC PROGRAMMING

V(2,0 VG,0(2,0) N(2.0) (3,0)

s =V(1,0) t=V(4,4)

V(2,4) V(3,4)

X= max{N(3,0),N(3,1)}

Y= max{N(3,0),N(3,1),NG,2)}

Figure 5.3 Four-stage graph corresponding to a three-project problem

https://hemanthrajhemu.github.io

5.2. MULTISTAGE GRAPHS 261

cost(3,8) = 7

cost(2,2) = min {4+ cost(3,6),2 + cost(3, 7), 1+ cost(3,8)}

= 7

cost(2,3) = 9

cost(2,4) = 18

cost(2,5) = 15

cost(1, 1) min {9 + cost(2,2),7 + cost(2,3),3 + cost(2, 4),

2 + cost(2,5)}
= 16

Note that in the calculation of cost(2,2), we have reused the values of
cost(3, 6), cost(3, 7), and cost(3,8) and so avoided their recomputation. A
minimum cost s to t path has a cost of 16. This path can be determined
easily if we record the decision made at each state (vertex). Let d(i,j) be
the value of | (where / is a node) that minimizes c(j,!) + cost(t + 1,1) (see
Equation 5.5). For Figure 5.2 we obtain

d(3,6) = 10; d(3,7) = 10; d(3,8) = 10;
d(2,2) = 7; d(2,3) = 6; d(2,4) = 8 d(2,5) = 8;
d(1,l) = 2

Let the minimum-cost path be s = 1, v2, v3,-.-.,Uz_1,¢. It is easy to see
that vg = d(1,1) = 2,v3 = d(2,d(1,1)) = 7, and v4 = d(3,d(2, d(1,1))) =
d(3,7) = 10.

Before writing an algorithmto solve (5.5) for a general k-stage graph,let
us impose an ordering on the vertices in V. This ordering makes it easier
to write the algorithm. We require that the n vertices in V are indexed 1
through n. Indices are assigned in order of stages. First, s is assigned index
1, then vertices in Vj are assigned indices, then vertices from V3, and so on.
Vertex ¢ has index n. Hence, indices assigned to vertices in V;,; are bigger
than those assigned to vertices in V; (see Figure 5.2). As a result of this
indexing scheme, cost and d can be computed in the order n—1,n—2,...,1.
The first subscript in cost, p, and d only identifies the stage numberandis
omitted in the algorithm. The resulting algorithm, in pseudocode, is FGraph
(Algorithm5.1).

The complexity analysis of the function FGraphis fairly straightforward.
If G is represented by its adjacency lists, then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex 7. Hence, if G has
|E| edges, then the time for the for loop of line 7 is O({V| + |E]). The time
for the for loop ofline 16 is O(k). Hence, the total time is O(/V|+ |Z). In
addition to the space needed for the input, space is needed for cost| |, d[],
and pf|.

https://hemanthrajhemu.github.io

262 CHAPTER 5. DYNAMIC PROGRAMMING

1 Algorithm FGraph(G,k,n,p)
2 // The input is a k-stage graph G = (V, E) with n vertices
3 // indexedin order of stages. EF is a set of edges and cli, j]
4 // is the cost of (i,7). p[1: k] is a minimum-cost path.
5
6 cost{n] := 0.0;
7 for 7 :=n—1tol step —1 do
8 { // Computecost{j].
9 Let r be a vertex such that (j,r) is an edge
10 of G and c[j,r] + cost{r] is minimum;
11 cost[j] := clj,r] + cost[r];
12 d{j] := 73
13
14 // Find a minimum-cost path.

15 pf = 1; pik =n;
16 \ for j := 2 to k —1 do plj] := diplj — 1];
17

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

The multistage graph problem can also be solved using the backward
approach. Let bp(i,7) be a minimum-cost path from vertex s to a vertex j
in V;. Let bcost(i,7) be the cost of bp(i, 7). From the backward approach we
obtain

bcost(t,7) = main {bcost(é — 1,1) + (1, 7)} (5.6)
EV ;_

(LjJeE

Since bcost(2,7) = c(1,7) if (1,7) € EB and bcost(2,7) = oo if (1,7) ¢E,
bcost(i,7) can be computed using (5.6) by first computing bcost for 1 = 3,
then for 2 = 4, and so on. For the graph of Figure 5.2, we obtain

bcost(3,6) = min {bcost(2,2) + c(2, 6), bcost(2,3) + c(3,6)}

min {9+ 4,7 + 2}

= 9

bcost(3,7) = 11

bcost(3,8) = 10

bcost(4,9) = 15

https://hemanthrajhemu.github.io

5.2. MULTISTAGE GRAPHS 263

bcost(4,10) = 14

bcost(4,11) = 16

bcost(5,12) = 16

The corresponding algorithm, in pseudocode, to obtain a minimum-cost
s —t path is BGraph (Algorithm 5.2). The first subscript on bcost, p, and
d are omitted for the same reasons as before. This algorithm has the same
complexity as FGraph provided G is now represented by its inverse adjacency
lists (1.e., for each vertex v we have a list of vertices w such that (w,v) € E).

1 Algorithm BGraph(G, k,n, p)
2 // Same function as FGraph
3
4 bcost{1] := 0.0;
5 for 7 := 2 to n do
6 { // Compute bcost[j].
7 Let r be such that (r,7) is an edge of
8 G and bcost|r| + c[r, 7] is minimum;
9 bcost[j] := bcost[r] + clr, 7]3
10 dij] :=13
11
12 // Find a minimum-cost path.
13 pil] := 1; plk] = n5
14 for j := k —1 to 2 do p{j] := d[p[j + 1]];
15 }

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach

It should be easy to see that both FGraph and BGraph workcorrectly even
on a more generalized version of multistage graphs. In this generalization,
the graph is permitted to have edges (u,v) such that u € Vj,u € V;, and
a<y.

Note: In the pseudocodes FGraph and BGraph, bcost(i,7) is set to oo for
any (i,j) ¢ E. When programming these pseudocodes, one could use the
maximum allowable floating point numberfor oo. If the weight of any such
edge is added to some other costs, a floating point overflow might occur.
Care should be taken to avoid such overflows.

https://hemanthrajhemu.github.io

264 CHAPTER 5. DYNAMIC PROGRAMMING

EXERCISES

1. Find a minimum-cost path from s to ¢ in the multistage graph of
Figure 5.4. Do this first using the forward approach and then using
the backward approach.

Figure 5.4 Multistage graph for Exercise 1

2. Refine Algorithm 5.1 into a program. Assume that G is represented
by its adjacency lists. Test the correctness of your code using suitable
graphs.

3. Program Algorithm 5.1. Assume that G is an array G[1 : e,1 : 3].
Each edge (i, 7), 1 < j, of G is stored in G[q], for some g and Gig, 1] =
i, Glq,2] = 7, and Gg, 3] = cost of edge (i, 7). Assume that G[g,1] <
Gig + 1,1] for 1 < q < e, where e is the numberof edges in the
multistage graph. Test the correctness of your function using suitable
multistage graphs. What is the time complexity of your function?

4. Program Algorithm 5.2 for the multistage graph problem using the
backward approach. Assume that the graph is represented using in-
verse adjacency lists. Test its correctness. What is its complexity?

5. Do Exercise 4 using the graph representation of Exercise 3. This time,
however, assume that Gg, 2] < G[q+ 1,2] for 1 <q <e.

6. Extend the discussion of this section to directed acyclic graphs (dags).
Suppose the vertices of a dag are numbered so that all edges have the
form (i,j), 1 <j. What changes, if any, need to be made to Algorithm
5.1 to find the length of the longest path from vertex 1 to vertex n?

https://hemanthrajhemu.github.io

5.3. ALL-PAIRS SHORTEST PATHS 265

7. [W. Miller] Show that BGraphl computes shortest paths for directed
acyclic graphs represented by adjacency lists (instead of inverse adja-
cency lists as in BGraph).

Algorithm BGraph1(G, n)

bcost{1] := 0.0;
for j := 2 to n do bcost[j] := 00;
for j:=1ton—1do

for each r such that (j,r) is an edge of G do
bcost{r] := min(bcost[r], bcost|j] + clj, r])5

C
O
N
O
O
P
W
H
E

}

Note: Thereis a possibility of a floating point overflow in this function.
In such cases the program should be suitably modified.

5.3 ALL-PAIRS SHORTEST PATHS

Let G = (V,E) be a directed graph with n vertices. Let cost be a cost
adjacency matrix for G such that cost(i,7) = 0, 1 <i<n. Then cost(i,7)
is the length (or cost) of edge (i, 7) if (1,7) € E(G) and cost(i,j) = oo if
ij and (i,7) ¢ E(G). The all-pairs shortest-path problem is to determine
a matrix A such that A(?,j) is the length of a shortest path from i to).
The matrix A can be obtained by solving n single-source problems using
the algorithm ShortestPaths of Section 4.8. Since each application of this
procedure requires O(n”) time, the matrix A can be obtained in O(n?) time.
Weobtain an alternate O(n*) solution to this problem using the principle
of optimality. Our alternate solution requires a weaker restriction on edge
costs than required by ShortestPaths. Rather than require cost(i,j) > 0,
for every edge (i,7), we only require that G have no cycles with negative
length. Note that if we allow G to contain a cycle of negative length, then
the shortest path between any two vertices on this cycle has length —oo.

Let us examine a shortest 7 to 7 path in G, 1 4 7. This path originates
at vertex 7 and goes through some intermediate vertices (possibly none) and
terminates at vertex 7. We can assume that this path contains no cycles
for if there is a cycle, then this can be deleted without increasing the path
length (no cycle has negative length). If k is an intermediate vertex ou this
shortest path, then the subpaths from 7 to k and from k to 7 must be shortest
paths from 1 to & and k to j, respectively. Otherwise, the 7 to 7 path is not
of minimum length. So, the principle of optimality holds. This alerts us to
the prospect of using dynamic programming. If k& is the intermediate vertex
with highest index, then the i to k path is a shortest 7 to k path in G going
through no vertex with index greater than & — 1. Similarly the k to j path
is a shortest & to 7 path in G going through novertex of index greater than

https://hemanthrajhemu.github.io

266 CHAPTER 5. DYNAMIC PROGRAMMING

k — 1. We can regard the construction of a shortest 7 to 7 path as first
requiring a decision as to which is the highest indexed intermediate vertex
k. Once this decision has been made, we need to find two shortest paths,
one from i to & and the other from & to 7. Neither of these may go through a
vertex with index greater than k — 1. Using A*(i,j) to represent the length
of a shortest path from 7 to 7 going through no vertex of index greater than
k, we obtain

A(i, j) = min {min{4°"(G, k) + A®~!(k,j)}, cost(i,j)} (5.7)

Clearly, A°(i,j) = cost(i,j), 1 <i <n, 1 <j <n. We can obtain
a recurrence for A*(i,j) using an argument similar to that used before. A
shortest path from 7 to 7 going through no vertex higher than k either goes
through vertex & or it does not. If it does, A* (i,j) = A*-! (i,k) + A*-1(k,j).
If it does not, then no intermediate vertex has index greater than k—1. Hence
Ak (i,j) = Ak-1(é, 7). Combining, we get

A¥ (i,j) = min {A1 (i, 9), APT i,k) + APTA j)}, k>1 (58)

The following example showsthat (5.8) is not true for graphs with cycles of
negative length.

Example 5.14 Figure 5.5 shows a digraph together with its matrix A°. For
this graph A?(1,3) #4 min{A!(1,3), A'(1,2) + A!(2,3)} = 2. Instead we see
that A?(1,3) = —oo. The length of the path

1,2,1,2,1,2,...,1,2,3

can be madearbitrarily small. This is so because of the presence of the cycle
1 2 1 which has a length of —1. Oo

Recurrence (5.8) can be solved for A” by first computing A, then A?,
then A®, and so on. Since there is no vertex in G with index greater than n,
A(i,j) = A™(i,j). Function AllPaths computes A” (i,j). The computation
is done inplace so the superscript on A is not needed. The reason this
computation can be carried out in-place is that A*(i,k) = A*—'(i,k) and
A*(k, 3) = A*-!(k, j). Hence, when A* is formed, the kth column and row do
not change. Consequently, when A*(i, 7) is computed in line 11 of Algorithm

5.3, A(i,k) = A*-1(i,k) = AP(i,k) and A(k,j) = A*-!(k, 7) = A*(k, 7). So,
the old values on which the new values are based do not change on this
iteration.

https://hemanthrajhemu.github.io

5.3. ALL-PAIRS SHORTEST PATHS 267

—2

—~ 0 1
—2)(3) 201

— co oo 0)

Figure 5.5 Graph with negative cycle

0 Algorithm AllPaths(cost, A, 7)
1 // cost[1:n,1:n] is the cost adjacency matrix of a graph with
2 // n vertices; Ali, 7] is the cost of a shortest path from vertex
3 // i to vertex j. cost|i,i] = 0.0, for 1<i<n.

4 {
5 for 1:= 1 to n do
6 for 7 := 1 to n do
7 Ali, j] := cost|i, j|; // Copy cost into A.
8 for k := 1 to n do
9 for 1:=1 to n do
10 for j:=1to n do

1D } Alt, j] = min(A[z, j], Alt, k] + Alk, 9})3

Algorithm 5.3 Function to compute lengths of shortest paths

https://hemanthrajhemu.github.io

268 CHAPTER 5. DYNAMIC PROGRAMMING

Example 5.15 The graph of Figure 5.6(a) has the cost matrix of Fig-

ure 5.6(b). The initial A matrix, A, plus its values after 3 iterations

AY A®) and A®) are given in Figure 5.6. Oo

A°} 1 2 3 Al} 1 2 3

1/|0 4 #11 1|0 4 Ii

2;,6 0 2 2;6 0 2

3 3 © QO 3/3 7 =O

(a) Example digraph (b) A° (c) A!

A*|} 1 2 3 AP} 1 2 3

1/0 4 6 1/0 4 6

2;6 0 2 2/5 0 2

3}3 7 =O 3;3 7 O

(d) A? (e) A?

Figure 5.6 Directed graph and associated matrices

Let M = max {cost(i,j)|(t,7) € E(G)}. It is easy to see that A” (ij) <
(n —1)M. From the working of AllPaths, it is clear that if (1,7) ¢ E(G)
and i # j, then we can initialize cost(i,j7) to any number greater than
(n —1)M (rather than the maximum allowable floating point number). If,
at termination, A(i,7) > (n—1)M, then there is no directed path from i to
j in G. Evenfor this choice of 00, care should be taken to avoid any floating
point overflows.

The time needed by AllPaths (Algorithm 5.3) is especially easy to deter-
mine because the looping is independent of the data in the matrix A. Line
11 is iterated n° times, and so the time for AllPaths is @(n*). An exercise
examines the extensions needed to obtain the i to 7 paths with these lengths.
Some speedup can be obtained by noticing that the innermost for loop need
be executed only when A(z,k) and A(k,j) are not equal to oo.

https://hemanthrajhemu.github.io

5.3. ALL-PAIRS SHORTEST PATHS 269

EXERCISES

1. (a) Does the recurrence (5.8) hold for the graph of Figure 5.7? Why?

Figure 5.7 Graph for Exercise 1

(b) Why does Equation5.8 not hold for graphs with cycles of negative
length?

2. Modify the function AllPaths so that a shortest path is output for each
pair of vertices (7, 7). What are the time and space complexities of the
new algorithm?

3. Let A be the adjacency matrix of a directed graph G. Define the
transitive closure A* of A to bea matrix with the property A* (7,7) = 1
iff G has a directed path, containing at least one edge, from vertex 1
to vertex 7. At (i, 7) =0 otherwise. The reflexive transitive closure A*
is a matrix with the property A* (i,j) = 1 iff G has a path, containing
zero or more edges, from 7 to 7. A*(t,j) = 0 otherwise.

(a) Obtain A* and A* for the directed graph of Figure 5.8.

(4) 3

Figure 5.8 Graph for Exercise 3

(b) Let A*(i,7) = 1 iff there is a path with zero or more edges from i

to j going through no vertex of index greater than k. Define A°
in terms of the adjacency matrix A.

https://hemanthrajhemu.github.io

270 CHAPTER 5. DYNAMIC PROGRAMMING

(c) Obtain a recurrence between A* and A*~! similar to (5.8). Use
the logical operators or and and rather than min and +.

(d) Write an algorithm, using the recurrence of part (c), to find A*.
Your algorithm can use only O(n?) space. Whatis its time com-
plexity?

(e) Show that At = A x A*, where matrix multiplication is defined
as At(i,j) = VRL,(A(i,k) A A*(k,7)). The operation V is the
logical or operation, and A the logical and operation. Hence At
may be computed from A*.

5.4 SINGLE-SOURCE SHORTEST PATHS:
GENERAL WEIGHTS

We now consider the single-source shortest path problem discussed in Section
4.8 when someorall of the edges of the directed graph G may have negative
length. ShortestPaths (Algorithm 4.14) does not necessarily give the correct
results on such graphs. To see this, consider the graph of Figure 5.9. Let
v = be the source vertex. Referring back to Algorithm 4.14, since n = 3,
the loop of lines 12 to 22 is iterated just once. Also u = 3 in lines 15 and
16, and so no changes are madeto dist[|. The algorithm terminates with
dist|2] = 7 and dist[3] = 5. The shortest path from 1 to 3 is 1,2,3. This
path has length 2, which is less than the computed value of dist([3).

Figure 5.9 Directed graph with a negative-length edge

When negative edge lengths are permitted, we require that the graph
have no cycles of negative length. This is necessary to ensure that shortest
paths consist of a finite number of edges. For example, in the graph of Figure
5.5, the length of the shortest path from vertex 1 to vertex 3 is —oo. The
length of the path

1,2,1,2,1,2,---,1,2,3

can be madearbitrarily small as was shown in Example 5.14.

When there are no cycles of negative length, there is a shortest path
between any two vertices of an n-vertex graph that has at most n— 1 edges

https://hemanthrajhemu.github.io

5.4. SINGLE-SOURCE SHORTEST PATHS: GENERAL WEIGHTS 271

on it. To see this, note that a path that has more than n — 1 edges must
repeat at least one vertex and hence must contain a cycle. Elimination of
the cycles from the path results in another path with the same source and
destination. This path is cycle-free and has a length that is no more than
that of the original path, as the length of the eliminated cycles was at least
zero. We can use this observation on the maximum number of edges on a
cycle-free shortest path to obtain an algorithm to determine a shortest path
from a source vertex to all remaining vertices in the graph. As in the case
of ShortestPaths (Algorithm 4.14), we compute only the length, dist/u], of
the shortest path from the source vertex v to u. An exercise examines the
extension needed to construct the shortest paths.

Let. dist®[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most
edges. Then, dist'[u] = cost[v,u], 1 <u <n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence, dist”~'[u] is the length of an
unrestricted shortest path from v to u.

Our goal then is to compute dist”~!{u] for all u. This can be done us-
ing the dynamic programming methodology. First, we make the following
observations:

1. If the shortest path from v to u with at most k, k > 1, edges has no
more than k — 1 edges, then dist*[u] = dist*—[ul.

2. If the shortest path from v to u with at most k, k > 1, edges has
exactly k edges, then it is made up of a shortest path from v to some
vertex j followed by the edge (j,u). The path from v to j has k — 1
edges, and its length is dist*—"{j]. All vertices i such that the edge
(i,u) is in the graph are candidates for 7. Since we are interested in a

shortest path, the i that minimizes dist*~![i] + cost{i, u] is the correct
value for j.

These observations result in the following recurrence for dist:

dist*[u] = min {dist*'[u], min {dist*—"[i] + cost[i,u]}}
4

This recurrence can be used to compute dist® from dist*—!, for k = 2,3,...,
n— 1.

Example 5.16 Figure 5.10 gives a seven-vertex graph, together with the
arrays dist*, k = 1,...,6. These arrays were computed using the equation
just given. For instance, dist*[1] = 0 for all k since 1 is the source node.

Also, dist'{2| = 6, dist'[3] = 5, and dist![4] = 5, since there are edges from

https://hemanthrajhemu.github.io

272 CHAPTER 5. DYNAMIC PROGRAMMING

1 to these nodes. The distance dist'[] is oo for the nodes 5,6, and 7 since
there are no edges to these from 1.

dist?[2] min {dist'[2], min; dist![i] + cost{i,2]}
min {6,0 + 6,5 — 2,5 + 00, 00 + 00,00 + 00,00 + oof = 3

Here the terms 0 + 6,5 — 2,5 + 00, 00 + 00, 00 + 00, and oo + oo correspond
to a choice of 7 = 1,3,4,5,6, and 7, respectively. The rest of the entries are

computed in an analogous manner. O

dist*[1..7]
kil 23 4 567

1/0 6 5 5 ~& & ©

2/0 3 3 5 5 4 &

3/0 1352 4 7

4/0 13 50 4°55

5|0 1 3 5 0 4 3

6|0 13 5 0 4 3

(a) A directed graph (b) dist*

Figure 5.10 Shortest paths with negative edge lengths

An exercise shows that if we use the same memory location dist{u] for

dist*{u], k = 1,...,n—1, then the final value of dist[u] is still dist?~1[u].
Using this fact and the recurrence for dist shown above, we arrive at the
pseudocode of Algorithm 5.4 to compute the length of the shortest path
from vertex v to each other vertex of the graph. This algorithm is referred
to as the Bellman and Ford algorithm.

Each iteration of the for loop of lines 7 to 12 takes O(n?) time if adja-
cency matrices are used and O(e) time if adjacency lists are used. Here e

is the numberof edges in the graph. The overall complexity is O(n?) when
adjacency matrices are used and O(ne) when adjacency lists are used. The
observed complexity of the shortest-path algorithm can be reduced by not-
ing that if none of the dist values change on oneiteration of the for loop
of lines 7 to 12, then none will change on successive iterations. So, this
loop can be rewritten to terminate either after n — 1 iterations or after the

https://hemanthrajhemu.github.io

5.4. SINGLE-SOURCE SHORTEST PATHS: GENERAL WEIGHTS 273

1 Algorithm BellmanFord(v, cost, dist, n)
2 // Single-source/all-destinations shortest
3 // paths with negative edge costs
4
5 for i :=— 1 to n do // Initialize dist.
6 dist[i] := cost{v, 1];
7 for k:=2to n—1do
8 for each u such that u ~ v and u has
9 at least one incoming edge do
10 for each (,u) in the graph do
11 if dist{u] > dist|i] + costli,u] then
12 dist|u] := dist[i] + cost(t, ul;
13 }

Algorithm 5.4 Bellman and Ford algorithm to compute shortest paths

first iteration in which no dist values are changed, whichever occursfirst.
Another possibility is to maintain a queue of vertices ¢ whose dist values
changed on the previous iteration of the for loop. These are the only values
for 7 that need to be considered in line 10 during the next iteration. When
a queue of these values is maintained, we can rewrite the loop of lines 7 to
12 so that on each iteration, a vertex i is removed from the queue, and the
dist values of all vertices adjacent from 7 are updated as in lines 11 and 12.
Vertices whose dist values decrease as a result of this are added to the end
of the queue unless they are already on it. The loop terminates when the
queue becomes empty. These two strategies to improve the performance of
BellmanFord are considered in the exercises. Other strategies for improving
performance are discussed in References and Readings. Oo

EXERCISES

1. Find the shortest paths from node 1 to every other node in the graph
of Figure 5.11 using the Bellman and Ford algorithm.

2. Prove the correctness of BellmanFord (Algorithm 5.4). Note that this
algorithm does not faithfully implement the computation of the recur-
rencefor dist”. Infact, for k <n—1, the dist values following iteration
k of the for loop of lines 7 to 12 may not be dist*.

3. Transform BellmanFord into a program. Assume that graphs are repre-
sented using adjacency lists in which each node has an additionalfield

https://hemanthrajhemu.github.io

274 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.11 Graph for Exercise 1

called cost that gives the length of the edge represented by that node.
As a result of this, there is no cost adjacency matrix. Generate some
test graphs and test the correctness of your program.

Rewrite the algorithm BellmanFord so that the loop of lines 7 to 12
terminates either after n > 1 iterations or after the first iteration in
which no dist values are changed, whichever occursfirst.

Rewrite BellmanFord by replacing the loop of lines 7 to 12 with code
that uses a queueof vertices that may potentially result in a reduction
of other dist vertices. This queue initially contains all vertices that are
adjacent from the source vertex v. On each successive iteration of the
new loop, a vertex 2 is removed from the queue (unless the queue is
empty), and the dist values to vertices adjacent from 72 are updated as
in lines 11 and 12 of Algorithm 5.4. When the dist value of a vertex
is reduced because of this, it is added to the queue unlessit is already
on the queue.

(a) Prove that the new algorithm produces the sameresults as the
original one.

(b) Show that the complexity of the new algorithm is no more than
that of the original one.

. Compare the run-time performance of the Bellman and Ford algo-
rithms of the preceding two exercises and that of Algorithm 5.4. For
this, generate test graphs that will expose the relative performances of
the three algorithms.

https://hemanthrajhemu.github.io

5.5. OPTIMAL BINARY SEARCH TREES(x) 275

7. Modify algorithm BellmanFord so that it obtains the shortest paths, in
addition to the lengths of these paths. What is the computing time of
youralgorithm?

5.5 OPTIMAL BINARY SEARCH TREES(«)

(for) (for
- oS ZZ NN

ao) oa (do) ant

(int) (if) (white)
- / (b)
Cit)

(a)

Figure 5.12 Two possible binary search trees

Given a fixed set of identifiers, we wish to create a binary search tree
(see Section 2.3) organization. We may expect different binary search trees
for the same identifier set to have different performance characteristics. The
tree of Figure 5.12(a), in the worst case, requires four comparisons to find
an identifier, whereas the tree of Figure 5.12(b) requires only three. On the
average the two trees need 12/5 and 11/5 comparisons, respectively. For
example, in the case of tree (a), it takes 1,2, 2,3, and 4 comparisons, respec-
tively, to find the identifiers for, do, while, int, and if. Thus the average
number of comparisons is 14243e3ed 12 This calculation assumes that
each identifier is searched for with equal probability and that no unsuccessful
searches(i.e., searches for identifiers not in the tree) are made.

In a general situation, we can expect different identifiers to be searched
for with different frequencies (or probabilities). In addition, we can expect
unsuccessful searches also to be made. Let us assume that the given set
of identifiers is {a,,a2,...,@n} with a1 < a2 <--: < ap. Let p(t) be the
probability with which we search for a;. Let g(i) be the probability that
the identifier x being searched for is such that a; < © < @j41,0 <i<n

(assume a9 = —oo and an+; = +00). Then, o<jen g(t) is the probability of

https://hemanthrajhemu.github.io

276 CHAPTER 5. DYNAMIC PROGRAMMING

an unsuccessful search. Clearly, 7)<;<y p(t) + No<i<n 9(t) = 1. Given this

data, we wish to construct an optimal binary searchtree for {a1,a2,...,@n}.
First, of course, we must be precise about what we mean by an optimal

binary search tree.

In obtaining a cost function for binary search trees, it is useful to add a
fictitious node in place of every empty subtree in the search tree. Such nodes,
called external nodes, are drawn square in Figure 5.13. All other nodes are
internal nodes. If a binary search tree represents n identifiers, then there
will be exactly n internal nodes and n+ 1 (fictitious) external nodes. Every
internal node represents a point where a successful search may terminate.
Every external node represents a point where an unsuccessful search may
terminate.

Figure 5.13 Binary search trees of Figure 5.12 with external nodes added

If a successful search terminates at an internal node at level /, then [iter-

ations of the while loop of Algorithm 2.5 are needed. Hence, the expected
cost contribution from the internal node for a; is p(t) * level(a,).

Unsuccessful searches terminate with t = 0 (ie., at an external node) in
algorithm |Search (Algorithm 2.5). The identifiers not in the binary search
tree can be partitioned into n + 1 equivalence classes E;,0 <i <n. The
class Ho contains all identifiers x« such that z < a;. The class E; contains
all identifiers x such that aj < x < aj41, 1 <1< n. The class E, contains
all identifiers 7, z > ap. It is easy to see that for all identifiers in the same
class E;, the search terminates at the same external node. For identifiers in

different FE; the search terminates at different external nodes. If the failure

https://hemanthrajhemu.github.io

5.5. OPTIMAL BINARY SEARCH TREES(x) 277

node for E; is at level /, then only / — 1 iterations of the while loop are
made. Hence, the cost contribution of this nodeis g(7) * (level(F;) — 1).

The preceding discussion leads to the following formula for the expected
cost of a binary search tree:

S_ pli) *level(az) + > g(t) (level(Bj) — 1) (5.9)
1<i<n 0<i<n

We define an optimal binary search tree for the identifier set {a1, @2,..., an}

to be a binary search tree for which (5.9) is minimum.

Example 5.17 The possible binary search trees for the identifier set (a1,
a2,a3) = (do, if, while) are given if Figure 5.14. With equal probabilities
p(t) = q(t) = 1/7 for all 7, we have

cost(tree a) = 15/7 cost(treeb) = 13/7
cost(treec) = 15/7 cost(treed) = 15/7
cost(treee) = 15/7

As expected, tree b is optimal. With p(1) = .5, p(2) = .1, p(3) = .05,
q(0) = .15, g(1) = .1, ¢(2) = .05 and q¢(3) = .05 we have

cost(tree a) = 2.65 cost(treeb) = 1.9
cost(treec) = 1.5 cost(treed) = 2.05
cost(tree e) 1.6

For instance, cost(tree a) can be computed as follows. The contribution
from successful searches is 3 *0.5+2 *0.1+0.05 = 1.75 and the contribution
from unsuccessful searches is 3 + 0.15 + 3 * 0.1 + 2 * 0.05 + 0.05 = 0.90. All
the other costs can also be calculated in a similar manner. Tree c is optimal
with this assignment of p’s and q’s. Oo

To apply dynamic programming to the problem of obtaining an optimal
binary search tree, we need to view the construction of such a tree as the
result of a sequence of decisions and then observe that the principle of op-
timality holds when applied to the problem state resulting from a decision.
A possible approach to this would be to make a decision as to which of the
a;’s should be assigned to the root nodeof the tree. If we choose az, then
it is clear that the internal nodes for aj, a2,...,@¢_1 aS well as the external

nodes for the classes Eo, £,...,/—1 will lie in the left subtree / of the root.
The remaining nodeswill be in the right subtree r. Define

cost(l) = S- p(t) * level(a;) + S> al * (level(£;) — 1)
L<i<k O<i<k

https://hemanthrajhemu.github.io

278 CHAPTER 5. DYNAMIC PROGRAMMING

(c) (d) (e)

Figure 5.14 Possible binary search trees for the identifier set {do, if,
while}

https://hemanthrajhemu.github.io

5.5. OPTIMAL BINARY SEARCH TREES(+) 279

and

cost(r => p(t) * level(a;) + Sg * (level(E;) — 1)
k<i<n k<ic<n

In both cases the level is measured by regarding the root of the respective
subtree to be at level 1.

2
\

Figure 5.15 An optimal binary search tree with root a,

Using w(i,7) to represent the sum q(i) + yyi1(Q() + p()), we obtain
the following as the expected cost of the search tree (Figure 5.15):

p(k) + cost(l) + cost(r) + w(0,k — 1) + w(k, n) (5.10)

If the tree is optimal, then (5.10) must be minimum. Hence, cost(!)
must be minimumoverall binary search trees containing a1, @2,...,@,—1 and
Eo, E,,..., Ex— 1. Similarly cost(r) must be minimum. If we use c(i, 7) to
represent the cost of an optimal binary search tree ¢;; containing a;+1,...,@;
and Fj,...,F,;, then for the tree to be optimal, we must have cost(l) =
c(0,& — 1) and cost(r) = c(k,n). In addition, k must be chosen such that

p(k) + (0,4 — 1) + c(k,n) + w(0,& — 1) + w(k,n)

is minimum. Hence, for c(0,n) we obtain

c(0,n) = min{el(0,k —1) + c(k,n) + p(k) + w(0,4 — 1) + w(k,n)} (5.11)

We can generalize (5.11) to obtain for any c(i, 7)

c(i, j) = mineli, k- 1) + c(k, J) + p(k) + w(t, k ~ 1) + w(k, j)}

https://hemanthrajhemu.github.io

280 CHAPTER 5. DYNAMIC PROGRAMMING

c(i,j) = nintel? k —1) + c(k,7)} + w(t, 9) (5.12)

Equation 5.12 can be solved for c(0,n) by first computing all c(i, 7) such
that 7 — 7 = 1 (note c(i,71) = 0 and w(i,i) = q(t), O <i <n). Next we
can compute all c(z,7) such that 7 — 7 = 2, then all c(t,7) with j — 7 = 3,
and so on. If during this computation we record the root r(i,7) of each tree
t;;, then an optimal binary search tree can be constructed from these r(i, j).
Note that r(i,7) is the value of & that minimizes (5.12).

Example 5.18 Let n = 4 and (a1, 42,a3,a4) = (do, if, int, while). Let
p(1 : 4) = (3,3,1,1) and q(0: 4) = (2,3,1,1,1). The p’s and q’s have been
multiplied by 16 for convenience. Initially, we have w(i,i) = (7), c(i,7) = 0
and r(i,i) = 0,0 <i <4. Using Equation 5.12 and the observation w(i, 7) =

p(j) + 4(J)+ w(i,j — 1), we get

w(0, 1) p(1) + q(1) + w(0,0) = 8

c(0,1) = w(0,1) + min{c(0,0) +c(1,1)} = 8

r(0,1) = 1
w(1,2) = p(2)+¢(2)+w(1,l1) = 7
c(1,2) = w(1,2)+min {c(1,1) +c(2,2)} = 7

r(0,2) = 2

w(2,3) = p(3)+4(3)+w(2,2) = 3
c(2,3) = w(2,3)+ min {c(2,2) + c(3,3)} = 3

r(2,3) = 8

w(3,4) = p(4)+¢(4)+w(3,3) = 3

c(3,4) = w(3,4) + min {c(3,3)+c(4,4)} = 3

r(3,4) 4

Knowing w(i,i +1) and c(i,i+1),0<i <4, we can again use Equation
5.12 to compute w(t,7+ 2), c(t,2+2), and r(t,i+2),0<i< 3. This process
can be repeated until w(0,4), c(0,4), and r(0,4) are obtained. The table
of Figure 5.16 showsthe results of this computation. The box in row 7 and
column 7 showsthe values of w(j, 7 +7), c(j,j +7) and r(j, 7 +72) respectively.
The computation is carried out by row from row 0 to row 4. From the table
we see that c(0,4) = 32 is the minimum cost of a binary search tree for
(a1, @2,@3,a4). The root of tree to4 is ag. Hence, the left subtree is to, and
the right subtree to4. Tree to; has root a; and subtrees top and f11. Tree to4
has root a3; its left subtree is tg2 and its right subtree t34. Thus, with the
data in the table it is possible to reconstruct to4. Figure 5.17 shows to4. O

https://hemanthrajhemu.github.io

5.5. OPTIMAL BINARY SEARCH TREES(x) 281

0 1 2 3 4

Woo =2 Wi =3 Wo = W393 = 1 Wag = 1
0} co =O |cy =O |C227 =0 |33 =O |Cag =O

Foo = ry, =O ry = r33 =O rag = 0

wor =8 |Wi2 =7 |W233 =3 |Wag =
1 Co, = 8 C2=7 Cx =3 C34 =3

ro) = 1 ry2 =2 rn =3 r34=4

Wo2 = 12 Wi3= 9 W4 =5

2 Coo = 19 C13 = 12 Cu =8

ro = liryg= 2) rag =3
Wo3 = 14 Wig = 11

3 Co3 = 25 Cig = 19

ro3 = 2 Nig = 2
Wo4 = 16

4 Coq = 32

ro4 = 2

Figure 5.16 Computation of c(0,4), w(0, 4), and r(0,4)

pe

(do) (int

(while)

Figure 5.17 Optimal search tree for Example 5.18

https://hemanthrajhemu.github.io

282 CHAPTER 5. DYNAMIC PROGRAMMING

The above example illustrates how Equation 5.12 can be used to deter-
mine the c’s and r’s and also how to reconstruct to, knowing the r’s. Let us
examine the complexity of this procedure to evaluate the c’s and r’s. The
evaluation procedure described in the above example requires us to compute
c(i,7) for (fj — i) = 1,2,...,n in that order. When 7 —i = m, there are
n—m-+1 c(i,j)’s to compute. The computation of each of these c(i, 7)’s
requires us to find the minimum of m quantities (see Equation 5.12). Hence,
each such c(i,7) can be computed in time O(m). The total time for all
c(i,j)’s with 7 —i = m is therefore O(nm — m?). The total time to evaluate
all the c(i, 7)’s and r(i,7)’s is therefore

> (nm — m?) = O(n?)
l<m<n

We can do better than this using a result due to D. E. Knuth which shows
that the optimal & in Equation 5.12 can be found by limiting the search to
the range r(i,j7 —1) < k < r(i+1,7). In this case the computing time
becomes O(n) (see the exercises). The function OBST (Algorithm 5.5) uses
this result to obtain the values of w(i,7), r(i,7), and c(i,j),O<i<j<n,
in O(n?) time. The tree ton can be constructed from the values of r(i, 7) in
O(n) time. The algorithm for this is left as an exercise.

EXERCISES

1. Use function OBST (Algorithm 5.5) to compute w(t,7), r(i,j), and
c(i,7), O< i<j < 4, for the identifier set (a1, a2,a3,a4) = (cout,
float, if, while) with p(1) = 1/20, p(2) = 1/5, p(3) = 1/10, p(4) =

1/20, q(0) = 1/5, q(1) = 1/10, q(2) = 1/5, q(3) = 1/20, and q(4) =
1/20. Using the r(i,7)’s, construct the optimal binary searchtree.

2. (a) Show that the computing time of function OBST (Algorithm 5.5)
is O(n?).

(b) Write an algorithm to construct the optimal binary search tree
given the roots r(#,7),0 <i <j <n. Show that this can be done
in time O(n).

3. Since often only the approximate values of the p’s and q’s are known,it
is perhaps just as meaningful to find a binary search tree that is nearly
optimal. That is, its cost, Equation 5.9, is almost minimal for the
given p’s and q’s. This exercise explores an O(n log n) algorithm that
results in nearly optimal binary search trees. The search tree heuristic
we use is

https://hemanthrajhemu.github.io

5.5. OPTIMAL BINARY SEARCH TREES(x) 283

1 Algorithm OBST(p,q,n)
2 // Given n distinct identifiers a) < a2 < +++ <a, and probabilities
3. // pli], 1<i<n, and q[i], 0<i <n, this algorithm computes
4 // the cost ci, 7] of optimal binary search trees t,; for identifiers
5 // aizi,...,a;. It also computes r[t, 7], the root of t;;.
6 // wit, 7] is the weightof tj;.

7 4
8 for 1:=0 to n—1do

9 {
10 // Initialize.
11 wt, i] = gt]; r[z, 4] := 05 ct, 7] -= 0.0;
12 // Optimaltrees with one node
13 wit,t +1] := afi] + ft + 1] + pli + 1)
14 riij,it 1 :=it1;
15 clt,¢ + 1) :== afi] + gli +1] pli +1);
16 }
17 w(n, nr] := g[n]3 rin, n] := 05 c[n, n] = 0.0;
18 for m:=2tondo // Find optimal trees with m nodes.
19 for 1:=0 to n-mdo
20 {
21 gist tm

22 wit, 9] = wt, j — 1] + pla] + al]
23 // Solve 5.12 using Knuth’sresult.
24 k := Find(c,r,i, 9);
25 // A value of | in the range rit,jg-1I<l
26 // <r{i+1,7] that minimizes cli, 1-1] +ell, 9];
27 cli, J] = wt, 7] + cli, k — 1] + c[k, j]3
28 rli, j] = ks
29
30 write (c[0,n], w[0,], r[0,n])s
31 }

1 Algorithm Find(c,r,i,7)
2
3 MAN := 005
4 for m:=rl[i,j —1] to r[i+1,j] do
5 if (cli, m — 1] +e[m,7]) < min then
6
7 min := cli,m — 1) +elm, 9]; b= m;
8
9 return /;
10 }

Algorithm 5.5 Finding a minimum-cost binary search treehttps://hemanthrajhemu.github.io

284 CHAPTER 5. DYNAMIC PROGRAMMING

Choose the root k such that |w(0,k — 1) — w(k,n)| is as
small as possible. Repeat this procedure to find the left and
right subtrees of the root.

(a) Using this heuristic, obtain the resulting binary search tree for
the data of Exercise 1. What is its cost?

(b) Write an algorithm implementing the above heuristic. Your algo-
rithm should have time complexity O(n log n).

5.6 STRING EDITING

We are given two strings X = ©1,%9,...,@, and Y = yj, ya,...,ym, where
zi, 1<i<n,and y;, 1 <j <m, are members of a finite set of symbols
known as the alphabet. We want to transform X into Y using a sequence
of edit operations on X. The permissible edit operations are insert, delete,
and change (a symbol of X into another), and there is a cost associated with
performing each. The cost of a sequence of operations is the sum of the costs
of the individual operations in the sequence. The problem ofstring editing
is to identify a minimum-cost sequence of edit operations that will transform
X into Y.

Let D(ax;) be the cost of deleting the symbol x; from X, I(y;) be the cost
of inserting the symbol y; into X, and C(z;,y;) be the cost of changing the
symbol 2; of X into y;.

Example 5.19 Consider the sequences X = £1, %2,%3,%4,%5 = a,a,b,a,b
and Y = yj, y2,y3, 4 = b, a,b, b. Let the cost associated with each insertion
and deletion be 1 (for any symbol). Also let the cost of changing any symbol
to any other symbol be 2. One possible way of transforming X into Y is
delete each x;,1 <i < 5, and insert each y;,1 < 7 < 4. The total cost of

this edit sequence is 9. Another possible edit sequence is delete x, and x2
and insert y4 at the end of string X. The total cost is only 3. Oo

A solution to the string editing problem consists of a sequence of decisions,
one for each edit operation. Let E be a minimum-cost edit sequence for
transforming X into Y. Thefirst operation, O, in € is delete, insert, or
change. If E' = € —{O} and X’is the result of applying O on X, then €'
should be a minimum-cost edit sequence that transforms X‘ into Y. Thus
the principle of optimality holds for this problem. A dynamic programming
solution for this problem can be obtained as follows. Define cost(i, 7) to be
the minimum cost of any edit sequence for transforming 27), %2,...,2; into
Y1,¥25---, yj (for O<a<nand 0 <j <m). Compute cost(t,7) for each i
and j. Then cost(n,m) is the cost of an optimal edit sequence.

For 1 = 7 = 0, cost(i,7) = 0, since the two sequences are identical (and
empty). Also, if 7 = 0 andi > 0, we can transform X into Y by a sequenceof

https://hemanthrajhemu.github.io

5.6. STRING EDITING 285

deletes. Thus, cost(i,0) = cost(t—1,0)+D(a;). Similarly, ifi = 0 and 7 > 0,
we get cost(0,j) = cost(0,7 — 1) + I{y;). If A 0 and 7 #0, a1, %2,..., 2%;
can be transformed into yi, y2,...,y; in one of three ways:

1. Transform 21, %2,...,%;—1 into y1, y2,..., yj using a minimum-costedit
sequence and then delete z;. The corresponding cost is cost(t— 1,7) +

2. Transform £1, %2,...,2;—-, into yi, y2,...,yj—-1 using a minimum-cost

edit sequence and then change the symbol 2; to y;. The associated
cost is cost(t — 1,7 — 1) + C(xi, y;).

3. Transform 1, 2,. +5 Bi into y1, Y2y006 5 Yj-1 using a minimum-cost edit

sequence and then insert y;. This corresponds to a cost of cost(i, j —

The minimum cost of any edit sequence that transforms 21, %2,..., 2X;
into yi, y2,-..,y; (for 7 > 0 and j > 0) is the minimum of the above three
costs, according to the principle of optimality. Therefore, we arrive at the
following recurrence equation for cost(i, j):

.. cost(#-—1,0)+ D(x;) 7=0, i>0
cost(t,J) = cost(0,j 1) +1(yj) i=0, 7 >0 (5.13)

cost’ (i,j) i>0,j7>0

We have to compute cost(i, j) for all possibles values of i and 7 (0<i<n
and 0 < 7 <m). There are (n+ 1)(m+1) such values. These values can be
computed in the form of a table, 44, where each row of M correspondsto a
particular value of 7 and each column of M correspondsto a specific value
of j. M(i,7) stores the value cost(i,7). The zeroth row can be computed
first since it corresponds to performing a series of insertions. Likewise the
zeroth column can also be computed. After this, one could compute the
entries of M in row-major order, starting from the first row. Rows should
be processed in the order 1,2,...,7. Entries in any row are computed in
increasing order of column number.

The entries of M can also be computed in column-major order, starting
from the first column. Looking at Equation 5.13, we see that each entry of
M takes only O(1) time to compute. Therefore the whole algorithm takes
O(mn) time. The value cost(n,m) is the final answer we are interested in.
Having computed all the entries of M, a minimum edit sequence can be

https://hemanthrajhemu.github.io

286 CHAPTER 5. DYNAMIC PROGRAMMING

obtained by a simple backward trace from cost(n,m). This backward trace
is enabled by recording which of the three options for i > 0,7 > 0 yielded
the minimum cost for each 2 and 7.

Example 5.20 Consider the string editing problem of Example 5.19. X =
a,a,b,a,b and Y = b,a,b,b. Each insertion and deletion has a unit cost and
a change costs 2 units. For the cases i = 0,7 > 1, and j = 0,1 > 1, cost(i,7)
can be computedfirst (Figure 5.18). Let us compute the rest of the entries
in row-major order. The next entry to be computed is cost(1, 1).

cost(1,1) min {cost(0,1) + D(x1), cost(0,0) + C(x1, y1), cost(1,0) + I(y1)}
min {2,2,2} =2

Next is computed cost(1, 2).

cost(1,2) = min {cost(0,2) + D(x), cost(0, 1) + C(a1, y2), cost(1, 1) + I(y2)}
= min {3,1,3}=1

The rest of the entries are computed similarly. Figure 5.18 displays the
whole table. The value cost(5,4) = 3. One possible minimum-cost edit
sequence is delete x,, delete x2, and insert y,. Another possible minimum
cost edit sequence is change x, to y2 and delete x4. oO

J~ 0 123 4
| rT Tt TF
or 0 1 2 3 4

rr 1 2 1 2 «3

9- 2 3 2 3 4

3+ 3 2 3 2 3

4¢ 4 3 2 3 4

5+ 5 4 3 2 3

Figure 5.18 Cost table for Example 5.20

https://hemanthrajhemu.github.io

5.7. 0/1 KNAPSACK 287

EXERCISES

1. Let X = a,a,b,a,0,b,a,b,a,a and Y = b,a,b,a,a,b,a,b. Find a
minimum-cost edit sequence that transforms X into Y.

2. Present a pseudocode algorithm that implements the string editing
algorithm discussed in this section. Program it and test its correctness
using suitable data.

3. Modify the above program not only to compute cost(n,m) but also to
output a minimum-cost edit sequence. What is the time complexity of
your program?

4. Given a sequence X of symbols, a subsequence of X is defined to be any
contiguous portion of X. For example, if X = 71, 72,23, 24,25, 2,23
and «1, 22,23 are subsequences of X. Given two sequences X and Y,
present an algorithm that will identify the longest subsequence that
is common to both X and Y. This problem is known as the longest
common subsequence problem. What is the time complexity of your
algorithm?

5.7 0/1 KNAPSACK

The terminology and notation used in this section is the same as that in
Section 5.1. A solution to the knapsack problem can be obtained by making
a sequenceof decisions on the variables x11, £2,...,2n. A decision on variable

x; involves determining which of the values 0 or 1 is to be assigned to it. Let
us assume that decisions on the x; are made in the order xn, 2%n—1,...,21.-

Following a decision on x7,, we may be in one of two possible states: the
capacity remaining in the knapsack is m and no profit has accrued or the
capacity remaining is m— wr, and a profit of p, has accrued. It is clear that
the remaining decisions r,_1,...,21 must be optimal with respect to the
problem state resulting from the decision on Zp. Otherwise, tp,...,21 will
not be optimal. Hence, the principle of optimality holds.

Let f;(y) be the value of an optimal solution to KNAP(1, j, y). Since the
principle of optimality holds, we obtain

fn(m) = max {fn—i(m), fn—1(m — wn) + pn} (5.14)

For arbitrary f;(y), i > 0, Equation 5.14 generalizes to

fily) = max {fi-1(y), fia(y — wi) + pi} (5.15)

Equation 5.15 can be solved for f;,(m) by beginning with the knowledge fo(y)
= 0 for all y and fi(y) = —co, y < 0. Then fi, fo,..., fn can be successively
computed using (5.15).

https://hemanthrajhemu.github.io

288 CHAPTER 5. DYNAMIC PROGRAMMING

When the w,’s are integer, we need to compute f;(y) for integer y, 0 <
y <m. Since fi(y) = —co for y < 0, these function values need not be
computed explicitly. Since each f; can be computed from f;_1 in O(m) time,
it takes O(mn) time to compute f,. When the w,’s are real numbers, f;(y) is
needed for real numbers y such that 0 < y < m. So, f; cannot be explicitly
computedfor all y in this range. Even when the w;,’s are integer, the explicit
O(mn) computation of f, may not be the most efficient computation. So,
we explore an alternative method for both cases.

Notice that f;(y) is an ascending step function; i.e., there are a finite
numberof y’s, 0 = yy < yo <-«-: < yg, such that f;(y1) < fi(ye2) < +++ <

filye)s filly) = —0, y < ys fly) = Fe), y 2 Yes and fily) = filyy),
Yj <y < yj+1. So, we need to compute only f;(yj;), 1 <j < k. We use the

ordered set S* = {(f (yj), y;)|1 <j < k} to represent f;(y). Each memberof
S’ is a pair (P,W), where P = f;(y;) and W = y;. Notice that S° = {(0,0)}.
We can compute $**! from S* by first computing

Si ={(P,W)|(P — p;,W —w;) € 8} (5.16)
Now, S**! can be computed by merging the pairs in S* and Si together.

Note that if S**' contains two pairs (P;, W;) and (Py, Wx) with the property
that Pj < P, and W; > W,, then the pair (P;,W;) can be discarded because
of (5.15). Discarding or purging rules such as this one are also known as
dominance rules. Dominated tuples get purged. In the above, (P:,W,)
dominates (P;, W;).

Interestingly, the strategy we have come up with can also be derived by
attempting to solve the knapsack problem via a systematic examination of
the up to 2” possibilities for 71, 2%2,...,%. Let S’ represent the possible
states resulting from the 2’ decision sequences for 1,...,2;. A state refers

to a pair (P;,W;), W; being the total weight of objects included in the
knapsack and P; being the corresponding profit. To obtain S’+1, we note
that the possibilities for 23,1, are 7j4,; = 0 or x4, = 1. When 2;41; =0, the

resulting states are the same as for S*. When 2;+1 = 1, the resulting states

are obtained by adding (p;+1, wj+1) to each state in S*, Call the set of these
additional states Si. The S% is the same as in Equation 5.16. Now, S**! can
be computed by merging the states in S’ and Si together.

Example 5.21 Consider the knapsack instance n = 3, (w1, wa, w3) = (2,3,4),
(pi,p2,p3) = (1,2,5), and m = 6. For these data we have

S° = {(0,0)};S? = {(1,2)}
S' = {(0,0), (1,2)};S} = {(2,3), (3, 5)}
S? = {(0,0), (1,2), (2,3), (3,5)}; S7 = {(5,4), (6, 6), (7, 7), (8, 9)}
S° = {(0,0), (1,2), (2,3), (5,4), (6,6), (7,7), (8, 9)}

https://hemanthrajhemu.github.io

5.7. 0/1 KNAPSACK 289

Note that the pair (3, 5) has been eliminated from S? as a result of the
purging rule stated above. O

Whengenerating the S’’s, we can also purge all pairs (P,W) with W > m
as these pairs determine the value of f,(x%) only for x > m. Since the
knapsack capacity is m, we are not interested in the behaviorof f,, for 2 > m.
When all pairs (P;,W;) with W; > m are purged from the 5s, f,(m) is

given by the P value of the last pair in S” (note that the S’’s are ordered
sets). Note also that by computing S”, we can find the solutions to all the
knapsack problems KNAP(1,n, x), 0 < # < m, and not just KNAP(1, n,m).
Since, we want only a solution to KNAP(1,n,m), we can dispense with the

computation of S”. Thelast pair in S” is either the last one in S”~! orit is
(P; + Pn, W; + wn), where (P;,W;) € S?7! such that W; + wp <m and W;
is maximum.

If (P1,W1) is the last tuple in S”, a set of 0/1 values for the x;’s such
that SS pix; = Pl and So wiz; = W1 can be determined by carrying out
a search through the S's. We can set 2, = 0 if (P1,W1) € SS". If

(P1,W1) ¢ S"~!, then (P1 — pn, W1— wn) € S”! and we can set x, = 1.
This leaves us to determine how either (P1,W1) or (Pl1—p,,W1-—wr,) was
obtained in S"~'. This can be donerecursively.

Example 5.22 With m = 6, the value of f3(6) is given by the tuple (6, 6)
in S° (Example 5.21). The tuple (6, 6) ¢ S”, and so we must set 23 = 1.
The pair (6, 6) came from the pair (6 — p3,6 — wg) = (1,2). Hence (1, 2)
€ S?, Since (1,2) € S', we can set x» = 0. Since (1, 2) ¢ S°, we obtain
x1, = 1. Hence an optimalsolution is (21, 22, 73) = (1,0, 1). oO

We can sum up all we have said so far in the form of an informalalgorithm
DKP (Algorithm 5.6). To evaluate the complexity of the algorithm, we

need to specify how the sets S* and Si are to be represented; provide an

algorithm to merge S’ and S$%; and specify an algorithm that will trace
through S”~',...,S' and determine a set of 0/1 values for 2,,..., 21.

We can use an array pair| | to represent all the pairs (P,W). The P values

are stored in pair|].p and the W values in pair[].w. Sets S°,S',...,S5~!
can be stored adjacent to each other. This requires the use of pointers b[:],
0 <i <n, where b[i] is the location ofthe first element in S*, 0 <i <n,
and b[n] is one more than the location of the last element in S”~!.

Example 5.23 Using the representation above, the sets S°,S', and S? of
Example 5.21 appear as

https://hemanthrajhemu.github.io

290 CHAPTER 5. DYNAMIC PROGRAMMING

Algorithm DKP(p, w,n,m)

{
S° := {(0,0)};
for i:=1lton-—1do

Sit = {(P,W)|(P —pi,W —w;) € S| and W < m};
S* := MergePurge(S*-!, Si7!);

c
o
O
N
O
o
h
w
n
r
e

}
(PX,WX) :=last pair in grol.

10 (PY,WY) := (P'+ pp,W' + wp) where W’is the largest W in
11 any pair in S"-1! such that W + wn < m3

12 // Trace back for %n,%p-1,.--, 21.
13 if (PX > PY) then z,, := 0;
14 else x, := 1;
15 TraceBackFor(rp_1,..-,21)3
16 }

Algorithm 5.6 Informal knapsack algorithm

pair[|.p 0 0 1 0 1 2 8

pair[].w 0 0 2 0 2 3.5

The merging and purging of S*~! and sit can be carried out at the same

time that sel is generated. Since the pairs in S’~! are in increasing order

of P and W,the pairs for S* are generated in this order. If the next pair

generated for Si~! is (PQ,WQ), then we can merge into S$"all pairs from
S'-! with W value < WQ. The purging rule can be used to decide whether
any pairs get purged. Hence, no additional spaceis needed in which to store

sit.

DKnap (Algorithm 5.7) generates S* from S*~! in this way. The S‘’s are
generated in the for loop of lines 7 to 42 of Algorithm 5.7. At the start
of each iteration t = b[i — 1] and h is the index of the last pair in S*~!.
The variable k points to the next tuple in S'-! that has to be merged into
S*. In line 10, the function Largest determines the largest g, t < q < h,

https://hemanthrajhemu.github.io

5.7. 0/1 KNAPSACK 291

for which pair[q].w + wli] <m. This can be done by performing a binary
search. The code for this function is left as an exercise. Since wu is set
such that for all Wj,h > 39 > u, W; + w; > m, the pairs for sit are
(P(j) +pi,W(9) + w;), 1 <j <u. The for loop oflines 11 to 33 generates
these pairs. Each time a pair (pp, ww) is generated, all pairs (P,W) in S’~!
with W < ww not yet purged or merged into S’ are merged into S*. Note
that none of these may be purged. Lines 21 to 25 handle the case when the
next pair in S’-' has a W value equal to ww. In this case the pair with
lesser P value gets purged. In case pp > P(next —1), then the pair (pp, ww)
gets purged. Otherwise, (pp, ww) is added to S‘. The while loopoflines 31

and 32 purges all unmerged pairs in S'-! that can be purged at this time.

Finally, following the merging of S{~! into S*, there may be pairs remaining

in S*-! to be merged into S*. This is taken care of in the while loop of
lines 35 to 39. Note that because of lines 31 and 32, none of these pairs
can be purged. Function TraceBack (line 43) implements the if statement
and trace-back step of the function DKP (Algorithm5.6). This is left as an
exercise.

If |S"| is the number of pairs in S’, then the array pair should have a

minimum dimension of d = y<;<n_1|S*|. Sinceit is not possible to predict
the exact space needed,it is necessary to test for next > d each time neat
is incremented. Since each S*, i > 0, is obtained by merging S*~! and si}

and |Si~'| < |S*~|, it follows that |S”| < 2|S*~!|. In the worst case no pairs
will get purged and

YS [s}= SO Ma=2r-1
0<i<n-] 0<7<n-1

The time needed to generate S* from $*~! is @(|S*~1|). Hence, the time
needed to compute all the $”’s, 0 <i <n, is O(X |S*7!]). Since |S*| < 2,
the time needed to compute all the S's is O(2"). If the p,;’s are integers,
then each pair (P,W) in S* has an integer P and P < hi<j<iPj- Similarly,

if the w,’s are integers, each W is an integer and W < m. In any S’ the
pairs have distinct W values and also distinct P values. Hence,

|:S"| <1i+ > Pj

1<j<i

when the p,’s are integers and

|S’?} <1+min { > w;,m}
1<jxi

https://hemanthrajhemu.github.io

292 CHAPTER 5. DYNAMIC PROGRAMMING

PW = record {float p; float w; }

1 Algorithm DKnap(p, w,z,n,m)
2
3 { // pair[| is an array of PW’s.
4 b[0] := 1; pair[1].p := pair[1].w := 0.0; // S°
5 t:= 1; h:=1; // Start and end of S°
6 B[1] = neat := 2; // Next free spot in pair|]
7 for i:= 1 to n—1do

8 { // Generate S’,
9 k= ts
10 u := Largest(pair, w,t,h,i,m)s
11 for j :=t to udo

12 { // Generate Sj’ and merge.
13 pp := pair[j].p + pli]; ww := pair|j].w + w[Z]3

14 // (pp, ww)is the next element in S}7’.
15 while ((& < h) and (pair(k].w < ww)) do
16
17 patr|neat|.p := patr[k].p3
18 pair(next|.w := pair[k].w;
19 nett := next+1;k:=k+1;
20 }
21 i ((& < h) and (pair[k].w = ww)) then
22
23 if pp < pair[k].p then pp := pair|k].p;
24 ki=k+l;
25 }
26 if pp > pair|next — 1].p then
27
28 pair|next|.p := pp; pair[next].w := ww3
29 neat := next+13

30 }
31 while (ks<h) and (pair[k].p < pair[next — 1].p))
32 do k:=k+1;
33
34 // Merge in remaining terms from S*~!.
35 while (k < h) do
36
37 pair|neaxt].p := pair|k].p3 paiirinest|w = pair[k].w3
38 nett :=nett+1;k:=k+1
39 }
40 // Initialize for $**}.
41 ti=h+1;3 h:= next — 1; dfi + 1] = next;
42
43 TraceBack(p, w, pair, 2,m,7)3
44 }

Algorithm 5.7 Algorithm for 0/1 knapsack problemhttps://hemanthrajhemu.github.io

5.7. 0/1 KNAPSACK 293

when the w,’s are integers. When both the p;’s and wj;’s are integers, the
time and space complexity of DKnap (excluding the time for TraceBack)
is O(inin{2”, ni<jcn Pi,snm}). In this bound >°,<;<, pi can be replaced
by Vi<i<n Pi/ged (p1,...,Pn) and m by ged (wi, we,--.,Wn,m) (see the
exercises). The exercises indicate how TraceBack may be implemented so as
to have a space complexity O(1) and a time complexity O(n2).

Although the above analysis may seem to indicate that DKnap requires
too much computational resource to be practical for large n, in practice

many instances of this problem can be solved in a reasonable amount of
time. This happens because usually, all the p’s and w’s are integers and m
is much smaller than 2”. The purgingrule is effective in purging most of the
pairs that would otherwise remain in the $*’s.

Algorithm DKnap can be speeded up by the use of heuristics. Let Z
be an estimate on the value of an optimal solution such that f,(m) > L.

Let PLEFT(t) = Vicjcnpj- If S’ contains a tuple (P,W) such that P +

PLEFT(i) < L, then (P,W) can be purged from S*. To see this, observe
that (P,W) can contribute at best the pair (P + Vicj<n Pp W + Vicj<n w)

to S?~'. Since P + Vicj<n Pj = P+ PLEFT(:) < L, it follows that this

pair cannot lead to a pair with value at least E and so cannot determine an
optimal solution. A simple way to estimate L such that L < f,(m) is to
consider the last pair (P,W) in S’. Then, P < f,(m). A better estimate is
obtained by adding someof the remaining objects to (P,W). Example 5.24
illustrates this. Heuristics for the knapsack problem are discussed in greater
detail in the chapter on branch-and-bound. The exercises explore a divide-
and-conquer approach to speed up DKnap so that the worst case time is

o(2n/?),

Example 5.24 Consider the following instance of the knapsack problem:

n= 6, (D1, P2;P3;P4s Ps, Po) = (w1, W2, W3, W4, Ws, we) = (100, 50, 20, 10, 7,
3), and m = 165. Attemptingto fill the knapsack using objects in the order
1, 2, 3, 4, 5, and 6, we see that objects 1, 2, 4, and 6 fit in and yield a profit
of 163 and a capacity utilization of 163. We can thus begin with ZL = 163 as
a value with the property L < f,(m). Since pj = wi, every pair (P,W) € S",
0<i<6 has P=W. Hence, each pair can be replaced by the singleton P
or W. PLEFT(0) = 190, PLEFT(1) = 90, PLEFT(2) = 40, PLEFT(3) =
20, PLEFT(4) = 10, PLEFT(5) = 3, and PLEFT(6) = 0. Eliminating from

each S* any singleton P such that P+ PLEFT(2z) < L, we obtain

S° = {0}; S? = {100}
S' = {100}; Sj = {150}

S*= {150}; Si=¢

https://hemanthrajhemu.github.io

294 CHAPTER 5. DYNAMIC PROGRAMMING

S° = {150}; S$? = {160}
S* = {160}; Si=¢

S° = {160}

The singleton 0 is deleted from S$! as 0 + PLEFT(1)< 163. The set S?
does not contain the singleton 150 + 20 = 170 as m < 170. S® does not
contain the 100 or the 120 as each is less than L — PLEFT(3). And so on.
The value /s(165) can be determined from $°. In this example, the value of
L did not change. In general, L will change if a better estimate is obtained
as a result of the computation of some S*. If the heuristic wasn’t used, then
the computation would have proceeded as

s° = {0}
S' = {0,100}

S* = {0,50, 100, 150}

R
go I {0, 20, 50, 70, 100, 120, 150}

{0, 10, 20, 30, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160}

S®° = {0,7, 10,17, 20, 27, 30, 37, 50, 57, 60, 67, 70, 77, 80, 87, 100,
107, 110, 117, 120, 127, 130, 137, 150, 157, 160}

R
ce I|

The value fg(165) can now be determined from S°, using the knowledge

(pe, We) = (3, 3). oO

EXERCISES

1. Generate the sets S’, 0 <i < 4 (Equation 5.16), when (w1, we, w3, wa) =

(10, 15, 6,9) and (p1, P2,P3, P4) = (2,5, 8,1).

2. Write a function Largest(pair, w,t,h,i,m) that uses binary search to
determine the largest gq, t <q < h, such that pair|q].w + w[i] < m.

3. Write a function TraceBack to determine an optimalsolution x1, x2,...,
Lp, to the knapsack problem. Assume that S’,0 <7 <n, have already
been computed as in function DKnap. Knowing b(i) and b(i + 1),
you can use a binary search to determine whether (P’,W’) € S”.
Hence, the time complexity of your algorithm should be no more than
O(n max;{log |S"|}) = O(n’).

4, Give an example of a set of knapsack instances for which |S"| = 2’,
0<i<n. Your set should include one instance for each n.

https://hemanthrajhemu.github.io

5.8. RELIABILITY DESIGN 295

5. (a) Show that if the p;’s are integers, then the size of each S*, [S"|, in
the knapsack problem is no more than 1+-7) <;<; p;/gcd(pi,p2,--+

Pn), where gcd(p,,p2,...,Pn) is the greatest common divisor of
the p;’s.

(b) Show that when the w,’s are integer, then |S"| <14+min{),—,<;
w,,m}/gced(w), we,...,Wn,m).

6. (a) Using a divide-and-conquer approach coupled with the set gener-

ation approach of the text, show how to obtain an O(2”/2) algo-
rithm for the 0/1 knapsack problem.

(b) Develop an algorithm that uses this approach to solve the 0/1
knapsack problem.

(c) Compare the run time and storage requirements of this approach
with those of Algorithm 5.7. Use suitable test data.

7. Consider the integer knapsack problem obtained by replacing the 0/1
constraint in (5.2) by x; > 0 and integer. Generalize f;(x) to this
problem in the obvious way.

(a) Obtain the dynamic programmingrecurrencerelation correspond-
ing to (5.15).

(b) Show how to transform this problem into a 0/1 knapsack problem.

(Hint: Introduce new 0/1 variables for each x;. If 0 < aj < 2%,
then introduce 7 variables, one for each bit in the binary repre-
sentation of 2;.)

5.8 RELIABILITY DESIGN

In this section we look at an example of how to use dynamic programming
to solve a problem with a multiplicative optimization function. The prob-
lem is to design a system that is composed of several devices connected in
series (Figure 5.19). Let r; be the reliability of device D; (that is, rj is the
probability that device 7 will function properly). Then, the reliability of the
entire system is Hr;. Even if the individual devices are very reliable (the
r;’8 are very close to one), the reliability of the system may not be very
good, For example, if n = 10 and r; = .99, 1 <i < 10, then Hr; = .904.
Hence, it is desirable to duplicate devices. Multiple copies of the same de-
vice type are connected in parallel (Figure 5.20) through the use of switching
circuits. The switching circuits determine which devices in any given group
are functioning properly. They then make use of one such device at each
stage.

If stage 7 contains m; copies of device D;, then the probability that all
m,; have a malfunction is (1 — 7r;)"™:. Hence thereliability of stage 7 becomes

https://hemanthrajhemu.github.io

296 CHAPTER 5. DYNAMIC PROGRAMMING

a} fe} ye}- a}

Figure 5.19 n devices D;, 1 <7 <n, connected in series

stage 1 stage 2 stage 3 stage n

D, 73 D,
Dy D;D, |}_—___s> —=s D, |=

D D2 Ds D1 D, n

Figure 5.20 Multiple devices connected in parallel in each stage

1—(1-—7r;)™. Thus, if r; = .99 and m; = 2, the stage reliability becomes
.9999. In any practical situation, the stage reliability is a little less than
1—(1—r;)” because the switching circuits themselves are not fully reliable.
Also,failures of copies of the same device may not befully independent(e.g.,
if failure is due to design defect). Let us assume that the reliability of stage
i is given by a function ¢;(mj;), 1 <n. (It is quite conceivable that ¢;(m;)
may decrease after a certain value of m;.) Thereliability of the system of
stages is I}<i<ndi(mi).

Our problem is to use device duplication to maximize reliability. This
maximization is to be carried out under a cost constraint. Let c; be the

cost of each unit of device 7 and let c be the maximum allowable cost of
the system being designed. We wish to solve the following maximization
problem:

maximize IT}<i<n fi(mi)

subject to Ss" qm <e (5.17)
1<i<n

m; > 1 and integer, 1<i<n

https://hemanthrajhemu.github.io

5.8. RELIABILITY DESIGN 297

A dynamic programming solution can be obtained in a mannersimilar to
that used for the knapsack problem. Since, we can assume each c; > 0, each
m, must be in the range 1 < m; < u;, where

Ui = c +o - Save
1

The upper bound u; follows from the observation that m,; > 1. An optimal
solution 1n1,1792,..., Mp, is the result of a sequence of decisions, one decision
for each m,;. Let f;(x) represent the maximum value of Il, <j<; ¢(m,;) subject
to the constraints Li<j<i cjm; <xandl<mj <uj;,1< 3 <1. Then, the

value of an optimal solution is f,(c). The last decision made requires one to
choose m, from {1,2,3,...,u,}. Once a value for m,, has been chosen, the
remaining decisions must be such as to use the remaining funds c — cpm, in
an optimal way. The principal of optimality holds and

fale) = max {dn(mn)fr—i(e — Cnn) } (5.18)
1<mn<un

For any f;(x), 7 > 1, this equation generalizes to

fi(z) = max {¢;(mi) fi-i1(2 — @m,)} (5.19)
1<m<u;

Clearly, fo(x) = 1 for all 7, 0 < x < c. Hence, (5.19) can be solved using

an approach similar to that used for the knapsack problem. Let S* consist
of tuples of the form (f,x), where f = f;(z). There is at most one tuple for
eachdifferent « that results from a sequence of decisions on ™m1,m2,...,M%n.-
The dominancerule(f, 21) dominates (fo, x2) iff f; > fe and 21 < x2 holds

for this problem too. Hence, dominated tuples can be discarded from 5S".

Example 5.25 We are to design a three stage system with device types
D,, D2, and D3. The costs are $30, $15, and $20 respectively. The cost of
the system is to be no more than $105. Thereliability of each device type is
.9, .8 and .5 respectively. We assumethat if stage i has m, devices of type 7
in parallel, then ¢j(m;) = 1—(1—1;)™. In termsof the notation usedearlier,
c, = 30, ce. = 15, cg = 20, c = 105, 7) = .9, ro = .8, rg = .5, uy = 2,u9 = 3,

and u3 = 3.

We use S’ to represent the set of all undominated tuples (f,2) that
may result from the various decision sequences for m1,m2,...,mj;. Hence,
f(z) = fi(x). Beginning with S° = {(1,0)}, we can obtain each S? from S*~!
by trying out all possible values for m; and combining the resulting tuples
together. Using S} to represent all tuples obtainable from S'’! by choosing

mi = j, we obtain S{ = {(.9, 30)} and S$ = {(.9, 30), (.99,60)}. The set

https://hemanthrajhemu.github.io

298 CHAPTER 5. DYNAMIC PROGRAMMING

S? = {(.72, 45), (.792, 75)}; $3= {(.864, 60)}. Note that the tuple (.9504, 90)
which comes from (.99, 60) has been eliminated from $3 as this leaves only
$10. This is not enough to allow m3 = 1. The set S? = {(.8928, 75)}. Com-
bining, we get S? = {(.72, 45), (.864, 60), (.8928, 75)} as the tuple(.792, 75) is
dominated by (.864, 60). The set S? = {(.36, 65), (.432, 80), (.4464, 95) }, S3
= {(.54, 85), (.648, 100)}, and $3 = {(.63,105)}. Combining, we get S? =
{(.36, 65), (.432, 80), (.54, 85), (.648, 100) }.

The best design hasa reliability of .648 and a cost of 100. Tracing back
through the S*’s, we determine that m, = 1, m2 = 2, and m3 = 2. Oo

Asin the case of the knapsack problem, a complete dynamic programming
algorithm for the reliability problem will use heuristics to reduce the size of
the S”’s. There is no need to retain any tuple (f,2) in S* with x value
greater that c — S0i<j<,¢j a8 such a tuple will not leave adequate funds

to complete the system. In addition, we can devise a simple heuristic to
determine the best reliability obtainable by completing a tuple (f,x) in St.

If this is less than a heuristically determined lower bound on the optimal
system reliability, then (f,2) can be eliminated from 5".

EXERCISE

1. (a) Present an algorithm similar to DKnap to solve the recurrence
(5.19).

(b) What are the time and space requirements of your algorithm?

(c) Test the correctness of your algorithm using suitable test data.

5.9 THE TRAVELING SALESPERSON
PROBLEM

Wehave seen how to apply dynamic programming to a subset selection prob-
lem (0/1 knapsack). Now we turn our attention to a permutation problem.
Note that permutation problems usually are much harder to solve than sub-
set problems as there are n! different permutations of n objects whereas
there are only 2” different subsets of n objects (n! > 2”). Let G = (V, BE)
be a directed graph with edge costs c;;. The variable c; is defined such that
cy > 0 for all i and j and cj; = oo if (i,7) ¢ E. Let |V| = n and assume
n> 1. A tour of G is a directed simple cycle that includes every vertex in
V. The cost of a tour is the sum of the cost of the edges on the tour. The
traveling salesperson problem is to find a tour of minimumcost.

The traveling salesperson problem finds application in a variety of situ-
ations. Suppose we have to route a postal van to pick up mail from mail

https://hemanthrajhemu.github.io

5.9. THE TRAVELING SALESPERSON PROBLEM 299

boxes located at n different sites. An n+ 1 vertex graph can be used to
represent the situation. One vertex represents the post office from which the
postal van starts and to which it must return. Edge (2,7) is assigned a cost
equal to the distance from site i to site 7. The route taken by the postal van
is a tour, and weare interested in finding a tour of minimumlength.

As a second example, suppose we wish to use a robot arm to tighten

the nuts on some piece of machinery on an assembly line. The arm will
start from its initial position (which is over the first nut to be tightened),
successively move to each of the remaining nuts, and return to the initial
position. The path of the arm is clearly a tour on a graph in which vertices
represent the nuts. A minimum-cost tour will minimize the time needed for
the arm to complete its task (note that only the total arm movement time
is variable; the nut tightening time is independent of the tour).

Ourfinal example is from a production environment in which several com-
modities are manufactured on the same set of machines. The manufacture
proceeds in cycles. In each production cycle, n different commodities are
produced. When the machines are changed from production of commodity
i to commodity j, a change over cost cj is incurred. It is desired to find a
sequence in which to manufacture these commodities. This sequence should
minimize the sum of change over costs (the remaining production costs are
sequence independent). Since the manufacture proceedscyclically, it is nec-
essary to include the cost of starting the next cycle. This is just the change
over cost from the last to the first commodity. Hence, this problem can be
regarded as a traveling salesperson problem on an n vertex graph with edge
cost cj’s being the changeover cost from commodity 7 to commodity j.

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1,k) for some k € V — {1} and a path from vertex k to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V —{1,k} exactly once. It is easy to see that if the tour is optimal, then the
path from k to 1 must be a shortest k to 1 path going through all vertices
in V — {1,k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex 7, going through all vertices in
S, and terminating at vertex 1. The function g(1,V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

Generalizing (5.20), we obtain (for 7 ¢ S)

gi, S) = minfeis + 99,5 — t9})} (5.21)
JES

Equation 5.20 can be solved for g(1, V — {1}) if we know g(k, V — {1,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

https://hemanthrajhemu.github.io

300 CHAPTER 5. DYNAMIC PROGRAMMING

g(t,¢) =e, 1 <i<n. Hence, we can use (5.21) to obtain g(i, S) for all S
of size 1. Then we can obtain g(i,S') for S with |S| = 2, and so on. When
|S| <n-— 1, the values of ¢ and S for which g(t, .S) is needed are such that
i#1,1¢S,andi¢€s.

Example 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix c of Figure 5.21(b).

10 15 20

13 O 12

o
N

N
H

O
S

o
S

\
o

= o
S

(b)

Figure 5.21 Directed graph and edge length matrix c

Thus 9(2,¢) = ca = 5,9(3,6) = c3, = 6, and g(4,¢) = cq, = 8. Using
(5.21), we obtain

9(2,{3}) = c3+9(3,¢) = 15 g(2,{4}) = 18
g(3, {2}) = 18 9(3, {4}) = 20

94, {2}) = 13 g(4, {3}) = 15

Next, we compute g(i, S) with |S| =2,i41,1¢S andi¢éS.

g(2, {3,4}) = min {C23 + 9(3, {4}), C24 + g(4, {3})} = 25

9(3, {2,4}) = mun {32 + g(2, {4}), €34 + 94, {2}) = 25

94, {2,3}) = min {ea + 9(2, {3}),c43 + 9(3,{2})} = 23

Finally, from (5.20) we obtain

g(1,{2,3,43) = min{ey + 9(2, {3,4}),c13 + 9(3, {2,4}), c14 + 9(4, {2, 3})}
min {35, 40, 43}

35

https://hemanthrajhemu.github.io

5.10. FLOW SHOP SCHEDULING 301

An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each g(i,S) the value of
j that minimizes the right-hand side of (5.21). Let J(i,S) be this value.
Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The
remaining tour can be obtained from g(2, {3, 4}). So J(2, {3, 4}) =4. Thus
the next edge is (2,4). The remaining touris for g(4, {3}). So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. Oo

Let N be the numberof g(i, S)’s that have to be computed before (5.20)
can be used to compute g(1, V — {1}). For each value of |.S| there are n — 1
choices for i. The numberof distinct sets S' of size k not including 1 and 7

n—2

is (k). Hence

N= sin ~— 1) (“k) =(n—1)2"?
k=0

An algorithm that proceeds to find an optimal tour by using (5.20) and (5.21)
will require O(n?2”) time as the computationof g(i,.S) with |S| = k requires
k — 1 comparisons when solving (5.21). This is better than enumeratingall
n! different tours to find the best one. The most serious drawback of this
dynamic programming solution is the space needed, O(n2"). This is too
large even for modest values of n.

EXERCISE

1. (a) Obtain a data representation for the values g(i, S) of the traveling
salesperson problem. Your representation should allow for easy
access to the value of g(i, S), given 7 and S. (i) How much space
does your representation need for an n vertex graph? (ii) How
much time is needed to retrieve or update the value of g(i, 5)?

(b) Using the representation of (a), develop an algorithm correspond-
ing to the dynamic programming solution of the traveling sales-
person problem.

(c) Test the correctness of your algorithm using suitable test data.

5.10 FLOW SHOP SCHEDULING

Often the processing of a job requires the performance of several distinct
tasks. Computer programs run in a multiprogramming environment are in-
put and then executed. Following the execution, the job is queued for output

https://hemanthrajhemu.github.io

302 CHAPTER 5. DYNAMIC PROGRAMMING

and the output eventually printed. In a general flow shop we may have n
jobs each requiring m tasks T);,75;,...,Timg, 1 <i <n, to be performed.

Task T;; is to be performed on processor P;, 1 <j <m. The time required
to complete task T;; is t;;. A schedule for the n jobs is an assignmentof tasks
to time intervals on the processors. Task T;; must be assigned to processor
P;. No processor may have more than one task assigned to it in any time
interval. Additionally, for any job i the processing of task Tj;, 7 > 1, cannot
be started until task 7;_1,; has been completed.

Example 5.27 Two jobs have to be scheduled on three processors. The
task times are given by the matrix 7

2 0
J = 3.3

5 2

Two possible schedules for the jobs are shown in Figure 5.22. oO

time 0 2 5 6 10 12

PL Ty :
I

P, T To, Tx '

P; T31 T32

(a)

time 0 2 3 5 6 11

Ty |

Tx T

T32 T3,

(b)

Figure 5.22 Twopossible schedules for Example 5.27

https://hemanthrajhemu.github.io

5.10. FLOW SHOP SCHEDULING 303

A nonpreemptive schedule is a schedule in which the processing of a task
on any processor is not terminated until the task is complete. A schedule
for which this need not be true is called preemptive. The schedule of Fig-
ure 5.22(a) is a preemptive schedule. Figure 5.22(b) shows a nonpreemptive
schedule. The finish time f;(S) of job é is the time at which all tasks of job
i have been completed in schedule S. In Figure 5.22(a), f;(S) = 10 and
fo(S) = 12. In Figure 5.22(b), f,(S) = 11 and fo(S) = 5. Thefinish time
F(S) of a schedule S is given by

F(S) = max {f;(S)} (5.22)

The mean flow time MFT(S)is defined to be

MFT(S) = + > ACS) (5.23)
l<i<n

Anoptimal finish time (OFT) schedule for a given set of jobs is a non-
preemptive schedule S for which F'(S) is minimum over all nonpreemptive
schedules S. A preemptive optimal finish time (POFT) schedule, optimal
mean finish time schedule (OMFT), and preemptive optimal mean finish
(POMFT)schedule are defined in the obvious way.

Although the general problem of obtaining OFT and POFT schedules for
m > 2 and of obtaining OMFT schedules is computationally difficult (see
Chapter 11), dynamic programming leadsto an efficient algorithm to obtain
OFT schedules for the case m = 2. In this section we consider this special
case,

For convenience, we shall use a; to represent ¢,;, and }b; to represent
tg;. For the two-processor case, one can readily verify that nothing is to
be gained by using different processing orders on the two processors (this is
not true for m > 2). Hence, a schedule is completely specified by providing
a permutation of the jobs. Jobs will be executed on each processor in this
order. Each task will be started at the earliest possible time. The schedule
of Figure 5.23 is completely specified by the permutation (5, 1, 3, 2, 4).
We make the simplifying assumption that a; # 0,1 <i<n. Note that if
jobs with a; = 0 are allowed, then an optimal schedule can be constructed
by first finding an optimal permutation for all jobs with a; 4 0 and then
adding all jobs with a; =0 (in any order) in front of this permutation (see
the exercises).

It is easy to see that an optimal permutation (schedule) has the property
that given the first job in the permutation, the remaining permutation is
optimal with respect to the state the two processors are in following the
completionof the first job. Let a1, 00,...,0,% be a permutation prefix defining
a schedule for jobs T;,7T>,...,7}. For this schedule let f; and fe be the times
at which the processing of jobs T,,7T>,...,7j, is completed on processors P;

https://hemanthrajhemu.github.io

304 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.23 A schedule

and P, respectively. Let t = fo — f;. The state of the processors following
the sequence of decisions 7;,7>,...,7 is completely characterized by t. Let
g(S,t) be the length of an optimal schedule for the subset of jobs S under
the assumption that processor 2 is not available until time t. The length of
an optimal schedule for the job set {1,2,...,n} is g({1,2,...,n},0).

Since the principle of optimality holds, we obtain

9({1, 2, ue ,m},0) = pain{as + g9({1, 2, romp — {t}, bi) } (5.24)

Equation 5.24 generalizes to (5.25) for arbitrary S and ¢. This general-
ization requires that g(¢, t) = max{t,0} and that a; #0, 1 <i<n.

g(S,t) = min {a; + 9(S — {i}, bi + max{t — a;,0})} (5.25)

The term max {t—a;,0} comes into (5.25) as task T>; cannot start until
max{a;,t} (P2 is not available until time t). Hence fo—f = bj +max{a;,t}—
a; = b; +max{t — a;,0}. We can solve for g(S,t) using an approach similar
to that used to solve (5.21). However, it turns out that (5.25) can be solved
algebraically and a very simple rule to generate an optimal schedule obtained.

Consider any schedule R for a subset of jobs S. Assume that P2 is not
available until time ¢. Let 7 and 7 bethe first two jobs in this schedule.
Then, from (5.25) we obtain

a; + 9(S — {i}, bi + max {t — ai, 0})
aj +a;t+g(S — {i,j},b; +max {b; + max {t — a;,0} — a;,0})

(5.26)

=
O
H
t
t

l
l

https://hemanthrajhemu.github.io

5.10. FLOW SHOP SCHEDULING 305

Equation 5.26 can be simplified using the following result:

ty = b; + max {b; + max {t — a;,0} — aj, 0}
= 6; +6;-a;+max {max {f — a;,0}. a; — by} (5.27)
= 6; +6;—a;+max {t — aj,a; — b;,0} .

tijy = 6; +b; —a;—a;+max {t,a; +a; — i, aj}

If jobs i and 7 are interchanged in R, then thefinish time g’(S,t) is

g'(S,t) = a tajt+g(S — {i,j}, ty)

where t= b; +b; — aj; — a; + max {t, aj + aj — b;, a5}

Comparing g(S,t) and g'(S,t), we see that if (5.28) below holds, then
9(5,t) < 9'(S,t).

max {t,a; +a; — bj,a;} < max {t,a; + a; — b;,a;} (5.28)

In order for (5.28) to hold for all values of t, we need

max {a; +a; — b;,a;} < max {a; + a; — b;,a;}

or a; +a; +max {—b;,—a;} <a;+a;+max {—b;,—a;}

or min {bj,a;} > min {b;,a;} (5.29)

From (5.29) we can conclude that there exists an optimal schedule in
which for every pair (i,j) of adjacent jobs, min{b;,a;} > min{b;,a;}. Ex-
ercise 4 shows that all schedules with this property have the same length.
Hence,it suffices to generate any schedule for which (5.29) holds for every
pair of adjacent jobs. We can obtain a schedule with this property by making
the following observations from (5.29). If min{a,,a2,...,@n,b1, b2,...,5n}
is aj, then job 7 should be thefirst job in an optimal schedule. If min{a,, a2,
.+) Gn, 61, 62,...,6n} is bj, then job 7 should be the last job in an optimal

schedule. This enables us to make a decision as to the positioning of one
of the n jobs. Equation 5.29 can now be used on the remaining n — 1 jobs
to correctly position another job, and so on. The scheduling rule resulting
from (5.29) is therefore:

https://hemanthrajhemu.github.io

306 CHAPTER 5. DYNAMIC PROGRAMMING

1. Sort all the a;’s and 6,’s into nondecreasing order.

2. Consider this sequencein this order. If the next numberin the sequence
is aj and job j hasn’t yet been scheduled, schedule job 7 at the leftmost
available spot. If the next numberis 6; and job 7 hasn’t yet been
scheduled, schedule job 7 at the rightmost available spot. If 7 has
already been scheduled, go to the next numberin the sequence.

Note that the above rule also correctly positions jobs with a; = 0. Hence,
these jobs need not be considered separately.

Example 5.28 Let n = 4, (a1, a2, a3, a4) = (3, 4, 8, 10), and (6), be, bg, b4) =
(6, 2, 9, 15). The sorted sequence of a’s and 6’s is (b2, a1, a2, 61, 43, b3, a4, b4)
= (2, 3, 4, 6, 8, 9, 10, 15). Let o1,02,03, and o4 be the optimal schedule.
Since the smallest numberis 2, we set o4 = 2. The next numberis a, and

we set 0; = a;. The next smallest numberis a2. Job 2 has already been
scheduled. The next numberis b;. Job 1 has already been scheduled. The
next is a3 and we set o3. This leaves o3 free and job 4 unscheduled. Thus,
03 =4. 0

The scheduling rule above can be implemented to run in time O(n logn)
(see exercises). Solving (5.24) and (5.25) directly for g(1,2,...,n,0) for the
optimal schedule will take 2.(2") time as there are these many different S’s
for which g(S,t) will be computed.

EXERCISES

1. N jobs are to be processed. Two machines A and B are available. If
job 7 is processed on machine A, then a; units of processing time are
needed. If it is processed on machine B, then b; units of processing time
are needed. Because of the peculiarities of the jobs and the machines,
it is quite possible that a; > 6; for some i while a; < b; for some
j, 9 #4. Obtain a dynamic programming formulation to determine
the minimum time needed to processall the jobs. Note that jobs cannot
be split between machines. Indicate how you would go about solving
the recurrence relation obtained. Do this on an example of your choice.
Also indicate how you would determine an optimal assignment of jobs
to machines.

2. N jobs have to be scheduled for processing on one machine. Associated
with job 7 is a 3-tuple (pi, t;,d;). The variable ¢; is the processing time
needed to complete job 7. If job i is completed by its deadline d;, then
a profit p; is earned. If not, then nothing is earned. From Section 4.4
we know that J is a subset of jobs that can all be completed by their

https://hemanthrajhemu.github.io

5.11. REFERENCES AND READINGS 307

deadlines iff the jobs in J can be processed in nondecreasing order of
deadlines without violating any deadline. Assume d; < dj41,1 <i <n.
Let f;(x) be the maximum profit that can be earned from a subset J
of jobs when n = 7. Here f,(dp) is the value of an optimalselection of
jobs J. Let fo(x) = 0. Show that for x < t,,

fi(z) = max {fi-1(x), fi-1(@ — ti) + pi}

3. Let J be any instance of the two-processor flow shop problem.

(a)

(b)

(c)

Show that the length of every POFT schedule for J is the same
as the length of every OFT schedule for J, Hence, the algorithm
of Section 5.10 also generates a POFT schedule.

Show that there exists an OFT schedule for J in which jobs are
processed in the same order on both processors.

Show that there exists an OFT schedule for [defined by some
permutation o of the jobs (see part (b)) such that all jobs with
a; = Oare at the front of this permutation. Further, show that the
order in which these jobs appear at the front of the permutation
is not important.

4. Let I be any instance of the two-processor flow shop problem. Let
GO = 0102 -*' Oy, be a permutation defining an OFT schedule for J.

(a)

(b)

(c)

Use (5.29) to argue that there exists an OFT o such that
min {b;,a;) > min {b;,a;} for every i and j such that i = o,
and j = o¢41 (that is, 2 and 7 are adjacent).

For ao satisfying the conditions of part (a), show that min{b;,a;} >
min{b;,a;} for every i and j such that i = o, and j =0,,k <r.

Show that all schedules corresponding to o’s satisfying the con-
ditions of part (a) have the samefinish time. (Hint: use part (b)
to transform oneof two different schedules satisfying (a) into the
other without increasing the finish time.)

5.11 REFERENCES AND READINGS

Twoclassic references on dynamic programming are:

Introduction to Dynamic Programming, by G. Nemhauser, John Wiley and
Sons, 1966.

Applied Dynamic Programming by R. E. Bellman and S. E. Dreyfus, Prince-
ton University Press, 1962.

https://hemanthrajhemu.github.io

308 CHAPTER 5. DYNAMIC PROGRAMMING

See also Dynamic Programming, by E. V. Denardo, Prentice-Hall, 1982.

The dynamic programming formulation for the shortest-paths problem
was given by R. Floyd.

Bellman and Ford’s algorithm for the single-source shortest-path problem
(with general edge weights) can be found in Dynamic Programming by R. E.
Bellman, Princeton University Press, 1957.

The construction of optimal binary search trees using dynamic program-
ming is described in The Art of Programming: Sorting and Searching, Vol.
3, by D. E. Knuth, Addison Wesley, 1973.

Thestring editing algorithm discussed in this chapter is in “The string-
to-string correction problem,” by R. A. Wagner and M. J. Fischer, Journal
of the ACM 21, no. 1 (1974): 168-173.

The set generation approach to solving the 0/1 knapsack problem was
formulated by G. Nemhauser and Z. Ullman, and E. Horowitz and S. Sahni.

Exercise 6 in Section 5.7 is due to E. Horowitz and S. Sahni.

The dynamic programming formulation for the traveling salesperson prob-
lem was given by M. Held and R. Karp.

The dynamic programming solution to the matrix product chain problem
(Exercises 1 and 2 in Additional Exercises) is due to S. Godbole.

5.12 ADDITIONAL EXERCISES

1. [Matrix product chains | Let A, B, and C be three matrices such that
C= Ax B. Let the dimensions of A, B, and C' respectively be m x
n,n x p, and m x p. From the definition of matrix multiplication,

n

k=1

(a) Write an algorithm to compute C directly using the above for-
mula. Show that the number of multiplications needed by your
algorithm is mnp.

(b) Let My, x Mz x--- x M, be a chain of matrix products. This
chain may be evaluated in several different ways. Two possibilities
are (--- (My x M2) x M3) x M4) x a) x M, and (M, x (M2 x

(--- x (M,_1 x M,)---). The cost of any computation of M, x

https://hemanthrajhemu.github.io

5.12. ADDITIONAL EXERCISES 309

(e)

Mz x -.-- x M, is the number of multiplications used. Consider

the case r = 4 and matrices M, through M, with dimensions
100 x 1,1 x 100,100 x 1, and 1x 100 respectively. What is the
cost of each of the five ways to compute My, x Ma x M3 x M4
? Show that the optimal way has a cost of 10,200 and the worst
way has a cost of 1,020,000. Assume that all matrix products are

computed using the algorithm of part (a).

Let M;; denote the matrix product M; x Mj,1 x --- x M;. Thus,

My = Mj, 1<i<r. S= P,,Py,...,P--1 is a product sequence
computing M;, iff each product Py is of the form M;; x Mj+1,9,
where M;; and Mj+1,, have been computed either by an ear-
lier product P,! < k, or represent an input matrix My. Note
that Mj; x Mj4i = Mig. Also note that every valid com-
putation of M,, using only pairwise matrix products at each
step is defined by a product sequence. Two product sequences
Si} = Py, Py, tang Pr and S5 = U1, Us, sees U,—} are different if

P;, #4 U; for some 7. Show that the numberof different product
sequencesif (r — 1)!

Although there are (r — 1)! different product sequences, many of
these are essentially the same in the sense that the same pairs
of matrices are multiplied. For example, the sequences S| =
(Mm, x M3), (M3 x M4), (Miz x M34) and S2 = (M3 x M4), (Mm, x

M2),(Mi2 x M34) are different under the definition of part (c).
However, the samepairs of matrices are multiplied in both S; and
S2. Show that if we consider only those product sequences that
differ from each other in at least one matrix product, then the
numberof different sequences is equal to the numberof different
binary trees having exactly r — 1 nodes.

Show that the numberof different binary trees with n nodes is

1 2n

n+1\n

2. [Matrix product chains] In the preceding exercise it was established
that the numberof different ways to evaluate a matrix product chain
is very large even when r is relatively small (say 10 or 20). In this
exercise we shall develop an O(r*) algorithm to find an optimal product
sequence (that is, one of minimum cost). Let D(i),0 <i <r, represent
the dimensions of the matrices; that is, M; has D(i —1) rows and D(i)
columns. Let C(i,j) be the cost of computing Mj; using an optimal
product sequence for M;;. Observe that C(i,i) = 0,1 <i <r, and
that C(i,i+1) = D(i- I)D@DUG+1),1<i<r.

https://hemanthrajhemu.github.io

310 CHAPTER 5. DYNAMIC PROGRAMMING

(a) Obtain a recurrence relation for C(i,j),7 > i. This recurrence
relation will be similar to Equation 5.14.

(b) Write an algorithm to solve the recurrence relation of part (a) for
C(1,r). Your algorithm should be of complexity O(r?).

(c) What changes are needed in the algorithm of part (b) to deter-
mine an optimal product sequence. Write an algorithm to deter-
mine such a sequence. Show that the overall complexity of your
algorithm remains O(r°).

(d) Work through your algorithm (by hand) for the product chain
of part (b) of the previous exercise. What are the values of
C(t, 7), 1 <i<r and j >i? What is an optimal way to compute
M4?

3. There are two warehouses W, and W2 from which supplies are to be
shipped to destinations Dj,1 <i< mn. Let d; be the demand at D;
and let r; be the inventory at W;. Assume r, + r2 = > dj. Let cj (aj)

be the cost of shipping z;; units from warehouse W; to destination D,.
The warehouse problem is to find nonnegative integers 1;;,1 <i <2
and 1 < j <n, such that 71; +22; = dj, 1<j <n, and)),; cij(ajz) is
minimized. Let g;(z) be the cost incurred when W, has an inventory
of x and supplies are sent to D;,1 <j <7, in an optimal manner(the
inventory at W) is 30)<;<;d; — z). The cost of an optimal solution to

the warehouse problem is g,(11).

(a) Use the optimality principle to obtain a recurrence relation for

gi{2).

(b) Write an algorithm to solve this recurrence and obtain an optimal
sequence of values for 2j;,1 <i <2,1<j <n.

. Given a warehouse with a storage capacity of B units and an initial
stock of v units, let y; be the quantity sold in each month, i,1 <i <n.
Let P,; be the per-unit selling price in month i, and z; the quantity
purchased in month 7. The buying price is c; per unit. At the end of
each month, the stock in hand must be no more than B. Thatis,

vt So (a)<B, 1l<j<n
1<t<j

The amount sold in each month cannot be more than the stock at
the end of the previous month (new stock arrives only at the end of a
month). That is,

wi Sur 7 —Yj), lS<icn
2

https://hemanthrajhemu.github.io

5.12. ADDITIONAL EXERCISES 311

Also, we require x; and y; to be nonnegative integers. The total profit
derived is

n

=2Dj Yj ~ C525)

The problem is to determine x; and y; such that P, is maximized.
Let f;(v;) represent the maximum profit that can be earned in months
¢+1,1+2,...,n, starting with v; units of stock at the end of month
i. Then fo(v) is the maximum value of P,.

(a) Obtain the dynamic programmingrecurrence for f;(v;) in terms

of fi+1(vi).
(b) What is fp,(vj)?

(c) Solve part (a) analytically to obtain the formula

filvi) = aja; + bv;

for some constants a; and);.

(d) Show that an optimal P,, is obtained by using the following strat-
egy:

1 pee G
A. If bj)41 > c;, then yj = v; and x, = B.

B. If bi41 <q, then yy = v; and x; = 0.

il. Cj > Dj
A. If 641, > G, then y; = 0 and x; = B — vj.

B. If bi44 < pj, then y; = vj and 2; = 0.

C. If p; < bji41 <q, then y; = 0 and «; = 0.

(e) Use the p; and c; in Figure 5.24 and obtain an optimal decision
sequence from part (d).

i 123 4567 8
pm 8 8 23 43 2°55
¢ 3 67145 1 3

Figure 5.24 p; and c; for Exercise 4

Assume the warehouse capacity to be 100 and theinitial stock to
be 60.

https://hemanthrajhemu.github.io

312 CHAPTER 5. DYNAMIC PROGRAMMING

(f) From part (d) conclude that an optimalset of values for x; and y;
will always lead to the following policy: Do no buyingorselling
for the first k months (k may be zero) and then oscillate between
a full and an empty warehouse for the remaining months.

5. Assume that n programs are to be stored on two tapes. Let [; be
the length of tape needed to store the ith program. Assume that
Sol, < DL, where £ is the length of each tape. A program can be
stored on either of the two tapes. If S; is the set of programs on tape
1, then the worst-case access time for a program is proportional to
max{ies, i, Vigs, 4}. An optimal assignment of programs to tapes
minimizes the worst-case access times. Formulate a dynamic program-
ming approach to determine the worst-case access time of an optimal
assignment. Write an algorithm to determine this time. What is the
complexity of your algorithm?

. Redo Exercise 5 making the assumption that programs will be stored
on tape 2 using a different tape density than that used on tape 1. If
I; is the tape length needed by program 7 when stored on tape 1, then
al; is the tape length needed on tape 2.

Let DL be an array of n distinct integers. Give an efficient algorithm to
find the length of a longest increasing subsequenceof entries in L. For
example, if the entries are 11,17, 5,8, 6,4, 7, 12,3, a longest increasing
subsequenceis 5,6,7,12. What is the run time of your algorithm?

https://hemanthrajhemu.github.io

