

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

COMPUTER ALGORITHMS

Ellis Horowitz
University of Southern California

Sartaj Sahni
University of Florida

Sanguthevar Rajasekaran
University of Florida

@
ComputerScience Press

An imprint of W. H. Freeman and Company

New York

https://hemanthrajhemu.github.io

CONTENTS ix

4.5.2 Kruskal’s Algorithm 220

4.5.3 An Optimal Randomized Algorithm (*) 225

4.66 OPTIMAL STORAGE ON TAPES 229

4.7 OPTIMAL MERGE PATTERNS................ 234

4.8 SINGLE-SOURCE SHORTEST PATHS 241

4.9 REFERENCES AND READINGS 249

4.10 ADDITIONAL EXERCISES 250

5 DYNAMIC PROGRAMMING 253

5.1 THE GENERAL METHOD................... 203

5.2 MULTISTAGE GRAPHS 0.0000 - 207

5.38 ALL PAIRS SHORTEST PATHS 265

5.4 SINGLE-SOURCE SHORTEST PATHS:............

GENERAL WEIGHTS22000- 270

5.5 OPTIMAL BINARY SEARCH TREES(*) 275

5.6 STRING EDITING00040. 284

5.7 O/1-KNAPSACK0.0.02..2.. 0.2.02. 0020 000. 287

5.8 RELIABILITY DESIGN..................... 295

5.9 THE TRAVELING SALESPERSON PROBLEM 298

5.10 FLOW SHOP SCHEDULING. 301

5.11 REFERENCES AND READINGS 307

5.12 ADDITIONAL EXERCISES 308

6 BASIC TRAVERSAL AND SEARCH TECHNIQUES 313

6.1 TECHNIQUES FOR BINARY TREES 313

6.2 TECHNIQUES FOR GRAPHS 318

6.2.1 Breadth First Search and Traversal. 320

6.2.2. Depth First Search and Traversal...2.. 323

6.3 CONNECTED COMPONENTS AND SPANNING TREES . 325

6.4 BICONNECTED COMPONENTS AND DFS......... 329

6.5 REFERENCES AND READINGS 338

7 BACKTRACKING 339

7.1 THE GENERAL METHOD................... 339

7.2 THE 8-QUEENS PROBLEM-.....- 353

7.3 SUM OF SUBSETS0200- 307

7.4 GRAPH COLORING00. 000058 360

7.5 HAMILTONIAN CYCLES0.-. 364

7.6 KNAPSACK PROBLEM+2+04 368https://hemanthrajhemu.github.io

CONTENTS

7.7 REFERENCES AND READINGS 374

7.8 ADDITIONAL EXERCISES006. 375

BRANCH-AND-BOUND 379

8.1 THEMETHOD 0.0.00 eee eee 379

8.1.1 Least Cost (LC) Search0....0..0.24. 380
8.1.2 The 15-puzzle: An Example............... 382

8.1.3 Control Abstractions for LC-Search 386

8.14 Bounding0..2..-. 020004 388

8.1.5 FIFO Branch-and-Bound 391

8.1.6 LC Branch-and-Bound...............000. 392

8.2 0/1 KNAPSACK PROBLEM-. 393

8.2.1. LC Branch-and-Bound Solution. 394

8.2.2 FIFO Branch-and-Bound Solution 397

8.3. TRAVELING SALESPERSON(4)...0...04. 403

8.4 EFFICIENCY CONSIDERATIONS 412

8.5 REFERENCES AND READINGS 416

ALGEBRAIC PROBLEMS 417

9.1 THE GENERAL METHOD................... 417

9.2 EVALUATION AND INTERPOLATION 420

9.3 THE FAST FOURIER TRANSFORM 430

9.3.1 An In-place Version of the FFT............. 435

9.3.2 Some Remaining Points4. 438

9.4 MODULAR ARITHMETIC.................-. 440

9.5 EVEN FASTER EVALUATION AND INTERPOLATION . 448

9.6 REFERENCES AND READINGS 456

10 LOWER BOUND THEORY 457

10.1 COMPARISON TREES 0.0000 ae 458

10.1.1 Ordered Searching000- 459

10.1.2 Sorting ... 2... .. 2.2... 02. eee eee 459

10.1.3 Selection 2... 0.0.0... ee ee es 464

10.2 ORACLES AND ADVERSARY ARGUMENTS........ 466

10.2.1 Merging 0.00. eee ee ee ee 467

10.2.2 Largest and Second Largest2.. 468

10.2.3 State Space Method06- 470

10.2.4 Selection 2... . 0. ee ee ee ee 471

10.3 LOWER BOUNDS THROUGH REDUCTIONS 474

https://hemanthrajhemu.github.io

CONTENTS

10.3.1 Finding the Convex Hull...0..

10.3.2 Disjoint Sets Problem-..-.

10.3.3 On-line Median Finding0..

10.3.4 Multiplying Triangular Matrices . 2... 0.0.00.
10.3.5 Inverting a Lower Triangular Matrix

10.3.6 Computing the Transitive Closure

10.4 TECHNIQUES FOR ALGEBRAIC PROBLEMS(*).....

10.5 REFERENCES AND READINGS

11 NP-HARD AND NP-COMPLETE PROBLEMS

11.1 BASIC CONCEPTS000005

11.1.1 Nondeterministic Algorithms

11.1.2 The classes NP-hard and NP-complete

11.2 COOK’S THEOREM (*)2.22 0005

11.3 MP-HARD GRAPH PROBLEMS

11.3.1 Clique Decision Problem (CDP)

11.3.2 Node Cover Decision Problem.

11.3.3 Chromatic Number Decision Problem (CNDP) .. .

11.3.4 Directed Hamiltonian Cycle (DHC) (*)

11.3.5 Traveling Salesperson Decision Problem (TSP) .. .

11.3.6 AND/OR Graph Decision Problem (AOG)

11.4 NP-HARD SCHEDULING PROBLEMS

11.4.1 Scheduling Identical Processors

11.4.2 Flow Shop Scheduling

11.4.3 Job Shop Scheduling...0..

11.5 NP-HARD CODE GENERATION PROBLEMS

11.5.1 Code Generation With Common Subexpressions

11.5.2 Implementing Parallel Assignment Instructions

11.6 SOME SIMPLIFIED VP-HARD PROBLEMS

11.7 REFERENCES AND READINGS

11.8 ADDITIONAL EXERCISES

12 APPROXIMATION ALGORITHMS

12.1 INTRODUCTION0...0.. 0002020008]

1°.2 ABSOLUTE APPROXIMATIONS

12.2.1 Planar Graph Coloring.

12.2.2 Maximum Programs Stored Problem..........

12.2.3 NP-hard Absolute Approximations

12.3 e-APPROXIMATIONS............ 0.00000 000-

XI

475

475

A477

A477

478

480

484

494

495

495

496

504

508

517

518

519

. O21

522

. 525

526

533

534

536

538

540

.. 542

546

500

503

503

https://hemanthrajhemu.github.io

Chapter 7

BACKTRACKING

7.1 THE GENERAL METHOD

In the search for fundamental principles of algorithm design, backtracking
represents one of the most general techniques. Many problems which deal
with searching for a set of solutions or which ask for an optimal solution
satisfying some constraints can be solved using the backtracking formulation.
The name backtrack was first coined by D. H. Lehmer in the 1950s. Early
workers who studied the process were R. J. Walker, who gave an algorithmic
account of it in 1960, and S. Golomb and L. Baumert who presented a very
general description of it as well as a variety of applications.

In many applications of the backtrack method, the desired solution is
expressible as an n-tuple (z),...,%n), where the x; are chosen from some
finite set S;. Often the problem to be solved calls for finding one vector
that maximizes (or minimizesorsatisfies) a criterion function P(x1,...,%n).
Sometimesit seeks all vectors that satisfy P. For example, sorting the array
of integers in a[1 : n] is a problem whosesolution is expressible by an n-
tuple, where x; is the index in a of the zth smallest element. The criterion
function P is the inequality a[z;] < a[z;41| for 1 <i <n. Theset S; is finite
and includes the integers 1 through n. Though sorting is not usually one of
the problems solved by backtracking, it is one example of a familiar problem
whose solution can be formulated as an n-tuple. In this chapter we study a
collection of problems whose solutions are best done using backtracking.

Suppose m, is the size of set S;. Then there arem = my,m2-::My n-
tuples that are possible candidates for satisfying the function P. The brute
force approach would be to form all these n-tuples, evaluate each one with
P, and save those which yield the optimum. The backtrack algorithm has
as its virtue the ability to yield the same answer with far fewer than m
trials. Its basic idea is to build up the solution vector one component at a
time and to use modified criterion functions P;(x1,...,2;) (sometimes called

339https://hemanthrajhemu.github.io

340 CHAPTER 7. BACKTRACKING

bounding functions) to test whether the vector being formed has any chance
of success. The major advantage of this methodis this: if it is realized that
the partial vector (1, £2,...,2;) can in no way lead to an optimal solution,
then m;41---Mn possible test vectors can be ignored entirely.

Many of the problems we solve using backtracking require that all the
solutions satisfy a complex set of constraints. For any problem these con-
straints can be divided into two categories: explicit and implicit.

Definition 7.1 Explicit constraints are rules that restrict each x; to take
on values only from a givenset. Oo

Common examples of explicit constraints are

{all nonnegative real numbers}

{0, 1}
{a:l;<a<u}

x; > 0 or S;
z;,=0 or 1 or S;

<ajsu, or $j

The explicit constraints depend on the particular instance I of the problem
being solved. All tuples that satisfy the explicit constraints define a possible
solution space for I.

Definition 7.2 The implicit constraints are rules that determine which of
the tuples in the solution space of J satisfy the criterion function. Thus
implicit constraints describe the way in which the x; must relate to each
other. 0

Example 7.1 [8-queens] A classic combinatorial problem is to place eight
queens on an 8 x 8 chessboard so that no two “attack,” that is, so that no
two of them are on the same row, column, or diagonal. Let us number the
rows and columnsof the chessboard 1 through 8 (Figure 7.1). The queens
can also be numbered 1 through 8. Since each queen must be on a different
row, we can without loss of generality assume queen 7 is to be placed on
row i. All solutions to the 8-queens problem can therefore be represented
as 8-tuples (21,...,2g), where xz; is the column on which queen 7 is placed.
The explicit constraints using this formulation are S$; = {1,2,3, 4,5, 6,7, 8},

1<i< 8. Therefore the solution space consists of 8° 8-tuples. The implicit
constraints for this problem are that no two z;’s can be the same(ie., all
queens must be on different columns) and no two queens can be on the same
diagonal. The first of these two constraints implies that all solutions are
permutations of the 8-tuple (1, 2, 3, 4, 5, 6, 7, 8). This realization reduces

the size of the solution space from 8° tuples to 8! tuples. We see later how to
formulate the second constraint in terms of the 7;. Expressed as an 8-tuple,
the solution in Figure 7.1 is (4, 6, 8, 2, 7, 1, 3, 5). im

https://hemanthrajhemu.github.io

7.1. THE GENERAL METHOD 341

column

1 2 3 4 5 6 7 8

l Q

row
a
o

oO
o

s
t

K
O

N
N

Q

Figure 7.1 One solution to the 8-queens problem

Example 7.2 [Sum of subsets] Given positive numbers w;, 1 <7 <n, and
m, this problemcalls for finding all subsets of the w; whose sums are m.
For example, if n = 4, (wi, we, w3,w4) = (11, 13, 24, 7), and m = 31, then
the desired subsets are (11, 13, 7) and (24, 7). Rather than represent the
solution vector by the w; which sum to m, we could represent the solution
vector by giving the indices of these w;. Now the two solutions are described
by the vectors (1, 2, 4) and (3, 4). In general, all solutions are k-tuples
(21, 22,...,2%), 1 <k <n, and different solutions may have different-sized

tuples. The explicit constraints require 7; € {j | j is an integer and 1 <
y <n}. The implicit constraints require that no two be the same and that
the sum of the corresponding w;’s be m. Since we wish to avoid generating
multiple instances of the same subset (e.g., (1, 2, 4) and (1, 4, 2) represent the
same subset), another implicit constraint that is imposed is that 2; < 2441,
l<i<k.

In another formulation of the sum of subsets problem, each solution subset
is represented by an n-tuple (#1, 22,...,2,,) such that 2; € {0,1}, 1 <i<n.
Then x; = 0 if w; is not chosen and x; = 1 if w; is chosen. The solutions
to the above instance are (1, 1, 0, 1) and (0, 0, 1, 1). This formulation
expresses all solutions using a fixed-sized tuple. Thus we conclude that
there may be several ways to formulate a problem so that all solutions are
tuples that satisfy some constraints. One can verify that for both of the
above formulations, the solution space consists of 2” distinct tuples. im

https://hemanthrajhemu.github.io

342 CHAPTER 7. BACKTRACKING

Backtracking algorithms determine problem solutions by systematically
searching the solution space for the given problem instance. This search is
facilitated by using a tree organization for the solution space. For a given
solution space many tree organizations may be possible. The next two ex-
amples examine some of the ways to organize a solution into a tree.

Example 7.3 [n-queens] The n-queens problem is a generalization of the 8-
queens problem of Example 7.1. Now n queens are to be placed on ann x n
chessboard so that no two attack; that is, no two queens are on the samerow,
column, or diagonal. Generalizing our earlier discussion, the solution space
consists of all n! permutations of the n-tuple (1,2,...,n). Figure 7.2 shows
a possible tree organization for the case n = 4. A tree such asthis is called
a permutation tree. The edges are labeled by possible values of x;. Edges
from level 1 to level 2 nodes specify the values for x;. Thus, the leftmost
subtree contains all solutions with 2, = 1; its leftmost subtree containsall
solutions with z; = 1 and zg = 2, and so on. Edges from level 7 to level i+1

are labeled with the values of 2;. The solution space is defined by all paths
from the root node to a leaf node. There are 4! = 24 leaf nodes in the tree
of Figure 7.2. Oo

48 4 2 [3

GOOBOODBDADDADDIMOODEOCENE)

Figure 7.2 Tree organization of the 4-queens solution space. Nodes are
numbered as in depth first search.

https://hemanthrajhemu.github.io

7.1. THE GENERAL METHOD 343

Example 7.4 [Sum of subsets] In Example 7.2 we gave two possible formu-
lations of the solution space for the sum of subsets problem. Figures 7.3 and
7.4 show a possible tree organization for each of these formulations for the
case n = 4. The tree of Figure 7.3 corresponds to the variable tuple size
formulation. The edges are labeled such that an edge from a level 7 node to
a level 1 + 1 node represents a value for x;. At each node, the solution space
is partitioned into subsolution spaces. The solution space is defined by all
paths from the root node to any nodein thetree, since any such path corre-
sponds to a subset satisfying the explicit constraints. The possible paths are
() (this corresponds to the empty path from the root to itself), (1), (1, 2),
(1,2,3), (1,2,3,4), (1,2,4), (1,3,4), (2), (2,3), and so on. Thus, the left-
most subtree defines all subsets containing w,, the next subtree defines all
subsets containing w2 but not wy, and so on.

The tree of Figure 7.4 corresponds to the fixed tuple size formulation.
Edges from level 7 nodes to level 7 + 1 nodes are labeled with the value of
x;, which is either zero or one. All paths from the root to a leaf node define
the solution space. Theleft subtree of the root defines all subsets containing
w,, the right subtree defines all subsets not containing w;, and so on. Now
there are 2* leaf nodes which represent 16 possible tuples. Oo

Figure 7.3 A possible solution space organization for the sum of subsets
problem. Nodes are numbered as in breadth-first search.

At this point it is useful to develop some terminology regarding tree
organizations of solution spaces. Each nodein this tree defines a problem

https://hemanthrajhemu.github.io

344 CHAPTER 7. BACKTRACKING

state. All paths from the root to other nodes define the state space of the
problem. Solution states are those problem states s for which the path from
the root to s defines a tuple in the solution space. In the tree of Figure 7.3 all
nodesare solution states whereas in the tree of Figure 7.4 only leaf nodes are
solution states. Answer states are those solution states s for which the path
from the root to s defines a tuple that is a memberofthe set of solutions(i.e.,
it satisfies the implicit constraints) of the problem. The tree organization of
the solution space is referred to as the state space tree.

Figure 7.4 Another possible organization for the sum of subsets problems.
Nodes are numbered as in D-search.

At each internal node in the space tree of Examples 7.3 and 7.4 the
solution space is partitioned into disjoint sub-solution spaces. For example,
at node 1 of Figure 7.2 the solution space is partitioned into four disjoint
sets. Subtrees 2, 18, 34, and 50 respectively represent all elements of the
solution space with 7; = 1, 2, 3, and 4. At node 2 the sub-solution space with
x, = 1 is further partitioned into three disjoint sets. Subtree 3 represents
all solution space elements with x; = 1 and x2 = 2. Forall the state space

trees we study in this chapter, the solution space is partitioned into disjoint
sub-solution spaces at each internal node. It should be noted that this is

https://hemanthrajhemu.github.io

7.1. THE GENERAL METHOD 345

not a requirement on a state space tree. The only requirement is that every
element of the solution space be represented by at least one nodein the state
space tree.

The state space tree organizations described in Example 7.4 are called
static trees. This terminology follows from the observation that the tree
organizations are independent of the problem instance being solved. For
some problemsit is advantageous to use different tree organizations for dif-
ferent problem instances. In this case the tree organization is determined
dynamically as the solution space is being searched. Tree organizations that
are problem instance dependent are called dynamic trees. As an example,
consider the fixed tuple size formulation for the sum of subsets problem (Ex-
ample 7.4). Using a dynamic tree organization, one problem instance with
n = 4 canbesolved by meansof the organization given in Figure 7.4. An-
other problem instance with n = 4 can be solved by meansof a tree in which
at level 1 the partitioning corresponds to r2 = 1 and xg = 0. Atlevel 2
the partitioning could correspond to x; = 1 and 2x, = 0, at level 3 it could
correspond to #3 = 1 and x3 = 0, and so on. We see more of dynamic trees
in Sections 7.6 and 8.3.

Once a state space tree has been conceived of for any problem, this prob-
lem can be solved by systematically generating the problemstates, deter-
mining which of these are solution states, and finally determining which
solution states are answer states. There are two fundamentally different
ways to generate the problem states. Both of these begin with the root
node and generate other nodes. A node which has been generated and all
of whose children have not yet been generated is called a live node. The
live node whosechildren are currently being generated is called the E-node
(node being expanded). A dead node is a generated node which is not to
be expanded further or all of whose children have been generated. In both
methods of generating problem states, we have a list of live nodes. In the
first of these two methods as soon as a new child C of the current E-node
R is generated, this child will become the new E-node. Then R will become
the E-node again when the subtree C’ has been fully explored. This corre-
spondsto a depthfirst generation of the problem states. In the second state
generation method, the E-node remains the E-node until it is dead. In both
methods, bounding functions are used to kill live nodes without generating
all their children. This is done carefully enough that at the conclusion of the
process at least one answer nodeis always generated or all answer nodesare
generated if the problem requires us to find all solutions. Depth first node
generation with bounding functionsis called backtracking. State generation
methods in which the £-node remains the E-node until it is dead lead to
branch-and-bound methods. The branch-and-bound technique is discussed
in Chapter 8.

The nodes of Figure 7.2 have been numbered in the order they would be
generated in a depth first generation process. The nodes in Figures 7.3 and

https://hemanthrajhemu.github.io

346 CHAPTER 7. BACKTRACKING

7.4 have been numberedaccording to two generation methods in which the
f-node remains the /#-node until it is dead. In Figure 7.3 each new nodeis
placed into a queue. Whenall the children of the current E-node have been
generated, the next nodeat the front of the queue becomes the new E-node.
In Figure 7.4 new nodesare placed into a stack instead of a queue. Current
terminology is not uniform in referring to these two alternatives. Typically
the queue methodis called breadth first generation and the stack method is
called D-search (depth search).

Example 7.5 [4-queens] Let us see how backtracking works on the 4-queens
problem of Example 7.3. As a bounding function, we use the obviouscriteria
that if (21, 22,...,2;) is the path to the current E-node, then all children
nodes with parent-child labelings 74,1 are such that (%1,..., 241) represents
a chessboard configuration in which no two queens are attacking. We start
with the root node as the only live node. This becomes the E-node and
the path is (). We generate one child. Let us assume that the children are
generated in ascending order. Thus, node number 2 of Figure 7.2 is generated
and the path is now (1). This corresponds to placing queen 1 on column
1. Node 2 becomes the E-node. Node 3 is generated and immediately
killed. The next node generated is node 8 and the path becomes(1, 3).
Node 8 becomes the E-node. However, it gets killed as all its children
represent board configurations that cannot lead to an answer node. We
backtrack to node 2 and generate another child, node 13. The path is now
(1, 4). Figure 7.5 shows the board configurations as backtracking proceeds.
Figure 7.5 shows graphically the steps that the backtracking algorithm goes
through as it tries to find a solution. The dots indicate placements of a
queen which were tried and rejected because another queen was attacking.
In Figure 7.5(b) the second queen is placed on columns 1 and 2 andfinally
settles on column 3. In Figure 7.5(c) the algorithm tries all four columns
and is unable to place the next queen on a square. Backtracking now takes
place. In Figure 7.5(d) the second queen is moved to the next possible
column, column 4 and the third queen is placed on column 2. The boardsin
Figure 7.5 (e), (f), (g), and (h) show the remaining steps that the algorithm
goes through until a solution is found.

Figure 7.6 shows the part of the tree of Figure 7.2 that is generated.
Nodesare numberedin the order in which they are generated. A node that
gets killed as a result of the bounding function has a B underit. Contrast
this tree with Figure 7.2 which contains 31 nodes. Oo

With this example completed, we are now ready to present a precise
formulation of the backtracking process. We continue to treat backtracking
in a general way. We assume that all answer nodes are to be found and not
just one. Let (x1, £2,...,2;) be a path from the root to a nodeina state space
tree. Let T(x1,22,...,2;) be the set of all possible values for z+; such that
(21, 22,...,2;41) 18 also a path to a problem state. T(#1,22,...,2n) = 0.

https://hemanthrajhemu.github.io

7.1. THE GENERAL METHOD 347

(e) (f) (g)

Figure 7.5 Example of a backtrack solution to the 4-queens problem

Figure 7.6 Portion of the tree of Figure 7.2 that is generated during back-
tracking

https://hemanthrajhemu.github.io

348 CHAPTER 7. BACKTRACKING

We assumethe existence of bounding function B;+,1 (expressed as predicates)
such that if Byi1(21,22,...,2441) is false for a path (#1, 22,...,2441) from
the root node to a problem state, then the path cannot be extended to
reach an answer node. Thus the candidates for position 7+ 1 of the solution
vector (£1,...,2%n) are those values which are generated by T and satisfy
Bj41. Algorithm 7.1 presents a recursive formulation of the backtracking
technique. It is natural to describe backtracking in this way sinceit is
essentially a postorder traversal of a tree (see Section 6.1). This recursive
version is initially invoked by

Backtrack(1);

1 Algorithm Backtrack(k)
2 // This schema describes the backtracking process using
3 // recursion. On entering, the first k — 1 values
4 // a{1],2[2],...,2[k — 1] of the solution vector
5 // «{1:n] have been assigned. z[] and n are global.
6
7 for (each z[k] € T(2[1],...,2[k — 1]) do

sof
9 if (By,(z[1], [2],...,2[k]) #0) then
10
11 if (x[1], x[2],...,a2[k] is a path to an answer node)
12 then write (z/1: k]);
13 if (k < n) then Backtrack(k + 1);
14 }
15
16 }

Algorithm 7.1 Recursive backtracking algorithm

The solution vector (x1,...,2%p,), is treated as a global array z{1:n]. All
the possible elements for the kth position of the tuple that satisfy B, are
generated, one by one, and adjoined to the current vector (#1,...,2,_1).
Each time 2, is attached, a check is made to determine whether a solution
has been found. Then the algorithm is recursively invoked. When the for
loop of line 7 is exited, no more values for x; exist and the current copy of
Backtrack ends. The last unresolved call now resumes, namely, the one that
continues to examine the remaining elements assuming only & — 2 values
have beenset.

https://hemanthrajhemu.github.io

7.1. THE GENERAL METHOD 349

Note that this algorithm causes all solutions to be printed and assumes
that tuples of various sizes may make upa solution. If only a single solution
is desired, then a flag can be added as a parameter to indicate the first
occurrence of success.

1 Algorithm |Backtrack(n)
2 // This schema describes the backtracking process.
3 // All solutions are generated in z[1 : n] and printed
4 // as soon as they are determined.
5
6 k:=1;
7 while (k 40) do
8
9 if (there remains an untried z[k] € T(z[1], z[2],...,
10 z[k —1]) and B,(2[1],...,a[k]) is true) then
11
12 if (z[1],...,z[k] is a path to an answer node)
13 then write (z[1: k]);
14 k:=k+1; // Consider the next set.
15 }
16 else k := k —1; // Backtrack to the previousset.
17
18 }

Algorithm 7.2 General iterative backtracking method

Aniterative version of Algorithm 7.1 appears in Algorithm 7.2. Note that
T() will yield the set of all possible values that can be placed as the first
component 2x, of the solution vector. The component x; will take on those
values for which the bounding function B,(z,) is true. Also note how the
elements are generated in a depth first manner. The variable k is continually
incremented and a solution vector is grown until either a solution is found or
no untried value of x, remains. When k is decremented, the algorithm must
resume the generation of possible elements for the kth position that have
not yet been tried. Therefore one must develop a procedure that generates
these values in some order. If only one solution is desired, replacing write
(x[1: k]); with {write (z[1 : k]); return;} suffices.

The efficiency of both the backtracking algorithms we’ve just seen de-
pends very much on four factors: (1) the time to generate the next x, (2)
the number of x, satisfying the explicit constraints, (3) the time for the
bounding functions B,, and (4) the numberof x, satisfying the B,. Bound-

https://hemanthrajhemu.github.io

304 CHAPTER 7. BACKTRACKING

1 Algorithm Place(k, 7)
2 // Returns true if a queen can be placed in kth row and
3 // ith column. Otherwise it returns false. z[] is a
4 // global array whose first (k — 1) values have beenset.
5 // Abs(r) returns the absolute value ofr.
6
7 for j := 1tok—1do
8 if ((x[j] = 7) // Two in the same column
9 or (Abs(a[j] — 7) = Abs(j — k)))
10 // or in the samediagonal
11 then return false;
12 return true;

13 }

Algorithm 7.4 Can a new queen be placed?

1 Algorithm NQueens(k, 7)
2 // Using backtracking, this procedure printsall
3. // possible placements of n queens on an n x n
4 // chessboard so that they are nonattacking.
5
6 for i:=1tondo

7
8 if Place(k,7) then
9
10 xk] := 73
11 if (k = n) then write (z[1 : n]);
12 else NQueens(k + 1,7);
13 }
14

15 }

Algorithm 7.5 All solutions to the n-queens problem

https://hemanthrajhemu.github.io

7.2. THE 8-QUEENS PROBLEM 309

At this point we might wonderhow effective function NQueensis over the

brute force approach. For an 8 x 8 chessboard there are (8) possible ways to
place 8 pieces, or approximately 4.4 billion 8-tuples to examine. However, by
allowing only placements of queens on distinct rows and columns, we require
the examination of at most 8!, or only 40,320 8-tuples.

We can use Estimate to estimate the numberof nodes that will be gener-
ated by NQueens. Note that the assumptions that are needed for Estimate
do hold for NQueens. The bounding function is static. No change is made
to the function as the search proceeds. In addition, all nodes on the same
level of the state space tree have the same degree. In Figure 7.8 we see five
8 x 8 chessboards that were created using Estimate.

As required, the placement of each queen on the chessboard was chosen
randomly. With each choice we kept track of the numberof columns a queen
could legitimately be placed on. These numbers arelisted in the vector
beneath each chessboard. The number following the vector represents the
value that function Estimate would produce from these sizes. The average
of these five trials is 1625. The total numberof nodes in the 8-queens state
space tree is

7

1+ >> [M9(8 — «)| = 69, 281
j=0

So the estimated number of unbounded nodes is only about 2.34% of the
total number of nodes in the 8-queens state space tree. (See the exercises
for more ideas about theefficiency of NQueens.)

EXERCISES

1. Algorithm NQueens can be made moreefficient by redefining the func-
tion Place(k,7) so that it either returns the next legitimate column on
which to place the kth queenor anillegal value. Rewrite both functions
(Algorithms 7.4 and 7.5) so they implement this alternate strategy.

2. For the n-queens problem we observe that some solutions are simply
reflections or rotations of others. For example, when n = 4, the two
solutions given in Figure 7.9 are equivalent underreflection.

Observe that for finding inequivalent solutions the algorithm need only
set x]1] = 2,3,...,[n/2].

(a) Modify NQueensso that only inequivalent solutions are computed.

(b) Run the n-queens program devised above for n = 8, 9, and 10.
Tabulate the number of solutions your program finds for each
value of n.

https://hemanthrajhemu.github.io

306 CHAPTER 7. BACKTRACKING

(8,5,4,3,2) = 1649 (8,5,3,1,2,1) = 769

a
2

3

CHeCeeee
5

[él|
7

(8,6,4,2,1,1,1) = 1401 (8,6,4,3,2) = 1977

(8,5,3,2,2,1,1,1) = 2329

Figure 7.8 Five walks through the 8-queens problem plus estimates of the
tree size

https://hemanthrajhemu.github.io

7.3. SUM OF SUBSETS 357

Figure 7.9 Equivalent solutions to the

3. Given an n x n chessboard, a kni
with coordinates (z,y). The pro
moves such that every square of
sequence of moves exists. Present

7.3 SUM OF SUBSETS

Suppose we are given n distinct positi
and we desire to find all combinations
This is called the sum of subsets problen
we could formulate this problem using
Weconsider a backtracking solution us
this case the element x; of the solution v
on whether the weight w,; is included on

The children of any node in Figure
at level 7 the left child corresponds to x

A simple choice for the bounding fur

k n

Yone+ Sp
t=1 i=k

Clearly 21,...,2, cannot lead to an
satisfied. The bounding functions can b
are initially in nondecreasing order. In
an answer node if

k

Ss; wWiri t+ Ww

i=1

The bounding functions we use are they

» 4-queens problem

ight is placed on an arbitrary square
blem is to determine n? — 1 knight
the board is visited once if such a
an algorithm to solve this problem.

ve numbers (usually called weights)
f these numbers whose sums are m.
n. Examples 7.2 and 7.4 showed how
pither fixed- or variable-sized tuples.
ing the fixed tuple size strategy. In
ector is either one or zero depending
not.

y.4 are easily generated. For a node
i = 1 and the right to x; = 0.

nctions is By (x1,...,2%) = true iff

w;>m™

t+ 1

swer node if this condition is not
e strengthened if we assumethe w,’s
this case £1,...,2% cannot lead to

kt > 7m

efore https://hemanthrajhemu.github.io

358 CHAPTER 7. BACKTRACKING

k n

By(x1,..., 0k) = true iff > wiai + S- ww, >m
i=l i=k+1

k

and So wie; + Wee Sm (7.1)

i=1

Since our algorithm will not make use of B,, we need not be concerned by
the appearance of w,,,1 in this function. Although we have now specified all
that is needed to directly use either of the backtracking schemas, a simpler
algorithm results if we tailor either of these schemas to the problem at hand.
This simplification results from the realization that if x, = 1, then

nk

S> was + S- w;,>m

~=il1 i=k+1

For simplicity we refine the recursive schema. Theresulting algorithm is
SumOfSub (Algorithm 7.6).

Algorithm SumOfSub avoids computing 7*_, wir; and eRWi each
time by keeping these values in variables s and r respectively. The algorithm
assumes wy <m and 7, w; > m. Theinitial call is SumOfSub(0, 1, 77.) wi).
It is interesting to note that the algorithm does not explicitly use the test
k > n to terminate the recursion. This test is not needed as on entry to the
algorithm, s # m and s+r>m. Hence, r 4 0 and so k can be no greater
than n. Also note that in the else if statement (line 11), since s+ wy <m
and s+r > m, it follows that r ~ wy and hence k+ 1 < n. Observe
also that if s+ we = m (line 9), then x,41,...,Z,, must be zero. These
zeros are omitted from the output of line 9. In line 11 we do not test for

ea witi + Vyp41 Wi > M, as we already know s +r >m and 2, = 1.

Example 7.6 Figure 7.10 shows the portion of the state space tree gener-
ated by function SumOfSub while working on the instance n = 6, m = 30,
and w({l : 6] = {5,10,12,13,15,18}. The rectangular nodes list the values
of s,k, and r on each of the calls to SumOfSub. Circular nodes represent
points at which subsets with sums m are printed out. At nodes A,B, and
C the output is respectively (1, 1, 0, 0, 1), (1, 0, 1, 1), and (0, 0, 1, 0, 0,
1). Note that the tree of Figure 7.10 contains only 23 rectangular nodes.

The full state space tree for n = 6 contains 2® — 1 = 63 nodes from which
calls could be made (this count excludes the 64 leaf nodes as no call need be
made from leaf). Oo

https://hemanthrajhemu.github.io

7.3. SUM OF SUBSETS 309

Algorithm SumOfSub(s, k,r)
// Find all subsets of w[1:n] that sum to m. The values of «[j],
//1<j<k, havealready been determined. 5 = vie=} wl] « ef]
// andr = yn, wy]. The wlj]’s are in nondecreasing order.
// It is assumed that wll] <m and 37_, w[i] > m.

// Generate left child. Note: s+ w[k] <m since By_, is true.
z[k] := 1;
if (s + w[k] = m) then write (2[1: k]); // Subset found

// There is no recursive call here as wij] > 0, 1<j <n.
else if (s+ w[k] +w[k+1])<m

then SumOfSub(s + w[k],k + 1,r — w[k]);
// Generate right child and evaluate By.
if ((s +r — wk] > m) and (s + w[k + 1] <m)) then

C
o
n
n
o
n
k

Ww
W
N
e

z[k] := 0;
SumOfSub(s, k + 1,r — wlk]);

R
e
e
e
e
e
R
e
e
e
e

O
o
n
n
o
r

w
o
n
m
r
©

w

Algorithm 7.6 Recursive backtracking algorithm for sum of subsets prob-
lem

EXERCISES

1. Prove that the size of the set of all subsets of n elements is 2”.

2. Let w = {5,7,10,12,15,18,20} and m = 35. Find all possible subsets
of w that sum to m. Do this using SumOfSub. Draw the portion of
the state space tree that is generated.

3. With m = 35, run SumOfSubon the data (a) w = {5, 7, 10, 12,15, 18, 20},
(b) w = {20, 18, 15, 12, 10,7,5}, and ((c) w = {15,7,20,5, 18, 10, 12}.
Are there any discernible differences in the computing times?

4, Write a backtracking algorithm for the sum of subsets problem using
the state space tree corresponding to the variable tuple size formula-
tion.

https://hemanthrajhemu.github.io

360 CHAPTER 7. BACKTRACKING

x,=1

X=1 x2=0

x3=1 x3=0 x3=1 x3=0

x4=0 xg=l x4=0

(B) 12,5,33} |13,5,33

x5=] x5=1

©

Figure 7.10 Portion of state space tree generated by SumOfSub

7.4 GRAPH COLORING

Let G be a graph and m be a given positive integer. We want to discover
whether the nodes of G can be colored in such a way that no two adjacent
nodes have the same color yet only m colors are used. This is termed the
m-colorability decision problem andit is discussed again in Chapter 11. Note
that if d is the degree of the given graph, then it can be colored with d+ 1
colors. The m-colorability optimization problem asks for the smallest integer
m for which the graph G can be colored. This integer is referred to as the
chromatic number of the graph. For example, the graph of Figure 7.11 can
be colored with three colors 1,2, and 3. The color of each nodeis indicated
next to it. It can also be seen that three colors are needed to color this graph
and hence this graph’s chromatic numberis 3.

https://hemanthrajhemu.github.io

7.4. GRAPH COLORING 361

Figure 7.11 An example graph and its coloring

A graphis said to be planar iff it can be drawn in a plane in such a
way that no two edges cross each other. A famous special case of the m-
colorability decision problem is the 4-color problem for planar graphs. This
problem asks the following question: given any map, can the regions be
colored in such a way that no two adjacent regions have the same color
yet only four colors are needed? This turns out to be a problem for which
graphsare very useful, because a map can easily be transformedinto a graph.
Each region of the map becomes a node, and if two regions are adjacent,
then the corresponding nodes are joined by an edge. Figure 7.12 shows a
map with five regions and its corresponding graph. This map requires four
colors. For many years it was known that five colors were sufficient to color
any map, but no map that required more than four colors had ever been
found. After several hundred years, this problem was solved by a group of
mathematicians with the help of a computer. They showed that in fact four
colors are sufficient. In this section we consider not only graphs that are
produced from maps but all graphs. We are interested in determining all
the different ways in which a given graph can be colored using at most m
colors.

Suppose we represent a graph by its adjacency matrix G[l : n,1: nj,
where Gi, j] = Lif (i, 7) is an edge of G, and Gli, j] = 0 otherwise. The colors
are represented by the integers 1, 2,...,m and the solutions are given by the
n-tuple (21,...,¢n), where «; is the color of node 7. Using the recursive
backtracking formulation as given in Algorithm 7.1, the resulting algorithm
is mColoring (Algorithm 7.7). The underlying state space tree used is a
tree of degree m and height n+ 1. Each node at level 2 has m children
corresponding to the m possible assignments to z;, 1 <i <n. Nodes at

https://hemanthrajhemu.github.io

362 CHAPTER 7. BACKTRACKING

Figure 7.12 A map andits planar graph representation

level n + 1 are leaf nodes. Figure 7.13 shows the state space tree when n =
3 and m = 3.

Function mColoring is begun by first assigning the graph to its adja-
cency matrix, setting the array x| | to zero, and then invoking the statement
mColoring(1);.

Notice the similarity between this algorithm and the general form of the
recursive backtracking schema of Algorithm 7.1. Function NextValue (Algo-
rithm 7.8) produces the possible colors for x, after x; through x,_1 have
been defined. The main loop of mColoring repeatedly picks an element from
the set of possibilities, assigns it to 2,, and then calls mColoring recursively.
For instance, Figure 7.14 shows a simple graph containing four nodes. Below
that is the tree that is generated by mColoring. Each path to a leaf repre-
sents a coloring using at most three colors. Note that only 12 solutions exist
with exactly three colors. In this tree, after choosing z; = 2 and x = 1,
the possible choices for x3 are 2 and 3. After choosing 2, = 2, 2 = 1, and
£3 = 2, possible values for x4 are 1 and 3. And so on.

An upper bound on the computing time of mColoring can be arrived at by

noticing that the numberof internal nodesin the state spacetree is an m.,
At each internal node, O(mn) time is spent by NextValue to determine the
children corresponding to legal colorings. Hence the total time is bounded

by Std mtn = Ty m'n = n(m"*t — 2)/(m — 1) = O(nm").

https://hemanthrajhemu.github.io

7.4. GRAPH COLORING 363

1 Algorithm mColoring(k)
2 // This algorithm was formed using the recursive backtracking
3 // schema. The graph is represented by its boolean adjacency
4 // matrix G[l:n,1:n]. All assignments of 1,2,...,m to the
5 // vertices of the graph such that adjacent vertices are
6 // assigned distinct integers are printed. k is the index
7 // of the next vertex to color.
8
9 repeat
10 {// Generate all legal assignments for z]k].
11 NextValue(A); // Assign to x[k] a legal color.
12 if (z[k] = 0) then return; // No new color possible
13 if(k=n)then // At most m colors have been
14 // used to color the n vertices.
15 write (z[1 : n]);
16 else mColoring(& + 1);
17 } until (false);
18 }

Algorithm 7.7 Findingall m-colorings of a graph

Figure 7.13 State space tree for mColoring when n =3 and m = 3

https://hemanthrajhemu.github.io

364 CHAPTER 7. BACKTRACKING

1 Algorithm NextValue(k)
2 // x{lj,...,2[k — 1] have been assigned integer values in
3 // the range [1,m] such that adjacent vertices have distinct
4 // integers. A value for z[k] is determined in the range
5 // [0,m]. z[k] is assigned the next highest numbered color
6 / while maintaining distinctness from the adjacent vertices
7 // of vertex k. If no such color exists, then z[k] is 0.

8 {
9 repeat
10
11 z[k] := (a[k] + 1) mod (m+ 1); // Next highest color.
12 if (x[k] = 0) then return; // All colors have been used.
13 for j :=1tondo
14 { // Check if this color is
15 // distinct from adjacentcolors.

16 if ((G[&, j] £0) and (c(4] = 2{j)
17 // If (k,7) is and edge andif adj.
18 // vertices have the samecolor.
19 then break;
20
21 if (7 =n-+1) then return; // New color found
22 } until (false); // Otherwise try to find another color.
23 }

Algorithm 7.8 Generating a next color

EXERCISE

1. Program and run mColoring (Algorithm 7.7) using as data the complete
graphsofsize n = 2, 3, 4, 5, 6, and 7. Let the desired numberof colors
be k =n and k = n/2. Tabulate the computing times for each value
of n and k.

7.5 HAMILTONIAN CYCLES

Let G = (V,E) be a connected graph with n vertices. A Hamiltonian cycle
(suggested by Sir William Hamilton) is a round-trip path along n edges of
G that visits every vertex once and returns to its starting position. In other
words if a Hamiltonian cycle begins at some vertex vj € G and the vertices

https://hemanthrajhemu.github.io

7.5. HAMILTONIAN CYCLES 365

x4=2/\32) 2 33

OO

Figure 7.14 A 4-node graph andall possible 3-colorings

of G are visited in the orderv1, v2,...,Un41, then the edges (v;, u;+1) are in
E,1<%t<n, and the v; are distinct except for vy; and v,41, which are equal.

The graph G1 of Figure 7.15 contains the Hamiltonian cycle 1, 2, 8, 7,
6, 5, 4, 3, 1. The graph G2 of Figure 7.15 contains no Hamiltonian cycle.
There is no known easy way to determine whethera given graph contains a
Hamiltonian cycle. We now look at a backtracking algorithm that finds all
the Hamiltonian cycles in a graph. The graph may bedirected or undirected.
Only distinct cycles are output.

The backtracking solution vector (x1,...,2,) is defined so that x; rep-
resents the ith visited vertex of the proposed cycle. Now all we need do is
determine how to compute the set of possible vertices for x, if 71,...,2,4~1
have already been chosen. If k = 1, then x, can be any of the n vertices. To
avoid printing the samecycle n times, we require that 7; = 1. Ifl <k <n,
then x, can be any vertex v that is distinct from x1, 22,...,2,%—1 and v is
connected by an edge to x,_,. The vertex x, can only be the one remaining
vertex and it must be connected to both z,,_; and 21. We begin by present-

ing function NextValue(k) (Algorithm 7.9), which determines a possible next

https://hemanthrajhemu.github.io

366 CHAPTER 7. BACKTRACKING

G1:

G2:

Figure 7.15 Two graphs, one containing a Hamiltonian cycle

vertex for the proposed cycle.

Using NextValue we can particularize the recursive backtracking schema
to find all Hamiltonian cycles (Algorithm 7.10). This algorithm is started
by first initializing the adjacency matrix G[1:n,1:n], then setting z[2 : n]
to zero and z[1] to 1, and then executing Hamiltonian(2).

Recall from Section 5.9 the traveling salesperson problem which asked for
a tour that has minimum cost. This tour is a Hamiltonian cycle. For the
simple case of a graph all of whose edge costs are identical, Hamiltonian will
find a minimum-cost tour if a tour exists. If the common edgecost is c, the
cost of a tour is cn since there are n edges in a Hamiltonian cycle.

EXERCISES

1. Determine the order of magnitude of the worst-case computing time
for the backtracking procedurethat finds all Hamiltonian cycles.

2. Draw the portion of the state space tree generated by Algorithm 7.10
for the graph G1 of Figure 7.15.

3. Generalize Hamiltonian so that it processes a graph whose edges have
costs associated with them and finds a Hamiltonian cycle with mini-
mum cost. You can assume that all edge costs are positive.

https://hemanthrajhemu.github.io

7.5. HAMILTONIAN CYCLES 367

1 Algorithm NextValue(k)
2 //a{l:k—1| isa path of k —1 distinct vertices. If x[k] = 0, then
3 // no vertex has as yet been assigned to z[k]. After execution,
4 // a{k] is assigned to the next highest numbered vertex which
5 // does not already appear in z[1 : k — 1] and is connected by
6 // an edge to x[k — 1]. Otherwise z[k] = 0. If k =n, then
7 // in addition z[k] is connected to [1].
8
9 repeat
10 {
11 z[k] := (2[k] + 1) mod (n+ 1); // Next vertex.
12 if (z[k] = 0) then return;
13 if (G[z[k — 1], 2[k]] 4 0) then
14 { // Is there an edge?
15 for 7 :=1 to k—1 doif (2[j] = 2[k]) then break;
16 // Check for distinctness.
17 if (j =k) then // If true, then the vertex is distinct.
18 if ((k <n) or ((k =n) and G[z[n], z[1]] 4 0))
19 then return;
20 }
21 } until (false);
22 }

Algorithm 7.9 Generating a next vertex

https://hemanthrajhemu.github.io

368 CHAPTER 7. BACKTRACKING

1 Algorithm Hamiltonian(k)
2 // This algorithm uses the recursive formulation of
3 // backtracking to find all the Hamiltonian cycles
4 // of a graph. Thegraph is stored as an adjacency
5 // matrix G[1:n,1:n]. All cycles begin at node 1.
6
7 repeat
8 { // Generate values for z[k].
9 NextValue(k); // Assign a legal next value to z[k].
10 if (a[k] = 0) then return;
11 if (k =n) then write (2[1 : n]);
12 else Hamiltonian(k + 1);
13 } until (false);
14 }

Algorithm 7.10 Finding all Hamiltonian cycles

7.6 KNAPSACK PROBLEM

In this section we reconsider a problem that was defined and solved by a dy-
namic programming algorithm in Chapter 5, the 0/1 knapsack optimization
problem. Given n positive weights w,;, n positive profits pj, and a positive
number m that is the knapsack capacity, this problem calls for choosing a
subset of the weights such that

Ss; wit, <m and Ss; pit; iS maximized (7.2)
l<i<n 1<i<n

The z;’s constitute a zero-one-valued vector.

The solution space for this problem consists of the 2” distinct ways to
assign zero or one values to the x,’s. Thus the solution space is the same
as that for the sum of subsets problem. Two possible tree organizations are
possible. One corresponds to the fixed tuple size formulation (Figure 7.4)
and the other to the variable tuple size formulation (Figure 7.3). Backtrack-
ing algorithms for the knapsack problem can bearrived at using either of
these two state space trees. Regardless of which is used, bounding functions
are needed to help kill some live nodes without expanding them. A good
bounding function for this problem is obtained by using an upper bound
on the value of the best feasible solution obtainable by expandingthe given
live node and any of its descendants. If this upper boundis not higher than

https://hemanthrajhemu.github.io

7.6. KNAPSACK PROBLEM 369

the value of the best solution determined so far, then that live node can be

killed.

We continue the discussion using the fixed tuple size formulation. If at
node Z the values of x;, 1 <i < k, have already been determined, then an
upper bound for Z can be obtained by relaxing the requirement x; = 0 or 1
to0 <a; <1 fork+1<i<n and using the greedy algorithm of Section 4.2

to solve the relaxed problem. Function Bound(cp,cw,k) (Algorithm 7.11)
determines an upper bound on the best solution obtainable by expanding
any node Z at level k + 1 of the state space tree. The object weights and
profits are wi] and pli]. It is assumed that p[i]/w[i] > pli + 1|/wlt + J,
Ll<icn.

1 Algorithm Bound(cp, cw, k)
2 // cp is the current profit total, cw is the current
3 // weight total; & is the index of the last removed
4 // item; and mis the knapsacksize.
5

6 b:= cp} €:= cw;
7 for i:=k+1tondo
8
9 c:=ct uli]
9 if (c < m) then b := b+ pli];
10 else return } + (1 — (ce — m)/wi{i]) * pli];
11

12 return 5;

13 }

Algorithm 7.11 A bounding function

From Boundit follows that the bound for a feasible left child of a node Z
is the same as that for Z. Hence, the bounding function need not be used
wheneverthe backtracking algorithm makes a moveto theleft child of a node.
The resulting algorithm is BKnap (Algorithm 7.12). It was obtained from
the recursive backtracking schema. Initially set fp := —1;. This algorithm
is invoked as

BKnap(1, 0,0);

When fp # -1, 2[i], 1 <7 <n, is such that 377, plijz[¢] = fp. In lines 8
to 18 left children are generated. In line 20, Bound is used to test whether a

https://hemanthrajhemu.github.io

370 CHAPTER 7. BACKTRACKING

{

C
O
N
D
M
o
h
W
N
r
H

29 }

Algorithm BKnap(k, cp, cw)
// mis the size of the knapsack; n is the numberof weights
// and profits. w[| and p[| are the weights and profits.
// pli|/wlé] > pli + 1]/wlt + 1). fw is the final weight of
/ knapsack; fp is the final maximum profit. x[k] = 0 if w[k]

// is not in the knapsack; else x[k] = 1.

// Generate left child.
if (cw + w[k] < m) then

k] := 1;

if ie <n) then BKnap(k +1, cp+ p[k], cw + w[k]);
if ((cp + p[k] > fp) and (k = n)) then

fp :=cp + pik]; fw := cw + wk];
for j:=1 to k do 2[j] := y[j];

}
}
// Generate right child.
if (Bound(cp, cw,k) > fp) then

k] := 0; if (k <n) then BKnap(k +1, cp, cw);

if ((cp > fp) and (k = n)) then

n
e
s
,

fp:=cp; fw := cw;

for j := 1 to k do 2[j] := y[¥];

}

Algorithm 7.12 Backtracking solution to the 0/1 knapsack problem

https://hemanthrajhemu.github.io

7.6. KNAPSACK PROBLEM 371

right child should be generated. The path y[i], 1 <7 <k, is the path to the

current node. The current weight cw = S7*7} w[i}y[i] and cp = Tk7}pfi]y[i].
In lines 13 to 17 and 23 to 27 the solution vector is updated if need be.

So far, all our backtracking algorithms have worked on a static state
space tree. We now see how a dynamic state space tree can be used for the
knapsack problem. One method for dynamically partitioning the solution
space is based on trying to obtain an optimal solution using the greedy
algorithm of Section 4.2. We first replace the integer constraint +; = 0 or 1
by the constraint 0 < x; <1. This yields the relaxed problem

max S- pix; subject to S- wit, <m™m (7.3)
l<i<n l<i<n

0<a;<1, 1<i<n

If the solution generated by the greedy methodhasall x;’s equal to zero or
one, then it is also an optimalsolution to the original 0/1 knapsack problem.
If this is not the case, then exactly one x; will be such that 0 < 2; <1. We
partition the solution space of (7.2) into two subspaces. In one 2; = 0
and in the other x; = 1. Thusthe left subtree of the state space tree will
correspond to x; = 0 and the right to 7; = 1. In general, at each node Z
of the state space tree the greedy algorithmis used to solve (7.3) under the
addedrestrictions corresponding to the assignments already made along the
path from the root to this node. In case the solution is all integer, then an
optimal solution for this node has been found. If not, then there is exactly
one x; such that 0 < 2; <1. The left child of Z corresponds to x; = 0, and

the right to 2; = 1.

The justification for this partitioning schemeis that the noninteger x; is
what prevents the greedy solution from being a feasible solution to the 0/1
knapsack problem. So, we would expect to reach a feasible greedy solution
quickly by forcing this x; to be integer. Choosing left branches to correspond
to x; = 0 rather than x; = 1 is also justifiable. Since the greedy algorithm
requires D;/w; > pj41/w541, we would expect most objects with low index
(ie., small 7 and hence high density) to be in an optimalfilling of the knap-
sack. When z; is set to zero, we are not preventing the greedy algorithm
from using any of the objects with 7 < i (unless x; has already been set to
zero). On the other hand, when 2; is set to one, some of the «;’s with 7 <i
will not be able to get into the knapsack. Therefore we expect to arrive at.
an optimal solution with 7; = 0. So we wish the backtracking algorithm to
try this alternative first. Hence the left subtree corresponds to x; = 0.

Example 7.7 Let us try out a backtracking algorithm and the above dy-
namic partitioning scheme onthe following data: p = {11, 21,31, 33, 43, 53,
55,65}, w = {1, 11, 21, 23, 33, 43, 45,55}, m = 110, and n = 8. The greedy

https://hemanthrajhemu.github.io

372 CHAPTER 7. BACKTRACKING

solution corresponding to the root node(i.e., Equation (7.3)) is z = {1,1,1,
1, 1,21/45,0,0}. Its value is 164.88. The two subtrees of the root correspond
to zg = 0 and z¢ = 1, respectively (Figure 7.16). The greedy solution at
node 2 is x = {1,1,1,1,1,0,21/45,0}. Its value is 164.66. The solution
space at node 2 is partitioned using +7 = 0 and x7 = 1. The next E-node is

node 3. The solution here has xg = 21/55. The partitioning now is with xg
= 0 and xg = 1. The solution at node 4 is all integer so there is no need to
expand this node further. The best solution found so far has value 139 and
xg = {1,1,1,1,1,0,0,0}. Node 5 is the next E-node. The greedy solution for
this node is x = {1,1,1,22/23,0,0,0,1}. Its value is 159.56. The partition-
ing is now with x4 = 0 and x4 = 1. The greedy solution at node 6 has value
156.66 and z5 = 2/3. Next, node 7 becomes the E-node. The solution here
is {1,1,1,0,0,0,0,1}. Its value is 128. Node 7 is not expanded as the greedy
solution here is all integer. At node 8 the greedy solution has value 157.71
and #3 = 4/7. The solution at node 9 is all integer and has value 140. The
greedy solution at node 10 is {1,0,1,0,1,0,0,1}. Its value is 150. The next
E-node is 11. Its value is 159.52 and x3 = 20/21. The partitioning is now
on £3 = 0 and 23 = 1. The remainder of the backtracking process on this
knapsack instance is left as an exercise. Oo

Experimental work due to E. Horowitz and S. Sahni, cited in the ref-
erences, indicates that backtracking algorithms for the knapsack problem
generally work in less time when using a static tree than when using a dy-
namic tree. The dynamic partitioning scheme is, however, useful in the
solution of integer linear programs. The general integer linear program is
mathematically stated in (7.4).

minimize Yicjcn Cj 2;

subject to Yicj<n ig Tj S bi, LSi<m (7.4)

r,8 are nonnegative integers

If the integer constraints on the x,’s in (7.4) are replaced by the constraint
x; > 0, then we obtain a linear program whose optimal solution has a value
at least as large as the value of an optimalsolution to (7.4). Linear programs
can be solved using the simplex methods (see the references). If the solution
is not all integer, then a noninteger x; is chosen to partition the solution
space. Let us assume that the value of x; in the optimal solution to the
linear program corresponding to any node Z in the state space is v and v is
not an integer. Theleft child of Z corresponds to x; < |v| whereas the right
child of Z correspond to x; > [v] . Since the resulting state space tree has a
potentially infinite depth (note that on the path from the root to a node Z

https://hemanthrajhemu.github.io

7.6. KNAPSACK PROBLEM 373

the solution space can be partitioned on one 2; many times as each x; can
have as value any nonnegative integer), it is almost always searched using a
branch-and-bound method (see Chapter 8).

Figure 7.16 Part of the dynamic state space tree generated in Example 7.7

EXERCISES

1. (a) Present a backtracking algorithm for solving the knapsack opti-
mization problem using the variable tuple size formulation.

(b) Draw the portion of the state space tree your algorithm will gen-
erate when solving the knapsack instance of Example 7.7.

2. Complete the state space tree of Figure 7.16.

3. Give a backtracking algorithm for the knapsack problem using the
dynamic state space tree discussed in this section.

4. [Programmingproject] (a) Program the algorithms of Exercises 1 and
3. Run these two programs and BKnap using the following data: p =

https://hemanthrajhemu.github.io

374 CHAPTER 7. BACKTRACKING

{11, 21, 31, 33,43, 53,55,65}, w = {1,11, 21, 23, 33, 43, 45,55}, m =
110, and n = 8. Which algorithm do you expect to perform best?

(b) Now program the dynamic programming algorithm of Section 5.7
for the knapsack problem. Use the heuristics suggested at the end of
Section 5.7. Obtain computing times and compare this program with
the backtracking programs.

5. (a) Obtain a knapsack instance for which more nodes are generated
by the backtracking algorithm using a dynamic tree than using a
static tree.

(b) Obtain a knapsack instance for which more nodesare generated
by the backtracking algorithm using a static tree than using a
dynamic tree.

(c) Strengthen the backtracking algorithms with the following heuris-
tic: Build an array minw|[| with the property that minuw{i]
is the index of the object that has least weight among objects
z,0+1,...,n. Now any E-node at which decisions for 71,...,2;—-1
have been made and at which the unutilized knapsack capacity is
less than w[minw/{é]] can be terminated provided the profit earned
up to this node is no more than the maximum determined sofar.
Incorporate this into your programsof Exercise 4(a). Rerun the
new programs on the same data sets and see what (if any) im-
provements result.

7.7 REFERENCES AND READINGS

An early modern account of backtracking was given by R. J. Walker. The
technique for estimating the efficiency of a backtrack program wasfirst pro-
posed by M. Hall and D. E. Knuth and the dynamic partitioning scheme for
the 0/1 knapsack problem was proposed by H. Greenberg and R. Hegerich.
Experimental results showing static trees to be superior for this problem can
be found in “Computing partitions with applications to the knapsack prob-
lem,” by E. Horowitz and S. Sahni, Journal of the ACM 21, no. 2 (1974):
277-292.

Data presented in the above paper shows that the divide-and-conquer
dynamic programming algorithm for the knapsack problem is superior to
BKnap.

For a proof of the four-color theorem see Every Planar Map is Four Col-
orable, by K. I. Appel, American Mathematical Society, Providence, RI,
1989.

https://hemanthrajhemu.github.io

7.8. ADDITIONAL EXERCISES 375

A discussion of the simplex method for solving linear programs may be
foundin:

Linear Programming: An Introduction with Applications, by A. Sultan, Aca-
demic Press, 1993.

Linear Optimization and Extensions, by M. Padberg, Springer-Verlag, 1995.

7.8 ADDITIONAL EXERCISES

1. Suppose you are given nm men and n women and two n x n arrays P and
@ such that P(i,7) is the preference of man 7 for woman j and Q(i,7)
is the preference of woman ? for man 7. Given an algorithm that finds
a pairing of men and women such that the sum of the product of the
preferences is maximized.

. Let A(L:n,1:n) be ann xn matrix. The determinant of A is the
number

det (A) = S- sgn(s)@1,s(1)@2,5(2) "°° On,s(n)
8

where the sum is taken over all permutations s(1),..., s(n) of {1,2,...,
n} and sgn(s) is + 1 or —1 according to whether s is an even or odd
permutation. The permanent of A is defined as

per(A) = S© aj 6(1)2,5(2) °° * @n,s(n)

The determinant can be computed as a by-product of Gaussian elimi-
nation requiring O(n?) operations, but no polynomial time algorithm
is known for computing permanents. Write an algorithm that com-
putes the permanent of a matrix by generating the elements of s using
backtracking. Analyze the time of your algorithm.

. Let MAZE(1 : n,1 : n) be a zero- or one-valued, two-dimensional
array that represents a maze. A one means a blocked path whereas a

zero stands for an open position. You are to develop an algorithm that
begins at MAZE(1, 1) andtries to find a path to position MAZE(n, n).
Once again backtracking is necessary here. See if you can analyze the
time complexity of your algorithm.

. The assignment problem is usually stated this way: There are n people
to be assigned to n jobs. The cost of assigning the ith person to the
jth job is cost(i,7). You are to develop an algorithm that assigns every
job to a person and at the same time minimizes the total cost of the
assignment.

https://hemanthrajhemu.github.io

376 CHAPTER 7. BACKTRACKING

5. This problem is called the postage stamp problem. Envision a country
that issues n different denominations of stamps but allows no more
than m stamps on a single letter. For given values of m and n, write
an algorithm that computes the greatest consecutive range of postage
values, from one on up, and all possible sets of denominations that
realize that range. For example, for n = 4 and m = 5, the stamps with
values (1, 4, 12, 21) allow the postage values 1 through 71. Are there
any other sets of four denominations that have the same range?

6. Here is a game called Hi-Q. Thirty-two pieces are arranged on a board
as shown in Figure 7.17. Only the center position is unoccupied. A
piece is only allowed to move by jumping over one of its neighbors
into an empty space. Diagonal jumps are not permitted. When a
piece is jumped, it is removed from the board. Write an algorithm
that determines a series of jumps so that all the pieces except one are
eventually removed and that final piece ends up at the center position.

7. Imagine a set of 12 plane figures each composed of five equal-size
squares. Each figure differs in shape from the others, but together
they can be arranged to make different-sized rectangles. In Figure 7.18
there is a picture of 12 pentominoes that are joined to create a 6 x 10
rectangle. Write an algorithm that finds all possible ways to place the
pentominoes so that a 6 x 10 rectangle is formed.

Co 6)

CJ =)

CI CJn
o
d

o
d

H
U
o
0
0
0
8

H
o
g
°
o
p
a
d

H
o
o
v
o
g
d

Figure 7.17 A Hi-Q boardinits initial state

8. Suppose a set of electric components such as transistors are to be
placed on a circuit board. We are given a connection matrix CONN,
where CONN(i, 7) equals the number of connections between compo-
nent 4 and component j, and a matrix DIST, where DIST (r,s) is

https://hemanthrajhemu.github.io

7.8. ADDITIONAL EXERCISES 377

1

; 2 3 4 5

|16

7 8

9 11

10 12

Figure 7.18 A pentomino configuration

10.

the distance between position r and position s on the circuit board.
The wiring of the board consists of placing each of n components at
some location. The cost of a wiring is the sum of the products of
CONN(i,j) * DIST(r,s), where component i is placed at location r
and component 7 is placed at location s. Compose an algorithm that
finds an assignment of components to locations that minimizes the
total cost of the wiring.

. Suppose there are n jobs to be executed but only & processors that can
work in parallel. The time required by job 7 is ¢;. Write an algorithm
that determines which jobs are to be run on which processors and the
order in which they should be run so that the finish time of the last
job is minimized.

Two graphs G(V, &) and H(A, B) are called isomorphic if there is a
one-to-one onto correspondence of the vertices that preserves the adja-
cency relationships. More formally if f is a function from V to A and
(v,w) is an edge in E, then (f(v), f(w)) is an edge in H. Figure 7.19
shows twodirected graphs that are isomorphic under the mapping that
1,2,3,4, and 5 and goto a,b,c,d, and e. A brute force algorithm to
test two graphs for isomorphism would try out all n! possible corre-
spondences and then test to see whether adjacency was preserved. A
backtracking algorithm can do better than this by applying some obvi-
ous pruning to the resultant state space tree. First of all we know that
for a correspondenceto exist between two vertices, they must have the
same degree. So we can select at an early stage vertices of degree k for
which the second graph has the fewest numberof vertices of degree k.
This exercise calls for devising an isomorphism algorithm that is based
on backtracking and makes use of these ideas.

https://hemanthrajhemu.github.io

378 CHAPTER 7. BACKTRACKING

oTS
4 ©)

Figure 7.19 Two isomorphic graphs (Exercise 10)

11. A graph is called complete if all its vertices are connected to all the
other vertices in the graph. A maximal complete subgraph of a graphis
called a clique. By “maximal” we mean that this subgraph is contained
within no other subgraph that is also complete. A clique of size k has

(*) subcliquesof size i, 1 <i < k. This implies that any algorithm that
looks for a maximal clique must becareful to generate each subclique
the fewest numberof times possible. One way to generate the cliqueis
to extend a clique of size m to size m + 1 and to continue this process
by trying outall possible vertices. But this strategy generates the same
clique many times; this can be avoided as follows. Given a clique X,
suppose node v is the first node that is added to producea clique of
size one greater. After the backtracking process examinesall possible
cliques that are produced from X and vy, then no vertex adjacent to v
need be added to X and examined. Let X and Y becliques and let
X be properly contained in Y. If all cliques containing X and vertex
v have been generated, then all cliques with Y and v can be ignored.
Write a backtracking algorithm that generates the maximal cliques of
an undirected graph and makes use of these last rules for pruning the
state space tree.

https://hemanthrajhemu.github.io

Chapter 8

BRANCH-AND-BOUND

8.1 THE METHOD

This chapter makes extensive use of terminology defined in Section 7.1. The
reader is urged to review this section before proceeding.

The term branch-and-boundrefers to all state space search methods in
which all children of the E-node are generated before any other live node
can become the E-node. We have already seen (in Section 7.1) two graph
search strategies, BFS and D-search, in which the exploration of a new
node cannot begin until the node currently being explored is fully explored.
Both of these generalize to branch-and-bound strategies. In branch-and-
boundterminology, a BFS-like state space search will be called FIFO (First
In First Out) search as the list of live nodes is a first-in-first-out list (or
queue). A D-search-like state space search will be called LIFO (Last In
First Out) search as thelist of live nodesis a last-in-first-out list (or stack).
As in the case of backtracking, bounding functions are used to help avoid
the generation of subtrees that do not contain an answer node.

Example 8.1 [4-queens] Let us see how a FIFO branch-and-bound algo-
rithm would search the state space tree (Figure 7.2) for the 4-queens prob-
lem. Initially, there is only one live node, node 1. This represents the case
in which no queen has been placed on the chessboard. This node becomes
the E-node. It is expanded and its children, nodes 2, 18, 34, and 50, are
generated. These nodes represent a chessboard with queen 1 in row 1 and
columns 1, 2, 3, and 4 respectively. The only live nodes now are nodes2, 18,
34, and 50. If the nodes are generated in this order, then the next E-node
is node 2. It is expanded and nodes 3, 8, and 13 are generated. Node 3
is immediately killed using the bounding function of Example 7.5. Nodes
8 and 13 are added to the queue of live nodes. Node 18 becomes the next
E-node. Nodes 19, 24, and 29 are generated. Nodes 19 and 24 are killed as
a result of the bounding functions. Node 29 is added to the queueof live

379

https://hemanthrajhemu.github.io

380 CHAPTER 8 BRANCH-AND-BOUND

nodes. The E-nodeis node 34. Figure 8.1 shows the portion of the tree of
Figure 7.2 that is generated by a FIFO branch-and-bound search. Nodes
that are killed as a result of the bounding functions have a “B” under them.
Numbers inside the nodes correspond to the numbers in Figure 7.2. Num-
bers outside the nodes give the order in which the nodes are generated by
FIFO branch-and-bound. At the time the answer node, node31, is reached,
the only live nodes remaining are nodes 38 and 54. A comparison of Figures
7.6 and 8.1 indicates that backtracking is a superior search method for this
problem. oO

8)

6 7 8 9 10 il
@) 19)
B B B

@(
S—

Xa)
X)

(3)

18 19 20 21 22
) G4) 08) G0)
B B B

30
@)

answer node

Figure 8.1 Portion of 4-queens state space tree generated by FIFO branch-
and-bound

8.1.1 Least Cost (LC) Search

In both LIFO and FIFO branch-and-bound the selection rule for the next
E-nodeis rather rigid and in a sense blind. Theselection rule for the next
E-node does not give any preference to a node that has a very good chance
of getting the search to an answer nodequickly. Thus, in Example 8.1, when
node30 is generated, it should have become obvious to the search algorithm
that this node will lead to an answer node in one move. However,therigid
FIFOrule first requires the expansion ofall live nodes generated before node
30 was expanded.

https://hemanthrajhemu.github.io

8.1. THE METHOD 381

The search for an answer node can often be speeded by using an “in-
telligent” ranking function ¢(-) for live nodes. The next E-node is selected
on the basis of this ranking function. If in the 4-queens example we use a
ranking function that assigns node 30 a better rank than all other live nodes,
then node 30 will become the E-node following node 29. The remaininglive
nodes will never become £-nodes as the expansion of node 30 results in the
generation of an answer node(node 31).

The ideal way to assign ranks would be on the basis of the additional
computational effort (or cost) needed to reach an answer node from the live
node. For any node x, this cost could be (1) the number of nodes in the
subtree x that need to be generated before an answer node is generated
or, more simply, (2) the numberof levels the nearest answer node (in the
subtree x) is from xz. Using cost measure 2, the cost of the root of the tree
of Figure 8.1 is 4 (node 31 is four levels from node 1). The costs of nodes 18
and 34, 29 and 35, and 30 and 38 are respectively 3, 2, and 1. The costs of
all remaining nodes on levels 2, 3, and 4 are respectively greater than 3, 2,
and 1. Using these costs as a basis to select the next E-node, the E-nodes
are nodes 1, 18, 29, and 30 (in that order). The only other nodes to get
generated are nodes 2, 34, 50, 19, 24, 32, and 31. It should be easy to see
that if cost measure 1 is used, then the search would always generate the
minimum number of nodes every branch-and-bound type algorithm must
generate. If cost measure 2 is used, then the only nodes to become /-nodes
are the nodes on the path from the root to the nearest answer node. The
difficulty with using either of these ideal cost functions is that computing
the cost of a node usually involves a search of the subtree x for an answer
node. Hence, by the time the cost of a node is determined, that subtree
has been searched and there is no need to explore x again. For this reason,
search algorithms usually rank nodes only onthe basis of an estimate g(-)
of their cost.

Let g(x) be an estimate of the additional effort needed to reach an answer
node from z. Node z is assigned a rank using a function ¢(-) such that
é(xz) = f(h(x)) + g(x), where h(x) is the cost of reaching x from the root
and f(-) is any nondecreasing function. At first, we may doubt the usefulness
of using an f(-) other than f(h(z)) = 0 for all h(x). We can justify such
an f(-) on the grounds that the effort already expended in reaching the live
nodes cannot be reduced and all we are concerned with now is minimizing
the additional effort we spend to find an answer node. Hence, the effort
already expended need not be considered.

Using f(-) = 0 usually biases the search algorithm to make deep probes
into the search tree. To see this, note that we would normally expect g(y) <
g(x) for y, a child of x. Hence, following x, y will become the E-node, then
oneof y’s children will become the E-node, next one of y’s grandchildren will
become the E-node, and so on. Nodes in subtrees other than the subtree z
will not get generated until the subtree zx is fully searched. This would not

https://hemanthrajhemu.github.io

382 CHAPTER 8 BRANCH-AND-BOUND

be a cause for concern if §(z) were the true cost of z. Then, we would not
wish to explore the remaining subtrees in any case (as xz is guaranteed to get
us to an answer node quicker than any other existing live node). However,
g(x) is only an estimate of the true cost. So, it is quite possible that for two
nodes w and z, g(w) < g(z) and z is muchcloser to an answer node than
w. It is therefore desirable not to overbias the search algorithm in favor of
deep probes. By using f(-) # 0, we can force the search algorithm to favor
a node z close to the root over a node w which is many levels below z. This
would reduce the possibility of deep and fruitless searches into the tree.

A search strategy that uses a cost function é(z) = f(h(x))+ (Zz) to select
the next E-node would always choose for its next E-node a live node with
least é(-). Hence, such a search strategy is called an LC-search (Least Cost
search). It is interesting to note that BFS and D-search are special cases
of LC-search. If we use g(x) = 0 and f(h(z)) = level of node z, then a
LC-search generates nodes by levels. This is essentially the same as a BFS.
If f(h(x)) = 0 and g(x) > g(y) whenever y is a child of z, then the search
is essentially a D-search. An LC-search coupled with bounding functionsis
called an LC branch-and-bound search.

In discussing LC-searches, we sometimes make reference to a cost function
c(-) defined as follows: if x is an answer node, then c(x) is the cost (level,
computational difficulty, etc.) of reaching x from the root of the state space
tree. If xz is not an answer node, then c(x) = oo providing the subtree
x contains no answer node; otherwise c(x) equals the cost of a minimum-
cost answer node in the subtree x. It should be easy to see that é(-) with
f(h(x)) = h(x)is an approximation to c{-). From now on c(z) is referred to
as the cost of z.

8.1.2 The 15-puzzle: An Example

The 15-puzzle (invented by Sam Loyd in 1878) consists of 15 numbered tiles
on a square frame with a capacity of 16 tiles (Figure 8.2). We are given
an initial arrangement of the tiles, and the objective is to transform this
arrangement into the goal arrangement of Figure 8.2(b) through a series
of legal moves. The only legal moves are ones in which a tile adjacent to
the empty spot (ES) is moved to ES. Thus fromthe initial arrangement
of Figure 8.2(a), four moves are possible. We can move any one of the
tiles numbered 2, 3, 5, or 6 to the empty spot. Following this move, other
moves can be made. Each move creates a new arrangement of the tiles.
These arrangements are called the states of the puzzle. The initial and goal
arrangements are called the initial and goal states. A state is reachable from
the initial state iff there is a sequence of legal moves from the initial state
to this state. The state space of an initial state consists of all states that
can be reached from theinitial state. The most straightforward way to solve
the puzzle would be to search the state space for the goal state and use the

https://hemanthrajhemu.github.io

8.1. THE METHOD 383

path from the initial state to the goal state as the answer. It is easy to see
that there are 16! (16! = 20.9 x 10!) different arrangements of the tiles on
the frame. Of these only one-half are reachable from any given initial state.
Indeed, the state space for the problem is very large. Before attempting to
search this state space for the goal state, it would be worthwhile to determine
whether the goal state is reachable from the initial state. There is a very
simple way to do this. Let us number the frame positions 1 to 16. Position 7
is the frame position containing tile numbered 7 in the goal arrangement of
Figure 8.2(b). Position 16 is the empty spot. Let position(i) be the position
numberin theinitial state of the tile numbered 7. Then position(16) will
denote the position of the empty spot.

 —

1) 3/4 ,15 1} 2|)3)4

2 5 12 5|6|7

o 6)11/14 9} 10) 11) 12!
o | | ! ' ;

18) 9 |10) 13 | 13| 14/15

(a) An arrangement (b) Goal arrangement (c)

Figure 8.2 15-puzzle arrangements

For any state let less(z) be the numberof tiles 7 such that 7 < i and
position(j) > position(z). For the state of Figure 8.2(a) we have, for exam-
ple, less(1) = 0, less(4) = 1, and less(12) = 6. Let xz =1 if in the initial
state the empty spot is at one of the shaded positions of Figure 8.2(c) and
x = 0 if it is at one of the remaining positions. Then, we have the following
theorem:

Theorem 8.1 The goal state of Figure 8.2(b) is reachable from theinitial
state iff 37j®, less(i) + x is even.

Proof: Left as an exercise. oO

Theorem 8.1 can be used to determine whether the goal state is in the
state space of the initial state. If it is, then we can proceed to determine a
sequence of moves leading to the goal state. To carry out this search, the
state space can be organized into a tree. The children of each node z in
this tree represent the states reachable from state x by one legal move. It
is convenient to think of a move as involving a move of the empty space
rather than a move of a tile. The empty space, on each move, moveseither
up, right, down, or left. Figure 8.3 shows the first three levels of the state

https://hemanthrajhemu.github.io

384 CHAPTER 8. BRANCH-AND-BOUND

space tree of the 15-puzzle beginning with the initial state shown in the root.
Parts of levels 4 and 5 of the tree are also shown. The tree has been pruned
a little. No node p has a child state that is the same as p’s parent. The
subtree eliminated in this way is already present in the tree and has root
parent(p). As can be seen, there is an answer nodeatlevel4.

1
1|2 aj4

§ |6 8

9 10/7 11

13} 14] 15] 12

ee ___left
right down oo 5

4 ry

14243 |4

5 [6 |8

9)D7 |

13] 14] 15] 12

wl7 fa]

Edges are labeled according to the direction

in which the empty space moves

Figure 8.3 Part of the state space tree for the 15-puzzle

A depth first state space tree generation will result in the subtree of
Figure 8.4 when the next moves are attempted in the order: move the empty
space up, right, down, and left. Successive board configurations reveal that
each move gets us farther from the goal rather than closer. The search of
the state space tree is blind. It will take the leftmost path from the root
regardless of the starting configuration. As a result, an answer node may
never be found (unless the leftmost path ends in such a node). In a FIFO
search of the tree of Figure 8.3, the nodes will be generated in the order
numbered. A breadth first search will always find a goal node nearest to the
root. However, such a search is also blind in the sense that no matter what
the initial configuration, the algorithm attempts to make the same sequence
of moves. A FIFO search always generates the state space tree by levels.

https://hemanthrajhemu.github.io

8.1. THE METHOD 385

2 4 5 6
rf2jaf | 1 {2 |a fs 1 2 Ja [a 1 {2]a [8

E15 [6 [3 8 | downs |6 js downs |e [3 [| downs {6 [3 [n

9 107 [aa] 9 fio]? [nn lo fiol7 | 9 tol 7]12
13] ta] 15]12| 1a] ta] 15] 92 13] t4] 15] 92 13] 14) 15

left
12 11 Mo 10 9 8 - 7.
[a [2 Js [2 [a] _ OB is i [2 ja fe [t[2 [4 [8 [i [2 [4 [a
[5 [6 |4 down|s [e [a [ul right/s fe fa[u] up [s le; [ul up [s]e(3[u] up [s[e [3 [un
Pi 9 Fao} a ji! 9 to)3 [12 9 fi0)3 2 9 fio] |e 9 hiol7 2
afta] 7 [as faftal7 || [13] tal7 fis 7 aly[15 [ia[ta} [is

Figure 8.4 First ten steps in a depth first search

What we wouldlike, is a more “intelligent” search method, one that seeks
out an answer node and adapts the path it takes through the state space
tree to the specific problem instance being solved. We can associate a cost
c(z) with each node z in the state space tree. The cost c(x) is the length of
a path from the root to a nearest goal node (if any) in the subtree with root
x. Thus, in Figure 8.3, c(1) = c(4) = c(10) = c(23) = 3. Whensuch a cost
function is available, a very efficient search can be carried out. We begin with
the root as the #-node and generate a child node with c()-value the same
as the root. Thus children nodes 2, 3, and 5 are eliminated and only node
4 becomes a live node. This becomes the next /-node. Its first child, node
10, has c(10) = c(4) = 3. The remaining children are not generated. Node
4 dies and node 10 becomes the #-node. In generating node 10’s children,
node 22 is killed immediately as c(22) > 3. Node 23 is generated next. It
is a goal node and the search terminates. In this search strategy, the only
nodes to become #-nodes are nodes on the path from the root to a nearest
goal node. Unfortunately, this is an impractical strategy as it is not possible
to easily compute the function c(-) specified above.

Wecan arrive at an easy to compute estimate ¢(z) of c(xz). We can write
C(x) = f(x) + g(x), where f(x) is the length of the path from the root to
node x and g(x) is an estimate of the length of a shortest path from x to a
goal node in the subtree with root x. One possible choice for g(x) is

g(x) = numberof nonblanktiles not in their goal position

Clearly, at least g(2) moves have to be made to transform state x to a
goal state. More than g(x) moves may be needed to achieve this. To see
this, examine the problemstate of Figure 8.5. There g(x) = 1 as only tile 7
is not in its final spot (the count for g(x) excludes the blank tile). However,
the numberof moves needed to reach the goal state is many more than 9(z).
So ¢(x) is a dower bound on the value of c(z).

https://hemanthrajhemu.github.io

386 CHAPTER 8 BRANCH-AND-BOUND

An LC-search of Figure 8.3 using ¢(z) will begin by using node 1 as the
E-node. All its children are generated. Node 1 dies and leaves behind the
live nodes 2, 3, 4, and 5. The next node to become the E-nodeis a live node
with least (x). Then é(2) = 1+4, é(3) = 144, é(4) = 142, and é(5) = 1+4.
Node 4 becomes the £-node. Its children are generated. The live nodesat
this time are 2, 3, 5, 10, 11, and 12. So é(10) = 2+ 1, é(11) = 2+ 3, and
é(12) = 243. The live node with least ¢ is node 10. This becomes the next
E-node. Nodes 22 and 23 are generated next. Node 23 is determined to be
a goal node and the search terminates. In this case LC-search was almost
as efficient as using the exact function c(). It should be noted that with a
suitable choice for é(), an LC-search will be far more selective than any of
the other search methods we have discussed.

(1/2/13]4

516

9 10/11/12
t—+—

13/14/15/ 7

Figure 8.5 Problem state

8.1.3 Control Abstractions for LC-Search

Let t be a state space tree and c() a cost function for the nodesin t. If x is a
nodein ¢, then c(x) is the minimum cost of any answer node in the subtree
with root x. Thus, c(t) is the cost of a minimum-cost answer nodein t.
As remarked earlier, it is usually not possible to find an easily computable
function c() as defined above. Instead,a heuristic ¢ that estimates c() is used.
This heuristic should be easy to compute and generally has the property
that if x is either an answer nodeora leaf node, then c(x) = ¢(x). LCSearch
(Algorithm 8.1) uses é to find an answer node. The algorithm uses two
functions Least() and Add(x) to delete and adda live node from or to the
list of live nodes, respectively. Least() finds a live node with least ¢(). This
node is deleted from the list of live nodes and returned. Add(x) adds the
new live node z to the list of live nodes. The list of live nodes will usually
be implemented as a min-heap (Section 2.4). Algorithm LCSearch outputs
the path from the answer node it finds to the root node t. This is easy to
do if with each node x that becomeslive, we associate a field parent which
gives the parent of node z. When an answernode g is found, the path from

https://hemanthrajhemu.github.io

8.1. THE METHOD 387

g to t can be determined by following a sequence of parent values starting
from the current E-node (which is the parent of g) and ending at nodet.

listnode = record {

}

W
O
O
N
O
o
k
W
H
R

listnode «next, * parent; float cost;

Algorithm LCSearch(¢)
// Search t for an answer node.

if xf is an answer node then output +f and return;
E:=t; // E-node.
Initialize the list of live nodes to be empty;
repeat

for each child x of F do

{
if x is an answer node then output the path

from x to t and return;
Add(x); // x is a newlive node.
(2 + parent) := E; // Pointer for path to root.

if there are no more live nodes then

{
write ("No answer node"); return;

}
E := Least();

} until (false);

Algorithm 8.1 LC-search

The correctness of algorithm LCSearch is easy to establish. Variable £
always points to the current #-node. By the definition of LC-search, the
root nodeis the first E-node(line 5). Line 6 initializes the list of live nodes.
At any time during the execution of LCSearch, this list contains all live nodes
except the H-node. Thus, initially this list should be empty (line 6). The
for loop of line 9 examinesall the children of the #-node. If one of the
children is an answer node, then the algorithm outputs the path from « to t
and terminates. If a child of & is not an answer node, then it becomes a live
node. It is added to thelist of live nodes (line 13) and its parentfield set to

https://hemanthrajhemu.github.io

388 CHAPTER 8 BRANCH-AND-BOUND

E (line 14). Whenall the children of & have been generated, / becomes a
dead nodeand line 16 is reached. This happens only if none of E’s children
is an answer node. So, the search must continue further. If there are no live
nodesleft, then the entire state space tree has been searched and no answer
nodes found. The algorithm terminates in line 18. Otherwise, Least()}, by
definition, correctly chooses the next E-node and the search continues from
here.

From the preceding discussion, it is clear that LCSearch terminates only
when either an answer node is found or the entire state space tree has been
generated and searched. Thus, termination is guaranteed only for finite state
space trees. Termination can also be guaranteed for infinite state space trees
that have at least one answer node provided a “proper” choice for the cost
function ¢() is made. This is the case, for example, when ¢(x) > é(y) for
every pair of nodes x and y such that the level numberof x is “sufficiently”
higher than that of y. For infinite state space trees with no answer nodes,
LCSearch will not terminate. Thus, it is advisable to restrict the search to
find answer nodes with a cost no more than a given bound C.

One should note the similarity between algorithm LCSearch and algo-
rithms for a breadth first search and D-search of a state space tree. If the
list of live nodes is implemented as a queue with Least() and Add(x) being
algorithms to delete an element from and add an element to the queue, then
LCSearch will be transformed to a FIFO search schema. If the list of live
nodes is implemented as a stack with Least() and Add() being algorithms
to delete and add elements to the stack, then LCSearch will carry out a LIFO
search of the state space tree. Thus, the algorithms for LC, FIFO, and LIFO
search are essentially the same. The only difference is in the implementation
of the list of live nodes. This is to be expected as the three search methods
differ only in the selection rule used to obtain the next /-node.

8.1.4 Bounding

A branch-and-bound method searches a state space tree using any search
mechanism in which all the children of the H-node are generated before
another node becomes the &-node. We assume that each answer node x has
a cost c(xz) associated with it and that a minimum-cost answer nodeis to be
found. Three commonsearch strategies are FIFO, LIFO, and LC. (Another
method, heuristic search, is discussed in the exercises.) A cost function é(-)
such that é(x) < c(xz) is used to provide lower boundson solutions obtainable
from any node z. If upper is an upper bound on thecost of a minimum-cost
solution, then all live nodes x with é(x) > upper may bekilled as all answer
nodes reachable from x have cost c(z) > ¢(x) > upper. The starting value
for upper can be obtained by some heuristic or can be set to oo. Clearly, so
long as the initial value for upper is no less than the cost of a minimum-cost
answer node, the aboverules to kill live nodes will not result in the killing of

https://hemanthrajhemu.github.io

81. THE METHOD 389

a live node that can reach a minimum-cost answer node. Each time a new

answer nodeis found, the value of upper can be updated.

Let us see how these ideas can be used to arrive at branch-and-bound
algorithms for optimization problems. In this section we deal directly only
with minimization problems. A maximization problem is easily converted to
a minimization problem by changing the sign of the objective function. We
need to be able to formulate the search for an optimal solution as a search
for a least-cost answer node in a state space tree. To do this, it is necessary
to define the cost function c(-) such that c(z) is minimumfor all nodes
representing an optimal solution. The easiest way to do this is to use the
objective function itself for c(-). For nodes representing feasible solutions,
c(x) is the value of the objective function for that feasible solution. For nodes
representing infeasible solutions, c(#) = oo. For nodes representing partial
solutions, c(z) is the cost of the minimum-cost nodein the subtree with root
x. Since c(z) is in general as hard to compute as the original optimization
problem is to solve, the branch-and-bound algorithm will use an estimate
é(x) such that é(7) < c(x) for all z. In general then, the é(-) function used
in a branch-and-boundsolution to optimization functions will estimate the
objective function value and not the computational difficulty of reaching
an answer node. In addition, to be consistent with the terminology used
in connection with the 15-puzzle, any node representing a feasible solution
(a solution node) will be an answer node. However, only minimum-cost
answer nodes will correspond to an optimal solution. Thus, answer nodes
and solution nodes are indistinguishable.

As an example optimization problem, consider the job sequencing with
deadlines problem introduced in Section 4.4. We generalize this problem
to allow jobs with different processing times. We are given n jobs and one
processor. Each job 7 has associated with it a three tuple (p;, d;,t;). Job i
requires ¢; units of processing time. If its processing is not completed by the
deadline d;, then a penalty p; is incurred. The objective is to select a subset
J of the n jobs such that all jobs in J can be completed by their deadlines.
Hence, a penalty can be incurred only on those jobs not in J. The subset
J should be such that the penalty incurred is minimum amongall possible
subsets J. Such a J is optimal.

Considerthe following instance: n = 4, (pi, d,,t1) = (5, 1,1), (po, do, te) =

(10, 3, 2), (p3, d3, t3) = (6, 2, 1), and (pa, da, ta) = (3, 1, 1). The solution

space for this instance consists of all possible subsets of the job index set
{1,2,3,4}. The solution space can be organized into a tree by means of
either of the two formulations used for the sum of subsets problem (Exam-
ple 7.2). Figure 8.6 corresponds to the variable tuple size formulation while
Figure 8.7 corresponds to the fixed tuple size formulation. In both figures
square nodesrepresent infeasible subsets. In Figure 8.6 all nonsquare nodes
are answer nodes. Node 9 represents an optimal solution and is the only
minimum-cost answer node. For this node J = {2,3} and the penalty (cost)

https://hemanthrajhemu.github.io

390 CHAPTER 8. BRANCH-AND-BOUND

is 8. In Figure 8.7 only nonsquare leaf nodes are answer nodes. Node 25
represents the optimal solution and is also a minimum-cost answer node.
This node corresponds to J = {2,3} and a penalty of 8. The costs of the
answer nodes of Figure 8.7 are given below the nodes.

Figure 8.6 State space tree correspondingto variable tuple size formulation

We can define a cost function c() for the state space formulations of
Figures 8.6 and 8.7. For any circular node x, c(z) is the minimum penalty
corresponding to any node in the subtree with root z. The value of c(z) = co
for a square node. In the tree of Figure 8.6, c(3) = 8, c(2) = 9, and c(1) = 8.
In the tree of Figure 8.7, c(1) = 8, c(2) = 9, c(5) = 18, and c(6) = 8. Clearly,
c(1) is the penalty corresponding to an optimalselection J.

A bound é(x) such that é(x) < c(x) for all x is easy to obtain. Let S,
be the subset of jobs selected for J at node x. If m = max {i|t € S,}, then
C(x) = Siem pj is an estimate for c(x) with the property ¢(xz) < c(x). For

a x

each circular node «x in Figures 8.6 and 8.7, the value of ¢(x) is the number
outside node x. For a square node, ¢(x) = oo. For example, in Figure 8.6
for node 6, Sg = {1,2} and hence m = 2. Also, 7 jc<2 pj = 0. For node

igSo
7, S7 = {1,3} and m = 3. Therefore, %° j<2 py = po = 10. And so on. In

igs.igo
Figure 8.7, node 12 corresponds to the omission of job 1 and hence a penalty
of 5; node 13 corresponds to the omission of jobs 1 and 3 and hence a penalty
of 11; and so on.

A simple upper bound u(z) on the cost of a minimum-cost answer node
in the subtree z is u(x) = igs, pi. Note that u(x)is the cost of the solution

S, corresponding to node x.

https://hemanthrajhemu.github.io

8.1. THE METHOD 391

11 14 15 18 21 24

Figure 8.7 State space tree corresponding to fixed tuple size formulation

8.1.5 FIFO Branch-and-Bound

A FIFO branch-and-boundalgorithm for the job sequencing problem can
begin with upper = oo (or upper = 3,<;<, Pi) aS an upper bound on the
cost of a minimum-cost answer node. Starting with node 1 as the E-node
and using the variable tuple size formulation of Figure 8.6, nodes 2, 3, 4,
and 5 are generated (in that order). Then u(2) = 19, u(3) = 14, u(4) = 18,
and u(5) = 21. For example, node 2 corresponds to the inclusion of job
1. Thus u(2) is obtained by summing the penalties of all the other jobs.
The variable upper is updated to 14 when node 3 is generated. Since é(4)
and ¢(5) are greater than upper, nodes 4 and 5 get killed (or bounded).
Only nodes 2 and 3 remain alive. Node 2 becomes the next E-node. Its
children, nodes 6, 7, and 8 are generated. Then u(6) = 9 and so upper is
updated to 9. The cost ¢(7) = 10 > upper and node 7 gets killed. Node 8
is infeasible and so it is killed. Next, node 3 becomes the E-node. Nodes
9 and 10 are now generated. Then u(9) = 8 and so upper becomes 8. The
cost €(10) = 11 > upper, and this nodeis killed. The next E-nodeis node 6.
Both its children are infeasible. Node 9’s only child is also infeasible. The
minimum-cost answer nodeis node 9. It has a cost of 8.

When implementing a FIFO branch-and-bound algorithm,it is not eco-
nomical to kill live nodes with ¢(z) > upper each time upper is updated.
This is so because live nodes are in the queue in the order in which they
were generated. Hence, nodes with ¢(z) > upperare distributed in some

https://hemanthrajhemu.github.io

392 CHAPTER 8. BRANCH-AND-BOUND

random way in the queue. Instead, live nodes with ¢(x) > upper can be
killed when they are about to become /-nodes.

From here on weshall refer to the FIFO-based branch-and-boundalgo-
rithm with an appropriate ¢(.) and u(.) as FIFOBB.

8.1.6 LC Branch-and-Bound

An LC branch-and-bound search of the tree of Figure 8.6 will begin with
upper = oo and node 1 as the first E-node. When node 1 is expanded,
nodes 2, 3, 4, and 5 are generated in that order. As in the case of FIFOBB,
upper is updated to 14 when node 8 is generated and nodes 4 and5 are killed
as €(4) > upper and ¢(5) > upper. Node 2 is the next E-node as ¢(2) = 0
and ¢(3) = 5. Nodes 6, 7, and 8 are generated and upper is updated to 9
when node6 is generated. So, node7 is killed as é(7) = 10 > upper. Node 8
is infeasible and so killed. The only live nodes now are nodes 3 and 6. Node 6
is the next E-node as ¢(6) = 0 < é(3). Bothits children are infeasible. Node
3 becomes the next E-node. When node 9 is generated, upper is updated to
8 as u(9) = 8. So, node 10 with €(10) = 11 is killed on generation. Node 9
becomes the next /-node. Its only child is infeasible. No live nodes remain.
The search terminates with node 9 representing the minimum-cost answer
node.

From here on werefer to the LC(LIFO)-based branch-and-bound algo-
rithm with an appropriate ¢(.) and u(.) as LCBB (LIFOBB).

EXERCISES

1. Prove Theorem 8.1.

2. Present an algorithm schema FifoBB for a FIFO branch-and-bound
search for a least-cost answer node.

3. Give an algorithm schema LcBB for a LC branch-and-bound searchfor
a least-cost answer node.

4. Write an algorithm schema LifoBB, for a LIFO branch-and-bound
search for a least-cost answer node.

5. Draw the portion of the state space tree generated by FIFOBB, LCBB,
and LIFOBB for the job sequencing with deadlines instance n = 5,

(p15 P2,--.5Ps5) = (6, 3, 4, 8, 5), (ti, to,...,t5) = (2, 1, 2, 1, 1), and

(dj, do, ...,d5) = (3, 1, 4, 2, 4). What is the penalty corresponding
to an optimal solution? Use a variable tuple size formulation and ¢é(-)
and u(-) as in Section 8.1.

https://hemanthrajhemu.github.io

8.2. 0/1 KNAPSACK PROBLEM 393

6. Write a branch-and-boundalgorithm for the job sequencing with dead-
lines problem. Use the fixed tuple size formulation.

7. (a) Write a branch-and-bound algorithm for the job sequencing with
deadlines problem using a dominancerule (see Section 5.7). Your
algorithm should work with a fixed tuple size formulation and
should generate nodes by levels. Nodes on each level should be
kept in an order permitting easy use of your dominancerule.

(b) Convert your algorithm into a program and, using randomly gen-
erated problem instances, determine the worth of the dominance
rule as well as the bounding functions. To do this, you will have
to run four versions of your program: ProgA--- bounding func-
tions and dominancerules are removed, ProgB- -- dominancerule
is removed, ProgC--- bounding function is removed, and ProgD.-- -
bounding functions and dominancerules are included. Determine
computing time figures as well as the number of nodes generated.

8.2 0/1 KNAPSACK PROBLEM

To use the branch-and-bound technique to solve any problem,it is first nec-
essary to conceive of a state space tree for the problem. We have already seen
two possible state space tree organizations for the knapsack problem (Section
7.6). Still, we cannot directly apply the techniques of Section 8.1 since these
were discussed with respect to minimization problems whereas the knapsack
problem is a maximization problem. This difficulty is easily overcome by
replacing the objective function 5° pjx; by the function — >> p;a;. Clearly,
Y pix; is maximized iff — $7 p;x; is minimized. This modified knapsack prob-
lem is stated as (8.1).

n

minimize — y Pix;

i=l

n

subject to So wit <m (8.1)
i=l

zj=Oorl, 1<i<n

Wecontinue the discussion assuminga fixed tuple size formulation for the
solution space. The discussion is easily extended to the variable tuple size
formulation. Every leaf node in the state space tree representing an assign-
ment for which 30) <jen Witi < ™M is an answer(or solution) node. All other
leaf nodes are infeasible. For a minimum-cost answer node to correspond
to any optimal solution, we need to define c(z) = — Soy<;<y pix; for every

https://hemanthrajhemu.github.io

394 CHAPTER 8. BRANCH-AND-BOUND

answer node x. The cost c(z) = oo for infeasible leaf nodes. For nonleaf
nodes, c(x) is recursively defined to be min {c(ichild(z)), c(rchild(x))}.

We now need two functions é(z) and u(x) such that é(z) < c(x) < u(x)
for every node x. The cost é(-) and u(-) satisfying this requirement may be
obtained as follows. Let x be a node at level j, 1 <7 <n+1. At node x
assignments have already been made to z;, 1 <i < j. The cost of these as-
signments is — 7<j<; Piti- So, c(2) < — Vly <j<; piTi and we may use u(x) =
— Vi<ics Piti- IQ = — Lycicj pits, then an improved upper boundfunction

u(x) is u(x) = UBound(q, 1) <;<; Witi, J —1,m), where UBoundis defined in
Algorithm 8.2. As for c(x), it is clear that Bound(—q, Lisicy WiFi, J — 1) <
c(x), where Boundis as given in Algorithm 7.11.

1 Algorithm UBound(cp, cw, k,m)
2 // cp,cw,k, and m have the same meanings as in
3 // Algorithm 7.11. w{#] and p[i] are respectively
4 // the weight and profit of the ith object.
5
6 b:= cps C:= cw
7 fori :=k+1tondo

8
9 if (c+ wt] < _m) then
10 {
11 c:=ct+ ut]; b:= b— pit};
12 }
13
14 return 0;
15 }

Algorithm 8.2 Function u(-) for knapsack problem

8.2.1 LC Branch-and-Bound Solution

Example 8.2 [LCBB] Consider the knapsack instance n = 4, (p1,p2, p3, p4)
= (10, 10, 12, 18), (wi, we, ws, wa) = (2, 4, 6, 9), and m = 15. Let us trace
the working of an LC branch-and-boundsearch using é(-) and u(-) as defined
previously. We continue to use the fixed tuple size formulation. The search
begins with the root as the E#-node. For this node, node | of Figure 8.8, we
have ¢(1) = —38 and u(1) = —32.

https://hemanthrajhemu.github.io

8.2. 0/1 KNAPSACK PROBLEM 395

—38

—32

Lo—38 —32

-27

—36

—22

—32 \

—-20

-20

—38

-38

8 9

Upper number= ¢
Lower number = u

Figure 8.8 LC branch-and-boundtree for Example 8.2

https://hemanthrajhemu.github.io

396 CHAPTER 8. BRANCH-AND-BOUND

The computation of u(1) and é(1) is done as follows. The bound u(1) has a
value UBound(0, 0,0, 15). UBound scans through the objects from left to right
starting from j; it adds these objects into the knapsack until the first object
that doesn’t fit is encountered. At this time, the negation of the total profit
of all the objects in the knapsack plus cw is returned. In Function UBound,
c and 6 start with a value of zero. For 2 = 1,2, and 3, c gets incremented
by 2,4, and 6, respectively. The variable 5 also gets decremented by 10, 10,
and 12, respectively. When 7 = 4, the test (c+ w[t] < m) fails and hence
the value returned is —32. Function Bound is similar to UBound, except that
it also considers a fraction of the first object that doesn’t fit the knapsack.
For example, in computing ¢(1), the first object that doesn’t fit is 4 whose
weight is 9. The total weight of the objects 1, 2, and 3 is 12. So, Bound
considers a fraction 3 of the object 4 and hence returns —32 — 3 *18 = —38.

Since node 1 is not a solution node, LCBBsets ans = 0 and upper = —32
(ans being a variable to store intermediate answer nodes). The E-node is
expanded andits two children, nodes 2 and 3, generated. The cost ¢(2) =
—38, €(3) = —32, u(2) = —32, and u(3) = —27. Both nodesare put onto
the list of live nodes. Node 2 is the next F-node. It is expanded and nodes
4 and 5 generated. Both nodes get added to the list of live nodes. Node
4 is the live node with least ¢ value and becomes the next E-node. Nodes
6 and 7 are generated. Assuming node 6 is generated first, it is added to
the list of live nodes. Next, node 7 joins this list and upper is updated to
—38. The next E-node will be one of nodes 6 and 7. Let us assumeit is
node 7. Its two children are nodes 8 and 9. Node 8 is a solution node.
Then upper is updated to —38 and node 8 is put onto the live nodeslist.
Node 9 has ¢(9) > upper and is killed immediately. Nodes 6 and 8 are
two live nodes with least ¢. Regardless of which becomes the next E-node,
¢(E) > upper and the search terminates with node 8 the answer node. At
this time, the value —38 together with the path 8, 7, 4, 2, 1 is printed out
and the algorithm terminates. From the path one cannot figure out the
assignment of values to the x;’s such that >> pjx; = upper. Hence, a proper
implementation of LCBB has to keep additional information from which the
values of the x;’s can be extracted. One way is to associate with each node a
one bit field, tag. The sequence of tag bits from the answer nodeto the root
give the x; values. Thus, we have tag(2) = tag(4) = tag(6) = tag(8) = 1
and tag(3) = tag(5) = tag(7) = tag(9) = 0. The tag sequence for the path
8, 7,4, 2, 1is 1011 and so #4=1,23 = 0,49 = 1, and #7; = 1. O

To use LCBBto solve the knapsack problem, we need to specify (1) the
structure of nodesin the state space tree being searched, (2) how to generate
the children of a given node, (3) how to recognize a solution node, and (4)
a representation of the list of live nodes and a mechanism for adding a node
into the list as well as identifying the least-cost node. The nodestructure
needed depends on which of the two formulations for the state space tree is
being used. Let us continue with a fixed size tuple formulation. Each node

https://hemanthrajhemu.github.io

8.2. 0/1 KNAPSACK PROBLEM 397

x that is generated and put onto the list of live nodes must have a parent
field. In addition, as noted in Example 8.2, each node should havea onebit
tag field. This field is needed to output the x; values corresponding to an
optimalsolution. To generate x’s children, we need to know the level of node
x in the state space tree. For this we shall use a field evel. The left child of
x is chosenby setting Zjeyei(z) = 1 and the right child by setting 2jeye1(2) = 0.

To determine the feasibility of the left child, we need to know the amount
of knapsack space available at node x. This can be determined either by
following the path from node x to the root or by explicitly retaining this
value in the node. Say we choose to retain this value in a field cu (capacity
unused). The evaluation of ¢(x) and u(x) requires knowledge of the profit
Li<iclevel(x) Piti earned by thefilling corresponding to node z. This can be

computed by following the path from x to the root. Alternatively, this value
can be explicitly retained in a field pe. Finally, in order to determine the live
node with least é value or to insert nodes properly into thelist of live nodes,
we need to know é(x). Again, we have a choice. The value ¢(x) may be
stored explicitly in a field ub or may be computed when needed. Assuming
all information is kept explicitly, we need nodes with six fields each: parent,
level, tag, cu, pe, and ub.

Using this six-field node structure, the children of any live node x can be
easily determined. Theleft child y is feasible iff cu(x) > Wievet(z)- In this

case, parent(y) = a, level(y) = level(x) + 1, cu(y) = cu(x) — Wievet(z), pely)
= pe(x) + Ptever(x), tag(y) = 1, and ub(y) = ub(z). The right child can be

generated similarly. Solution nodes are easily recognized too. Node z is a
solution nodeiff level(x) =n +1.

Weare now left with the task of specifying the representation of the list
of live nodes. The functions we wish to perform on this list are (1) test if
the list is empty, (2) add nodes, and (3) delete a node with least ub. We
have seen a data structure that allows us to perform these three functions
efficiently: a min-heap. If there are m live nodes, then function (1) can be
carried out in @(1) time, whereas functions (2) and (3) require only O(log m)
time.

8.2.2 FIFO Branch-and-Bound Solution

Example 8.3 Now,let us trace through the FIFOBB algorithm using the
same knapsack instance as in Example 8.2. Initially the root node, node 1
of Figure 8.9, is the #-node and the queueof live nodes is empty. Since this
is not a solution node, upper is initialized to u(1) = —32.

We assume the children of a node are generated left to right. Nodes 2
and 3 are generated and added to the queue (in that order). The value of
upper remains unchanged. Node 2 becomes the next E-node. Its children,
nodes 4 and 5, are generated and added to the queue. Node 3, the next

https://hemanthrajhemu.github.io

398 CHAPTER 8 BRANCH-AND-BOUND

—38

~32

~38 S -20
~38 -20

10 11 12 13

upper number = c¢
lower number = u

Figure 8.9 FIFO branch-and-boundtree for Example 8.3

https://hemanthrajhemu.github.io

8.2. 0/1 KNAPSACK PROBLEM 399

E-node, is expanded. Its children nodes are generated. Node 6 gets added
to the queue. Node 7 is immediately killed as ¢(7) > upper. Node 4 is
expanded next. Nodes 8 and 9 are generated and added to the queue. Then
upper is updated to u(9) = —38. Nodes 5 and 6 are the next two nodes
to become E-nodes. Neither is expanded as for each, ¢() > upper. Node 8
is the next E-node. Nodes 10 and 11 are generated. Node 10 is infeasible
and so killed. Node 11 has ¢(11) > upper and sois also killed. Node 9 is
expanded next. When node 12 is generated, upper and ans are updated to
—38 and 12 respectively. Node 12 joins the queue of live nodes. Node 13
is killed before it can get onto the queue of live nodes as é(13) > upper.
The only remaining live node is node 12. It has no children and the search
terminates. The value of upper and the path from node 12 to the root is
output. As in the case of Example 8.2, additional information is needed to
determine the x; values on this path. oO

At first we may be tempted to discard FIFOBB in favor of LCBB in
solving knapsack. Our intuition leads us to believe that LCBB will examine
fewer nodesin its quest for an optimal solution. However, we should keep in
mind that insertions into and deletions form a heap are far more expensive
(proportional to the logarithm of the heap size) than the corresponding
operations on a queue (OQ(1)). Consequently, the work done for each E-
node is more in LCBB than in FIFOBB. Unless LCBBusesfar fewer E-nodes
than FIFOBB, FIFOBBwill outperform (in terms of real computation time)
LCBB.

We have now seen four different approaches to solving the knapsack
problem: dynamic programming, backtracking, LCBB, and FIFOBB.If we
compare the dynamic programming algorithm DKnap (Algorithm 5.7) and

FIFOBB,wesee that there is a correspondence between generating the S‘’s

and generating nodes by levels. S“contains all pairs (P,W) corresponding
to nodes on level i+1,0<i<n. Hence, both algorithms generate the state
space tree by levels. The dynamic programming algorithm, however, keeps
the nodes on each level ordered by their profit earned (P) and capacity used
(W) values. No two tuples have the same P or W value. In FIFOBB we
may have many nodes on the same level with the same P or W value. It
is not easy to implement the dominance rule of Section 5.7 into FIFOBB
as nodes on a level are not ordered by their P or W values. However, the
bounding rules can easily be incorporated into DKnap. Toward the end of
Section 5.7 we discussed some simple heuristics to determine whethera pair

(P, W) € S®should be killed. These heuristics are readily seen to be
bounding functions of the type discussed here. Let the algorithm result-
ing from the inclusion of the bounding functions into DKnap be DKnapIi.
DKnapiis expected to be superior to FIFOBBasit uses the dominancerule
in addition to the bounding functions. In addition, the overhead incurred
each time a nodeis generated is less.

https://hemanthrajhemu.github.io

400 CHAPTER 8 BRANCH-AND-BOUND

To determine which of the knapsack algorithms is best, it is necessary
to program them and obtain real computing times for different data sets.
Since the effectiveness of the bounding functions and the dominancerule is
highly data dependent, we expect a wide variation in the computing time
for different problem instances having the same numberof objects n. To get
representative times, it is necessary to generate many problem instances for
a fixed n and obtain computing times for these instances. The generation
of these data sets and the problem of conducting the tests is discussed in a
programming project at the end of this section. The results of some tests
can be found in the references to this chapter.

Before closing our discussion of the knapsack problem, webriefly discuss
a very effective heuristic to reduce a knapsack instance with large n to an
equivalent one with smaller n. This heuristic, Reduce, uses some of the
ideas developed for the branch-and-boundalgorithm. It classifies the objects
{1,2,...,n} into one of three categories J1,/2, and [3. I1 is a set of objects
for which x; must be 1 in every optimal solution. J2 is a set for which 2;
must be 0. J3 is {1,2,...,n}— 1 —JI2. Once I1, 12, and [3 have been
determined, we need to solve only the reduced knapsack instance

maximize y Piti

i€I3

subject to ys Wit, <m— S- WiLj (8.2)
i€I3 w€11

xz;=Oorl

From the solution to (8.2) an optimal solution to the original knapsack in-
stance is obtained by setting 2; = 1 ifi € J1 and x; = 0 ifi € 12.

Function Reduce (Algorithm 8.3) makes use of two functions Ubb and Lbb.
The bound Ubb(/1, 72) is an upper bound onthe value of an optimalsolution
to the given knapsack instance with added constraints 7; = 1 ifz € J1 and x;
= 0 ifi € 12. The bound Lbb(J1, 2) is a lower bound underthe constraints
of 71 and J2. Algorithm Reduce needs no further explanation. It should be
clear that I1 and J2 are such that from an optimal solution to (8.2), we can
easily obtain an optimalsolution to the original knapsack problem.

The time complexity of Reduce is O(n”). Because the reduction procedure
is very much like the heuristics used in DKnap1 and the knapsack algorithms
of this chapter, the use of Reduce does not decrease the overall computing
time by as much as may be expected by the reduction in the number of
objects. These algorithms do dynamically what Reduce does. The exercises
explore the value of Reduce further.

https://hemanthrajhemu.github.io

8.2. 0/1 KNAPSACK PROBLEM 401

1 Algorithm Reduce(p, w,n,m, 1, 12)
2 // Variables are as described in the discussion.

3 f Pli]/wlt] > pli + 1/vfit+ 1, 1<i<n,
4
5 M:=12:=9;
6 q := Lbb(@, 0);
7 k := largest j such that w[1] + ---+ wlj] < m;
8 for i1:=1 to k do

9 {
10 if (Ubb(0, {t}) <q) then J1 := I1U {i};
11 else if (Lbb(@, {i}) > q) then g := Lbb(@, {7});
12
13 for i1:=k+1tondo
14 {
15 if (Ubb({7},0) <q) then [2 := [2 {i};
16 else if (Lbb({i},0) > q) then g := Lbb({7}, 0);
17
18 }

Algorithm 8.3 Reduction pseudocode for knapsack problem

https://hemanthrajhemu.github.io

402 CHAPTER 8 BRANCH-AND-BOUND

EXERCISES

1. Work out Example 8.2 using the variable tuple size formulation.

2. Work out Example 8.3 using the variable tuple size formulation.

3. Draw the portion of the state space tree generated by LCBB for the
following knapsack instances:

(a) n = 5, (p1,pe,.--,ps) = (10, 15, 6, 8, 4), (wi, we,...,ws) =
(4, 6, 3, 4, 2), and m = 12.

(b) n= 5, (P1, P25 P35 P4; Ps) = (wi, We, W3, W4, Ws) = (4, 4, 5, 8, 9)

and m = 15.

4. Do Exercise 3 using LCBB on a dynamic state space tree (see Section
7.6). Use the fixed tuple size formulation.

5. Write a LCBB algorithm for the knapsack problem using the ideas
given in Example 8.2.

6. Write a LCBB algorithm for the knapsack problem using the fixed
tuple size formulation and the dynamic state space tree of Section 7.6.

7. [Programmingproject] Program the algorithms DKnap (Algorithm 5.7),
DKnapi (page 399), LCBB for knapsack, and Bknap (Algorithm 7.12).
Compare these programs empirically using randomly generated data
as below:

(a) Random w; and p;, w; € [1,100], p; € {1, 100], and m = S77 w;/2.

(b) Random w; and p;, w; € [1,100], p; € [1,100], and m = 2 max {w,}.

(c) Random w;, w; € [1, 100], p; = w; + 10, and m = 37} w;/2.

(d) Same as (c) except m = 2 max {w;}.

(e) Random p,, p; € [1,100], w; = pj + 10, and m = S77 w;/2.

(f) Same as (e) except m= 2 max {wy}.

Obtain computing times for n = 5, 10, 20,30, 40,.... For each n, gen-
erate (say) ten problem instances from each of the above data sets.
Report average and worst-case computing times for each of the above
data sets. From these times can you say anything about the expected
behavior of these algorithms?

Now,generate problem instances with pj = w;, 1 <i<n,m= >> w;/2,
and 5° w,x; 4 m for any 0, 1 assignment to the z,’s. Obtain computing
times for your four programs for n = 10, 20, and 30. Now study the
effect of changing the range to [1, 1000] in data sets (a) through (f).
In sets (c) to (f) replace p; = w; +10 by pj = w; +100 and w; = p; +10
by w; = p; + 100.

https://hemanthrajhemu.github.io

8.3. TRAVELING SALESPERSON(x) 403

8. [Programming project]

(a) Program the reduction heuristic Reduce of Section 8.2. Generate
several probleminstances from the data sets of Exercise 7 and
determine the size of the reduced problem instances. Use n =
100, 200, 500, and 1000.

(b) Program DKnap and the backtracking algorithm Bknap for the
knapsack problem. Compare the effectiveness of Reduce by run-
ning several problem instances (as in Exercise 7). Obtain average
and worst-case computing times for DKnap and Bknap for the
generated problem instances and also for the reduced instances.
To the times for the reduced problem instances, add the time
required by Reduce. What conclusion can you draw from your
experiments?

8.3 TRAVELING SALESPERSON(x)

An O(n?2") dynamic programming algorithm for the traveling salesperson
problem was arrived at in Section 5.9. We now investigate branch-and-
bound algorithms for this problem. Although the worst-case complexity
of these algorithms will not be any better than O(n?2"), the use of good
bounding functions will enable these branch-and-bound algorithms to solve
some problem instances in much less time than required by the dynamic
programming algorithm.

Let G = (V, E) be a directed graph defining an instance of the traveling
salesperson problem. Let cj; equal the cost of edge (2, 7), cj = oo if (i,7) ¢ E,
and let |V| = n. Without loss of generality, we can assume that every tour
starts and endsat vertex 1. So, the solution space S is given by S = {1,7,1|m
is a permutation of (2,3,...,n)}. Then |S| = (n—1)!. Thesize of S can be
reduced by restricting S' so that (1,21, %2,.-.,%n—-1,1) € S iff (1;,2;41) € EZ,
0<j7<n-—1, and ig =2, = 1. S can be organized into a state space tree
similar to that for the n-queens problem (see Figure 7.2). Figure 8.10 shows
the tree organization for the case of a complete graph with |V| = 4. Each
leaf node £ is a solution node and represents the tour defined by the path
from the root to L. Node 14 represents the tour ig = 1,41 = 3,72 = 4,13 = 2,
and i4 = 1.

To use LCBBto search the traveling salesperson state space tree, we need
to define a cost function c(-) and two other functions é(-) and u(-) such that
e(r) < c(r) < u(r) for all nodes r. The cost c(-) is such that the solution
node withleast c(-) corresponds to a shortest tour in G. One choicefor c(-) is

A length of tour defined by the path from the root to A, if A is a leaf
c(A) = cost of a minimurn-cost leaf in the subtree A, if A is not a leaf

https://hemanthrajhemu.github.io

404 CHAPTER 8 BRANCH-AND-BOUND

Figure 8.10 State space tree for the traveling salesperson problem with
n=4andijp =i4=1

A simple é(-) such that é(A) < c(A) for all A is obtained by defining é(A)
to be the length of the path defined at node A. For example, the path defined
at node 6 of Figure 8.10 is i9,%1,72 = 1,2,4. It consists of the edges (1, 2)
and (2,4). A better é(-) can be obtained by using the reduced cost matrix
corresponding to G. A row (column) is said to be reduced iff it contains at
least one zero and all remaining entries are non-negative. A matrix is reduced
iff every row and column is reduced. As an example of how to reduce the
cost matrix of a given graph G, consider the matrix of Figure 8.11(a). This
corresponds to a graph with five vertices. Since every tour on this graph
includes exactly one edge (i,j) with i =k, 1 <k <5, and exactly one edge
(i,j) with 7 = k, 1 < k < 5, subtracting a constant ¢ from every entry in
one column or one row of the cost matrix reduces the length of every tour
by exactly t. A minimum-cost tour remains a minimum-cost tour following
this subtraction operation. If t is chosen to be the minimum entry in row i
(column 7), then subtracting it from all entries in row 7 (column 7) introduces
a zero into row i (column 7). Repeating this as often as needed, the cost
matrix can be reduced. The total amount subtracted from the columns and
rows is a lower bound on the length of a minimum-cost tour and can be used
as the é¢ value for the root of the state space tree. Subtracting 10, 2, 2, 3, 4,
1, and 3 from rows 1, 2, 3, 4, and 5 and columns 1 and 3 respectively of the
matrix of Figure 8.11(a) yields the reduced matrix of Figure 8.11(b). The
total amount subtracted is 25. Hence, all tours in the original graph have a
length at least 25.

We can associate a reduced cost matrix with every node in the traveling
salesperson state space tree. Let A be the reduced cost matrix for node R.
Let S be child of R such that the tree edge (R, S') corresponds to including

https://hemanthrajhemu.github.io

8.3. TRAVELING SALESPERSON(x) 405

edge (i,7) in the tour. If S is not a leaf, then the reduced cost matrix for
S may be obtained as follows: (1) Change all entries in row 7 and column
yj of A to oo. This prevents the use of any more edges leaving vertex 7 or
entering vertex j. (2) Set A(j,1) to oo. This prevents the use of edge (j, 1).
(3) Reduceall rows and columnsin the resulting matrix except for rows and
columns containing only oo. Let the resulting matrix be B. Steps (1) and

(2) are valid as no tour in the subtree s can contain edges of the type (i,k)
or (k,j) or (j,1) (except for edge (i, 7)). If r is the total amount subtracted
in step (3) then ¢(S) = é(R) + A(i, 7) +r. For leaf nodes, é(-) = c() is easily
computed as each leaf defines a unique tour. For the upper bound function
u, we can use u(R) = oo for all nodes R.

coo 20 30 10 11 co 10 17 O 1
145 o 16 4 2 12 ~© 11 2 =O
3 5 wo 2 4 0 3 wo 0 2

19 6 18 w 3 15 3 12 wo O
146 4 7 1606 11 O O 12 ow

(a) Cost matrix (b) Reduced cost
matrix
L= 25

Figure 8.11 An example

Let us now trace the progress of the LCBB algorithm on the problem
instance of Figure 8.11(a). We use é and u as above. The initial reduced
matrix is that of Figure 8.11(b) and upper = oo. The portion of the state
space tree that gets generated is shown in Figure 8.12. Starting with the
root node as the E-node, nodes 2, 3, 4, and 5 are generated (in that order).
The reduced matrices corresponding to these nodes are shownin Figure 8.13.
The matrix of Figure 8.13(b) is obtained from that of 8.11(b) by (1) setting
all entries in row 1 and column 3 to ov, (2) setting the element at position
(3, 1) to co, and (3) reducing column 1 by subtracting by 11. The é for node
3 is therefore 25 + 17 (the cost of edge (1,3) in the reduced matrix) + 11
= 53. The matrices and é value for nodes 2, 4, and 5 are obtained similarly.
The value of upper is unchanged and node 4 becomes the next E-node. Its
children 6, 7, and 8 are generated. The live nodes at this time are nodes 2,
3, 5, 6, 7, and 8. Node 6 has least ¢ value and becomes the next /-node.
Nodes 9 and 10 are generated. Node 10 is the next F-node. The solution
node, node 11, is generated. The tour length for this node is (11) = 28 and
upper is updated to 28. For the next E-node, node 5, é(5) = 31 > upper.
Hence, LCBB terminates with 1, 4, 2, 5, 3, 1 as the shortest length tour.

An exercise examines the implementation considerations for the LCBB
algorithm. A different LCBB algorithm can be arrived at by considering

https://hemanthrajhemu.github.io

406 CHAPTER 8. BRANCH-AND-BOUND

Numbersoutside the node are ¢ values

Figure 8.12 State space tree generated by procedure LCBB

https://hemanthrajhemu.github.io

8.3. TRAVELING SALESPERSON(x) 407

a different tree organization for the solution space. This organization is
reached by regarding a tour as a collection of n edges. If G = (V, E) has e
edges, then every tour contains exactly n of the e edges. However, for each
t,1<i<n, there is exactly one edge of the form (i, 7) and one of the form
(k,i) in every tour. A possible organization for the state space is a binary
tree in which a left branch represents the inclusion of a particular edge while
the right branch represents the exclusion of that edge. Figure 8.14(b) and
(c) represents the first two levels of two possible state space trees for the
three vertex graph of Figure 8.14(a). As is true of all problems, many state
space trees are possible for a given problem formulation. Different trees
differ in the order in which decisions are made. Thus, in Figure 8.14(c) we
first decide the fate of edge (1,2). Rather than use a static state space tree,
we now consider a dynamic state space tree (see Section 7.1). This is also
a binary tree. However, the order in which edges are considered depends
on the particular problem instance being solved. We compute ¢ in the same
way as we did using the earlier state space tree formulation.

ro «0 30 & & oO © © © Ow oO 0 © © ow
o oo ll 2 0 1 woo 2 0 12 wo ll wo 0

0 wo wo 0 2 co 38 wo OO 2 0 3 ~~ wo 2

15 wo 12 wo 0 4 30 ow 0 co 3 12 wo 0
| 11 ow O 12 ow | 0 0 w 12 ow 11 0 0760 ow

(a) Path 1,2; node 2 (b) Path 1,3; node 3 (c) Path 1,4; node 4

row CO CO &w row CO CO OC wo wo WO CO ©

100 wo 9 0 ow co co ll w 0 10 o ow 0
0 3 w~ 00 0 w wo wo 2 o 1wo nx 0

122 0 9 «w~ ow oO © © © © oOo 0} CO WC Ww

Loo O O 12 ow Lll wo 0 wo &w 0 0 wm wo Oo

(d) Path 1,5; node 5 (e) Path 1,4,2; node 6 (f) Path 1,4,3; node 7

oO © CO © © Oo © CO © © Oo © CO © ©
1 wo 00 & oOo C0} CO © Ww oOo Ww CO CO Ow

0 3 ~~ wo wo ~o wo wo wo 0 0 ~~ ~~ CO ©

Oo Oo © © Ww oO © © © ow oOo 0 © © ow
o 0 00 wx 0w oO Ww Ow oO © 0 «©

(g) Path 1,4,5; node 8 (h) Path 1,4,2,3; node 9 (i) Path 1,4,2,5; node 10

Figure 8.13 Reduced cost matrices corresponding to nodes in Figure 8.12

As an example of how LCBB would work on the dynamic binary tree
formulation, consider the cost matrix of Figure 8.11(a). Since a total of 25

https://hemanthrajhemu.github.io

408 CHAPTER &. BRANCH-AND-BOUND

include exclude

. include exclude
include exclude <1,2> <1,2>

(a) Graph

(b) Part of a state space tree

include

include exclude

<3,1> <2,3>

(c) Part of a state space tree

Figure 8.14 An example

needs to be subtracted form the rows and columnsof this matrix to obtain
the reduced matrix of Figure 8.11(b), all tours have a length at least 25.
This fact is represented by the root of the state space tree of Figure 8.15.
Now, we must decide which edge to use to partition the solution space into
two subsets. If edge (i, 7) is used, then the left subtree of the root represents
all tours including edge (7,7) and the right subtree represents all tours that
do not include edge (i, 7). If an optimal tour is includedin the left subtree,
then only n — 1 edges remain to be selected. If all optimal tours lie in the
right subtree, then we havestill to select n edges. Since the left subtree
selects fewer edges, it should be easier to find an optimalsolution in it than
to find one in the right subtree. Consequently, we would like to choose as
the partitioning edge an edge(i,j) that has the highest probability of being

https://hemanthrajhemu.github.io

8.3. TRAVELING SALESPERSON(+) 409

25

include — exclude
<3,1> <3,1>

25 (2 36

include . exclude

<5,3> \<5,3>

28 %) 36

include exclude

<1,4>/ <1,4>

28 6) (7) 37

Figure 8.15 State space tree for Figure 8.11(a)

in an optimal tour. Several heuristics for determining such an edge can be
formulated. A selection rule that is commonly usedis select that edge which
results in a right subtree that has highest é value. The logic behind this is
that we soon have right subtrees (perhaps at lower levels) for which the ¢
value is higher than the length of an optimal tour. Another possibility is to
choose an edge such that the difference in the é values for the left and right
subtrees is maximum. Otherselection rules are also possible.

When LCBBis used with the first of the two selection rules stated above
and the cost matrix of Figure 8.11(a), the tree of Figure 8.15 is generated.
At the root node, we have to determine an edge (i,j) that will maximize
the é value of the right subtree. If we select an edge (i, 7) whose cost in
the reduced matrix (Figure 8.11(b)) is positive, then the é value of the right
subtree will remain 25. This is so as the reduced matrix for the right subtree
will have B(i,7) = oo and all other entries will be identical to those in
Figure 8.11(b). Hence B will be reduced and ¢ cannot increase. So, we must
choose an edge with reduced cost 0. If we choose (1,4), then B(1,4) = co
and we need to subtract 1 from row 1 to obtain a reduced matrix. In this
case é will be 26. If (3,1) is selected, then 11 needs to be subtracted from
column 1 to obtain the reduced matrix for the right subtree. So, é will be
36. If A is the reduced cost matrix for node R, then the selection of edge
(i,j) (AQ, 7) = 0) as the next partitioning edge will increase the é of the

https://hemanthrajhemu.github.io

410 CHAPTER 8. BRANCH-AND-BOUND

co 10 w O 1 co 10 17 O 1 o 7 wo 0 0

o co ll 2 0 1 ow 11 2 O co co wo 2 0

oO wo 0 0 co 38 wow 0 2 oO 70 CO C&C C

co 3 12 w~ OO 4 3 12 wo 0 co 0 wx 0

co 0 0 12 w 0 0 O 12 « oO 70 CO C&C C

(a) Node 2 (b) Node 3 (c) Node 4

co 10 wow O 1 co «0 0 WO o 00w wo w

oo co 0 2 0 oOo 07 wo wo 0 «oO co wo 0 0

oO © 0 © & oOo «0 WO © © oOo «0 CO CO w
co 3 1x O o 060 wo ow co 0 ww 0

co 0 «0 12 ow oOo CO CO 0 ow ow CO © w

(d) Node 5 (e) Node 6 (f) Node 7

Figure 8.16 Reduced cost matrices for Figure 8.15

right subtree by A = ming;{A(a, k)} + minjzi{A(k,j)} as this much needs
to be subtracted from row i and column j to introduce a zero into both.
For edges (1,4), (2,5), (3,1) (3,4), (4,5), (5,2), and (5,3), A = 1, 2, 11, 0, 3,
3, and 11 respectively. So, either of the edges (3,1) or (5,3) can be ‘used.
Let us assume that LCBB selects edge (3,1). The é(2) (Figure 8.15) can be
computed in a mannersimilar to that for the state space tree of Figure 8.12.
In the corresponding reduced cost matrix all entries in row 3 and column 1
will be oo. Moreover the entry (1, 3) will also be oo as inclusion of this edge
will result in a cycle. The reduced matrices corresponding to nodes 2 and 3
are given in Figure 8.16(a) and (b). The é values for nodes 2 and 3 (as well
as for all other nodes) appear outside the respective nodes.

Node 2 is the next E-node. For edges (1, 4), (2,5), (4, 5), (5,2), and (5,3),
A = 3,2,3,3, and 11 respectively. Edge (5,3) is selected and nodes 4 and 5
generated. The corresponding reduced matrices are given in Figure 8.16(c)
and (d). Then ¢(4) becomes 28 as we need to subtract 3 from column 2
to reduce this column. Note that entry (1, 5) has been set to oo in Fig-
ure 8.16(c). This is necessary as the inclusion of edge (1,5) to the collection
{(3, 1), (5,3)} will result in a cycle. In addition, entries in column 3 and
row 5 are set to oo. Node 4 is the next E-node. The A values correspond-
ing to edges (1,4), (2,5), and (4,2) are 9, 2, and 0 respectively. Edge (1, 4)
is selected and nodes 6 and 7 generated. The edge selection at node 6 is
{(3, 1), (5, 3), (1,4)}. This corresponds to the path 5, 3, 1, 4. So, entry (4,
5) is set to oo in Figure 8.16(e). In general if edge (2,7) is selected, then the
entries in row 7 and column j are set to oo in the left subtree. In addition,
one more entry needs to be set to oo. This is an entry whose inclusion in

https://hemanthrajhemu.github.io

8.3. TRAVELING SALESPERSON(«) 411

the set of edges would create a cycle (Exercise 4 examines how to deter-
mine this). The next £-nodeis node 6. At this time three of the five edges
have already been selected. The remaining two may beselected directly.
The only possibility is {(4,2),(2,5)}. This gives the path 5,3,1,4,2,5 with
length 28. So upper is updated to 28. Node 3 is the next E-node. Now
LCBBterminates as ¢(3) = 36 > upper.

In the preceding example, LCBB was modified slightly to handle nodes
close to a solution node differently from other nodes. Node 6 is only two
levels from a solution node. Rather than evaluate ¢ at the children of 6 and
then obtain their grandchildren, we just obtained an optimal solution for
that subtree by a complete search with no bounding. We could have done
something similar when generating the tree of Figure 8.12. Since node 6
is only two levels from the leaf nodes, we can simply skip computing ¢ for
the children and grandchildren of 6, generate all of them, and pick the best.
This works out to be quite efficient as it is easier to generate a subtree with
a small number of nodes and evaluate all the solution nodes in it than it is
to compute é for one of the children of 6. This latter statement is true of
many applications of branch-and-bound. Branch-and-boundis used on large
subtrees. Once a small subtree is reached (say one with 4 or 6 nodesinit),
then that subtree is fully evaluated without using the bounding functions.

We have now seen several branch-and-bound strategies for the traveling
salesperson problem. It is not possible to determine analytically which of
these is the best. The exercises describe computer experiments that deter-
mine empirically the relative performance of the strategies suggested.

EXERCISES

1. Consider the traveling salesperson instance defined by the cost matrix

o 7 38 12 8
3 wo 6 14 9
5 8 w 6 18
9 3 5 w ll
18 14 9 8 ow

(a) Obtain the reduced cost matrix

(b) Using a state space tree formulation similar to that of Figure 8.10
and é as described in Section 8.3, obtain the portion of the state
space tree that will be generated by LCBB. Label each node by
its é value. Write out the reduced matrices corresponding to each
of these nodes.

(c) Do part (b) using the reduced matrix method and the dynamic
state space tree approach discussed in Section 8.3.

https://hemanthrajhemu.github.io

412 CHAPTER 8 BRANCH-AND-BOUND

2. Do Exercise 1 using the following traveling salesperson cost matrix:

o 11 10 9 6
8 wo 7 3 4
8 4 wo 4 8
11 10 5 w 5
6 9 5 5 &

3. (a) Describe an efficient implementation for a LCBB traveling sales-
person algorithm using the reduced cost matrix approach and(i)
a dynamic state space tree and (ii) a static tree as in Figure 8.10.

(b) Are there any problem instances for which the LCBB will generate
fewer nodes using a static tree than using a dynamic tree? Prove
your answer.

4. Consider the LCBB traveling salesperson algorithm described using
the dynamic state space tree formulation. Let A and B be nodes. Let
B be a child of A. If the edge (A, B) represents the inclusion of edge
(i,j) in the tour, then in the reduced matrix for B all entries in row i
and column j are set to oo. In addition, one more entry is set to oo.
Obtain an efficient way to determine this entry.

5. [Programming project] Write computer programs for the following
traveling salesperson algorithms:

(a) The dynamic programmingalgorithm of Chapter 5

(b) A backtracking algorithm using the static tree formulation of Sec-
tion 8.3

(c) A backtracking algorithm using the dynamic tree formulation of
Section 8.3

(d) A LCBBalgorithm corresponding to (b)

(e) A LCBBalgorithm corresponding to (c)

Design data sets to be used to compare the efficiency of the above
algorithms. Randomly generate problem instances from these data
sets and obtain computing times for your programs. What conclusions
can you draw from your computing times?

8.4 EFFICIENCY CONSIDERATIONS

One can pose several questions concerning the performancecharacteristics of
branch-and-bound algorithms that find least-cost answer nodes. We might
ask questions such as:

https://hemanthrajhemu.github.io

8.4. EFFICIENCY CONSIDERATIONS 413

1. Does the use of a better starting value for upper always decrease the
number of nodes generated?

2. Is it. possible to decrease the numberof nodes generated by expanding
some nodes with ¢() > upper?

3. Does the use of a better ¢ always result in a decreasein (or at least not
an increase in) the number of nodes generated? (A é, is better than
é iff €1(x2) < Go(x) < c(x) for all nodes z.)

4. Does the use of dominance relations ever result in the generation of
more nodes than would otherwise be generated?

In this section we answer these questions. Although the answers to most
of the questions examined agree with our intuition, the answers to others
are contrary to intuition. However, even in cases in which the answer does
not agree with intuition, we can expect the performanceof the algorithm to
generally agree with the intuitive expectations. All the following theorems
assume that the branch-and-bound algorithm is to find a minimum-cost
solution node. Consequently, c(z) = cost of minimum-cost solution node in
subtree x.

Theorem 8.2 Let t be a state space tree. The number of nodes of ¢ gen-
erated by FIFO, LIFO, and LC branch-and-bound algorithms cannot be
decreased by the expansion of any node x with ¢(z) > upper, where upper
is the current upper bound on the cost of a minimum-cost solution node in
the tree t.

Proof: The theorem follows from the observation that the value of upper
cannot be decreased by expanding x (as ¢(x) > upper). Hence, such an
expansion cannot affect the operation of the algorithm on the remainderof
the tree. Oo

Theorem 8.3 Let U; and U2,U, < U2, be two initial upper bounds on the
cost of a minimum-cost solution node in the state space tree t. Then FIFO,
LIFO, and LC branch-and-bound algorithms beginning with U, will generate
no more nodes than they would if they started with U2 as the initial upper
bound.

Proof: Left as an exercise. Oo

Theorem 8.4 The use of a better ¢ function in conjunction with FIFO and
LIFO branch-and-bound algorithms does not increase the number of nodes
generated.

https://hemanthrajhemu.github.io

414 CHAPTER 8. BRANCH-AND-BOUND

Proof: Left as an exercise. Oo

Theorem 8.5 If a better é function is used in a LC branch-and-boundal-
gorithm, the number of nodes generated may increase.

Proof: Consider the state space tree of Figure 8.17. All leaf nodes are
solution nodes. The value outside each leaf is its cost. From these values it
follows that c(1) = c(3) = 3 and c(2) = 4. Outside each of nodes 1, 2, and 3

is a pair of numbers (%). Clearly, é is a better function than ¢,. HoweverPp és
if G2 is used, node 2 can become the E-node before node 3, as 62(2) = (3).
In this case all nine nodes of the tree will get generated. When ¢; is used,
nodes4, 5, and 6 are not generated. Oo

Figure 8.17 Example tree for Theorem 8.5

Now,let us look at the effect of dominance relations. Formally, a domi-
nancerelation D is given by a set of tuples, D = {(¢1, 72), (#3, 24), (#5, t6),..-}.
If (¢, 7) € D, then node7 is said to dominate node j. By this we mean that
subtree i contains a solution node with cost no more than the cost of a
minimum-cost solution node in subtree 7. Dominated nodes can be killed
without expansion.

Since every node dominatesitself, (¢,¢) € D for all i and D. Therela-
tion (7,7) should not result in the killing of node 7. In addition, it is quite
possible for D to contain tuples (41,712), (¢2, 73), (43, 74),---,(in,%1). In this
case, the transitivity of D implies that each node 2, dominates all nodes
t;,1 <j <n. Care should be taken to leave at least one of the 7,’s alive.
A dominance relation D2 is said to be stronger than another dominance
relation D, iff Dj C Dez. In the following theorems J denotes the identity
relation {(2,2)|l <i <n}.

https://hemanthrajhemu.github.io

8.4. EFFICIENCY CONSIDERATIONS 415

Theorem 8.6 The number of nodes generated during a FIFO or LIFO
branch-and-boundsearch for a least-cost solution node may increase when
a stronger dominancerelation is used.

Proof: Consider the state space tree of Figure 8.18. The only solution nodes
are leaf nodes. Their cost is written outside the node. For the remaining
nodes the number outside each nodeis its é value. The two dominance
relations to use are D; = I and Dy = IU {(5,2),(5,8)}. Clearly, D2 is
stronger than D, and fewer nodes are generated using D; rather than Do.

O

Figure 8.18 Example tree for Theorem 8.6

Theorem 8.7 Let D,; and Dg be two dominance relations. Let Dg be

stronger than D, and such that (7,7) € Do,i # 7, implies é(t) < (J).
An LC branch-and-bound using D, generates at least as many nodes as one
using Do.

Proof: Left as an exercise. Oo

Theorem 8.8 If the condition ¢(i) < é(7) in Theorem 8.7 is removed then
an LC branch-and-bound using the relation D, may generate fewer nodes
than one using Do.

Proof: Left as an exercise. Oo

https://hemanthrajhemu.github.io

416 CHAPTER 8. BRANCH-AND-BOUND

EXERCISES

1. Prove Theorem 8.3.

Prove Theorem 8.4.

Prove Theorem 8.7.

Prove Theorem 8.8.

s
o
e
Y
N

(Heuristic search] Heuristic search is a generalization of FIFO, LIFO,
and LC searches. A heuristic function h(-) is used to evaluate all live
nodes. The next E-node is the live node with least h(-). Discuss
the advantages of using a heuristic function h(-) different from ¢(-)
in the search for a least-cost answer node. Consider the knapsack and
traveling salesperson problemsas two example problems. Also consider
any other problems you wish. For these problems devise reasonable
functions h(-) (different from ¢(-)). Obtain problem instances on which
heuristic search performs better than LC-search.

8.5 REFERENCES AND READINGS

LC branch-and-boundalgorithms have been extensively studied by researchers
in areas such as artificial intelligence and operations research.

Branch-and-bound algorithms using dominance relations in a manner
similar to that suggested by FIFOKNAP(resulting in DKnap1) were given
by M. Held and R. Karp.

The reduction technique for the knapsack problem is due to G. Ingargiola
and J. Korsh.

The reduced matrix technique to compute ¢ is due to J. Little, K. Murty,
D. Sweeny, and C. Karel. They employed the dynamic state space tree
approach.

The results of Section 8.4 are based on the work of W. Kohler, K. Steiglitz,
and T. Ibaraki.

The application of branch-and-bound and other techniques to the knap-
sack and related problems is discussed extensively in Knapsack Problems:
Algorithms and Computer Implementations, by S. Martello and P. Toth,
John Wiley and Sons, 1990.

https://hemanthrajhemu.github.io

Chapter 11

NP-HARD AND
NP-COMPLETE
PROBLEMS

11.1 BASIC CONCEPTS

In this chapter we are concerned with the distinction between problems that
can be solved by a polynomial time algorithm and problems for which no
polynomial time algorithm is known. It is an unexplained phenomenon that
for many of the problems we know and study, the best algorithms for their
solutions have computing times that cluster into two groups. Thefirst group
consists of problems whose solution times are bounded by polynomials of
small degree. Examples we have seen in this book include ordered searching,
which is O(log), polynomial evaluation which is O(n), sorting which is
O(nlogn), and string editing which is O(mn).

The second group is made up of problems whose best-known algorithms
are nonpolynomial. Examples we have seen include the traveling salesperson
and the knapsack problems for which the best algorithms given in this text

have complexities O(n?2”) and O(2"/2) respectively. In the quest to develop
efficient algorithms, no one has been able to develop a polynomial time algo-
rithm for any problemin the second group. This is very important because
algorithms whose computing times are greater than polynomial (typically
the time is exponential) very quickly require such vast amounts of time to
execute that even moderate-size problems cannot be solved (see Section 1.3
for more details).

The theory of WP-completeness which we present here does not provide a
method of obtaining polynomial time algorithms for problems in the second
group. Nor does it say that algorithms of this complexity do not exist.
Instead, what we do is show that many of the problems for which there are

495

https://hemanthrajhemu.github.io

496 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

no known polynomial time algorithms are computationally related. In fact,
we establish two classes of problems. These are given the names NP-hard
and NP-complete. A problem that is MP-complete has the property that
it can be solved in polynomial time if and only if all other A’P-complete
problems can also be solved in polynomial time. If an M’P-hard problem
can be solved in polynomial time, then all ’P-complete problems can be
solved in polynomial time. All A’P-complete problems are NP-hard, but
some NP-hard problems are not known to be NP-complete.

Although one can define many distinct problem classes having the prop-
erties stated above for the NP-hard and NP-complete classes, the classes
we studyare related to nondeterministic computations (to be defined later).
The relationship of these classes to nondeterministic computations together
with the apparent power of nondeterminism leads to the intuitive (though
as yet unproved) conclusion that no MP-complete or NP-hard problem is
polynomially solvable.

We see that the class of NP-hard problems (and the subclass of NP-
complete problems) is very rich as it contains many interesting problems from
a wide variety of disciplines. First, we formalize the preceding discussion of
the classes.

11.1.1 Nondeterministic Algorithms

Up to now the notion of algorithm that we have been using has the property
that the result of every operation is uniquely defined. Algorithms with this
property are termed deterministic algorithms. Such algorithms agree with
the way programsare executed on a computer. In a theoretical framework we
can removethis restriction on the outcome of every operation. We can allow
algorithms to contain operations whose outcomes are not uniquely defined
but are limited to specified sets of possibilities. The machine executing
such operations is allowed to choose any one of these outcomes subject to
a termination condition to be defined later. This leads to the concept of a
nondeterministic algorithm. To specify such algorithms, we introduce three
new functions:

1. Choice(S) arbitrarily chooses one of the elements of set S.

2. Failure() signals an unsuccessful completion.

3. Success() signals a successful completion.

The assignment statement x := Choice(1,7) could result in x being as-
signed any one of the integers in the range [1,n]. There is no rule specifying
how this choice is to be made. The Failure() and Success() signals are used to
define a computation of the algorithm. These statements cannot be used to
effect a return. Wheneverthere is a set of choices that leads to a successful

https://hemanthrajhemu.github.io

11.1. BASIC CONCEPTS 497

completion, then one such set of choices is always made and the algorithm
terminates successfully. A nondeterministic algorithm terminates unsuccess-
fully if and only if there exists no set of choices leading to a success signal.
The computing times for Choice, Success, and Failure are taken to be O(1).
A machine capable of executing a nondeterministic algorithm in this way
is called a nondeterministic machine. Although nondeterministic machines
(as defined here) do not exist in practice, we see that they provide strong
intuitive reasons to conclude that certain problems cannot be solved by fast
deterministic algorithms.

Example 11.1 Consider the problem of searching for an element x in a
given set of elements A[{1:n],n > 1. We are required to determine an index
j such that A[j] = x2 or j = 0 if x is not in A. A nondeterministic algorithm
for this is Algorithm11.1.

1 3 := Choice(1,7);
2 if Aly] =x then {write (7); Success();}
3 write (0); Failure();

Algorithm 11.1 Nondeterministic search

From the way a nondeterministic computation is defined, it follows that
the number0 can be output if and only if there is no 7 such that A[j] = x.
Algorithm 11.1 is of nondeterministic complexity O(1). Note that since A is
not ordered, every deterministic search algorithm is of complexity Q(n). O

Example 11.2 [Sorting] Let A[i], 1 <i <n, be an unsorted array of posi-
tive integers. The nondeterministic algorithm NSort(A,n) (Algorithm 11.2)
sorts the numbers into nondecreasing order and then outputs them in this
order. An auxiliary array B[1 : n] is used for convenience. Line 4 initial-
izes B to zero though any value different from all the A[?] will do. In the
for loop of lines 5 to 10, each Al?] is assigned to a position in B. Line 7
nondeterministically determines this position. Line 8 ascertains that Bj]
has not already been used. Thus, the order of the numbers in B is some
permutation of the initial order in A. The for loop of lines 11 and 12 verifies
that B is sorted in nondecreasing order. A successful completion is achieved
if and only if the numbers are output in nondecreasing order. Since there is
always a set of choices at line 7 for such an output order, algorithm NSort
is a sorting algorithm. Its complexity is O(n). Recall that all deterministic
sorting algorithms must have a complexity Q(n log n). Oo

https://hemanthrajhemu.github.io

498 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

1 Algorithm NSort(A, n)
2 // Sort n positive integers.
3
4 for 1 := 1 to n do B[i] := 0; // Initialize BI |.
5 for 1:= 1 to n do
6
7 j := Choice(1,n);
8 if Bly] A 0 then Failure();

9 BLj] = Ali
10
11 for i:=1ton—1do // Verify order.
12 if Bl:] > Bli + 1] then Failure();
13 write (B[1: n]);
14 Success();
15 }

Algorithm 11.2 Nondeterministic sorting

A deterministic interpretation of a nondeterministic algorithm can be
made by allowing unbounded parallelism in computation. In theory, each
time a choice is to be made, the algorithm makes several copies of itself.
One copy is made for each of the possible choices. Thus, many copies are
executing at the same time. The first copy to reach a successful completion
terminates all other computations. If a copy reaches a failure completion,
then only that copy of the algorithm terminates. Although this interpreta-
tion may enable one to better understand nondeterministic algorithms,it is
important to rememberthat a nondeterministic machine does not make any
copies of an algorithm every time a choice is to be made. Instead, it has the
ability to select a “correct” element from the set of allowable choices (if such
an element exists) every time a choice is to be made. A correct element is
defined relative to a shortest sequence of choices that leads to a successful
termination. In case there is no sequence of choices leading to a successful
termination, we assume that the algorithm terminates in one unit of time
with output “unsuccessful computation.” Whenever successful termination
is possible, a nondeterministic machine makes a sequence of choices that is
a shortest sequence leading to a successful termination. Since, the machine
we are defining is fictitious, it is not necessary for us to concern ourselves
with how the machine can make a correct choice at each step.

Definition 11.1 Any problem for which the answeris either zero or oneis
called a decision problem. An algorithm for a decision problem is termed

https://hemanthrajhemu.github.io

11.1. BASIC CONCEPTS 499

a decision algorithm. Any problem that involves the identification of an
optimal (either minimum or maximum) value of a given cost function is
known as an optimization problem. An optimization algorithm is used to
solve an optimization problem. Oo

It is possible to construct nondeterministic algorithms for which many
different choice sequences lead to successful completions. Algorithm NSort
of Example 11.2 is one such algorithm. If the numbers A[#] are not distinct,
then many different permutations will result in a sorted sequence. If NSort
were written to output the permutation used rather than the A[#]’s in sorted
order, then its output would not be uniquely defined. We concern ourselves
only with those nondeterministic algorithms that generate unique outputs.
In particular we consider only nondeterministic decision algorithms. A suc-
cessful completion is made if and only if the output is 1. A 0 is output if
and only if there is no sequence of choices leading to a successful completion.
The output statement is implicit in the signals Success and Failure. No ex-
plicit output statements are permitted in a decision algorithm. Clearly, our
earlier definition of a nondeterministic computation implies that the output
from a decision algorithm is uniquely defined by the input parameters and
algorithm specification.

Although the idea of a decision algorithm may appear very restrictive at
this time, many optimization problems can be recast into decision problems
with the property that the decision problem can be solved in polynomial time
if and only if the corresponding optimization problem can. In other cases,
we can at least make the statement that if the decision problem cannot be
solved in polynomial time, then the optimization problem cannot either.

Example 11.3 [Maximum clique] A maximal complete subgraphof a graph
G = (V,£) is a clique. The size of the clique is the numberofverticesin it.
The maz clique problem is an optimization problem that has to determine
the size of a largest clique in G. The corresponding decision problem is to
determine whether G has a clique of size at least k for some given k. Let
DClique(G,k) be a deterministic decision algorithm for the clique decision
problem. If the numberof vertices in G is n, the size of a max clique in
G cau be found by inaking several applications of DClique. DClique is used
once for each k, k = n,n —1,n—-2,..., until the output from DClique is 1. If
the time complexity of DClique is f(n), then the size of a max clique can be
found in time < n f(n). Also, if the size of a max clique can be determined
in time g(), then the decision problem can be solved in time g(n). Hence,
the max clique problem can be solved in polynomial time if and only if the
clique decision problem can be solved in polynomial time. oO

Example 11.4 [0/1 knapsack] The knapsack decision problem is to deter-
mine whether there is a 0/1 assignment of values to x;, 1 <i <n, such that

So pix; > r and S* wa; <m. The r is a given nuniber. The p;’s and w;,’s are

https://hemanthrajhemu.github.io

500 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

nonnegative numbers. If the knapsack decision problem cannot be solved in
deterministic polynomial time, then the optimization problem cannoteither.

O

Before proceeding further, it is necessary to arrive at a uniform parameter
n to measure complexity. We assume that n is the length of the input
to the algorithm (that is, n is the input size). We also assume that. all
inputs are integer. Rational inputs can be provided by specifying pairs of
integers. Generally, the length of an input is measured assuming a binary
representation; that is, if the number 10 is to be input, then in binary it
is represented as 1010. Its length is 4. In general, a positive integer k
has a length of |log,k| +1 bits when represented in binary. The length
of the binary representation of 0 is 1. The size, or length, n of the input
to an algorithm is the sum of the lengths of the individual numbers being
input. In case the input is given using a different representation (say radix
r), then the length of a positive number & is [log, | + 1. Thus, in decimal
notation, r = 10 and the number 100 has a length log;, 100 + 1 = 3.
Since log, k = log, k/logyr, the length of any input using radix r (r > 1)
representation is c(r)n, where n is the length using a binary representation
and c(r) is a numberthatis fixed for a given r.

When inputs are given using the radix r = 1, we say the input is in
unary form. In unary form, the number 5 is input as 11111. Thus, the
length of a positive integer k is k. It is important to observe that the length
of a unary input is exponentially related to the length of the corresponding
r-ary input for radix r, r > 1.

Example 11.5 [Max clique] The input to the max clique decision problem
can be provided as a sequence of edges and an integer k. Each edge in
E(G)is a pair of numbers(2,7). The size of the input for each edge (7,7) is
\logsi| + [logs 7| + 2 if a binary representation is assumed. The input size
of any instanceis

n= S- ({logyi| + [logy j| +2) + [logy k| +1
(i,j)€B(G)
i)

Note that if G has only one connected component, then n > |V]|. Thus,
if this decision problem cannot be solved by an algorithm of complexity
p(n) for some polynomial p(), then it cannot be solved by an algorithm of
complexity p(|V|). oO

Example 11.6 [0/1 knapsack] Assuming p;,w;,m, and r are all integers,
the input size for the knapsack decision problem is

q= > (logy pi) + logy wi]) + 2n + [logy m] + [logy r| +2
1<i<n

https://hemanthrajhemu.github.io

11.1. BASIC CONCEPTS 501

Note that q >. If the input is given in unary notation, then the input size
sispp+>3>uwj+m-+r. Note that the knapsack decision and optimization
problems can be solved in time p(s) for some polynomial p() (see the dy-
namic programming algorithm). However, there is no known algorithm with
complexity O(p(n)) for some polynomial p(). Oo

We are nowready to formally define the complexity of a nondeterministic
algorithin.

Definition 11.2 The time required by a nondeterministic algorithm per-
forming on any given input is the minimum numberof steps needed to reach
a successful completion if there exists a sequence of choices leading to such
a completion. In case successful completion is not possible, then the time
required is O(1). A nondeterministic algorithm is of complexity O(f(n)) if
for all inputs of size n, n > no, that result in a successful completion, the
time required is at most cf(n) for some constants c and no. oO

In Definition 11.2 we assume that each computation step is of a fixed cost.
In word-oriented computers this is guaranteed by the finiteness of each word.
Wheneach step is not of a fixed cost, it is necessary to consider the cost
of individual instructions. Thus, the addition of two m-bit numbers takes
O(m) time, their multiplication takes O(m7) time (using classical multipli-
cation), and so on. Tosee the necessity of this, consider the algorithm Sum
(Algorithm 11.3). This is a deterministic algorithm for the sum of subsets
decision problem. It uses an (m+ 1)-bit word s. The ith bit in s is zero
if and only if no subset of the integers A[j], 1 < 7 <n, sums to 7. Bit 0
of s is always 1 and the bits are numbered 0,1,2,...,m right to left. The
function Shift shifts the bits in s to the left by Ali] bits. The total numberof
steps for this algorithm is only O(n). However, each step moves m + 1 bits
of data and would take O(m) time on a conventional computer. Assuming
one unit of time is needed for each basic operation for a fixed word size, the
complexity is O(nm) and not O(n).

Thevirtue of conceiving of nondeterministic algorithmsis that often what
would be very complex to write deterministically is very easy to write non-
deterministically. In fact, it is very easy to obtain polynomial time nondeter-
ministic algorithms for many problems that can be deterministically solved
by a systematic search of a solution space of exponentialsize.

Example 11.7 [Knapsack decision problem] DKP (Algorithm 11.4) is a non-
deterministic polynomial time algorithm for the knapsack decision problem.
The for loop oflines 4 to 8 assigns 0/1 values to z[i], 1 <i <n. It also com-
putes the total weight and profit corresponding to this choice of z[]. Line 9
checks to see whether this assignment is feasible and whether the resulting
profit is at least r. A successful termination is possible iff the answer to
the decision problem is yes. The time complexity is O(n). If q is the input
length using a binary representation, the time is O(q). oO

https://hemanthrajhemu.github.io

502 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Algorithm Sum(A, », m)

{
s:=1;

// sis an (m+ 1)-bit word. Bit zero is 1.
for i :=1tondo

$:= 8 or Shift(s, A[i]);
if the mth bit in s is 1 then

write ("A subset sums to m.");
else write ("No subset sums to m.");

r
F
O
O
N
O
O
B
R
W
N
E

0 }

Algorithm 11.3 Deterministic sum of subsets

Example 11.8 [Max clique] Algorithm DCK (Algorithm 11.5) is a nonde-
terministic algorithm for the clique decision problem. The algorithm begins
by trying to form a set of k distinct vertices. Then it tests to see whether
these vertices form a complete subgraph. If G is given by its adjacency ma-
trix and |V| = n, the input length m is n? + |log k| + [logy n| + 2. The
for loop of lines 4 to 9 can easily be implemented to run in nondeterministic
time O(n). The time for the for loop of lines 11 and 12 is O(k?). Hence the
overall nondeterministic time is O(n + k?) = O(n?) = O(m). There is no
known polynomial time deterministic algorithm for this problem. oO

Example 11.9 [Satisfiability] Let x1, 22,... denote boolean variables (their
value is either true or false). Let ¢; denote the negation of z;. A literal is
either a variable or its negation. A formula in the propositional calculus is an
expression that can be constructed using literals and the operations and and
or. Examples of such formulas are (x1 Arq) V (23A%4) and (£3 V4) A(21 V£2).
The symbol V denotes or and A denotes and. A formula is in conjunctive
normal form (CNF)if and only if it is represented as A*_,¢;, where the ¢;
are clauses each represented as V1;;. The J;; are literals. It is in disjunctive

normal form (DNF)if and only if it is represented as V*_,c; and each clause
cj; is represented as Al,;.. Thus (x1 A £2) V (x3 A £4) is in DNF whereas
(23 V £4) A (@1 V 2) is in CNF.Thesatisfiability problem is to determine
whether a formulais true for some assignmentof truth values to the variables,
CNF-satisfiability is the satisfiability problem for CNF formulas.

It is easy to obtain a polynomial time nondeterministic algorithm that ter-
minates successfully if and only if a given propositional formula E(z1,...,£n)
is satisfiable. Such an algorithm could proceed by simply choosing (nondeter-

https://hemanthrajhemu.github.io

11.1. BASIC CONCEPTS 503

Algorithm DKP(p, w, n, m, r, x)

{
W :=0; P :=0;

for 1:=— 1tondo

zt] := Choice(0, 1);
W :=W + 2[t] * w[t]; P= P+ 2[t] « pit];

, ((W >m) or (P <r)) then Failure();
else Success();

e
r
e
C
O
O
N
O
o
O
R
W
N

0
1 }

Algorithm 11.4 Nondeterministic knapsack algorithm

1 Algorithm DCK(G,n, k)

2 {
3 S:= 0; // S is aninitially empty set.
4 for i1:=1tokdo
5)
6 t := Choice(1, n);
7 if ¢ € S then Failure();
8 S:= SU{t} // Add t to set S.
9
10 // At this point S contains k distinct vertex indices.
11 for all pairs (i,j) such that i € S, 7 € S, andi #j do
12 if (i, 7) is not an edge of G then Failure();
13 Success();
14 }

Algorithm 11.5 Nondeterministic clique pseudocode

https://hemanthrajhemu.github.io

504 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

ministically) one of the 2” possible assignmentsof truth values to (z1,..., Zn)
and verifying that F(21,...,2,) is true for that assignment.

Eval (Algorithm 11.6) does this. The nondeterministic time required by
the algorithm is O(n) to choose the value of (z1,...,@n) plus the time needed
to deterministically evaluate E for that assignment. This time is propor-
tional to the length of E. oO

1 Algorithm Eval(£, n)
2 // Determine whether the propositional formula F is
3 // satisfiable. The variables are 11, £2,...,2n.
4
5 for i:=1tondo // Choose a truth value assignment.
6 x; := Choice(false, true);
7 if E(x1,...,£n) then Success();
8 else Failure();
9

Algorithm 11.6 Nondeterministic satisfiability

11.1.2 The Classes ’P-hard and NP-complete

In measuring the complexity of an algorithm, we use the input length as
the parameter. An algorithm A is of polynomial complexity if there exists a
polynomial p() such that the computing time of A is O(p(n)) for every input
of size n.

Definition 11.3 P is the set of all decision problems solvable by determin-
istic algorithms in polynomial time. NP is the set of all decision problems
solvable by nondeterministic algorithms in polynomial time. Oo

Since deterministic algorithms are just a special case of nondeterministic
ones, we conclude that P C NP. What we do not know, and what has
become perhaps the most famous unsolved problem in computer science, is
whether P = NP or P 4 NP.

Is it possible that for all the problems in NP, there exist polynomial
time deterministic algorithms that have remained undiscovered? This seems
unlikely, at least because of the tremendous effort that has already been
expended by so many people on these problems. Nevertheless, a proof that P
NP is just as elusive and seems to require as yet undiscovered techniques.

https://hemanthrajhemu.github.io

11.1. BASIC CONCEPTS 505

But as with many famous unsolved problems, they serve to generate other
useful results, and the question of whether VP C is no exception. Figure
11.1 displays the relationship between P and NP assuming that PANP.

Figure 11.1 Commonly believed relationship between P and NP

5. Cook formulated the following question: Is there any single problem in
NP such that if we showed it to be in P, then that would imply that P =
NP? Cook answered his own question in the affirmative with the following
theorem.

Theorem 11.1 [Cook] Satisfiability is in P if and only if P = NP.

Proof: See Section 11.2. Oo

We are now ready to define the NP-hard and NP-complete classes of
problems. First we define the notion of reducibility. Note that this definition
is similar to the one madein Section 10.3.

Definition 11.4 Let £; and ZL» be problems. Problem [1 reduces to Lo
(also written LZ; «x Lg) if and only if there is a way to solve L, by a de-
terministic polynomial time algorithm using a deterministic algorithm that
solves Ly in polynomial time. Oo

This definition implies that if we have a polynomial time algorithm for
Ly, then we can solve £; in polynomial time. One can readily verify that «
is a transitive relation (that is, if Lj « Do and Lo « Ls, then L, « L3).

Definition 11.5 A problem EL is NP-hard if and only if satisfiability re-
duces to L (satisfiability « L). A problem L is NP-complete if and onlyif
Lis NP-hard and L € NP. Oo

https://hemanthrajhemu.github.io

506 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

NP
NP-complete

 NP-hard

P

Figure 11.2 Commonly believed relationship among P, NP, NP-
complete, and NP-hard problems

It is easy to see that there are NP-hard problems that are not NP-
complete. Only a decision problem can be NP-complete. However, an opti-
mization problem may be VP-hard. Furthermoreif Ly is a decision problem
and Lz an optimization problem, it is quite possible that LD, « Dy. One can
trivially show that the knapsack decision problem reduces to the knapsack
optimization problem. For the clique problem one can easily show that the
clique decision problem reduces to the clique optimization problem. In fact,
one can also show that these optimization problems reduce to their corre-
sponding decision problems (see the exercises). Yet, optimization problems
cannot be WP-complete whereas decision problems can. There also exist
NP-hard decision problems that are not NP-complete. Figure 11.2 shows
the relationship among these classes.

Example 11.10 As an extreme example of an NP-hard decision problem
that is not W’P-complete consider the halting problem for deterministic al-
gorithms. The halting problem is to determine for an arbitrary deterministic
algorithm A and an input J whether algorithm A with input J ever ter-
minates (or enters an infinite loop). It is well known that this problem is
undecidable. Hence, there exists no algorithm (of any complexity) to solve
this problem. So, it clearly cannot be in NP. To show satisfiability « the
halting problem, simply construct an algorithm A whose input is a proposi-
tional formula X. If X has n variables, then A tries out all 2” possible truth
assignments and verifies whether X is satisfiable. If it is, then A stops. If it
is not, then A enters an infinite loop. Hence, A halts on input X if and only

https://hemanthrajhemu.github.io

11.1. BASIC CONCEPTS 507

if X is satisfiable. If we had a polynomial time algorithm for the halting
problem, then we could solve the satisfiability problem in polynomial time
using A and X as input to the algorithm for the halting problem. Hence,
the halting problem is an NP-hard problem that is not in NP. Oo

Definition 11.6 Two problems L£,; and Le are said to be polynomially equiv-
alent if and only if LD, « Dy and Lo « Ly. Oo

To show that a problem Lo is NP-hard, it is adequate to show Ly x
Lo, where Ly is some problem already known to be NP-hard. Since x is
a transitive relation, it follows that if satisfiability « L, and LZ, « Lo,
then satisfiability x L2. To show that an NP-hard decision problem is
NP-complete, we have just to exhibit a polynomial time nondeterministic
algorithm for it.

Later sections show many problems to be NP-hard. Although werestrict
ourselves to decision problems, it should be clear that the corresponding
optimization problems are also NP-hard. The NVP-completeness proofs are
left as exercises (for those problems that are W’P-complete).

EXERCISES

1. Given two sets S; and So, the disjoint sets problem is to check whether
the sets have a common element (see Section 10.3.2). Present an O(1)
time nondeterministic algorithm for this problem.

2. Given a sequence of nm numbers, the distinct elements problem is to
check if there are equal numbers (see Section 10.3, Exercise 5). Give
an O(1) time nondeterministic algorithm for this problem.

3. Obtain a nondeterministic algorithm of complexity O(n) to determine
whether there is a subset of n numbers a;, 1 <i <n, that sums to m.

4. (a) Show that the knapsack optimization problem reduces to the
knapsack decision problem whenall the p’s, w’s, and m are inte-
ger and the complexity is measured as a function of input length.
(Hint: If the input length is g, then S> p; < n2%, where n is the
number of objects. Use a binary search to determine the optimal
solution value.)

(b) Let DK be an algorithm for the knapsack decision problem. Let r
be the value of an optimal solution to the knapsack optimization
problem. Show how to obtain a 0/1 assignment for the 7;, 1 <i <
n, such that > pj2; = r and > wx; < m by making n applications
of DK.

https://hemanthrajhemu.github.io

508 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

5. Show that the clique optimization problem reduces to the clique deci-
sion problem.

6. Let Sat(£) be an algorithm to determine whether a propositional for-
mula F£ in CNF is satisfiable. Show that if F is satisfiable and has n
variables £1, £,...,%n, then using Sat(E) n times, one can determine
a truth value assignment for the x;’s for which F& is true.

7. Let m2 be a problem for which there exists a deterministic algorithm

that runs in time 2V” (where n is the input size). Prove or disprove:

If m, is another problem such that 7, is polynomially re-

ducible to 72, then 7 can besolved in deterministic O(2V”)
time on any inputof size n.

11.2 COOK’S THEOREM(x)

Cook’s theorem (Theorem 11.1) states that satisfiability is in P if and only
if P = NP. We now prove this important theorem. We have already seen
that satisfiability is in MP (Example 11.9). Hence, if P = NP, then satis-
fiability is in P. It remains to be shown that if satisfiability is in P, then
P = NP. To do this, we show how to obtain from any polynomial time
nondeterministic decision algorithm A and input J a formula Q(A, J) such
that Q is satisfiable iff A has a successful termination with input J. If the
length of I is n and the time complexity of A is p(n) for some polynomial
p(), then the length of Q is O(p3(n)logn) = O(p*(n)). The time needed
to construct Q is also O(p3(n) log n). A deterministic algorithm Z to deter-
mine the outcome of A on any input J can be easily obtained. Algorithm Z
simply computes Q and then uses a deterministic algorithm for the satisfia-
bility problem to determine whether Q is satisfiable. If O(q(m)) is the time
needed to determine whether a formula of length m is satisfiable, then the
complexity of Z is O(p3(n) logn + q(p3(n) log n)). If satisfiability is in P,
then q(m) is a polynomial function of m and the complexity of Z becomes
O(r(n)) for some polynomial r(). Hence, if satisfiability is in P, then for
every nondeterministic algorithm A in NP we can obtain a deterministic Z
in P. So, the above construction shows that if satisfiability is in P, then P
= NP.

Before going into the construction of Q from A and J, we make some
simplifying assumptions on our nondeterministic machine model and on the
form of A. These assumptions do not in any wayalter the class of decision
problems in NP or P. The simplifying assumptions are as follows.

1. The machine on which A is to be executed is word oriented. Each

word is w bits long. Multiplication, addition, subtraction, and so on,

https://hemanthrajhemu.github.io

11.2. COOK’S THEOREM(x) 509

between numbers one word long take one unit of time. If numbers are
longer than a word, then the corresponding operations take at least as
many units as the number of words making up the longest number.

2. A simple expression is an expression that contains at most one operator
and all operandsare simple variables (i.e., no array variables are used).
Some sample simple expression are —B, B+ C,D or E, and F. We
assume that all assignments in A are in one of the following forms:

(a) (simple variable) := (simple expression)

(b) (array variable) := (simple variable)

(c) (simple variable) := (array variable)

(d) (simple variable) := Choice(S), where S is finite set {51, S2,..., Se}
or J,u. In the latter case the function chooses an integer in the
range [I : ul.

Indexing within an array is done using a simple integer variable and
all index values are positive. Only one-dimensional arrays are allowed.
Clearly, all assignment statements not falling into one of the above
categories can be replaced by a set of statements of these types. Hence,
this restriction does not alter the class NP.

3. All variables in A are of type integer or boolean.

4. Algorithm A contains no read or write statements. The only input to
A is via its parameters. At the time A is invoked, all variables (other
than the parameters) have value zero (or false if boolean).

5. Algorithm A contains no constants. Clearly, all constants in any al-
gorithm can be replaced by new variables. These new variables can
be added to the parameter list of A and the constants associated with
them can be part of the input.

6. In addition to simple assignment statements, A is allowed to contain
only the following types of statements:

(a) The statement goto k, where k is an instruction number.

(b) The statement if c then goto a;. Variable c is a simple boolean
variable (i.e., not an array) and a is an instruction number.

(c) Success(), Failure().

(d) Algorithm A may contain type declaration and dimension state-
ments. These are not used during execution of A and so need
not be translated into Q. The dimension information is used to
allocate array space. It is assumed that successive elements in an
array are assigned to consecutive words in memory.

https://hemanthrajhemu.github.io

510 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

It is assumed that the instructions in A are numbered sequentially from
1 to @ (if A has @ instructions). Every statement in A has a number.
The goto instructions in (a) and (b) use this numbering scheme to
effect a branch. It should be easy to see how to rewrite repeat-until,
for, and so on, statements in terms of goto and if c then goto a
statements. Also, note that the goto k statement can be replaced by
the statement if true then goto k. So, this may also be eliminated.

Let p(n) be a polynomial such that A takes no more than p(n) time
units on any input of length n. Because of the complexity assumption
of 1), A cannot change or use more than p(n) words of memory. We
assume that A uses some subset of the words indexed 1, 2, 3, ..., p(n).
This assumption does not restrict the class of decision problems in
NP. Tosee this, let f(1), f(2),..., f(k), 1 < k < p(n), be the distinct
words used by A while working on input J. We can construct an-
other polynomial time nondeterministic algorithm A’ that uses 2p(n)
words indexed 1,2,...,2p(n) and solves the same decision problem as

A does. A’ simulates the behavior of A. However, A’ maps the ad-
dresses f(1), f(2),...,f(k) onto the set {1,2,...,k}. The mapping
function used is determined dynamically and is stored as a table in
words p(n) +1 through 2p(n) . If the entry at word p(n) +7 is j, then
A’ uses word i to hold the same value that A stored in word j. The
simulation of A proceeds as follows: Let k be the numberof distinct
words referenced by A up to this time. Let 7 be a word referenced
by A in the current step. A’ searches its table to find word p(n) + i,
1<i<k, such that the contents of this word is j. If no such i exists,
then A’ sets k := k+ 1; i := k; and word p(n) +k is given the value
j. A’ makes use of the word i to do whatever A would have done with
word j. Clearly, A’ and A solve the same decision problem. The com-
plexity of A’ is O(p?(n)) as it takes A’ p(n) timeto search its table and
simulate a step of A. Since p?(n) is also a polynomial in n,restricting
our algorithms to use only consecutive words does not alter the classes
P and NP.

Formula Q makes use of several boolean variables. We state the semantics
of two sets of variables used in Q:

1. BUi,j,t), 1<i<p(n), 1<j<u,0<t< p(n)

B(i,j,t) represents the status of bit 7 of word i following t steps (or
time units) of computation. The bits in a word are numbered from
right to left. The rightmost bit is numbered 1. Q is constructed so
that in any truth assignment for which Q is true, B(i,j,t) is true if
and only if the corresponding bit has value 1 following t steps of some
successful computation of A on input J.

https://hemanthrajhemu.github.io

11.2. COOK’S THEOREM(s) 511

2. S(j,t),1<j<4,1<t< p(n)

Recall that @ is the numberof instructions in A. S(j,t) represents the
instruction to be executed at time £. @ is constructed so that in any
truth assignment for which Q is true, S(j,t) is true if and only if the
instruction executed by A at time t is instruction 7.

Q is madeup of six subformulas, C, D, FE, F,G,and H. Q=CADAENA
FAGAH.These subformulas make the following assertions:

C:

D:

H:

The initial status of the p(n) words represents the input J. All non-
input variables are zero.

Instruction 1 is the first instruction to execute.

At the end of the ith step, there can be only one next instruction to
execute. Hence, for any fixed i, exactly one of the S(j,i), 1 <7 < 4,
can be true.

If S(j, 7) is true, then S(j,i+1)is also trueif instruction j is a Success or
Failure statement. S(j+1,i+1) is true if 7 is an assignment statement.
If j is a goto k statement, then S(k,i+ 1) is true. The last possibility
for j is the if c then a; statement. In this case S(a,i +1) is true if c¢
is true and S(j + 1,7 +1)is true if c is false.

: If the instruction executed at step t is not an assignment statement,
then the B(i, j,t)’s are unchanged. If this instruction is an assignment
and the variable on the left-hand side is X, then only X may change.
This change is determined by the right-hand side of the instruction.

The instruction to be executed at time p(n) is a Success instruction.
Hence the computation terminates successfully.

Clearly, if C through H make the above assertions, then Q = CADAEA
FAG AH is satisfiable if and only if there is a successful computation of A
oninput J. We now give the formulas C through H. While presenting these
formulas, we also indicate how each may be transformed into CNF. This
transformation increases the length of Q by an amount independent of n
(but dependent on w and 2). This enables us to show that CNF-satisfiability
is NP-complete.

1. Formula C describes the input J. We have

C= A Ti,j,0)
1<i<p(n)
1<j<w

https://hemanthrajhemu.github.io

512 CHAPTER11. NP-HARD AND NP-COMPLETE PROBLEMS

T(i,j,0) is B(i,j,0) if the input calls for bit B(i,7,0) (i.e., bit 7 of
word i) to be 1. T(i,j,0) is B(i, 7,0) otherwise. Thus, if there is no
input, then

c= f\ Bii,i,0)
1<i<p(n)
I<j<w

Clearly, C is uniquely determined by J and is in CNF. Also, C’ is
satisfiable only by a truth assignment representing the initial values of
all variables in A.

. D=S(1,1) A $(2,1) A 8(3,1) A---A S(é,1)

Clearly, D is satisfiable only by the assignment S(1,1) = true and
S(i,1) = false, 2 < i < @. Using our interpretation of S(i,1), this
means that D is true if and only if instruction 1 is the first to be
executed. Note that D is in CNF.

- B= Nice<p(ny Et
Each E; will assert that there is a unique instruction for step t. We
can define ; to be

E, = (S(1,t) Vv ($(2,t) Vi V S(t) AC A (SU,4) Vv S(K,t))
1<j<e
1<k<e
JF

One can verify that FE; is true iff exactly one of the S(j, t)’s, 1 <j < &,
is true. Also, note that E is in CNF.

FHWA ic<ice Fit
1<t<p(n)

Each F;; asserts that either instruction i is not the one to be executed

at time ¢ or, if it is, then the instruction to be executed at time t+ 1
is correctly determined by instruction i. Formally, we have

Fit = S(i, t) V L

where L is defined as follows:

(a) If instruction i is Success or Failure, then L is S(i,t + 1). Hence
the program cannot leave such an instruction.

(b) If instruction i is goto k, then L is S(k,t + 1).

(c) Ifinstruction i is if X then goto k and variable X is represented
by word j, then L is ((B(j,1,t— 1) AS(k,t +1) V (BUY, Lt-DA
S(i+1,t+1))). This assumes that bit 1 of X is 1 if and only if
X is true.

https://hemanthrajhemu.github.io

11.2. COOK’S THEOREM(x) 513

(d) If instruction 7 is not any of the above, then L is S(i+1,t+ 1).

The F;4’s defined in cases (a), (b), and (d) are in CNF. The F;y in
case (c) can be transformed into CNF using the boolean identity a V
(bAc)V (dAe) = (aVbVd)A (aVeVad) A(avbVe)A (aVeVe).

5. G= A 1<i<e Git

1<t<p(n)

Each Gj asserts that at time ¢ either instruction 7 is not executed or

it is and the status of the p(n) wordsafter step t is correct with respect
to the status before step ¢ and the changes resulting from instruction
1. Formally, we have

Git= S(i,t) VM

where M is defined as follows:

(a) If instruction 7 is a goto, if-then-goto-, Success, or Failure state-
ment, then M asserts that the status of the p(n) words is un-

changed; thatis, B(k,j.t— 1) = B(k,j,t), 1<k < pln), 1<j<
w.

M = fA ((Bij,t-1)
1gk<p(n)
i<j<w
A B(k,j,t)) V (Blk, Jj, — 1) A (Blk, 5, #))

In this case, G;4 can be written as

Git = A (S(i, t)

L<k<p(n)
l<j<w

V(B(k,j,t ~ 1) A B(k,7,t))

V(B(k, j,t — 1) A (B(k, 9, t)))

Each clause in Giz is of the form z V (z As) V (ZA 5), where z is

S(i,t),x represents a B(,,t— 1), and s represents a B(,,t). Note
that z V (2 As) V (8) is equivalent to (x V5 Vz) A(EVsV2z).
Hence, G; can be transformed into CNFeasily.

(b) If 7 is an assignment statement of type 2(a), then M depends on
the operator (if any) on the right-hand side. We first describe the
form ofM for the case in which instruction ¢ is of type Y := V+Z.
Let Y,V, and Z be respectively represented in words y, v, and z.
We make the simplifying assumption that all numbers are nonneg-
ative. The exercises examine the case in which negative numbers

https://hemanthrajhemu.github.io

514 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

are allowed and 1’s complement arithmetic is used. To get a for-
mula asserting that the bits B(y,j,t), 1 < 7 < w, represent the
sum of B(v,j,t—1) and B(z,j,t—1), 1 <j < w, we have to make
use of w additional bits C(j,t), 1 < 7 < w. C(j,t) represents the
carry from the addition of the bits B(v, 7,t— 1), B(z,j,t-—1), and
Cij—1,t), 1 <j < w. C(1,t) is the carry from the addition
of B(v,1,t—1) and B(z,1,t— 1). Recall that a bit is 1 iff the
corresponding variable is true. Performing a bitwise addition of
V and Z, we obtain C(1,t) = B(v,1,t—1) A B(z,1,t — 1) and
Bly, 1,t) = B(v,1,t-1)@ B(z,1,t-1), where @ is the exclusive
or operation (ab is true iff exactly one of a and 6 is true). Note

that a@b = (aV b) A (aA b) = (a Vb) A (GV 5b). Hence, the right-
handside of the expression for B(y, 1,t) can be transformedinto
CNF using this identity. For the other bits of Y, one can verify
that

Bly, j,t) = Biv, j,t ~ 1) ® (B(z,39,t ~ 1) eC ~ 1,t)) and

C(j, t) = (Biv, j,t ~ 1) \ Biz, j,t ~ 1)) v (Biv, j,t ~ 1)

A C(ij -1,#))

v (B(z,j,t ~ 1) A Cy ~ 1,t))

Finally, we require that C(w,t) = false (i.e., there is no overflow).
Let M’ be the and ofall the equations for B(y,j,t) and C(j, t),
1<j7<w. M is given by

1<k<p(n)
ky

1<j<w
A(B(k, j,t ~~ 1) A B(k,j,t))) AM'

Giz can be converted into CNF using the idea of 5(a). This transfor-
mation increases the length of Gi by a constant factor independent

of n. We leave it to the reader to figure out what M is when instruc-
tion 7 is either of the forms Y := V; and Y := V@Z;, for © one of
—,/,*,<,>,<,=, and so on.

When i is an assignment statement of type 2(b) or 2(c), then it is
necessary to select the correct array element. Consider an instruction
of type 2(b): R[m] := X;. In this case formula M can be written as

M=Wa(f\ M))
1<j<u

https://hemanthrajhemu.github.io

11.2. COOK’S THEOREM(x) 515

where u is the dimension of R. Note that because of restriction (7) on
algorithm A, vu < p(n). W asserts that 1 <m <u. The specification
of W is left as an exercise. Each M; asserts that either m 4 j or m = j
and only the jth element of R changes. Let us assume that the values
of X and m are respectively stored in words x and m and that R(1: u)
is stored in words a,a+1,...,a@+u—1. M; is given by

M;= \VV T(m,k,t-1)vZ
l<k<w

where T is B if the kth bit in the binary representation of 7 is 0 and
T is B otherwise. Z is defined as

Z= ff ((B(r,k,t-1) A B(r,k,t)) V (B(r,k,t - 1)
1<k<w

1<rsp(n)
rZatj—-1

A B(r,k,t —1)))

A ((Blat+g-1,k,t) A B(a,k,t — 1)
l<k<w

V (B(a+j-—1,k,t) A B(a,k,t —1)))

Note that the number ofliterals in M is O(p?(n)). Since j is w bits
long, it can represent only numbers smaller than 2”. Hence, for u > 2",
we need a different indexing scheme. A simple generalization is to
allow multiprecision arithmetic. The index variable 7 can then use
as many words as needed. The number of words used depends on u.
At most log(p(n)) words are needed. This calls for a slight change in
M,, but the numberof literals in M remains O(p*(n)). There is no
need to explicitly incorporate multiprecision arithmetic as by giving
the program access to individual words in a multiprecision index 7, we
can require the program to simulate multiprecision arithmetic.

When 7 is an instruction of type 2(c), the form of M is similar to
that obtained for instructions of type 2(b). Next, we describe how to
construct M for the case in which 7 is of the form Y := Choice(S);,
where S is either a set of the form S = {5}, 59,...,5,%} or S is of the
form r,u. Assume Y is represented by word y. If S is a set, then we
define

M= \VV M,
1<j<k

M; asserts that Y is S;. This is easily done by choosing M; = a) A

az \--+AGy, where ag = B(y, £,t) if bit 2 is 1 in Sp and ag = By,£,t)
if bit 2 is zero in Sp. If S is of the form r, u, then M is just the formula

https://hemanthrajhemu.github.io

516 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

that asserts r < Y <u. Thisis left as an exercise. In both cases, G;4
can be transformed into CNF and the length of G4 increased by at
most a constant amount.

6. Let i1,72,...,%% be the statement numbers corresponding to success

statements in A. A is given by

H = S(i1,p(n)) V S(i2,p(n)) V +++ V Ste, p(n)

Onecan readily verify that Q = CADAEAF AGA H issatisfiable if and
only if the computation of algorithm A with input J terminates successfully.
Further, @ can be transformed into CNF as described above. Formula C
contains wp(n) literals, D contains £ literals, E contains O(£?p(n)) literals, F
contains O(£p(n)) literals, G contains O(£wp?(n)) literals, and H contains at
most £ literals. The total numberofliterals appearing in Q is O(€wp?(n)) =

O(p3(n)) as w is constant. Since there are O(wp?(n)+£p(n)) distinct literals
in Q, each literal can be written using O(log(wp?(n) + &p(n))) = O(log n)
bits. The length of Q is therefore O(p3(n) logn) = O(p*(n)) as p(n) is at
least n. The time to construct Q from A and is also O(p?(n) log n).

The preceding construction shows that every problem in NP reduces
to satisfiability and also to CNF-satisfiability. Hence, if either of these two
problemsis in P, then NP C P andso P = NP.Also,sincesatisfiability is in
NP, the construction of a CNF formula Q shows that satisfiability « CNF-
satisfiability. This together with the knowledge that CNF-satisfiability is in
NP implies that CNF-satisfiability is MP-complete. Note that satisfiability
is also NP-complete as satisfiability « satisfiability and satisfiability is in
NP.

EXERCISES

1. In conjunction with formula G in the proof of Cook’s theorem (Sec-
tion 11.2), obtain M for the following cases for instruction 7. Note that
M can contain at most O(p(n)) literals (as a function of n). Obtain M
under the assumption that negative numbers are represented in ones
complement. Show how the corresponding G;,y’s can be transformed
into CNF. The length of G;, must increase by no more than a constant

factor (say w”) during this transformation.

(a) Y:= Z;

(b) Y:=V—-Z;

(c) Y:=V+Z;

(d) Y:=V«Z;

https://hemanthrajhemu.github.io

11.3. NP-HARD GRAPH PROBLEMS 517

I poly. time algorithm for poly. time solution for

transform L transform I

Figure 11.3 Reduction of L; to Lz

(e) := Choice(0, 1);

(f) Y := Choice(r,u);, where r and wu are variables

2. Show how to encode the following instructions as CNF formulas: (a)
for and (b) while.

3. Prove or disprove: If there exists a polynomial time algorithm to con-
vert a boolean formula in CNF into an equivalent formula in DNF,
then P = NP.

11.3. NP-HARD GRAPH PROBLEMS

The strategy we adopt to show that a problem Ly is NP-hardis:

1. Pick a problem L already known to be NP-hard.

2. Show how to obtain (in polynomial deterministic time) an instance I’
of Lz from any instance I of L, such that from the solution of I’ we can
determine (in polynomial deterministic time) the solution to instance
I of Ly (see Figure 11.3).

3. Conclude from step (2) that £1 « Ly.

4. Conclude from steps (1) and (3) and the transitivity of « that LD» is
NP-hard.

For the first few proofs we go through all the above steps. Later proofs
explicitly deal only with steps (1) and (2). An A’P-hard decision problem
L2 can be shown to be NP-complete by exhibiting a polynomial time non-
deterministic algorithm for Lz. All the NP-hard decision problems we deal
with here are NP-complete. The construction of polynomial time nondeter-
ministic algorithms for these problemsis left as an exercise.

https://hemanthrajhemu.github.io

518 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

11.3.1 Clique Decision Problem (CDP)

The clique decision problem was introduced in Section 11.1. We show in
Theorem 11.2 that CNF-satisfiability « CDP. Using this result, the transi-
tivity of x, and the knowledgethat satisfiability « CNF-satisfiability (Sec-
tion 11.2), we can readily establish that satisfiability « CDP. Hence, CDP
is NP-hard. Since, CDP € NP, CDPis also VP-complete.

Theorem 11.2 CNF-satisfiability « clique decision problem.

Proof: Let F = Ajcjc,C; be a propositional formula in CNF. Let 2,
1 <i<n, be the variables in F. We show how to construct from F a graph
G = (V,£) such that G has a clique of size at least k if and only if F' is
satisfiable. If the length of F ism, then G is obtainable from F' in O(m) time.
Hence, if we have a polynomial time algorithm for CDP, then we can obtain
a polynomial time algorithm for CNF-satisfiability using this construction.

For any F’, G = (V, E)is defined as follows: V = {(o,7)|o is a literal in
clause C;} and E = {({o, i), (6,7)) |i #7 and o 4 6}. A sample construction
is given in Example 11.11.

Claim: F is satisfiable if and only if G has a clique of size > k.

Proof of Claim: If F' is satisfiable, then there is a set of truth values for
xi, 1<a<n, such that each clause is true with this assignment. Thus, with

this assignment there is at least one literal o in each C; such that o is true.
Let S = {{o,%) | o is true in C;} be a set containing exactly one (0,7) for
each i. Between any two nodes (0,7) and (6,j) in S there is an edge in G,
since 1 4 j and both o and 6 have the value true. Thus, S forms a clique in
G of size k.

Similarly, if G has a clique K = (V’,E’) of size at least k, then let
S = {(o,i) | (o,7) € V'}. Clearly, |S| = & as G has no clique of size more
than k. Furthermore, if S’ = {o | (a,7) € S for some i}, then S’ cannot
contain both a literal 6 and its complement 6 as there is no edge connecting
(6,4) and (6,7) in G. Hence by setting x; = true if x; € S’ and x; = falseif
xz; € S’ and choosing arbitrary truth values for variables not in S$’, we can
satisfy all clauses in F’. Hence, F' is satisfiable iff G has a clique of size at
least k. Oo

Example 11.11 Consider F = (2, Va2V a3) A (£1 V£2V%3). The construc-
tion of Theorem 11.2 yields the graph of Figure 11.4. This graph contains
six cliques of size two. Consider the clique with vertices {(21, 1), (Z2, 2)}.
By setting 1; = true and £2 = true (that is, r2 = false), F is satisfied. The
x3 may be set either to true orfalse. O

https://hemanthrajhemu.github.io

11.3. MP-HARD GRAPH PROBLEMS 519

<x,, 1> <x,,2>SoZ

<x, >< Sex > <X7, 2>

<x3, 1> Lows <x3, 2>

Figure 11.4 A sample graph andsatisfiability

11.3.2 Node Cover Decision Problem (NCDP)

A set S CV is a node cover for a graph G = (V, £)if and only if all edges
in FE are incident to at least one vertex in S. Thesize |S| of the cover is the
numberof vertices in S.

Example 11.12 Consider the graph of Figure 11.5. S = {2,4} is a node
cover of size 2. S = {1,3,5} is a node cover ofsize 3. gO

bom 2

Figure 11.5 A sample graph and node cover

In the node cover decision problem we are given a graph G and an integer
k. We are required to determine whether G has a node coverof size at most
k.

Theorem 11.3 The clique decision problem « the node cover decision prob-
lem.

Proof: Let G = (V,£) and k define an instance of CDP. Assume that
|V| =n. We construct a graph G’ such that G’ has a node cover of size at

https://hemanthrajhemu.github.io

520 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

most n —k ifand only if G has a clique of size at least k. Graph G’is given
by G’ = (V,E), where FE = {(u,v) | u € Viv € V and (u,v) ¢ E}. Theset
G’ is known as the complement of G.

Now, we show that G hasa clique of size at least k if and only if G’ has
a node cover of size at most n —k. Let K be any clique in G. Since there
are no edges in & connecting vertices in K, the remaining n — |.K| vertices
in G’ must cover all edges in E. Similarly, if S is a node cover of G’, then
V —S must form a complete subgraph in G.

Since G’ can be obtained from G in polynomial time, CDP can be solved
in polynomial deterministic time if we have a polynomial time deterministic
algorithm for NCDP. O

Example 11.13 Figure 11.6 shows a graph G and its complement G’. In
this figure, G’ has a node cover of {4,5}, since every edge of G’ is incident
either on the node 4 or on the node 5. Thus, G hasa clique of size 5 — 2 = 3
consisting of the nodes 1,2, and 3. Oo

G G’

Figure 11.6 A graph andits complement

Note that since CNF-satisfiability « CDP, CDP « NCDP and « is tran-
sitive, it follows that NCDP is NP-hard. NCDP is also in NP because
we can nondeterministically choose a subset C C V of size k and verify in
polynomial time that C is a cover of G. So NCDP is NP-complete.

https://hemanthrajhemu.github.io

11.3. MP-HARD GRAPH PROBLEMS 521

11.3.3. Chromatic Number Decision Problem (CNDP)

A coloring of a graph G = (V, E) is a function f : V > {1,2,...,k} defined
for alli € V. If (u,v) € EF, then f(u) # f(v). The chromatic number
decision problem is to determine whether G has a coloring for a given k.

Example 11.14 A possible 2-coloring of the graph of Figure 11.5 is f(1) =
f(3) = f(5) = 1 and f(2) = f(4) = 2. Clearly, this graph has no 1-coloring.

O

In proving CNDP to be NP-hard, we shall make use of the W’P-hard
problem SATY. This is the CNF-satisfiability problem with the restriction
that each clause has at most three literals. The reduction CNF-satisfiability
x SATY is left as an exercise.

Theorem 11.4 Satisfiability with at most three literals per clause « chro-
matic number decision problem.

Proof: Let F be a CNF formula having at most three literals per clause
and having r clauses C),Co,...,C,. Let x;, 1 <i <n, be the n variables
in F’. We can assume n > 4. If n < 4, then we can determine whether F' is
satisfiable by trying out all eight possible truth value assignments to 21, x2,
and «3. We construct, in polynomial time, a graph G that is 7+ 1 colorable
if and only if F is satisfiable. The graph G = (V, FE) is defined by

V = {21,22,...,2n}U{%1, %2,...,En} U {yr, yo,- ++, Yn} U{C1, Co,..., Cr}

where 1, y2,---;Yn are new variables, and

B={(a;,, Fi) 1st cnsul{(yny lt AI} UW 2s)lt F a}

U {(yi, Bj)|t AI} VU {(wis Ch) [ai ¢ Cy} U (Zi, Cj) |Bi E Ch}

To see that G is n +1 colorable if and only if F' is satisfiable, we first
observe that the y;’s form a complete subgraph on n vertices. Hence, each y;
must be assigned a distinct color. Without loss of generality we can assume
that in any coloring of G, y; is given the color 7. Since y; is also connected
to all the x;’s and Z;’s except x; and Z;, the color ¢ can be assigned to only
x, and Z;. However, (x;,%;) € E and so a new color, n+ 1, is needed for one

of these vertices. The vertex that is assigned the new color n+ 1 is called a
false vertex. The other vertex is a true vertex. The only way to color G using
n+ colors is to assign color n+ 1 to one of {2;,%;} for each 1, 1 <i<n.

Under what conditions can the remaining vertices be colored using no
new colors? Since n > 4 and each clause has at most three literals, each
C; is adjacent to a pair of vertices x;,Z; for at least one j. Consequently,

https://hemanthrajhemu.github.io

522 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

no C; can be assigned the color n +1. Also, no C; can be assigned a color
corresponding to an x; or Z; not in clause C;. Thelast two statements imply
that the only colors that can be assigned to C; correspond to vertices x; or
£; that are in clause C; and are true vertices. Hence, G is n + 1 colorableif
and only if there is a true vertex corresponding to each C;. So, G isn+1
colorable iff F is satisfiable. Oo

11.3.4 Directed Hamiltonian Cycle (DHC) (*)

A directed Hamiltonian cycle in a directed graph G = (V, £) is a directed
cycle of length n = |V|. So, the cycle goes through every vertex exactly once
and then returns to the starting vertex. The DHC problem is to determine
whether G has a directed Hamiltonian cycle.

Example 11.15 1, 2, 3, 4, 5, 1 is a directed Hamiltonian cycle in the graph
of Figure 11.7. If the edge (5,1) is deleted from this graph, then it has no

directed Hamiltonian cycle. oO

1 2

3

5 4

Figure 11.7 A sample graph and Hamiltonian cycle

Theorem 11.5 CNF-satisfiability « directed Hamiltonian cycle.

Proof: Let # be a propositional formula in CNF. We show how to con-
struct a directed graph G such that F is satisfiable if and only if G has a
directed Hamiltonian cycle. Since this construction can be carried out in
time polynomial in the size of F’, it will follow that CNF-satisfiability «
DHC. Understanding the construction of G is greatly facilitated by the use
of an example. The example we use is F = Ci A C2 AC3 A C4, where

Ci = £1 Vt2Vx44V ¥s

Cy
C3
Cy = F,VE.VE3V 64 V X5

Z1V X2V 2x3

Z1V2%3V 2X5

https://hemanthrajhemu.github.io

11.3. NP-HARD GRAPH PROBLEMS 523

Assume that F has r clauses C),Co,...,C, and n variables 71, 22,...,2n.
Draw an array with r rows and 2n columns. Row i denotes clause C;. Each
variable x; is represented by two adjacent columns, one for each oftheliterals
x, and £;. Figure 11.8 shows the array for the example formula. Insert a
© into column x; and row C; if and only if x; is a literal in C;. Insert a
© into column #; and row C; if and only if z; is a literal in Cj. Between
each pair of columns x; and %; introduce two vertices u; and v;, u; at the top
and v; at the bottom of the column. For each i, draw two chains of edges
upward from v; to uj, one connecting together all ©s in column 2; and the
other connecting all ©s in column Z; (see Figure 11.8). Now, draw edges

(uj, ¥i41), 1 <i <n. Introduce a box at the right end of each row C;,

1 <i<_r. Draw the edges (un; {1} and ([r],v1). Draw edges (il, [i+1),
1<i<r (see Figure 11.8).

Figure 11.8 Array structure for the formula in Theorem 11.5

To complete the graph, we replace each © and by a subgraph. Each
© is replaced by the subgraph of Figure 11.9(a) (of course, unique vertex

labelings are needed for each copy of the subgraph). Each box is replaced
by the subgraph of Figure 11.10. In this subgraph A; is an entrance node

and B; an exit node. The edges (ij [i+1) referred to earlier are really

(Bi, Aizi). Edge (un,[1) is (Un,A1) and ({r],v,) is (B,, v1). The variable
ji is the numberof literals in clause C;. In the subgraph of Figure 11.10
an edge of the type shown in Figure 11.11 indicates a connection to a ©
subgraph in row C;. Rj, is connected to the 1 vertex of the © and Rja+1

(or Ria if @ = 9;) is entered from the 3 vertex.

https://hemanthrajhemu.github.io

524 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Figure 11.9 The © subgraph andits insertion into column 2

Figure 11.10 The H; subgraph

Rig—=@)—= Rian

Figure 11.11 A construct in the proof of Theorem 11.5

https://hemanthrajhemu.github.io

11.3. NP-HARD GRAPH PROBLEMS 525

Figure 11.12 Another construct in the proof of Theorem11.5

Thus in the © subgraph (shownin Figure 11.12) of Figure 11.9(b) w; and
w3 are the 1 and 3 vertices respectively. The incoming edge is (Aj, w1) and
the outgoing edge is (w3, Ri,2). This completes the construction of G.

If F is satisfiable, then let S be an assignment of truth values for which
F is true. A Hamiltonian cycle for G can start at v, and go to uj, then to
vg, then to uz, then to v3, then to ugs,..., and then to u,. In going from

v; to u;, this cycle uses the column corresponding to <z; if x; is true in S.

Otherwise it goes up the column corresponding to Z;. From uy, this cycle
goes to A; and then through R11, R12, R13,...,R1j,, and By, to Ag to -:-

to vy. In going from Rj, to Rig+1 in any subgraph [i , a diversion is made
to a © subgraph in row 7if and only if the vertices of that © subgraph are
not already on the path from v; to Rig. Note that if C; has 7; literals, then

the construction of| allows a diversion to at most i; — 1 © subgraphs. This
is adequate as at least one © subgraph must already have been traversed
in row C; (because at least one such subgraph must correspond to a true
literal). So, if F is satisfiable, then G has a directed Hamiltonian cycle.

It remains to show that if G has a directed Hamiltonian cycle, then F’ is
satisfiable. This can be seen by starting at vertex v; on any Hamiltonian

cycle for G. Because of the construction of the © and subgraphs, such
a cycle must proceed by going up exactly one column of each pair (2;, Z;).
In addition, this part of the cycle must traverse at least one © subgraph in
each row. Hence the columnsused in going from 4% to w, 1 <i <n, define
a truth assignment for which F is true.

We conclude that F is satisfiable if and only if G has a Hamiltoniancycle.
The theorem now follows from the observation that G can be obtained from
F in polynomial time. O

11.3.5 Traveling Salesperson Decision Problem (TSP)

The traveling salesperson problem was introduced in Chapter 5. The cor-
responding decision problem is to determine whether a complete directed

https://hemanthrajhemu.github.io

526 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

® (A)

Gf A) &)
BOO Ff

() BOO®
(b)

Figure 11.13 Graphs representing problems

graph G = (V,E) with edge costs c(u,v) has a tour of cost at most M.

Theorem 11.6 Directed Hamiltonian cycle (DHC) « the traveling sales-
person decision problem (TSP).

Proof: From the directed graph G = (V, E) construct the complete directed

graph G! = (V,E’), BE! = {(i,j) | i # j} and c(i,j) = 1 if (i,j) € B:
c(t, 7) =2 if Aj and (i, 7) ¢ BE. Clearly, G’ has a tour of cost at most n iff
G has a directed Hamiltonian cycle. oO

11.3.6 AND/OR Graph Decision Problem (AOG)

Many complex problems can be broken down into a series of subproblems
such that the solution of all or some of these results in the solution of the
original problem. These subproblems can be broken downfurther into sub-
subproblems, and so on, until the only problems remaining are sufficiently
primitive as to be trivially solvable. This breaking down of a complex prob-
lem into several subproblems can be represented by a directed graphlike
structure in which nodes represent problems and descendents of nodes rep-
resent the subproblemsassociated with them.

Example 11.16 The graph of Figure 11.13(a) represents a problem A that
can be solved by solving either both the subproblems B and or thesingle
subproblem D or £. q

Groups of subproblems that must be solved in order to imply a solution
to the parent node are joined together by an arc going across the respective
edges (as the arc across the edges (A, B) and (A,C)). By introducing dummy

https://hemanthrajhemu.github.io

11.3. NP-HARD GRAPH PROBLEMS 527

nodesin Figure 11.13(b), all nodes can be madeto be such that their solution
requires either all descendents to be solved or only one descendent to be
solved. Nodes of the first type are called AND nodes and those of the latter
type OR nodes. Nodes A and A”of Figure 11.13(b) are OR nodes whereas
node A’ is an AND node. The AND nodes are drawn with an arc across
all edges leaving the node. Nodes with no descendents are called terminal.

Terminal nodes represent primitive problems and are markedeither solvable
or not solvable. Solvable terminal nodes are represented by rectangles. An
AND/ORgraph need not always bea tree.

Breaking down a problem into several subproblemsis known as problem
reduction. Problem reduction has been used on such problems as theorem
proving, symbolic integration, and analysis of industrial schedules. When
problem reduction is used, two different problems may generate a common
subproblem. In this case it may be desirable to have only one node rep-
resenting the subproblem (this would imply that the subproblemis to be
solved only once). Figure 11.14 shows two AND/OR graphs for cases in
which this is done.

Figure 11.14 Two AND/ORgraphs that are not trees

Note that the graph is no longer a tree. Furthermore, such graphs may
have directed cycles as in Figure 11.14(b). The presence of a directed cycle
does not in itself imply the unsolvability of the problem. In fact, problem A
of Figure 11.14(b) can be solved by solving the primitive problems G, H, and
I. This leads to the solution of D and E and hence of B and C. A solution
graph is a subgraph of solvable nodes that shows that the problem is solved.
Possible solution graphs for the graphs of Figure 11.14 are shown by heavy
edges.

Let us assume that there is a cost associated with each edge in the
AND/OR graph. The cost of a solution graph H of an AND/OR graph
G is the sum of the costs of the edges in H. The AND/OR graph decision

https://hemanthrajhemu.github.io

528 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

problem (AOG)is to determine whether G has a solution graph of cost at
most k, for & a given input.

Example 11.17 Consider the directed graph of Figure 11.15. The problem
to be solved is P|. To do this, one can solve node P2, P3, or P7, as P, is an
OR node. Thecost incurred is then either 2, 2, or 8 (i-e., cost in addition
to that of solving one of P),P3, or P7). To solve Po, both P, and Ps have
to be solved, as P) is an AND node. Thetotal cost to do this is 2. To solve
P3, we can solve either Ps or Ps. The minimum cost to do this is 1. Node

P; is free. In this example, then, the optimal way to solve P, is to solve Pe
first, then P;, and finally P,. The total cost for this solution is 3. Oo

——— => ANDnode

Figure 11.15 AND/ORgraph

Theorem 11.7 CNF-satisfiability o the AND/OR graphdecision problem.

Proof: Let P be a propositional formula in CNF. We show how to transform
a formula P in CNF into an AND/ORgraph such that the AND/OR graph
so obtained has a certain minimum cost solution if and only if P is satisfiable.
Let

k

P=\G, G=V4
i=l

where the 1;’s are literals. The variables of P, V(P) are 2), 2,.--,2n. The
AND/ORgraph will have nodes as follows:

1. There is a special node S with no incoming arcs. This node represents
the problem to be solved.

https://hemanthrajhemu.github.io

11.3. MP-HARD GRAPH PROBLEMS 529

2. The node S is an AND node with descendent nodes P, 21, £2,...,2n.

3. Each node x; represents the corresponding variable x; in the formula
P. Each x; is an OR node with two descendents denoted Tz; and Fx;

respectively. If Tx; is solved, then this will correspond to assigning a
truth value of true to the variable 7;. Solving node Fx; will correspond

to assigning a truth value of false to z;.

4. The node P represents the formula P and is an AND node. It has k
descendents Cy, C»,...,C,. Node C; corresponds to the clause Cj in
the formula P. The nodes C; are OR nodes.

5. Each node of type Tx; or Fa; has exactly one descendent node that
is terminal (i.e., has no edges leaving it). These terminal nodes are
denoted v1, v9,....Van-

To complete the construction of the AND/ORgraph, the following edges
and costs are added:

1. From each node C; an edge (C;,Tx;) is added if «; occurs in clause
C;. An edge (C;, Fz;) is added if £; occurs in clause C;. This is done
for all variables 7; appearing in the clause C;. Clause C; is designated
an OR node.

2. Edges from nodesoftype Tx; or F'x; to their respective terminal nodes
are assigned a weight, or cost of 1.

3. All other edges have a cost of 0.

In order to solve S, each of the nodes P, £1, 2%9,...,£,) must be solved.
Solving nodes 2), 22,--+,Zn costs n. To solve P, we must solveall the nodes
C1, C2,...,Cy. The cost of a node C; is at most 1. However, if one of its

descendent nodes was solved while solving the nodes 21, 22,...,%n, then the
additional cost to solve C; is 0, as the edges to its descendent nodes have cost
0 and oneof its descendents has already been solved. That is, a node C; can
be solved at no cost if one of the literals occurring in the clause C; has been
assigned a value of true. From this it follows that the entire graph (that is,
node S) can be solved at a cost n if there is some assignment of truth values
to the z;’s such that at least one literal in each clause is true under that

assignment, i.e., if the formula P is satisfiable. If P is not satisfiable, then
the cost is more than n.

We have now shown how to construct an AND/ORgraph from a formula
P such that the AND/ORgraph so constructed has a solution of cost n if and
only if P is satisfiable. Otherwise the cost is more than n. The construction
clearly takes only polynomial time. This completes the proof. Oo

https://hemanthrajhemu.github.io

530 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Example 11.18 Consider the formula

P= (2, V 22 V 23) A (£1 V £2 V 03) A(Z1 V 22); V(P) = 21, 22,23; n=3

Figure 11.16 shows the AND/ORgraph obtained by applying the construc-
tion of Theorem 11.7.

The nodes T'x,,7Tx2, and Tx3 can be solved at a total cost of 3. The
node P costs nothing extra. The node S can then be solved by solvingallits
descendent nodes and the nodes T'7,,Tx2, and Tx3. Thetotal cost for this
solution is 3 (which is n). Assigning the truth value of true to the variables
of P results in P’s being true. qo

EXERCISES

1. Let SATY be the problem of determining whether a propositional for-
mula in CNF having at most three literals per clause is satisfiable.
Show that CNF-satisfiability « SATY. Hint: Show how to write a
clause with more than three literals as the and of several clauses each
containing at most three literals. For this you have to introduce some
new variables. Any assignment that satisfies the original clause must
satisfy all the new clauses created.

2. Let SATS besimilar to SATY (Exercise 1) except that each clause has
exactly three literals. Show that SATY « SATS.

3. Let F be a propositional formula in CNF. Two literals « and y in
F are compatible if and only if they are not in the same clause and
xz A#y. Theliterals x and y are incompatible if and only if x and y are
not compatible. Let SATINC be the problem of determining whether
a formula F in which each literal is incompatible with at most three
otherliterals is satisfiable. Show that SAT3 « SATINC.

4. Let 3-NODE COVER be the node cover decision problem of Sec-
tion 11.3 restricted to graphs of degree 3. Show that SATINC «
3-NODE COVER(see Exercise 3).

5. [Feedback nodeset]

(a) Let G = (V,E) be a directed graph. Let S C V be a subset
of vertices such that the deletion of S and all edges incident to
vertices in S' results in a graph G’ with no directed cycles. Such an
S is a feedback node set. Thesize of S is the numberof vertices in
S. The feedback nodeset decision problem (FNS) is to determine
for a given input k whether G has a feedback nodeset ofsize at
most k. Show that the node cover decision problem « FNS.

https://hemanthrajhemu.github.io

11.3. MP-HARD GRAPH PROBLEMS d31

ANDnodesjoined by arc

All other nodes are OR

Figure 11.16 AND/ORgraph for Example 11.18

https://hemanthrajhemu.github.io

532

10.

11.

12.

13.

14,

CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

(b) Write a polynomial time nondeterministic algorithm for FNS.

[Feedback arc set] Let G = (V, E) bea directed graph. S C E isa feed
back arc set of G if and only if every directed cycle in G contains an
edge in S. The feedback arc set decision problem (FAS) is to determine
whether G has a feedback arc set of size at most k.

(a) Show that the node cover decision problem « FAS.

(b) Write a polynomial time nondeterministic algorithm for FAS.

. The feedback node set optimization problem is to find a minimum
feedback node set (see Exercise 5). Show that this problem reduces to
FNS.

. Show that the feedback arc set minimization problem reduces to FAS
(Exercise 6).

[Hamiltonian cycle] Let UHC bethe problem of determining whetherin
any given undirected graph G, there exists an undirected cycle going
through each vertex exactly once and returning to the start vertex.
Show that DHC « UHC (DHCis defined in Section 11.3).

Show UHC « CNF-satisfiability.

Show DHC « CNF-satisfiability.

[Hamiltonian path] An i to 7 Hamiltonian path in graph G is a path
from vertex i to vertex j that includes each vertex exactly once. Show
that UHC is reducible to the problem of determining whether G has
an ? to 7 Hamiltonian path.

[Minimum equivalent graph] A directed graph G = (V, £) is an equiva-
lent graph of the directed graph G’ = (V, E’) if and only if E C E’ and
the transitive closures of G and G’ are the same. G is a minimum equiv-
alent graph if and only if |E| is minimum amongall equivalent graphs
of G’. The minimum equivalent graph decision problem (MEG)is to
determine whether G’ has a minimum equivalent graph with |E| < k,
where k is some given input.

(a) Show that DHC « MEG.

(b) Write a nondeterministic polynomial time algorithm for MEG.

[Clique cover] The clique cover decision problem (CC) is to determine
whether G is the union of / or fewer cliques. Show that the chromatic
numberdecision problem « CC.

https://hemanthrajhemu.github.io

11.4. NP-HARD SCHEDULING PROBLEMS 533

15

16.

17.

18.

19.

20.

. [Set cover] Let F = {S;} be a finite family of sets. Let T C F bea
subset of F. T is a cover of F iff

U si= U Si
S3eT Si€F

The set cover decision problem is to determine whether F’ has a cover
T containing no more than k sets. Show that the node cover decision
problem is reducible to this problem.

[Exact cover] Let F = {5;} be as in Exercise 15. T C F is an exact
cover of F iff T is a cover of F and the sets in 7 are pairwise dis-
joint. Show that the chromatic number decision problem reduces to
the problem of determining whether F’ has an exact cover.

Show that SAT3 « EXACT COVER(see Exercise 16).

[Hitting set] Let F be as in Exercise 16. The hitting set problem is to
determine whether there exists a set H such that |H S| = 1 forall
S; € F. Show that exact cover « hitting set.

[Tautology] A propositional formula is a tautology if and only if it is
true for all possible truth assignments to its variables. The tautology
problem is to determine whether a DNF formula is a tautology.

(a) Show that CNF-satisfiability o DNF tautology.

(b) Write a polynomial time nondeterministic algorithm TAUT(F)
that terminates successfully if and only if F is not a tautology.

[Minimum boolean form] Let the length of a propositional formula be
equal to the sum of the numberofliterals in each clause. Two formulas
F and G on variables z1,...,2, are equivalent if for all assignments
to @1,...,2n, F is true if and only if G is true. Show that deciding
whether F has an equivalent formula of length no more than k is VP-
hard. (Hint: Show DNF tautology reduces to this problem.)

11.4 NP-HARD SCHEDULING PROBLEMS

To prove the results of this section, we need to use the NP-hard problem
called partition. This problem requires us to decide whether a given multi-
set A = {a1,a2,...,@n} of n positive integers has a partition P such that

ie
the

p4i = Yigp a. We can show this problem is WP-hard byfirst showing
sum of subsets problem (Chapter 7) to be WP-hard. Recall that in the

sum of subsets problem we have to determine whether A = {a),a@2,...,@n}
has a subset S that sums to a given integer M.

https://hemanthrajhemu.github.io

534 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Theorem 11.8 Exact cover « sum of subsets.

Proof: The exact cover problem is shown NP-hard in Section 11.3, Exercise
16. In this problem weare given a family of sets F = {S),So,...,S,} and
are required to determine whetherthere is a subset JT’ C F of disjoint sets
such that

U Si = U Si: = {u,u2,...,um}
S,€T SieF

From any given instance of this problem, construct the sum of subsets prob-
lem A = {@1,...,a%} with aj = Vicien eji(k+1)'!, where €;; = Lif u; € S;

and €;; = 0 otherwise, and M = Yocjen(k +1)! = ((K +1)" —1)/k. Clearly,
F has an exact cover if and only if A = {a,,...,a,} has a subset with sum
M. Since A and M can be constructed from F in polynomial time, exact
cover x sum of subsets. Oo

Theorem 11.9 Sum of subsets « partition.

Proof: Let A = {a1,...,@,} and M define an instance of the sum of subsets
problem. Construct the set B = {b1,b2...,bn42} with b: = aj, 1<i<n,
bn41 = M +1, and bny2 = (Ni<icn ai) + 1—M. Bhasa partition if and
only if A has a subset with sum M. Since B can be obtained from A and
M in polynomial time, sum of subsets « partition. gO

One can easily show partition « 0/1-knapsack and partition « job se-
quencing with deadlines. Hence, these problems are also NP-hard.

11.4.1 Scheduling Identical Processors

Let P;, 1 <i <m, be m identical processors (or machines). The P; could,
for example, be line printers in a computer output room, Let J;, 1 <i <n,
be n jobs. Job J; requires ¢; processing time. A schedule S is an assignment
of jobs to processors. For each job J;, S specifies the timeintervals and the
processor(s) on which this job is to be processed. A job cannot be processed
by more than one processor at any given time. Let f; be the time at which the
processing of job J; is completed. The mean finish time (MFT) of schedule
S is

MFT(S - > fi
" 1<<n

Let w; be a weight associated with each job J;. The weighted mean finish
time (WMFT)of schedule S' is

WMFT(S) = i S- wyfi

1<i<n

https://hemanthrajhemu.github.io

11.4. NP-HARD SCHEDULING PROBLEMS 535

Let T; be the time at which P; finishes processing all jobs (or job segments)
assigned to it. The finish time (FT) of S is

FT(S) = max {T;}
1<i<m

Schedule S' is a nonpreemptive schedule if and only if each job J; is processed
continuously from start to finish on the same processor. In a preemptive
schedule each job need not be processed continuously to completion on one
processor.

At this point it is worth noting the similarity between the optimal tape
storage problem of Section 4.6 and nonpreemptive schedules. Mean retrieval
time, weighted mean retrieval time, and maximumretrieval time respectively
correspond to mean finish time, weighted mean finish time, and finish time.
Minimumfinish time schedules can therefore be obtained using the algorithm
developed in Section 4.6. Obtaining minimum weighted meanfinish time and
minimumfinish time nonpreemptive schedules is W’P-hard.

Theorem 11.10 Partition x minimum finish time nonpreemptive schedule.

Proof: We prove this for m = 2. The extension to m > 2 is trivial. Let
aj, 1 <i <n, be an instance of the partition problem. Define n jobs

with processing requirements t; = a;, 1 <i<n. There is a nonpreemptive
schedule for this set of jobs on two processors with finish time at most 5> t;/2
iff there is a partition of the a,’s. Oo

Example 11.19 Consider the following input to the partition problem:
a, = 2,a2 = 5,a3 = 6,a4 = 7, and as = 10. The corresponding mini-
mum finish time nonpreemptive schedule problemhas the input t; = 2, t2 =
5,t3 = 6,t4 = 7, and t; = 10. There is a nonpreemptive schedule for this
set of jobs with finish time 15: P; takes the jobs tg and ts; Py takes the jobs
t1,¢3, and t4. This solution yields a solution for the partition problem also:

{a2, a5}, {a1, 43, a4}. O

Theorem 11.11 Partition « minimum WMFT nonpreemptive schedule.

Proof: Once again we prove this for m = 2 only. The extension to m > 2
is trivial. Let a;, 1 <i <n, define an instance of the partition problem.

Construct a two-processor scheduling problem with n jobs and w; = t; = aj,
1<i<n. Forthis set of jobs there is a nonpreemptive schedule S with
weighted mean flow time at most 1/2 > a? + 1/4(>¢ a;)? if and only if the
a;’s have a partition. To see this, let the weights and times of jobs on P; be

(w1,t1),..-, (Wz, te) and on Py be (wy, t1), ...,(w;, t,). Assumethis is the

https://hemanthrajhemu.github.io

536 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

order in which the jobs are processed on their respective processors. Then,
for this schedule S we have

ne WMFT(S) = wyty, + welt) + te) +--+ + Welt +--+ te)

+w1t1 + Welt) + to) +--+ +) (t1+--: t))

= byw? + how)? +40 wi - Dw)
Thus, n * WMFT(S) > (1/2) > w? +(1/4)(¥ wi)”. This value is obtainable
iff the w,’s (and so also the a,’s) have a partition. oO

Example 11.20 Consider again the partition problem a; = 2,a2 = 5, a3 =
6,a4 = 7, and as = 10. Here, 5 Da? = $(2? + 5° + 6? + 7? + 10°) = 107,
¥ a; = 30, and ¢(d> a;)? = 225. Thus, 1/2 5 a? + 1/4(S5 a)? = 107 + 225 =
332. The corresponding minimum WMFT nonpreemptive schedule problem
has the input w; = t; = a; for 1 <i < 5. If we assign the jobs tg and ts to
P, and the remaining jobs to Py,

n* WFMT(S) = 5*5+10(5 + 10) +2*2+46(24+6)+7(2+6+7) = 332

The samealso yields a solution to the partition problem. q

11.4.2. Flow Shop Scheduling

Weshall use the flow shop terminology developed in Section 5.10. When
m = 2, minimum finish time schedules can be obtained in O(nlogn) time
if n jobs are to be scheduled. When m = 3, obtaining minimum finish
time schedules (whether preemptive or nonpreemptive) is MP-hard. For
the case of nonpreemptive schedules this is easy to see (Exercise 2). We
prove the result for preemptive schedules. The proof we give is also valid
for the nonpreemptive case. However, a much simpler proof exists for the
nonpreemptive case.

Theorem 11.12 Partition « the minimum finish time preemptive flow shop
schedule (m > 2).

Proof: We use only three processors. Let A = {a1,a@9,...,@n} define an
instance of the partition problem. Construct the following preemptive flow
shop instance FS, with n+ 2 jobs, m = 3 machines, and at most 2 nonzero
tasks per job:

tia = ai} to; = 0; t3; =a; 1l<i<n

tintt =T/2; teonti =T; t3anz1 =0

tint2=0; tango =T; tanto =T/2

https://hemanthrajhemu.github.io

11.4. NP-HARD SCHEDULING PROBLEMS 537

Tm

where JT = S- Q;

1

We now show that the preceding flow shop instance has a preemptive sched-
ule with finish time at most 27 if and only if A has a partition.

1. If A has a partition u, then there is a nonpreemptive schedule with
finish time 27. One such schedule is shown in Figure 11.17.

2. If A has no partition, then all preemptive schedules for FS must have
a finish time greater than 2T. This can be shown by contradiction.
Assume that there is preemptive schedule for FS with finish time at
most 2T. We make the following observations regarding this schedule:

(a) Task ¢1,n41 must finish by time T as to,,4; = T and cannotstart

until t),.41 finishes.

(b) Task t3,42 cannot start before T’ units of time have elapsed as

tont2 =T.

Observation (a) implies that only T/2 of the first T time units are free on
processor one. Let V be theset of indices of tasks completed on processor 1
by time T (excluding task t)+41). Then,

So tii < T/2

1EeV

as A has no partition. Hence

) t3; > 7/2

igv
1<i<n

The processing of jobs not included in V cannot commence on processor 3
until after time TJ since their processor 1 processing is not completed until
after T. This together with observation (b) implies that the total amount of
processing left for processor 3 at time T is

t3n+2 + 34 >T
igv

1<i<n

The schedule length must therefore be more than 2T. Oo

https://hemanthrajhemu.github.io

538 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

{tilieu} | tint {t,li¢u} |

bon+2 lonel

| | {tz lieu} 3n42 {t3,, lieu} |

0 T/2 T 3T/2 2T

Figure 11.17 A possible schedule

11.4.3. Job Shop Scheduling

A job shop,like a flow shop, has m different processors. The n jobs to be
scheduled require the completion of several tasks. The time of the jth task
for job J; is ty;,;. Task j is to be performed on processor P,. The tasks
for any job J; are to be carried out in the order 1,2,3,..., and so on. Task
j cannot begin until task 7 — 1 (if 7 > 1) has been completed. Note that
it is quite possible for a job to have many tasks that are to be performed
on the same processor. In a nonpreemptive schedule, a task once begun
is processed without interruption until it is completed. The definitions of
FT(S) and MFT(S) extend to this problem in a natural way. Obtaining
either a minimum finish time preemptive schedule or a minimum finish time
nonpreemptive schedule is W’P-hard even when m = 2. The proof for the
nonpreemptive case is very simple (use partition). We present the proof for
the preemptive case. This proof will also be valid for the nonpreemptive
case but will not be the simplest proof for this case.

Theorem 11.13 Partition « minimum finish time preemptive job shop
schedule (m > 1).

Proof: We use only two processors. Let A = {a1,@2,...,@,} define an
instance of the partition problem. Construct the following job shop instance
JS, with n+ 1 jobs and m = 2 processors.

Jobs 1,...,n: tris =toi2=a; forl<i<n

Jobn+1: tomtil = tijnti,2 = tenti3 = tintia = 7/2

where J’ = Sai

1

Weshow that the job shop problem has a preemptive schedule with finish
time at most 2T if and only if S has a partition.

https://hemanthrajhemu.github.io

11.4. NP-HARD SCHEDULING PROBLEMS 539

1. If A has a partition, u then there is a schedule with finish time 2T (see
Figure 11.18).

. If A hasno partition, then all schedules for JS must have a finish time
greater than 2T. To see this, assume that there is a schedule 5 for JS
withfinish time at most 27’. Then, job n +1 must be scheduled as in
Figure 11.18. Also, there can be no idle time on either P; or P. Let
R be the set of jobs scheduled on P, in the interval [0,7/2]. Let R’
be the subset of R representing jobs whose first task is completed on
P, in this interval. Since the a;’s have no partition, jertij,1 < T/2.

Consequently, d/;eRtoy< T/2. Since only the second tasks of jobs

in #’ can be scheduled on P» in the interval [T/2,T], it follows that
there is some idle time on P> in this interval. Hence, S must have

finish time greater than 27. Oo

{tii lieu} fintt,2 {tia li¢u} fined

tonsil {toi,2 lieu} tonel,3 {toiolieu}

0 TP T 3T/2 2T

Figure 11.18 Another schedule

EXERCISES

1. [Job sequencing] Show that the job sequencing with deadlines problem
(Section 8.1.4) is MP-hard.

Show that partition « the minimum finish time nonpreemptive three-
processor flow shop schedule. Use only one job that has three nonzero
tasks. All other jobs have only one nonzero task.

. Show that partition « the minimum finish time nonpreemptive two-
processor job shop schedule. Use only one job that has three nonzero
tasks. All other jobs have only one nonzero task.

. Let J,,...,J, ben jobs. Job i has a processing time ¢; and a deadline
d;. Job i is not available for processing until time r;. Show that
deciding whetherall n jobs can be processed on one machine without
violating any deadline is WP-hard. (Hint: Use partition.)

https://hemanthrajhemu.github.io

540 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

5. Let Ji, 1 < i <n, be n jobs as in Exercise 4. Assume r; = 0, 1 <
i <n. Let f; be the finish time of J; in a one-processor schedule
S. The tardiness T; of J; is max {0,f; — di}. Let wi, 1 <i<n,
be nonnegative weights associated with the J,;’s. The total weighted
tardiness is }> w;T;. Show that finding a schedule minimizing > w;,T;
is NP-hard. (Hint: Use partition).

6. Let Ji, 1 <i <n, be n jobs. Job J; has a processing time of ¢;. Its

processing cannot begin until time r;. Let w; be a weight associated
with J;. Let f; be the finish time of J; in a one-processor schedule S.
Show that finding a one-processor schedule that minimizes }° w;f; is
NP-hard.

7. Show that the problem of obtaining optimal finish time preemptive
schedules for a two-processor flow shop is NP-hard when jobs are
released at two different times R, and Ry. Jobs released at R; cannot
be scheduled before R;.

11.5 NP-HARD CODE GENERATION
PROBLEMS

The function of a compiler is to translate programs written in some source
language into an equivalent assembly language or machine language program.
Thus, the C++ compiler on the Sparc 10 translates C++ programs into the
machine language of this machine. We look at the problem of translating
arithmetic expressions in a language such as C++ into assembly language
code. The translation clearly depends on the particular assembly language
(and hence machine) being used. To begin, we assumea very simple machine
model. We call this model machine A. This machine has only oneregister
called the accumulator. All arithmetic has to be performed in this register. If
© represents a binary operator such as +,—,*, and /, then the left operand
of © must be in the accumulator. For simplicity, we restrict ourselves to
these four operators. The discussion easily generalizes to other operators.
The relevant assembly language instructions are:

LOAD X load accumulator with contents of memory location X.

STORE X store contents of accumulator into memory location X.

OP X OP may be ADD, SUB, MPY,or DIV.

The instruction OP X computes the operator OP using the contents of
the accumulator as the left operand and that of memory location X as the
right operand. As an example, consider the arithmetic expression (a+)/(e+
d). Two possible assembly language versions of this expression are given in
Figure 11.19. T1 and T2 are temporary storage areas in memory. In both

https://hemanthrajhemu.github.io

11.5. NP-HARD CODE GENERATION PROBLEMS 541

cases the result is left in the accumulator. Code (a) is two instructions longer
than code (b). If each instruction takes the same amount of time, then code
(b) will take 25% less time than code (a). For the expressions (a + 6) /(c+ d)
and the given machineA,it is easy to see that code (b) is optimal.

LOAD a LOAD c
ADD b ADD d
STORE T1 STORE T1
LOAD c LOAD a
ADD d ADD b
STORE T2 DIV T1
LOAD Til
DIV T2

(a) (b)

Figure 11.19 Two possible codes for (a + 6)/(c + d)

Definition 11.7 A translation of an expression EF’ into the machineor as-
sembly languageof a given machineis optimalif and onlyif it has a minimum
numberof instructions. O

Definition 11.8 A binary operator © is commutative in the domain D iff
a®b=6©a for all a and 6 in D. Oo

Machine A can be generalized to another machine B. Machine B has
N > 1 registers in which arithmetic can be performed. There are four types
of machine instructions for B:

1 LOAD M,R
2, STORE M,R
3. OP Rl, M, R2
4. OP R1, R2, R3

These four instruction types perform the following functions:

1. LOAD M,R places the contents of memory location M into register
RA<R<N.

2. STORE M,R stores the contents of register R,1 << R < N, into mem-
ory location M.

https://hemanthrajhemu.github.io

542 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

3. OP R1, M, R2 computes contents(R1) OP contents(M) and places
the result in register R2. OP is any binary operator (for example, +,
—,*, or /); Rl and R2 are registers; Rl may equal R2; M is a memory
location.

4. OP R1, R2, R3 is similar to instruction type (3). Here R1, R2, and R3
are registers. Some orall of these registers may be the same.

In comparing the two machine models A and B, we note that when N =
1, instructions of types (1), (2) and (3) for model B are the same as the
corresponding instructions for model A. Instructions of type (4) only allow
trivial operations like a+a,a—a,a*a, and a/a to be performed without an
additional memory access. This does not change the numberof instructions
in the optimal codes for A and B when N = 1. Hence, modelA is in a sense
identical to model B when N = 1. For model B, we see that the optimal
code for a given expression FE may be different for different values of N.
Figure 11.20 shows the optimal code for the expression (a + 6)/({c * d). Two
cases are considered, N = 1 and N = 2. Note that when N = 1, onestore
has to be made whereas when NV = 2, no stores are needed. Theregisters are
labeled Rl and R2. Register T1 is a temporary storage location in memory.

LOAD ¢,Rl LOAD c,Rl
MPY Ri, d,R1 MPY Ri,d,R1
STORE R1,T1 LOAD a, R2
LOAD a,R1 ADD R2,6, R2
ADD 1,6, Rl DIV _—-R2,R1, Rl
DIV R1,T1, Rl

(a) N=1 (b) N =2

Figure 11.20 Optimal codes for N = 1 and N = 2

Given an expression EF, the first question we ask is: can EF be evaluated
without any STOREs? A closely related question is: what is the minimum
numberofregisters needed to evaluate EF without any stores? We show that
this problem is NVP-hard.

11.5.1 Code Generation with Common Subexpressions

Whenarithmetic expressions have common subexpressions, they can be rep-
resented by a directed acyclic graph (dag). Every internal node (node with

https://hemanthrajhemu.github.io

11.5. MP-HARD CODE GENERATION PROBLEMS 543

nonzero out-degree) in the dag represents an operator. Assuming the expres-
sion contains only binary operators, each internal node P has out-degree two.
The two nodes adjacent from P are called the left and right children of P
respectively. The children of P are the roots of the dags for the left and
right operands of P. Node P is the parent of its children. Figure 11.21
shows some expressions and their dag representations.

Definition 11.9 A leaf is a node with out-degree zero. A level-one nodeis
a node both of whose children are leaves. A shared node is a node with more
than one parent. A leaf dag is a dag in which all shared nodes are leaves. A
level-one dag is a dag in which all shared nodesare level-one nodes. Oo

@ D
. .

b&b & er @)
@ a

@) (by
at+(b +a*c) (a +b)*(a+b+c) (a +b)*cK(a +b)*c—-d)

*

Figure 11.21 Expressions and their dags

Example 11.21 The dag of Figure 11.21(a) is a leaf dag. Figure 11.21(b)
is a level-one dag. Figure 11.21(c) is neither a leaf dag nor a level-one dag.

O

A leaf dag results from an arithmetic expression in which the only com-
mon subexpressions are simple variables or constants. A level-one dag results
from an expression in which the only common subexpressionsare of the form
a © b, where a and b are simple variables or constants and ©) is an operator.

The problem of generating optimal code for level-one dags is NP-hard
even when the machine for which code is being generated has only one reg-
ister. Determining the minimum numberofregisters needed to evaluate a
dag with no STOREsis also NP-hard.

https://hemanthrajhemu.github.io

544 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Example 11.22 The optimal codes for the dag of Figure 11.21(b) for one-
and two-register machines is given in Figure 11.22.

The minimum numberofregisters needed to evaluate this dag without

any STOREsis two. gO

LOAD a,R1 LOAD a,RI1
ADD R1,b,R1 ADD R1,b,R1
STORE T1,R1 ADD Rl,c,R2
ADD Rl,c,R1 MUL R1,R2,R1
STORE T2,R1
LOAD T1R1
MUL R1,T2, RI

(a) (b)

Figure 11.22 Optimal codes for one- and two-register machines

To prove the above statements, we use the feedback nodeset (FNS) prob-
lem that is shown to be NP-hardin Exercise 5 (Section 11.3).

FNS: Given a directed graph G = (V,£) and an integer k, determine
whether there exists a subset V’ of vertices V' C V and |V"| < k such that
the graph H = (V — V’, E — {(u,v)|u € V’ or v € V’}) obtained from G by
deleting all vertices in V’ and all edges incident to a vertex in V’ contains
no directed cycles.

We explicitly prove only that generating optimal code is NP-hard. Us-
ing the construction of this proof, we can also show that determining the
minimum numberof registers needed to evaluate a dag with no STOREsis
NP-hard as well. The proof assumes that expressions can contain commuta-
tive operators and that shared nodes may be computed only once. Itis easily
extended to allow recomputation of shared nodes. Using an idea due to R.
Sethi, the proofis easily extended to the case in which only noncommutative
operations are allowed (see Exercise 1).

Theorem 11.14 FNS « the optimal code generation for level-one dags on
a one-register machine.

Proof: Let G,k be an instance of FNS. Let n be the numberof vertices in
G. We construct a dag A with the property that the optimal code for the
expression corresponding to A has at most n +k LOADsif and only if G
has a feedback node set of size at most R.

https://hemanthrajhemu.github.io

11.5. NP-HARD CODE GENERATION PROBLEMS 545

The dag A consists of three kinds of nodes: leaf nodes, chain nodes, and
tree nodes. All chain and tree nodesare internal nodes representing commu-
tative operators (for example, +). Leaf nodes represent distinct variables.
Weuse d,, to denote the out-degree of vertex v of G. Corresponding to each
vertex v of G, there is a directed chain of chain nodes vj, v2,...,Vg,+1 Mm
A. Node vg,+41 is the head node of the chain for v and is the parent of two
leaf nodes vz, and vr (see Example 11.23 and Figure 11.23). Vertex v1 is
the tail of the chain. From each of the chain nodes corresponding to vertex
v, except the head node, there is one directed edge to the head node of one
of the chains corresponding to a vertex w such that (v,w) is an edge in G.
Each such edge goes to a distinct head. Note that as a result of the addition
of these edges, each chain node now has out-degree two. Since each chain
node represents a commutative operator, it does not matter which of its two
children is regarded as the left child.

At this point we have a dag in which thetail of every chain has in-degree
zero. We now introduce tree nodes to combineall the tails so that weare left
with only one node(the root) with in-degree zero. Since G has n vertices,
we need n — 1 tree nodes (note that every binary tree with n — 1 internal
nodes has n external nodes). These n — 1 nodes are connected together to
form a binary tree (any binary tree with n — 1 nodes will do). In place of
the external nodes we connect, the tails of the n chains (see Figure 11.23(b)).
This yields a dag A corresponding to an arithmetic expression.

It is easy to see that every optimal code for A will have exactly n LOADs
of leaf nodes. Also, there will be exactly one instruction of type © for every
chain node and tree node (we assume that a shared nodeis computed only
once). Hence, the only variable is the number of LOADs and STOREsof
chain and tree nodes. If G has no directed cycles, then its vertices can
be arranged in topological order (vertex u precedes vertex v in a topological
ordering only if there is no directed path from u to v in G). Let v1, v2,...,Un
be a topological ordering of the vertices in G. The expression A can be
computed using no LOADsof chain and tree nodes by first computingall
nodes on the chain for v,, and storing the result of the tail node. Next, all
nodes on the chain for v,_; can be computed. In addition, we can compute
any nodes on the path from the tail for vp, to the root for which both
operands are available. Finally, one result needs to be stored. Next, the
chain for vp_2 can be computed. Again, we can compute all nodes on the
path from this chain tail to the root for which both operandsare available.
Continuing in this way, the entire expression can be computed.

If G contains at least one cycle v1, v2,...,0;,U1, then every code for A
must contain at least one LOAD of a chain node on a chain for one of
V1, V2,---,U;- Further, if none of these vertices is on any other cycle, then
all their chain nodes can be computed using only one load of a chain node.
This argumentis readily generalized to show that if the size of a minimum
feedback node set is p, then every optimal code for A contains exactly n+p

https://hemanthrajhemu.github.io

546 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

LOADs. The » LOADs correspond to a combination of tail nodes corre-
sponding to a minimum feedback node set and the siblings of these tail
nodes. If we had used noncommutative operators for chain nodes and made
each successor on a chain the left child of its parent, then the p LOADs
would correspond to the tails of the chains of any minimum feedbackset.
Furthermore, if the optimal code contains p LOADsof chain nodes, then G
has a feedback nodeset of size p. Oo

Example 11.23 Figure 11.23(b) shows the dag A corresponding to the
graph G of Figure 11.23(a). The set {r,s} is a minimum feedback node
set for G. The operator in each chain and tree node can be assumed to be
+. Each code for A has a load corresponding to one of (pz, pr), (¢z,9R);---
and (uzy,uRr). The expression A can be computed using only two additional
LOADs by computing nodesin the order 74, 82, G2, 91, P2, Pil, C, U3, U2, U1,
to, t1, e, $1, 73, T2, 71, d, b, and a. Note that a LOADis needed to compute
s, and also to computer3. oO

11.5.2 Implementing Parallel Assignment Instructions

A parallel assignment instruction has the format (v1,v2,..-,;Un) <= (€1,€23,
...,@€n) where the v;’s are distinct variable names andthe e;’s are expressions.
The semantics of this statement is that the value of v; is updated to be the
value of the expression e;, 1 < i <n. The value of the expression e; is to be

computed using the values the variables in e; have before this instruction is
executed.

Example 11.24 1. (A,B) := (B,C); is equivalent to A:= B; B:= C;.

2. (A, B) := (B, A); is equivalent to T:= A; A:= B; B:=T;.

3. (A,B) := (A+ B,A — B); is equivalent to T1 := A; T2 := B; A:=
T14+T2; B:= T1-—T2; and also toT1:= A;A:= A+B; B:=T1-B;.

O

As the above example indicates, it may be necessary to store some of
the v;’s in temporary locations when executing a parallel assignment. These
stores are needed only when someof the v;’s appear in the expressionse;,
1<j<n. A variable v; is referenced by expression e; if and only if v;
appears in ej. It should be clear that only referenced variables need to be
copied into temporary locations. Further, parts (2) and (3) of Example 11.24
show that not all referenced variables need to copied.

An implementation of a parallel assignment statement is a sequence of
instructions of types Tj = v; and v; = ej, where e, is obtained from e; by
replacing all occurrences of a v; that have already been updated with ref-
erences to the temporary locations in which the old values of v; has been

https://hemanthrajhemu.github.io

11.5. NP-HARD CODE GENERATION PROBLEMS d47

a) Graph G

A

a)

b)

c @))) e

ON

r2 4) uy (+)

Pid 4) r3 (4) On ty t+ Uy (+

P2

eb) Ha2 rah) 524) ta) us)

O OO] O OO OO OO fO O OC OO ©
PL PR QL qR ry rR SL SR ty, tR uz UR

b) Corresponding dag A

Figure 11.23 A graph andits corresponding dag

https://hemanthrajhemu.github.io

548 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

saved. Let R = (7(1),...,7(n)) be a permutation of (1,2,...,n). Then R
is a realization of an assignment statement. It specifies the order in which
statements of type v; = e, appear in an implementation ofa parallel assign-
ment statement. The order is v,(1) = e751) Ur(2) = e,(2) and so on. The

implementation also has statements of type T; = v; interspersed. Without
loss of generality we can assume that the statement T; = v; (if it appears
in the implementation) immediately precedes the statement v; = e/. Hence,
a realization completely characterizes an implementation. The minimum
number of instructions of type T; = v; for any givenrealization is easy to
determine. This numberis the cost of the realization. The cost C(R) of a re-
alization R is the numberof v; that are referenced by an e; that corresponds
to an instruction v; = ey that appears after the instruction v; = é;,.

Example 11.25 Consider the statement (A,B,C) := (D,A+ B,A— B);.

The 3! = 6 different realizations and their costs are given in Figure 11.24.
Therealization 3, 2, 1 corresponding to the implementation C = A—B; B=
A+ B;A = D; needs no temporary stores (C(R) = 0). Oo

R C(R)
1, 2,3 2
1, 3, 2 2
2,13 2
2, 3, 1 1
31,2 1
3, 2,1 0

Figure 11.24 Realization for Example 11.25

An optimal realization for a parallel assignment statement is one with
minimum cost. When the expressions e; are all variable names or constants,
an optimalrealization can be found in linear time (O(n)). When the e; are
allowed to be expressions with operators then finding an optimalrealization
is VNP-Hard. We prove this statement using the feedback node set problem.

Theorem 11.15 FNS « the minimum-costrealization.

Proof: Let G = (V,E) be any n-vertex directed graph. Construct the
parallel assignment statement P : (v1, v9,.--,Un) := (€1,€2,---,€n), where
the v;’s correspond to the n vertices in V and e; is the expression v;, + vj, +
--++;,. The set {0j,, ¥i.,---,0%;} is the set of vertices adjacent from v;

https://hemanthrajhemu.github.io

11.5. NP-HARD CODE GENERATION PROBLEMS 549

(that is, (vj,vi;) € E(G), 1 <1 < j). This construction requires at most

O(n?) time.

Let U be any feedback node set for G. Let G’ = (V’, E') = (V—-U,E
— {(x,y)|2 € U or y € U}) bethe graph obtained by deleting vertex set U
andall edges incident to vertices in U. Fromthe definition of a feedback node
set, it follows that G' is acyclic. So, the vertices in V — U can be arranged
in a sequence $1, S2,.-., Sm, where m = |V — U| and E’ contains no edge
(s;,8;) for any 7 and 7, 1 <i <7 < m. Hence, an implementation of P in
whichvariables corresponding to vertices in U are first stored in temporary
locations followed by the instructions v; = e/ corresponding to y, € U,
followed by the corresponding instructions for s1, 89,...,8m (in that order),
will be a correct implementation. (Note that e} is e; with all occurrences of
vu; € U replaced by the corresponding temporary location.) The realization
R corresponding to this implementation has C(R) = {U|. Hence, if G has
a feedback node set of size at most k, then P has an optimalrealization of
cost at most k.

Suppose P has a realization R of cost k. Let U be the set of k variables
that have to be stored in temporary locations and let R = (q1,q2,---;@n)-
From the definition of C(R) it follows that no eg, references a vg, with j < i
unless vz; € U. Hence, the deletion of vertices in U from G leaves G acyclic.
Thus, U defines a feedback nodeset of size k for G.

G has a feedback nodeset of size at most & if and only if P has a realization
of cost at most k. Thus we can solve the feedback node set problem in
polynomial time if we have a polynomial time algorithm that determines a
minimum-cost realization. Oo

EXERCISES

1. (a) How should the proof of Theorem 11.14 be modified to permit
recomputation of shared nodes?

(b) [R. Sethi] Modify the proof of Theorem 11.14 so that it holds
for level-one dags representing expressions in which all operators
are noncommutative. (Hint: Designate the successor vertex on
a chain to betheleft child of its predecessor vertex and use the
n+1 node binary tree of Figure 11.25 to connect together the tail
nodes of the n chains.)

(c) Show that optimal code generation is NP-hard for leaf dags on
an infinite register machine. (Hint: Use FNS.)

https://hemanthrajhemu.github.io

590 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

n-+1 nodes

 connections to

tail nodes

leaf node

Figure 11.25 Figure for Exercise 1

11.6 SOME SIMPLIFIED
NP-HARD PROBLEMS

Once we have shown a problem L to be NP-hard, we would be inclined
to dismiss the possibility that L can be solved in deterministic polynomial
time. At this point, however, we can naturally ask the question: Can a
suitably restricted version (i.e., some subclass) of an NP-hard problem be
solved in deterministic polynomial time? It should be easy to see that by
placing enough restrictions on any NP-hard problem (or by defining a suf-
ficiently small subclass), we can arrive at a polynomially solvable problem.
As examples, consider the following:

1. CNF-satisfiability with at most three literals per clause is NP-hard.
If each clause is restricted to have at most two literals, then CNF-
satisfiability is polynomially solvable.

2. Generating optimal code for a parallel assignment statement is N’P-
hard. However, if the expressions e; are restricted to be simple vari-
ables, then optimal code can be generated in polynomial time.

3. Generating optimal code for level-one dags is NP-hard, but optimal
code for trees can be generated in polynomial time.

https://hemanthrajhemu.github.io

11.6. SOME SIMPLIFIED NP-HARD PROBLEMS dol

4, Determining whether a planar graphis three colorable is WP-hard. To
determine whetherit is two colorable, we only have to see whetherit
is bipartite.

Sinceit is very unlikely that A’“P-hard problems are polynomially solvable,
it is important to determine the weakest restrictions under which we can
solve a problem in polynomial time.

To narrow the gap between subclasses for which polynomial time algo-
rithms are known and those for which such algorithms are not known, it
is desirable to obtain as strong a set of restrictions under which a problem
remains NP-hard or NP-complete.

Westate without proof the severest restrictions under which certain prob-
lems are known to be NP-hard or NP-complete. We state these simplified
or restricted problems as decision problems. For each problem we specify
only the input and the decision to be made.

Theorem 11.16 Thefollowing decision problems are NP-complete.

1. Node cover
Input: An undirected graph G with node degree at most 3 and an
integer k.
Decision: Does G have a node cover ofsize at most k?

2. Planar Node Cover
Input: A planar undirected graph G with node degree at most 6 and
an integer k.
Decision: Does G have a node coverof size at most k?

3. Colorability
Input: A planar undirected graph G with node degree at most four.
Decision: Is G three colorable?

4. Undirected Hamiltonian Cycle
Input: An undirected graph G with node degree at most three.
Decision: Does G have a Hamiltonian cycle?

5. Planar Undirected Hamiltonian Cycle
Input: A planar undirected graph.
Decision: Does G have a Hamiltonian cycle?

6. Planar Directed Hamiltonian Path
Input: A planar directed graph G with in-degree at most 3 and out-
degree at most 4.
Decision: Does G have a directed Hamiltonian path?

https://hemanthrajhemu.github.io

502

7.

10.

11.

12.

13.

CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Unary Input Partition
Input: Positive integers a;, 1<i<m, n, and B such that

B B
S> aj =nB, qZ<Uis<g lsism, m=3n

l<i<m

Input is in unary notation.
Decision: Is there a partition {A1,..., An} of the @;’s such that each
A; contains three elements and

Yo a=B, 1l<i<n
ac A;

Unary Flow Show
Input: Task times in unary notation and an integer T.
Decision: Is there a two-processor nonpreemptive schedule with mean
finish time at most T?

. Simple Max Cut
Input: A graph G = (V, £) and an integer k.
Decision: Does V have a subset V; such that there are at least k
edges (u,v) € E with u € Vj and v ¢ Vi?

SAT2

Input: A propositional formula F in CNF. Each clause in F' has at
most two literals. An integer k.
Decision: Can at least k clauses of F' be satisfied?

Minimum Edge Deletion Bipartite Subgraph
Input: An undirected graph G andaninteger k.
Decision: Can G be made bipartite by the deletion of at most k
edges?

Minimum NodeDeletion Bipartite Subgraph
Input: An undirected graph G andan integer k.
Decision: Can G be made bipartite by the deletion of at most k
vertices

Minimum Cut into Equal-Sized Subsets
Input: An undirected graph G = (V, E), two distinguished vertices s
and t, and a positive integer W.
Decision: Is there a partition V = Vi; UVo, inves = 4, |Vil =
|Vo|, s EV, t € Va, and |{(u,v)|u € Vi,v € Vo and (u,v) € E}| < W?

https://hemanthrajhemu.github.io

11.7. REFERENCES AND READINGS 593

14. Simple Optimal Linear Arrangement
Input: An undirected graph G = (V, £) and an integer k. |V| =n.
Decision: Is there a one-to-one function f : V > {1,2,...,n} such
that

d~ Ifu) — fe) sk
(u,v)EE

11.7 REFERENCES AND READINGS

A comprehensive treatment of MP-hard and NP-complete problems can
be found in Computers and intractability: A Guide to the Theory of NP-
Completeness, by M. Garey and D. Johnson, W. H. Freeman, 1979.

Our proof satisfiability « directed Hamiltonian cycle is due to P. Her-
mann. The proof satisfiability « AND/OR Graphs and the proof used in
the text for Theorern 11.11 were given by $. Sahni. Theorem 11.11 is due to
J. Bruno, E. G. Coffman, Jr., and R. Sethi.

Theorems 11.12 and 11.13 are due to T. Gonzalez and S. Sahni. The
proof of Theorem 11.13 is due to D. Nassimi. The proof of Theorem 11.14
is due to A. Aho, S. Johnson, and J. Ullman.

The fact that the code generation problem for one-register machines is
NP-hard wasfirst proved by J. Bruno and R.Sethi. Theresult in their paper
is stronger than Theorem 11.14 as it applies even to expressions containing

no commutative operators. Theorem 11.15 is due to R. Sethi.

The results stated in Section 11.6 were presented by D. Johnson and L.
Stockmeycr.

For additional material on complexity theory see Complexity Theory, by
C. H. Papadimitriou, Addison-Wesley, 1994.

11.8 ADDITIONAL EXERCISES

1. [Circuit realization] Let C’ be a circuit made up of and, or, and not
gates. Let z,,...,2, be the inputs and f the output. Show that decid-
ing whether f(21, ...,2n) = F(a1,...,2n), where F is a propositional
formula, is NP-hard.

2. Show that determining whether C’ is a minimum circuit (ie., has a
minimum number of gates, see Exercise 1) realizing a formula F' is
NP-hard.

https://hemanthrajhemu.github.io

504 CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

[0/1 knapsack] Show that Partition « the 0/1 knapsack decision prob-
lem.

[Quadratic programming] Show that finding the maximum of a func-
tion f(z1,...,2n) subject to the linear constraints D7 ijeqj<n Gigli S
b,1 <i<n,and 2; >0, 1<i< nis NP-hard. The function f is
restricted to be of the form 7 cr? +X d;2j.

. Let G = (V, E) bea graph. Let w(i,7) be a weighting function for the
edges of G. A cut of G is a subset S C V. The weight of a cut is

> wii, 3)
ES,JES

A maz-cut is a cut of maximum weight. Show that the problem of
determining the weight of a max-cut is NMP-hard.

[Plant location] Let 5;, 1 <i <n, be n possible sites at which plants
can be located. At each site at most one plant can be located. If a
plant is located at site S;, then a fixed cost Fj is incurred. This is the
cost of setting up the plant. A plant Jocated at S; has a maximum
production capacity of C;. There are n destinations D;,1 <i < m, to
which products have to be shipped. The demandat D, is d;,1 <i<m.
The per-unit cost of shipping a product from site i to destination 7 is
cj. A destination can be supplied from many plants. Define y; = 0
if no plant is located at site i and y; = 1 otherwise. Let x;; be the
numberof units of the product shipped from 5; to D;. Then, the total
cost is

So Fig t+ SoS city, Sori = dj, and So ry < Ciyi
i ij i d

All z;; are nonnegative integers. We assume that 5° Ci; > 30 dj. Show
that finding y; and z;; so that the total cost is minimized is WP-hard.

[Concentrator location] This problem is very similar to the plant loca-
tion problem (Exercise 6). The only difference is that each destination
may be supplied by only one plant. When this restriction is imposed,
the plant location problem becomes the concentrator location problem
arising in computer network design. The destinations represent com-
puter terminals. The plants represent the concentration of information
from the terminals which they supply. Show that the concentrator lo-
cation problem is MP-hard under each of the following conditions:

(a) n=2,C, = Co, and F, = Fy. (Hint: Use Partition.)

(b) Fi/C; = Fyai/Ciz1,1 < i <n, and d; = 1. (Hint: Use exact
cover.)

https://hemanthrajhemu.github.io

11.8. ADDITIONAL EXERCISES 505

10.

11.

12.

13.

14.

15.

[Steiner trees] Let T be a tree and R a subset of the vertices in T, Let
w(i,7) be the weight of edge (i,7) in T. If (i,7) is not an edge in T,
then w(i,7) = oo. A Steiner tree is a subtree of T that includes the
vertex set R. It may include other vertices too. Its cost is the sum
of the weights of the edges in it. Show that finding a minimum-cost
Steiner tree is M’P-hard.

Assume that P is a parallel assignment statement (v1,...,0n) := (e1,
..+,€n)3, Where each e; is a simple variable and the v;’s are distinct. For
convenience, assume that the distinct variables in P are (v1,...,Um)
with m > n and that FE = (71,72,...,%,) is a set of indices such that
ej, = v,. Then write an O(n) time algorithm to find an optimal
realization for P.

Let F = {5;} be finite family of sets. Let T < F be a subfamily of
F. Thesize of T, |T'|, is the numberof sets in T. Let $; and 5S; be two
sets in T. Also S; and S; are disjoint if and only if $;1 5; = ¢. Tisa
disjoint subset of F if and only if every two sets in T are disjoint. The
set packing problemis to determinea disjoint subfamily T of maximum
size. Show that clique « set packing.

Show that the following decision problemis MP-complete.
Input: Positive integer n;w;,1<i<n, and M.
Decision: Do there exist nonnegative integers 2; > 0,1 <i <n; such

that

l<i<n

An independent set in an undirected graph G(V, £) is a set of vertices
no two of which are connected. Given a graph G and an integer k, the
problem is to determine whether G has an independent set of size k.
Show that this problem is WP-complete.

Given an undirected graph G(V, £) and an integer k, the goal is to
determine whether G has a clique of size & and an independent set of
size k. Show that this problem is “P-complete.

Is the following problem in P? If yes, give a polynomialtime algorithm;
if not, show it is NP-complete.

Input are an undirected graph G = (V,E) of degree 1000
and an integer k(< |V|). Decide whether G hasa clique of
size k.

Given an integer m x n matrix A and an integer m x 1 vector 6, the
Q-1 integer programming problem asks whether there is an integer n x 1
vector xz with elements in the the set {0,1} such that Ax < b. Prove
that 0-1 integer programming is MP-complete.

https://hemanthrajhemu.github.io

556

16.

17.

18.

19.

CHAPTER 11. NP-HARD AND NP-COMPLETE PROBLEMS

Input are finite sets A,, Ag,...,Am and By, Bo,...,Bn. The set in-
tersection problem is to decide whether there is a set T such that
|[.1 A;| > 1 for ¢ = 1,2,...,m, and |[T.N B;| < 1 for j = 1,2,...,n.
Show that the set intersection problem is NP-complete.

Wesay an undirected graph G(V, F)is k colorable if each node of G can
be labeled with an integer in the range [1,k], such that no two nodes
connected by an edge have the samelabel. Is the following problem in
P? If yes, present a polynomial time algorithm for its solution. If not,
show that it is MP-complete.

Given an undirected acyclic graph G(V, £) and an integer k,
decide whether G is & colorable.

Is the following problem in P? If yes, present a polynomial time algo-
rithm; if not, show that it is MP-complete.

Input are an undirected graph G(V, £) and an integer 1 <
k < |V|. Also, assume that the degree of each node in G is
|V| — O(1). The problem is to check whether G has a vertex
cover ofsize k.

Assume that there is a polynomial time algorithm CLQ to solve the
CLIQUEdecision problem.

(a) Show how to use CLQ to determine the maximum cliquesize of
a given graph in polynomial time.

(b) Show how to use CLQ to find a maximum clique in polynomial
time.

https://hemanthrajhemu.github.io

