

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Seventh Edition

ABRAHAM SILBERSCHATZ
Yale University

PETER BAER GALVIN
Corporate Technologies, Inc.

GREG GAGNE
Westminster College

WILEY

JOHN WILEY & SONS. INC

https://hemanthrajhemu.github.io

Contents

Chapter 9 Virtual Memory .
9.1 Background 315 9.8 Allocating Kernel Memory 353
9.2 Demand Paging 319 9.9 Other Considerations 357
9.3 Copy-on-Write 325 9.10 Operating-System Examples 363
9.4 Page Replacement 327 9.11 Summary 365
9.5 Allocation of Frames 340 Exercises 366
9.6 Thrashing 343 Bibliographical Notes 370
9.7 Memory-Mapped Files 348

PART FOUR • STORAGE MANAGEMENT
Chapter 10 File-System Interface
10.1 File Concept 373 10.6 Protection 402
10.2 Access Methods 382 10.7 Summary 407
10.3 Directory Structure 385 Exercises 408
10.4 File-System Mounting 395 Bibliographical Notes 409
10.5 File Sharing 397

Chapter 11 File-System Implementation
11.1 File-System Structure 411 11.8 Log-Structured File Systems 437
11.2 File-System Implementation 413 11.9 NFS 438
11.3 Directory Implementation 419 11.10 Example: The WAFL File System 444
11.4 Allocation Methods 421 11.11 Summary 446
11.5 Free-Space Management 429 Exercises 447
11.6 Efficiency and Performance 431 Bibliographical Notes 449
11.7 Recovery 435

Chapter 12 Mass-Storage Structure
12.1 Overview of Mass-Storage 12.7 RAID Structure 468

Structure 451 12.8 Stable-Storage Implementation 477
12.2 Disk Structure 454 12.9 Tertiary-Storage Structure 478
12.3 Disk Attachment 455 12.10 Summary 488
12.4 Disk Scheduling 456 Exercises 489
12.5 Disk Management 462 Bibliographical Notes 493
12.6 Swap-Space Management 466

Chapter 13 I/O Systems
13.1 Overview 495 13.6 STREAMS 520
13.2 I/O Hardware 496 13.7 Performance 522
13.3 Application I/O Interface 505 13.8 Summary 525
13.4 Kernel I/O Subsystem 511 Exercises 526
13.5 Transforming I/O Requests to Bibliographical Notes 527

Hardware Operations 518

https://hemanthrajhemu.github.io

V" vCHAPTER

In Chapter 8, we discussed various memory-management strategies used in
computer systems. All these strategies have the same goal: to keep many
processes in memory simultaneously to allow multiprogramming. However,
they tend to require that an entire process be in memory before it can execute.

Virtual memory is a technique that allows the execution of processes
that are not completely in memory. One major advantage of this scheme is
that programs can be larger than physical memory. Further, virtual memory
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This technique frees programmers from the concerns of memory-storage
limitations. Virtual memory also allows processes to share files easily and
to implement shared memory. In addition, it provides an efficient mechanism
for process creation. Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used carelessly. In this chapter,
we discuss virtual memory in the form of demand paging and examine its
complexity and cost.

CHAPTER OBJECTIVES

• To describe the benefits of a virtual memory system.

• To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames.

• To discuss the principles of the working-set model.

9.1 Background

The memory-management algorithms outlined in Chapter 8 are necessary
because of one basic requirement: The instructions being executed must be
in physical memory. The first approach to meeting this requirement is to place
the entire logical address space in physical memory. Dynamic loading can help
to ease this restriction, but it generally requires special precautions and extra
work by the programmer.

315

https://hemanthrajhemu.github.io

316 Chapter 9 Virtual Memory

The requirement that instructions must be in physical memory te be
executed seems both necessary and reasonable; but it is also unfortunate, since
it limits the size of a program to the size of physical memory. In fact, an
examination of real programs shows us that, in many cases, the entire program
is not needed. For instance, consider the following:

• Programs often have code to handle unusual error conditions. Since these
errors seldom, if ever, occur in practice, this code is almost never executed.

• Arrays, lists, and tables are often allocated more memory than they actually
need. An array may be declared 100 bv 100 elements, even though it is
seldom larger than 10 by 10 elements. An assembler symbol table may
have room for 3,000 symbols, although the average program has less than
200 symbols.

• Certain options and features of a program may be used rarely. For instance,
the routines on U.S. government computers that balance the budget are only
rarely used.

Even in those cases where the entire program is needed, it may not all be
needed at the same time.

The ability to execute a program that is only partially in memory would
confer many benefits:

• A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming task.

page 0

page 1

page 2

page v

virtual
memory

\

memory
map

^ . _

-

physica
memory

•

- •
: •
a

Figure 9.1 Diagram showing virtual memory that is larger than physical memory.

https://hemanthrajhemu.github.io

9.1 Background 317

• Because each user program could take less physical memory, ?inore
programs could be run at the same time, with a corresponding increase in
CPU utilization and throughput but with no increase in response time or
turnaround time.

• Less I/O would be needed to load or swap each user program into memory,
so each user program would run faster.

Thus, running a program that is not entirely in memory would benefit both
the system and the user.

Virtual memory involves the separation of logical memory as perceived
by users from physical memory. This separation, allows an extremely large
virtual memory to be provided for programmers when only a smaller physical
memory is available (Figure 9.1). Virtual memory makes the task of program-
ming much easier, because the programmer no longer needs to worry about
the amount of physical memory available; she can concentrate instead on the
problem to be programmed.

The virtual address space of a process refers to the logical (or virtual) view
of how a process is stored in memory. Typically, this view is that a process
begins at a certain logical address—say, address 0—and exists in contiguous
memory, as shown in Figure 9.2. Recall from Chapter 8, though, that in fact
physical memory may be organized in page frames arid that the physical page
frames assigned to a process may not be contiguous. Tt is up to the memory-
management unit (MMU) to map logical pages to physical page frames in
memory.

Note in Figure 9.2 that we allow for the heap to grow upward hi memory
as it is used for dynamic memory allocation. Similarly, we allow for the stack to
grow downward in memory through successive function calls. The large blank
space (or hole) between the heap and the stack is part of the virtual address

Max

heap

Figure 9.2 Virtual address space.

https://hemanthrajhemu.github.io

318 Chapter 9 Virtual Memory

space but will require actual physical pages only if the heap or stack grcfvvs.
Virtual address spaces that include holes are known as sparse address spaces.
Using a sparse address space is beneficial because the holes can be filled as the
stack or heap segments grow or if we wish to dynamically link libraries (or
possibly other shared objects) during program execution.

In addition to separating logical memory from physical memory, virtual
memory also allows files and memory to be shared by two or more processes
through page sharing (Section 8.4.4). This leads to the following benefits:

• System libraries can be shared by several processes through mapping
of the shared object into a virtual address space. Although each process
considers the shared libraries to be part of its virtual address space, the
actual pages where the libraries reside in physical memory are shared by
all the processes (Figure 9.3). Typically, a library is mapped read-only into
the space of each process that is linked with it.

• Similarly, virtual memory enables processes to share memory. Recall from
Chapter 3 that two or more processes can communicate through the use
of shared memory. Virtual memory allows one process to create a region
of memory that it can share with another process. Processes sharing this
region consider it part of their virtual address space, yet the actual physical
pages of memory are shared, much as is illustrated in Figure 9.3.

• Virtual memory can allow pages to be shared during process creation with
the forkO system call, thus speeding up process creation.

We will further explore these—and other—benefits of virtual memory later in
this chapter. First, we begin with a discussion of implementing virtual memory-
through demand paging.

stack •'._

1
shared Hbrary

1
heap

data

code

shared
pages

stack

shared library

code

Figure 9.3 Shared library using virtual memory.

https://hemanthrajhemu.github.io

9.2 Demand Paging 319

9.2 Demand Paging

Consider how an executable program might be loaded from disk into memory.
One option is to load the entire program in physical memory at program
execution time. However, a problem with this approach, is that we may not
initially need the entire program in memory. Consider a program that starts
with a list of available options from which the user is to select. Loading the
entire program into memory results in loading the executable code for all
options, regardless of whether an option is ultimately selected by the user or
not. An alternative strategy is to initially load pages only as they are needed.
This technique is known as demand paging and is commonly used in virtual
memory systems. With demand-paged virtual memory, pages are only loaded
when they are demanded during program execution; pages that are never
accessed are thus never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 9.4) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, however, we use a lazy swapper. A
lazy swapper never swaps a page into memory unless that page will be needed.
Since we are now viewing a process as a sequence of pages, rather than as one
large contiguous address space, use of the term swapper is technically incorrect.
A swapper manipulates entire processes, whereas a pager is concerned with
the individual pages of a process. We thus use pager, rather than swapper, in
connection with demand paging.

program
A

program
B

4-priHKr

main
memory

Figure 9.4 Transfer of a paged memory to contiguous disk space.

https://hemanthrajhemu.github.io

320 Chapter 9 Virtual Memory

9.2.1 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in a whole
process, the pager brings only those necessary pages into memory. Thus, it
avoids reading into memory pages that will not be used anyway, decreasing
the swap rime and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish
between the pages that are in memory and the pages that are on the disk. The
valid-invalid bit scheme described in Section 8.5 can be used for this purpose.
This time, however, when this bit is set to "valid/" the associated page is both
legal and in memory. If the bit is set to "invalid," the page either is not valid
(that is, not in the logical address space of the process) or is valid but is currently
on the disk. The page-table entry for a page that is brovight into memory is set
as usual, but the page-table entry for a page that is not currently in memory is
either simply marked, invalid or contains the address of the page on disk. This
situation is depicted in Figure 9.5.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all and only
those pages that are actually needed, the process will run exactly as though we
had brought in all pages. While the process executes and accesses pages that
are memory resident, execution proceeds normally.

0

1

2

3

4

5

6

7

A

B

C

D

E

F

G

H

valid-invalid
frame

logical
memory

page table

0

1

2

3

4

5

6

7

8

9

10

:A:

: C

iff " ;;

11

12

13

14

15

physical memory

Figure 9.5 Page table when some pages are not in main memory.

https://hemanthrajhemu.github.io

9.2 Demand Paging 321

physical
memory

Figure 9.6 Steps in handling a page fault.

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a page-fault trap. The
paging hardware, in translating the address through the page table, will notice
that the invalid bit is set, causing a trap to the operating system. This trap is the
result of the operating system's failure to bring the desired page into memory.
The procedure for handling this page fault is straightforward (Figure 9.6):

1. We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid, but
we have not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first

https://hemanthrajhemu.github.io

322 Chapter 9 Virtual Memory

instruction of the process, which is on a non-memory-resident page, the process
immediately faults for the page. After this page is brought into memory, the
process continues to execute, faulting as necessary until every page that it
needs is in memory. At that point, it can execute with no more faults. This
scheme is pure demand paging: Never bring a page into memory until it is
required.

Theoretically, some programs could access several new pages of memory
with each instruction execution (one page for the instruction and many for
data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have locality of reference, described in Section 9.6.1, which results in
reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for
paging and swapping:

• Page table. This table has the ability to mark an entry invalid through a
valid-invalid bit or special value of protection bits.

• Secondary memory. This memory holds those pages that are not present
in main memory. The secondary memory is usually a high-speed disk. It is
known as the swap device, and the section of disk used for this purpose is
known as swap space. Swap-space allocation is discussed in Chapter 12.

A crucial requirement for demand paging is the need to be able to restart
any instruction after a page fault. Because we save the state (registers, condition
code, instruction counter) of the interrupted process when the page fault
occurs, we must be able to restart the process in exactly the same place and
state, except that the desired page is now in memory and is accessible. In most
cases, this requirement is easy to meet. A page fault may occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by-
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again and then fetch the
operand.

As a worst-case example, consider a three-address instruction such as ADD
the content of A to B, placing the result in C. These are the steps to execute this
instruction:

1. Fetch and decode the instruction (ADD).

2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

If we fault when we try to store in C (because C is in a page not currently
in memory), we will have to get the desired page, bring it in, correct the
page table, and restart the instruction. The restart will require fetching the
instruction again, decoding it again, fetching the two operands again, and

https://hemanthrajhemu.github.io

9.2 Demand Paging 323

then adding again. However, there is not much repeated work (less than one
complete instruction), and the repetition is necessary only when a page fault
occurs.

The major difficulty arises when one instruction may modify several
different locations. For example, consider the IBM. System 360/370 MVC (move
character) instruction., which can move up to 256 bytes from one location to
another (possibly overlapping) location. If either block (source or destination)
straddles a page boundary, a page fault might occur after the move is partially
done. In addition, if the source and destination blocks overlap, the source
block may have been modified, in which case we cannot simply restart the
instruction.

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a page
fault is going to occur, it will happen at this step, before anything is modified.
The move can then take place; wre know that no page fault can occur, since all
the relevant pages are in memory. The other solution uses temporary registers
to hold the values of overwritten locations. If there is a page fault, all the old
values are written back into memory before the trap occurs. This action restores
memory to its state before the instruction was started, so that the instruction
can be repeated.

This is by no means the only architectural problem resulting from adding
paging to an existing architecture to allow demand paging, but it illustrates
some of the difficulties involved. Paging is added between the CPU and the
memory in a computer system. It should be entirely transparent to the user
process. Thus, people often assume that paging can be added to any system.
Although this assumption is true for a non-demand-paging environment,
where a page fault represents a fatal error, it is not true where a page fault
means only that an additional page must be brought into memory and the
process restarted.

9.2.2 Performance of Demand Paging

Demand paging can significantly affect the performance of a computer system.
To see why, let's compute the effective access time for a demand-paged
memory. For most computer systems, the memory-access time, denoted ma,
ranges from 10 to 200 nanoseconds. As long as we have no page faults, the
effective access time is equal to the memory access time. If, however, a page
fault occurs, we must first read the relevant page from disk and then access the
desired word.

Let p be the probability of a page fault (0 s p 5 1). We would expect p to
be close to zero—that is, we would expect to have only a few page faults. The
effective access time is then

effective access time = (1 - p) x ma + p x page fault time.

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence to
occur:

1. Trap to the operating system.

2. Save the user registers and process state.

https://hemanthrajhemu.github.io

324 Chapter 9 Virtual Memory

3. Determine that the interrupt was a page fault. '

4. Check that the page reference was legal and determine the location of the
page on the disk.

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and /or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling,
optional).

7. Receive an interrupt from the disk I/O subsystem (I/O completed).

8. Save the registers and process state for the other user (if step 6 is executed).

9. Determine that the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is
now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, and new page table, and then
resume the interrupted instruction.

Not all of these steps are necessary in every case. For example, we are assuming
that, in step 6, the CPU is allocated to another process while the I/O occurs.
This arrangement allows multiprogramming to maintain CPU utilization but
requires additional time to resume the page-fault service routine when the I/O
transfer is complete.

In any case, we are faced with three major components of the page-fault
service time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

The first and third tasks can be reduced, with careful coding, to several
hundred instructions. These tasks may take from 1 to 100 microseconds each.
The page-switch time, however, will probably be close to 8 milliseconds.
A typical hard disk has an average latency of 3 milliseconds, a seek of 5
milliseconds, and a transfer time of 0.05 milliseconds. Thus, the total paging
time is about 8 milliseconds, including hardware and software time. Remember
also that we are looking at only the device-service time. If a queue of processes
is waiting for the device (other processes that have caused page faults), we
have to add device-queueing time as we wait for the paging device to be free
to service our request, increasing even more the time to swap.

If we take an average page-fault service time of 8 milliseconds and a
memory-access time of 200 nanoseconds, then the effective access time in
nanoseconds is

https://hemanthrajhemu.github.io

9.3 Copy-on-Write 325

effective access time = (1 - p) x (200) + p (8 milliseconds)
= (1 - p) x 200 + p x 8.00(1000
= 200 + 7,999,800 x p.

We see, then, that the effective access time is directly proportional to the
page-fault rate. If one access out of 1,000 causes a page fault, the effective
access time is 8.2 microseconds. The computer will be slowed down by a factor
of 40 because of demand paging! If we want performance degradation to be
less than 10 percent, we need

220 > 200 + 7,999,800 x p,
20 > 7,999,800 x p,
p < 0.0000025.

That is, to keep the slowdown due to paging at a reasonable level, we can
allow fewer than one memory access out of 399,990 to page-fault. In sum,
it is important to keep the page-fault rate low in a demand-paging system.
Otherwise, the effective access time increases, slowing process execution
dramatically.

An additional aspect of demand paging is the handling and overall use
of swap space. Disk I/O to swap space is generally faster than that to the file
system. It is faster because swap space is allocated in much larger blocks, and
file lookups and indirect allocation methods are not used (Chapter 12). The
system can therefore gain better paging throughput by copying an entire file
image into the swap space at process startup and then performing demand
paging from the swap space. Another option is to demand pages from the file
system initially but to write the pages to swap space as they are replaced. This
approach will ensure that only needed pages are read from the file system but
that all subsequent paging is done from swap space.

Some systems attempt to limit the amount of swap space used through
demand paging of binary files. Demand pages for such files are brought directly
from the file system. However, when page replacement is called for, these
frames can simply be overwritten (because they are never modified), and the
pages can be read in from the file system, again if needed. Using this approach,
the file system itself serves as the backing store. However, swap space must
still be used for pages not associated with a file; these pages include the stack
and heap for a process. This method appears to be a good compromise and is
used in several systems, including Solaris and BSD UNIX.

9.3 Copy-on-Wrste

In Section 9.2, we illustrated how a process can start quickly by merely demand-
paging in the page containing the first instruction. However, process creation
using the f ork () system call may initially bypass the need for demand paging
by using a technique similar to page sharing (covered in Section 8.4.4). This
technique provides for rapid process creation and minimizes the number of
new pages that must be allocated to the newly created process.

https://hemanthrajhemu.github.io

326 Chapter 9 Virtual Memory

process.

• : i ' ;£: m.

i

physical
memory

-Hs-irnT-rr"

* 1

«————

|

1 ~ ~

process2

Figure 9.7 Before process 1 modifies page C.

Recall that the fork() system call creates a child process as a duplicate
of its parent. Traditionally, forkO worked by creating a copy of the parent's
address space for the child, duplicating the pages belonging to the parent.
However, considering that many child processes invoke the exec() system
call immediately after creation, the copying of the parent's address space may
be unnecessary. Alternatively, we can use a technique known as copy-on-write,
which works by allowing the parent and child processes initially to share the
same pages. These shared pages are marked as copy-on-write pages, meaning
that if either process writes to a shared page, a copy of the shared page is
created. Copy-on-write is illustrated in Figures 9.7 and Figure 9.8, which show
the contents of the physical memory before and after process 1 modifies page
C.

For example, assume that the child process attempts to modify a page
containing portions of the stack, with the pages set to be copy-on-write. The
operating system will then create a copy of this page, mapping it to the address
space of the child process. The child process will then modify its copied page
and not the page belonging to the parent process. Obviously, when the copy-on-
write technique is used, only the pages that are modified by either process are
copied; all unmodified pages can be shared by the parent and child processes.

process
physical
memory process.

Figure 9.8 After process 1 modifies page C.

https://hemanthrajhemu.github.io

9.4 Page Replacement 327

Note, too, that only pages that can be modified need be marked as copy-on-
write. Pages that cannot be modified (pages containing executable code) can
be shared by the parent and child. Copy-on-write is a common technique used
by several operating systems, including Windows XP, Linux, and Solaris.

When it is determined that a page is going to be duplicated using copy-
on-write, it is important to note the location from which the free page will
be allocated. Many operating systems provide a pool of free pages for such
requests. These free pages are typically allocated when the stack or heap for a
process must expand or when there are copy-on-write pages to be managed.
Operating systems typically allocate these pages using a technique known as
zero-fill-on-demand. Zero-fill-on-demand pages have been zeroed-out before
being allocated, thus erasing the previous contents.

Several versions of UNIX (including Solaris and Linux) also provide a
variation of the forkC) system call—vforkO (for virtual memory fork).
vf ork() operates differently from f ork() with copy-on-write. With vf ork() ,
the parent process is suspended, and the child process uses the address space
of the parent. Because vf ork () does not use copy-on-write, if the child process
changes any pages of the parent's address space, the altered pages will be
visible to the parent once it resumes. Therefore, vf ork() must be used with
caution to ensure that the child process does not modify the address space of
the parent, vf ork() is intended to be used when the child process calls execO
immediately after creation. Because no copying of pages takes place, vf ork()
is an extremely efficient method of process creation and is sometimes used to
implement UNIX command-line shell interfaces.

9.4 Page Replacement

In our earlier discussion of the page-fault rate, we assumed that each page
faults at most once, when it is first referenced. This representation is not strictly-
accurate, however. If a process of ten pages actually uses only half of them, then
demand paging saves the I/O necessary to load the five pages that are never
used. We could also increase our degree of multiprogramming by running
twice as many processes. Thus, if we had forty frames, we could run eight
processes, rather than the four that could run if each required ten frames (five
of which were never used).

If we increase our degree of multiprogramming, we are over-aJlocating
memory. If we run six processes, each of which is ten pages in size but actually
uses only five pages, we have higher CPU utilization and throughput, with
ten frames to spare. It is possible, however, that each of these processes, for a
particular data set, may suddenly try to use all ten of its pages, resulting in a
need for sixty frames when only forty are available.

Further, consider that system memory is not used only for holding program
pages. Buffers for I/O also consume a significant amount of memory. This use
can increase the strain on memory-placement algorithms. Deciding how much
memory to allocate to I/O and how much to program pages is a significant
challenge. Some systems allocate a fixed percentage of memory for I/O buffers,
whereas others allow both user processes and the I/O subsystem to compete
for all system memory.

https://hemanthrajhemu.github.io

328 Chapter 9 Virtual Memory

valid—invalid
frame

logical memory
for user 1 for user 1

frame

valid—invalid
bit

2

7

i

v
V

logical memory
for user 2

page table
for user 2

0

1

2

3

4

5

6

7

1
D

H

featrivr

J

A

E

physical
memory

\M\

Figure 9.9 Need for page replacement.

Over-allocation of memory manifests itself as follows. While a user process
is executing, a page fault occurs. The operating system determines where the
desired page is residing on the disk but then finds that there are no free frames
on the free-frame list; all memory is in use (Figure 9.9).

The operating system has several options at this point. It could terminate
the user process. However, demand paging is the operating system's attempt to
improve the computer system's utilization and throughput. Users should not
be aware that their processes are running on a paged system—paging should
be logically transparent to the user. So this option is not the best choice.

The operating system could instead swap out a process, freeing all its
frames and reducing the level of multiprogramming. This option is a good one
in certain circumstances, and we consider it further in Section 9.6. Here, we
discuss the most common solution: page replacement.

9.4.1 Basic Page Replacement

Page replacement takes the following approach. If no frame is free, we find
one that is not currently being used and free it. We can free a frame by writing
its contents to swap space and changing the page table (and all other tables) to
indicate that the page is no longer in memory (Figure 9.10). We can now use
the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

https://hemanthrajhemu.github.io

9.4 Page Replacement 329

b. If there is no free frame, use a page-replacement algorithm toselect
a victim frame.

c. Write the victim frame to the disk; change the page and frame tables
accordingly.

3. Read the desired page into the newly freed frame; change the page and
frame tables.

4. Restart the user process.

Notice that, if no frames are free, two page transfers (one out and one in) are
required. This situation effectively doubles the page-fault service time and
increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit). When
this scheme is used, each page or frame has a modify bit associated with it
in the hardware. The modify bit for a page is set by the hardware whenever
any word or byte in the page is written into, indicating that the page has been
modified. When we select a page for replacement, we examine its modify bit.
If the bit is set, we know that the page has been modified since it was read in
from the disk. In this case, we must write that page to the disk. If the modify
bit is not set, however, the page has not been modified since it was read into
memory. Therefore, if the copy of the page on the disk has not been overwritten
(by some other page, for example), then we need not write the memory page
to the disk: It is already there. This technique also applies to read-only pages
(for example, pages of binary code). Such pages cannot be modified; thus, they
may be discarded when desired. This scheme can significantly reduce the time
required to service a page fault, since it reduces I/O time by one-halfif the page
has not been modified.

frame valid-invalid bit

0

f

— .

i

V

—

/-TNj change
Vfyto invalid

f I victim

page table

reset page
table for

new page

swap out
victim
page

physical
memory

Figure 9.10 Page replacement.

https://hemanthrajhemu.github.io

330 Chapter 9 Virtual Memory

Page replacement is basic to demand paging. It completes the separation
between logical memory and physical memory- With this mechanism, an
enormous virtual memory can be provided for programmers on a smaller
physical memory. With no demand paging, user addresses are mapped into
physical addresses, so the two sets of addresses can be different. All the pages of
a process still must be in physical memory, however. With demand paging, the
size of the logical address space is no longer constrained by physical memory.
If we have a user process of twenty pages, we can execute it in ten frames
simply by using demand paging and using a replacement algorithm to find
a free frame whenever necessary. If a page that has been modified is to be
replaced, its contents are copied to the disk. A later reference to that page will
cause a page fault. At that time, the page will be brought back into memory,
perhaps replacing some other page in the process.

We must solve two major problems to implement demand paging: We must
develop a frame-allocation algorithm and a page-replacement algorithm. If
we have multiple processes in memory, we must decide how many frames to
allocate to each process. Further, when page replacement is required, we must
select the frames that are to be replaced. Designing appropriate algorithms to
solve these problems is an important task, because disk I/O is so expensive.
Even slight improvements in demand-paging methods yield large gains in
system performance.

There are many different page-replacement algorithms. Every operating
system probably has its own replacement scheme. How do we select a
particular replacement algorithm? In general, we want the one with the lowest
page-fault rate.

WTe evaluate an algorithm by running it on a particular string of memory
references and computing the number of page faults. The string of memory
references is called a reference string. We can generate reference strings
artificially (by using a random-number generator, for example), or we can trace
a given system and record the address of each memory reference. The latter
choice produces a large number of data (on the order of 1 million addresses
per second). To reduce the number of data, we use two facts.

First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, rather than the
entire address. Second, if we have a reference to a page p, then any immediately
following references to page p will never cause a page fault. Page p will be in
memory after the first reference, so the immediately following references will
not fault.

For example, if we trace a particular process, we might record the following
address sequence:

0100, 0432, 0101,0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104,0101,0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105

At 100 bytes per page, this sequence is reduced to the following reference
string:

1,4,1,6,1,6,1,6,1,6,1

https://hemanthrajhemu.github.io

9.4 Page Replacement 331

16

B
 1 4h

M 12!
a)
CG 1 0

o
CD

1 2 3 4 5 6
number of frames

Figure 9.11 Graph of page faults versus number of frames.

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference string considered previously, for
example, if we had three or more frames, we would have only three faults —
one fault for the first reference to each page. In contrast, with only one frame
available, we would have a replacement with every reference, resulting in
eleven faults. In general, we expect a curve such as that in Figure 9.11. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1

for a memory with three frames.

9.4.2 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.
A FIFO replacement algorithm associates with each page the time when that
page was brought into memory. When a page must be replaced, the oldest
page is chosen. Notice that it is not strictly necessary to record the time when
a page is brought in. We can. create a FIFO queue to hold all pages in memory.
We replace the page at the head of the queue. When a page is brought into
memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7,0,1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in replacement of page 0, since

https://hemanthrajhemu.github.io

332 Chapter 9 Virtual Memory'

r e f e r e n c e s t r i n g

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

I
0

\-J

io

LL 0

7 p]0'
•3 '3\

3 til E
3
1

3

0
i

1 if
1 i
j ||

P
I

page frames

Figure 9.12 FIFO page-replacement algorithm.

it is now first in line. Because of this replacement, the next reference, to 0, will
fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 9.12. Every time a fault occurs, we show which pages are in our three
frames. There are 15 faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new one,
a fault occurs almost immediately to retrieve the active page. Some other page
will need to be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm., wTe consider the following reference string:

1,2,3,4,1,2,5,1,2,3,4,5

Figure 9.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as Belady's anomaly: For some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that
this assumption was not always true. Belady's anomaly was discovered as a
result.

9.4.3 Optimal Page Replacement

One result of the discovery of Belady's anomaly was the search for an optimal
page-replacement algorithm. An optimal page-replacement algorithm has the
lowest page-fault rate of all algorithms and will never suffer from Belady's
anomaly. Such an algorithm does exist and has been called OPT or MIK. It is
simply this:

https://hemanthrajhemu.github.io

9.4 Page Replacement 333

16

m 14

j ! 12

co 10

CD

E
13

1 2 3 4 5 6 7
number of frames

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

Replace the page that will not be used
for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because 7 will not be used until reference 18, whereas page
0 will be used at 5, and page 1 at 14. The reference to page 3 replaces page
1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than a
FIFO algorithm, which resulted in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in

reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7

page frames

2

3|

2

0

3

o:

0

1

Figure 9.14 Optimal page-replacement algorithm.

https://hemanthrajhemu.github.io

334 Chapter 9 Virtual Memory

Section 5.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

9.4.4 LRU Page Replacement

If the optimal algorithm is not feasible, perhaps an approximation of the
optima] algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward versus forward in time) is that the
FIFO algorithm uses the time when a page was brought into memory, whereas
the OPT algorithm uses the time when a page is to be used. If we use the recent
past as an approximation of the near future, then we can replace the page that
has not been used for the longest period of time (Figure 9.15). This approach is
the least-recently-used (LRU) algorithm.

LRU replacement associates with each page the time of that page's last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let S be the reverse of a reference string S, then the page-fault
rate for the OPT algorithm on 5 is the same as the page-fault rate for the OPT
algorithm on 5R. Similarly, the page-fault rate for the LRU algorithm on S is the
same as the page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 9.15. The LRU algorithm produces 12 faults. Notice that the
first 5 faults are the same as those for optimal replacement. When the reference
to page 4 occurs, however, LRU replacement sees that, of the three frames in
memory, page 2 was used least recently. Thus, the LRU algorithm replaces page
2, not knowing that page 2 is about to be used. When it then faults for page
2, the LRU algorithm replaces page 3, since it is now the least recently used of
the three pages in memory. Despite these problems, LRU replacement with 12
faults is much better than FIFO replacement with 15.

The LRU policy is often used as a page-replacement algorithm and
is considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:

reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

0i
3}

page f rames

7 7

0

7

0

1

2

0

i '•

2

0
—
3

A

0
-

3

i-
0
t

A

5

2

Figure 9.15 LRU page-replacement algorithm.

https://hemanthrajhemu.github.io

9.4 Page Replacement 335

• Counters. In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use
field in the page-table entry for that page. In this way, we always have
the "time" of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to find
the LRU page and a write to memory (to the time-of-use field in the page
table) for each memory access. The times must also be maintained when
page tables are changed (due to CPU scheduling). Overflow of the clock
must be considered.

• Stack. Another approach to implementing LRU replacement is to keep
a stack of page numbers. Whenever a page is referenced, it is removed
from the stack and put on the top. In this way, the most recently used
page is always at the top of the stack and the least recently used page is
always at the bottom (Figure 9.16). Because entries must be removed from
the middle of the stack, it is best to implement this approach by using
a doubly linked list with a head and tail pointer. Removing a page and
putting it on the top of the stack then requires changing six pointers at
worst. Each update is a little more expensive, but there is no search for
a replacement; the tail pointer points to the bottom of the stack, which is
the LRU page. This approach is particularly appropriate for software or
microcode implementations of LRU replacement.

Like optimal replacement, LRL replacement does not suffer from Belady's
anomaly. Both belong to a class of page-replacement algorithms, called stack
algorithms, that can never exhibit Belady's anomaly. A stack algorithm is an
algorithm for which it can be shown that the set of pages in memory for n
frames is always a subset of the set of pages that would be in memory with n
+ 1 frames. For LRL replacement, the set of pages in memory would be the n
most recently referenced pages. If the number of frames is increased, these n
pages will still be the most recently referenced and so will still be in memory.

reference string

4 7 0 7 1 0 1 2 1 2 7 1 2

1

0

{

4

2

1

:D

L ' _ J

stack stack
before after

a b

t t
a b

Figure 9.16 Use of a stack to record the most recent page references.

https://hemanthrajhemu.github.io

336 Chapter 9 Virtual Memory

Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of the
clock fields or stack must be done for every memory reference. If we were to
use an interrupt for every reference to allow software to update such data
structures, it would slow every memory reference by a factor of at least ten,
hence slowing every user process by a factor of ten. Few systems could tolerate
that level of overhead for memory management.

9.4.5 LRU-Approximation Page Replacement

Few computer systems provide sufficient hardware support for true LRU page
replacement. Some systems provide no hardware support, and other page-
replacement algorithms (such as a FIFO algorithm) must be used. Many systems
provide some help, however, in the form of a reference bit. The reference bit
for a page is set by the hardware whenever that page is referenced (either a
read or a write to any byte in the page). Reference bits are associated with each
entry in the page table.

Initially, all bits are cleared (to 0) by the operating system. As a user process
executes, the bit associated with each page referenced is set (to 1) by the
hardware. After some time, we can determine which pages have been used and
which have not been used by examining the reference bits, although we do not
know the order of use. This information is the basis for many page-replacement
algorithms that approximate LRU replacement.

9.4.5.1 Additional-Reference-Bits Algorithm

We can gain additional ordering information by recording the reference bits at
regular intervals. We can keep an 8-bit byte for each page in a table in memory.
At regular intervals (say, every 100 milliseconds), a timer interrupt transfers
control to the operating system. The operating system shifts the reference bit
for each page into the high-order bit of its 8-bit byte, shifting the other bits right
by 1 bit and discarding the low-order bit. These 8-bit shift registers contain the
history of page use for the last eight time periods. If the shift register contains
00000000, for example, then the page has not been used for eight time periods;
a page that is used at least once in each period has a shift register value of
11111111. A page with a history register value of 11000100 has been used more
recently than one with a value of 01110111. If we interpret these 8-bit bytes
as unsigned integers, the page with the lowest number is the LRU page, and
it can be replaced. Notice that the numbers are not guaranteed to be unique,
however. We can either replace (swap out) all pages with the smallest value or
use the FIFO method to choose among them.

The number of bits of history can be varied, of course, and is selected
(depending on the hardware available) to make the updating as fast as
possible. In the extreme case, the number can be reduced to zero, leaving
only the reference bit itself. This algorithm is called the second-chance page-
replacement algorithm.

9.4.5.2 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement
algorithm. When a page has been selected, however, we inspect its reference

https://hemanthrajhemu.github.io

reference pages
bits

i 0

next
victim

circular queue of pages

(a)

9.4 Page Replacement 337

reference pages
bits

V

circular queue of pages

(b)

Figure 9.17 Second-chance (clock) page-replacement algorithm.

bit. If the value is 0, we proceed to replace this page; but if the reference bit
is set to 1, we give the page a second chance and move on to select the next
FIFO page. When a page gets a second chance, its reference bit is cleared, and
its arrival time is reset to the current time. Thus, a page that is given a second
chance will not be replaced until all other pages have been replaced (or given
second chances). In addition, if a page is used often enough to keep its reference
bit set, it will never be replaced.

One way to implement the second-chance algorithm (sometimes referred
to as the dock algorithm) is as a circular queue. A pointer (that is, a hand on
the clock) indicates which page is to be replaced next. When a frame is needed,
the pointer advances until it finds a page with a 0 reference bit. As it advances,
it clears the reference bits (Figure 9.17). Once a victim page is found, the page
is replaced, and the new page is inserted in the circular queue in that position.
Notice that, in the worst case, when all bits are set, the pointer cycles through
the whole queue, giving each page a second chance. Tt clears all the reference
bits before selecting the next page for replacement. Second-chance replacement
degenerates to FIFO replacement if all bits are set.

9.4.5.3 Enhanced Second-Chance Algorithm

We can enhance the second-chance algorithm by considering the reference bit
and the modify bit (described in Section 9.4.1) as an ordered pair. With these
two bits, we have the following four possible classes:

https://hemanthrajhemu.github.io

338 Chapter 9 Virtual Memory

1. (0, 0) neither recently used nor modified—best page to replace

2. (0, 1) not recently used but modified—not quite as good, because the
page will need to be written out before replacement

3. (1., 0) recently used but clean—probably will be used again soon

4. (1,1) recently used and modified—probably will be used again soon, and
the page will be need to be written out to disk before it can be replaced

Each page is in one of these four classes. When page replacement is called for,
we use the same scheme as in the clock algorithm; but instead of examining
whether the page to which we are pointing has the reference bit set to 1,
we examine the class to which that page belongs. We replace the first page
encountered in the lowest nonempty class. Notice that we may have to scan
the circular queue several times before we find a page to be replaced.

The major difference between this algorithm and the simpler clock algo-
rithm is that here we give preference to those pages that have been modified
to reduce the number of 1/Os required.

9.4.6 Counting-Based Page Replacement

There are many other algorithms that can be used for page replacement. For
example, we can keep a counter of the number of references that have been
made to each page and develop the following two schemes.

• The least frequently used (LFU) page-replacement algorithm requires
that the page with the smallest count be replaced. The reason for this
selection is that an actively used page should have a large reference count.
A problem arises, however, when a page is used heavily during the initial
phase of a process but then is never used again. Since it was used heavily,
it has a large count and remains in memory even though it is no longer
needed. One solution is to shift the counts right by 1 bit at regular intervals,
forming an exponentially decaying average usage count.

• The most frequently used (MFU) page-replacement algorithm is based
on the argument that the page with the smallest count was probably just
brought in and has yet to be used.

As you might expect, neither MFU nor LFU replacement is common. The
implementation of these algorithms is expensive, and they do not approximate
OPT replacement well.

9.4.7 Page-Buffering Algorithms

Other procedures are often used in addition to a specific page-replacement
algorithm,. For example, systems commonly keep a pool of free frames. When
a page fault occurs, a victim frame is chosen as before. However, the desired
page is read into a free frame from the pool before the victim is written out. This
procedure allows the process to restart as soon as possible, without waiting

https://hemanthrajhemu.github.io

9.4 Page Replacement 339

for the victim page to be written out. When the victim is later written put, its
frame is added to the free-frame pool.

An expansion of this idea is to maintain a list of modified pages. Whenever
the paging device is idle, a modified page is selected and is written to the disk.
Its modify bit is then reset. This scheme increases the probability that a page
will be clean when it is selected for replacement and will not need to be written
out.

Another modification is to keep a pool of free frames but to remember
which page was in each frame. Since the frame contents are not modified when
a frame is written to the disk, the old page can be reused directly from the
free-frame pool if it is needed before that frame is reused. No I/O is needed in
this case. When a page fault occurs, we first check whether the desired page is
in the free-frame pool, if it is not, we must select a free frame and read into it.

This technique is used in the VAX/VMS system along with a FIFO replace-
ment algorithm. When the FIFO replacement algorithm mistakenly replaces a
page that is still in active use, that page is quickly retrieved from the free-frame
pool, and no I/O is necessary. The free-frame buffer provides protection against
the relatively poor, but simple, FIFO replacement algorithm. This method is
necessary because the early versions of VAX did not implement the reference
bit correctly.

Some versions of the UNIX system use this method in conjunction with
the second-chance algorithm. It can be a useful augmentation to any page-
replacement algorithm, to reduce the penalty incurred if the wrong victim
page is selected.

9.4.8 Applications and Page Replacement

In certain cases, applications accessing data through the operating system's
virtual memory perform, worse than if the operating system provided no
buffering at all. A typical example is a database, which provides its own
memory management and I/O buffering. Applications like this understand
their memory use and disk use better than does an operating system that is
implementing algorithms for general-purpose use. If the operating system is
buffering I/O, and the application is doing so as well, then twice the memory
is being used for a set of I/O.

In another example, data warehouses frequently perform massive sequen-
tial disk reads, followed by computations and writes. The LRU algorithm would
be removing old pages and preserving new ones, while the application would
more likely be reading older pages than newer ones (as it starts its sequential
reads again). Here, MFU would actually be more efficient than LRU.

Because of such problems, some operating systems give special programs
the ability to use a disk partition as a large sequential array of logical blocks,
without any file-system data structures. This array is sometimes called the raw
disk, and I/O to this array is termed raw I/O. Raw I/O bypasses all the file-
system services, such as file I/O demand paging, file locking, prefetchmg, space
allocation, file names, and directories. Note that although certain applications
are more efficient when implementing their own special-purpose storage
services on a raw partition, most applications perform better when they use
the regular file-system services.

https://hemanthrajhemu.github.io

340 Chapter 9 Virtual Memory

9.5 Allocation of Frames

We turn next to the issue of allocation. How do we allocate the fixed amount
of free memory among the various processes? If we have 93 free frames and
two processes, how many frames does each process get?

The simplest case is the single-user system. Consider a single-user system
with 128 KB of memory composed of pages 1 KB in size. This system has 128
frames. The operating system may take 35 KB, leaving 93 frames for the user
process. Under pure demand paging, all 93 frames would initially be put on
the free-frame list. When a user process started execution, it would generate a
sequence of page faults. The first 93 page faults would all get free frames from
the free-frame list. When the free-frame list was exhausted, a page-replacement
algorithm would he used to select one of the 93 in-memory pages to be replaced
with the 94th, and so on. When the process terminated, the 93 frames would
once again be placed on the free-frame list.

There are many variations on this simple strategy. We can require that the
operating system allocate all its buffer and table space from the free-frame list.
When this space is not in use by the operating system/ it can be used to support
user paging. We can try to keep three free frames reserved on the free-frame list
at all times. Thus, when a page fault occurs, there is a free frame available to
page into. While the page swap is taking place, a replacement can be selected,
which is then written to the disk as the user process continues to execute. Other
variants are also possible, but the basic strategy is clear: The user process is
allocated any free frame.

9.5.1 Minimum Number of Frames

Our strategies for the allocation of frames are constrained in various ways. We
cannot, for example, allocate more than the total number of available frames
(unless there is page sharing). We must also allocate at least a minimum number
of frames. Here, we look more closely at the latter requirement.

One reason for allocating at least a minimum number of frames involves
performance. Obviously, as the number of frames allocated to each process
decreases, the page-fault rate increases, slowing process execution. In addition,
remember that, when a page fault occurs before an executing instruction
is complete, the instruction must be restarted. Consequently, we must have
enough frames to hold all the different pages that any single instruction can
reference.

For example, consider a machine in which all memory-reference instruc-
tions have only one memory address. In this case, we need at least one frame
for the instruction and one frame for the memory reference. In addition, if
one-level indirect addressing is allowed (for example, a load instruction on
page 16 can refer to an address on page 0, which is an indirect reference to page
23), then paging requires at least three frames per process. Think about what
might happen if a process had only two frames.

The minimum number of frames is defined by the computer architecture.
For example, the move instruction for the PDP-11 includes more than one word
for some addressing modes, and thus the instruction itself may straddle two
pages. In addition, each of its two operands may be indirect references, for a
total of six frames. Another example is the IBM 370 MVC instruction. Since the

https://hemanthrajhemu.github.io

9.5 Allocation of Frames 341

instruction is from storage location to storage location, it takes 6 bytes and can
straddle two pages. The block of characters to move and the area to which it
is to be moved can each also straddle two pages. This situation would require
six frames. The worst case occurs when the MVC instruction is the operand of
an EXECUTE instruction that straddles a page boundary; in this case, we need
eight frames.

The worst-case scenario occurs in computer architectures that allow
multiple levels of indirection (for example, each 16-bit word could contain
a 15-bit address plus a 1-bit indirect indicator). Theoretically, a simple load
instruction could reference an indirect address that could reference an indirect
address (on another page) that could also reference an indirect address (on yet
another page), and so on, until every page in virtual memory had been touched.
Thus, in the worst case, the entire virtual memory must be in physical memory.
To overcome this difficulty, we must place a limit on the levels of indirection (for
example, limit an instruction to at most 16 levels of indirection). When the first
indirection occurs, a counter is set to 16; the counter is then decremented for
each successive indirection for this instruction. Tf the counter is decremented to
0, a trap occurs (excessive indirection). This limitation reduces the maximum
number of memory references per instruction to 17, requiring the same number
of frames.

Whereas the minimum number of frames per process is defined by the
architecture, the maximum number is defined by the amount of available
physical memory. In between, we are still left with significant choice in frame
allocation.

9.5.2 Allocation Algorithms

The easiest way to split in frames among n processes is to give everyone an
equal share, m/n frames. For instance, if there are 93 frames and five processes,
each process will get 18 frames. The leftover three frames can be used as a
free-frame buffer pool. This scheme is called equal allocation.

An alternative is to recognize that various processes will need differing
amounts of memory. Consider a system with a 1-KB frame size. If a small
student process of 10 KB and an interactive database of 127 KB are the only
two processes running in a system with 62 free frames, it does not make much
sense to give each process 31 frames. The student process does not need more
than 10 frames, so the other 21 are, strictly speaking, wasted.

To solve this problem, we can use proportional allocation, in which we
allocate available memory to each process according to its size. Let the size of
the virtual memory for process pt be s-, and define

Then, if the total number of available frames is m, we allocate a, frames to
process /»,-, where a, is approximately

a, = Sj/S x m.

https://hemanthrajhemu.github.io

342 Chapter 9 Virtual Memory

Of course, we must adjust each «,- to be an integer that is greater rha^i the
minimum number of frames required by the instruction set, with a sum not
exceeding m.

For proportional allocation, we would split 62 frames between two
processes, one of 10 pages and one of 127 pages, by allocating 4 frames and 57
frames, respectively, since

10/137 x 62 « 4, and
127/137 x 6 2 ~ 5 7 .

In this way, both processes share the available frames according to their
"needs," rather than equally.

In both equal and proportional allocation, of course, the allocation may
vary according to the multiprogramming level. If the multiprogramming level
is increased, each process will lose some frames to provide the memory needed
for the new process. Conversely, if the multiprogramming level decreases, the
frames that were allocated to the departed process can be spread over the
remaining processes.

Notice that, with either equal or proportional allocation, a high-priority
process is treated the same as a low-priority process. By its definition, however,
we may want to give the high-priority process more memory to speed its
execution, to the detriment of low-priority processes. One solution is to use
a proportional allocation scheme wherein the ratio of frames depends not on
the relative sizes of processes but rather on the priorities of processes or on a
combination of size and priority.

9.5.3 Global versus Local Allocation

Another important factor in the way frames are allocated to the various
processes is page replacement. With multiple processes competing for frames,
we can classify page-replacement algorithms into two broad categories: global
replacement and local replacement. Global replacement allows a process to
select a replacement frame from the set of all frames, even if that frame is
currently allocated to some other process; that is, one process can take a frame
from another. Local replacement requires that each process select from only its
own set of allocated frames.

For example, consider an allocation scheme where we allow high-priority
processes to select frames from low-priority processes for replacement. A
process can select a replacement from among its own frames or the frames
of any lower-priority process. This approach allows a high-priority process to
increase its frame allocation at the expense of a low-priority process.

With a local replacement strategy, the number of frames allocated to a
process does not change. With global replacement, a process may happen to
select only frames allocated to other processes, thus increasing the number of
frames allocated to it (assuming that other processes do not choose its frames
for replacement).

One problem with a global replacement algorithm is that a process cannot
control its own page-fault rate. The set of pages in memory for a process
depends not only on the paging behavior of that process but also on the paging
behavior of other processes. Therefore, the same process may perform quite

https://hemanthrajhemu.github.io

9.6 Thrashing 343

differently (for example, taking 0.5 seconds for one execution and 10.3 seconds
for the next execution) because of totally external circumstances. Such is not
the case with a local replacement algorithm. Under local replacement, the
set of pages in memory for a process is affected by the paging behavior of
only that process. Local replacement might hinder a process, however, by
not making available to it other, less used pages of memory. Thus, global
replacement generally results in greater system throughput and is therefore
the more common method.

9,6 Thrashing

If the number of frames allocated to a low-priority process falls below the
minimum number required by the computer architecture, we must suspend,
that process's execution. We should then page out its remaining pages, freeing
all its allocated frames. This provision introduces a swap-in, swap-out level of
intermediate CPU scheduling.

In fact, look at any process that does not have ''enough" frames. If the
process does not have the number of frames it needs to support pages in
active use, it will quickly page-fault. At this point, it must replace some page.
However, since all its pages are in active use, it must replace a page that will
be needed again right away. Consequently, it quickly faults again, and again,
and again, replacing pages that it must bring back in immediately.

This high paging activity is called thrashing. A process is thrashing if it is
spending more time paging than executing.

9.6.1 Cause of Thrashing

Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too low,
we increase the degree of multiprogramming by introducing a new process
to the system. A global page-replacement algorithm is used; it replaces pages
without regard to the process to which they belong. Now suppose that a process
enters a new phase in its execution and needs more frames. It starts faulting and
taking frames away from other processes. These processes need those pages,
however, and so they also fault, taking frames from other processes. These
faulting processes must use the paging device to swap pages in and out. As
they queue up for the paging device, the ready queue empties. As processes
wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree of multiprogramming as a result. The new process tries to get started
by taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page-
fault rate increases tremendously As a result, the effective memory-access
time increases. No work is getting done, because the processes are spending
all their time paging.

https://hemanthrajhemu.github.io

344 Chapter 9 Virtual Memory

degree of multiprogramming

Figure 9.18 Thrashing.

This phenomenon is illustrated in Figure 9.18, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
even further, thrashing sets in, and CPU utilization drops sharply. At this point,
to increase CPU utilization and stop thrashing, we must decrease the degree of
multi pro grammi rig.

We can limit the effects of thrashing by using a local replacement algorithm
(or priority replacement algorithm). With local replacement, if one process
starts thrashing, it cannot steal frames from another process and cause the latter
to thrash as well. However, the problem is not entirely solved. If processes are
thrashing, they will be in the queue for the paging device most of the time. The
average service time for a page fault will increase because of the longer average
queue for the paging device. Thus, the effective access time will increase even
for a process that is not thrashing.

To prevent thrashing, we must provide a process with as many frames as
it needs. But how do we know how many frames it "needs'? There are several
techniques. The working-set strategy (Section 9.6.2) starts by looking at how
many frames a process is actually using. This approach defines the locality
model of process execution.

The locality model states that, as a process executes, it moves from locality
to locality. A locality is a set of pages that are actively used together (Figure
9.19). A program is generally composed of several different localities, which
may overlap.

For example, when a function is called, it defines a new locality. In this
locality, memory references are made to the instructions of the function call, its
local variables, and a subset of the global variables. When we exit the function,
the process leaves this locality, since the local variables and instructions of the
function are no longer in active use. We may return to this locality later.

Thus, we see that localities are defined by the program structure and its
data structures. The locality model states that all programs will exhibit this
basic memory reference structure. Note that the locality model is the unstated
principle behind the caching discussions so far in this book. If accesses to any
types of data were random rather than patterned, caching would be useless.

https://hemanthrajhemu.github.io

9.6 Thrashing 345

34

32

30

28

en

<B
-a
ra
>,
b
CD

E

26

24

22

1
E
c
CD

en 18

4—r
....ll!!,.l. ii

;' 1 1 1 : |. •;

execution time

Figure 9.19 Locality in a memory-reference pattern.

Suppose we allocate enough frames to a process to accommodate its current
locality. It will fault for the pages in its locality until all these pages are in
memory; then, it will not fault again until it changes localities. If we allocate
fewer frames than the size of the current locality, the process will thrash, since
it cannot keep in memory all the pages that it is actively using.

9.6.2 Working-Set Mode!

As mentioned, the working-set model is based on the assumption of locality.
This model uses a parameter, A, to define the working-set window. The idea
is to examine the most recent A page references. The set of pages in the most

https://hemanthrajhemu.github.io

346 Chapter 9 Virtual Memory

recent A page references is the working set (Figure 9.20). If a page is in,active
use, it will be in the working set. If it is no longer being used, it will drop from
the working set A time units after its last reference. Thus, the working set is an
approximation of the program's locality.

For example, given the sequence of memory references shown in Figure
9.20, if A = 10 memory references, then the working set at time t\ is {1, 2, 5,
6, 7). By time h, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of A. If A is too
small, it will not encompass the entire locality; if A is too large, it may overlap
several localities. In the extreme, if A is infinite, the working set is the set of
pages touched during the process execution.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSSj, for each process in the system, we can
then consider that

where D is the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSSj frames. If the total demand is
greater than the total number of available frames (D > m), thrashing will occur,
because some processes will not have enough frames.

Once A has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to
that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process's pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization.

The difficulty with the working-set model is keeping track of the working
set. The working-set window is a moving window. At each memory reference,
a new reference appears at one end and the oldest reference drops off the other
end. A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that A equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for

page reference table

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4

WS(f,) = {1,2,5,6,7} WS(f2) = {3,4}

Figure 9.20 Working-set modef.

https://hemanthrajhemu.github.io

9.6 Thrashing 347

each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will be
on. If it has not been used, these bits will be off. Those pages with at least one
bit on will be considered to be in the working set. Note that this arrangement
is not entirely accurate, because we cannot tell where, within an interval of
5,000, a reference occurred. We can reduce the uncertainty by increasing the
number of history bits and the frequency of interrupts (for example, 10 bits
and interrupts every 1,000 references). However, the cost to service these more
frequent interrupts will be correspondingly higher.

9.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 9.21). If the
actual page-fault rate exceeds the upper limit, we allocate the process another
frame; if the page-fault rate falls below the lower limit, we remove a frame
from the process. Thus, we can directly measure and control the page-fault
rate to prevent thrashing.

As with the working-set strategy, we may have to suspend a process. If the
page-fault rate increases and no free frames are available, we must select some
process and suspend it. The freed frames are then distributed to processes with
high page-fault rates.

number of frames

Figure 9.21 Page-fault frequency.

https://hemanthrajhemu.github.io

348 Chapter 9 Virtual Memory

T ^

rafcife ifewtrfeHgiire •SJGji
f •• tiros ;• as .refeifgiifieg M: daja^aMt Cocife:;sKciioii§

r:e -{lie %
fapft

Is

at:fe' [fafls.

oceujrs
rK!
flrig

ihis:
W i;

m|jni0754
^tj: this

.the
.; sta:rt;ofoneipeak andithestartiofithe ne:Xt:peak;;iljustifa;t£js;
one warkine set to ai

9.7 Memory-Mapped Files

Consider a sequential read of a file on disk using the standard system calls
openQ, readO, and w r i t e Q . Each file access requires a system call and disk
access. Alternatively, we can use the virtual memory techniques discussed
so far to treat file I/O as routine memory accesses. This approach, known as
memory mapping a file, allows a part of the virtual address space to be logically
associated with the file.

9.7.1 Basic Mechanism

Memory mapping a file is accomplished by mapping a disk block to a page (or
pages) in memory. Initial access to the file proceeds through ordinary demand
paging, resulting in a page fault. However, a page-sized portion of the file
is read from the file system into a physical page (some systems may opt

https://hemanthrajhemu.github.io

9.7 Memory-Mapped Files 349

to read in more than a page-sized chunk of memory at a time). Subsequent
reads and writes to the file are handled as routine memory accesses, thereby
simplifying file access and usage by allowing the system to manipulate files
through memory rather than incurring the overhead of using the readQ and
wr i teO system calls.

Note that writes to the file mapped in memory are not necessarily
immediate (synchronous) writes to the file on disk. Some systems may choose
to update the physical file when the operating system periodically checks
whether the page in memory has been modified. When the file is closed, all the
memory-mapped data are written back to disk and removed from the virtual
memory of the process.

Some operating systems provide memory mapping only through a specific
system call and use the standard system calls to perform all other file I/O.
However, some systems choose to memory-map a file regardless of whether
the file was specified as memory-mapped. Let's take Solaris as an example. If
a file is specified as memory-mapped (using the mmapO system call), Solaris
maps the file into the address space of the process. If a file is opened and
accessed using ordinary system calls, such as openO, read() , and wr i t e () ,
Solaris still memory-maps the file; however, the file is mapped to the kernel
address space. Regardless of how the file is opened, then, Solaris treats all
file I/O as memory-mapped, allowing file access to take place via the efficient
memory subsystem.

Multiple processes may be allowed to map the same file concurrently,
to allow sharing of data. Writes by any of the processes modify the data in
virtual memory and can be seen by all others that map the same section of

. j

process A

I r

I •

I I
I I
I I

virtual memory

I
I
I I"

I
L_

r - i +• -
• r

physical memory

process B
virtual memory

I 2 ; 5 ; 4 [5

disk file

Figure 9.23 Memory-mapped files.

https://hemanthrajhemu.github.io

350 Chapter 9 Virtual Memory

the file. Given our earlier discussions of virtual memory, it should be* clear
how the sharing of memory-mapped sections of memory is implemented:
The virtual memory map of each sharing process points to the same page of
physical memory—the page that holds a copy of the disk block. This memory
sharing is illustrated in Figure 9.23. The memory-mapping system calls can
also support copy-on-write functionality, allowing processes to share a file in
read-only mode but to have their own copies of any data they modify. So that
access to the shared data is coordinated, the processes involved might use one
of the mechanisms for achieving mutual exclusion described in Chapter 6.

In many ways, the sharing of memory-mapped files is similar to shared
memory as described in Section 3.4.1. Not all systems use the same mechanism
for both; on UNIX and Linux systems, for example, memory mapping is
accomplished with the mmap () system call, whereas shared memory is achieved
with the POSJX-compliant shmgetO and shmatO systems calls (Section
3.5.1). On Windows NT, 2000, and XP systems, however, shared memory is
accomplished by memory mapping files. On these systems, processes can
communicate using shared memory by having the communicating processes
memory-map the same file into their virtual address spaces. The memory-
mapped file serves as the region of shared meniory between the communicating
processes (Figure 9.24). In the following section, we illustrate support in the
Win32 API for shared memory using memory-mapped files.

9.7.2 Shared Memory in the Win32 API

The general outline for creating a region of shared, memory using memory-
mapped files in the Win32 API involves first creating a file mapping for the file
to be mapped and then establishing a view of the mapped file in a process's
virtual address space. A second process can then open and create a view of
the mapped file in its virtual address space. The mapped file represents the
shared-memory object that will enable communication to take place between
the processes.

We next illustrate these steps in more detail. In this example, a producer
process first creates a shared-memory object using the memory-mapping
features available in the Win32 API. The producer then writes a message

process-] process2

••shared- ;:
%riet?nery v

~ - -. . memory-mapped
~ ~ - _ file

;; shared ;:
;:; memory v

: shiaped
rnemdry:

Figure 9.24 Shared memory in Windows using memory-mapped I/O.

https://hemanthrajhemu.github.io

9.7 Memory-Mapped Files 351

to shared memory. After that, a consumer process opens a mapping tp the
shared-memory object and reads the message written by the consumer.

To establish a memory-mapped file, a process first opens the file to be
mapped with the Crea teFi leO function, which returns a HANDLE to the
opened file. The process then creates a mapping of this file HANDLE using
the CreateFileMappingO function. Once the file mapping is established, the
process then establishes a view of the mapped file in its virtual address space
with the MapViewOf FileC) function. The view of the mapped file represents
the portion of the file being mapped in the virtual address space of the process
—the entire file or only a portion of it may be mapped. We illustrate this

#ir.clude <windows . h>
#irdude <stdio.h>

inn mainfint argc, char *argv[]i

HANDLE hFile, hKapFile;

LPVCID lpMapAddress;

hFile = CreateFile ("temp, txt" , /,/ file name
GENERIC-READ | GENERIC-WRITE, // read/write access

0, // no sharing of the file
NULL, // default security

OPEN-ALWAYS, /./ open new or existing file

FILE-ATTRIBUTEJSIORMAL, // routine file attributes

NULL) ; /./ no file template

hKapFile = CreateFileMapping(hFile, // file handle
NULL, /./ default security

PAGE-READWRITE, // read/write access ;o mapped pages

0, // map entire file

0,

TEXT("SharedObject")); // named shared memory object

lpMapAddress = MapViewOfFile(hMapFile, // mapped object handle

FILE_MAP_ALLJ\CCESS, // read/write access

0, // mapped view of entire file

0,

0) ;

/./ write to shared memory
sprintf(lpMapAddress,"Shared memory message");

UnmapViewOfFile (lpMapAddress) ,-

CloseHandle(hFile);

CloseHandle (hMapFile) ,•

Figure 9.25 Producer writing to shared memory using the Win32 API.

https://hemanthrajhemu.github.io

352 Chapter 9 Virtual Memory

sequence in the program shown in Figure 9.25. (We eliminate much of the error
checking for code brevity.)

The call to CreateFileMapping O creates a named shared-memory object
calledSharedObject. The consumer process will communicate using this
shared-memory segment by creating a mapping to the same named object.
The producer then creates a view of the memory-mapped file in its virtual
address space. By passing the last three parameters the value 0, it indicates
that the mapped view is the entire file. It could instead have passed values
specifying an offset and size, thus creating a view containing only a subsection
of the file. (It is important to note that the entire mapping may not be loaded
into memory when the mapping is established. Rather, the mapped file may be
demand-paged, thus bringing pages into memory only as they are accessed.)
The MapViewDf F i le () function returns a pointer to the shared-memory object;
any accesses to this memory location are thus accesses to the memory-mapped
file. In this instance, the producer process writes the message "Shared memory
message" to shared memory.

A program illustrating how the consumer process establishes a view of
the named shared-memory object is shown in Figure 9.26. This program is
somewhat simpler than the one shown in Figure 9.25, as all that is necessary
is for the process to create a mapping to the existing named shared-memory
object. The consumer process must also create a view of the mapped file, just
as the producer process did in the program in Figure 9.25. The consumer then

^include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])

{
HANDLE hMapFile;

LPVOID lpMapAddress;

hMapFile = OpenFileMapping{FILEJCAP_fl.LLJ^CCESS, // R/W access
FALSE, // no inheritance
TEXT("SharedObject">); // nane of mapped file object

lpMapAddress = MapViev.'OfFile (hMapFile, // mapped object handle

FILE31AP_ALL_ACCESS, // read/write access

0, // mapped view of entire file

0,

0) ;

// read fron shared memory

printf("Read message %s", ipMapAddress);

UnmapViewOfFile(IpMapAddress] ;

CloseHandle(hMapFile};

Figure 9.26 Consumer reading from shared memory using the Win32 API.

https://hemanthrajhemu.github.io

9.8 Allocating Kernel Memory 3s3

reads from shared memory the message "Shared memory message" that was
written by the producer process.

Finally, both processes remove the view of the mapped file with a call to
UnmapViewOfFileO. We provide a programming exercise at the end of this
chapter using shared memory with memory mapping in the Win32 API.

9.7.3 M e m o r y - M a p p e d I/O

In the case of I/O, as mentioned in Section 1.2.1, each I/O controller includes
registers to hold commands and the data being transferred. Usually, special I/O
instructions allow data transfers between these registers and system memory.
To allow more convenient access to I/O devices, many computer architectures
provide memory-mapped I/O. In this case, ranges of memory addresses are
set aside and are mapped to the device registers. Reads and writes to these
memory addresses cause the data to be transferred to and from the device
registers. This method is appropriate for devices that have fast response times,
such as video controllers. In the IBM PC, each location on the screen is mapped
to a memory location. Displaying text on the screen is almost as easy as writing
the text into the appropriate memory-mapped locations.

Memory-mapped I/O is also convenient for other devices, such as the serial
and parallel ports used to connect modems and printers to a computer. The
CPU transfers data through these kinds of devices by reading and wrriting a few
device registers, called an I/O port. To send out a long string of bytes through a
memory-mapped serial port, the CPU writes one data byte to the data register
and sets a bit in the control register to signal that the byte is available. The device
takes the data byte and then clears the bit in the control register to signal that
it is ready for the next byte. Then the CPU can transfer the next byte. If the
CPU uses polling to watch the control bit, constantly looping to see whether
the device is ready, this method of operation is called programmed I/O (PIO).
If the CPU does not poll the control bit, but instead receives an interrupt when
the device is ready for the next byte, the data transfer is said to be interrupt
driven.

9.8 Allocating Kernel Memory

When a process running in user mode requests additional memory, pages
are allocated from the list of free page frames maintained by the kernel.
This list is typically populated using a page-replacement algorithm such as
those discussed in Section 9.4 and most likely contains free pages scattered
throughout physical memory, as explained earlier. Remember, too, that if a
user process requests a single byte of memory, internal fragmentation will
result, as the process will be granted, an entire page frame.

Kernel memory, however, is often allocated from a free-memory pool
different from the list used to satisfy ordinary user-mode processes. There
are two primary reasons for this:

1. The kernel requests memory for data structures of varying sizes, some of
which are less than a page in size. As a result, the kernel must use memory
conservatively and attempt to minimize waste due to fragmentation. This

https://hemanthrajhemu.github.io

354 Chapter 9 Virtual Memory

is especially important because many operating systems do not subject
kernel code or data to the paging system.

2. Pages allocated to user-mode processes do not necessarily have to be in
contiguous physical memory. However, certain hardware devices interact
directly with physical memory—-without the benefit of a virtual memory
interface—and consequently may require memory residing in physically
contiguous pages.

In the following sections, we examine two strategies for managing free memory
that is assigned to kernel processes.

9.8.1 Buddy System

The "buddy system" allocates memory from a fixed-size segment consisting
of physically contiguous pages. Memory is allocated from this segment using
a power-of-2 allocator, which satisfies requests in units sized as a power of 2
(4 KB, 8 KB, 16 KB, and so forth). A request in units not appropriately sized is
rounded up to the next highest power of 2. For example, if a request for 11 KB
is made, it is satisfied with a 16-KB segment. Next, we explain the operation of
the buddy system with a simple example.

Let's assume the size of a memory segment is initially 256 KB and the
kernel requests 21 KB of memory. The segment is initially divided into two
buddies—which we will call Ai and AR—each 128 KB in size. One of these
buddies is further divided into two 64-KB buddies—B; and B«. However, the
next-highest power of 2 from 21 KB is 32 KB so either B;_ or BR is again divided
into two 32-KB buddies, C[. and CR. One of these buddies is used to satisfy
the 21-KB request. This scheme is illustrated in Figure 9.27, where C;_ is the
segment allocated to the 21 KB request.

K B : • .-•

L ::; ;i; ;

physically

•;•»:•• 6 4 ; i K B

. :: B^ ;.

contiguous

256KB

pages

;' | ; | : ; : - | A H i|o; :: • • : ; ' : ; : : ; : : ; ' ;•:;
...^...|... • • J v j ^ j Q 1 1 f i ^ 'L^J ' ; 1 : " " ; ' i1 ;1 " i';1!" " ; ' i1 ;1 ••-;•-••••

32rKB: J32 K8:

Figure 9.27 Buddy system allocation.

https://hemanthrajhemu.github.io

9.8 Allocating Kernel Memory 355

An advantage of the buddy system is how quickly adjacent buddies dan be
combined to form larger segments using a technique known as coalescing. In
Figure 9.27, for example, when the kernel releases the Q. unit it was allocated,
the system can coalesce C-L and CR into a 64-KB segment. This segment, BL, can
in turn be coalesced with its buddy BR to form a 128-KB segment. Ultimately,
we can end up with the original 256-KB segment.

The obvious drawback to the buddy system is that rounding up to the
next highest power of 2 is very likely to cause fragmentation within allocated
segments. For example, a 33-KB request can only be satisfied with a 64-
KB segment. In fact, we cannot guarantee that less than 50 percent of the
allocated unit will be wasted due to internal fragmentation. In the following
section, we explore a memory allocation scheme where no space is lost due to
fragmentation.

9.8.2 Slab Allocation

A second strategy for allocating kernel memory is known as slab allocation. A
slab is made up of one or more physically contiguous pages. A cache consists of
one or more slabs. There is a single cache for each unique kernel data structure
—for example, a separate cache for the data structure representing process
descriptors, a separate cache for file objects, a separate cache for semaphores,
and so forth. Each cache is populated with objects that are instantiations of the
kernel data structure the cache represents. For example, the cache representing
semaphores stores instances of semaphores objects, the cache representing
process descriptors stores instances of process descriptor objects, etc. The
relationship between slabs, caches, and objects is shown in Figure 9.28. The
figure shows two kernel objects 3 KB in size and three objects 7 KB in size.
These objects are stored in their respective caches.

kernel objects caches slabs

3-KB
objects

7-KB
objects

physically
contiguous
pages

Figure 9.28 Slab allocation.

https://hemanthrajhemu.github.io

356 Chapter 9 Virtual Memory

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects—which are initially marked as free—are
allocated to the cache. The number of objects in the cache depends on the size of
the associated slab. For example, a 12-KB slab (comprised of three continguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

Let's consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type s t r u c t task^st ruct , which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the s t r u c t t a s k . s t r u c t object from its
cache. The cache will fulfill the request using a s t ruc t task^s t ruc t object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The slab allocator provides two main benefits:

1. No memory is wasted due to fragmentation. Fragmentation is not an
issue because each unique kernel data structure has an associated cache,
and each cache is comprised of one or more slabs that are divided into
chunks the size of the objects being represented. Thus, when the kernel
requests memory for an object, the slab allocator returns the exact amount
of memory required to represent the object.

2. Memory requests can be satisfied quickly. The slab allocation scheme
is thus particularly effective for managing memory where objects are
frequently allocated and deallocated, as is often the case with requests
from the kernel. The act of allocating—and releasing—memory can be
a time-consuming process. However, objects are created in advance and
thus can be quickly allocated from the cache. Furthermore, when the
kernel has finished with an object and releases it, it is marked as free and
returned to its cache, thus making it immediately available for subsequent
requests from the kernel.

The slab allocator first appeared in the Solaris 2.4 kernel. Because of its
general-purpose nature, this allocator is now also used for certain user-mode
memory requests in Solaris. Linux originally used the buddy system; however,
beginning with version 2.2, the Linux kernel adopted the slab allocator.

https://hemanthrajhemu.github.io

9.9 Other Considerations 357

9.9 Other Considerations *

The major decisions that we make for a paging system are the selections of
a replacement algorithm and an allocation policy, which we discussed earlier
in this chapter. There are many other considerations as welt and we discuss
several of them here.

9.9.1 Prepaging

An obvious property of pure demand paging is the large number of page faults
that occur when a process is started. This situation results from trying to get the
initial locality into memory. The same situation may arise at other times. For
instance, when a swapped-out process is restarted, all its pages are on the disk,
and each must be brought in by its own page fault. Prepaging is an attempt to
prevent this high level of initial paging. The strategy is to bring into memory at
one time all the pages that will be needed. Some operating systems—notably
Solaris—prepage the page frames for small files.

In a system using the working-set model, for example, we keep with each
process a list of the pages in its working set. If we must suspend a process
(due to an I/O wait or a lack of free frames), we remember the working set for
that process. When the process is to be resumed (because I/O has finished or
enough free frames have become available), we automatically bring back into
memory its entire working set before restarting the process.

Prepaging may offer an advantage in some cases. The question is simply
whether the cost of using prepaging is less than the cost of servicing the
corresponding page faults. It may well be the case that many of the pages
brought back into memory by prepaging will not be used.

Assume that s pages are prepaged and a fraction a of these s pages is
actually used (0 < a < 1). The question is whether the cost of the s*a saved
page faults is greater or less than the cost of prepaging s * (1 — a) unnecessary
pages. If a is close to 0, prepaging loses; if a is close to 1, prepaging wins.

9.9.2 P a g e Size

The designers of an operating system for an existing machine seldom have
a choice concerning the page size. However, when new machines are being
designed, a decision regarding the best page size must be made. As you might
expect there is no single best page size. Rather, there is a set of factors that
support various sizes. Page sizes are invariably powers of 2, generally ranging
from 4,096 (212) to 4,194,304 (222) bytes.

How do we select a page size? One concern is the size of the page table. For
a given virtual memory space, decreasing the page size increases the number
of pages and hence the size of the page table. For a virtual memory of 4 MB
(222), for example, there would be 4,096 pages of 1,024 bytes but only 512 pages
of 8,192 bytes. Because each active process must have its own copy of the page
table, a large page size is desirable.

Memory is better utilized with smaller pages, however. If a process is
allocated memory starting at location 00000 and continuing until it has as much
as it needs, it probably will not end exactly on a page boundary. Thus, a part
of the final page must be allocated (because pages are the units of allocation.)
but will be unused (creating internal fragmentation). Assuming independence

https://hemanthrajhemu.github.io

358 Chapter 9 Virtual Memory

of process size and page size, we can expect that, on the average, half of the
final page of each process will be wasted. This loss is only 256 bytes for a page
of 512 bytes but is 4,096 bytes for a page of 8,192 bytes. To minimize internal
fragmentation, then, we need a small page size.

Another problem is the time required to read or write a page. I/O time is
composed of seek, latency, and transfer times. Transfer time is proportional
to the amount transferred (that is, the page size)—a fact that would seem
to argue for a small page size. However, as we shall see in Section 12.1.1,
latency and seek time normally dwarf transfer time. At a transfer rate of 2
MB per second, it takes only 0.2 milliseconds to transfer 512 bytes. Latency
time, though, is perhaps 8 milliseconds and seek time 20 milliseconds. Of
the total I/O time (28.2 milliseconds), therefore, only 1 percent is attributable
to the actual transfer. Doubling the page size increases I/O time to only 28.4
milliseconds. It takes 28.4 milliseconds to read a single page of 1,024 bytes but
56.4 milliseconds to read the same amount as two pages of 512 bytes each.
Thus, a desire to minimize I/O time argues for a larger page size.

With a smaller page size, though, total I/O should be reduced, since locality
will be improved. A smaller page size allows each page to match program
locality more accurately. For example, consider a process 200 KB in size, of
which only half (100 KB) is actually used in an execution. If we have only one
large page, we must bring in the entire page, a total of 200 KB transferred and
allocated. If instead we had pages of only 1 byte, then we could bring in only
the 100 KB that are actually used, resulting in only 100 KB transferred and
allocated. With a smaller page size, we have better resolution, allowing us to
isolate only the memory that is actually needed. With a larger page size, we
must allocate and transfer not only what is needed but also anything else that
happens to be in the page, whether it is needed or not. Thus, a smaller page
size should result in less I/O and less total allocated memory.

But did you notice that with a page size of 1 byte, we would have a page
fault for each byte? A process of 200 KB that used only half of that memory
would generate only one page fault with a page size of 200 KB but 102,400 page
faults with a page size of 1 byte. Each page fault generates the large amount
of overhead needed for processing the interrupt, saving registers, replacing a
page, queueing for the paging device, and updating tables. To minimize the
number of page faults, we need to have a large page size.

Other factors must be considered as well (such as the relationship between
page size and sector size on the paging device). The problem has no best
answer. As we have seen, some factors (internal fragmentation, locality) argue
for a small page size, whereas others (table size, I/O time) argue for a large
page size. However, the historical trend is toward larger page sizes. Indeed,
the first edition of Operating Systems Concepts (1983) used 4,096 bytes as the
upper bound on page sizes, and this value was the most common page size in
1990. However, modern systems may now use much larger page sizes, as we
will see in the following section.

9 .9 .3 TLB R e a c h

In Chapter 8, we introduced the hit ratio of the TLB. Recall that the hit ratio
for the TLB refers to the percentage of virtual address translations that are
resolved in the TLB rather than the page table. Clearly, the hit ratio is related

https://hemanthrajhemu.github.io

9.9 Other Considerations 359

to the number of entries in the TLB, and the way to increase the hit ratio is
by increasing the number of entries in the TLB. This, however, does not come
cheaply, as the associative memory used to construct the TLB is both expensive
and power hungry.

Related to the hit ratio is a similar metric: the TLB reach. The TLB reach refers
to the amount of memory accessible from the TLB and is simply the number
of entries multiplied by the page size. Ideally, the working set for a process is
stored in the TLB. If not, the process will spend a considerable amount of time
resolving memory references in the page table rather than the TLB. If we double
the number of entries in the TLB, we double the TLB reach. However, for some
memory-intensive applications, this may still prove insufficient for storing the
working set.

Another approach for increasing the TLB reach is to either increase the size
of the page or provide multiple page sizes. If we increase the page size—say,
from 8 KB to 32 KB—we quadruple the TLB reach. However, this may lead to
an increase in fragmentation for some applications that do not require such
a large page size as 32 KB. Alternatively, an operating system may provide
several different page sizes. For example, the UltraSPARC supports page sizes
of 8 KB, 64 KB, 512 KB, and 4 MB. Of these available pages sizes, Solaris uses
both 8-KB and 4-MB page sizes. And with a 64-entry TLB, the TLB reach for
Solaris ranges from 512 KB with 8-KB pages to 256 MB with 4-MB pages. For the
majority of applications, the 8-KB page size is sufficient, although Solaris maps
the first 4 MB of kernel code and data with two 4-MB pages. Solaris also allows
applications—such as databases—to take advantage of the large 4-MB page
size.

Providing support for multiple pages requires the operating system—
not hardware—to manage the TLB. For example, one of the fields in a TLB
entry must indicate the size of the page frame corresponding to the TLB entry.
Managing the TLB in software and not hardware comes at a cost in performance.
However, the increased hit ratio and TLB reach offset the performance costs.
Indeed, recent trends indicate a move toward software-managed TLBs and
operating-system support for multiple page sizes. The UltraSPARC, MIPS,
and Alpha architectures employ software-managed TLBs. The PowerPC and
Pentium manage the TLB in hardware.

9.9.4 Inverted Page Tables

Section 8.5.3 introduced the concept of the inverted page table. The purpose
of this form of page management is to reduce the amount of physical memory
needed to track virtual-to-physical address translations. We accomplish this
savings by creating a table that has one entry per page of physical memory,
indexed by the pair <process-id, page-number>.

Because they keep information about which virtual memory page is stored
in each physical frame, inverted page tables reduce the amount of physical
memory needed to store this information. However, the inverted page table
no longer contains complete information about the logical address space of a
process, and that information is required if a referenced page is not currently
in memory. Demand paging requires this information to process page faults.
For the information to be available, an external page table (one per process)

https://hemanthrajhemu.github.io

360 Chapter 9 Virtual Memory

must be kept. Each such table looks like the traditional per-process page*table
and contains information on where each virtual page is located.

But do external page tables negate the utility of inverted page tables? Since
these tables are referenced only when a page fault occurs, they do not need to
be available quickly. Instead, they are themselves paged in and out of memory
as necessary. Unfortunately, a page fault may now cause the virtual memory
manager to generate another page fault as it pages in the external page table it
needs to locate the virtual page on the backing store. This special case requires
careful handling in the kernel and a delay in the page-lookup processing.

9.9.5 Program Structure

Demand paging is designed to be transparent to the user program. In many
cases, the user is completely unaware of the paged nature of memory. In other
cases, however, system performance can be improved if the user (or compiler)
has an awareness of the underlying demand paging.

Let's look at a contrived but informative example. Assume that pages are
128 words in size. Consider a C program whose function is to initialize to 0
each element of a 128-by-128 array. The following code is typical:

int i , j ;

int [128][128] data;

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i] [j] = 0;

Notice that the array is stored row major; that is, the array is stored
data[0] [0], data[0] [1], - • -, data[0] [127], data[l] [0], data[l] [1], • • -,
data [127] [127]. For pages of 128 words, each row takes one page. Thus,
the preceding code zeros one word in each page, then another word in each
page, and so on. If the operating system allocates fewer than 128 frames to the
entire program, then its execution will result in 128 x 128 = 16,384 page faults.
In. contrast, changing the code to

int i, j ;
int[128][128] data;

for (i = 0; i < 128; i++)

for (j = 0 ; j < 128; j++)
data[i] [j] = 0;

zeros all the words on one page before starting the next page, reducing the
number of page faults to 128.

Careful selection of data structures and programming structures can
increase locality and hence lower the page-fault rate and the number of pages in
the working set. For example, a stack has good locality, since access is always
made to the top. A hash table, in contrast, is designed to scatter references,
producing bad locality. Of course, locality of reference is just one measure of
the efficiency of the use of a data structure. Other heavily weighted factors

https://hemanthrajhemu.github.io

9.9 Other Considerations 361

include search speed, total number of memory references, and total numBer of
pages touched.

At a later stage, the compiler and loader can have a significant effect on
paging. Separating code and data and generating reentrant code means that
code pages can he read-only and hence will never he modified. Clean pages
do not have to be paged out to be replaced. The loader can avoid placing
routines across page boundaries, keeping each routine completely in one page.
Routines that call each other many times can be packed into the same page.
This packaging is a variant of the bin-packing problem of operations research:
Try to pack the variable-sized load segments into the fixed-sized pages so that
interpage references are minimized. Such an approach is particularly useful
for large page sizes.

The choice of programming language can affect paging as well. For
example, C and C++ use pointers frequently, and pointers tend to randomize
access to memory, thereby potentially diminishing a process's locality. Some
studies have shown that object-oriented programs also tend to have a poor
locality of reference.

9.9.6 I/O Interlock

When demand paging is used, we sometimes need to allow some of the pages
to be locked in memory. One such situation occurs when I/O is done to or from
user (virtual) memory. I/O is often implemented by a separate I/O processor.
For example, a controller for a USB storage device is generally given the number
of bytes to transfer and a memory address for the buffer (Figure 9.29). When
the transfer is complete, the CPU is interrupted.

buffer

Figure 9.29 The reason why frames used for I/O must be in memory.

https://hemanthrajhemu.github.io

362 Chapter 9 Virtual Memory

We must be sure the following sequence of events does not occur: A process
issues an I/O request and is put in a queue for that I/O device. Meanwhile, the
CPU is given to other processes. These processes cause page faults; and one of
them, using a global replacement algorithm, replaces the page containing the
memory buffer for the waiting process. The pages are paged out. Some time
later, when the I/O request advances to the head of the device queue, the I/O
occurs to the specified address. However, this frame is now being used for a
different page belonging to another process.

There are two common solutions to this problem. One solution is never to
execute I/O to user memory. Instead, data are always copied between system
memory and user memory. I/O takes place only between system memory
and the I/O device. To write a block on tape, we first copy the block to system
memory and then write it to tape. This extra copying may result in unacceptably
high overhead.

Another solution is to allow pages to be locked into memory. Here, a lock
bit is associated with every frame. If the frame is locked, it cannot be selected
for replacement. Under this approach, to write a block on tape, we lock into
memory the pages containing the block. The system can then continue as
usual. Locked pages cannot be replaced. When the I/O is complete, the pages
are unlocked.

Lock bits are used in various situations. Frequently, some or all of the
operating-system kernel is locked into memory, as many operating systems
cannot tolerate a page fault caused by the kernel.

Another use for a lock bit involves normal page replacement. Consider
the following sequence of events: A low-priority process faults. Selecting a
replacement frame, the paging system reads the necessary page into memory.
Ready to continue, the low-priority process enters the ready queue and waits
for the CPU. Since it is a low-priority process, it may not be selected by the
CPU scheduler for a time. While the low-priority process waits, a high-priority
process faults. Looking for a replacement, the paging system sees a page that
is in memory but has not been referenced or modified: Tt is the page that the
low-priority process just brought in. This page looks like a perfect replacement:
It is clean and will not need to be written out, and it apparently has not been
used for a, long time.

Whether the high-priority process should be able to replace the low-priority
process is a policy decision. After all, we are simply delaying the low-priority
process for the benefit of the high-priority process. However, we are wasting
the effort spent to bring in the page for the low-priority process. If we decide
to prevent replacement of a newly brought-in page until it can be used at least
once, then we can use the lock bit to implement this mechanism. When a page
is selected for replacement, its lock bit is turned on; it remains on until the
faulting process is again dispatched.

Using a lock bit can be dangerous: The lock bit may get turned on but
never turned off. Should this situation occur (because of a bug in the operating
system, for example), the locked frame becomes unusable. On a single-user
system, the overuse of locking would hurt only the user doing the locking.
Multiuser systems must be less trusting of users. For instance, Solaris allows
locking "hints," but it is free to disregard these hints if the free-frame pool
becomes too small or if an individual process requests that too many pages be
locked in memory.

https://hemanthrajhemu.github.io

9.10 Operating-System Examples 363

9.10 Operating-System Examples

In this section, we describe how Windows XP and Solaris implement virtual
memory.

9.10.1 Windows XP

Windows XP implements virtual memory using demand paging with clus-
tering. Clustering handles page faults by bringing in not only the faulting
page but also several pages following the faulting page. When a process is first
created, it is assigned a working-set minimum and maximum. The working-set
minimum is the minimum number of pages the process is guaranteed to have
in memory. If sufficient memory is available, a process may be assigned as
many pages as its working-set maximum. For most applications, the value
of working-set minimum and working-set maximum is 50 and 345 pages,
respectively. (In some circumstances, a process may be allowed to exceed its
working-set maximum.) The virtual memory manager maintains a list of free
page frames. Associated with this list is a threshold value that is used to indicate
whether sufficient free memory is available. If a page fault occurs for a process
that is below its working-set maximum, the virtual memory manager allocates
a page from this list of free pages. If a process is at its working-set maximum
and it incurs a page fault, it must select a page for replacement using a local
page-replacement policy.

When the amount of free memory falls below the threshold, the virtual
memory manager uses a tactic known as automatic working-set trimming to
restore the value above the threshold. Automatic working-set trimming works
by evaluating the number of pages allocated to processes. If a process has
been allocated more pages than its working-set minimum, the virtual memory
manager removes pages until the process reaches its working-set minimum. A
process that is at its working-set minimum may be allocated pages from the
free-page frame list once sufficient free memory is available.

The algorithm used to determine which page to remove from a working set
depends on the type of processor. On single-processor 80x86 systems, Windows
XP uses a variation of the clock algorithm discussed in Section 9.4.5.2. On
Alpha and, multiprocessor x86 systems, clearing the reference bit may require
invalidating the entry in the translation look-aside buffer on other processors.
Rather than incurring this overhead, Windows XP uses a variation on the FIFO
algorithm discussed in Section 9.4.2.

9.10.2 Solaris

In Solaris, when a thread incurs a page fault, the kernel assigns a page to
the faulting thread from the list of free pages it maintains. Therefore, it is
imperative that the kernel keep a sufficient amount of free memory available.
Associated with this list of free pages is a parameter—lotsfree—that represents
a threshold to begin paging. The lotsfree parameter is typically set to 1/64 the
size of the physical memory. Four times per second, the kernel checks whether
the amount of free memory is less than lotsfree. If the number of free pages falls
below lotsfree, a process known as the pageout starts up. The pageout process is
similar to the second-chance algorithm, described in Section 9.4.5.2, except that
it uses two hands while scanning pages, rather than one as described in Section

https://hemanthrajhemu.github.io

364 Chapter 9 Virtual Memory

8192
fastscan

100
siowscan

minfree desfree lotsfree
amount of free memory

Figure 9.30 Solaris page scanner.

9.4.5.2. The pageout process works as follows: The front hand of the clock scans
all pages in memory, setting the reference bit to 0. Later, the back hand of the
clock examines the reference bit for the pages in memory, appending those
pages whose bit is still set to 0 to the free list and writing to disk their contents
if modified. Solaris maintains a cache list of pages that have been "freed" but
have not yet been overwritten. The free list contains frames that have invalid
contents. Pages can be reclaimed from the cache list if they are accessed before
being moved to the free list.

The pageout algorithm uses several parameters to control the rate at which
pages are scanned (known as the scanrate). The scanrate is expressed in pages
per second and ranges from siowscan to fastscan. When free memory falls
below lotsfree, scanning occurs at siowscan pages per second and progresses
to fastscan, depending on the amount of free memory available. The default
value of siowscan is 100 pages per second; fastscan is typically set to the value
(total physical pages)/2 pages per second, with a maximum of 8,192 pages per
second. This is shown in Figure 9.30 (with fastscan set to the maximum).

The distance (in pages) between the hands of the clock is determined by
a system parameter, lumdspread. The amount of time between the front hand's
clearing a bit and the back hand's investigating its value depends on the scanrate
and the handspread. If scanrate is 100 pages per second and lmndspread is 1,024
pages, 10 seconds can pass between the time a bit is set by the front hand
and the time it is checked by the back hand. However, because of the demands
placed on the memory system, a scanrate of several thousand is not uncommon.
This means that the amount of time between clearing and investigating a bit is
often a few seconds.

As mentioned above, the pageout process checks memory four times per
second. However, if free memory falls below desfree (Figure 9.30), pageout
will run 100 times per second with the intention of keeping at least desfree
free memory available. If the pageout process is unable to keep the amount

https://hemanthrajhemu.github.io

9.11 Summary 365

of free memory at desfrce for a 30-second average,, the kernel begins swapping
processes, thereby freeing all pages allocated to swapped processes. In general,
the kernel looks for processes that have been idle for long periods of time. If
the system is unable to maintain the amount: of free memory at minfrec, the
pageout process is called for every request for a new page.

Recent releases of the Solaris kernel have provided enhancements of
the paging algorithm. One such enhancement involves recognizing pages
from shared libraries. Pages belonging to libraries that are being shared by
several processes—even if they are eligible to be claimed by the scanner—
are skipped during the page-scanning process. Another enhancement concerns
distinguishing pages that have been allocated to processes from pages allocated
to regular files. This is known as priority paging and is covered in Section 11.6.2.

9,11 S

It is desirable to be able to execute a process whose logical address space is
larger than the available physical address space. Virtual memory is a technique
that enables us to map a large logical address space onto a smaller physical
memory. Virtual memory allowrs us to run extremely large processes and to
raise the degree of multiprogramming, increasing CPU utilization. Further, it
frees application programmers from worrying about memory availability. In
addition, with virtual memory, several processes can share system libraries
and memory. Virtual memory also enables us to use an efficient type of process
creation known as copy-on-write, wherein parent and child processes share
actual pages of memory.

Virtual memory is commonly implemented by demand paging. Pure
demand paging never brings in a page until that page is referenced. The first
reference causes a page fault to the operating system. The operating-system
kernel consults an internal table to determine where the page is located on the
backing store. Tt then finds a free frame and reads the page in from the backing
store. The page table is updated to reflect this change, and the instruction that
caused the page fault is restarted. This approach allows a process to run even
though its entire memory image is not in main memory at once. As long as the
page-fault rate is reasonably low, performance is acceptable.

We can use demand paging to reduce the number of frames allocated to
a process. This arrangement can increase the degree of multiprogramming
(allowing more processes to be available for execution at one time) and—in
theory, at least—the CPU utilization of the system. It also allows processes
to be run even though their memory requirements exceed the total available
physical memory Such processes run in virtual memory.

If total memory requirements exceed the physical memory, then it may be
necessary to replace pages from memory to free frames for new pages. Various
page-replacement algorithms are used. FIFO page replacement is easy to pro-
gram but suffers from Belady's anomaly. Optimal page replacement requires
future knowledge. LRU replacement is an approximation of optimal page
replacement, but even it may be difficult to implement. Most page-replacement
algorithms, such as the second-chance algorithm, are approximations of LRU
replacement.

https://hemanthrajhemu.github.io

366 Chapter 9 Virtual Memory

In addition to a page-replacement algorithm, a frame-allocation policy
is needed. Allocation can be fixed, suggesting local page replacement, or
dynamic, suggesting global replacement. The working-set model assumes that
processes execute in localities. The working set is the set of pages in the current
locality. Accordingly, each process should be allocated enough frames for its
current working set. If a process does not have enough memory for its working
set, it will thrash. Providing enough frames to each process to avoid thrashing
may require process swapping and scheduling.

Most operating systems provide features for memory mapping files, thus
allowing file I/O to be treated as routine memory access. The Win32 API
implements shared memory through memory mapping files.

Kernel processes typically require memory to be allocated using pages
that are physically contiguous. The buddy system allocates memory to kernel
processes in units sized according to a power of 2, which often results in
fragmentation. Slab allocators assign kernel data structures to caches associated
with slabs, which are made up of one or more physically contiguous pages.
With slab allocation, no memory is wasted due to fragmentation, and memory
requests can be satisfied quickly.

In addition to requiring that we solve the major problems of page
replacement and frame allocation, the proper design of a paging system
requires that we consider page size, I/O, locking, prepaging, process creation,
program structure, and other issues.

9.1 Give an example that illustrates the problem with restarting the block
move instruction (MVC) on the IBM 360/370 when the source and
destination regions are overlapping.

9.2 Discuss the hardware support required to support demand paging.

9.3 What is the copy-on-write feature and under what circumstances is it
beneficial, to use this feature? What is the hardware support required to
implement this feature?

9.4 A certain computer provides its users with a virtual-memory space of
21" bytes. The computer has 218 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4,096 bytes.
A user process generates the virtual address 11123456. Explain how
the system establishes the corresponding physical location. Distinguish
between software and hardware operations.

9.5 Assume that we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty frame
is available or if the replaced page is not modified and 20 milliseconds if
the replaced, page is modified. Memory-access time is 100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?

https://hemanthrajhemu.github.io

Exercises 367

9.6 Assume that you are monitoring the rate at which the pointer isi the
clock algorithm (which indicates the candidate page for replacement)
moves. What can you say about the system if you notice the following
behavior:

a. pointer is moving fast

b. pointer is moving slow

9.7 Discuss situations under which the least frequently used page-
replacement algorithm generates fewer page faults than the least
recently used page-replacement algorithm. Also discuss under what
circumstance the opposite holds.

9.8 Discuss situations under which the most frequently used page-
replacement algorithm generates fewer page faults than the least
recently used page-replacement algorithm. Also discuss under what
circumstance the opposite holds.

9.9 The VAX/VMS system uses a FIFO replacement algorithm for resident
pages and a free-frame pool of recently used pages. Assume that the
free-frame pool is managed using the least recently used replacement
policy. Answer the following questions:

a. If a page fault occurs and if the page does not exist in the free-
frame pool, how is free space generated for the newly requested
page?

b. If a page fault occurs and if the page exists in the free-frame pool,
how is the resident page set and the free-frame pool managed to
make space for the requested page?

c. What does the system degenerate to if the number of resident
pages is set to one?

d. What does the system degenerate to if the number of pages in the
free-frame pool is zero?

9.10 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

For each of the following, say whether it will (or is likely to) improve
CPU utilization. Explain your answers.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

https://hemanthrajhemu.github.io

368 Chapter 9 Virtual Memory

f. Install a faster hard disk or multiple controllers with rnilltiple
hard disks.

g. Add prepaging to the page-fetch algorithms,

h. Increase the page size.

9.11 Suppose that a machine provides instructions that can access memory
locations using the one-level indirect addressing scheme. What is the
sequence of page faults incurred when all of the pages of a program
are currently non-resident and the first instruction of the program is
an indirect memory load operation? What happens when the operating
system is using a per-process frame allocation technique and only two
pages are allocated, to this process?

9.12 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discard that page if it has not been used since
the last examination. What would you gain and what would you lose
by using this policy rather than LRLr or second-chance replacement?

9.13 A page-replacement algorithm should minimize the number of page
faults. We can achieve this minimization by distributing heavily used
pages evenly over all of memory, rather than having them compete for
a small number of page frames. W'e can associate with each page frame
a counter of the number of pages associated with that frame. Then,
to replace a page, we can search for the page frame with the smallest
counter.

a. Define a page-replacement algorithm using this basic idea. Specif-
ically address these problems:

1. What the initial value of the counters is
2. When counters are increased
3. When counters are decreased
4. How the page to be replaced is selected

b. How many page faults occur for your algorithm for the following
reference string, with four page frames?

1, 2, 3, 4, 5, 3, 4,1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page-
replacement strategy for the reference string in part b with four
page frames?

9.14 Consider a demand-paging system with a paging disk that has an
average access and transfer time of 20 milliseconds. Addresses are
translated through a page table in main memory, with an access time of 1
microsecond per memory access. Thus, each memory reference through
the page table takes two accesses. To improve this time, we have added
an associative memory that reduces access time to one memory reference
if the page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associative memory
and that, of those remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?

https://hemanthrajhemu.github.io

Exercises 369

9.15 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?

9.16 Is it possible for a process to have two working sets, one representing
data and another representing code? Explain.

9.17 Consider the parameter A used to define the working-set window in
the working-set model. What is the effect of setting A to a small value
on the page fault frequency and the number of active (non-suspended)
processes currently executing in the system? What is the effect when A
is set to a very high value?

9.18 Assume there is an initial 1024 KB segment where memory is allocated
using the buddy system. Using Figure 9.27 as a guide, draw the tree
illustrating how the following memory requests are allocated:

• request 240 bytes

• request 120 bytes

• request 60 bytes
n request 130 bytes

Next, modify the tree for the following releases of memory. Perform
coalescing whenever possible:

• release 250 bytes

• release 60 bytes

• release 120 bytes

9.19 The slab-allocation algorithm uses a separate cache for each different
object type. Assuming there is one cache per object type, explain why
this doesn't scale well with multiple CPUs. What could be done to address
this scalability issue?

9.20 Consider a system that allocates pages of different sizes to its processes.
What are the advantages of such a paging scheme? What modifications
to the virtual memory system provide this functionality?

9.21 Write a program that implements the FIFO and LRU page-replacement
algorithms presented in this chapter. First, generate a random page-
reference string where page numbers range from 0 to 9. Apply the
random page-reference string to each algorithm, and record the number
of page faults incurred by each algorithm. Implement the replacement
algorithms so that the number of page frames can vary from 1 to 7.
Assume that demand paging is used.

9.22 The Catalan numbers are an integer sequence C,, that appear in tree-
enumeration problems. The first Catalan numbers for n = 1. 2, 3. ... are
1,2, 5,14, 42,132 A formula generating C(i is

C =] (In) — (-"-!

https://hemanthrajhemu.github.io

370 Chapter 9 Virtual Memory-

Design two programs that communicate with shared memory using
the Win32 API as outlined in Section 9.7.2. The producer process will
generate the Catalan sequence and write it to a shared memory object.
The consumer process will then read and output the sequence from
shared memory.

In this instance, the producer process will be passed an integer
parameter on the command line specifying the number of Catalan
numbers to produce; i.e., providing 5 on the command line means the
producer process will generate the first 5 Catalan numbers.

Bibliographical Notes

Demand paging was first used in the Atlas system, implemented on the
Manchester University MUSE computer around 1960 (Kilburn et al. [1961]).
Another early demand-paging system was MULTICS, implemented on the GE
645 system (Organick [1972]).

Belady et al. [1969] were the first researchers to observe that the FIFO
replacement strategy may produce the anomaly that bears Belady's name.
Mattson et al. [1970] demonstrated that stack algorithms are not subject to
Belady's anomaly.

The optimal replacement algorithm wras presented by Belady [1966]. It was
proved to be optimal by Mattson et al. [1970]. Belady's optimal algorithm is
for a fixed allocation; Prieve and Fabry [1976] presented an optimal algorithm
for situations in which the allocation can vary.

The enhanced clock algorithm was discussed by Carr and Hennessy [1981],
The working-set model was developed by Denning [1968]. Discussions

concerning the working-set model were presented by Denning [1980].
The scheme for monitoring the page-fault rate was developed by VVulf

[1969], who successfully applied this technique to the Burroughs B5500 com-
puter system.

Wilson et al. [1995] presented several algorithms for dynamic memory allo-
cation. Johnstone and Wilson [1998] described various memory-fragmentation
issues. Buddy system memory allocators were described in Knovvlton [1965],
Peterson and Norman [1977], and Purdom, Jr. and Stigler [1970]. Bonwick
[1994] discussed the slab allocator, and Bonwick and Adams [2001] extended
the discussion to multiple processors. Other memory-fitting algorithms can
be found in Stephenson [1983], Bays [1977], and Brent [1989]. A survey of
memory-allocation strategies can be found in Wilson et al. [1995].

Solomon and Russinovich [2000] described how Windows 2000 imple-
ments virtual memory. Mauro and McDougall [2001] discussed virtual memory
in Solaris. Virtual memory techniques in Linux and BSD were described by
Bovet and Cesati [2002] and McKusick et al. [1996], respectively. Ganapathy
and Schlmmel [1998] and Navar.ro et al. [2002] discussed operating system
support for multiple page sizes. Ortiz [2001] described virtual memory used
in a real-time embedded operating system.

Jacob and Mudge [1998b] compared implementations of virtual memory in
the MIPS, PowerPC, and Pentium architectures.. A companion article (Jacob and
Mudge [1998a]) described the hardware support necessary for implementation
of virtual memory in six different architectures, including the UltraSPARC.

https://hemanthrajhemu.github.io

Part Four

Since main memory is usually too small to accommodate all the data and
programs permanently, the computer system must provide secondary
storage to back up main memory. Modern computer systems use disks
as the primary on-line storage medium for information (both programs
and data). The file system provides the mechanism for on-line storage
of and access to both data and programs residing on the disks. A file
is a collection of related information defined by its creator. The files are
mapped by the operating system onto physical devices. Files are normally
organized into directories for ease of use.

The devices that attach to a computer vary in many aspects. Some
devices transfer a character or a block of characters at a time. Some
can be accessed only sequentially, others randomly. Some transfer
data synchronously, others asynchronously. Some are dedicated, some
shared. They can be read-only or read-write. They vary greatly in speed.
In many ways, they are also the slowest major component of the
computer.

Because of all this device variation, the operating system needs to
provide a wide range of functionality to applications, to allow them to
control all aspects of the devices. One key goal of an operating system's
I/O subsystem is to provide the simplest interface possible to the rest of
the system. Because devices are a performance bottleneck, another key
is to optimize I/O for maximum concurrency.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

For most users, the file system is the most visible aspect of an operating system.
It provides the mechanism for on-line storage of and access to both data and
programs of the operating system and all the users of the computer system. The
file system consists of two distinct parts: a collection of files, each storing related
data, and a directory structure, which organizes and provides information about
all the files in the system. File systems live on devices, which we explore fully
in the following chapters but touch upon here. In this chapter, we consider
the various aspects of files and the major directory structures. We also discuss
the semantics of sharing files among multiple processes, users, and computers.
Finally, we discuss ways to handle file protection, necessary when we have
multiple users and we want to control who may access files and how files may
be accessed.

• To explain the function of file systems.

• To describe the interfaces to file systems.

• To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures.

• To explore file-system protection.

10.1 File Concept

Computers can store information on various storage media, such as magnetic
disks, magnetic tapes, and optical disks. So that the computer system will
be convenient to use, the operating system provides a uniform logical view
of information storage. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit, the file. Files are
mapped by the operating system onto physical devices. These storage devices
are usually nonvolatile, so the contents are persistent through power failures
and system reboots.

373

https://hemanthrajhemu.github.io

374 Chapter 10 File-System Interface

A file is a named collection of related information that is recorded on
secondary storage. From a user's perspective, a tile is the smallest allotment
of logical secondary storage; that is, data cannot be written to secondary
storage unless they are within a file. Commonly, files represent programs (both
source and object forms) and data. Data files may be numeric, alphabetic,
alphanumeric, or binary. Files may be free form, such as text files, or may be
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records,
the meaning of which is defined by the file's creator and user. The concept of
a file is thus extremely general.

The information in a file is defined by its creator. Many different types
of information may be stored in a file—source programs, object programs,
executable programs, numeric data, text, payroll records, graphic images,
sound recordings, and so on. A file has a certain defined structure, which
depends on its type. A text file is a sequence of characters organized into
lines (and possibly pages). A source file is a sequence of subroutines and
functions, each of which is further organized as declarations followed by
executable statements. An object file is a sequence of bytes organized into
blocks understandable by the system's linker. An executable file is a series of
code sections that the loader can bring into memory and execute.

10.1.1 File Attributes

A file is named, for the convenience of its human users, and is referred to by
its name. A name is usually a string of characters, such as example.c. Some
systems differentiate between uppercase and lowercase characters in names,
whereas other systems do not. When a file is named, it becomes independent
of the process, the user, and even the system that created it. For instance, one
user might create the file example.c, and another user might edit that file by
specifying its name. The file's owner might write the file to a floppy disk, send
it in an e-mail, or copy it across a network, and it could still be called example.c
on the destination system.

A file's attributes vary from one operating system to another but typically
consist of these:

s Name. The symbolic file name is the only information kept in human-
readable form,.

• Identifier. This unique tag, usually a number, identifies the file within the
file system; it is the non-human-readable name for the file.

• Type. This information is needed for systems that support different types
of files.

• Location. This information is a pointer to a device and to the location of
the file on that device.

» Size. The current size of the file (in bytes, words, or blocks) and possibly
the maximum allowed size are included in this attribute.

• Protection. Access-control information determines who can do reading,
writing, executing, and so on.

https://hemanthrajhemu.github.io

10.1 File Concept 375

• Time, date, and user identification. This information may be kept for
creation, last modification, and last use. These data can be useful for
protection, security, and usage monitoring.

The information about all files is kept in the directory structure, which also
resides on secondary storage. Typically, a directory entry consists of the file's
name and its unique identifier. The identifier in turn locates the other file
attributes. It may take more than a kilobyte to record this information for
each. file. In a system with many files, the size of the directory itself may be
megabytes. Because directories, like files, must be nonvolatile, they must be
stored on the device and brought into memory piecemeal, as needed.

10,1.2 File Operations

A file is an abstract data type. To define a file properly, we need to consider the
operations that can be performed on files. The operating system can provide
system calls to create, write, read, reposition, delete, and truncate files. Let's
examine what the operating system must do to perform each of these six basic
file operations. It should then be easy to see how other, similar operations, such
as renaming a file, can be implemented.

» Creating a file. Two steps are necessary to create a file. First, space in the
file system must be found for the file. We discuss how to allocate space for
the file in Chapter 11. Second, an entry for the new file must be made in
the directory.

• Writing a file. To write a file, we make a system call specifying both the
name of the file and the information to be written to the file. Given the
name of the file, the system searches the directory to find the file's location.
The system must keep a write pointer to the location in the file where the
next write is to take place. The write pointer must be updated whenever a
write occurs.

• Reading a file. To read from a file, we use a system call that specifies the
name of the file and where (in memory) the next block of the file should
be put. Again, the directory is searched for the associated entry, and the
system needs to keep a read pointer to the location in the file where the
next read is to take place. Once the read has taken place, the read pointer
is updated. Because a process is usually either reading from or writing to
a file, the current operation location can be kept as a per-process current-
file-position pointer. Both the read and write operations use this same
pointer, saving space and reducing system complexity.

» Repositioning within a file. The directory is searched for the appropriate
entry, and the current-file-position pointer is repositioned to a given value.
Repositioning within a file need not involve any actual I/O. This file
operation is also known as a file seek.

• Deleting a file. To delete a file, we search the directory for the named file.
Having found the associated directory entry, we release all file space, so
that it can be reused bv other files, and erase the directory entry.

https://hemanthrajhemu.github.io

376 Chapter 10 File-System Interface

• Truncating a file. The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged—except
for file length—but lets the tile be reset to length zero and its file space
released.

These six basic operations comprise the minimal set of required file
operations. Other common operations include appending new information
to the end of an existing file and renaming an existing file. These primitive
operations can then be combined to perform other file operations. For instance,
we can create a copy of a file, or copy the file to another I/O device, such as
a printer or a display, by creating a new file and then reading from the old
and writing to the new. We also want to have operations that allow a user to
get and set the various attributes of a file. For example, we may want to have
operations that allow a user to determine the status of a file, such as the file's
length, and to set file attributes, such as the file's owner.

Most of the file operations mentioned involve searching the directory for
the entry associated with the named file. To avoid this constant searching, many
systems require that an openO system call be made before a file is first used
actively. The operating system keeps a small table, called the open-file table,
containing information about all open files. When a file operation is requested,
the file is specified via an index into this table, so no searching is required.
When the file is no longer being actively used, it is closed by the process, and
the operating system removes its entry from the open-file table, create and
de le te are system calls that work with closed rather than open files.

Some systems implicitly open a file when the first reference to it is made.
The file is automatically closed when the job or program that opened the
file terminates. Most systems, however, require that the programmer open a
file explicitly with the openO system call before that file can be used. The
openO operation takes a file name and searches the directory, copying the
directory entry into the open-file table. The openO call can also accept access-
mode information—create, read-only, read—write, append-only, and so on.
This mode is checked against the file's permissions. If the request mode is
allowed, the file is opened for the process. The openO system call typically
returns a pointer to the entry in the open-file table. This pointer, not the actual
file name, is used in all I/O operations, avoiding any further searching and
simplifying the system-call interface.

The implementation of the openO and close() operations is more
complicated in an environment where several processes may open the file at
the same time. This may occur in a system where several different applications
open the same file at the same time. Typically, the operating system uses two
levels of internal tables: a per-process table and a system-wide table. The per-
process table tracks all files that a process has open. Stored in this table is
information regarding the use of the file by the process. For instance, the
current file pointer for each file is found here. Access rights to the file and
accounting information can also be included.

Each entry in the per-process table in turn points to a system-wide open-file
table. The system-wide table contains process-independent information, such
as the location of the file on disk, access dates, and file size. Once a file has been
opened by one process, the system-wide table includes an entry for the file.

https://hemanthrajhemu.github.io

10.1 File Concept 377

When another process executes an openQ call, a new entry is simply added
to the process's open-file table pointing to the appropriate entry in the system-
wide table. Typically., the open-file table also has an open count associated with
each file to indicate how many processes have the file open. Each close 0
decreases this open count, and when the open count reaches zero, the file is no
longer in use, and the file's entry is removed from the open-file table.

In summary, several pieces of information are associated with an open file.

• File pointer. On systems that do not include a file offset as part of the
readO and wri te () system calls, the system must track the last read-
write location as a current-file-position pointer. This pointer is unique to
each process operating on the file and therefore must be kept separate from
the on-disk file attributes.

• File-open count. As files are closed, the operating system must reuse its
open-file table entries, or it could run out of space in the table. Because
multiple processes may have opened a file, the system must wait for the
last file to close before removing the open-file table entry. The file-open
counter tracks the number of opens and closes and reaches zero on the last
close. The system can then remove the entry.

• Disk location of the file. Most file operations require the system to modify
data within the file. The information needed to locate the file on disk is
kept in memory so that the system does not have to read it from disk for
each operation.

• Access rights. Each process opens a file in an access mode. This information
is stored on the per-process table so the operating system can allow or deny
subsequent I/O requests.

Some operating systems provide facilities for locking an open file (or
sections of a file). File "locks allow one process to lock a file and prevent other
processes from gaining access to it. File locks are useful for files that are shared
by several processes—for example, a system log file that can be accessed and
modified by a number of processes in the system.

;li;i the ;faya :?yn,::afcq:u(Hng;:adeck requires
for tlnevfite:intended to be foekrf. Thelaock© ::mei:ht
is used to acquire the lock. The <SJ;'t %)f;t.H

:where begin :an,d^erid:are:thE;beg:i!|tn3ri:g::aSd:(*nSjn| &d)6tti&Bs;:o| tlig region
ibelng loEked.:iSetr4B:g: sriared:i t@ ;fco?sje:iis ft# ihafeS :ilcJcMsji seltilng isflffii'el:
: to fa l se acquires the Xock: excitjtslvely,; Thfi fpek-::is: &!eased::by::iflvplsiilig:the
re lease () of the FileLoick retiurRedby tfee^lockv)"optjratipn.;

acquires two locks oni:the:fi:le/ifc,:fif:::Th:e fir$t:ht)]f oShfcfife
exclusive lock; the lock far the second half is a shared lock.

https://hemanthrajhemu.github.io

378 Chapter 10 File-System Interface

.impairs ::java.:; ait! .:ctjaniiel:ss ;;*:.;

:piitflic; :s:na:tiG. f ina l : fesoleg

^ : .v.V. . l L ; ; .:.. : . : : .
RandarfiaGcessFire : raf :;=:;. ns.w 'RaildoinSc cess P i le { *:Ei:l.e:.:txt'•

/ /• get. the .channel fcr : the--f i le • :

.Fil.eChannel ch = raf , gefChannel:() ; • , . • -

• / / t h i s locks the f i r s t half of t>e f i l e - sxoluaive
eh-ioek to . -raf . leKetiiH j/i2 > EXiGL^StVE; ;

/** Mow modify the data . . . •*•/

// release the lock

exdusiveLoclv. release (); :

/,/ this locks the second r.alf c£ the file - shared

sharedLock = ch . lock (raf.. ienc-h () /2 + 1, raf - length 0 , SHARED.)

/** Kow read the data ...*,'

II release the lock

exclusiveLock.release();

) catch (j ava . io . IOExcept.ior. ioe): i

Systetr.. err , pri.ntln (ioej ;

sfve&oGk ":!=s hull)

. • • sharedLcck . re lease i « ;
i

• • [

: T : • : • • •

Figure 1B.1 :: Kle-lDEkiifig exartipte m

File locks provide functionality similar to reader-writer locks, covered in
Section 6.6.2. A shared lock is akin to a reader lock in that several processes
can acquire the lock concurrently. An exclusive lock behaves like a writer lock;
only one process at a time can acquire such a lock. It is important to note

https://hemanthrajhemu.github.io

10.1 File Concept 379

that not all operating systems provide both types of locks; some systems only
provide exclusive file locking.

Furthermore, operating systems may provide either mandatory or advi-
sory file-locking mechanisms. If a lock is mandatory, then once a process
acquires an exclusive lock, the operating system will prevent any other process
from accessing the locked file. For example, assume a process acquires an
exclusive lock on the file system.log. If we attempt to open system.log
from another process—for example, a text editor—the operating system will
prevent access until the exclusive lock is released. This occurs even if the text
editor is not written explicitly to acquire the lock. Alternatively, if the lock
is advisory, then the operating system will not prevent the text editor from
acquiring access to system. log. Rather, the text editor must be written so that
it manually acquires the lock before accessing the file. In other words, if the
locking scheme is mandatory, the operating system ensures locking integrity.
For advisory locking, it is up to software developers to ensure that locks are
appropriately acquired and released. As a general rule, Windows operating
systems adopt mandatory locking, and UNIX systems employ advisory locks.

The use of file locks requires the same precautions as ordinary process
synchronization. For example, programmers developing on systems with
mandatory locking must be careful to hold exclusive file locks only while
they are accessing the file; otherwise, they will prevent other processes from
accessing the file as well. Furthermore, some measures must be taken to ensure
that two or more processes do not become involved in a deadlock while trying
to acquire file locks.

10.1.3 Fiie Types

When we design a file system—indeed, an entire operating system—we
always consider whether the operating system should recognize and support
file types. If an operating system recognizes the type of a file, it can then operate
on the file in reasonable ways. For example, a common mistake occurs when a
user tries to print the binary-object form of a program. This attempt normally
produces garbage; however, the attempt can succeed if the operating system
has been told that the file is a binary-object program.

A common technique for implementing file types is to include the type as
part of the file name. The name is split into two parts—a name and an extension,
usually separated by a period character (Figure 10.2). In this way, the user and
the operating system can tell from the name alone what the type of a file is.
For example, most operating systems allow users to specify file names as a
sequence of characters followed by a period and terminated by an extension of
additional characters. File name examples include resume.doc, Scrver.java, and
ReaderThread.c. The system uses the extension to indicate the type of the file
and the type of operations that can be done on that file. Only a file with a .com,
.cxe, or .bat extension can be executed, for instance. The .com and .exe files are two
forms of binary executable files, whereas a .bat file is a batch file containing, in
ASCII format, commands to the operating system. MS-DOS recognizes only a few
extensions, but application programs also use extensions to indicate file types
in which they are interested. For example, assemblers expect source files to have
an .asm extension, and the Microsoft Word word processor expects its files to
end with a .doc extension. These extensions are not required, so a user may

https://hemanthrajhemu.github.io

380 Chapter 10 File-System Interface

multimedia: may, rm,;
:mp3,

;binary;file: containing
auicito or A/V informcition

Figure 10.2 Common file types.

specify a file without the extension (to save typing), and the application will
look for a file with the given name and the extension it expects. Because these
extensions are not supported by the operating system, they can be considered
as "hints" to the applications that operate on them.

Another example of the utility of file types comes from the TOPS-20
operating system. If the user tries to execute an object program whose source file
has been modified (or edited) since the object file was produced, the source file
will be recompiled automatically. This function ensures that the user always
runs an up-to-date object file. Otherwise, the user could waste a significant
amount of time executing the old object file. For this function to be possible,
the operating system must be able to discriminate the source file from the
object file, to check the time that each file was created or last modified, and
to determine the language of the source program (in order to use the correct
compiler).

Consider, too, the Mac OS X operating system. In this system, each file has
a type, such as TEXT (for text file) or APPL (for application). Each file also has
a creator attribute containing the name of the program that created it. This
attribute is set by the operating system during the create 0 call, so its use
is enforced and supported by the system. For instance, a file produced by a
word processor has the word processor's name as its creator. When the user
opens that file, by double-clicking the mouse on the icon representing the file,
the word processor is invoked automatically, and the file is loaded, ready to be
edited.

https://hemanthrajhemu.github.io

10.1 File Concept 381

The UNIX system uses a crude magic number stored at the beginning of
some files to indicate roughly the type of the file—executable program, batch
file (or shell script), PostScript file, and so on. Not all files have magic numbers,
so system features cannot be based solely on this information. UNIX does not
record the name of the creating program, either. UNIX does allow file-name-
extension hints, but these extensions are neither enforced nor depended on
by the operating system; they are meant mostly to aid users in determining
the type of contents of the file. Extensions can be used or ignored by a given
application, but that is up to the application's programmer.

10.1.4 File Structure

File types also can be used to indicate the internal structure of the file. As
mentioned in Section 10.1.3, source and object files have structures that match
the expectations of the programs that read them. Further, certain files must
conform to a required structure that is understood by the operating system. For
example, the operating system requires that an executable file have a specific
structure so that it can determine where in memory to load the file and what
the location of the first instruction is. Some operating systems extend this idea
into a set of system-supported file structures, with sets of special operations
for manipulating files with those structures. For instance, DEC's VMS operating
system has a file system that supports three defined file structures.

This point brings us to one of the disadvantages of having the operating
system support multiple file structures: The resulting size of the operating
system is cumbersome. If the operating system defines five different file struc-
tures, it needs to contain the code to support these file structures. In addition,
every file may need to be definable as one of the file types supported by the
operating system. When new applications require information structured in
ways not supported by the operating system, severe problems may result.

For example, assume that a system supports two types of files: text files
(composed of ASCII characters separated by a carriage return and line feed)
and executable binary files. Now, if we (as users) want to define an encrypted
file to protect the contents from being read by unauthorized people, we may
find neither file type to be appropriate. The encrypted file is not ASCII text lines
but rather is (apparently) random bits. Although it may appear to be a binary
file, it is not executable. As a result, we may have to circumvent or misuse the
operating system's file-types mechanism or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of file
structures. This approach has been adopted in UNIX, MS-DOS, and others. UNIX
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits
is made by the operating system. This scheme provides maximum flexibility
but little support. Each application program must include its own code to
interpret an input file as to the appropriate structure. However, all operating
systems must support at least one structure—that of an executable file—so...
that the system is able to load and run programs.

The Macintosh operating system also supports a minimal number of
file structures. It expects files to contain two parts: a resource fork and a
data fork. The resource fork contains information of interest to the user.
For instance, it holds the labels of any buttons displayed by the program.
A foreign user may want to re-label these buttons in his own language, and

https://hemanthrajhemu.github.io

382 Chapter 10 File-System Interface

the Macintosh operating system provides tools to allow modification ef the
data in the resource fork. The data fork contains program code or data—the
traditional file contents. To accomplish the same task on a UNIX or MS-DOS
system, the programmer would need to change and recompile the source code,
unless she created her own user-changeable data file. Clearly, it is useful for
an operating system to support structures that will be used frequently and
that will save the programmer substantial effort. Too few structures make
programming inconvenient, whereas too many cause operating-system bloat
and programmer confusion.

10.1.5 Internal File Structure

Internally, locating an offset within a file can be complicated for the operating
system. Disk systems typically have a well-defined block size determined by
the size of a sector. All disk I/O is performed in units of one block (physical
record), and all blocks are the same size. It is unlikely that the physical record
size will exactly match the length of the desired logical record. Logical records
may even vary in length. Packing a number of logical records into physical
blocks is a common solution to this problem.

For example, the UNIX operating system defines all files to be simply
streams of bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record size is 1 byte. The
file system automatically packs and unpacks bytes into physical disk blocks—
say, 512 bytes per block—as necessary.

The logical record size, physical block size, and packing technique deter-
mine how many logical records are in each physical block. The packing can be
done either by the user's application program or by the operating system.

In either case, the file may be considered to be a sequence of blocks. All
the basic I/O functions operate in terms of blocks. The conversion from logical
records to physical blocks is a relatively simple software problem.

Because disk space is always allocated in blocks, some portion of the last
block of each file is generally wasted. If each block were 512 bytes, for example,
then a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last
99 bytes would be wasted. The waste incurred to keep everything in units
of blocks (instead of bytes) is internal fragmentation. All file systems suffer
from internal fragmentation; the larger the block size, the greater the internal
fragmentation.

10.2 Access Methods

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in
several ways. Some systems provide only one access method for files. Other
systems, such as those of IBM, support many access methods, and choosing the
right one for a particular application is a major design problem.

10.2.1 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far the

https://hemanthrajhemu.github.io

10.2 Access Methods 383

current position
beginning end

: rewind:
;read or write s#>

Figure 10.3 Sequential-access file.

most common; for example, editors and compilers usually access files in this
fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation—read next—reads the next portion of the file and automatically
advances a file pointer, which tracks the I/O location. Similarly, the write
operation—write next—appends to the end of the file and advances to the
end of the newly written material (the new end of file). Such a file can be reset
to the beginning; and on some systems, a program .may be able to skip forward
or backward n records for some integer n—perhaps only for n = 1. Sequential
access, which is depicted in Figure 10.3, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

10.2.2 Direct Access

Another method is direct access (or relative access). A file is made up of fixed-
length logical records that allow programs to read and write records rapidly
in no particular order. The direct-access method is based on a disk model of
a file, since disks allow random access to any file block. For direct access, the
file is viewed as a numbered sequence of blocks or records. Thus, we may read
block 14, then read block 53, and then write block 7. There are no restrictions
on the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and
then read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for flight
713 is stored in block 713 of the reservation file. To store information about a
larger set, such as people, we might compute a hash function on the people's
names or search a small in-memory index to determine a block to read and
search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read n, where n is
the block number, rather than read next, and write n rather than write next. An
alternative approach is to retain read next and write next, as with sequential
access, and to add an operation position file to n, where n is the block number.
Then, to effect a read n, we would, position to n and then read next.

The block number provided by the user to the operating system is normally
a relative block number. A relative block number is an index relative to the

https://hemanthrajhemu.github.io

384 Chapter 10 File-System Interface

equgfrtia^aecess:;: i;i

: -reset A ;; :. ; :\ ;

;:: -readnexl"- A > N

A ::
; :impternantatloa loi: d

•:::::::;: A liMt¥l\
A H : •: ^ • ^ re:ad:cp'f\

• • • • • • - - • - • - X " * f " i ' • • • • ; " ^ * * / " 6 " " T "

. . . -.- . - - -.- . . -.- .t^JL./. - "- - - %^X,J-. - " .
•£ ; : : ; : : : ; : : : : : :: ;:

:: '] \ A : ;:

i ; ; :: I A • n

Figure 10.4 Simulation of sequential access on a direct-accsss file.

beginning of the file. Thvis, the first relative block of the file is 0, the next is
1, and so on, even though the actual absolute disk address of the block may
be 14703 for the first block and 3192 for the second. The use of relative block
numbers allows the operating system to decide where the file should be placed
(called the allocation problem, as discussed in Chapter 11) and helps to prevent
the user from accessing portions of the file system that may not be part of her
file. Some systems start their relative block numbers at 0; others start at 1.

How then does the system satisfy a request for record N in a file? Assuming
we have a logical record length L, the request for record A/ is turned into an I/O
request for L bytes starting at location L * (N) within the file (assuming the first
record is N - 0). Since logical records are of a fixed size, it is also easy to read,
write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when
it is created; such a file can be accessed only in a manner consistent with its
declaration. We can easily simulate sequential access on a direct-access file by
simply keeping a variable cp that defines our current position, as shown in
Figure 10.4. Simulating a direct-access file on a sequential-access file, however,
is extremely inefficient and clumsy.

10.2.3 Other Access Methods

Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The index,
like an index in the back of a book, contains pointers to the various blocks. To
find a record in the file, we first search the index and then use the pointer to
access the file directly and to find the desired record.

For example, a retail-price file might list the universal product codes (UPCs)
for items, with the associated prices. Each record consists of a 10-digit UPC and
a 6-digit price, for a 16-byte record, if our disk has 1,024 bytes per block, we
can store 64 records per block. A file of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define
an index consisting of the first UPC in each block. This index would have 2,000
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory To
find the price of a particular item, we can make a binary search of the index.
From this search, we learn exactly which block contains the desired record and
access that block. This structure allows us to search a large file doing little I/O.

https://hemanthrajhemu.github.io

10.3 Directory Structure 385

logical record
last name number

: ;:AS#TIS:;: p:;::;:
: : : p : : :

: Smith ::; • ;:.
- : - : - : : - : : - . - : - • - : - -

- : - : - : - : - . - : - : - : - . - •

index file

J:igure 10.5

relative file

Example of index and relative files.

With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary
index file would contain pointers to secondary index files, which would point
to the actual data items.

For example, IBM's indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item, we first make a binary search of the master index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to find the block containing the desired
record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 10.5 shows a
similar situation as implemented by VMS index and relative files.

10.3 Directory Structure

Up to this point, we have been discussing "a file system." In reality, systems may
have zero or more file systems, and the file systems may be of varying types.
For example, a typical Solaris system may have a few UFS file systems, a VFS file
system, and some NFS file systems. The details of file system implementation
are found in Chapter 11.

The file systems of computers, then, can be extensive. Some systems store
millions of files on terabytes of disk. To manage all these data, we need to
organize them. This organization involves the use of directories. In this section,
we explore the topic of directory structure. First, though, we explain some basic
features of storage structure.

10.3.1 Storage Structure

A disk (or any storage device that is large enough) can be used in its entirety for
a file system. Sometimes, though, it is desirable to place multiple file systems

https://hemanthrajhemu.github.io

386 Chapter 10 File-System Interface

partition A

[dkectory |

partition B A

I. directory'

JJi iJ j iJ > disk 1
§reaM\ j partitioned

::: files::: ::i i

y disk 2

: lies •

disk 3

Figure 10.6 A typical file-system organization.

on a disk or to use parts of a disk for a file system and other parts for other
things, such as swap space or unformatted (raw) disk space. These parts are
known variously as partitions, slices, or (in the IBM world) minidisks. A file
system can be created on each of these parts of the disk. As we shall see in the
next chapter, the parts can also be combined to form larger structures known as
volumes, and file systems can be created on these as well. For now, for clarity,
we simply refer to a chunk of storage that holds a file system as a volume. Each
volume can be thought of as a virtual disk. Volumes can also store multiple
operating systems, allowing a system to boot and run more than one.

Each volume that contains a file system must also contain information
about the files in the system. This information is kept in entries in a device
directory or volume table of contents. The device directory (more commonly
known simply as a directory) records information—such as name, location,
size, and type—for all files on that volume. Figure 10.6 shows a typical
file-system organization.

10.3.2 Directory Overview

The directory can be viewed as a symbol table that translates file names into
their directory entries. If we take such a view, we see that the directory itself
can be organized in many ways. We want to be able to insert entries, to delete
entries, to search for a named entry, and to list all the entries in the directory.
In this section, we examine several schemes for defining the logical structure
of the directory system.

When considering a particular directory structure, we need to keep in mind
the operations that are to be performed on a directory:

Search for a file. We need to be able to search a directory structure to find
the entry for a particular file. Since files have symbolic names and similar
names may indicate a relationship between files, we may want to be able
to find all files whose names match a particular pattern.

Create a file. New files need to be created and added to the directory.

https://hemanthrajhemu.github.io

10.3 Directory Structure 387

• Delete a file. When a file is no longer needed, we want to be able to remove
it from the directory.

• List a directory. We need to be able to list the files in a directory and the
contents of the directory entry for each file in the list.

• Rename a file. Because the name of a file represents its contents to its users,
we must be able to change the name when the contents or use of the file
changes. Renaming a file may also allow its position within the directory
structure to be changed.

• Traverse the file system. We may wish to access every directory and every
file within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire file system at regular intervals. Often,
we do this by copying all files to magnetic tape. This technique provides a
backup copy in case of system failure. In addition, if a file is no longer in
use., the file can be copied to tape and the disk space of that file released
for reuse by another file.

In the following sections, we describe the most common schemes for defining
the logical structure of a directory.

10.3.3 Single-Level Directory

The simplest directory structure is the single-level directory. All files are
contained in the same directory, which is easy to support and understand
(Figure 10.7).

A single-level directory has significant limitations, however, when the
number of files increases or when the system has more than one user. Since all
files are in the same directory, they must have unique names. If two users call
their data file test, then the unique-name rule is violated. For example, in one
programming class, 23 students called the program for their second assignment
progl; another 11 called i\ assign!. Although file names are generally selected to
reflect the content of the file, they are often limited in length, complicating the
task of making file names unique. The MS-DOS operating system allows only
11-character file names; UNIX, in contrast, allows 255 characters.

Even a single user on a single-level directory may find it difficult to
remember the names of all the files as the number of files increases. It is not
uncommon for a user to have hundreds of files on one computer system and an
equal number of additional files on another system. Keeping track of so many
files is a daunting task.

directory c.:'

3
Figure 10.7 Single-level directory.

https://hemanthrajhemu.github.io

3S8 Chapter 10 File-System Interface

10.3.4 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of file names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own user file
directory (LTD). The UFDs have similar structures, but each lists only the files
of a single user. When a user job starts or a user logs in, the system's master
file directory (MFD) is searched. The MFD is indexed by user name or account
number, and each entry points to the UFD for that user (Figure 10.8).

When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique. To create a file for a user, the operating system
searches only that user's UFD to ascertain whether another file of that name
exists. To delete a file, the operating system confines its search to the local UFD;
thus, it cannot accidentally delete another user's file that has the same name.

The user directories themselves must be created and deleted as necessary.
A special system program is run with the appropriate user name and account
information. The program creates a new UFD and adds an entry for it to the PvlFD.
The execution of this program might be restricted to system administrators. The
allocation of disk space for user directories can be handled, with the techniques
discussed in Chapter 11 for files themselves.

Although the two-level directory structure solves the name-collision prob-
lem, it still has disadvantages. This structure effectively isolates one user from
another. Isolation is an advantage wrhen the users are completely independent
but is a disadvantage when the users want to cooperate on some task and to
access one another's files. Some systems simply do not allow local user files to
be accessed by other users.

If access is to be permitted, one user must have the ability to name a file
in another user's directory. To name a particular file uniquely in a two-level
directory, we must give both the user name and the file name. A two-level
directory can be thought of as a tree, or an inverted tree, of height 2. The root
of the tree is the MFD. Its direct descendants are the UFDs. The descendants of
the UFDs are the files themselves. The files are the leaves of the tree. Specifying
a user name and a file name defines a path in the tree from the root (the MFD)
to a leaf (the specified file). Thus, a user name and a file name define a path

master file

car .bo a \ tesi \\ a \ d^ila ; I a tost ; x : aata ; a

O
Figure 10.8 Two-level directory structure.

https://hemanthrajhemu.github.io

10.3 Directory Structure 389

name. Every file in the system has a path name. To name a file uniquely, a user
must know the path name of the file desired.

For example, if user A wishes to access her own test file named test, she can
simply refer to test. To access the file named test of user B (with directory-entry
name userb), however, she might have to refer to /userb/test. Every system has
its own syntax for naming files in directories other than the user's own.

Additional syntax is needed to specify the volume of a file. For instance,
in MS-DOS a volume is specified by a letter followed by a colon. Thus, a file
specification might be C:\ userb\test. Some systems go even further and separate
the volume, directory name, and file name parts of the specification. For
instance, in VMS, the file login.com might be specified as: u:[sst.jdeckllogin.com;l,
where u is the name of the volume, sst is the name of the directory, jdeck is the
name of the subdirectory, and 1 is the version number. Other systems simply
treat the volume name as part of the directory name. The first name given is
that of the volume, and the rest is the directory and file. For instance, /u/pbg/test
might specify volume it, directory pbg, and file test.

A special case of this situation occurs with the system files. Programs pro-
vided as part of the system—loaders, assemblers, compilers, utility routines,
libraries, and so on—are generally defined as files. When the appropriate
commands are given to the operating system, these files are read by the loader
and executed. Many command interpreters simply treat such a command as the
name of a file to load and execute. As the directory system is defined presently,
this file name would be searched for in the current UFD. One solution would
be to copy the system files into each UFD. However, copying all the system files
would waste an enormous amount of space. (If the system files require 5 MB,
then supporting 12 users would require 5 x 12 = 60 MB just for copies of the
system files.)

The standard, solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first
searches the local UFD. If the file is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system files.
The sequence of directories searched when a file is named is called the search
path. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used
in UNIX and MS-DOS. Systems can also be designed so that each user has his
own search path.

10.3.5 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 10.9). This generalization allows users to create their
own subdirectories and to organize their files accordingly. A tree is the most
common directory structure. The tree has a root directory, and every file in the
system has a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. A
directory is simply another file, but it is treated in a special way. All directories
have the same internal format. One bit in each directory entry defines the entry

https://hemanthrajhemu.github.io

390 Chapter 10 File-System Interface

root tft'C-'1

Figure 10.9 Tree-structured directory structure.

as a file (0) or as a subdirectory (1). Special system calls are used to create and
delete directories.

In normal use, each process has a current directory. The current directory
should contain most of the files that are of current interest to the process.
When reference is made to a file, the current directory is searched. If a file is
needed that is not in the current directory, then the user usually must either
specify a path name or change the current directory to be the directory holding
that file. To change directories, a system call is provided that takes a directory
name as a parameter and uses it to redefine the current directory. Thus, the
user can change his current directory whenever he desires. From one change
di rec tory system call to the next, all open system calls search the current
directory for the specified file. Note that the search path may or may not
contain a special entry that stands for "the current directory."

The initial current directory of the login shell of a user is designated when
the user job starts or the user logs in. The operating system searches the
accounting file (or some other predefined location) to find an entry for this
user (for accounting purposes). In the accounting file is a pointer to (or the
name of) the user's initial directory. This pointer is copied to a local variable
for this user that specifies the user's initial current directory. From that shell,
other processes can be spawned. The current directory of any subprocess is
usually the current directory of the parent when it was spawned.

Path names can be of two types: absolute and relative. An absolute path
name begins at the root and follows a path down to the specified file, giving
the directory names on the path. A relative path name defines a path from the
current directory. For example, in the tree-structured file system of Figure 10.9,
if the current directory is root/spell'/mail, then the relative path name prt/first
refers to the same file as does the absolute path name root/spcll/mail/prt/first.

https://hemanthrajhemu.github.io

10.3 Directory Structure 391

Allowing a user to define her own subdirectories permits her to impose
a structure on her files. This structure might result in separate directories for
files associated with different topics (for example, a subdirectory was created
to hold the text of this book) or different forms of information (for example, the
directory programs may contain source programs; the directory bin may store
ail the binaries).

An interesting policy decision in a tree-structured directory concerns how
to handle the deletion of a directory. If a directory is empty, its entry in the
directory that contains it can simply be deleted. However, suppose the directory
to be deleted is not empty but contains several files or subdirectories. One of
two approaches can be taken. Some systems, such as MS-DOS, will not delete a
directory unless it is empty. Thus, to delete a directory, the user must first delete
all the files in that directory. If any subdirectories exist, this procedure must
be applied recursively to them, so that they can be deleted also. This approach
can result in a substantial amount of work. An alternative approach, such as
that taken by the UNIX rm command, is to provide an option: When a request is
made to delete a directory, all that directory's files and subdirectories are also
to be deleted. Either approach is fairly easy to implement; the choice is one
of policy. The latter policy is more convenient, but it is also more dangerous,
because an entire directory structure can be removed with one command. If
that command is issued in error, a large number of files and directories will
need to be restored (assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their files, the files of other users. For example, user B can access a
file of user A by specifying its path names. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A's directory and access the file by its file names.

A path to a file in a tree-structured directory can be longer than a path
in a two-level directory. To allow users to access programs without having to
remember these long paths, the Macintosh operating system automates the
search for executable programs. It maintains a file, called the Desktop File,
containing the names and locations of all executable programs it has seen.
When a new hard disk or floppy disk is added to the system, or the network is
accessed, the operating system traverses the directory structure, searching for
executable programs on the device and recording the pertinent information.
This mechanism supports the double-click execution functionality described
previously. A double-click on a file causes its creator attribute to be read and
the Desktop File to be searched for a match. Once the match is found, the
appropriate executable program is started with the clicked-on file as its input.
The Microsoft Windows family of operating systems (95, 98, NT, 2000, XP)
maintains an extended two-level directory structure, with devices and. volumes
assigned drive letters (Section 10.4).

10.3.6 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and files of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in

https://hemanthrajhemu.github.io

392 Chapter 10 File-System Interface

Figure 10.10 Acyclic-graph directory structure.

their own directories. The common subdirectory should be shared. A shared
directory or file will exist in the file system in two (or more) places at once.

A tree structure prohibits the sharing of files or directories. An acyclic graph
—that is, a graph with no cycles—allows directories to share subdirectories
and files (Figure 10.10). The same file or subdirectory may be in two different
directories. The acyclic graph is a natural generalization of the tree-structured
directory scheme.

It is important to note that a shared file (or directory) is not the same as two
copies of the file. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the file, the changes will not
appear in the other's copy. With a shared file, only one actual file exists, so any
changes made by one person are immediately visible to the other. Sharing is
particularly important for subdirectories; a new file created by one person will
automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can be
put into one directory. The UFD of each team member will contain this directory
of shared files as a subdirectory. Even in the case of a single user, the user's file
organization may require that some file be placed in different subdirectories.
For example, a program written for a particular project should be both in the
directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new
directory entry called a link. A link is effectively a pointer to another file or
subdirectory. For example, a link may be implemented as an absolute or a
relative path name. When a reference to a file is made, we search the directory.
If the directory entry is marked as a link, then the name of the real file is
included in the link information. We resolve the link by using that path name
to locate the real file. Links are easily identified by their format in the directory
entry (or by their having a special type on systems that support types) and are

https://hemanthrajhemu.github.io

10.3 Directory Structure 393

effectively named indirect pointers. The operating system ignores these links
when traversing directory trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to
duplicate all information about them in both sharing directories. Thus, both
entries are identical and equal. A link is clearly different from the original
directory entry; thus, the two are not equal. Duplicate directory entries,
however, make the original and the copy indistinguishable. A .major problem
with duplicate directory entries is maintaining consistency when a file is
modified.

An acyclic-graph directory structure is more flexible than is a simple tree
structure, but it is also more complex. Several problems must be considered
carefully. A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file. This situation is similar to the
aliasing problem for programming languages. If we are trying to traverse the
entire file system—to find a file, to accumulate statistics on all files, or to copy
all files to backup storage—this problem becomes significant, since we do not
want to traverse shared structures more than once.

Another problem involves deletion. When can the space allocated to a
shared file be deallocated and reused? One possibility is to remove the file
whenever anyone deletes it, but this action may leave dangling pointers to the
now-nonexistent file. Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other files, these dangling
pointers may point into the middle of other files.

In a system where sharing is implemented by symbolic links, this situation
is somewhat easier to handle. The deletion of a link need not affect the original
file; only the link is removed. If the file entry itself is deleted, the space for
the file is deallocated, leaving the links dangling. We can search for these links
and remove them as well, but unless a list of the associated links is kept with
each file, this search can be expensive. Alternatively, we can leave the links
until an attempt is made to use them. At that time, we can determine that the
file of the name given by the link does not exist and can fail to resolve the
link name; the access is treated just as with any other illegal file name. (In this
case, the system designer should consider carefully what to do when a file is
deleted and another file of the same name is created, before a symbolic link to
the original file is used.) In the case of UNIX, symbolic links are left when a file
is deleted, and it is up to the user to realize that the original file is gone or has
been replaced. Microsoft Windows (all flavors) uses the same approach.

Another approach to deletion is to preserve the file until all references to
it are deleted. To implement this approach, we must have some mechanism
for determining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links). When
a link or a copy of the directory entry is established, a new entry is added to
the file-reference list. When a link or directory entry is deleted, we remove its
entry on the list. The file is deleted when its file-reference list is empty.

The trouble with this approach is the variable and potentially large size of
the file-reference list. However, we really do not need to keep the entire list
—we need to keep only a count of the number of references. Adding a new
link or directory entry increments the reference count; deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are
no remaining references to it. The UNIX operating system uses this approach

https://hemanthrajhemu.github.io

394 Chapter 10 File-System Interface

for nonsymboiic links (or hard links), keeping a reference count in tile file
information block (or inode; see Appendix A.7.2). By effectively prohibiting
multiple references to directories, we maintain an acyclic-graph structure.

To avoid problems such as the ones just discussed, some systems do
not allow shared directories or links. For example,, in MS-DOS, the directory
structure is a tree structure rather than an acyclic graph.

10.3.7 General Graph Directory

A serious problem with using an acyclic-graph structure is ensuring that there
are no cycles. If we start with a two-level directory and allow users to create
subdirectories, a tree-structured directory results. It should be fairly easy to see
that simply adding new files and subdirectories to an existing tree-structured
directory preserves the tree-structured nature. However, when we add links to
an existing tree-structured directory, the tree structure is destroyed, resulting
in a simple graph structure (Figure 10.11).

The primary advantage of an acyclic graph is the relative simplicity of the
algorithms to traverse the graph and to determine when there are no more
references to a file. We want to avoid traversing shared sections of an acyclic
graph twice, mainly for performance reasons. If we have just searched a major
shared subdirectory for a particular file without finding it, we want to avoid
searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to
avoid searching any component twice, for reasons of correctness as well as
performance. A poorly designed algorithm might result in an infinite loop
continually searching through the cycle and never terminating. One solution
is to limit arbitrarily the number of directories that will be accessed during a
search.

A similar problem exists when we are trying to determine when a file
can be deleted. With acyclic-graph directory structures, a value of 0 in the
reference count means that there are no more references to the file or directory,

root aw ic jim

book, :>iml unhcv hyp

Figure 10.11 General graph directory.

https://hemanthrajhemu.github.io

10.4 File-System Mounting 395

and the file can be deleted. However, when cycles exist, the reference count
may not be 0 even when it is no longer possible to refer to a directory or file.
This anomaly results from the possibility of self-referencing (or a cycle) in the
directory structure. In this case, we generally need to use a garbage-collection
scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire file
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or search will cover everything
in the file system once and only once.) Garbage collection for a disk-based file
system., however, is extremely time consuming and is thus seldom attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure is much easier to work with. The difficulty
is to avoid cycles as new links are added to the structure. How do we know
when a new link will complete a cycle? There are algorithms to detect cycles
in graphs; however, they are computationally expensive, especially when the
graph is on disk storage. A simpler algorithm in the special case of directories
and links is to bypass links during directory traversal. Cycles are avoided, and
no extra overhead is incurred.

10.4 File-System Mounting

Just as a file must be opened before it is used, a file system must be mounted
before it can be available to processes on the system. More specifically, the
directory structure can be built out of multiple volumes, which must be
mounted to make them available within the file-system name space.

The mount procedure is straightforward. The operating system is given the
name of the device and the mount point—the location within the file structure
where the file system is to be attached. Typically, a mount point is an empty
directory. For instance, on a UNIX system, a file system containing a user's home
directories might be mounted as /home; then, to access the directory structure
within that file system, we could precede the directory names with ftiome, as
in /homc/janc. Mounting that file system under /users would result in the path
name /users/jane, which we could use to reach the same directory.

Next, the operating system verifies that the device contains a valid file
system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the operating
system notes in its directory structure that a file system is mounted at the
specified mount point. This scheme enables the operating system to traverse
its directory structure, switching among file systems as appropriate.

To illustrate file mounting, consider the file system depicted in Figure
10.12, where the triangles represent subtrees of directories that are of interest.
Figure 10.12(a) shows an existing file system, while Figure 10.12(b) shows an
unmounted volume residing on /device'/dsk. At this point, only the files on the
existing file system can be accessed. Figure 10.13 shows the effects of mounting
the volume residing on /device/dsk over /users. If the volume is unmounted, the
file system is restored to the situation depicted in Figure 10.12.

Systems impose semantics to clarify functionality. For example, a system
may disallow a mount over a directory that contains files; or it may make the

https://hemanthrajhemu.github.io

396 Chapter 10 File-System Interface

users

fred sue jane

doc

(a) (b)

Figure 10.12 File system, (a) Existing system, (b) Unmounted volume.

mounted file system available at that directory and obscure the directory's
existing files until the file system is unmounted, terminating the use of the file
system and allowing access to the original files in that directory. As another
example, a system may allow the same file system to be mounted repeatedly,
at different mount points; or it may only allow one mount per file system.

Consider the actions of the Macintosh operating system. Whenever the
system encounters a disk for the first time (hard disks are found at boot time,
and floppy disks are seen when they are inserted into the drive), the Macintosh
operating system searches for a file system on the device. If it finds one, it
automatically mounts the file system at the root level, adding a folder icon on
the screen labeled with the name of the file system (as stored in the device
directory). The user is then able to click on the icon and thus display the newly
motinted file system.

The Microsoft Windows family of operating systems (95, 98, NT, small
2000, XP) maintains an extended two-level directory structure, with devices

jane

doc

Figure 10.13 Mount point.

https://hemanthrajhemu.github.io

10.5 File Sharing 397

and volumes assigned drive letters. Volumes have a general graph directory
structure associated with the drive letter. The path to a specific file takes the
form of drive-letter;\path\to\file. The more recent versions of Windows allow a
file system to he mounted anywhere in the directory tree, just as UNIX does.
Windows operating systems automatically discover all devices and mount
all located file systems at boot time. In some systems, like UNIX, the mount
commands are explicit. A system configuration file contains a list of devices
and mount points for automatic mounting at boot time, but other mounts may
be executed manually.

Issues concerning file system mounting are further discussed in Section
11.2.2 and in Appendix A.7.5.

10.5 File Sharing

In the previous sections, we explored the motivation for file sharing and some of
the difficulties involved in allowing users to share files. Such file sharing is very
desirable for users who want to collaborate and to reduce the effort required
to achieve a computing goal. Therefore, user-oriented operating systems must
accommodate the need to share files in spite of the inherent difficulties.

In this section, we examine more aspects of file sharing. W'e begin by
discussing general issues that arise when multiple users share files. Once
multiple users are allowed to share files, the challenge is to extend sharing
to multiple file systems, including remote file systems; and we discuss that
challenge as well. Finally, we consider what to do about conflicting actions
occurring on shared files. For instance, if multiple users are writing to a file,
should all the writes be allowed to occur, or should the operating system protect
the user actions from one another?

10.5.1 Multiple Users

When an operating system accommodates multiple users, the issues of file
sharing, file naming, and file protection become preeminent. Given a directory
structure that allows files to be shared by users, the system must mediate the
file sharing. The system can either allow a user to access the files of other users
by default or require that a user specifically grant access to the files. These are
the issues of access control and protection, which are covered in Section 10.6.

To implement sharing and protection, the system must maintain more file
and directory attributes than are needed on a single-user system. Although
many approaches have been taken to this requirement historically, most
systems have evolved to use the concepts of file (or directory) owner (or user)
and group. The owner is the user who can change attributes and grant access
and who has the most control over the file. The group attribute defines a
subset of users who can share access to the file. For example, the owner of a
file on a UNIX system can issue all operations on a file, while members of the
file's group can execute one subset of those operations, and all other users can
execute another subset of operations. Exactly which operations can be executed
by group members and other users is definable by the file's owner. More details
on permission attributes are included in the next section.

https://hemanthrajhemu.github.io

398 Chapter 10 File-System Interface

The owner and group IDs of a given file (or directory) are stored with the
other file attributes. When a user requests an operation on a file, the user ID can
be compared with the owner attribute to determine if the requesting user is the
owner of the file. Likewise, the group IDs can be compared. The result indicates
which permissions are applicable. The system then applies those permissions
to the requested operation and allows or denies it.

Many systems have multiple local file systems, including volumes of a
single disk or multiple volumes on multiple attached disks. In these cases,
the ID checking and permission matching are straightforward, once the file
systems are mounted.

10.5,2 Remote Fi!e Systems

With the advent of networks (Chapter 16), communication among remote
computers became possible. Networking allows the sharing of resources spread
across a campus or even around the world. One obvious resource to share is
data in the form of files.

Through the evolution of network and file technology, remote file-sharing
methods have changed. The first implemented method involves manually
transferring files between machines via programs like ftp. The second major
method uses a distributed file system (DFS) in which remote directories are
visible from a local machine. In some ways, the third method, the World Wide
Web, is a reversion to the first. A browser is needed to gain access to the
remote files, and separate operations (essentially a wrapper for ftp) are used
to transfer files.

f tp is used for both anonymous and authenticated access. Anonymous
access allows a user to transfer files without having an account on the remote
system. The World Wide Web uses anonymous file exchange almost exclusively.
DFS involves a much tighter integration between the machine that is accessing
the remote files and the machine providing the files. This integration adds
complexity, which we describe in this section.

10.5.2.1 The Client- Server Model

Remote file systems allow a computer to mount one or more file systems
from one or more remote machines. In this case, the machine containing the
files is the server, and the machine seeking access to the files is the client. The
client-server relationship is common with networked machines. Generally,
the server declares that a resource is available to clients and specifies exactly
which resource (in this case, which files) and exactly which clients. A server
can serve multiple clients, and a client can use multiple servers, depending on
the implementation details of a given client-server facility.

The server usually specifies the available files on a volume or directory
level. Client identification is more difficult. A client can be specified by a
network name or other identifier, such as an IP address, but these can be spoofed,
or imitated. As a result of spoofing, an unauthorized client could be allowed
access to the server. More secure solutions include secure authentication of the
client via encrypted keys. Unfortunately, with security come many challenges,
including ensuring compatibility of the client and server (they must use the
same encryption algorithms) and security of key exchanges (intercepted keys

https://hemanthrajhemu.github.io

10.5 File Sharing 399

could again allow unauthorized access). Because of the difficulty of solving
these problems, unsecure authentication methods are most commonly used.

In the case of UNIX and its network file system (NFS), authentication takes
place via the client networking information, by default. In this scheme, the
user's IDs on the client and server must match. If they do not, the server will
be unable to determine access rights to files. Consider the example of a user
who has an ID of 1000 on the client and 2000 on the server. A request from
the client to the server for a specific file will not be handled appropriately, as
the server will determine if user 1000 has access to the file rather than basing
the determination on the real user ID of 2000. Access is thus granted or denied
based on incorrect authentication information. The server must trust the client
to present the correct user ID. Note that the NFS protocols allow many-to-many
relationships. That is, many servers can provide files to many clients. In fact,
a given machine can be both a server to other NFS clients and a client of other
NFS servers.

Once the remote file system is mounted, file operation requests are sent
on behalf of the user across the network to the server via the DFS protocol.
Typically, a file-open request is sent along with the ID of the requesting user.
The server then applies the standard access checks to determine if the user has
credentials to access the file in the mode requested. The request is either allowed
or denied. If it is allowed, a file handle is returned to the client application,
and the application then can perform read, write, and other operations on the
file. The client closes the file when access is completed. The operating system
may apply semantics similar to those for a local file-system mount or may use
different semantics.

10.5.2.2 Distributed Information Systems

To make client-server systems easier to manage, distributed information
systems, also known as distributed naming services, provide unified access
to the information needed for remote computing. The domain name sys-
tem (DNS) provides host-name-to-network-address translations for the entire
Internet (including the World Wide Web). Before DNIS became widespread,
files containing the same information were sent via e-mail or f tp between all
networked hosts. This methodology was not scalable. DNS is further discussed
in Section 16.5.1.

Other distributed information systems provide user name/password/user
ID/group ID space for a distributed facility. UNIX systems have employed a wide
variety of distributed-information methods. Sun Microsystems introduced
yellow pages (since renamed network information service, or NIS), and most of
the industry adopted its use. It centralizes storage of user names, host names,
printer information, and the like. Unfortunately, it uses unsecure authentication
methods, including sending user passwords unencrypted (in clear text) and
identifying hosts by IF address. Sun's NIS— is a much more secure replacement
for NIS but is also much more complicated and has not been widely adopted.

In the case of Microsofts common internet file system (CIFS), network
information is used in conjunction with user authentication (user name and
password) to create a network login that the server uses to decide whether
to allow or deny access to a requested file system. For this authentication
to be valid, the user names must match between the machines (as with

https://hemanthrajhemu.github.io

400 Chapter 10 File-System Interface

NFS). Microsoft uses two distributed naming structures to provide a single
name space for users. The older naming technology is domains. The newer
technology, available in Windows XP and Windows 2000, is active directory.
Once established, the distributed naming facility is used by all clients and
servers to authenticate users.

The industry is moving toward use of the lightweight directory-access
protocol (LDAP) as a secure distributed naming mechanism. In fact, active
directory is based on LDAP. Sun Microsystems includes LDAP with the
operating system and allows it to be used for user authentication as well
as system-wide retrieval of information, such as availability of printers.
Conceivably, one distributed LDAP directory could be used by an organization
to store all user and resource information for all the organization's computers.
The result would be secure single sign-on for users, who would enter
their authentication information once for access to all computers within the
organization. It would also ease systems-administration efforts by combining,
in one location, information that is currently scattered in various files on each
system or in different distributed information services.

10.5.2.3 Failure Modes

Local file systems can fail for a variety of reasons, including failure of the
disk containing the file system, corruption of the directory structure or other
disk-management information (collectively called metadata), disk-controller
failure, cable failure, and host-adapter failure. User or systems-administrator
failure can also cause files to be lost or entire directories or volumes to be
deleted. Many of these failures will cause a host to crash and an error condition
to be displayed, and human intervention will be required to repair the damage.

Remote file systems have even more failure modes. Because of the
complexity of network systems and the required interactions between remote
machines, many more problems can interfere with the proper operation of
remote file systems. In the case of networks, the network can be interrupted
between two hosts. Such interruptions can result from hardware failure, poor
hardware configuration, or networking implementation issues. Although some
networks have built-in resiliency, including multiple paths between hosts,
many do not. Any single failure can thus interrupt the flow of DFS commands.

Consider a client in the midst of using a remote file system. It has files open
from the remote host; among other activities, it may be performing directory
lookups to open files, reading or writing data to files, and closing files. Now
consider a partitioning of the network, a crash of the server, or even a scheduled
shutdown of the server. Suddenly, the remote file system is no longer reachable.
This scenario is rather common, so it would not be appropriate for the client
system to act as it would if a local file system were lost. Rather, the system can
either terminate all operations to the lost server or delay operations until the
server is again reachable. These failure semantics are defined and implemented
as part of the remote-file-system protocol. Termination of all operations can
result in users' losing data—and patience. Thus, most DFS protocols either
enforce or allow delaying of file-system operations to remote hosts, with the
hope that the remote host will become available again.

To implement this kind of recovery from failure, some kind of state
information may be maintained on both the client and the server. If both server

https://hemanthrajhemu.github.io

10.5 File Sharing 401

and client maintain knowledge of their current activities and open files, then
they can seamlessly recover from a failure. In the situation where the server
crashes but must recognize that it has remotely mounted exported file systems
and opened files, NFS takes a simple approach, implementing a stateless DFS.
In essence, it assumes that a client request for a file read or write would not
have occurred unless the file system had been remotely mounted and the file
had been previously open. The NFS protocol carries all the information needed
to locate the appropriate file and perform the requested operation. Similarly,
it does not track which clients have the exported volumes mounted, again
assuming that if a request comes in, it must be legitimate. While this stateless
approach makes NFS resilient and rather easy to implement, it also makes it
unsecure. For example, forged read or write requests could be allowed by an
NFS server even though the requisite mount request and permission check
have not taken place. These issues are addressed in the industry standard NFS
version 4, in which NFS is inade stateful to improve its security, performance,
and functionality.

10.5.3 Consistency Semantics

Consistency semantics represent an important criterion for evaluating any
file system that supports file sharing. These semantics specify how multiple
users of a system are to access a shared file simultaneously. In particular, they
specify when modifications of data by one user will be observable by other
users. These semantics are typically implemented as code with the file system.

Consistency semantics are directly related to the process-synchronization
algorithms of Chapter 6. However, the complex algorithms of that chapter tend
not to be implemented in the case of file I/O because of the great latencies and
slow transfer rates of disks and networks. For example, performing an atomic
transaction to a remote disk could involve several network communications,
several disk reads and writes, or both. Systems that attempt such a full set of
functionalities tend to perform poorly. A successful implementation of complex
sharing semantics can be found in the Andrew file system.

For the following discussion, we assume that a series of file accesses (that
is, reads and writes) attempted by a user to the same file is always enclosed
between the openQ and c lose() operations. The series of accesses between
the openO and close () operations makes up a file session. To illustrate the
concept, we sketch several prominent examples of consistency semantics.

10.5.3.1 UNIX Semantics

The UMIX file system (Chapter 17) uses the following consistency semantics:

• Writes to an open file by a user are visible immediately to other users that
have this file open.

• One mode of sharing allows users to share the pointer of current location
into the file. Thus, the advancing of the pointer by one user affects all
sharing users. Here, a file has a single image that interleaves all accesses,
regardless of their origin.

In the UNIX semantics, a file is associated with a single physical image that
is accessed as an exclusive resource. Contention for this single image causes
delays in user processes.

https://hemanthrajhemu.github.io

402 Chapter 10 File-System Interface

10.5.3.2 Session Semantics

The Andrew file system (AFS) (Chapter 17) uses the following consistency
semantics:

• Writes to an open file by a user are not visible immediately to other users
that have the same file open.

• Once a file is closed, the changes made to it are visible only in sessions
starting later. Already open instances of the file do not reflect these changes.

According to these semantics, a file may be associated temporarily with several
(possibly different) images at the same time. Consequently, multiple xisers are
allowed to perform both read and write accesses concurrently on their images
of the file, without delay. Almost no constraints are enforced on scheduling
accesses.

10.5.3.3 Immutable-Shared-Files Semantics

A unique approach is that of immutable shared files. Once a file is declared
as shared by its creator, it cannot be modified. An immutable file has two key
properties: Its name may not be reused, and its contents may not be altered.
Thus, the name of an immutable file signifies that the contents of the file are
fixed. The implementation of these semantics in a distributed system (Chapter
17) is simple, because the sharing is disciplined (read-only).

10,6 Protection

When information is stored in a computer system, we want to keep it safe from
physical damage (reliability) and improper access (protection).

Reliability is generally provided by duplicate copies of files. Many comput-
ers have systems programs that automatically (or through computer-operator
intervention) copy disk files to tape at regular intervals (once per day or week
or month) to maintain a copy should a file system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,
and vandalism. Files may be deleted accidentally. Bugs in the file-system soft-
ware can also cause file contents to be lost. Reliability is covered in more detail
in Chapter 12.

Protection can be provided in many ways. For a small single-user system,
we might provide protection by physically removing the floppy disks and
locking them in a desk drawer or file cabinet. In a multiuser system, however,
other mechanisms are needed.

10.6.1 Types of Access

The need to protect files is a direct result of the ability to access files. Systems
that do not permit access to the files of other users do not need protection. Thus,
we could provide complete protection by prohibiting access. Alternatively, we
could provide free access with no protection. Both approaches are too extreme
for general use. What is needed is controlled access.

https://hemanthrajhemu.github.io

10.6 Protection 403

Protection mechanisms provide controlled access by limiting the types of
file access that can be made. Access is permitted or denied depending on
several factors, one of which is the type of access requested. Several different
types of operations may be controlled:

• Read. Read from the file.

• Write. Write or rewrite the file.

• Execute. Load the file into memory and execute it.

• Append. Write new information at the end of the file.

• Delete. Delete the file and tree its space for possible reuse.

• List. List the name and attributes of the file.

Other operations, such as renaming, copying, and editing the file, may also
be controlled. For many systems, however, these higher-level functions may
be implemented by a system program that makes lower-level system calls.
Protection is provided at only the lower level. For instance, copying a file may
be implemented simply by a sequence of read requests. In this case, a user with
read access can also cause the file to be copied, printed, and so on.

Many protection mechanisms have been proposed. Each has advantages
and disadvantages and must be appropriate for its intended application. A
small computer system that is used by only a few members of a research group,
for example, may not need the same types of protection as a large corporate
computer that is used for research, finance, and personnel operations. We
discuss some approaches to protection in the following sections and present a
more complete treatment in Chapter 14.

10.6.2 Access Control

The most common approach to the protection problem is to make access
dependent on the identity of the user. Different users may need different types
of access to a. file or directory. The most general scheme to implement identity-
dependent access is to associate with each file and directory an access-control
list (ACL) specifying user names and the types of access allowed for each user.
When a user requests access to a particular file, the operating system checks
the access list associated with that file. If that user is listed for the requested
access, the access is allowed. Otherwise, a protection violation occurs, and the
user job is denied access to the file.

This approach has the advantage of enabling complex access methodolo-
gies. The main problem with access lists is their length. If we want to allow
everyone to read a file, we must list all users with read access. This technique
has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task, especially
if we do not know in advance the list of users in the system.

« The directory entry, previously of fixed size, now needs to be of variable
size, resulting in more complicated space management.

https://hemanthrajhemu.github.io

404 Chapter 10 File-System Interface

These problems can be resolved by use of a condensed version of the afccess
list.

To condense the length of the access-control list, many systems recognize
three classifications of users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access is a
group, or work group.

• Universe. All other users in the system constitute the universe.

The most common recent approach is to combine access-control lists with
the more general (and easier to implement) owner, group, and universe access-
control scheme just described. For example, Solaris 2.6 and beyond use the
three categories of access by default but allow access-control lists to be added
to specific files and directories when more fine-grained access control is desired.

To illustrate, consider a person, Sara, who is writing a new book. She has
hired three graduate students (Jim, Dawn, and Jill) to help with the project.
The text of the book is kept in a file named book. The protection associated with
this file is as follows:

• Sara should be able to invoke all operations on the file.

• Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.

• All other users should be able to read, but not write, the file. (Sara is
interested in letting as many people as possible read the text so that she
can obtain appropriate feedback.)

To achieve such protection, we must create a new group—say, text—
with members Jim, Dawn, and Jill. The name of the group, text, must then
be associated with the file book, and the access rights must be set in accordance
with the policy we have outlined.

Now consider a visitor to whom Sara would like to grant temporary access
to Chapter 1. The visitor cannot be added to the text group because that would
give him access to all chapters. Because a file can only be in one group, another
group cannot be added to Chapter 1. With the addition of access-control-list
functionality, the visitor can be added to the access control list of Chapter 1.

For this scheme to work properly, permissions and access lists must be
controlled tightly. This control can be accomplished in several ways. For
example, in the UNIX system, groups can be created and modified only by
the manager of the facility (or by any superuser). Thus, this control is achieved
through human interaction. In the VMS system, the owner of the file can create
and modify this list. Access lists are discussed further in Section 14.5.2.

With the more limited protection classification, only three fields are needed
to define protection. Often, each field is a collection of bits, and each bit either
allows or prevents the access associated with it. For example, the UNfX system
defines three fields of 3 bits each—rwx, where r controls read access, w controls
write access, and x controls execution. A separate field is kept for the file owner,
for the file's group, and for all other users. In this scheme, nine bits per file are

https://hemanthrajhemu.github.io

10.6 Protection 405

needed to record protection information. Thus, tor our example, the protection
fields for the file book are as follows: For the owner Sara, all bits are set; for the
group text, the r and w bits are set; and for the universe, only the r bit is set.

One difficulty in combining approaches comes in the user interface. Users
must be able to tell when the optional ACL perinissions are set on a file. In the
Solaris example, a "+" appends the regular permissions, as in:

19 -rw-r—r—+ 1 jim staff 130 May 25 22:13 f i l e l

A separate set of commands, setf acl and ge t fac l , are used to manage the
ACLs.

Windows XP users typically manage access-control lists via the GUI. Figure
10.14 shows a file-permission window on Windows XP's NTFS file system. In
this example, user "guest" is specifically denied access to the file 10.lex.

) General Security Summary;

Group or user names:

I f j ! Administrators (FBG-LAPTOFVclrninistratoriJ

! S | •' ' ! ; ' • ' ' ' '' " i

C pbg(CTI\pbgi
£P SYSTEM
fii Users (PBG-LAPTOP\Users)

Permissions for Guest

Full Control

Modify

Read & Execute

Read

Write

Special Permissions

Add... Remove

Allow Deny

LJ
D
•
•
•

For special permissions or for advanced settings,
click Advanced.

Advanced

Figure 10.14 Windows XP access-control list management.

https://hemanthrajhemu.github.io

406 Chapter 10 File-System Interface

Another difficulty is assigning precedence when permission and'ACLs
conflict. For example, if Joe is in a file's group, which has read permission,
but the file has an ACL granting Joe read and write permission, should a write
by Joe be granted or denied? Solaris gives ACLs permission (as they are more
fine-grained and are not assigned by default). This follows the general rule that
specificity should have priority.

10.6.3 Other Protect ion A p p r o a c h e s

Another approach to the protection problem is to associate a password with
each file. Just as access to the computer system is often controlled by a
password, access to each file can be controlled in the same way. If the passwords
are chosen randomly and changed often, this scheme may be effective in
limiting access to a file. The use of passwords has a few disadvantages,
however. First, the number of passwords that a user needs to remember may
become large, making the scheme impractical. Second, if only one password is
used for all the files, then once it is discovered, all files are accessible; protection
is on an all-or-none basis. Some systems (for example, TOPS-20) allow a user
to associate a password with a subdirectory, rather than with an individual
file, to deal with this problem. The IBMVM/CMS operating system allows three
passwords for a minidisk—one each for read, write, and multiwrite access.

PERMISSIONS .IN A OMX SYSTEM:: ; v

In the UNIX system, directory :prQtec:tio;n:; and iHe:: px&tfctioh are handled
similarly: That is, aesoeia-ted with eachsubdttectopy-are^thrfee^fields-^-QWner,
group, and universe'—•aachconsisttrig of thelthree bats rwx:; TKus, a user can
list tbexontent of a subdirectory onlyif the j : bit is is e:t in:the appropriate field.
Similarly, a user can change ills cuf rent-directory to another cuifrent directory
(say'rfoo) onlyif the-x bib.associated.vyiihithe./ijio: Huldireetory ;is:;sBt:in the
appropriate field. : : : : :: :, . : '.,. ::: ''. ','• \i '.

A sample directory listing :f rotri :a:::ONDf: eh>ir:6njrteht istefienvrein Figiatre'.
1,0.IS, The: first field:describes the protettDB of :tlp:fiy:or ffl#f Sry.:A"d::asTHe
first characferindicates a subdimctory :A6@ shSwn 4 J | tiQ;Bu|ib|r:o| lin|s:;tp •
the file. Hie owner's inarae, thegroup'sinarne; the siMnf life life ui-bytijs, |tf
date of last niodiiicaiion, and finally tie fiie'saarin-e fwOt

-rw-rw-r- I pbg staff 3J20t) Ss:p::?:D;8:30: intiwps
di*wx 5 pbg staff 5:12 .iiil.8 09:.3:3 private?

doe/ :::dfwxrwxr-x
drwxrwx—-
:rw-r--x-
-rwsr-x.r-x
d.i:wx--x--x
(IFWX-— • -

dr vvxrw xrtt x

2 phg
2;ptlg
l.pbir
j pbg

:ipbg
3 pba
3 pbg

Figure

.sialt
; stacleiii.
:.:sfaff; -.-

:Sta:'f
fecolt}'

. staff:'
:

. staff

10.15 A

5:11
:5-12:

:., :§4|2J.
:'2f)47 1:

5;J2
. :i 0:24

512:

sample

Jal :8 (;)9:;35
Aug3::i4;:i3::;:

..;;Fi.b;;2i.a(.i3:: ::.
::F-isb:24 30&3 ::

:Jiiii:3i:
:10:31:

:Auc 29'-(ikS2 :

Ji$3 ()9;35 : :

directory listing

ib/:

https://hemanthrajhemu.github.io

10.7 Summary 407

Some single-user operating systems—such as MS-DOS and earlier versions
of the Macintosh operating system prior to Mac OS X—provide little in terms
of file protection. In scenarios where these older systems are now being placed
on networks where file sharing and communication are necessary, protection
mechanisms must be retrofitted into them. Designing a feature for a new
operating system is almost always easier than adding a feature to an existing
one. Such updates are usually less effective and are not seamless.

In a multilevel directory structure, we need to protect not only individual
files but also collections of files in subdirectories; that is, we need to provide
a mechanism for directory protection. The directory operations that must be
protected are somewhat different from the file operations. We want to control
the creation and deletion of files in a directory. In addition, we probably want
to control whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file is significant in itself.
Thus, listing the contents of a directory must be a protected operation. Similarly,
if a path name refers to a file in a directory, the user must be allowed access
to both the directory and the file. In systems where files may have numerous
path names (such as acyclic or general graphs), a given user may have different
access rights to a particular file, depending on the path name used.

10.7 Summary

A file is an abstract data type defined and implemented by the operating
system. It is a sequence of logical records. A logical record may be a byte, a line
(of fixed or variable length), or a more complex data item. The operating system
may specifically support various record types or may leave that support to the
application program.

The major task for the operating system is to map the logical file concept
onto physical storage devices such as magnetic tape or disk. Since the physical
record size of the device may not be the same as the logical record size, it may
be necessary to order logical records into physical records. Again, this task may
be supported by the operating system or left for the application program.

Each device in a file system keeps a volume table of contents or device
directory listing the location of the files on the device. In addition, it is useful
to create directories to allow files to be organized. A single-level directory
in a multiuser system causes naming problems, since each file must have a
unique name. A two-level directory solves this problem by creating a separate
directory for each user. Each user has her own directory, containing her own
files. The directory lists the files by name and includes the file's location on the
disk, length, type, owner, time of creation, time of last use, and so on.

The natural generalization of a two-level directory is a tree-structured
directory. A tree-structured directory allows a user to create subdirectories
to organize files. Acyclic-graph directory structures enable users to share
subdirectories and files but complicate searching and deletion. A general graph
structure allows complete flexibility in the sharing of files and directories but
sometimes requires garbage collection to recover unused disk space.

Disks are segmented into one or more volumes, each containing a file
system or left "raw." File systems may be .mounted into the system's naming
structures to make them available. The naming scheme varies by operating

https://hemanthrajhemu.github.io

408 Chapter 10 File-System Interface

system. Once mounted, the files within the volume are available for use. File
systems may be unmounted to disable access or for maintenance.

File sharing depends on the semantics provided by the system. Files may
have multiple readers, multiple writers, or limits on sharing. Distributed file
systems allow client hosts to mount volumes or directories from, servers, as long
as they can access each other across a network. Remote file systems present
challenges in reliability, performance, and security. Distributed information
systems maintain user, host, and access information so that clients and servers
can share state information to manage use and access.

Since files are the main information-storage mechanism in most computer
systems, file protection is needed. Access to files can be controlled separately
for each type of access—read, write, execute, append, delete, list directory, and
so on. File protection can be provided by passwords, by access lists, or by other
techniques.

Exercises

10.1 Consider a file system where a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may occur if
a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?

10.2 The open-file table is used to maintain information about files that are
currently open. Should the operating system maintain a separate table
for each user or just maintain one table that contains references to files
that are being accessed by all users at the current time? if the same file
is being accessed by two different programs or users, should there be
separate entries in the open file table?

10.3 What are the advantages and disadvantages of a system providing
mandatory locks instead of providing advisory locks whose usage is
left to the users' discretion?

10.4 What are the advantages and disadvantages of recording the name
of the creating program with the file's attributes (as is done in the
Macintosh operating system)?

10.5 Some systems au tomatically open a file when it is referenced for the first
time and. close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme compared with the more traditional
one, where the user has to open and close the file explicitly.

10.6 If the operating system were to know that a certain application is going
to access the file data in a sequential manner, how could it exploit this
information to improve performance?

10.7 Give an example of an application that could benefit from operating
system support for random access to indexed files.

10.8 Discuss the merits and demerits of supporting links to files that cross
mount points (that is, the file link refers to a file that is stored in a
different volume).

https://hemanthrajhemu.github.io

Bibliographical Notes 409

10.9 Some systems provide file sharing by maintaining a single copy of a
file; other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.

10.10 Discuss the advantages and disadvantages of associating with remote
file systems (stored on file servers) a different set of failure semantics
from that associated with local file systems.

10.11 What are the implications of supporting UNIX consistency semantics
for shared access for those files that are stored on remote file systems.

Bibliographical Notes

General discussions concerning file systems were offered by Grosshans [1986].
Golden and Pechura [1986] described the structure of microcomputer file
systems. Database systems and their file structures were described in full in
Silberschatzetal. [2001].

A multilevel directory structure was first implemented on the M.ULTICS
system (Organick [1972]). Most operating systems now implement multi-
level directory structures. These include Linux (Bovet and Cesati [2002]),
Mac OS X (http://www.app.lc.com/macosx/), Solaris (Mauro and McDougall
[2001]), and all versions of Windows, including Windows 2000 (Solomon and
Russinovich [2000]).

The network file system (NFS), designed by Sun Microsystems, allows
directory structures to be spread across networked computer systems. NFS
is fully described in Chapter 17. NFS version 4 is described in RFC3505
(http://www.ietf.org/rfc/rfc3530.txt).

DNS was first proposed by Su [1982] and has gone through several revisions
since, with Mockapetris [1987] adding several major features. Eastlake [1999]
has proposed security extensions to let DNS hold security keys.

LDAP, also known as X.509, is a derivative subset of the X.500 distributed
directory protocol, it was defined by Yeong et al. [1995] and has been
implemented on many operating systems.

Interesting research is ongoing in the area of file-system interfaces—in
particular, on issues relating to file naming and attributes. For example, the
Plan 9 operating system from Bell Laboratories (Lucent Technology) makes all
objects look like file systems. Thus, to display a list of processes on a system,
a user simply lists the contents of the /proc directory. Similarly, to display the
time of day, a user need only type the file /dcv/time.

https://hemanthrajhemu.github.io

