

One Stop for All Study Materials

& Lab Programs

Fifure Vision By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, CSE – Computer Science Engineering, ISE – Information Science Engineering, ECE - Electronics and Communication Engineering & MORE...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: <u>www.instagram.com/hemanthraj_hemu/</u>

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

MICROCONTRO	DLLER AND E	MBEDDED SYSTEMS	
(Effective free	om the academi SEMESTER	c year 2018 -2019) – IV	
Course Code	18CS44	CIE Marks	40
Number of Contact Hours/Week	3:0:0	SEE Marks	60
Total Number of Contact Hours	40	Exam Hours	03
	CREDITS -	-3	
Course Learning Objectives: This cours	e (18CS44) will	enable students to:	
 Understand the fundamentals of <i>A</i> methods and attributes of an ember Program ARM controller using th Identify the applicability of the end Comprehend the real time operation 	ARM based system edded system. e various instruc mbedded system ng system used t	ems, basic hardware components etions For the embedded system	, selection
Module 1	0.0		Contact
			Hours
Microprocessors versus Microcontrollers, philosophy, The ARM Design Philosophy Software. ARM Processor Fundamentals: Registers, Exceptions, Interrupts, and the Vector Tab	ARM Embedde y, Embedded Sys Current Program ble , Core Extens	d Systems: The RISC design tem Hardware, Embedded Syste n Status Register, Pipeline, sions	m 08
Text book 1: Chapter 1 - 1.1 to 1.4, Cha RBT: L1, L2 Module 2	pter 2 - 2.1 to 2	.5	
Introduction to the ARM Instruction Set : Data Processing Instructions, Programme Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants			
cycle counting, instruction scheduling, Re Constructs	gister Allocation	a, Conditional Execution, Loopir	ıg
Text book 1: Chapter 3:Sections 3.1 to 6.6) RBT: L1, L2 Modulo 3	3.6 (Excluding	g 3.5.2), Chapter 6(Sections 6.1	to
Embedded System Components: Embed embedded systems, Classification of Emb embedded systems, purpose of embedded	lded Vs General edded systems, I systems	computing system, History of Major applications areas of	08
Core of an Embedded System including a Actuators, LED, 7 segment LED display, Communication Interface (onboard and ex components.	ll types of proce stepper motor, K kternal types), En	essor/controller, Memory, Sensor Leyboard, Push button switch, nbedded firmware, Other system	s,
Text book 2:Chapter 1(Sections 1.2 to 1 RBT: L1, L2	.6),Chapter 2(8	ections 2.1 to 2.6)	
Iviouule 4 Emboddod System Design Conceptor Cl	ono atomiatica	Quality Attributes of Each - 11-	4 00
Systems, Operational quality attributes , no	on-operational q	uality attributes, Embedded	1 08

https://hemanthrajhemu.github.io

Systems-Application and Domain specific, Hardware Software Co-Design and Program			
Modelling, embedded firmware design and development			
Text book 2: Chapter-3, Chapter-4, Chapter-7 (Sections 7.1, 7.2 only), Chapter-9			
(Sections 9.1, 9.2, 9.3.1, 9.3.2 only)			
KB1: L1, L2 Modulo 5			
BTOS and IDE for Embedded System Design: Operating System basics Types of the	08		
operating systems. Task, process and threads (Only POSIX Threads with an example	00		
program), Thread preemption, Multiprocessing and Multitasking, Task Communication			
(without any program), Task synchronization issues – Racing and Deadlock, Concept of			
Binary and counting semaphores (Mutex example without any program), How to choose an			
RTOS, Integration and testing of Embedded hardware and firmware, Embedded system			
Development Environment - Block diagram (excluding Keil), Disassembler/decompiler,			
simulator, emulator and debugging techniques, target hardware debugging, boundary scan.			
Text book 2: Chapter-10 (Sections 10.1, 10.2, 10.3, 10.4, 10.7, 10.8, 1.1, 10.8, 1.2, 10.8, 2.2,			
10.10 only), Chapter 12, Chapter-13 (block diagram before 13.1, 13.3, 13.4, 13.5, 13.6			
only)			
RBT: L1, L2			
Course Outcomes: The student will be able to :			
• Describe the architectural features and instructions of ARM microcontroller			
• Apply the knowledge gained for Programming ARM for different applications.			
 Internet the basic bardware components and their selection method based on the characteristic 			
and attributes of an embedded system.			
 Develop the hardware /software co-design and firmware design approaches. 			
• Demonstrate the need of real time operating system for embedded system applications			
Question Paper Pattern:			
• The question paper will have ten questions.			
Each full Question consisting of 20 marks			
• There will be 2 full questions (with a maximum of four sub questions) from each module.			
• Each full question will have sub questions covering all the topics under a module.			
• The students will have to answer 5 full questions, selecting one full question from each module.			
1 Andrew N Sloss Dominic Symps and Chris Wright APM system developers guide	Floovior		
1. Andrew N Sloss, Dominic Synes and Chins Wright, AKW system developers guide, Morgan Kaufman publishers 2008	, Eiseviei,		
2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education. Private Limited			
2 nd Edition.			
Reference Books:			
1. RaghunandanG.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication,2019			
2. The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st edition, 2005.			
3. Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.			
4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.			

https://hemanthrajhemu.github.io