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C h a p t e r

ARM Embedded
Systems

1

The ARM processor core is a key component of many successful 32-bit embedded systems.
You probably own one yourself and may not even realize it! ARM cores are widely used in
mobile phones, handheld organizers, and a multitude of other everyday portable consumer
devices.

ARM’s designers have come a long way from the first ARM1 prototype in 1985. Over
one billion ARM processors had been shipped worldwide by the end of 2001. The ARM
company bases their success on a simple and powerful original design, which continues
to improve today through constant technical innovation. In fact, the ARM core is not
a single core, but a whole family of designs sharing similar design principles and a common
instruction set.

For example, one of ARM’s most successful cores is the ARM7TDMI. It provides up to
120 Dhrystone MIPS1 and is known for its high code density and low power consumption,
making it ideal for mobile embedded devices.

In this first chapter we discuss how the RISC (reduced instruction set computer) design
philosophy was adapted by ARM to create a flexible embedded processor. We then introduce
an example embedded device and discuss the typical hardware and software technologies
that surround an ARM processor.

1. Dhrystone MIPS version 2.1 is a small benchmarking program.

3
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4 Chapter 1 ARM Embedded Systems

1.1 The RISC design philosophy
The ARM core uses a RISC architecture. RISC is a design philosophy aimed at delivering
simple but powerful instructions that execute within a single cycle at a high clock speed.
The RISC philosophy concentrates on reducing the complexity of instructions performed
by the hardware because it is easier to provide greater flexibility and intelligence in software
rather than hardware. As a result, a RISC design places greater demands on the compiler.
In contrast, the traditional complex instruction set computer (CISC) relies more on the
hardware for instruction functionality, and consequently the CISC instructions are more
complicated. Figure 1.1 illustrates these major differences.

The RISC philosophy is implemented with four major design rules:

1. Instructions—RISC processors have a reduced number of instruction classes. These
classes provide simple operations that can each execute in a single cycle. The compiler
or programmer synthesizes complicated operations (for example, a divide operation)
by combining several simple instructions. Each instruction is a fixed length to allow
the pipeline to fetch future instructions before decoding the current instruction. In
contrast, in CISC processors the instructions are often of variable size and take many
cycles to execute.

2. Pipelines—The processing of instructions is broken down into smaller units that can be
executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle
for maximum throughput. Instructions can be decoded in one pipeline stage. There is
no need for an instruction to be executed by a miniprogram called microcode as on
CISC processors.

3. Registers—RISC machines have a large general-purpose register set. Any register can
contain either data or an address. Registers act as the fast local memory store for all data

CISC RISC

Compiler Compiler

Processor Processor

Code
Generation

Greater
Complexity

Greater
Complexity

Code
Generation

Figure 1.1 CISC vs. RISC. CISC emphasizes hardware complexity. RISC emphasizes compiler
complexity.
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1.2 The ARM Design Philosophy 5

processing operations. In contrast, CISC processors have dedicated registers for specific
purposes.

4. Load-store architecture—The processor operates on data held in registers. Separate load
and store instructions transfer data between the register bank and external memory.
Memory accesses are costly, so separating memory accesses from data processing pro-
vides an advantage because you can use data items held in the register bank multiple
times without needing multiple memory accesses. In contrast, with a CISC design the
data processing operations can act on memory directly.

These design rules allow a RISC processor to be simpler, and thus the core can operate
at higher clock frequencies. In contrast, traditional CISC processors are more complex
and operate at lower clock frequencies. Over the course of two decades, however, the
distinction between RISC and CISC has blurred as CISC processors have implemented
more RISC concepts.

1.2 The ARM Design Philosophy
There are a number of physical features that have driven the ARM processor design. First,
portable embedded systems require some form of battery power. The ARM processor has
been specifically designed to be small to reduce power consumption and extend battery
operation—essential for applications such as mobile phones and personal digital assistants
(PDAs).

High code density is another major requirement since embedded systems have lim-
ited memory due to cost and/or physical size restrictions. High code density is useful for
applications that have limited on-board memory, such as mobile phones and mass storage
devices.

In addition, embedded systems are price sensitive and use slow and low-cost memory
devices. For high-volume applications like digital cameras, every cent has to be accounted
for in the design. The ability to use low-cost memory devices produces substantial savings.

Another important requirement is to reduce the area of the die taken up by the embedded
processor. For a single-chip solution, the smaller the area used by the embedded processor,
the more available space for specialized peripherals. This in turn reduces the cost of the
design and manufacturing since fewer discrete chips are required for the end product.

ARM has incorporated hardware debug technology within the processor so that software
engineers can view what is happening while the processor is executing code. With greater
visibility, software engineers can resolve issues faster, which has a direct effect on the time
to market and reduces overall development costs.

The ARM core is not a pure RISC architecture because of the constraints of its primary
application—the embedded system. In some sense, the strength of the ARM core is that
it does not take the RISC concept too far. In today’s systems the key is not raw processor
speed but total effective system performance and power consumption.
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6 Chapter 1 ARM Embedded Systems

1.2.1 Instruction Set for Embedded Systems

The ARM instruction set differs from the pure RISC definition in several ways that make
the ARM instruction set suitable for embedded applications:

■ Variable cycle execution for certain instructions—Not every ARM instruction executes
in a single cycle. For example, load-store-multiple instructions vary in the number
of execution cycles depending upon the number of registers being transferred. The
transfer can occur on sequential memory addresses, which increases performance since
sequential memory accesses are often faster than random accesses. Code density is also
improved since multiple register transfers are common operations at the start and end
of functions.

■ Inline barrel shifter leading to more complex instructions—The inline barrel shifter is
a hardware component that preprocesses one of the input registers before it is used
by an instruction. This expands the capability of many instructions to improve core
performance and code density. We explain this feature in more detail in Chapters 2, 3,
and 4.

■ Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second
16-bit instruction set called Thumb that permits the ARM core to execute either
16- or 32-bit instructions. The 16-bit instructions improve code density by about
30% over 32-bit fixed-length instructions.

■ Conditional execution—An instruction is only executed when a specific condition has
been satisfied. This feature improves performance and code density by reducing branch
instructions.

■ Enhanced instructions—The enhanced digital signal processor (DSP) instructions were
added to the standard ARM instruction set to support fast 16×16-bit multiplier oper-
ations and saturation. These instructions allow a faster-performing ARM processor in
some cases to replace the traditional combinations of a processor plus a DSP.

These additional features have made the ARM processor one of the most commonly
used 32-bit embedded processor cores. Many of the top semiconductor companies around
the world produce products based around the ARM processor.

1.3 Embedded System Hardware
Embedded systems can control many different devices, from small sensors found on
a production line, to the real-time control systems used on a NASA space probe. All
these devices use a combination of software and hardware components. Each component
is chosen for efficiency and, if applicable, is designed for future extension and expansion.
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1.3 Embedded System Hardware 7
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Figure 1.2 An example of an ARM-based embedded device, a microcontroller.

Figure 1.2 shows a typical embedded device based on an ARM core. Each box represents
a feature or function. The lines connecting the boxes are the buses carrying data. We can
separate the device into four main hardware components:

■ The ARM processor controls the embedded device. Different versions of the ARM pro-
cessor are available to suit the desired operating characteristics. An ARM processor
comprises a core (the execution engine that processes instructions and manipulates
data) plus the surrounding components that interface it with a bus. These components
can include memory management and caches.

■ Controllers coordinate important functional blocks of the system. Two commonly
found controllers are interrupt and memory controllers.

■ The peripherals provide all the input-output capability external to the chip and are
responsible for the uniqueness of the embedded device.

■ A bus is used to communicate between different parts of the device.
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8 Chapter 1 ARM Embedded Systems

1.3.1 ARM Bus Technology

Embedded systems use different bus technologies than those designed for x86 PCs. The most
common PC bus technology, the Peripheral Component Interconnect (PCI) bus, connects
such devices as video cards and hard disk controllers to the x86 processor bus. This type
of technology is external or off-chip (i.e., the bus is designed to connect mechanically and
electrically to devices external to the chip) and is built into the motherboard of a PC.

In contrast, embedded devices use an on-chip bus that is internal to the chip and that
allows different peripheral devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus. The ARM processor core is
a bus master—a logical device capable of initiating a data transfer with another device across
the same bus. Peripherals tend to be bus slaves—logical devices capable only of responding
to a transfer request from a bus master device.

A bus has two architecture levels. The first is a physical level that covers the electrical
characteristics and bus width (16, 32, or 64 bits). The second level deals with protocol—the
logical rules that govern the communication between the processor and a peripheral.

ARM is primarily a design company. It seldom implements the electrical characteristics
of the bus, but it routinely specifies the bus protocol.

1.3.2 AMBA Bus Protocol

The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and has
been widely adopted as the on-chip bus architecture used for ARM processors. The first
AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral Bus
(APB). Later ARM introduced another bus design, called the ARM High Performance Bus
(AHB). Using AMBA, peripheral designers can reuse the same design on multiple projects.
Because there are a large number of peripherals developed with an AMBA interface, hard-
ware designers have a wide choice of tested and proven peripherals for use in a device.
A peripheral can simply be bolted onto the on-chip bus without having to redesign an inter-
face for each different processor architecture. This plug-and-play interface for hardware
developers improves availability and time to market.

AHB provides higher data throughput than ASB because it is based on a centralized
multiplexed bus scheme rather than the ASB bidirectional bus design. This change allows
the AHB bus to run at higher clock speeds and to be the first ARM bus to support widths
of 64 and 128 bits. ARM has introduced two variations on the AHB bus: Multi-layer AHB
and AHB-Lite. In contrast to the original AHB, which allows a single bus master to be
active on the bus at any time, the Multi-layer AHB bus allows multiple active bus masters.
AHB-Lite is a subset of the AHB bus and it is limited to a single bus master. This bus was
developed for designs that do not require the full features of the standard AHB bus.

AHB and Multi-layer AHB support the same protocol for master and slave but have
different interconnects. The new interconnects in Multi-layer AHB are good for systems
with multiple processors. They permit operations to occur in parallel and allow for higher
throughput rates.
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1.3 Embedded System Hardware 9

The example device shown in Figure 1.2 has three buses: an AHB bus for the high-
performance peripherals, an APB bus for the slower peripherals, and a third bus for external
peripherals, proprietary to this device. This external bus requires a specialized bridge to
connect with the AHB bus.

1.3.3 Memory

An embedded system has to have some form of memory to store and execute code. You
have to compare price, performance, and power consumption when deciding upon specific
memory characteristics, such as hierarchy, width, and type. If memory has to run twice as
fast to maintain a desired bandwidth, then the memory power requirement may be higher.

1.3.3.1 Hierarchy

All computer systems have memory arranged in some form of hierarchy. Figure 1.2 shows
a device that supports external off-chip memory. Internal to the processor there is an option
of a cache (not shown in Figure 1.2) to improve memory performance.

Figure 1.3 shows the memory trade-offs: the fastest memory cache is physically located
nearer the ARM processor core and the slowest secondary memory is set further away.
Generally the closer memory is to the processor core, the more it costs and the smaller its
capacity.

The cache is placed between main memory and the core. It is used to speed up data
transfer between the processor and main memory. A cache provides an overall increase in
performance but with a loss of predictable execution time. Although the cache increases the

Pe
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1 MB
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storage
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Memory Size

Figure 1.3 Storage trade-offs.
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10 Chapter 1 ARM Embedded Systems

general performance of the system, it does not help real-time system response. Note that
many small embedded systems do not require the performance benefits of a cache.

The main memory is large—around 256 KB to 256 MB (or even greater), depending on
the application—and is generally stored in separate chips. Load and store instructions access
the main memory unless the values have been stored in the cache for fast access. Secondary
storage is the largest and slowest form of memory. Hard disk drives and CD-ROM drives
are examples of secondary storage. These days secondary storage may vary from 600 MB
to 60 GB.

1.3.3.2 Width

The memory width is the number of bits the memory returns on each access—typically
8, 16, 32, or 64 bits. The memory width has a direct effect on the overall performance and
cost ratio.

If you have an uncached system using 32-bit ARM instructions and 16-bit-wide memory
chips, then the processor will have to make two memory fetches per instruction. Each fetch
requires two 16-bit loads. This obviously has the effect of reducing system performance,
but the benefit is that 16-bit memory is less expensive.

In contrast, if the core executes 16-bit Thumb instructions, it will achieve better
performance with a 16-bit memory. The higher performance is a result of the core making
only a single fetch to memory to load an instruction. Hence, using Thumb instructions
with 16-bit-wide memory devices provides both improved performance and reduced cost.

Table 1.1 summarizes theoretical cycle times on an ARM processor using different
memory width devices.

1.3.3.3 Types

There are many different types of memory. In this section we describe some of the more
popular memory devices found in ARM-based embedded systems.

Read-only memory (ROM) is the least flexible of all memory types because it contains an
image that is permanently set at production time and cannot be reprogrammed. ROMs are
used in high-volume devices that require no updates or corrections. Many devices also use
a ROM to hold boot code.

Table 1.1 Fetching instructions from memory.

Instruction size 8-bit memory 16-bit memory 32-bit memory

ARM 32-bit 4 cycles 2 cycles 1 cycle
Thumb 16-bit 2 cycles 1 cycle 1 cycle

https://hemanthrajhemu.github.io



1.3 Embedded System Hardware 11

Flash ROM can be written to as well as read, but it is slow to write so you shouldn’t use
it for holding dynamic data. Its main use is for holding the device firmware or storing long-
term data that needs to be preserved after power is off. The erasing and writing of flash ROM
are completely software controlled with no additional hardware circuity required, which
reduces the manufacturing costs. Flash ROM has become the most popular of the read-only
memory types and is currently being used as an alternative for mass or secondary storage.

Dynamic random access memory (DRAM) is the most commonly used RAM for devices.
It has the lowest cost per megabyte compared with other types of RAM. DRAM is dynamic—
it needs to have its storage cells refreshed and given a new electronic charge every few
milliseconds, so you need to set up a DRAM controller before using the memory.

Static random access memory (SRAM) is faster than the more traditional DRAM, but
requires more silicon area. SRAM is static—the RAM does not require refreshing. The
access time for SRAM is considerably shorter than the equivalent DRAM because SRAM
does not require a pause between data accesses. Because of its higher cost, it is used mostly
for smaller high-speed tasks, such as fast memory and caches.

Synchronous dynamic random access memory (SDRAM) is one of many subcategories
of DRAM. It can run at much higher clock speeds than conventional memory. SDRAM
synchronizes itself with the processor bus because it is clocked. Internally the data is fetched
from memory cells, pipelined, and finally brought out on the bus in a burst. The old-style
DRAM is asynchronous, so does not burst as efficiently as SDRAM.

1.3.4 Peripherals

Embedded systems that interact with the outside world need some form of peripheral
device. A peripheral device performs input and output functions for the chip by connecting
to other devices or sensors that are off-chip. Each peripheral device usually performs a single
function and may reside on-chip. Peripherals range from a simple serial communication
device to a more complex 802.11 wireless device.

All ARM peripherals are memory mapped—the programming interface is a set of
memory-addressed registers. The address of these registers is an offset from a specific
peripheral base address.

Controllers are specialized peripherals that implement higher levels of functionality
within an embedded system. Two important types of controllers are memory controllers
and interrupt controllers.

1.3.4.1 Memory Controllers

Memory controllers connect different types of memory to the processor bus. On power-up
a memory controller is configured in hardware to allow certain memory devices to be active.
These memory devices allow the initialization code to be executed. Some memory devices
must be set up by software; for example, when using DRAM, you first have to set up the
memory timings and refresh rate before it can be accessed.

https://hemanthrajhemu.github.io



12 Chapter 1 ARM Embedded Systems

1.3.4.2 Interrupt Controllers

When a peripheral or device requires attention, it raises an interrupt to the processor.
An interrupt controller provides a programmable governing policy that allows software to
determine which peripheral or device can interrupt the processor at any specific time by
setting the appropriate bits in the interrupt controller registers.

There are two types of interrupt controller available for the ARM processor: the standard
interrupt controller and the vector interrupt controller (VIC).

The standard interrupt controller sends an interrupt signal to the processor core when
an external device requests servicing. It can be programmed to ignore or mask an individual
device or set of devices. The interrupt handler determines which device requires servicing
by reading a device bitmap register in the interrupt controller.

The VIC is more powerful than the standard interrupt controller because it prioritizes
interrupts and simplifies the determination of which device caused the interrupt. After
associating a priority and a handler address with each interrupt, the VIC only asserts an
interrupt signal to the core if the priority of a new interrupt is higher than the currently
executing interrupt handler. Depending on its type, the VIC will either call the standard
interrupt exception handler, which can load the address of the handler for the device from
the VIC, or cause the core to jump to the handler for the device directly.

1.4 Embedded System Software
An embedded system needs software to drive it. Figure 1.4 shows four typical software
components required to control an embedded device. Each software component in the
stack uses a higher level of abstraction to separate the code from the hardware device.

The initialization code is the first code executed on the board and is specific to a particular
target or group of targets. It sets up the minimum parts of the board before handing control
over to the operating system.

Application

Operating system

Initialization Device drivers

Hardware device

Figure 1.4 Software abstraction layers executing on hardware.
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1.4 Embedded System Software 13

The operating system provides an infrastructure to control applications and manage
hardware system resources. Many embedded systems do not require a full operating system
but merely a simple task scheduler that is either event or poll driven.

The device drivers are the third component shown in Figure 1.4. They provide
a consistent software interface to the peripherals on the hardware device.

Finally, an application performs one of the tasks required for a device. For example,
a mobile phone might have a diary application. There may be multiple applications running
on the same device, controlled by the operating system.

The software components can run from ROM or RAM. ROM code that is fixed on the
device (for example, the initialization code) is called firmware.

1.4.1 Initialization (Boot) Code

Initialization code (or boot code) takes the processor from the reset state to a state where the
operating system can run. It usually configures the memory controller and processor caches
and initializes some devices. In a simple system the operating system might be replaced by
a simple scheduler or debug monitor.

The initialization code handles a number of administrative tasks prior to handing control
over to an operating system image. We can group these different tasks into three phases:
initial hardware configuration, diagnostics, and booting.

Initial hardware configuration involves setting up the target platform so it can boot
an image. Although the target platform itself comes up in a standard configuration, this
configuration normally requires modification to satisfy the requirements of the booted
image. For example, the memory system normally requires reorganization of the memory
map, as shown in Example 1.1.

Diagnostics are often embedded in the initialization code. Diagnostic code tests the
system by exercising the hardware target to check if the target is in working order. It also
tracks down standard system-related issues. This type of testing is important for manu-
facturing since it occurs after the software product is complete. The primary purpose of
diagnostic code is fault identification and isolation.

Booting involves loading an image and handing control over to that image. The boot
process itself can be complicated if the system must boot different operating systems or
different versions of the same operating system.

Booting an image is the final phase, but first you must load the image. Loading an image
involves anything from copying an entire program including code and data into RAM, to
just copying a data area containing volatile variables into RAM. Once booted, the system
hands over control by modifying the program counter to point into the start of the image.

Sometimes, to reduce the image size, an image is compressed. The image is then
decompressed either when it is loaded or when control is handed over to it.

Example

1.1
Initializing or organizing memory is an important part of the initialization code because
many operating systems expect a known memory layout before they can start.
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14 Chapter 1 ARM Embedded Systems
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Figure 1.5 Memory remapping.

Figure 1.5 shows memory before and after reorganization. It is common for ARM-based
embedded systems to provide for memory remapping because it allows the system to start
the initialization code from ROM at power-up. The initialization code then redefines or
remaps the memory map to place RAM at address 0x00000000—an important step because
then the exception vector table can be in RAM and thus can be reprogrammed. We will
discuss the vector table in more detail in Section 2.4. ■

1.4.2 Operating System

The initialization process prepares the hardware for an operating system to take
control. An operating system organizes the system resources: the peripherals, memory,
and processing time. With an operating system controlling these resources, they can be
efficiently used by different applications running within the operating system environment.

ARM processors support over 50 operating systems. We can divide operating systems
into two main categories: real-time operating systems (RTOSs) and platform operating
systems.

RTOSs provide guaranteed response times to events. Different operating systems have
different amounts of control over the system response time. A hard real-time application
requires a guaranteed response to work at all. In contrast, a soft real-time application
requires a good response time, but the performance degrades more gracefully if the response
time overruns. Systems running an RTOS generally do not have secondary storage.

Platform operating systems require a memory management unit to manage large, non-
real-time applications and tend to have secondary storage. The Linux operating system is
a typical example of a platform operating system.
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1.5 Summary 15

These two categories of operating system are not mutually exclusive: there are operat-
ing systems that use an ARM core with a memory management unit and have real-time
characteristics. ARM has developed a set of processor cores that specifically target each
category.

1.4.3 Applications

The operating system schedules applications—code dedicated to handling a particular task.
An application implements a processing task; the operating system controls the environ-
ment. An embedded system can have one active application or several applications running
simultaneously.

ARM processors are found in numerous market segments, including networking, auto-
motive, mobile and consumer devices, mass storage, and imaging. Within each segment
ARM processors can be found in multiple applications.

For example, the ARM processor is found in networking applications like home
gateways, DSL modems for high-speed Internet communication, and 802.11 wireless
communication. The mobile device segment is the largest application area for ARM pro-
cessors because of mobile phones. ARM processors are also found in mass storage devices
such as hard drives and imaging products such as inkjet printers—applications that are cost
sensitive and high volume.

In contrast, ARM processors are not found in applications that require leading-edge
high performance. Because these applications tend to be low volume and high cost, ARM
has decided not to focus designs on these types of applications.

1.5 Summary
Pure RISC is aimed at high performance, but ARM uses a modified RISC design philosophy
that also targets good code density and low power consumption. An embedded system
consists of a processor core surrounded by caches, memory, and peripherals. The system is
controlled by operating system software that manages application tasks.

The key points in a RISC design philosophy are to improve performance by reducing
the complexity of instructions, to speed up instruction processing by using a pipeline, to
provide a large register set to store data near the core, and to use a load-store architecture.

The ARM design philosophy also incorporates some non-RISC ideas:

■ It allows variable cycle execution on certain instructions to save power, area, and
code size.

■ It adds a barrel shifter to expand the capability of certain instructions.

■ It uses the Thumb 16-bit instruction set to improve code density.

https://hemanthrajhemu.github.io



16 Chapter 1 ARM Embedded Systems

■ It improves code density and performance by conditionally executing instructions.

■ It includes enhanced instructions to perform digital signal processing type functions.

An embedded system includes the following hardware components: ARM processors
are found embedded in chips. Programmers access peripherals through memory-mapped
registers. There is a special type of peripheral called a controller, which embedded systems
use to configure higher-level functions such as memory and interrupts. The AMBA on-chip
bus is used to connect the processor and peripherals together.

An embedded system also includes the following software components: Initialization
code configures the hardware to a known state. Once configured, operating systems can be
loaded and executed. Operating systems provide a common programming environment for
the use of hardware resources and infrastructure. Device drivers provide a standard interface
to peripherals. An application performs the task-specific duties of an embedded system.
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C h a p t e r

ARM Processor
Fundamentals

2

Chapter 1 covered embedded systems with an ARM processor. In this chapter we will focus
on the actual processor itself. First, we will provide an overview of the processor core and
describe how data moves between its different parts. We will describe the programmer’s
model from a software developer’s view of the ARM processor, which will show you the
functions of the processor core and how different parts interact. We will also take a look at
the core extensions that form an ARM processor. Core extensions speed up and organize
main memory as well as extend the instruction set. We will then cover the revisions to the
ARM core architecture by describing the ARM core naming conventions used to identify
them and the chronological changes to the ARM instruction set architecture. The final
section introduces the architecture implementations by subdividing them into specific
ARM processor core families.

A programmer can think of an ARM core as functional units connected by data buses,
as shown in Figure 2.1, where, the arrows represent the flow of data, the lines represent the
buses, and the boxes represent either an operation unit or a storage area. The figure shows
not only the flow of data but also the abstract components that make up an ARM core.

Data enters the processor core through the Data bus. The data may be an instruction to
execute or a data item. Figure 2.1 shows a Von Neumann implementation of the ARM—
data items and instructions share the same bus. In contrast, Harvard implementations of
the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each
instruction executed belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses a load-store architecture. This
means it has two instruction types for transferring data in and out of the processor: load
instructions copy data from memory to registers in the core, and conversely the store
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Figure 2.1 ARM core dataflow model.

instructions copy data from registers to memory. There are no data processing instructions
that directly manipulate data in memory. Thus, data processing is carried out solely in
registers.

Data items are placed in the register file—a storage bank made up of 32-bit registers.
Since the ARM core is a 32-bit processor, most instructions treat the registers as holding
signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit
numbers to 32-bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or
destination register, Rd. Source operands are read from the register file using the internal
buses A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the regis-
ter values Rn and Rm from the A and B buses and computes a result. Data processing
instructions write the result in Rd directly to the register file. Load and store instructions
use the ALU to generate an address to be held in the address register and broadcast on the
Address bus.
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One important feature of the ARM is that register Rm alternatively can be preprocessed
in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can
calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register
file using the Result bus. For load and store instructions the incrementer updates the address
register before the core reads or writes the next register value from or to the next sequential
memory location. The processor continues executing instructions until an exception or
interrupt changes the normal execution flow.

Now that you have an overview of the processor core we’ll take a more detailed look
at some of the key components of the processor: the registers, the current program status
register (cpsr), and the pipeline.

2.1 Registers
General-purpose registers hold either data or an address. They are identified with the
letter r prefixed to the register number. For example, register 4 is given the label r4.
Figure 2.2 shows the active registers available in user mode—a protected mode normally

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13 sp
r14 lr
r15 pc

cpsr
-

Figure 2.2 Registers available in user mode.
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used when executing applications. The processor can operate in seven different modes,
which we will introduce shortly. All the registers shown are 32 bits in size.

There are up to 18 active registers: 16 data registers and 2 processor status registers. The
data registers are visible to the programmer as r0 to r15.

The ARM processor has three registers assigned to a particular task or special function:
r13, r14, and r15. They are frequently given different labels to differentiate them from the
other registers.

In Figure 2.2, the shaded registers identify the assigned special-purpose registers:

■ Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack
in the current processor mode.

■ Register r14 is called the link register (lr) and is where the core puts the return address
whenever it calls a subroutine.

■ Register r15 is the program counter (pc) and contains the address of the next instruction
to be fetched by the processor.

Depending upon the context, registers r13 and r14 can also be used as general-purpose
registers, which can be particularly useful since these registers are banked during a processor
mode change. However, it is dangerous to use r13 as a general register when the processor
is running any form of operating system because operating systems often assume that r13
always points to a valid stack frame.

In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply
to r0 you can equally well apply to any of the other registers. However, there are instructions
that treat r14 and r15 in a special way.

In addition to the 16 data registers, there are two program status registers: cpsr and spsr
(the current and saved program status registers, respectively).

The register file contains all the registers available to a programmer. Which registers are
visible to the programmer depend upon the current mode of the processor.

2.2 Current Program Status Register
The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a
dedicated 32-bit register and resides in the register file. Figure 2.3 shows the basic layout
of a generic program status register. Note that the shaded parts are reserved for future
expansion.

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and control.
In current designs the extension and status fields are reserved for future use. The control
field contains the processor mode, state, and interrupt mask bits. The flags field contains
the condition flags.

Some ARM processor cores have extra bits allocated. For example, the J bit, which can
be found in the flags field, is only available on Jazelle-enabled processors, which execute
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Figure 2.3 A generic program status register (psr).

8-bit instructions. We will discuss Jazelle more in Section 2.2.3. It is highly probable that
future designs will assign extra bits for the monitoring and control of new features.

For a full description of the cpsr, refer to Appendix B.

2.2.1 Processor Modes

The processor mode determines which registers are active and the access rights to the cpsr
register itself. Each processor mode is either privileged or nonprivileged: A privileged mode
allows full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read
access to the control field in the cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one nonprivileged mode
(user).

The processor enters abort mode when there is a failed attempt to access memory. Fast
interrupt request and interrupt request modes correspond to the two interrupt levels available
on the ARM processor. Supervisor mode is the mode that the processor is in after reset and
is generally the mode that an operating system kernel operates in. System mode is a special
version of user mode that allows full read-write access to the cpsr. Undefined mode is used
when the processor encounters an instruction that is undefined or not supported by the
implementation. User mode is used for programs and applications.

2.2.2 Banked Registers

Figure 2.4 shows all 37 registers in the register file. Of those, 20 registers are hidden from
a program at different times. These registers are called banked registers and are identified
by the shading in the diagram. They are available only when the processor is in a particular
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Figure 2.4 Complete ARM register set.

mode; for example, abort mode has banked registers r13_abt, r14_abt and spsr_abt. Banked
registers of a particular mode are denoted by an underline character post-fixed to the mode
mnemonic or _mode.

Every processor mode except user mode can change mode by writing directly to the
mode bits of the cpsr. All processor modes except system mode have a set of associated
banked registers that are a subset of the main 16 registers. A banked register maps one-to-
one onto a user mode register. If you change processor mode, a banked register from the
new mode will replace an existing register.

For example, when the processor is in the interrupt request mode, the instructions you
execute still access registers named r13 and r14. However, these registers are the banked
registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not affected
by the instruction referencing these registers. A program still has normal access to the other
registers r0 to r12.

The processor mode can be changed by a program that writes directly to the cpsr (the
processor core has to be in privileged mode) or by hardware when the core responds to
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Figure 2.5 Changing mode on an exception.

an exception or interrupt. The following exceptions and interrupts cause a mode change:
reset, interrupt request, fast interrupt request, software interrupt, data abort, prefetch abort,
and undefined instruction. Exceptions and interrupts suspend the normal execution of
sequential instructions and jump to a specific location.

Figure 2.5 illustrates what happens when an interrupt forces a mode change. The figure
shows the core changing from user mode to interrupt request mode, which happens when an
interrupt request occurs due to an external device raising an interrupt to the processor core.
This change causes user registers r13 and r14 to be banked. The user registers are replaced
with registers r13_irq and r14_irq, respectively. Note r14_irq contains the return address
and r13_irq contains the stack pointer for interrupt request mode.

Figure 2.5 also shows a new register appearing in interrupt request mode: the saved
program status register (spsr), which stores the previous mode’s cpsr. You can see in the
diagram the cpsr being copied into spsr_irq. To return back to user mode, a special return
instruction is used that instructs the core to restore the original cpsr from the spsr_irq and
bank in the user registers r13 and r14. Note that the spsr can only be modified and read in a
privileged mode. There is no spsr available in user mode.
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Table 2.1 Processor mode.

Mode Abbreviation Privileged Mode[4:0]

Abort abt yes 10111
Fast interrupt request fiq yes 10001
Interrupt request irq yes 10010
Supervisor svc yes 10011
System sys yes 11111
Undefined und yes 11011
User usr no 10000

Another important feature to note is that the cpsr is not copied into the spsr when a
mode change is forced due to a program writing directly to the cpsr. The saving of the cpsr
only occurs when an exception or interrupt is raised.

Figure 2.3 shows that the current active processor mode occupies the five least significant
bits of the cpsr. When power is applied to the core, it starts in supervisor mode, which is
privileged. Starting in a privileged mode is useful since initialization code can use full access
to the cpsr to set up the stacks for each of the other modes.

Table 2.1 lists the various modes and the associated binary patterns. The last column of
the table gives the bit patterns that represent each of the processor modes in the cpsr.

2.2.3 State and Instruction Sets

The state of the core determines which instruction set is being executed. There are three
instruction sets: ARM, Thumb, and Jazelle. The ARM instruction set is only active when
the processor is in ARM state. Similarly the Thumb instruction set is only active when
the processor is in Thumb state. Once in Thumb state the processor is executing purely
Thumb 16-bit instructions. You cannot intermingle sequential ARM, Thumb, and Jazelle
instructions.

The Jazelle J and Thumb T bits in the cpsr reflect the state of the processor. When both
J and T bits are 0, the processor is in ARM state and executes ARM instructions. This is the
case when power is applied to the processor. When the T bit is 1, then the processor is in
Thumb state. To change states the core executes a specialized branch instruction. Table 2.2
compares the ARM and Thumb instruction set features.

The ARM designers introduced a third instruction set called Jazelle. Jazelle executes
8-bit instructions and is a hybrid mix of software and hardware designed to speed up the
execution of Java bytecodes.

To execute Java bytecodes, you require the Jazelle technology plus a specially modified
version of the Java virtual machine. It is important to note that the hardware portion of
Jazelle only supports a subset of the Java bytecodes; the rest are emulated in software.
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Table 2.2 ARM and Thumb instruction set features.

ARM (cpsr T = 0) Thumb (cpsr T = 1)

Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional executiona most only branch instructions
Data processing

instructions
access to barrel shifter and

ALU
separate barrel shifter and

ALU instructions
Program status register read-write in privileged mode no direct access
Register usage 15 general-purpose registers 8 general-purpose registers

+pc +7 high registers +pc

a See Section 2.2.6.

Table 2.3 Jazelle instruction set features.

Jazelle (cpsr T = 0, J = 1)

Instruction size 8-bit
Core instructions Over 60% of the Java bytecodes are implemented in hardware;

the rest of the codes are implemented in software.

The Jazelle instruction set is a closed instruction set and is not openly available. Table 2.3
gives the Jazelle instruction set features.

2.2.4 Interrupt Masks

Interrupt masks are used to stop specific interrupt requests from interrupting the processor.
There are two interrupt request levels available on the ARM processor core—interrupt
request (IRQ) and fast interrupt request (FIQ).

The cpsr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking
of IRQ and FIQ, respectively. The I bit masks IRQ when set to binary 1, and similarly the
F bit masks FIQ when set to binary 1.

2.2.5 Condition Flags

Condition flags are updated by comparisons and the result of ALU operations that specify
the S instruction suffix. For example, if a SUBS subtract instruction results in a register value
of zero, then the Z flag in the cpsr is set. This particular subtract instruction specifically
updates the cpsr.
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Table 2.4 Condition flags.

Flag Flag name Set when

Q Saturation the result causes an overflow and/or saturation
V oVerflow the result causes a signed overflow
C Carry the result causes an unsigned carry
Z Zero the result is zero, frequently used to indicate equality
N Negative bit 31 of the result is a binary 1

With processor cores that include the DSP extensions, the Q bit indicates if an overflow
or saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in the
sense that the hardware only sets this flag. To clear the flag you need to write to the cpsr
directly.

In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the core is
in Jazelle state. The J bit is not generally usable and is only available on some processor cores.
To take advantage of Jazelle, extra software has to be licensed from both ARM Limited and
Sun Microsystems.

Most ARM instructions can be executed conditionally on the value of the condition
flags. Table 2.4 lists the condition flags and a short description on what causes them to be
set. These flags are located in the most significant bits in the cpsr. These bits are used for
conditional execution.

Figure 2.6 shows a typical value for the cpsr with both DSP extensions and Jazelle. In
this book we use a notation that presents the cpsr data in a more human readable form.
When a bit is a binary 1 we use a capital letter; when a bit is a binary 0, we use a lowercase
letter. For the condition flags a capital letter shows that the flag has been set. For interrupts
a capital letter shows that an interrupt is disabled.

In the cpsr example shown in Figure 2.6, the C flag is the only condition flag set. The rest
nzvq flags are all clear. The processor is in ARM state because neither the Jazelle j or Thumb t
bits are set. The IRQ interrupts are enabled, and FIQ interrupts are disabled. Finally, you

nzCvq j iF SVCt

31 30 29 28 27 24

0 0 1 0 0 0

7 6 5 4 0

0 1 0 10011

Figure 2.6 Example: cpsr = nzCvqjiFt_SVC.
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Table 2.5 Condition mnemonics.

Mnemonic Name Condition flags

EQ equal Z
NE not equal z
CS HS carry set/unsigned higher or same C
CC LO carry clear/unsigned lower c
MI minus/negative N
PL plus/positive or zero n
VS overflow V
VC no overflow v
HI unsigned higher zC
LS unsigned lower or same Z or c
GE signed greater than or equal NV or nv
LT signed less than Nv or nV
GT signed greater than NzV or nzv
LE signed less than or equal Z or Nv or nV
AL always (unconditional) ignored

can see from the figure the processor is in supervisor (SVC) mode since the mode[4:0] is
equal to binary 10011.

2.2.6 Conditional Execution

Conditional execution controls whether or not the core will execute an instruction.
Most instructions have a condition attribute that determines if the core will execute it
based on the setting of the condition flags. Prior to execution, the processor compares the
condition attribute with the condition flags in the cpsr. If they match, then the instruction
is executed; otherwise the instruction is ignored.

The condition attribute is postfixed to the instruction mnemonic, which is encoded
into the instruction. Table 2.5 lists the conditional execution code mnemonics. When a
condition mnemonic is not present, the default behavior is to set it to always (AL) execute.

2.3 Pipeline
A pipeline is the mechanism a RISC processor uses to execute instructions. Using a pipeline
speeds up execution by fetching the next instruction while other instructions are being
decoded and executed. One way to view the pipeline is to think of it as an automobile
assembly line, with each stage carrying out a particular task to manufacture the vehicle.
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ExecuteDecodeFetch

Figure 2.7 ARM7 Three-stage pipeline.

Figure 2.7 shows a three-stage pipeline:

■ Fetch loads an instruction from memory.

■ Decode identifies the instruction to be executed.

■ Execute processes the instruction and writes the result back to a register.

Figure 2.8 illustrates the pipeline using a simple example. It shows a sequence of three
instructions being fetched, decoded, and executed by the processor. Each instruction takes
a single cycle to complete after the pipeline is filled.

The three instructions are placed into the pipeline sequentially. In the first cycle the
core fetches the ADD instruction from memory. In the second cycle the core fetches the
SUB instruction and decodes the ADD instruction. In the third cycle, both the SUB and
ADD instructions are moved along the pipeline. The ADD instruction is executed, the SUB
instruction is decoded, and the CMP instruction is fetched. This procedure is called filling
the pipeline. The pipeline allows the core to execute an instruction every cycle.

As the pipeline length increases, the amount of work done at each stage is reduced,
which allows the processor to attain a higher operating frequency. This in turn increases
the performance. The system latency also increases because it takes more cycles to fill the
pipeline before the core can execute an instruction. The increased pipeline length also means
there can be data dependency between certain stages. You can write code to reduce this
dependency by using instruction scheduling (for more information on instruction scheduling
take a look at Chapter 6).

ADD

ExecuteDecodeFetch

ADDSUB

ADDSUBCMP

Cycle 1

Cycle 2

Time

Cycle 3

Figure 2.8 Pipelined instruction sequence.
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Execute Memory WriteDecodeFetch

Figure 2.9 ARM9 five-stage pipeline.

Decode Execute Memory WriteIssueFetch

Figure 2.10 ARM10 six-stage pipeline.

The pipeline design for each ARM family differs. For example, The ARM9 core increases
the pipeline length to five stages, as shown in Figure 2.9. The ARM9 adds a memory and
writeback stage, which allows the ARM9 to process on average 1.1 Dhrystone MIPS per
MHz—an increase in instruction throughput by around 13% compared with an ARM7.
The maximum core frequency attainable using an ARM9 is also higher.

The ARM10 increases the pipeline length still further by adding a sixth stage, as shown
in Figure 2.10. The ARM10 can process on average 1.3 Dhrystone MIPS per MHz, about
34% more throughput than an ARM7 processor core, but again at a higher latency cost.

Even though the ARM9 and ARM10 pipelines are different, they still use the same
pipeline executing characteristics as an ARM7. Code written for the ARM7 will execute on
an ARM9 or ARM10.

2.3.1 Pipeline Executing Characteristics

The ARM pipeline has not processed an instruction until it passes completely through
the execute stage. For example, an ARM7 pipeline (with three stages) has executed an
instruction only when the fourth instruction is fetched.

Figure 2.11 shows an instruction sequence on an ARM7 pipeline. The MSR instruction
is used to enable IRQ interrupts, which only occurs once the MSR instruction completes
the execute stage of the pipeline. It clears the I bit in the cpsr to enable the IRQ inter-
rupts. Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts are
enabled.

Figure 2.12 illustrates the use of the pipeline and the program counter pc. In the execute
stage, the pc always points to the address of the instruction plus 8 bytes. In other words,
the pc always points to the address of the instruction being executed plus two instructions
ahead. This is important when the pc is used for calculating a relative offset and is an
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MSR

ExecuteDecodeFetch

cpsr
IFt_SVC

cpsr
IFt_SVC

cpsr
iFt_SVC

MSRADD

MSRADDAND

Cycle 1

Cycle 2

Time

Cycle 3

ADDANDSUBCycle 4

Figure 2.11 ARM instruction sequence.

LDRNOPDCD

Execute

pc + 8
(0x8000 + 8)

DecodeFetch

0x8000  LDR pc, [pc,#0]
0x8004  NOP
0x8008  DCD jumpAddress

Time

Figure 2.12 Example: pc = address + 8.

architectural characteristic across all the pipelines. Note when the processor is in Thumb
state the pc is the instruction address plus 4.

There are three other characteristics of the pipeline worth mentioning. First, the exe-
cution of a branch instruction or branching by the direct modification of the pc causes the
ARM core to flush its pipeline.

Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush by
predicting possible branches and loading the new branch address prior to the execution of
the instruction.

Third, an instruction in the execute stage will complete even though an interrupt has
been raised. Other instructions in the pipeline will be abandoned, and the processor will
start filling the pipeline from the appropriate entry in the vector table.
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2.4 Exceptions, Interrupts, and the Vector
Table

When an exception or interrupt occurs, the processor sets the pc to a specific memory
address. The address is within a special address range called the vector table. The entries
in the vector table are instructions that branch to specific routines designed to handle a
particular exception or interrupt.

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit
words. On some processors the vector table can be optionally located at a higher address
in memory (starting at the offset 0xffff0000). Operating systems such as Linux and
Microsoft’s embedded products can take advantage of this feature.

When an exception or interrupt occurs, the processor suspends normal execution and
starts loading instructions from the exception vector table (see Table 2.6). Each vector table
entry contains a form of branch instruction pointing to the start of a specific routine:

■ Reset vector is the location of the first instruction executed by the processor when power
is applied. This instruction branches to the initialization code.

■ Undefined instruction vector is used when the processor cannot decode an instruction.

■ Software interrupt vector is called when you execute a SWI instruction. The SWI
instruction is frequently used as the mechanism to invoke an operating system routine.

■ Prefetch abort vector occurs when the processor attempts to fetch an instruction from an
address without the correct access permissions. The actual abort occurs in the decode
stage.

■ Data abort vector is similar to a prefetch abort but is raised when an instruction attempts
to access data memory without the correct access permissions.

■ Interrupt request vector is used by external hardware to interrupt the normal execution
flow of the processor. It can only be raised if IRQs are not masked in the cpsr.

Table 2.6 The vector table.

Exception/interrupt Shorthand Address High address

Reset RESET 0x00000000 0xffff0000
Undefined instruction UNDEF 0x00000004 0xffff0004
Software interrupt SWI 0x00000008 0xffff0008
Prefetch abort PABT 0x0000000c 0xffff000c
Data abort DABT 0x00000010 0xffff0010
Reserved — 0x00000014 0xffff0014
Interrupt request IRQ 0x00000018 0xffff0018
Fast interrupt request FIQ 0x0000001c 0xffff001c
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■ Fast interrupt request vector is similar to the interrupt request but is reserved for hardware
requiring faster response times. It can only be raised if FIQs are not masked in the cpsr.

2.5 Core Extensions
The hardware extensions covered in this section are standard components placed next to the
ARM core. They improve performance, manage resources, and provide extra functionality
and are designed to provide flexibility in handling particular applications. Each ARM family
has different extensions available.

There are three hardware extensions ARM wraps around the core: cache and tightly
coupled memory, memory management, and the coprocessor interface.

2.5.1 Cache and Tightly Coupled Memory

The cache is a block of fast memory placed between main memory and the core. It allows for
more efficient fetches from some memory types. With a cache the processor core can run
for the majority of the time without having to wait for data from slow external memory.
Most ARM-based embedded systems use a single-level cache internal to the processor.
Of course, many small embedded systems do not require the performance gains that a
cache brings.

ARM has two forms of cache. The first is found attached to the Von Neumann–style
cores. It combines both data and instruction into a single unified cache, as shown in
Figure 2.13. For simplicity, we have called the glue logic that connects the memory system
to the AMBA bus logic and control.

ARM core

Unified cache

Logic and control

On-chip AMBA bus

Main memoryAMBA bus interface unit

Figure 2.13 A simplified Von Neumann architecture with cache.
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Figure 2.14 A simplified Harvard architecture with TCMs.

By contrast, the second form, attached to the Harvard-style cores, has separate caches
for data and instruction.

A cache provides an overall increase in performance but at the expense of predictable
execution. But for real-time systems it is paramount that code execution is deterministic—
the time taken for loading and storing instructions or data must be predictable. This is
achieved using a form of memory called tightly coupled memory (TCM). TCM is fast SRAM
located close to the core and guarantees the clock cycles required to fetch instructions or
data—critical for real-time algorithms requiring deterministic behavior. TCMs appear as
memory in the address map and can be accessed as fast memory. An example of a processor
with TCMs is shown in Figure 2.14.

By combining both technologies, ARM processors can have both improved performance
and predictable real-time response. Figure 2.15 shows an example core with a combination
of caches and TCMs.

2.5.2 Memory Management

Embedded systems often use multiple memory devices. It is usually necessary to have a
method to help organize these devices and protect the system from applications trying to
make inappropriate accesses to hardware. This is achieved with the assistance of memory
management hardware.

ARM cores have three different types of memory management hardware—no extensions
providing no protection, a memory protection unit (MPU) providing limited protection,
and a memory management unit (MMU) providing full protection:

■ Nonprotected memory is fixed and provides very little flexibility. It is normally used for
small, simple embedded systems that require no protection from rogue applications.
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Figure 2.15 A simplified Harvard architecture with caches and TCMs.

■ MPUs employ a simple system that uses a limited number of memory regions. These
regions are controlled with a set of special coprocessor registers, and each region is
defined with specific access permissions. This type of memory management is used
for systems that require memory protection but don’t have a complex memory map.
The MPU is explained in Chapter 13.

■ MMUs are the most comprehensive memory management hardware available on the
ARM. The MMU uses a set of translation tables to provide fine-grained control over
memory. These tables are stored in main memory and provide a virtual-to-physical
address map as well as access permissions. MMUs are designed for more sophisti-
cated platform operating systems that support multitasking. The MMU is explained in
Chapter 14.

2.5.3 Coprocessors

Coprocessors can be attached to the ARM processor. A coprocessor extends the processing
features of a core by extending the instruction set or by providing configuration reg-
isters. More than one coprocessor can be added to the ARM core via the coprocessor
interface.

The coprocessor can be accessed through a group of dedicated ARM instructions
that provide a load-store type interface. Consider, for example, coprocessor 15: The
ARM processor uses coprocessor 15 registers to control the cache, TCMs, and memory
management.

The coprocessor can also extend the instruction set by providing a specialized group
of new instructions. For example, there are a set of specialized instructions that can
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be added to the standard ARM instruction set to process vector floating-point (VFP)
operations.

These new instructions are processed in the decode stage of the ARM pipeline. If the
decode stage sees a coprocessor instruction, then it offers it to the relevant coprocessor.
But if the coprocessor is not present or doesn’t recognize the instruction, then the ARM
takes an undefined instruction exception, which allows you to emulate the behavior of the
coprocessor in software.

2.6 Architecture Revisions
Every ARM processor implementation executes a specific instruction set architecture (ISA),
although an ISA revision may have more than one processor implementation.

The ISA has evolved to keep up with the demands of the embedded market. This
evolution has been carefully managed by ARM, so that code written to execute on an earlier
architecture revision will also execute on a later revision of the architecture.

Before we go on to explain the evolution of the architecture, we must introduce the ARM
processor nomenclature. The nomenclature identifies individual processors and provides
basic information about the feature set.

2.6.1 Nomenclature

ARM uses the nomenclature shown in Figure 2.16 to describe the processor implemen-
tations. The letters and numbers after the word “ARM” indicate the features a processor

ARM{x}{y}{z}{T}{D}{M}{I}{E}{J}{F}{-S}

x—family
y—memory management/protection unit
z—cache
T—Thumb 16-bit decoder
D—JTAG debug
M—fast multiplier
I—EmbeddedICE macrocell
E—enhanced instructions (assumes TDMI)
J—Jazelle
F—vector floating-point unit
S—synthesizible version

Figure 2.16 ARM nomenclature.
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may have. In the future the number and letter combinations may change as more features
are added. Note the nomenclature does not include the architecture revision information.

There are a few additional points to make about the ARM nomenclature:

■ All ARM cores after the ARM7TDMI include the TDMI features even though they may
not include those letters after the “ARM” label.

■ The processor family is a group of processor implementations that share the same
hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all
share the same family characteristics and belong to the ARM7 family.

■ JTAG is described by IEEE 1149.1 Standard Test Access Port and boundary scan archi-
tecture. It is a serial protocol used by ARM to send and receive debug information
between the processor core and test equipment.

■ EmbeddedICE macrocell is the debug hardware built into the processor that allows
breakpoints and watchpoints to be set.

■ Synthesizable means that the processor core is supplied as source code that can be
compiled into a form easily used by EDA tools.

2.6.2 Architecture Evolution

The architecture has continued to evolve since the first ARM processor implementation
was introduced in 1985. Table 2.7 shows the significant architecture enhancements from
the original architecture version 1 to the current version 6 architecture. One of the most
significant changes to the ISA was the introduction of the Thumb instruction set in ARMv4T
(the ARM7TDMI processor).

Table 2.8 summarizes the various parts of the program status register and the availabil-
ity of certain features on particular instruction architectures. “All” refers to the ARMv4
architecture and above.

2.7 ARM Processor Families
ARM has designed a number of processors that are grouped into different families according
to the core they use. The families are based on the ARM7, ARM9, ARM10, and ARM11
cores. The postfix numbers 7, 9, 10, and 11 indicate different core designs. The ascending
number equates to an increase in performance and sophistication. ARM8 was developed
but was soon superseded.

Table 2.9 shows a rough comparison of attributes between the ARM7, ARM9, ARM10,
and ARM11 cores. The numbers quoted can vary greatly and are directly dependent upon
the type and geometry of the manufacturing process, which has a direct effect on the
frequency (MHz) and power consumption (watts).
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Table 2.7 Revision history.

Revision Example core implementation ISA enhancement

ARMv1 ARM1 First ARM processor
26-bit addressing

ARMv2 ARM2 32-bit multiplier
32-bit coprocessor support

ARMv2a ARM3 On-chip cache
Atomic swap instruction
Coprocessor 15 for cache management

ARMv3 ARM6 and ARM7DI 32-bit addressing
Separate cpsr and spsr
New modes—undefined instruction and abort
MMU support—virtual memory

ARMv3M ARM7M Signed and unsigned long multiply instructions
ARMv4 StrongARM Load-store instructions for signed and unsigned

halfwords/bytes
New mode—system
Reserve SWI space for architecturally defined

operations
26-bit addressing mode no longer supported

ARMv4T ARM7TDMI and ARM9T Thumb
ARMv5TE ARM9E and ARM10E Superset of the ARMv4T

Extra instructions added for changing state between
ARM and Thumb

Enhanced multiply instructions
Extra DSP-type instructions
Faster multiply accumulate

ARMv5TEJ ARM7EJ and ARM926EJ Java acceleration
ARMv6 ARM11 Improved multiprocessor instructions

Unaligned and mixed endian data handling
New multimedia instructions

Within each ARM family, there are a number of variations of memory management,
cache, and TCM processor extensions. ARM continues to expand both the number of
families available and the different variations within each family.

You can find other processors that execute the ARM ISA such as StrongARM and
XScale. These processors are unique to a particular semiconductor company, in this case
Intel.

Table 2.10 summarizes the different features of the various processors. The next
subsections describe the ARM families in more detail, starting with the ARM7 family.
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Table 2.8 Description of the cpsr.

Parts Bits Architectures Description

Mode 4:0 all processor mode
T 5 ARMv4T Thumb state
I & F 7:6 all interrupt masks
J 24 ARMv5TEJ Jazelle state
Q 27 ARMv5TE condition flag
V 28 all condition flag
C 29 all condition flag
Z 30 all condition flag
N 31 all condition flag

Table 2.9 ARM family attribute comparison.

ARM7 ARM9 ARM10 ARM11

Pipeline depth three-stage five-stage six-stage eight-stage
Typical MHz 80 150 260 335
mW/MHza 0.06 mW/MHz 0.19 mW/MHz 0.5 mW/MHz 0.4 mW/MHz

(+ cache) (+ cache) (+ cache)
MIPSb/MHz 0.97 1.1 1.3 1.2
Architecture Von Neumann Harvard Harvard Harvard
Multiplier 8 × 32 8 × 32 16 × 32 16 × 32

a Watts/MHz on the same 0.13 micron process.
b MIPS are Dhrystone VAX MIPS.

2.7.1 ARM7 Family

The ARM7 core has a Von Neumann–style architecture, where both data and instructions
use the same bus. The core has a three-stage pipeline and executes the architecture ARMv4T
instruction set.

The ARM7TDMI was the first of a new range of processors introduced in 1995 by ARM.
It is currently a very popular core and is used in many 32-bit embedded processors. It
provides a very good performance-to-power ratio. The ARM7TDMI processor core has
been licensed by many of the top semiconductor companies around the world and is
the first core to include the Thumb instruction set, a fast multiply instruction, and the
EmbeddedICE debug technology.
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Table 2.10 ARM processor variants.

CPU core MMU/MPU Cache Jazelle Thumb ISA Ea

ARM7TDMI none none no yes v4T no
ARM7EJ-S none none yes yes v5TEJ yes
ARM720T MMU unified—8K cache no yes v4T no
ARM920T MMU separate—16K /16K D + I

cache
no yes v4T no

ARM922T MMU separate—8K/8K D + I
cache

no yes v4T no

ARM926EJ-S MMU separate—cache and
TCMs configurable

yes yes v5TEJ yes

ARM940T MPU separate—4K/4K D + I
cache

no yes v4T no

ARM946E-S MPU separate—cache and
TCMs configurable

no yes v5TE yes

ARM966E-S none separate—TCMs
configurable

no yes v5TE yes

ARM1020E MMU separate—32K/32K D + I
cache

no yes v5TE yes

ARM1022E MMU separate—16K/16K D + I
cache

no yes v5TE yes

ARM1026EJ-S MMU and
MPU

separate—cache and
TCMs configurable

yes yes v5TE yes

ARM1136J-S MMU separate—cache and
TCMs configurable

yes yes v6 yes

ARM1136JF-S MMU separate—cache and
TCMs configurable

yes yes v6 yes

a E extension provides enhanced multiply instructions and saturation.

One significant variation in the ARM7 family is the ARM7TDMI-S. The ARM7TDMI-S
has the same operating characteristics as a standard ARM7TDMI but is also synthesizable.

ARM720T is the most flexible member of the ARM7 family because it includes an
MMU. The presence of the MMU means the ARM720T is capable of handling the Linux
and Microsoft embedded platform operating systems. The processor also includes a unified
8K cache. The vector table can be relocated to a higher address by setting a coprocessor
15 register.

Another variation is the ARM7EJ-S processor, also synthesizable. ARM7EJ-S is quite
different since it includes a five-stage pipeline and executes ARMv5TEJ instructions. This
version of the ARM7 is the only one that provides both Java acceleration and the enhanced
instructions but without any memory protection.
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2.7.2 ARM9 Family

The ARM9 family was announced in 1997. Because of its five-stage pipeline, the ARM9
processor can run at higher clock frequencies than the ARM7 family. The extra stages
improve the overall performance of the processor. The memory system has been redesigned
to follow the Harvard architecture, which separates the data D and instruction I buses.

The first processor in the ARM9 family was the ARM920T, which includes a separate
D + I cache and an MMU. This processor can be used by operating systems requiring
virtual memory support. ARM922T is a variation on the ARM920T but with half the D + I
cache size.

The ARM940T includes a smaller D + I cache and an MPU. The ARM940T is designed
for applications that do not require a platform operating system. Both ARM920T and
ARM940T execute the architecture v4T instructions.

The next processors in the ARM9 family were based on the ARM9E-S core. This core is
a synthesizable version of the ARM9 core with the E extensions. There are two variations:
the ARM946E-S and the ARM966E-S. Both execute architecture v5TE instructions. They
also support the optional embedded trace macrocell (ETM), which allows a developer to
trace instruction and data execution in real time on the processor. This is important when
debugging applications with time-critical segments.

The ARM946E-S includes TCM, cache, and an MPU. The sizes of the TCM and caches
are configurable. This processor is designed for use in embedded control applications that
require deterministic real-time response. In contrast, the ARM966E does not have the MPU
and cache extensions but does have configurable TCMs.

The latest core in the ARM9 product line is the ARM926EJ-S synthesizable processor
core, announced in 2000. It is designed for use in small portable Java-enabled devices such
as 3G phones and personal digital assistants (PDAs). The ARM926EJ-S is the first ARM
processor core to include the Jazelle technology, which accelerates Java bytecode execution.
It features an MMU, configurable TCMs, and D + I caches with zero or nonzero wait state
memories.

2.7.3 ARM10 Family

The ARM10, announced in 1999, was designed for performance. It extends the ARM9
pipeline to six stages. It also supports an optional vector floating-point (VFP) unit, which
adds a seventh stage to the ARM10 pipeline. The VFP significantly increases floating-point
performance and is compliant with the IEEE 754.1985 floating-point standard.

The ARM1020E is the first processor to use an ARM10E core. Like the ARM9E, it
includes the enhanced E instructions. It has separate 32K D + I caches, optional vector
floating-point unit, and an MMU. The ARM1020E also has a dual 64-bit bus interface for
increased performance.

ARM1026EJ-S is very similar to the ARM926EJ-S but with both MPU and MMU. This
processor has the performance of the ARM10 with the flexibility of an ARM926EJ-S.
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2.7.4 ARM11 Family

The ARM1136J-S, announced in 2003, was designed for high performance and power-
efficient applications. ARM1136J-S was the first processor implementation to execute
architecture ARMv6 instructions. It incorporates an eight-stage pipeline with separate load-
store and arithmetic pipelines. Included in the ARMv6 instructions are single instruction
multiple data (SIMD) extensions for media processing, specifically designed to increase
video processing performance.

The ARM1136JF-S is an ARM1136J-S with the addition of the vector floating-point unit
for fast floating-point operations.

2.7.5 Specialized Processors

StrongARM was originally co-developed by Digital Semiconductor and is now exclusively
licensed by Intel Corporation. It is has been popular for PDAs and applications that require
performance with low power consumption. It is a Harvard architecture with separate D + I
caches. StrongARM was the first high-performance ARM processor to include a five-stage
pipeline, but it does not support the Thumb instruction set.

Intel’s XScale is a follow-on product to the StrongARM and offers dramatic increases in
performance. At the time of writing, XScale was quoted as being able to run up to 1 GHz.
XScale executes architecture v5TE instructions. It is a Harvard architecture and is similar
to the StrongARM, as it also includes an MMU.

SC100 is at the other end of the performance spectrum. It is designed specifically
for low-power security applications. The SC100 is the first SecurCore and is based on
an ARM7TDMI core with an MPU. This core is small and has low voltage and current
requirements, which makes it attractive for smart card applications.

2.8 Summary
In this chapter we focused on the hardware fundamentals of the actual ARM processor.
The ARM processor can be abstracted into eight components—ALU, barrel shifter, MAC,
register file, instruction decoder, address register, incrementer, and sign extend.

ARM has three instruction sets—ARM, Thumb, and Jazelle. The register file contains
37 registers, but only 17 or 18 registers are accessible at any point in time; the rest are
banked according to processor mode. The current processor mode is stored in the cpsr. It
holds the current status of the processor core as well interrupt masks, condition flags, and
state. The state determines which instruction set is being executed.

An ARM processor comprises a core plus the surrounding components that interface it
with a bus. The core extensions include the following:

■ Caches are used to improve the overall system performance.

■ TCMs are used to improve deterministic real-time response.
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■ Memory management is used to organize memory and protect system resources.

■ Coprocessors are used to extend the instruction set and functionality. Coprocessor
15 controls the cache, TCMs, and memory management.

An ARM processor is an implementation of a specific instruction set architecture (ISA).
The ISA has been continuously improved from the first ARM processor design. Processors
are grouped into implementation families (ARM7, ARM9, ARM10, and ARM11) with
similar characteristics.
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