

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

ARM System
Developer’s Guide

Designing and Optimizing
System Software

Andrew N. Sloss

Dominic Symes

Chris Wright

With a contribution by John Rayfield

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

https://hemanthrajhemu.github.io

Contents

About the Authors ii
Preface xi

Chapter

1 ARM Embedded Systems 3

1.1 The RISC Design Philosophy 4
1.2 The ARM Design Philosophy 5
1.3 Embedded System Hardware 6
1.4 Embedded System Software 12
1.5 Summary 15

Chapter

2 ARM Processor Fundamentals 19

2.1 Registers 21
2.2 Current Program Status Register 22
2.3 Pipeline 29
2.4 Exceptions, Interrupts, and the Vector Table 33
2.5 Core Extensions 34
2.6 Architecture Revisions 37
2.7 ARM Processor Families 38
2.8 Summary 43

Chapter

3 Introduction to the ARM Instruction Set 47

3.1 Data Processing Instructions 50
3.2 Branch Instructions 58
3.3 Load-Store Instructions 60
3.4 Software Interrupt Instruction 73
3.5 Program Status Register Instructions 75
3.6 Loading Constants 78
3.7 ARMv5E Extensions 79
3.8 Conditional Execution 82
3.9 Summary 84

v

https://hemanthrajhemu.github.io

vi Contents

Chapter

4 Introduction to the Thumb Instruction Set 87

4.1 Thumb Register Usage 89
4.2 ARM-Thumb Interworking 90
4.3 Other Branch Instructions 92
4.4 Data Processing Instructions 93
4.5 Single-Register Load-Store Instructions 96
4.6 Multiple-Register Load-Store Instructions 97
4.7 Stack Instructions 98
4.8 Software Interrupt Instruction 99
4.9 Summary 100

Chapter

5 Efficient C Programming 103

5.1 Overview of C Compilers and Optimization 104
5.2 Basic C Data Types 105
5.3 C Looping Structures 113
5.4 Register Allocation 120
5.5 Function Calls 122
5.6 Pointer Aliasing 127
5.7 Structure Arrangement 130
5.8 Bit-fields 133
5.9 Unaligned Data and Endianness 136
5.10 Division 140
5.11 Floating Point 149
5.12 Inline Functions and Inline Assembly 149
5.13 Portability Issues 153
5.14 Summary 155

Chapter

6 Writing and Optimizing ARM Assembly Code 157

6.1 Writing Assembly Code 158
6.2 Profiling and Cycle Counting 163
6.3 Instruction Scheduling 163
6.4 Register Allocation 171
6.5 Conditional Execution 180
6.6 Looping Constructs 183
6.7 Bit Manipulation 191
6.8 Efficient Switches 197

https://hemanthrajhemu.github.io

3.1 Data Processing Instructions
3.1.1 Move Instructions

3.1.2 Barrel Shifter

3.1.3 Arithmetic Instructions

3.1.4 Using the Barrel Shifter with Arithmetic Instructions

3.1.5 Logical Instructions

3.1.6 Comparison Instructions

3.1.7 Multiply Instructions

3.2 Branch Instructions
3.3 Load-Store Instructions

3.3.1 Single-Register Transfer

3.3.2 Single-Register Load-Store Addressing Modes

3.3.3 Multiple-Register Transfer

3.3.4 Swap Instruction

3.4 Software Interrupt Instruction
3.5 Program Status Register Instructions

3.5.1 Coprocessor Instructions

3.5.2 Coprocessor 15 Instruction Syntax

3.6 Loading Constants
3.7 ARMv5E Extensions

3.7.1 Count Leading Zeros Instruction

3.7.2 Saturated Arithmetic

3.7.3 ARMv5E Multiply Instructions

3.8 Conditional Execution
3.9 Summary

https://hemanthrajhemu.github.io

C h a p t e r

Introduction
to the ARM

Instruction Set

3

This introduction to the ARM instruction set is a fundamental chapter since the infor-
mation presented here is used throughout the rest of the book. Consequently, it is
placed here before we start going into any depth on optimization and efficient algo-
rithms. This chapter introduces the most common and useful ARM instructions and builds
on the ARM processor fundamentals covered in the last chapter. Chapter 4 introduces
the Thumb instruction set, and Appendix A gives a complete description of all ARM
instructions.

Different ARM architecture revisions support different instructions. However, new
revisions usually add instructions and remain backwardly compatible. Code you write for
architecture ARMv4T should execute on an ARMv5TE processor. Table 3.1 provides a
complete list of ARM instructions available in the ARMv5E instruction set architecture
(ISA). This ISA includes all the core ARM instructions as well as some of the newer features
in the ARM instruction set. The “ARM ISA” column lists the ISA revision in which the
instruction was introduced. Some instructions have extended functionality in later archi-
tectures; for example, the CDP instruction has an ARMv5 variant called CDP2. Similarly,
instructions such as LDR have ARMv5 additions but do not require a new or extended
mnemonic.

We illustrate the processor operations using examples with pre- and post-conditions,
describing registers and memory before and after the instruction or instructions are

47

https://hemanthrajhemu.github.io

48 Chapter 3 Introduction to the ARM Instruction Set

Table 3.1 ARM instruction set.

Mnemonics ARM ISA Description

ADC v1 add two 32-bit values and carry
ADD v1 add two 32-bit values
AND v1 logical bitwise AND of two 32-bit values
B v1 branch relative +/− 32 MB
BIC v1 logical bit clear (AND NOT) of two 32-bit values
BKPT v5 breakpoint instructions
BL v1 relative branch with link
BLX v5 branch with link and exchange
BX v4T branch with exchange
CDP CDP2 v2 v5 coprocessor data processing operation
CLZ v5 count leading zeros
CMN v1 compare negative two 32-bit values
CMP v1 compare two 32-bit values
EOR v1 logical exclusive OR of two 32-bit values
LDC LDC2 v2 v5 load to coprocessor single or multiple 32-bit values
LDM v1 load multiple 32-bit words from memory to ARM registers
LDR v1 v4 v5E load a single value from a virtual address in memory
MCR MCR2 MCRR v2 v5 v5E move to coprocessor from an ARM register or registers
MLA v2 multiply and accumulate 32-bit values
MOV v1 move a 32-bit value into a register
MRC MRC2 MRRC v2 v5 v5E move to ARM register or registers from a coprocessor
MRS v3 move to ARM register from a status register (cpsr or spsr)
MSR v3 move to a status register (cpsr or spsr) from an ARM register
MUL v2 multiply two 32-bit values
MVN v1 move the logical NOT of 32-bit value into a register
ORR v1 logical bitwise OR of two 32-bit values
PLD v5E preload hint instruction
QADD v5E signed saturated 32-bit add
QDADD v5E signed saturated double and 32-bit add
QDSUB v5E signed saturated double and 32-bit subtract
QSUB v5E signed saturated 32-bit subtract
RSB v1 reverse subtract of two 32-bit values
RSC v1 reverse subtract with carry of two 32-bit integers
SBC v1 subtract with carry of two 32-bit values
SMLAxy v5E signed multiply accumulate instructions ((16 × 16) + 32 = 32-bit)
SMLAL v3M signed multiply accumulate long ((32 × 32) + 64 = 64-bit)
SMLALxy v5E signed multiply accumulate long ((16 × 16) + 64 = 64-bit)
SMLAWy v5E signed multiply accumulate instruction (((32 × 16) � 16) + 32 = 32-bit)
SMULL v3M signed multiply long (32 × 32 = 64-bit)

continued

https://hemanthrajhemu.github.io

Chapter 3 Introduction to the ARM Instruction Set 49

Table 3.1 ARM instruction set. (Continued)

Mnemonics ARM ISA Description

SMULxy v5E signed multiply instructions (16 × 16 = 32-bit)
SMULWy v5E signed multiply instruction ((32 × 16) � 16 = 32-bit)
STC STC2 v2 v5 store to memory single or multiple 32-bit values from coprocessor
STM v1 store multiple 32-bit registers to memory
STR v1 v4 v5E store register to a virtual address in memory
SUB v1 subtract two 32-bit values
SWI v1 software interrupt
SWP v2a swap a word/byte in memory with a register, without interruption
TEQ v1 test for equality of two 32-bit values
TST v1 test for bits in a 32-bit value
UMLAL v3M unsigned multiply accumulate long ((32 × 32) + 64 = 64-bit)
UMULL v3M unsigned multiply long (32 × 32 = 64-bit)

executed. We will represent hexadecimal numbers with the prefix 0x and binary numbers
with the prefix 0b. The examples follow this format:

PRE <pre-conditions>
<instruction/s>

POST <post-conditions>

In the pre- and post-conditions, memory is denoted as

mem<data_size>[address]

This refers to data_size bits of memory starting at the given byte address. For example,
mem32[1024] is the 32-bit value starting at address 1 KB.

ARM instructions process data held in registers and only access memory with load and
store instructions. ARM instructions commonly take two or three operands. For instance
the ADD instruction below adds the two values stored in registers r1 and r2 (the source
registers). It writes the result to register r3 (the destination register).

Instruction
Syntax

Destination
register (Rd)

Source
register 1 (Rn)

Source
register 2 (Rm)

ADD r3, r1, r2 r3 r1 r2

In the following sections we examine the function and syntax of the ARM
instructions by instruction class—data processing instructions, branch instructions,

https://hemanthrajhemu.github.io

50 Chapter 3 Introduction to the ARM Instruction Set

load-store instructions, software interrupt instruction, and program status register
instructions.

3.1 Data Processing Instructions
The data processing instructions manipulate data within registers. They are move instruc-
tions, arithmetic instructions, logical instructions, comparison instructions, and multiply
instructions. Most data processing instructions can process one of their operands using the
barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the
cpsr. Move and logical operations update the carry flag C, negative flag N, and zero flag Z.
The carry flag is set from the result of the barrel shift as the last bit shifted out. The N flag
is set to bit 31 of the result. The Z flag is set if the result is zero.

3.1.1 Move Instructions

Move is the simplest ARM instruction. It copies N into a destination register Rd, where
N is a register or immediate value. This instruction is useful for setting initial values and
transferring data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MOV Move a 32-bit value into a register Rd = N

MVN move the NOT of the 32-bit value into a register Rd = ∼N

Table 3.3, to be presented in Section 3.1.2, gives a full description of the values allowed
for the second operand N for all data processing instructions. Usually it is a register Rm or
a constant preceded by #.

Example

3.1
This example shows a simple move instruction. The MOV instruction takes the contents of
register r5 and copies them into register r7, in this case, taking the value 5, and overwriting
the value 8 in register r7.

PRE r5 = 5
r7 = 8
MOV r7, r5 ; let r7 = r5

POST r5 = 5
r7 = 5 ■

https://hemanthrajhemu.github.io

3.1 Data Processing Instructions 51

3.1.2 Barrel Shifter

In Example 3.1 we showed a MOV instruction where N is a simple register. But N can be
more than just a register or immediate value; it can also be a register Rm that has been
preprocessed by the barrel shifter prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).
A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before
it enters the ALU. This shift increases the power and flexibility of many data processing
operations.

There are data processing instructions that do not use the barrel shift, for example,
the MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)
instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly
useful for loading constants into a register and achieving fast multiplies or division by
a power of 2.

N
o

pr
e-

pr
oc

es
si

ng

Pr
e-

pr
oc

es
si

ngRn Rm

Barrel shifter

Result N

Rd

Arithmetic logic unit

Figure 3.1 Barrel shifter and ALU.

To illustrate the barrel shifter we will take the example in Figure 3.1 and add a shift
operation to the move instruction example. Register Rn enters the ALU without any pre-
processing of registers. Figure 3.1 shows the data flow between the ALU and the barrel
shifter.

Example

3.2
We apply a logical shift left (LSL) to register Rm before moving it to the destination register.
This is the same as applying the standard C language shift operator � to the register. The
MOV instruction copies the shift operator result N into register Rd. N represents the result
of the LSL operation described in Table 3.2.

PRE r5 = 5
r7 = 8

https://hemanthrajhemu.github.io

52 Chapter 3 Introduction to the ARM Instruction Set

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2)

POST r5 = 5
r7 = 20

The example multiplies register r5 by four and then places the result into register r7. ■

The five different shift operations that you can use within the barrel shifter are
summarized in Table 3.2.

Figure 3.2 illustrates a logical shift left by one. For example, the contents of bit 0 are
shifted to bit 1. Bit 0 is cleared. The C flag is updated with the last bit shifted out of the
register. This is bit (32 − y) of the original value, where y is the shift amount. When y is
greater than one, then a shift by y positions is the same as a shift by one position executed
y times.

Table 3.2 Barrel shifter operations.

Mnemonic Description Shift Result Shift amount y

LSL logical shift left xLSL y x � y #0–31 or Rs
LSR logical shift right xLSR y (unsigned)x � y #1–32 or Rs
ASR arithmetic right shift xASR y (signed)x � y #1–32 or Rs
ROR rotate right xROR y ((unsigned)x � y) | (x � (32 − y)) #1–31 or Rs
RRX rotate right extended xRRX (c flag � 31) | ((unsigned)x � 1) none

Note: x represents the register being shifted and y represents the shift amount.

Bit
31

Bit
2

31

nzcv 1

0

0

0

0

0

0

0

0

1

0

Bit
0

0

Condition ßags

nzCv

Condition ßags

Condition flags
updated when
S is present

1

0

= 0x80000004

= 0x00000008

Figure 3.2 Logical shift left by one.

https://hemanthrajhemu.github.io

3.1 Data Processing Instructions 53

Table 3.3 Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

Immediate #immediate
Register Rm
Logical shift left by immediate Rm, LSL #shift_imm
Logical shift left by register Rm, LSL Rs
Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift_imm
Arithmetic shift right by register Rm, ASR Rs
Rotate right by immediate Rm, ROR #shift_imm
Rotate right by register Rm, ROR Rs
Rotate right with extend Rm, RRX

Example

3.3
This example of a MOVS instruction shifts register r1 left by one bit. This multiplies register
r1 by a value 21. As you can see, the C flag is updated in the cpsr because the S suffix is
present in the instruction mnemonic.

PRE cpsr = nzcvqiFt_USER
r0 = 0x00000000
r1 = 0x80000004

MOVS r0, r1, LSL #1

POST cpsr = nzCvqiFt_USER
r0 = 0x00000008
r1 = 0x80000004 ■

Table 3.3 lists the syntax for the different barrel shift operations available on data
processing instructions. The second operand N can be an immediate constant preceded by
#, a register value Rm, or the value of Rm processed by a shift.

3.1.3 Arithmetic Instructions

The arithmetic instructions implement addition and subtraction of 32-bit signed and
unsigned values.

https://hemanthrajhemu.github.io

54 Chapter 3 Introduction to the ARM Instruction Set

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

ADC add two 32-bit values and carry Rd = Rn + N+ carry

ADD add two 32-bit values Rd = Rn + N

RSB reverse subtract of two 32-bit values Rd = N − Rn

RSC reverse subtract with carry of two 32-bit values Rd = N − Rn − !(carry flag)

SBC subtract with carry of two 32-bit values Rd = Rn − N− !(carry flag)

SUB subtract two 32-bit values Rd = Rn − N

N is the result of the shifter operation. The syntax of shifter operation is shown in Table 3.3.

Example

3.4
This simple subtract instruction subtracts a value stored in register r2 from a value stored
in register r1. The result is stored in register r0.

PRE r0 = 0x00000000
r1 = 0x00000002
r2 = 0x00000001

SUB r0, r1, r2

POST r0 = 0x00000001 ■

Example

3.5
This reverse subtract instruction (RSB) subtracts r1 from the constant value #0, writing the
result to r0. You can use this instruction to negate numbers.

PRE r0 = 0x00000000
r1 = 0x00000077

RSB r0, r1, #0 ; Rd = 0x0 - r1

POST r0 = -r1 = 0xffffff89 ■

Example

3.6
The SUBS instruction is useful for decrementing loop counters. In this example we subtract
the immediate value one from the value one stored in register r1. The result value zero is
written to register r1. The cpsr is updated with the ZC flags being set.

PRE cpsr = nzcvqiFt_USER
r1 = 0x00000001

SUBS r1, r1, #1

https://hemanthrajhemu.github.io

3.1 Data Processing Instructions 55

POST cpsr = nZCvqiFt_USER
r1 = 0x00000000 ■

3.1.4 Using the Barrel Shifter with Arithmetic
Instructions

The wide range of second operand shifts available on arithmetic and logical instructions
is a very powerful feature of the ARM instruction set. Example 3.7 illustrates the use of
the inline barrel shifter with an arithmetic instruction. The instruction multiplies the value
stored in register r1 by three.

Example

3.7
Register r1 is first shifted one location to the left to give the value of twice r1. The ADD
instruction then adds the result of the barrel shift operation to register r1. The final result
transferred into register r0 is equal to three times the value stored in register r1.

PRE r0 = 0x00000000
r1 = 0x00000005

ADD r0, r1, r1, LSL #1

POST r0 = 0x0000000f
r1 = 0x00000005 ■

3.1.5 Logical Instructions

Logical instructions perform bitwise logical operations on the two source registers.

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

AND logical bitwise AND of two 32-bit values Rd = Rn & N

ORR logical bitwise OR of two 32-bit values Rd = Rn | N

EOR logical exclusive OR of two 32-bit values Rd = Rn ∧ N

BIC logical bit clear (AND NOT) Rd = Rn & ∼N

Example

3.8
This example shows a logical OR operation between registers r1 and r2. r0 holds the result.

PRE r0 = 0x00000000
r1 = 0x02040608
r2 = 0x10305070

https://hemanthrajhemu.github.io

56 Chapter 3 Introduction to the ARM Instruction Set

ORR r0, r1, r2

POST r0 = 0x12345678 ■

Example

3.9
This example shows a more complicated logical instruction called BIC, which carries out
a logical bit clear.

PRE r1 = 0b1111
r2 = 0b0101

BIC r0, r1, r2

POST r0 = 0b1010

This is equivalent to

Rd = Rn AND NOT(N)

In this example, register r2 contains a binary pattern where every binary 1 in r2 clears
a corresponding bit location in register r1. This instruction is particularly useful when
clearing status bits and is frequently used to change interrupt masks in the cpsr. ■

The logical instructions update the cpsr flags only if the S suffix is present. These
instructions can use barrel-shifted second operands in the same way as the arithmetic
instructions.

3.1.6 Comparison Instructions

The comparison instructions are used to compare or test a register with a 32-bit value.
They update the cpsr flag bits according to the result, but do not affect other registers.
After the bits have been set, the information can then be used to change program flow by
using conditional execution. For more information on conditional execution take a look
at Section 3.8. You do not need to apply the S suffix for comparison instructions to update
the flags.

Syntax: <instruction>{<cond>} Rn, N

CMN compare negated flags set as a result of Rn + N

CMP compare flags set as a result of Rn − N

TEQ test for equality of two 32-bit values flags set as a result of Rn ∧ N

TST test bits of a 32-bit value flags set as a result of Rn & N

https://hemanthrajhemu.github.io

3.1 Data Processing Instructions 57

N is the result of the shifter operation. The syntax of shifter operation is shown in
Table 3.3.

Example

3.10
This example shows a CMP comparison instruction. You can see that both registers, r0 and
r9, are equal before executing the instruction. The value of the z flag prior to execution is 0
and is represented by a lowercase z. After execution the z flag changes to 1 or an uppercase
Z. This change indicates equality.

PRE cpsr = nzcvqiFt_USER
r0 = 4
r9 = 4

CMP r0, r9

POST cpsr = nZcvqiFt_USER

The CMP is effectively a subtract instruction with the result discarded; similarly the TST
instruction is a logical AND operation, and TEQ is a logical exclusive OR operation. For
each, the results are discarded but the condition bits are updated in the cpsr. It is important
to understand that comparison instructions only modify the condition flags of the cpsr and
do not affect the registers being compared. ■

3.1.7 Multiply Instructions

The multiply instructions multiply the contents of a pair of registers and, depending upon
the instruction, accumulate the results in with another register. The long multiplies accu-
mulate onto a pair of registers representing a 64-bit value. The final result is placed in
a destination register or a pair of registers.

Syntax: MLA{<cond>}{S} Rd, Rm, Rs, Rn
MUL{<cond>}{S} Rd, Rm, Rs

MLA multiply and accumulate Rd = (Rm∗Rs) + Rn

MUL multiply Rd = Rm∗Rs

Syntax: <instruction>{<cond>}{S} RdLo, RdHi, Rm, Rs

SMLAL signed multiply accumulate long [RdHi, RdLo] = [RdHi, RdLo] + (Rm ∗Rs)

SMULL signed multiply long [RdHi, RdLo] = Rm ∗Rs

UMLAL unsigned multiply accumulate [RdHi, RdLo] = [RdHi, RdLo] + (Rm ∗Rs)

long

UMULL unsigned multiply long [RdHi, RdLo] = Rm ∗Rs

https://hemanthrajhemu.github.io

58 Chapter 3 Introduction to the ARM Instruction Set

The number of cycles taken to execute a multiply instruction depends on the processor
implementation. For some implementations the cycle timing also depends on the value
in Rs. For more details on cycle timings, see Appendix D.

Example

3.11
This example shows a simple multiply instruction that multiplies registers r1 and r2 together
and places the result into register r0. In this example, register r1 is equal to the value 2, and
r2 is equal to 2. The result, 4, is then placed into register r0.

PRE r0 = 0x00000000
r1 = 0x00000002
r2 = 0x00000002

MUL r0, r1, r2 ; r0 = r1*r2

POST r0 = 0x00000004
r1 = 0x00000002
r2 = 0x00000002 ■

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit
result. The result is too large to fit a single 32-bit register so the result is placed in two
registers labeled RdLo and RdHi. RdLo holds the lower 32 bits of the 64-bit result, and
RdHi holds the higher 32 bits of the 64-bit result. Example 3.12 shows an example of a long
unsigned multiply instruction.

Example

3.12
The instruction multiplies registers r2 and r3 and places the result into register r0 and r1.
Register r0 contains the lower 32 bits, and register r1 contains the higher 32 bits of the
64-bit result.

PRE r0 = 0x00000000
r1 = 0x00000000
r2 = 0xf0000002
r3 = 0x00000002

UMULL r0, r1, r2, r3 ; [r1,r0] = r2*r3

POST r0 = 0xe0000004 ; = RdLo
r1 = 0x00000001 ; = RdHi ■

3.2 Branch Instructions
A branch instruction changes the flow of execution or is used to call a routine. This type
of instruction allows programs to have subroutines, if-then-else structures, and loops.

https://hemanthrajhemu.github.io

3.2 Branch Instructions 59

The change of execution flow forces the program counter pc to point to a new address.
The ARMv5E instruction set includes four different branch instructions.

Syntax: B{<cond>} label
BL{<cond>} label
BX{<cond>} Rm
BLX{<cond>} label | Rm

B branch pc = label

BL branch with link pc = label
lr = address of the next instruction after the BL

BX branch exchange pc = Rm & 0xfffffffe, T = Rm & 1

BLX branch exchange with link pc = label, T = 1
pc = Rm & 0xfffffffe, T = Rm & 1
lr = address of the next instruction after the BLX

The address label is stored in the instruction as a signed pc-relative offset and must be
within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the
cpsr. When instructions set T, the ARM switches to Thumb state.

Example

3.13
This example shows a forward and backward branch. Because these loops are address
specific, we do not include the pre- and post-conditions. The forward branch skips three
instructions. The backward branch creates an infinite loop.

B forward
ADD r1, r2, #4
ADD r0, r6, #2
ADD r3, r7, #4

forward
SUB r1, r2, #4

backward
ADD r1, r2, #4
SUB r1, r2, #4
ADD r4, r6, r7
B backward

Branches are used to change execution flow. Most assemblers hide the details of a branch
instruction encoding by using labels. In this example, forward and backward are the labels.
The branch labels are placed at the beginning of the line and are used to mark an address
that can be used later by the assembler to calculate the branch offset. ■

https://hemanthrajhemu.github.io

60 Chapter 3 Introduction to the ARM Instruction Set

Example

3.14
The branch with link, or BL, instruction is similar to the B instruction but overwrites the
link register lr with a return address. It performs a subroutine call. This example shows
a simple fragment of code that branches to a subroutine using the BL instruction. To return
from a subroutine, you copy the link register to the pc.

BL subroutine ; branch to subroutine
CMP r1, #5 ; compare r1 with 5
MOVEQ r1, #0 ; if (r1==5) then r1 = 0
:

subroutine
<subroutine code>
MOV pc, lr ; return by moving pc = lr

The branch exchange (BX) and branch exchange with link (BLX) are the third type of
branch instruction. The BX instruction uses an absolute address stored in register Rm. It
is primarily used to branch to and from Thumb code, as shown in Chapter 4. The T bit
in the cpsr is updated by the least significant bit of the branch register. Similarly the BLX
instruction updates the T bit of the cpsr with the least significant bit and additionally sets
the link register with the return address. ■

3.3 Load-Store Instructions
Load-store instructions transfer data between memory and processor registers. There are
three types of load-store instructions: single-register transfer, multiple-register transfer,
and swap.

3.3.1 Single-Register Transfer

These instructions are used for moving a single data item in and out of a register. The
datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes.
Here are the various load-store single-register transfer instructions.

Syntax: <LDR|STR>{<cond>}{B} Rd,addressing1

LDR{<cond>}SB|H|SH Rd, addressing2

STR{<cond>}H Rd, addressing2

LDR load word into a register Rd <- mem32[address]

STR save byte or word from a register Rd -> mem32[address]

LDRB load byte into a register Rd <- mem8[address]

STRB save byte from a register Rd -> mem8[address]

https://hemanthrajhemu.github.io

3.3 Load-Store Instructions 61

LDRH load halfword into a register Rd <- mem16[address]

STRH save halfword into a register Rd -> mem16[address]

LDRSB load signed byte into a register Rd <- SignExtend

(mem8[address])

LDRSH load signed halfword into a register Rd <- SignExtend

(mem16[address])

Tables 3.5 and 3.7, to be presented is Section 3.3.2, describe the addressing1 and addressing2

syntax.

Example

3.15
LDR and STR instructions can load and store data on a boundary alignment that is the same
as the datatype size being loaded or stored. For example, LDR can only load 32-bit words on
a memory address that is a multiple of four bytes—0, 4, 8, and so on. This example shows
a load from a memory address contained in register r1, followed by a store back to the same
address in memory.

;
; load register r0 with the contents of
; the memory address pointed to by register
; r1.
;

LDR r0, [r1] ; = LDR r0, [r1, #0]
;
; store the contents of register r0 to
; the memory address pointed to by
; register r1.
;

STR r0, [r1] ; = STR r0, [r1, #0]

The first instruction loads a word from the address stored in register r1 and places it into
register r0. The second instruction goes the other way by storing the contents of register
r0 to the address contained in register r1. The offset from register r1 is zero. Register r1 is
called the base address register. ■

3.3.2 Single-Register Load-Store Addressing Modes

The ARM instruction set provides different modes for addressing memory. These modes
incorporate one of the indexing methods: preindex with writeback, preindex, and postindex
(see Table 3.4).

https://hemanthrajhemu.github.io

62 Chapter 3 Introduction to the ARM Instruction Set

Table 3.4 Index methods.

Base address
Index method Data register Example

Preindex with writeback mem[base + offset] base + offset LDR r0,[r1,#4]!
Preindex mem[base + offset] not updated LDR r0,[r1,#4]
Postindex mem[base] base + offset LDR r0,[r1],#4

Note: ! indicates that the instruction writes the calculated address back to the base address register.

Example

3.16
Preindex with writeback calculates an address from a base register plus address offset and
then updates that address base register with the new address. In contrast, the preindex offset
is the same as the preindex with writeback but does not update the address base register.
Postindex only updates the address base register after the address is used. The preindex
mode is useful for accessing an element in a data structure. The postindex and preindex
with writeback modes are useful for traversing an array.

PRE r0 = 0x00000000
r1 = 0x00090000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

LDR r0, [r1, #4]!

Preindexing with writeback:

POST(1) r0 = 0x02020202
r1 = 0x00009004

LDR r0, [r1, #4]

Preindexing:

POST(2) r0 = 0x02020202
r1 = 0x00009000

LDR r0, [r1], #4

Postindexing:

POST(3) r0 = 0x01010101
r1 = 0x00009004

https://hemanthrajhemu.github.io

3.3 Load-Store Instructions 63

Table 3.5 Single-register load-store addressing, word or unsigned byte.

Addressing1 mode and index method Addressing1 syntax

Preindex with immediate offset [Rn, #+/-offset_12]
Preindex with register offset [Rn, +/-Rm]
Preindex with scaled register offset [Rn, +/-Rm, shift #shift_imm]
Preindex writeback with immediate offset [Rn, #+/-offset_12]!
Preindex writeback with register offset [Rn, +/-Rm]!
Preindex writeback with scaled register offset [Rn, +/-Rm, shift #shift_imm]!
Immediate postindexed [Rn], #+/-offset_12
Register postindex [Rn], +/-Rm
Scaled register postindex [Rn], +/-Rm, shift #shift_imm

Example 3.15 used a preindex method. This example shows how each indexing method
effects the address held in register r1, as well as the data loaded into register r0. Each
instruction shows the result of the index method with the same pre-condition. ■

The addressing modes available with a particular load or store instruction depend on
the instruction class. Table 3.5 shows the addressing modes available for load and store of
a 32-bit word or an unsigned byte.

A signed offset or register is denoted by “+/−”, identifying that it is either a positive or
negative offset from the base address register Rn. The base address register is a pointer to
a byte in memory, and the offset specifies a number of bytes.

Immediate means the address is calculated using the base address register and a 12-bit
offset encoded in the instruction. Register means the address is calculated using the base
address register and a specific register’s contents. Scaled means the address is calculated
using the base address register and a barrel shift operation.

Table 3.6 provides an example of the different variations of the LDR instruction. Table 3.7
shows the addressing modes available on load and store instructions using 16-bit halfword
or signed byte data.

These operations cannot use the barrel shifter. There are no STRSB or STRSH instructions
since STRH stores both a signed and unsigned halfword; similarly STRB stores signed and
unsigned bytes. Table 3.8 shows the variations for STRH instructions.

3.3.3 Multiple-Register Transfer

Load-store multiple instructions can transfer multiple registers between memory and the
processor in a single instruction. The transfer occurs from a base address register Rn pointing
into memory. Multiple-register transfer instructions are more efficient from single-register
transfers for moving blocks of data around memory and saving and restoring context and
stacks.

https://hemanthrajhemu.github.io

64 Chapter 3 Introduction to the ARM Instruction Set

Table 3.6 Examples of LDR instructions using different addressing modes.

Instruction r0 = r1 + =
Preindex LDR r0,[r1,#0x4]! mem32[r1 + 0x4] 0x4
with
writeback

LDR r0,[r1,r2]! mem32[r1+r2] r2
LDR r0,[r1,r2,LSR#0x4]! mem32[r1 + (r2 LSR 0x4)] (r2 LSR 0x4)

Preindex LDR r0,[r1,#0x4] mem32[r1 + 0x4] not updated
LDR r0,[r1,r2] mem32[r1 + r2] not updated
LDR r0,[r1,-r2,LSR #0x4] mem32[r1-(r2 LSR 0x4)] not updated

Postindex LDR r0,[r1],#0x4 mem32[r1] 0x4
LDR r0,[r1],r2 mem32[r1] r2
LDR r0,[r1],r2,LSR #0x4 mem32[r1] (r2 LSR 0x4)

Table 3.7 Single-register load-store addressing, halfword, signed halfword, signed byte, and
doubleword.

Addressing2 mode and index method Addressing2 syntax

Preindex immediate offset [Rn, #+/-offset_8]
Preindex register offset [Rn, +/-Rm]
Preindex writeback immediate offset [Rn, #+/-offset_8]!
Preindex writeback register offset [Rn, +/-Rm]!
Immediate postindexed [Rn], #+/-offset_8
Register postindexed [Rn], +/-Rm

Table 3.8 Variations of STRH instructions.

Instruction Result r1 + =
Preindex with STRH r0,[r1,#0x4]! mem16[r1+0x4]=r0 0x4
writeback

STRH r0,[r1,r2]! mem16[r1+r2]=r0 r2
Preindex STRH r0,[r1,#0x4] mem16[r1+0x4]=r0 not updated

STRH r0,[r1,r2] mem16[r1+r2]=r0 not updated
Postindex STRH r0,[r1],#0x4 mem16[r1]=r0 0x4

STRH r0,[r1],r2 mem16[r1]=r0 r2

https://hemanthrajhemu.github.io

3.3 Load-Store Instructions 65

Load-store multiple instructions can increase interrupt latency. ARM implementations
do not usually interrupt instructions while they are executing. For example, on an ARM7
a load multiple instruction takes 2 + Nt cycles, where N is the number of registers to load
and t is the number of cycles required for each sequential access to memory. If an interrupt
has been raised, then it has no effect until the load-store multiple instruction is complete.

Compilers, such as armcc, provide a switch to control the maximum number of registers
being transferred on a load-store, which limits the maximum interrupt latency.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{ˆ}

LDM load multiple registers {Rd}∗N <- mem32[start address + 4∗N] optional Rn updated

STM save multiple registers {Rd}∗N -> mem32[start address + 4∗N] optional Rn updated

Table 3.9 shows the different addressing modes for the load-store multiple instructions.
Here N is the number of registers in the list of registers.

Any subset of the current bank of registers can be transferred to memory or fetched
from memory. The base register Rn determines the source or destination address for a load-
store multiple instruction. This register can be optionally updated following the transfer.
This occurs when register Rn is followed by the ! character, similiar to the single-register
load-store using preindex with writeback.

Table 3.9 Addressing mode for load-store multiple instructions.

Addressing
mode Description Start address End address Rn!

IA increment after Rn Rn + 4∗N − 4 Rn + 4∗N
IB increment before Rn + 4 Rn + 4∗N Rn + 4∗N
DA decrement after Rn − 4∗N + 4 Rn Rn − 4∗N
DB decrement before Rn − 4∗N Rn − 4 Rn − 4∗N

Example

3.17
In this example, register r0 is the base register Rn and is followed by !, indicating that the
register is updated after the instruction is executed. You will notice within the load multiple
instruction that the registers are not individually listed. Instead the “-” character is used to
identify a range of registers. In this case the range is from register r1 to r3 inclusive.

Each register can also be listed, using a comma to separate each register within
“{” and “}” brackets.

PRE mem32[0x80018] = 0x03
mem32[0x80014] = 0x02

https://hemanthrajhemu.github.io

66 Chapter 3 Introduction to the ARM Instruction Set

mem32[0x80010] = 0x01
r0 = 0x00080010
r1 = 0x00000000
r2 = 0x00000000
r3 = 0x00000000

LDMIA r0!, {r1-r3}

POST r0 = 0x0008001c
r1 = 0x00000001
r2 = 0x00000002
r3 = 0x00000003

Figure 3.3 shows a graphical representation.
The base register r0 points to memory address 0x80010 in the PRE condition. Memory

addresses 0x80010, 0x80014, and 0x80018 contain the values 1, 2, and 3 respectively. After
the load multiple instruction executes registers r1, r2, and r3 contain these values as shown
in Figure 3.4. The base register r0 now points to memory address 0x8001c after the last
loaded word.

Now replace the LDMIA instruction with a load multiple and increment before LDMIB
instruction and use the same PRE conditions. The first word pointed to by register r0 is
ignored and register r1 is loaded from the next memory location as shown in Figure 3.5.

After execution, register r0 now points to the last loaded memory location. This is in
contrast with the LDMIA example, which pointed to the next memory location. ■

The decrement versions DA and DB of the load-store multiple instructions decrement the
start address and then store to ascending memory locations. This is equivalent to descending
memory but accessing the register list in reverse order. With the increment and decrement
load multiples, you can access arrays forwards or backwards. They also allow for stack push
and pull operations, illustrated later in this section.

0x80020
0x8001c
0x80018
0x80014
0x80010
0x8000c

0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

r3 = 0x00000000
r2 = 0x00000000
r1 = 0x00000000r0 = 0x80010

Memory
addressAddress pointer Data

Figure 3.3 Pre-condition for LDMIA instruction.

https://hemanthrajhemu.github.io

3.3 Load-Store Instructions 67

0x80020
0x8001c
0x80018
0x80014
0x80010
0x8000c

0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

r3 = 0x00000003
r2 = 0x00000002
r1 = 0x00000001

r0 = 0x8001c

Memory
addressAddress pointer Data

Figure 3.4 Post-condition for LDMIA instruction.

0x80020
0x8001c
0x80018
0x80014
0x80010
0x8000c

0x00000005
0x00000004
0x00000003
0x00000002
0x00000001
0x00000000

r3 = 0x00000004
r2 = 0x00000003
r1 = 0x00000002

r0 = 0x8001c

Memory
addressAddress pointer Data

Figure 3.5 Post-condition for LDMIB instruction.

Table 3.10 Load-store multiple pairs when base update used.

Store multiple Load multiple

STMIA LDMDB
STMIB LDMDA
STMDA LDMIB
STMDB LDMIA

Table 3.10 shows a list of load-store multiple instruction pairs. If you use a store with
base update, then the paired load instruction of the same number of registers will reload
the data and restore the base address pointer. This is useful when you need to temporarily
save a group of registers and restore them later.

https://hemanthrajhemu.github.io

68 Chapter 3 Introduction to the ARM Instruction Set

Example

3.18
This example shows an STM increment before instruction followed by an LDM decrement after
instruction.

PRE r0 = 0x00009000
r1 = 0x00000009
r2 = 0x00000008
r3 = 0x00000007

STMIB r0!, {r1-r3}

MOV r1, #1
MOV r2, #2
MOV r3, #3

PRE(2) r0 = 0x0000900c
r1 = 0x00000001
r2 = 0x00000002
r3 = 0x00000003

LDMDA r0!, {r1-r3}

POST r0 = 0x00009000
r1 = 0x00000009
r2 = 0x00000008
r3 = 0x00000007

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register r1 to r3.
The LDMDA reloads the original values and restores the base pointer r0. ■

Example

3.19
We illustrate the use of the load-store multiple instructions with a block memory copy
example. This example is a simple routine that copies blocks of 32 bytes from a source
address location to a destination address location.

The example has two load-store multiple instructions, which use the same increment
after addressing mode.

; r9 points to start of source data
; r10 points to start of destination data
; r11 points to end of the source

loop
; load 32 bytes from source and update r9 pointer
LDMIA r9!, {r0-r7}

https://hemanthrajhemu.github.io

3.3 Load-Store Instructions 69

; store 32 bytes to destination and update r10 pointer
STMIA r10!, {r0-r7} ; and store them

; have we reached the end
CMP r9, r11
BNE loop

This routine relies on registers r9, r10, and r11 being set up before the code is executed.
Registers r9 and r11 determine the data to be copied, and register r10 points to the desti-
nation in memory for the data. LDMIA loads the data pointed to by register r9 into registers
r0 to r7. It also updates r9 to point to the next block of data to be copied. STMIA copies the
contents of registers r0 to r7 to the destination memory address pointed to by register r10.
It also updates r10 to point to the next destination location. CMP and BNE compare pointers
r9 and r11 to check whether the end of the block copy has been reached. If the block copy
is complete, then the routine finishes; otherwise the loop repeats with the updated values
of register r9 and r10.

The BNE is the branch instruction B with a condition mnemonic NE (not equal). If the
previous compare instruction sets the condition flags to not equal, the branch instruction
is executed.

Figure 3.6 shows the memory map of the block memory copy and how the routine
moves through memory. Theoretically this loop can transfer 32 bytes (8 words) in two
instructions, for a maximum possible throughput of 46 MB/second being transferred at
33 MHz. These numbers assume a perfect memory system with fast memory. ■

High memory

Low memory

r11

r9

r10

Source

Destination

Copy
memory
location

Figure 3.6 Block memory copy in the memory map.

https://hemanthrajhemu.github.io

70 Chapter 3 Introduction to the ARM Instruction Set

3.3.3.1 Stack Operations

The ARM architecture uses the load-store multiple instructions to carry out stack
operations. The pop operation (removing data from a stack) uses a load multiple instruction;
similarly, the push operation (placing data onto the stack) uses a store multiple instruction.

When using a stack you have to decide whether the stack will grow up or down in
memory. A stack is either ascending (A) or descending (D). Ascending stacks grow towards
higher memory addresses; in contrast, descending stacks grow towards lower memory
addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last
used or full location (i.e., sp points to the last item on the stack). In contrast, if you use an
empty stack (E) the sp points to an address that is the first unused or empty location (i.e., it
points after the last item on the stack).

There are a number of load-store multiple addressing mode aliases available to support
stack operations (see Table 3.11). Next to the pop column is the actual load multiple
instruction equivalent. For example, a full ascending stack would have the notation FA
appended to the load multiple instruction—LDMFA. This would be translated into an LDMDA
instruction.

ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how
routines are called and how registers are allocated. In the ATPCS, stacks are defined as being
full descending stacks. Thus, the LDMFD and STMFD instructions provide the pop and push
functions, respectively.

Example

3.20
The STMFD instruction pushes registers onto the stack, updating the sp. Figure 3.7 shows
a push onto a full descending stack. You can see that when the stack grows the stack pointer
points to the last full entry in the stack.

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080014

STMFD sp!, {r1,r4}

Table 3.11 Addressing methods for stack operations.

Addressing mode Description Pop = LDM Push = STM

FA full ascending LDMFA LDMDA STMFA STMIB
FD full descending LDMFD LDMIA STMFD STMDB
EA empty ascending LDMEA LDMDB STMEA STMIA
ED empty descending LDMED LDMIB STMED STMDA

https://hemanthrajhemu.github.io

3.3 Load-Store Instructions 71

0x80018
0x80014
0x80010
0x8000c

0x00000001
0x00000002
Empty
Empty

sp

AddressPRE Data

0x80018
0x80014
0x80010
0x8000c

0x00000001
0x00000002
0x00000003
0x00000002sp

AddressPOST Data

Figure 3.7 STMFD instruction—full stack push operation.

POST r1 = 0x00000002
r4 = 0x00000003
sp = 0x0008000c ■

Example

3.21
In contrast, Figure 3.8 shows a push operation on an empty stack using the STMED instruc-
tion. The STMED instruction pushes the registers onto the stack but updates register sp to
point to the next empty location.

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080010

STMED sp!, {r1,r4}

POST r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080008 ■

0x80018
0x80014
0x80010
0x8000c
0x80008

0x00000001
0x00000002
Empty
Empty
Empty

sp

AddressPRE Data

0x80018
0x80014
0x80010
0x8000c
0x80008

0x00000001
0x00000002
0x00000003
0x00000002
Emptysp

AddressPOST Data

Figure 3.8 STMED instruction—empty stack push operation.

https://hemanthrajhemu.github.io

72 Chapter 3 Introduction to the ARM Instruction Set

When handling a checked stack there are three attributes that need to be preserved: the
stack base, the stack pointer, and the stack limit. The stack base is the starting address of the
stack in memory. The stack pointer initially points to the stack base; as data is pushed onto
the stack, the stack pointer descends memory and continuously points to the top of stack.
If the stack pointer passes the stack limit, then a stack overflow error has occurred. Here is
a small piece of code that checks for stack overflow errors for a descending stack:

; check for stack overflow

SUB sp, sp, #size
CMP sp, r10
BLLO _stack_overflow ; condition

ATPCS defines register r10 as the stack limit or sl. This is optional since it is only used when
stack checking is enabled. The BLLO instruction is a branch with link instruction plus the
condition mnemonic LO. If sp is less than register r10 after the new items are pushed onto
the stack, then stack overflow error has occurred. If the stack pointer goes back past the
stack base, then a stack underflow error has occurred.

3.3.4 Swap Instruction

The swap instruction is a special case of a load-store instruction. It swaps the contents of
memory with the contents of a register. This instruction is an atomic operation—it reads
and writes a location in the same bus operation, preventing any other instruction from
reading or writing to that location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

SWP swap a word between memory and a register tmp = mem32[Rn]

mem32[Rn] = Rm

Rd = tmp

SWPB swap a byte between memory and a register tmp = mem8[Rn]

mem8[Rn] = Rm

Rd = tmp

Swap cannot be interrupted by any other instruction or any other bus access. We say
the system “holds the bus” until the transaction is complete.

Example

3.22
The swap instruction loads a word from memory into register r0 and overwrites the memory
with register r1.

https://hemanthrajhemu.github.io

3.4 Software Interrupt Instruction 73

PRE mem32[0x9000] = 0x12345678
r0 = 0x00000000
r1 = 0x11112222
r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222
r0 = 0x12345678
r1 = 0x11112222
r2 = 0x00009000

This instruction is particularly useful when implementing semaphores and mutual
exclusion in an operating system. You can see from the syntax that this instruction can also
have a byte size qualifier B, so this instruction allows for both a word and a byte swap. ■

Example

3.23
This example shows a simple data guard that can be used to protect data from being written
by another task. The SWP instruction “holds the bus” until the transaction is complete.

spin
MOV r1, =semaphore
MOV r2, #1
SWP r3, r2, [r1] ; hold the bus until complete
CMP r3, #1
BEQ spin

The address pointed to by the semaphore either contains the value 0 or 1. When the
semaphore equals 1, then the service in question is being used by another process. The
routine will continue to loop around until the service is released by the other process—in
other words, when the semaphore address location contains the value 0. ■

3.4 Software Interrupt Instruction
A software interrupt instruction (SWI) causes a software interrupt exception, which provides
a mechanism for applications to call operating system routines.

Syntax: SWI{<cond>} SWI_number

SWI software interrupt lr_svc = address of instruction following the SWI
spsr_svc = cpsr

pc = vectors + 0x8
cpsr mode = SVC

cpsr I = 1 (mask IRQ interrupts)

https://hemanthrajhemu.github.io

74 Chapter 3 Introduction to the ARM Instruction Set

When the processor executes an SWI instruction, it sets the program counter pc to the
offset 0x8 in the vector table. The instruction also forces the processor mode to SVC, which
allows an operating system routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent
a particular function call or feature.

Example

3.24
Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM
toolkits as a debugging SWI. Typically the SWI instruction is executed in user mode.

PRE cpsr = nzcVqift_USER
pc = 0x00008000
lr = 0x003fffff; lr = r14
r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqIft_SVC
spsr = nzcVqift_USER
pc = 0x00000008
lr = 0x00008004
r0 = 0x12

Since SWI instructions are used to call operating system routines, you need some form
of parameter passing. This is achieved using registers. In this example, register r0 is used to
pass the parameter 0x12. The return values are also passed back via registers. ■

Code called the SWI handler is required to process the SWI call. The handler obtains
the SWI number using the address of the executed instruction, which is calculated from the
link register lr.

The SWI number is determined by

SWI_Number = <SWI instruction> AND NOT(0xff000000)

Here the SWI instruction is the actual 32-bit SWI instruction executed by the processor.

Example

3.25
This example shows the start of an SWI handler implementation. The code fragment deter-
mines what SWI number is being called and places that number into register r10. You can
see from this example that the load instruction first copies the complete SWI instruction
into register r10. The BIC instruction masks off the top bits of the instruction, leaving the
SWI number. We assume the SWI has been called from ARM state.

SWI_handler
;
; Store registers r0-r12 and the link register

https://hemanthrajhemu.github.io

3.5 Program Status Register Instructions 75

;
STMFD sp!, {r0-r12, lr}

; Read the SWI instruction
LDR r10, [lr, #-4]

; Mask off top 8 bits
BIC r10, r10, #0xff000000

; r10 - contains the SWI number
BL service_routine

; return from SWI handler
LDMFD sp!, {r0-r12, pc}ˆ

The number in register r10 is then used by the SWI handler to call the appropriate SWI
service routine. ■

3.5 Program Status Register Instructions
The ARM instruction set provides two instructions to directly control a program status
register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into
a register; in the reverse direction, the MSR instruction transfers the contents of a register
into the cpsr or spsr. Together these instructions are used to read and write the cpsr and spsr.

In the syntax you can see a label called fields. This can be any combination of control
(c), extension (x), status (s), and flags (f). These fields relate to particular byte regions in
a psr, as shown in Figure 3.9.

Syntax: MRS{<cond>} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr>_<fields>,Rm
MSR{<cond>} <cpsr|spsr>_<fields>,#immediate

Fields

Bit 31 30 29 28

N Z C V

7 6 5 4 0

I F T Mode

Flags [24:31] Status [16:23] eXtension [8:15] Control [0:7]

Figure 3.9 psr byte fields.

https://hemanthrajhemu.github.io

76 Chapter 3 Introduction to the ARM Instruction Set

MRS copy program status register to a general-purpose register Rd = psr

MSR move a general-purpose register to a program status register psr[field] = Rm

MSR move an immediate value to a program status register psr[field] = immediate

The c field controls the interrupt masks, Thumb state, and processor mode.
Example 3.26 shows how to enable IRQ interrupts by clearing the I mask. This opera-
tion involves using both the MRS and MSR instructions to read from and then write to
the cpsr.

Example

3.26
The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1. Register
r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see from this
example that this code preserves all the other settings in the cpsr and only modifies the I bit
in the control field.

PRE cpsr = nzcvqIFt_SVC

MRS r1, cpsr
BIC r1, r1, #0x80 ; 0b01000000
MSR cpsr_c, r1

POST cpsr = nzcvqiFt_SVC

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only
update the condition flag field f. ■

3.5.1 Coprocessor Instructions

Coprocessor instructions are used to extend the instruction set. A coprocessor can either
provide additional computation capability or be used to control the memory subsystem
including caches and memory management. The coprocessor instructions include data
processing, register transfer, and memory transfer instructions. We will provide only a short
overview since these instructions are coprocessor specific. Note that these instructions are
only used by cores with a coprocessor.

Syntax: CDP{<cond>} cp, opcode1, Cd, Cn {, opcode2}
<MRC|MCR>{<cond>} cp, opcode1, Rd, Cn, Cm {, opcode2}
<LDC|STC>{<cond>} cp, Cd, addressing

https://hemanthrajhemu.github.io

3.5 Program Status Register Instructions 77

CDP coprocessor data processing—perform an operation in a coprocessor

MRC MCR coprocessor register transfer—move data to/from coprocessor registers

LDC STC coprocessor memory transfer—load and store blocks of memory to/from a coprocessor

In the syntax of the coprocessor instructions, the cp field represents the coprocessor
number between p0 and p15. The opcode fields describe the operation to take place on
the coprocessor. The Cn, Cm, and Cd fields describe registers within the coprocessor.
The coprocessor operations and registers depend on the specific coprocessor you are
using. Coprocessor 15 (CP15) is reserved for system control purposes, such as memory
management, write buffer control, cache control, and identification registers.

Example

3.27
This example shows a CP15 register being copied into a general-purpose register.

; transferring the contents of CP15 register c0 to register r10
MRC p15, 0, r10, c0, c0, 0

Here CP15 register-0 contains the processor identification number. This register is copied
into the general-purpose register r10. ■

3.5.2 Coprocessor 15 Instruction Syntax

CP15 configures the processor core and has a set of dedicated registers to store configuration
information, as shown in Example 3.27. A value written into a register sets a configuration
attribute—for example, switching on the cache.

CP15 is called the system control coprocessor. Both MRC and MCR instructions are used to
read and write to CP15, where register Rd is the core destination register, Cn is the primary
register, Cm is the secondary register, and opcode2 is a secondary register modifier. You
may occasionally hear secondary registers called “extended registers.”

As an example, here is the instruction to move the contents of CP15 control register c1
into register r1 of the processor core:

MRC p15, 0, r1, c1, c0, 0

We use a shorthand notation for CP15 reference that makes referring to configuration
registers easier to follow. The reference notation uses the following format:

CP15:cX:cY:Z

https://hemanthrajhemu.github.io

78 Chapter 3 Introduction to the ARM Instruction Set

The first term, CP15, defines it as coprocessor 15. The second term, after the separating
colon, is the primary register. The primary register X can have a value between 0 and 15.
The third term is the secondary or extended register. The secondary register Y can have
a value between 0 and 15. The last term, opcode2, is an instruction modifier and can have
a value between 0 and 7. Some operations may also use a nonzero value w of opcode1. We
write these as CP15:w:cX:cY:Z.

3.6 Loading Constants
You might have noticed that there is no ARM instruction to move a 32-bit constant into
a register. Since ARM instructions are 32 bits in size, they obviously cannot specify a general
32-bit constant.

To aid programming there are two pseudoinstructions to move a 32-bit value into
a register.

Syntax: LDR Rd, =constant
ADR Rd, label

LDR load constant pseudoinstruction Rd = 32-bit constant

ADR load address pseudoinstruction Rd = 32-bit relative address

The first pseudoinstruction writes a 32-bit constant to a register using whatever instruc-
tions are available. It defaults to a memory read if the constant cannot be encoded using
other instructions.

The second pseudoinstruction writes a relative address into a register, which will be
encoded using a pc-relative expression.

Example

3.28
This example shows an LDR instruction loading a 32-bit constant 0xff00ffff into
register r0.

LDR r0, [pc, #constant_number-8-{PC}]
:

constant_number
DCD 0xff00ffff

This example involves a memory access to load the constant, which can be expensive for
time-critical routines. ■

Example 3.29 shows an alternative method to load the same constant into register r0 by
using an MVN instruction.

https://hemanthrajhemu.github.io

3.7 ARMv5E Extensions 79

Table 3.12 LDR pseudoinstruction conversion.

Pseudoinstruction Actual instruction

LDR r0, =0xff MOV r0, #0xff
LDR r0, =0x55555555 LDR r0, [pc, #offset_12]

Example

3.29
Loading the constant 0xff00ffff using an MVN.

PRE none...

MVN r0, #0x00ff0000

POST r0 = 0xff00ffff ■

As you can see, there are alternatives to accessing memory, but they depend upon the
constant you are trying to load. Compilers and assemblers use clever techniques to avoid
loading a constant from memory. These tools have algorithms to find the optimal number
of instructions required to generate a constant in a register and make extensive use of
the barrel shifter. If the tools cannot generate the constant by these methods, then it is
loaded from memory. The LDR pseudoinstruction either inserts an MOV or MVN instruction
to generate a value (if possible) or generates an LDR instruction with a pc-relative address
to read the constant from a literal pool—a data area embedded within the code.

Table 3.12 shows two pseudocode conversions. The first conversion produces a simple
MOV instruction; the second conversion produces a pc-relative load. We recommended that
you use this pseudoinstruction to load a constant. To see how the assembler has handled
a particular load constant, you can pass the output through a disassembler, which will list
the instruction chosen by the tool to load the constant.

Another useful pseudoinstruction is the ADR instruction, or address relative. This instruc-
tion places the address of the given label into register Rd, using a pc-relative add or
subtract.

3.7 ARMv5E Extensions
The ARMv5E extensions provide many new instructions (see Table 3.13). One of the most
important additions is the signed multiply accumulate instructions that operate on 16-bit
data. These operations are single cycle on many ARMv5E implementations.

ARMv5E provides greater flexibility and efficiency when manipulating 16-bit values,
which is important for applications such as 16-bit digital audio processing.

https://hemanthrajhemu.github.io

80 Chapter 3 Introduction to the ARM Instruction Set

Table 3.13 New instructions provided by the ARMv5E extensions.

Instruction Description

CLZ {<cond>} Rd, Rm count leading zeros
QADD {<cond>} Rd, Rm, Rn signed saturated 32-bit add
QDADD{<cond>} Rd, Rm, Rn signed saturated double 32-bit add
QDSUB{<cond>} Rd, Rm, Rn signed saturated double 32-bit subtract
QSUB{<cond>} Rd, Rm, Rn signed saturated 32-bit subtract
SMLAxy{<cond>} Rd, Rm, Rs, Rn signed multiply accumulate 32-bit (1)
SMLALxy{<cond>} RdLo, RdHi, Rm, Rs signed multiply accumulate 64-bit
SMLAWy{<cond>} Rd, Rm, Rs, Rn signed multiply accumulate 32-bit (2)
SMULxy{<cond>} Rd, Rm, Rs signed multiply (1)
SMULWy{<cond>} Rd, Rm, Rs signed multiply (2)

3.7.1 Count Leading Zeros Instruction

The count leading zeros instruction counts the number of zeros between the most significant
bit and the first bit set to 1. Example 3.30 shows an example of a CLZ instruction.

Example

3.30
You can see from this example that the first bit set to 1 has 27 zeros preceding it. CLZ is
useful in routines that have to normalize numbers.

PRE r1 = 0b00000000000000000000000000010000

CLZ r0, r1

POST r0 = 27 ■

3.7.2 Saturated Arithmetic

Normal ARM arithmetic instructions wrap around when you overflow an integer value.
For example, 0x7fffffff + 1 = -0x80000000. Thus, when you design an algorithm,
you have to be careful not to exceed the maximum representable value in a 32-bit integer.

Example

3.31
This example shows what happens when the maximum value is exceeded.

PRE cpsr = nzcvqiFt_SVC
r0 = 0x00000000
r1 = 0x70000000 (positive)
r2 = 0x7fffffff (positive)

https://hemanthrajhemu.github.io

3.7 ARMv5E Extensions 81

ADDS r0, r1, r2

POST cpsr = NzcVqiFt_SVC
r0 = 0xefffffff (negative)

In the example, registers r1 and r2 contain positive numbers. Register r2 is equal to
0x7fffffff, which is the maximum positive value you can store in 32 bits. In a per-
fect world adding these numbers together would result in a large positive number. Instead
the value becomes negative and the overflow flag, V, is set. ■

In contrast, using the ARMv5E instructions you can saturate the result—once the highest
number is exceeded the results remain at the maximum value of 0x7fffffff. This avoids
the requirement for any additional code to check for possible overflows. Table 3.14 lists all
the ARMv5E saturation instructions.

Table 3.14 Saturation instructions.

Instruction Saturated calculation

QADD Rd = Rn + Rm
QDADD Rd = Rn + (Rm∗2)
QSUB Rd = Rn − Rm
QDSUB Rd = Rn − (Rm∗2)

Example

3.32
This example shows the same data being passed into the QADD instruction.

PRE cpsr = nzcvqiFt_SVC
r0 = 0x00000000
r1 = 0x70000000 (positive)
r2 = 0x7fffffff (positive)

QADD r0, r1, r2

POST cpsr = nzcvQiFt_SVC
r0 = 0x7fffffff

You will notice that the saturated number is returned in register r0. Also the Q bit (bit 27
of the cpsr) has been set, indicating saturation has occurred. The Q flag is sticky and will
remain set until explicitly cleared. ■

3.7.3 ARMv5E Multiply Instructions

Table 3.15 shows a complete list of the ARMv5E multiply instructions. In the table,
x and y select which 16 bits of a 32-bit register are used for the first and second

https://hemanthrajhemu.github.io

82 Chapter 3 Introduction to the ARM Instruction Set

Table 3.15 Signed multiply and multiply accumulate instructions.

Signed Multiply Signed Q flag
Instruction [Accumulate] result updated Calculation

SMLAxy (16-bit *16-bit)+ 32-bit 32-bit yes Rd = (Rm.x *Rs.y) + Rn
SMLALxy (16-bit *16-bit)+ 64-bit 64-bit — [RdHi, RdLo] + = Rm.x * Rs.y
SMLAWy ((32-bit *16-bit) � 16)+ 32-bit 32-bit yes Rd = ((Rm * Rs.y) � 16) + Rn
SMULxy (16-bit *16-bit) 32-bit — Rd = Rm.x * Rs.y
SMULWy ((32-bit *16-bit)� 16) 32-bit — Rd = (Rm * Rs.y) � 16

operands, respectively. These fields are set to a letter T for the top 16-bits, or the letter
B for the bottom 16 bits. For multiply accumulate operations with a 32-bit result, the Q flag
indicates if the accumulate overflowed a signed 32-bit value.

Example

3.33
This example shows how you use these operations. The example uses a signed multiply
accumulate instruction, SMLATB.

PRE r1 = 0x20000001
r2 = 0x20000001
r3 = 0x00000004

SMLATB r4, r1, r2, r3

POST r4 = 0x00002004

The instruction multiplies the top 16 bits of register r1 by the bottom 16 bits of register r2.
It adds the result to register r3 and writes it to destination register r4. ■

3.8 Conditional Execution
Most ARM instructions are conditionally executed—you can specify that the instruction
only executes if the condition code flags pass a given condition or test. By using conditional
execution instructions you can increase performance and code density.

The condition field is a two-letter mnemonic appended to the instruction mnemonic.
The default mnemonic is AL, or always execute.

Conditional execution reduces the number of branches, which also reduces the number
of pipeline flushes and thus improves the performance of the executed code. Conditional
execution depends upon two components: the condition field and condition flags. The
condition field is located in the instruction, and the condition flags are located in the cpsr.

https://hemanthrajhemu.github.io

3.8 Conditional Execution 83

Example

3.34
This example shows an ADD instruction with the EQ condition appended. This instruction
will only be executed when the zero flag in the cpsr is set to 1.

; r0 = r1 + r2 if zero flag is set
ADDEQ r0, r1, r2

Only comparison instructions and data processing instructions with the S suffix
appended to the mnemonic update the condition flags in the cpsr. ■

Example

3.35
To help illustrate the advantage of conditional execution, we will take the simple C code
fragment shown in this example and compare the assembler output using nonconditional
and conditional instructions.

while (a!=b)
{

if (a>b) a -= b; else b -= a;
}

Let register r1 represent a and register r2 represent b. The following code fragment
shows the same algorithm written in ARM assembler. This example only uses conditional
execution on the branch instructions:

; Greatest Common Divisor Algorithm
gcd

CMP r1, r2
BEQ complete
BLT lessthan
SUB r1, r1, r2
B gcd

lessthan
SUB r2, r2, r1
B gcd

complete
...

Now compare the same code with full conditional execution. As you can see, this
dramatically reduces the number of instructions:

gcd
CMP r1, r2

https://hemanthrajhemu.github.io

84 Chapter 3 Introduction to the ARM Instruction Set

SUBGT r1, r1, r2
SUBLT r2, r2, r1
BNE gcd ■

3.9 Summary
In this chapter we covered the ARM instruction set. All ARM instructions are 32 bits in
length. The arithmetic, logical, comparisons, and move instructions can all use the inline
barrel shifter, which pre-processes the second register Rm before it enters into the ALU.

The ARM instruction set has three types of load-store instructions: single-register load-
store, multiple-register load-store, and swap. The multiple load-store instructions provide
the push-pop operations on the stack. The ARM-Thumb Procedure Call Standard (ATPCS)
defines the stack as being a full descending stack.

The software interrupt instruction causes a software interrupt that forces the processor
into SVC mode; this instruction invokes privileged operating system routines. The pro-
gram status register instructions write and read to the cpsr and spsr. There are also special
pseudoinstructions that optimize the loading of 32-bit constants.

The ARMv5E extensions include count leading zeros, saturation, and improved multiply
instructions. The count leading zeros instruction counts the number of binary zeros before
the first binary one. Saturation handles arithmetic calculations that overflow a 32-bit integer
value. The improved multiply instructions provide better flexibility in multiplying 16-bit
values.

Most ARM instructions can be conditionally executed, which can dramatically reduce
the number of instructions required to perform a specific algorithm.

https://hemanthrajhemu.github.io

This Page Intentionally Left Blank

https://hemanthrajhemu.github.io

6.1 Writing Assembly Code
6.2 Profiling and Cycle Counting
6.3 Instruction Scheduling

6.3.1 Scheduling of Load Instructions

6.4 Register Allocation
6.4.1 Allocating Variables to Register Numbers

6.4.2 Using More than 14 Local Variables

6.4.3 Making the Most of Available Registers

6.5 Conditional Execution
6.6 Looping Constructs

6.6.1 Decremented Counted Loops

6.6.2 Unrolled Counted Loops

6.6.3 Multiple Nested Loops

6.6.4 Other Counted Loops

6.7 Bit Manipulation
6.7.1 Fixed-Width Bit-Field Packing and Unpacking

6.7.2 Variable-Width Bitstream Packing

6.7.3 Variable-Width Bitstream Unpacking

6.8 Efficient Switches
6.8.1 Switches on the Range 0 ≤ x < N

6.8.2 Switches on a General Value x

6.9 Handling Unaligned Data
6.10 Summary

https://hemanthrajhemu.github.io

C h a p t e r

Writing and
Optimizing ARM
Assembly Code

6

Embedded software projects often contain a few key subroutines that dominate system
performance. By optimizing these routines you can reduce the system power consumption
and reduce the clock speed needed for real-time operation. Optimization can turn an
infeasible system into a feasible one, or an uncompetitive system into a competitive one.

If you write your C code carefully using the rules given in Chapter 5, you will have
a relatively efficient implementation. For maximum performance, you can optimize critical
routines using hand-written assembly. Writing assembly by hand gives you direct control
of three optimization tools that you cannot explicitly use by writing C source:

■ Instruction scheduling: Reordering the instructions in a code sequence to avoid processor
stalls. Since ARM implementations are pipelined, the timing of an instruction can be
affected by neighboring instructions. We will look at this in Section 6.3.

■ Register allocation: Deciding how variables should be allocated to ARM registers or stack
locations for maximum performance. Our goal is to minimize the number of memory
accesses. See Section 6.4.

■ Conditional execution: Accessing the full range of ARM condition codes and conditional
instructions. See Section 6.5.

It takes additional effort to optimize assembly routines so don’t bother to optimize
noncritical ones. When you take the time to optimize a routine, it has the side benefit of
giving you a better understanding of the algorithm, its bottlenecks, and dataflow.

157

https://hemanthrajhemu.github.io

158 Chapter 6 Writing and Optimizing ARM Assembly Code

Section 6.1 starts with an introduction to assembly programming on the ARM. It shows
you how to replace a C function by an assembly function that you can then optimize for
performance.

We describe common optimization techniques, specific to writing ARM assembly.
Thumb assembly is not covered specifically since ARM assembly will always give better
performance when a 32-bit bus is available. Thumb is most useful for reducing the com-
piled size of C code that is not critical to performance and for efficient execution on a 16-bit
data bus. Many of the principles covered here apply equally well to Thumb and ARM.

The best optimization of a routine can vary according to the ARM core used in your
target hardware, especially for signal processing (covered in detail in Chapter 8). However,
you can often code a routine that is reasonably efficient for all ARM implementations. To be
consistent this chapter uses ARM9TDMI optimizations and cycle counts in the examples.
However, the examples will run efficiently on all ARM cores from ARM7TDMI to ARM10E.

6.1 Writing Assembly Code
This section gives examples showing how to write basic assembly code. We assume you are
familiar with the ARM instructions covered in Chapter 3; a complete instruction reference
is available in Appendix A. We also assume that you are familiar with the ARM and Thumb
procedure call standard covered in Section 5.4.

As with the rest of the book, this chapter uses the ARM macro assembler armasm for
examples (see Section A.4 in Appendix A for armasm syntax and reference). You can also
use the GNU assembler gas (see Section A.5 for details of the GNU assembler syntax).

Example

6.1
This example shows how to convert a C function to an assembly function—usually the
first stage of assembly optimization. Consider the simple C program main.c following that
prints the squares of the integers from 0 to 9:

#include <stdio.h>

int square(int i);

int main(void)
{
int i;

for (i=0; i<10; i++)
{

printf("Square of %d is %d\n", i, square(i));
}

}

int square(int i)

https://hemanthrajhemu.github.io

6.1 Writing Assembly Code 159

{
return i*i;

}

Let’s see how to replace square by an assembly function that performs the same action.
Remove the C definition of square, but not the declaration (the second line) to produce
a new C file main1.c. Next add an armasm assembler file square.s with the following
contents:

AREA |.text|, CODE, READONLY

EXPORT square

; int square(int i)
square

MUL r1, r0, r0 ; r1 = r0 * r0
MOV r0, r1 ; r0 = r1
MOV pc, lr ; return r0
END

The AREA directive names the area or code section that the code lives in. If you use
nonalphanumeric characters in a symbol or area name, then enclose the name in vertical
bars. Many nonalphanumeric characters have special meanings otherwise. In the previous
code we define a read-only code area called .text.

The EXPORT directive makes the symbol square available for external linking. At line
six we define the symbol square as a code label. Note that armasm treats nonindented text
as a label definition.

When square is called, the parameter passing is defined by the ATPCS (see Section 5.4).
The input argument is passed in register r0, and the return value is returned in register r0.
The multiply instruction has a restriction that the destination register must not be the same
as the first argument register. Therefore we place the multiply result into r1 and move this
to r0.

The END directive marks the end of the assembly file. Comments follow a semicolon.
The following script illustrates how to build this example using command line tools.

armcc -c main1.c
armasm square.s
armlink -o main1.axf main1.o square.o ■

Example 6.1 only works if you are compiling your C as ARM code. If you compile your
C as Thumb code, then the assembly routine must return using a BX instruction.

Example

6.2
When calling ARM code from C compiled as Thumb, the only change required to the
assembly in Example 6.1 is to change the return instruction to a BX. BX will return to ARM

https://hemanthrajhemu.github.io

160 Chapter 6 Writing and Optimizing ARM Assembly Code

or Thumb state according to bit 0 of lr. Therefore this routine can be called from ARM or
Thumb. Use BX lr instead of MOV pc, lr whenever your processor supports BX (ARMv4T
and above). Create a new assembly file square2.s as follows:

AREA |.text|, CODE, READONLY

EXPORT square

; int square(int i)
square

MUL r1, r0, r0 ; r1 = r0 * r0
MOV r0, r1 ; r0 = r1
BX lr ; return r0

END

With this example we build the C file using the Thumb C compiler tcc. We assemble
the assembly file with the interworking flag enabled so that the linker will allow the Thumb
C code to call the ARM assembly code. You can use the following commands to build this
example:

tcc -c main1.c
armasm -apcs /interwork square2.s
armlink -o main2.axf main1.o square2.o ■

Example

6.3
This example shows how to call a subroutine from an assembly routine. We will take
Example 6.1 and convert the whole program (including main) into assembly. We will call
the C library routine printf as a subroutine. Create a new assembly file main3.s with the
following contents:

AREA |.text|, CODE, READONLY

EXPORT main

IMPORT |Lib$$Request$$armlib|, WEAK
IMPORT __main ; C library entry
IMPORT printf ; prints to stdout

i RN 4

; int main(void)

main
STMFD sp!, {i, lr}
MOV i, #0

https://hemanthrajhemu.github.io

6.1 Writing Assembly Code 161

loop
ADR r0, print_string
MOV r1, i
MUL r2, i, i
BL printf
ADD i, i, #1
CMP i, #10
BLT loop
LDMFD sp!, {i, pc}

print_string
DCB "Square of %d is %d\n", 0

END

We have used a new directive, IMPORT, to declare symbols that are defined in other files.
The imported symbol Lib$$Request$$armlib makes a request that the linker links with
the standard ARM C library. The WEAK specifier prevents the linker from giving an error
if the symbol is not found at link time. If the symbol is not found, it will take the value
zero. The second imported symbol ___main is the start of the C library initialization code.
You only need to import these symbols if you are defining your own main; a main defined
in C code will import these automatically for you. Importing printf allows us to call that
C library function.

The RN directive allows us to use names for registers. In this case we define i as
an alternate name for register r4. Using register names makes the code more readable.
It is also easier to change the allocation of variables to registers at a later date.

Recall that ATPCS states that a function must preserve registers r4 to r11 and sp. We
corrupt i(r4), and calling printf will corrupt lr. Therefore we stack these two registers
at the start of the function using an STMFD instruction. The LDMFD instruction pulls these
registers from the stack and returns by writing the return address to pc.

The DCB directive defines byte data described as a string or a comma-separated list of
bytes.

To build this example you can use the following command line script:

armasm main3.s
armlink -o main3.axf main3.o ■

Note that Example 6.3 also assumes that the code is called from ARM code. If the code
can be called from Thumb code as in Example 6.2 then we must be capable of returning to
Thumb code. For architectures before ARMv5 we must use a BX to return. Change the last
instruction to the two instructions:

LDMFD sp!, {i, lr}
BX lr

https://hemanthrajhemu.github.io

162 Chapter 6 Writing and Optimizing ARM Assembly Code

Finally, let’s look at an example where we pass more than four parameters. Recall that
ATPCS places the first four arguments in registers r0 to r3. Subsequent arguments are placed
on the stack.

Example

6.4
This example defines a function sumof that can sum any number of integers. The arguments
are the number of integers to sum followed by a list of the integers. The sumof function is
written in assembly and can accept any number of arguments. Put the C part of the example
in a file main4.c:

#include <stdio.h>

/* N is the number of values to sum in list ... */
int sumof(int N, ...);

int main(void)
{

printf("Empty sum=%d\n", sumof(0));
printf("1=%d\n", sumof(1,1));
printf("1+2=%d\n", sumof(2,1,2));
printf("1+2+3=%d\n", sumof(3,1,2,3));
printf("1+2+3+4=%d\n", sumof(4,1,2,3,4));
printf("1+2+3+4+5=%d\n", sumof(5,1,2,3,4,5));
printf("1+2+3+4+5+6=%d\n", sumof(6,1,2,3,4,5,6));

}

Next define the sumof function in an assembly file sumof.s:

AREA |.text|, CODE, READONLY

EXPORT sumof

N RN 0 ; number of elements to sum
sum RN 1 ; current sum

; int sumof(int N, ...)
sumof

SUBS N, N, #1 ; do we have one element
MOVLT sum, #0 ; no elements to sum!
SUBS N, N, #1 ; do we have two elements
ADDGE sum, sum, r2
SUBS N, N, #1 ; do we have three elements
ADDGE sum, sum, r3
MOV r2, sp ; top of stack

loop
SUBS N, N, #1 ; do we have another element
LDMGEFD r2!, {r3} ; load from the stack

https://hemanthrajhemu.github.io

6.3 Instruction Scheduling 163

ADDGE sum, sum, r3
BGE loop
MOV r0, sum
MOV pc, lr ; return r0

END

The code keeps count of the number of remaining values to sum, N. The first three
values are in registers r1, r2, r3. The remaining values are on the stack. You can build this
example using the commands

armcc -c main4.c
armasm sumof.s
armlink -o main4.axf main4.o sumof.o ■

6.2 Profiling and Cycle Counting
The first stage of any optimization process is to identify the critical routines and measure
their current performance. A profiler is a tool that measures the proportion of time or
processing cycles spent in each subroutine. You use a profiler to identify the most critical
routines. A cycle counter measures the number of cycles taken by a specific routine. You can
measure your success by using a cycle counter to benchmark a given subroutine before and
after an optimization.

The ARM simulator used by the ADS1.1 debugger is called the ARMulator and pro-
vides profiling and cycle counting features. The ARMulator profiler works by sampling the
program counter pc at regular intervals. The profiler identifies the function the pc points to
and updates a hit counter for each function it encounters. Another approach is to use the
trace output of a simulator as a source for analysis.

Be sure that you know how the profiler you are using works and the limits of its accuracy.
A pc-sampled profiler can produce meaningless results if it records too few samples. You can
even implement your own pc-sampled profiler in a hardware system using timer interrupts
to collect the pc data points. Note that the timing interrupts will slow down the system you
are trying to measure!

ARM implementations do not normally contain cycle-counting hardware, so to easily
measure cycle counts you should use an ARM debugger with ARM simulator. You can
configure the ARMulator to simulate a range of different ARM cores and obtain cycle
count benchmarks for a number of platforms.

6.3 Instruction Scheduling
The time taken to execute instructions depends on the implementation pipeline. For this
chapter, we assume ARM9TDMI pipeline timings. You can find these in Section D.3 of

https://hemanthrajhemu.github.io

164 Chapter 6 Writing and Optimizing ARM Assembly Code

Appendix D. The following rules summarize the cycle timings for common instruction
classes on the ARM9TDMI.

Instructions that are conditional on the value of the ARM condition codes in the cpsr
take one cycle if the condition is not met. If the condition is met, then the following rules
apply:

■ ALU operations such as addition, subtraction, and logical operations take one cycle.
This includes a shift by an immediate value. If you use a register-specified shift, then
add one cycle. If the instruction writes to the pc, then add two cycles.

■ Load instructions that load N 32-bit words of memory such as LDR and LDM take N cycles
to issue, but the result of the last word loaded is not available on the following cycle.
The updated load address is available on the next cycle. This assumes zero-wait-state
memory for an uncached system, or a cache hit for a cached system. An LDM of a single
value is exceptional, taking two cycles. If the instruction loads pc, then add two cycles.

■ Load instructions that load 16-bit or 8-bit data such asLDRB, LDRSB, LDRH, and LDRSH
take one cycle to issue. The load result is not available on the following two cycles.
The updated load address is available on the next cycle. This assumes zero-wait-state
memory for an uncached system, or a cache hit for a cached system.

■ Branch instructions take three cycles.

■ Store instructions that store N values take N cycles. This assumes zero-wait-state
memory for an uncached system, or a cache hit or a write buffer with N free entries for
a cached system. An STM of a single value is exceptional, taking two cycles.

■ Multiply instructions take a varying number of cycles depending on the value of the
second operand in the product (see Table D.6 in Section D.3).

To understand how to schedule code efficiently on the ARM, we need to understand
the ARM pipeline and dependencies. The ARM9TDMI processor performs five operations
in parallel:

■ Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into
the core and then processes down the core pipeline.

■ Decode: Decode the instruction that was fetched in the previous cycle. The processor
also reads the input operands from the register bank if they are not available via one of
the forwarding paths.

■ ALU: Executes the instruction that was decoded in the previous cycle. Note this instruc-
tion was originally fetched from address pc − 8 (ARM state) or pc − 4 (Thumb state).
Normally this involves calculating the answer for a data processing operation, or the
address for a load, store, or branch operation. Some instructions may spend several
cycles in this stage. For example, multiply and register-controlled shift operations take
several ALU cycles.

https://hemanthrajhemu.github.io

6.3 Instruction Scheduling 165

Fetch Decode ALU LS1 LS2
Instruction address
Action

pc pc_4 pc_8 pc_12 pc_16

Figure 6.1 ARM9TDMI pipeline executing in ARM state.

■ LS1: Load or store the data specified by a load or store instruction. If the instruction is
not a load or store, then this stage has no effect.

■ LS2: Extract and zero- or sign-extend the data loaded by a byte or halfword load
instruction. If the instruction is not a load of an 8-bit byte or 16-bit halfword item,
then this stage has no effect.

Figure 6.1 shows a simplified functional view of the five-stage ARM9TDMI pipeline.
Note that multiply and register shift operations are not shown in the figure.

After an instruction has completed the five stages of the pipeline, the core writes the
result to the register file. Note that pc points to the address of the instruction being fetched.
The ALU is executing the instruction that was originally fetched from address pc − 8 in
parallel with fetching the instruction at address pc.

How does the pipeline affect the timing of instructions? Consider the following
examples. These examples show how the cycle timings change because an earlier instruc-
tion must complete a stage before the current instruction can progress down the pipeline.
To work out how many cycles a block of code will take, use the tables in Appendix D that
summarize the cycle timings and interlock cycles for a range of ARM cores.

If an instruction requires the result of a previous instruction that is not available, then
the processor stalls. This is called a pipeline hazard or pipeline interlock.

Example

6.5
This example shows the case where there is no interlock.

ADD r0, r0, r1
ADD r0, r0, r2

This instruction pair takes two cycles. The ALU calculates r0 + r1 in one cycle. Therefore
this result is available for the ALU to calculate r0 + r2 in the second cycle. ■

Example

6.6
This example shows a one-cycle interlock caused by load use.

LDR r1, [r2, #4]
ADD r0, r0, r1

This instruction pair takes three cycles. The ALU calculates the address r2 + 4 in the first
cycle while decoding the ADD instruction in parallel. However, the ADD cannot proceed on

https://hemanthrajhemu.github.io

166 Chapter 6 Writing and Optimizing ARM Assembly Code

Fetch
...

Decode
ADD
...
...

ALU
LDR
ADD
ADD

LS1
...
LDR
—

LS2

...
LDR

Pipeline
Cycle 1
Cycle 2
Cycle 3

Figure 6.2 One-cycle interlock caused by load use.

the second cycle because the load instruction has not yet loaded the value of r1. Therefore the
pipeline stalls for one cycle while the load instruction completes the LS1 stage. Now that r1
is ready, the processor executes the ADD in the ALU on the third cycle.

Figure 6.2 illustrates how this interlock affects the pipeline. The processor stalls the
ADD instruction for one cycle in the ALU stage of the pipeline while the load instruction
completes the LS1 stage. We’ve denoted this stall by an italic ADD. Since the LDR instruction
proceeds down the pipeline, but the ADD instruction is stalled, a gap opens up between them.
This gap is sometimes called a pipeline bubble. We’ve marked the bubble with a dash. ■

Example

6.7
This example shows a one-cycle interlock caused by delayed load use.

LDRB r1, [r2, #1]
ADD r0, r0, r2
EOR r0, r0, r1

This instruction triplet takes four cycles. Although the ADD proceeds on the cycle following
the load byte, the EOR instruction cannot start on the third cycle. The r1 value is not ready
until the load instruction completes the LS2 stage of the pipeline. The processor stalls the
EOR instruction for one cycle.

Note that the ADD instruction does not affect the timing at all. The sequence takes four
cycles whether it is there or not! Figure 6.3 shows how this sequence progresses through the
processor pipeline. The ADD doesn’t cause any stalls since the ADD does not use r1, the result
of the load. ■

Fetch
EOR
...

Decode
ADD
EOR
...
...

ALU
LDRB
ADD
EOR
EOR

LS1
...
LDRB
ADD
—

LS2

...
LDRB
ADD

Pipeline
Cycle 1
Cycle 2
Cycle 3
Cycle 4

Figure 6.3 One-cycle interlock caused by delayed load use.

https://hemanthrajhemu.github.io

6.3 Instruction Scheduling 167

Fetch
AND
EOR
SUB
...

Decode
B
AND
—
SUB
...

ALU
MOV
B
—
—
SUB

LS1
...
MOV
B
—
—

LS2

...
MOV
B
—

Pipeline
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5

Figure 6.4 Pipeline flush caused by a branch.

Example

6.8
This example shows why a branch instruction takes three cycles. The processor must flush
the pipeline when jumping to a new address.

MOV r1, #1
B case1
AND r0, r0, r1
EOR r2, r2, r3
...

case1
SUB r0, r0, r1

The three executed instructions take a total of five cycles. The MOV instruction executes on
the first cycle. On the second cycle, the branch instruction calculates the destination address.
This causes the core to flush the pipeline and refill it using this new pc value. The refill takes
two cycles. Finally, the SUB instruction executes normally. Figure 6.4 illustrates the pipeline
state on each cycle. The pipeline drops the two instructions following the branch when the
branch takes place. ■

6.3.1 Scheduling of load instructions

Load instructions occur frequently in compiled code, accounting for approximately one-
third of all instructions. Careful scheduling of load instructions so that pipeline stalls don’t
occur can improve performance. The compiler attempts to schedule the code as best it
can, but the aliasing problems of C that we looked at in Section 5.6 limits the available
optimizations. The compiler cannot move a load instruction before a store instruction
unless it is certain that the two pointers used do not point to the same address.

Let’s consider an example of a memory-intensive task. The following function,
str_tolower, copies a zero-terminated string of characters from in to out. It converts
the string to lowercase in the process.

https://hemanthrajhemu.github.io

168 Chapter 6 Writing and Optimizing ARM Assembly Code

void str_tolower(char *out, char *in)
{
unsigned int c;

do
{

c = *(in++);
if (c>=’A’ && c<=’Z’)
{

c = c + (’a’ -’A’);
}
*(out++) = (char)c;

} while (c);
}

The ADS1.1 compiler generates the following compiled output. Notice that the compiler
optimizes the condition (c>=‘A’ && c<=‘Z’) to the check that 0<=c-‘A’<=‘Z’-‘A’.
The compiler can perform this check using a single unsigned comparison.

str_tolower
LDRB r2,[r1],#1 ; c = *(in++)
SUB r3,r2,#0x41 ; r3 = c -‘A’
CMP r3,#0x19 ; if (c <=‘Z’-‘A’)
ADDLS r2,r2,#0x20 ; c +=‘a’-‘A’
STRB r2,[r0],#1 ; *(out++) = (char)c
CMP r2,#0 ; if (c!=0)
BNE str_tolower ; goto str_tolower
MOV pc,r14 ; return

Unfortunately, the SUB instruction uses the value of c directly after the LDRB instruction
that loads c. Consequently, the ARM9TDMI pipeline will stall for two cycles. The compiler
can’t do any better since everything following the load of c depends on its value. However,
there are two ways you can alter the structure of the algorithm to avoid the cycles by using
assembly. We call these methods load scheduling by preloading and unrolling.

6.3.1.1 Load Scheduling by Preloading

In this method of load scheduling, we load the data required for the loop at the end of
the previous loop, rather than at the beginning of the current loop. To get performance
improvement with little increase in code size, we don’t unroll the loop.

Example

6.9
This assembly applies the preload method to the str_tolower function.

out RN 0 ; pointer to output string
in RN 1 ; pointer to input string

https://hemanthrajhemu.github.io

6.3 Instruction Scheduling 169

c RN 2 ; character loaded
t RN 3 ; scratch register

; void str_tolower_preload(char *out, char *in)
str_tolower_preload
LDRB c, [in], #1 ; c = *(in++)

loop
SUB t, c, #’A’ ; t = c-’A’
CMP t, #’Z’-’A’ ; if (t <= ’Z’-’A’)
ADDLS c, c, #’a’-’A’ ; c += ’a’-’A’;
STRB c, [out], #1 ; *(out++) = (char)c;
TEQ c, #0 ; test if c==0
LDRNEB c, [in], #1 ; if (c!=0) { c=*in++;
BNE loop ; goto loop; }
MOV pc, lr ; return

The scheduled version is one instruction longer than the C version, but we save two
cycles for each inner loop iteration. This reduces the loop from 11 cycles per character to
9 cycles per character on an ARM9TDMI, giving a 1.22 times speed improvement. ■

The ARM architecture is particularly well suited to this type of preloading because
instructions can be executed conditionally. Since loop i is loading the data for loop i + 1
there is always a problem with the first and last loops. For the first loop, we can preload data
by inserting extra load instructions before the loop starts. For the last loop it is essential that
the loop does not read any data, or it will read beyond the end of the array. This could cause
a data abort! With ARM, we can easily solve this problem by making the load instruction
conditional. In Example 6.9, the preload of the next character only takes place if the loop
will iterate once more. No byte load occurs on the last loop.

6.3.1.2 Load Scheduling by Unrolling

This method of load scheduling works by unrolling and then interleaving the body of the
loop. For example, we can perform loop iterations i, i + 1, i + 2 interleaved. When the result
of an operation from loop i is not ready, we can perform an operation from loop i + 1 that
avoids waiting for the loop i result.

Example

6.10
The assembly applies load scheduling by unrolling to the str_tolower function.

out RN 0 ; pointer to output string
in RN 1 ; pointer to input string
ca0 RN 2 ; character 0
t RN 3 ; scratch register

https://hemanthrajhemu.github.io

170 Chapter 6 Writing and Optimizing ARM Assembly Code

ca1 RN 12 ; character 1
ca2 RN 14 ; character 2

; void str_tolower_unrolled(char *out, char *in)
str_tolower_unrolled
STMFD sp!, {lr} ; function entry

loop_next3
LDRB ca0, [in], #1 ; ca0 = *in++;
LDRB ca1, [in], #1 ; ca1 = *in++;
LDRB ca2, [in], #1 ; ca2 = *in++;
SUB t, ca0, #’A’ ; convert ca0 to lower case
CMP t, #’Z’-’A’
ADDLS ca0, ca0, #’a’-’A’
SUB t, ca1, #’A’ ; convert ca1 to lower case
CMP t, #’Z’-’A’
ADDLS ca1, ca1, #’a’-’A’
SUB t, ca2, #’A’ ; convert ca2 to lower case
CMP t, #’Z’-’A’
ADDLS ca2, ca2, #’a’-’A’
STRB ca0, [out], #1 ; *out++ = ca0;
TEQ ca0, #0 ; if (ca0!=0)
STRNEB ca1, [out], #1 ; *out++ = ca1;
TEQNE ca1, #0 ; if (ca0!=0 && ca1!=0)
STRNEB ca2, [out], #1 ; *out++ = ca2;
TEQNE ca2, #0 ; if (ca0!=0 && ca1!=0 && ca2!=0)
BNE loop_next3 ; goto loop_next3;
LDMFD sp!, {pc} ; return;

This loop is the most efficient implementation we’ve looked at so far. The implemen-
tation requires seven cycles per character on ARM9TDMI. This gives a 1.57 times speed
increase over the original str_tolower. Again it is the conditional nature of the ARM
instructions that makes this possible. We use conditional instructions to avoid storing
characters that are past the end of the string. ■

However, the improvement in Example 6.10 does have some costs. The routine is
more than double the code size of the original implementation. We have assumed that
you can read up to two characters beyond the end of the input string, which may not
be true if the string is right at the end of available RAM, where reading off the end
will cause a data abort. Also, performance can be slower for very short strings because
(1) stacking lr causes additional function call overhead and (2) the routine may process
up to two characters pointlessly, before discovering that they lie beyond the end of the
string.

You should use this form of scheduling by unrolling for time-critical parts of an appli-
cation where you know the data size is large. If you also know the size of the data at compile
time, you can remove the problem of reading beyond the end of the array.

https://hemanthrajhemu.github.io

6.4 Register Allocation 171

Summary Instruction Scheduling

■ ARM cores have a pipeline architecture. The pipeline may delay the results of certain
instructions for several cycles. If you use these results as source operands in a following
instruction, the processor will insert stall cycles until the value is ready.

■ Load and multiply instructions have delayed results in many implementations. See
Appendix D for the cycle timings and delay for your specific ARM processor core.

■ You have two software methods available to remove interlocks following load instruc-
tions: You can preload so that loop i loads the data for loop i + 1, or you can unroll the
loop and interleave the code for loops i and i + 1.

6.4 Register Allocation
You can use 14 of the 16 visible ARM registers to hold general-purpose data. The other two
registers are the stack pointer r13 and the program counter r15. For a function to be ATPCS
compliant it must preserve the callee values of registers r4 to r11. ATPCS also specifies that
the stack should be eight-byte aligned; therefore you must preserve this alignment if calling
subroutines. Use the following template for optimized assembly routines requiring many
registers:

routine_name
STMFD sp!, {r4-r12, lr} ; stack saved registers

; body of routine
; the fourteen registers r0-r12 and lr are available

LDMFD sp!, {r4-r12, pc} ; restore registers and return

Our only purpose in stacking r12 is to keep the stack eight-byte aligned. You need not stack
r12 if your routine doesn’t call other ATPCS routines. For ARMv5 and above you can use
the preceding template even when being called from Thumb code. If your routine may be
called from Thumb code on an ARMv4T processor, then modify the template as follows:

routine_name
STMFD sp!, {r4-r12, lr} ; stack saved registers

; body of routine
; registers r0-r12 and lr available

LDMFD sp!, {r4-r12, lr} ; restore registers
BX lr ; return, with mode switch

In this section we look at how best to allocate variables to register numbers for register-
intensive tasks, how to use more than 14 local variables, and how to make the best use of
the 14 available registers.

https://hemanthrajhemu.github.io

172 Chapter 6 Writing and Optimizing ARM Assembly Code

6.4.1 Allocating Variables to Register Numbers

When you write an assembly routine, it is best to start by using names for the variables,
rather than explicit register numbers. This allows you to change the allocation of variables
to register numbers easily. You can even use different register names for the same physical
register number when their use doesn’t overlap. Register names increase the clarity and
readability of optimized code.

For the most part ARM operations are orthogonal with respect to register number. In
other words, specific register numbers do not have specific roles. If you swap all occurrences
of two registers Ra and Rb in a routine, the function of the routine does not change.
However, there are several cases where the physical number of the register is important:

■ Argument registers. The ATPCS convention defines that the first four arguments to
a function are placed in registers r0 to r3. Further arguments are placed on the stack.
The return value must be placed in r0.

■ Registers used in a load or store multiple. Load and store multiple instructions LDM and
STM operate on a list of registers in order of ascending register number. If r0 and r1
appear in the register list, then the processor will always load or store r0 using a lower
address than r1 and so on.

■ Load and store double word. The LDRD and STRD instructions introduced in ARMv5E
operate on a pair of registers with sequential register numbers, Rd and Rd + 1.
Furthermore, Rd must be an even register number.

For an example of how to allocate registers when writing assembly, suppose we want
to shift an array of N bits upwards in memory by k bits. For simplicity assume that N is
large and a multiple of 256. Also assume that 0 ≤ k < 32 and that the input and output
pointers are word aligned. This type of operation is common in dealing with the arithmetic
of multiple precision numbers where we want to multiply by 2k . It is also useful to block
copy from one bit or byte alignment to a different bit or byte alignment. For example, the
C library function memcpy can use the routine to copy an array of bytes using only word
accesses.

The C routine shift_bits implements the simple k-bit shift of N bits of data. It returns
the k bits remaining following the shift.

unsigned int shift_bits(unsigned int *out, unsigned int *in,
unsigned int N, unsigned int k)

{
unsigned int carry=0, x;

do
{

x = *in++;
*out++ = (x << k) | carry;

https://hemanthrajhemu.github.io

6.4 Register Allocation 173

carry = x >> (32-k);
N -= 32;

} while (N);

return carry;
}

The obvious way to improve efficiency is to unroll the loop to process eight words of
256 bits at a time so that we can use load and store multiple operations to load and store
eight words at a time for maximum efficiency. Before thinking about register numbers, we
write the following assembly code:

shift_bits
STMFD sp!, {r4-r11, lr} ; save registers
RSB kr, k, #32 ; kr = 32-k;
MOV carry, #0

loop
LDMIA in!, {x_0-x_7} ; load 8 words
ORR y_0, carry, x_0, LSL k ; shift the 8 words
MOV carry, x_0, LSR kr
ORR y_1, carry, x_1, LSL k
MOV carry, x_1, LSR kr
ORR y_2, carry, x_2, LSL k
MOV carry, x_2, LSR kr
ORR y_3, carry, x_3, LSL k
MOV carry, x_3, LSR kr
ORR y_4, carry, x_4, LSL k
MOV carry, x_4, LSR kr
ORR y_5, carry, x_5, LSL k
MOV carry, x_5, LSR kr
ORR y_6, carry, x_6, LSL k
MOV carry, x_6, LSR kr
ORR y_7, carry, x_7, LSL k
MOV carry, x_7, LSR kr
STMIA out!, {y_0-y_7} ; store 8 words
SUBS N, N, #256 ; N -= (8 words * 32 bits)
BNE loop ; if (N!=0) goto loop;
MOV r0, carry ; return carry;
LDMFD sp!, {r4-r11, pc}

Now to the register allocation. So that the input arguments do not have to move registers,
we can immediately assign

out RN 0
in RN 1

https://hemanthrajhemu.github.io

174 Chapter 6 Writing and Optimizing ARM Assembly Code

N RN 2
k RN 3

For the load multiple to work correctly, we must assign x0 through x7 to sequentially
increasing register numbers, and similarly for y0 through y7. Notice that we finish with x0

before starting with y1. In general, we can assign xn to the same register as yn+1. Therefore,
assign

x_0 RN 5
x_1 RN 6
x_2 RN 7
x_3 RN 8
x_4 RN 9
x_5 RN 10
x_6 RN 11
x_7 RN 12
y_0 RN 4
y_1 RN x_0
y_2 RN x_1
y_3 RN x_2
y_4 RN x_3
y_5 RN x_4
y_6 RN x_5
y_7 RN x_6

We are nearly finished, but there is a problem. There are two remaining variables carry
and kr, but only one remaining free register lr. There are several possible ways we can
proceed when we run out of registers:

■ Reduce the number of registers we require by performing fewer operations in each
loop. In this case we could load four words in each load multiple rather than eight.

■ Use the stack to store the least-used values to free up more registers. In this case we
could store the loop counter N on the stack. (See Section 6.4.2 for more details on
swapping registers to the stack.)

■ Alter the code implementation to free up more registers. This is the solution we consider
in the following text. (For more examples, see Section 6.4.3.)

We often iterate the process of implementation followed by register allocation several
times until the algorithm fits into the 14 available registers. In this case we notice that the
carry value need not stay in the same register at all! We can start off with the carry value
in y0 and then move it to y1 when x0 is no longer required, and so on. We complete the
routine by allocating kr to lr and recoding so that carry is not required.

https://hemanthrajhemu.github.io

6.4 Register Allocation 175

Example

6.11
This assembly shows our final shift_bits routine. It uses all 14 available ARM registers.

kr RN lr

shift_bits
STMFD sp!, {r4-r11, lr} ; save registers
RSB kr, k, #32 ; kr = 32-k;
MOV y_0, #0 ; initial carry

loop
LDMIA in!, {x_0-x_7} ; load 8 words
ORR y_0, y_0, x_0, LSL k ; shift the 8 words
MOV y_1, x_0, LSR kr ; recall x_0 = y_1
ORR y_1, y_1, x_1, LSL k
MOV y_2, x_1, LSR kr
ORR y_2, y_2, x_2, LSL k
MOV y_3, x_2, LSR kr
ORR y_3, y_3, x_3, LSL k
MOV y_4, x_3, LSR kr
ORR y_4, y_4, x_4, LSL k
MOV y_5, x_4, LSR kr
ORR y_5, y_5, x_5, LSL k
MOV y_6, x_5, LSR kr
ORR y_6, y_6, x_6, LSL k
MOV y_7, x_6, LSR kr
ORR y_7, y_7, x_7, LSL k
STMIA out!, {y_0-y_7} ; store 8 words
MOV y_0, x_7, LSR kr
SUBS N, N, #256 ; N -= (8 words * 32 bits)
BNE loop ; if (N!=0) goto loop;
MOV r0, y_0 ; return carry;
LDMFD sp!, {r4-r11, pc} ■

6.4.2 Using More than 14 Local Variables

If you need more than 14 local 32-bit variables in a routine, then you must store some
variables on the stack. The standard procedure is to work outwards from the inner-
most loop of the algorithm, since the innermost loop has the greatest performance
impact.

Example

6.12
This example shows three nested loops, each loop requiring state information inherited
from the loop surrounding it. (See Section 6.6 for further ideas and examples of looping
constructs.)

https://hemanthrajhemu.github.io

176 Chapter 6 Writing and Optimizing ARM Assembly Code

nested_loops
STMFD sp!, {r4-r11, lr}
; set up loop 1

loop1
STMFD sp!, {loop1 registers}
; set up loop 2

loop2
STMFD sp!, {loop2 registers}
; set up loop 3

loop3
; body of loop 3
B{cond} loop3
LDMFD sp!, {loop2 registers}
; body of loop 2
B{cond} loop2
LDMFD sp!, {loop1 registers}
; body of loop 1
B{cond} loop1
LDMFD sp!, {r4-r11, pc} ■

You may find that there are insufficient registers for the innermost loop even using the
construction in Example 6.12. Then you need to swap inner loop variables out to the stack.
Since assembly code is very hard to maintain and debug if you use numbers as stack address
offsets, the assembler provides an automated procedure for allocating variables to the
stack.

Example

6.13
This example shows how you can use the ARM assembler directives MAP (alias ∧) and FIELD
(alias #) to define and allocate space for variables and arrays on the processor stack. The
directives perform a similar function to the struct operator in C.

MAP 0 ; map symbols to offsets starting at offset 0
a FIELD 4 ; a is 4 byte integer (at offset 0)
b FIELD 2 ; b is 2 byte integer (at offset 4)
c FIELD 2 ; c is 2 byte integer (at offset 6)
d FIELD 64 ; d is an array of 64 characters (at offset 8)
length FIELD 0 ; length records the current offset reached

example
STMFD sp!, {r4-r11, lr} ; save callee registers
SUB sp, sp, #length ; create stack frame
; ...
STR r0, [sp, #a] ; a = r0;
LDRSH r1, [sp, #b] ; r1 = b;

https://hemanthrajhemu.github.io

6.4 Register Allocation 177

ADD r2, sp, #d ; r2 = &d[0]
; ...
ADD sp, sp, #length ; restore the stack pointer
LDMFD sp!, {r4-r11, pc} ; return ■

6.4.3 Making the Most of Available Registers

On a load-store architecture such as the ARM, it is more efficient to access values held in
registers than values held in memory. There are several tricks you can use to fit several
sub-32-bit length variables into a single 32-bit register and thus can reduce code size and
increase performance. This section presents three examples showing how you can pack
multiple variables into a single ARM register.

Example

6.14
Suppose we want to step through an array by a programmable increment. A common
example is to step through a sound sample at various rates to produce different pitched
notes. We can express this in C code as

sample = table[index];
index += increment;

Commonly index and increment are small enough to be held as 16-bit values. We can
pack these two variables into a single 32-bit variable indinc:

indinc = (index<<16) + increment = index increment

Bit 31 16 15 0

The C code translates into assembly code using a single register to hold indinc:

LDRB sample, [table, indinc, LSR#16] ; table[index]
ADD indinc, indinc, indinc, LSL#16 ; index+=increment

Note that if index and increment are 16-bit values, then putting index in the top
16 bits of indinc correctly implements 16-bit-wrap-around. In other words, index =
(short)(index + increment). This can be useful if you are using a buffer where you want
to wrap from the end back to the beginning (often known as a circular buffer). ■

Example

6.15
When you shift by a register amount, the ARM uses bits 0 to 7 as the shift amount. The
ARM ignores bits 8 to 31 of the register. Therefore you can use bits 8 to 31 to hold a second
variable distinct from the shift amount.

https://hemanthrajhemu.github.io

178 Chapter 6 Writing and Optimizing ARM Assembly Code

This example shows how to combine a register-specified shift shift and loop counter
count to shift an array of 40 entries right by shift bits. We define a new variable cntshf
that combines count and shift:

cntshf = (count<<8) + shift = count shift

Bit 31 8 7 0

out RN 0 ; address of the output array
in RN 1 ; address of the input array
cntshf RN 2 ; count and shift right amount
x RN 3 ; scratch variable

; void shift_right(int *out, int *in, unsigned shift);
shift_right

ADD cntshf, cntshf, #39 << 8 ; count = 39
shift_loop

LDR x, [in], #4
SUBS cntshf, cntshf, #1 << 8 ; decrement count
MOV x, x, ASR cntshf ; shift by shift
STR x, [out], #4
BGE shift_loop ; continue if count>=0
MOV pc, lr ■

Example

6.16
If you are dealing with arrays of 8-bit or 16-bit values, it is sometimes possible to manipulate
multiple values at a time by packing several values into a single 32-bit register. This is called
single issue multiple data (SIMD) processing.

ARM architecture versions up to ARMv5 do not support SIMD operations explicitly.
However, there are still areas where you can achieve SIMD type compactness. Section 6.6
shows how you can store multiple loop values in a single register. Here we look at a graphics
example of how to process multiple 8-bit pixels in an image using normal ADD and MUL
instructions to achieve some SIMD operations.

Suppose we want to merge two images X and Y to produce a new image Z. Let xn , yn ,
and zn denote the nth 8-bit pixel in these images, respectively. Let 0 ≤ a ≤ 256 be a scaling
factor. To merge the images, we set

zn = (axn + (256 − a)yn)/256 (6.1)

In other words image Z is image X scaled in intensity by a/256 added to image Y scaled by
1 − (a/256). Note that

zn = wn/256, where wn = a(xn − yn) + 256yn (6.2)

Therefore each pixel requires a subtract, a multiply, a shifted add, and a right
shift. To process multiple pixels at a time, we load four pixels at once using a

https://hemanthrajhemu.github.io

6.4 Register Allocation 179

word load. We use a bracketed notation to denote several values packed into the
same word:

[x3, x2, x1, x0] = x3224 + x2216 + x128 + x0 = x3 x2 x1 x0

Bit 24 16 8 0

We then unpack the 8-bit data and promote it to 16-bit data using an AND with a mask
register. We use the notation

[x2, x0] = x2216 + x0 = x2 x0

Bit 31 16 15 0

Note that even for signed values [a, b] + [c , d] = [a + b, c + d] if we interpret [a, b] using
the mathematical equation a216 + b. Therefore we can perform SIMD operations on these
values using normal arithmetic instructions.

The following code shows how you can process four pixels at a time using only two
multiplies. The code assumes a 176 × 144 sized quarter CIF image.

IMAGE_WIDTH EQU 176 ; QCIF width
IMAGE_HEIGHT EQU 144 ; QCIF height

pz RN 0 ; pointer to destination image (word aligned)
px RN 1 ; pointer to first source image (word aligned)
py RN 2 ; pointer to second source image (word aligned)
a RN 3 ; 8-bit scaling factor (0-256)

xx RN 4 ; holds four x pixels [x3, x2, x1, x0]
yy RN 5 ; holds four y pixels [y3, y2, y1, y0]
x RN 6 ; holds two expanded x pixels [x2, x0]
y RN 7 ; holds two expanded y pixels [y2, y0]
z RN 8 ; holds four z pixels [z3, z2, z1, z0]
count RN 12 ; number of pixels remaining
mask RN 14 ; constant mask with value 0x00ff00ff

; void merge_images(char *pz, char *px, char *py, int a)
merge_images

STMFD sp!, {r4-r8, lr}
MOV count, #IMAGE_WIDTH*IMAGE_HEIGHT
LDR mask, =0x00FF00FF ; [0, 0xFF, 0, 0xFF]

merge_loop
LDR xx, [px], #4 ; [x3, x2, x1, x0]
LDR yy, [py], #4 ; [y3, y2, y1, y0]
AND x, mask, xx ; [0, x2, 0, x0]
AND y, mask, yy ; [0, y2, 0, y0]
SUB x, x, y ; [(x2-y2), (x0-y0)]

https://hemanthrajhemu.github.io

180 Chapter 6 Writing and Optimizing ARM Assembly Code

MUL x, a, x ; [a*(x2-y2), a*(x0-y0)]
ADD x, x, y, LSL#8 ; [w2, w0]
AND z, mask, x, LSR#8 ; [0, z2, 0, z0]
AND x, mask, xx, LSR#8 ; [0, x3, 0, x1]
AND y, mask, yy, LSR#8 ; [0, y3, 0, y1]
SUB x, x, y ; [(x3-y3), (x1-y1)]
MUL x, a, x ; [a*(x3-y3), a*(x1-y1)]
ADD x, x, y, LSL#8 ; [w3, w1]
AND x, mask, x, LSR#8 ; [0, z3, 0, z1]
ORR z, z, x, LSL#8 ; [z3, z2, z1, z0]
STR z, [pz], #4 ; store four z pixels
SUBS count, count, #4
BGT merge_loop
LDMFD sp!, {r4-r8, pc}

The code works since

0 ≤ wn ≤ 255a + 255(256 − a) = 256 × 255 = 0xFF00 (6.3)

Therefore it is easy to separate the value [w2, w0] into w2 and w0 by taking the most signif-
icant and least significant 16-bit portions, respectively. We have succeeded in processing
four 8-bit pixels using 32-bit load, stores, and data operations to perform operations in
parallel. ■

Summary Register Allocation

■ ARM has 14 available registers for general-purpose use: r0 to r12 and r14. The
stack pointer r13 and program counter r15 cannot be used for general-purpose data.
Operating system interrupts often assume that the user mode r13 points to a valid stack,
so don’t be tempted to reuse r13.

■ If you need more than 14 local variables, swap the variables out to the stack, working
outwards from the innermost loop.

■ Use register names rather than physical register numbers when writing assembly
routines. This makes it easier to reallocate registers and to maintain the code.

■ To ease register pressure you can sometimes store multiple values in the same register.
For example, you can store a loop counter and a shift in one register. You can also store
multiple pixels in one register.

6.5 Conditional Execution
The processor core can conditionally execute most ARM instructions. This conditional
execution is based on one of 15 condition codes. If you don’t specify a condition, the

https://hemanthrajhemu.github.io

6.5 Conditional Execution 181

assembler defaults to the execute always condition (AL). The other 14 conditions split into
seven pairs of complements. The conditions depend on the four condition code flags N, Z,
C, V stored in the cpsr register. See Table A.2 in Appendix A for the list of possible ARM
conditions. Also see Sections 2.2.6 and 3.8 for an introduction to conditional execution.

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For
most instructions, to update these flags you append an S suffix to the instruction mnemonic.
Exceptions to this are comparison instructions that do not write to a destination register.
Their sole purpose is to update the flags and so they don’t require the S suffix.

By combining conditional execution and conditional setting of the flags, you can imple-
ment simple if statements without any need for branches. This improves efficiency since
branches can take many cycles and also reduces code size.

Example

6.17
The following C code converts an unsigned integer 0 ≤ i ≤ 15 to a hexadecimal character c:

if (i<10)
{
c = i + ‘0’;

}
else
{
c = i + ‘A’-10;

}

We can write this in assembly using conditional execution rather than conditional
branches:

CMP i, #10
ADDLO c, i, #‘0’
ADDHS c, i, #‘A’-10

The sequence works since the first ADD does not change the condition codes. The second
ADD is still conditional on the result of the compare. Section 6.3.1 shows a similar use of
conditional execution to convert to lowercase. ■

Conditional execution is even more powerful for cascading conditions.

Example

6.18
The following C code identifies if c is a vowel:

if (c==‘a’ || c==‘e’ || c==‘i’ || c==‘o’ || c==‘u’)
{

vowel++;
}

https://hemanthrajhemu.github.io

182 Chapter 6 Writing and Optimizing ARM Assembly Code

In assembly you can write this using conditional comparisons:

TEQ c, #‘a’
TEQNE c, #‘e’
TEQNE c, #‘i’
TEQNE c, #‘o’
TEQNE c, #‘u’
ADDEQ vowel, vowel, #1

As soon as one of the TEQ comparisons detects a match, the Z flag is set in the cpsr. The
following TEQNE instructions have no effect as they are conditional on Z = 0.

The next instruction to have effect is the ADDEQ that increments vowel. You can use this
method whenever all the comparisons in the if statement are of the same type. ■

Example

6.19
Consider the following code that detects if c is a letter:

if ((c>=‘A’ && c<=‘Z’) || (c>=‘a’ && c<=‘z’))
{

letter++;
}

To implement this efficiently, we can use an addition or subtraction to move each range
to the form 0 ≤ c ≤ limit . Then we use unsigned comparisons to detect this range and
conditional comparisons to chain together ranges. The following assembly implements this
efficiently:

SUB temp, c, #‘A’
CMP temp, #‘Z’-‘A’
SUBHI temp, c, #‘a’
CMPHI temp, #‘z’-‘a’
ADDLS letter, letter, #1

For more complicated decisions involving switches, see Section 6.8. ■

Note that the logical operations AND and OR are related by the standard logical relations
as shown in Table 6.1. You can invert logical expressions involving OR to get an expression
involving AND, which can often be useful in simplifying or rearranging logical expressions.

Summary Conditional Execution

■ You can implement most if statements with conditional execution. This is more
efficient than using a conditional branch.

https://hemanthrajhemu.github.io

6.6 Looping Constructs 183

Table 6.1 Inverted logical relations

Inverted expression Equivalent

!(a && b) (!a) || (!b)
!(a || b) (!a) && (!b)

■ You can implement if statements with the logical AND or OR of several similar
conditions using compare instructions that are themselves conditional.

6.6 Looping Constructs
Most routines critical to performance will contain a loop. We saw in Section 5.3 that on the
ARM loops are fastest when they count down towards zero. This section describes how to
implement these loops efficiently in assembly. We also look at examples of how to unroll
loops for maximum performance.

6.6.1 Decremented Counted Loops

For a decrementing loop of N iterations, the loop counter i counts down from N to 1
inclusive. The loop terminates with i = 0. An efficient implementation is

MOV i, N
loop

; loop body goes here and i=N,N-1,...,1
SUBS i, i, #1
BGT loop

The loop overhead consists of a subtraction setting the condition codes followed by
a conditional branch. On ARM7 and ARM9 this overhead costs four cycles per loop. If i
is an array index, then you may want to count down from N − 1 to 0 inclusive instead so
that you can access array element zero. You can implement this in the same way by using
a different conditional branch:

SUBS i, N, #1
loop

; loop body goes here and i=N-1,N-2,...,0
SUBS i, i, #1
BGE loop

https://hemanthrajhemu.github.io

184 Chapter 6 Writing and Optimizing ARM Assembly Code

In this arrangement the Z flag is set on the last iteration of the loop and cleared for other
iterations. If there is anything different about the last loop, then we can achieve this using
the EQ and NE conditions. For example, if you preload data for the next loop (as discussed
in Section 6.3.1.1), then you want to avoid the preload on the last loop. You can make all
preload operations conditional on NE as in Section 6.3.1.1.

There is no reason why we must decrement by one on each loop. Suppose we require
N/3 loops. Rather than attempting to divide N by three, it is far more efficient to subtract
three from the loop counter on each iteration:

MOV i, N
loop

; loop body goes here and iterates (round up)(N/3) times
SUBS i, i, #3
BGT loop

6.6.2 Unrolled Counted Loops

This brings us to the subject of loop unrolling. Loop unrolling reduces the loop overhead by
executing the loop body multiple times. However, there are problems to overcome. What
if the loop count is not a multiple of the unroll amount? What if the loop count is smaller
than the unroll amount? We looked at these questions for C code in Section 5.3. In this
section we look at how you can handle these issues in assembly.

We’ll take the C library function memset as a case study. This function sets N bytes of
memory at address s to the byte value c. The function needs to be efficient, so we will look
at how to unroll the loop without placing extra restrictions on the input operands. Our
version of memset will have the following C prototype:

void my_memset(char *s, int c, unsigned int N);

To be efficient for large N, we need to write multiple bytes at a time using STR or STM
instructions. Therefore our first task is to align the array pointer s. However, it is only
worth us doing this if N is sufficiently large. We aren’t sure yet what “sufficiently large”
means, but let’s assume we can choose a threshold value T1 and only bother to align the array
when N ≥ T1. Clearly T1 ≥ 3 as there is no point in aligning if we don’t have four bytes to
write!

Now suppose we have aligned the array s. We can use store multiples to set memory
efficiently. For example, we can use a loop of four store multiples of eight words each to set
128 bytes on each loop. However, it will only be worth doing this if N ≥ T2 ≥ 128, where
T2 is another threshold to be determined later on.

Finally, we are left with N < T2 bytes to set. We can write bytes in blocks of four using
STR until N < 4. Then we can finish by writing bytes singly with STRB to the end of the
array.

https://hemanthrajhemu.github.io

6.6 Looping Constructs 185

Example

6.20
This example shows the unrolled memset routine. We’ve separated the three sections corre-
sponding to the preceding paragraphs with rows of dashes. The routine isn’t finished until
we’ve decided the best values for T1 and T2.

s RN 0 ; current string pointer
c RN 1 ; the character to fill with
N RN 2 ; the number of bytes to fill
c_1 RN 3 ; copies of c
c_2 RN 4
c_3 RN 5
c_4 RN 6
c_5 RN 7
c_6 RN 8
c_7 RN 12

; void my_memset(char *s, unsigned int c, unsigned int N)
my_memset

;---
; First section aligns the array
CMP N, #T_1 ; We know that T_1>=3
BCC memset_1ByteBlk ; if (N<T_1) goto memset_1ByteBlk
ANDS c_1, s, #3 ; find the byte alignment of s
BEQ aligned ; branch if already aligned
RSB c_1, c_1, #4 ; number of bytes until alignment
SUB N, N, c_1 ; number of bytes after alignment
CMP c_1, #2
STRB c, [s], #1
STRGEB c, [s], #1 ; if (c_1>=2) then output byte
STRGTB c, [s], #1 ; if (c_1>=3) then output byte

aligned ;the s array is now aligned
ORR c, c, c, LSL#8 ; duplicate the character
ORR c, c, c, LSL#16 ; to fill all four bytes of c
;---
; Second section writes blocks of 128 bytes
CMP N, #T_2 ; We know that T_2 >= 128
BCC memset_4ByteBlk ; if (N<T_2) goto memset_4ByteBlk
STMFD sp!, {c_2-c_6} ; stack scratch registers
MOV c_1, c
MOV c_2, c
MOV c_3, c
MOV c_4, c
MOV c_5, c
MOV c_6, c

https://hemanthrajhemu.github.io

186 Chapter 6 Writing and Optimizing ARM Assembly Code

MOV c_7, c
SUB N, N, #128 ; bytes left after next block

loop128 ; write 32 words = 128 bytes
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
STMIA s!, {c, c_1-c_6, c_7} ; write 8 words
SUBS N, N, #128 ; bytes left after next block
BGE loop128
ADD N, N, #128 ; number of bytes left
LDMFD sp!, {c_2-c_6} ; restore corrupted registers
;--
; Third section deals with left over bytes

memset_4ByteBlk
SUBS N, N, #4 ; try doing 4 bytes

loop4 ; write 4 bytes
STRGE c, [s], #4
SUBGES N, N, #4
BGE loop4
ADD N, N, #4 ; number of bytes left

memset_1ByteBlk
SUBS N, N, #1

loop1 ; write 1 byte
STRGEB c, [s], #1
SUBGES N, N, #1
BGE loop1
MOV pc, lr ; finished so return

It remains to find the best values for the thresholds T1 and T2. To determine these we
need to analyze the cycle counts for different ranges of N. Since the algorithm operates on
blocks of size 128 bytes, 4 bytes, and 1 byte, respectively, we start by decomposing N with
respect to these block sizes:

N = 128Nh + 4Nm + Nl , where 0 ≤ Nm < 32 and 0 ≤ Nl < 4

We now partition into three cases. To follow the details of these cycle counts, you will
need to refer to the instruction cycle timings in Appendix D.

■ Case 0 ≤ N < T1: The routine takes 5N + 6 cycles on an ARM9TDMI including the
return.

■ Case T1 ≤ N < T2: The first algorithm block takes 6 cycles if the s array is word aligned
and 10 cycles otherwise. Assuming each alignment is equally likely, this averages to
(6 + 10 + 10 + 10)/4 = 9 cycles. The second algorithm block takes 6 cycles. The final

https://hemanthrajhemu.github.io

6.6 Looping Constructs 187

Table 6.2 Cycles taken for each range of N values.

N range Cycles taken

0 ≤ N < T1 640Nh + 20Nm + 5Nl + 6
T1 ≤ N < T2 160Nh + 5Nm + 5Nl + 17 + 5Zl

T2 ≤ N 36Nh + 5Nm + 5Nl + 32 + 5Zl + 5Zm

block takes 5(32Nh + Nm) + 5(Nl + Zl) + 2 cycles, where Zl is 1 if Nl = 0, and 0
otherwise. The total cycles for this case is 5(32Nh + Nm + Nl + Zl) + 17.

■ Case N ≥ T2: As in the previous case, the first algorithm block averages 9 cycles.
The second algorithm block takes 36Nh + 21 cycles. The final algorithm block takes
5(Nm + Zm + Nl + Zl) + 2 cycles, where Zm is 1 if Nm is 0, and 0 otherwise. The total
cycles for this case is 36Nh + 5(Nm + Zm + Nl + Zl) + 32.

Table 6.2 summarizes these results. Comparing the three table rows it is clear that the
second row wins over the first row as soon as Nm ≥ 1, unless Nm = 1 and Nl = 0. We set
T1 = 5 to choose the best cycle counts from rows one and two. The third row wins over
the second row as soon as Nh ≥ 1. Therefore take T2 = 128.

This detailed example shows you how to unroll any important loop using threshold
values and provide good performance over a range of possible input values. ■

6.6.3 Multiple Nested Loops

How many loop counters does it take to maintain multiple nested loops? Actually, one will
suffice—or more accurately, one provided the sum of the bits needed for each loop count
does not exceed 32. We can combine the loop counts within a single register, placing the
innermost loop count at the highest bit positions. This section gives an example showing
how to do this. We will ensure the loops count down from max − 1 to 0 inclusive so that
the loop terminates by producing a negative result.

Example

6.21
This example shows how to merge three loop counts into a single loop count. Suppose we
wish to multiply matrix B by matrix C to produce matrix A, where A, B, C have the
following constant dimensions. We assume that R, S, T are relatively large but less
than 256.

Matrix A: R rows × T columns

Matrix B: R rows × S columns

Matrix C: S rows × T columns

https://hemanthrajhemu.github.io

188 Chapter 6 Writing and Optimizing ARM Assembly Code

We represent each matrix by a lowercase pointer of the same name, pointing to an array
of words organized by row. For example, the element at row i, column j, A[i, j], is at the
byte address

&A[i,j] = a + 4*(i*T+j)

A simple C implementation of the matrix multiply uses three nested loops i, j, and k:

#define R 40
#define S 40
#define T 40

void ref_matrix_mul(int *a, int *b, int *c)
{
unsigned int i,j,k;
int sum;

for (i=0; i<R; i++)
{

for (j=0; j<T; j++)
{

/* calculate a[i,j] */
sum = 0;
for (k=0; k<S; k++)
{
/* add b[i,k]*c[k,j] */
sum += b[i*S+k]*c[k*T+j];

}
a[i*T+j] = sum;

}
}

}

There are many ways to improve the efficiency here, starting by removing the address
indexing calculations, but we will concentrate on the looping structure. We allocate
a register counter count containing all three loop counters i, j, k:

count = 0 S−1−k T−1−j R−1−i

Bit 31 24 23 16 15 8 7 0

Note that S − 1 − k counts from S − 1 down to 0 rather than counting from 0 to S − 1 as k
does. The following assembly implements the matrix multiply using this single counter in
register count:

R EQU 40
S EQU 40

https://hemanthrajhemu.github.io

6.6 Looping Constructs 189

T EQU 40

a RN 0 ; points to an R rows × T columns matrix
b RN 1 ; points to an R rows × S columns matrix
c RN 2 ; points to an S rows × T columns matrix
sum RN 3
bval RN 4
cval RN 12
count RN 14

; void matrix_mul(int *a, int *b, int *c)
matrix_mul

STMFD sp!, {r4, lr}
MOV count, #(R-1) ; i=0

loop_i
ADD count, count, #(T-1) << 8 ; j=0

loop_j
ADD count, count, #(S-1) << 16 ; k=0
MOV sum, #0

loop_k
LDR bval, [b], #4 ; bval = B[i,k], b=&B[i,k+1]
LDR cval, [c], #4*T ; cval = C[k,j], c=&C[k+1,j]
SUBS count, count, #1 << 16 ; k++
MLA sum, bval, cval, sum ; sum += bval*cval
BPL loop_k ; branch if k<=S-1
STR sum, [a], #4 ; A[i,j] = sum, a=&A[i,j+1]
SUB c, c, #4*S*T ; c = &C[0,j]
ADD c, c, #4 ; c = &C[0,j+1]
ADDS count, count, #(1 << 16)-(1 << 8) ; zero (S-1-k), j++
SUBPL b, b, #4*S ; b = &B[i,0]
BPL loop_j ; branch if j<=T-1
SUB c, c, #4*T ; c = &C[0,0]
ADDS count, count, #(1 >> 8)-1 ; zero (T-1-j), i++
BPL loop_i ; branch if i<=R-1
LDMFD sp!, {r4, pc}

The preceding structure saves two registers over a naive implementation. First, we
decrement the count at bits 16 to 23 until the result is negative. This implements the k loop,
counting down from S − 1 to 0 inclusive. Once the result is negative, the code adds 216

to clear bits 16 to 31. Then we subtract 28 to decrement the count stored at bits 8 to 15,
implementing the j loop. We can encode the constant 216 − 28 = 0xFF00 efficiently using
a single ARM instruction. Bits 8 to 15 now count down from T − 1 to 0. When the result

https://hemanthrajhemu.github.io

190 Chapter 6 Writing and Optimizing ARM Assembly Code

of the combined add and subtract is negative, then we have finished the j loop. We repeat
the same process for the i loop. ARM’s ability to handle a wide range of rotated constants
in addition and subtraction instructions makes this scheme very efficient. ■

6.6.4 Other Counted Loops

You may want to use the value of a loop counter as an input to calculations in the loop. It’s
not always desirable to count down from N to 1 or N − 1 to 0. For example, you may want
to select bits out of a data register one at a time; in this case you may want a power-of-two
mask that doubles on each iteration.

The following subsections show useful looping structures that count in different
patterns. They use only a single instruction combined with a branch to implement
the loop.

6.6.4.1 Negative Indexing

This loop structure counts from −N to 0 (inclusive or exclusive) in steps of size STEP.

RSB i, N, #0 ; i=-N
loop

; loop body goes here and i=-N,-N+STEP,...,
ADDS i, i, #STEP
BLT loop ; use BLT or BLE to exclude 0 or not

6.6.4.2 Logarithmic Indexing

This loop structure counts down from 2N to 1 in powers of two. For example, if N = 4,
then it counts 16, 8, 4, 2, 1.

MOV i, #1
MOV i, i, LSL N

loop
; loop body
MOVS i, i, LSR#1
BNE loop

The following loop structure counts down from an N-bit mask to a one-bit mask. For
example, if N = 4, then it counts 15, 7, 3, 1.

MOV i, #1
RSB i, i, i, LSL N ; i=(1 << N)-1

https://hemanthrajhemu.github.io

6.7 Bit Manipulation 191

loop
; loop body
MOVS i, i, LSR#1
BNE loop

Summary Looping Constructs

■ ARM requires two instructions to implement a counted loop: a subtract that sets flags
and a conditional branch.

■ Unroll loops to improve loop performance. Do not overunroll because this will hurt
cache performance. Unrolled loops may be inefficient for a small number of iterations.
You can test for this case and only call the unrolled loop if the number of iterations is
large.

■ Nested loops only require a single loop counter register, which can improve efficiency
by freeing up registers for other uses.

■ ARM can implement negative and logarithmic indexed loops efficiently.

6.7 Bit Manipulation
Compressed file formats pack items at a bit granularity to maximize the data density.
The items may be of a fixed width, such as a length field or version field, or they may be of
a variable width, such as a Huffman coded symbol. Huffman codes are used in compression
to associate with each symbol a code of bits. The code is shorter for common symbols and
longer for rarer symbols.

In this section we look at methods to handle a bitstream efficiently. First we look at
fixed-width codes, then variable width codes. See Section 7.6 for common bit manipulation
routines such as endianness and bit reversal.

6.7.1 Fixed-Width Bit-Field Packing and Unpacking

You can extract an unsigned bit-field from an arbitrary position in an ARM register in
one cycle provided that you set up a mask in advance; otherwise you require two cycles.
A signed bit-field always requires two cycles to unpack unless the bit-field lies at the top of
a word (most significant bit of the bit-field is the most significant bit of the register). On
the ARM we use logical operations and the barrel shifter to pack and unpack codes, as in
the following examples.

Example

6.22
The assembly code shows how to unpack bits 4 to 15 of register r0, placing the result in r1.

; unsigned unpack with mask set up in advance
; mask=0x00000FFF

https://hemanthrajhemu.github.io

192 Chapter 6 Writing and Optimizing ARM Assembly Code

AND r1, mask, r0, LSR#4

; unsigned unpack with no mask
MOV r1, r0, LSL#16 ; discard bits 16-31
MOV r1, r1, LSR#20 ; discard bits 0-3 and zero extend

; signed unpack
MOV r1, r0, LSL#16 ; discard bits 16-31
MOV r1, r1, ASR#20 ; discard bits 0-3 and sign extend ■

Example

6.23
Packing the value r1 into the bit-packed register r0 requires one cycle if r1 is already
restricted to the correct range and the corresponding field of r0 is clear. In this example, r1
is a 12-bit number to be inserted at bit 4 of r0.

; pack r1 into r0
ORR r0, r0, r1, LSL #4

Otherwise you need a mask register set up:

; pack r1 into r0
; mask=0x00000FFF set up in advance
AND r1, r1, mask ; restrict the r1 range
BIC r0, r0, mask, LSL#4 ; clear the destination bits
ORR r0, r0, r1, LSL#4 ; pack in the new data ■

6.7.2 Variable-Width Bitstream Packing

Our task here is to pack a series of variable-length codes to create a bitstream. Typically
we are compressing a datastream and the variable-length codes represent Huffman or
arithmetic coding symbols. However, we don’t need to make any assumptions about what
the codes represent to pack them efficiently.

We do need to be careful about the packing endianness. Many compressed file formats
use a big-endian bit-packing order where the first code is placed at the most significant bits
of the first byte. For this reason we will use a big-endian bit-packing order for our examples.
This is sometimes known as network order. Figure 6.5 shows how we form a bytestream out
of variable-length bitcodes using a big-endian packing order. High and low represent the
most and least significant bit ends of the byte.

To implement packing efficiently on the ARM we use a 32-bit register as a buffer to
hold four bytes, in big-endian order. In other words we place byte 0 of the bytestream in
the most significant 8 bits of the register. Then we can insert codes into the register one at
a time, starting from the most significant bit and working down to the least significant bit.

https://hemanthrajhemu.github.io

6.7 Bit Manipulation 193

Byte 0

Code 0 Code 1 Code 2 Code 3 Code 4

High Low

Byte 1

High Low

Byte 2

High Low

Byte 3

High Low High Low

...

...

Figure 6.5 Big-endian bitcodes packed into a bytestream.

Code bitsbitbuffer =

31 bitsfree 0

0

Figure 6.6 Format of bitbuffer.

Once the register is full we can store 32 bits to memory. For a big-endian memory system
we can store the word without modification. For a little-endian memory system we need to
reverse the byte order in the word before storing.

We call the 32-bit register we insert codes into bitbuffer. We need a second register
bitsfree to record the number of bits that we haven’t used in bitbuffer. In other words,
bitbuffer contains 32 − bitsfree code bits, and bitsfree zero bits, as in Figure 6.6. To insert a
code of k bits into bitbuffer, we subtract k from bitsfree and then insert the code with a left
shift of bitsfree.

We also need to be careful about alignment. A bytestream need not be word aligned, and
so we can’t use word accesses to write it. To allow word accesses we will start by backing up
to the last word-aligned address. Then we fill the 32-bit register bitbuffer with the backed-up
data. From then on we can use word (32-bit) read and writes.

Example

6.24
This example provides three functionsbitstream_write_start, bitstream_write_code,
and bitstream_write_flush. These are not ATPCS-compliant functions because they
assume registers such as bitbuffer are preserved between calls. In practice you will inline this
code for efficiency, and so this is not a problem.

The bitstream_write_start function aligns the bitstream pointer bitstream and
initializes the 32-bit buffer bitbuffer. Each call to bitstream_write_code inserts a value
code of bit-length codebits. Finally, the bitstream_write_flush function writes any
remaining bytes to the bitstream to terminate the stream.

bitstream RN 0 ; current byte address in the output bitstream
code RN 4 ; current code

https://hemanthrajhemu.github.io

194 Chapter 6 Writing and Optimizing ARM Assembly Code

codebits RN 5 ; length in bits of current code
bitbuffer RN 6 ; 32-bit output big-endian bitbuffer
bitsfree RN 7 ; number of bits free in the bitbuffer
tmp RN 8 ; scratch register
mask RN 12 ; endian reversal mask 0xFFFF00FF

bitstream_write_start
MOV bitbuffer, #0
MOV bitsfree, #32

align_loop
TST bitstream, #3
LDRNEB code, [bitstream, #-1]!
SUBNE bitsfree, bitsfree, #8
ORRNE bitbuffer, code, bitbuffer, ROR #8
BNE align_loop
MOV bitbuffer, bitbuffer, ROR #8
MOV pc, lr

bitstream_write_code
SUBS bitsfree, bitsfree, codebits
BLE full_buffer
ORR bitbuffer, bitbuffer, code, LSL bitsfree
MOV pc, lr

full_buffer
RSB bitsfree, bitsfree, #0
ORR bitbuffer, bitbuffer, code, LSR bitsfree
IF {ENDIAN}="little"

; byte reverse the bit buffer prior to storing
EOR tmp, bitbuffer, bitbuffer, ROR #16
AND tmp, mask, tmp, LSR #8
EOR bitbuffer, tmp, bitbuffer, ROR #8

ENDIF
STR bitbuffer, [bitstream], #4
RSB bitsfree, bitsfree, #32
MOV bitbuffer, code, LSL bitsfree
MOV pc, lr

bitstream_write_flush
RSBS bitsfree, bitsfree, #32

flush_loop
MOVGT bitbuffer, bitbuffer, ROR #24
STRGTB bitbuffer, [bitstream], #1
SUBGTS bitsfree, bitsfree, #8
BGT flush_loop
MOV pc, lr ■

https://hemanthrajhemu.github.io

6.7 Bit Manipulation 195

6.7.3 Variable-Width Bitstream Unpacking

It is much harder to unpack a bitstream of variable-width codes than to pack it. The
problem is that we usually don’t know the width of the codes we are unpacking! For
Huffman-encoded bitstreams you must derive the length of each code by looking at the
next sequence of bits and working out which code it can be.

Here we will use a lookup table to speed up the unpacking process. The idea is to take
the next N bits of the bitstream and perform a lookup in two tables, look_codebits[] and
look_code[], each of size 2N entries. If the next N bits are sufficient to determine the code,
then the tables tell us the code length and the code value, respectively. If the next N bits
are insufficient to determine the code, then the look_codebits table will return an escape
value of 0xFF. An escape value is just a flag to indicate that this case is exceptional.

In a sequence of Huffman codes, common codes are short and rare codes are long. So,
we expect to decode most common codes quickly, using the lookup tables. In the following
example we assume that N = 8 and use 256-entry lookup tables.

Example

6.25
This example provides three functions to unpack a big-endian bitstream stored in a
bytestream. As with Example 6.24, these functions are not ATPCS compliant and will
normally be inlined. The function bitstream_read_start initializes the process, start-
ing to decode a bitstream at byte address bitstream. Each call to bitstream_read_code
returns the next code in register code. The function only handles short codes that can
be read from the lookup table. Long codes are trapped at the label long_code, but the
implementation of this function depends on the codes you are decoding.

The code uses a register bitbuffer that contains N + bitsleft code bits starting at the
most significant bit (see Figure 6.7).

bitstream RN 0 ; current byte address in the input bitstream
look_code RN 2 ; lookup table to convert next N bits to a code
look_codebits RN 3 ; lookup table to convert next N bits to a code length
code RN 4 ; code read
codebits RN 5 ; length of code read
bitbuffer RN 6 ; 32-bit input buffer (big endian)
bitsleft RN 7 ; number of valid bits in the buffer - N

N bitsbitbuffer =

31

bitsleft bits

0

0

Figure 6.7 Format of bitbuffer.

https://hemanthrajhemu.github.io

196 Chapter 6 Writing and Optimizing ARM Assembly Code

tmp RN 8 ; scratch
tmp2 RN 9 ; scratch
mask RN 12 ; N-bit extraction mask (1 << N)-1

N EQU 8 ; use a lookup table on 8 bits (N must be <= 9)

bitstream_read_start
MOV bitsleft, #32

read_fill_loop
LDRB tmp, [bitstream], #1
ORR bitbuffer, tmp, bitbuffer, LSL#8
SUBS bitsleft, bitsleft, #8
BGT read_fill_loop
MOV bitsleft, #(32-N)
MOV mask, #(1 << N)-1
MOV pc, lr

bitstream_read_code
LDRB codebits, [look_codebits, bitbuffer, LSR# (32-N)]
AND code, mask, bitbuffer, LSR#(32-N)
LDR code, [look_code, code, LSL#2]
SUBS bitsleft, bitsleft, codebits
BMI empty_buffer_or_long_code
MOV bitbuffer, bitbuffer, LSL codebits
MOV pc, lr

empty_buffer_or_long_code
TEQ codebits, #0xFF
BEQ long_code
; empty buffer - fill up with 3 bytes
; as N <= 9, we can fill 3 bytes without overflow
LDRB tmp, [bitstream], #1
LDRB tmp2, [bitstream], #1
MOV bitbuffer, bitbuffer, LSL codebits
LDRB codebits, [bitstream], #1
ORR tmp, tmp2, tmp, LSL#8
RSB bitsleft, bitsleft, #(8-N)
ORR tmp, codebits, tmp, LSL#8
ORR bitbuffer, bitbuffer, tmp, LSL bitsleft
RSB bitsleft, bitsleft, #(32-N)
MOV pc, lr

long_code
; handle the long code case depending on the application
; here we just return a code of -1
MOV code, #-1
MOV pc, lr

https://hemanthrajhemu.github.io

6.8 Efficient Switches 197

The counter bitsleft actually counts the number of bits remaining in the buffer
bitbuffer less the N bits required for the next lookup. Therefore we can perform the
next table lookup as long as bitsleft ≥ 0. As soon as bitsleft < 0 there are two
possibilities. One possibility is that we found a valid code but then have insufficient bits to
look up the next code. Alternatively, codebits contains the escape value 0xFF to indicate
that the code was longer than N bits. We can trap both these cases at once using a call to
empty_buffer_or_long_code. If the buffer is empty, then we fill it with 24 bits. If we have
detected a long code, then we branch to the long_code trap.

The example has a best-case performance of seven cycles per code unpack on an
ARM9TDMI. You can obtain faster results if you know the sizes of the packed bitfields
in advance. ■

Summary Bit Manipulation

■ The ARM can pack and unpack bits efficiently using logical operations and the barrel
shifter.

■ To access bitstreams efficiently use a 32-bit register as a bitbuffer. Use a second register
to keep track of the number of valid bits in the bitbuffer.

■ To decode bitstreams efficiently, use a lookup table to scan the next N bits of the
bitstream. The lookup table can return codes of length at most N bits directly, or return
an escape character for longer codes.

6.8 Efficient Switches
A switch or multiway branch selects between a number of different actions. In this section
we assume the action depends on a variable x. For different values of x we need to per-
form different actions. This section looks at assembly to implement a switch efficiently for
different types of x.

6.8.1 Switches on the Range 0 ≤ x < N

The example C function ref_switch performs different actions according to the value
of x. We are only interested in x values in the range 0 ≤ x < 8.

int ref_switch(int x)
{

switch (x)
{

case 0: return method_0();

https://hemanthrajhemu.github.io

198 Chapter 6 Writing and Optimizing ARM Assembly Code

case 1: return method_1();
case 2: return method_2();
case 3: return method_3();
case 4: return method_4();
case 5: return method_5();
case 6: return method_6();
case 7: return method_7();
default: return method_d();

}
}

There are two ways to implement this structure efficiently in ARM assembly. The first
method uses a table of function addresses. We load pc from the table indexed by x.

Example

6.26
The switch_absolute code performs a switch using an inlined table of function pointers:

x RN 0

; int switch_absolute(int x)
switch_absolute

CMP x, #8
LDRLT pc, [pc, x, LSL#2]
B method_d
DCD method_0
DCD method_1
DCD method_2
DCD method_3
DCD method_4
DCD method_5
DCD method_6
DCD method_7

The code works because the pc register is pipelined. The pc points to the method_0 word
when the ARM executes the LDR instruction. ■

The method above is very fast, but has one drawback: The code is not position
independent since it stores absolute addresses to the method functions in memory. Position-
independent code is often used in modules that are installed into a system at run time. The
next example shows how to solve this problem.

Example

6.27
The code switch_relative is slightly slower compared to switch_absolute, but it is
position independent:

; int switch_relative(int x)
switch_relative

https://hemanthrajhemu.github.io

6.8 Efficient Switches 199

CMP x, #8
ADDLT pc, pc, x, LSL#2
B method_d
B method_0
B method_1
B method_2
B method_3
B method_4
B method_5
B method_6
B method_7 ■

There is one final optimization you can make. If the method functions are short, then
you can inline the instructions in place of the branch instructions.

Example

6.28
Suppose each nondefault method has a four-instruction implementation. Then you can
use code of the form

CMP x, #8
ADDLT pc, pc, x, LSL#4 ; each method is 16 bytes long
B method_d

method_0
; the four instructions for method_0 go here

method_1
; the four instructions for method_1 go here
; ... continue in this way ... ■

6.8.2 Switches on a General Value x

Now suppose that x does not lie in some convenient range 0 ≤ x < N for N small enough
to apply the methods of Section 6.8.1. How do we perform the switch efficiently, without
having to test x against each possible value in turn?

A very useful technique in these situations is to use a hashing function. A hashing function
is any function y = f (x) that maps the values we are interested in into a continuous range
of the form 0 ≤ y < N . Instead of a switch on x, we can use a switch on y = f (x). There is
a problem if we have a collision, that is, if two x values map to the same y value. In this case
we need further code to test all the possible x values that could have led to the y value. For
our purposes a good hashing function is easy to compute and does not suffer from many
collisions.

To perform the switch we apply the hashing function and then use the optimized switch
code of Section 6.8.1 on the hash value y. Where two x values can map to the same hash,
we need to perform an explicit test, but this should be rare for a good hash function.

https://hemanthrajhemu.github.io

200 Chapter 6 Writing and Optimizing ARM Assembly Code

Example

6.29
Suppose we want to call method_k when x = 2k for eight possible methods. In other words
we want to switch on the values 1, 2, 4, 8, 16, 32, 64, 128. For all other values of x we need to
call the default method method_d. We look for a hash function formed out of multiplying
by powers of two minus one (this is an efficient operation on the ARM). By trying different
multipliers we find that 15 × 31 × x has a different value in bits 9 to 11 for each of the eight
switch values. This means we can use bits 9 to 11 of this product as our hash function.

The following switch_hash assembly uses this hash function to perform the switch.
Note that other values that are not powers of two will have the same hashes as the values
we want to detect. The switch has narrowed the case down to a single power of two that we
can test for explicitly. If x is not a power of two, then we fall through to the default case of
calling method_d.

x RN 0
hash RN 1

; int switch_hash(int x)
switch_hash

RSB hash, x, x, LSL#4 ; hash=x*15
RSB hash, hash, hash, LSL#5 ; hash=x*15*31
AND hash, hash, #7 << 9 ; mask out the hash value
ADD pc, pc, hash, LSR#6
NOP
TEQ x, #0x01
BEQ method_0
TEQ x, #0x02
BEQ method_1
TEQ x, #0x40
BEQ method_6
TEQ x, #0x04
BEQ method_2
TEQ x, #0x80
BEQ method_7
TEQ x, #0x20
BEQ method_5
TEQ x, #0x10
BEQ method_4
TEQ x, #0x08
BEQ method_3
B method_d ■

Summary Efficient Switches

■ Make sure the switch value is in the range 0 ≤ x < N for some small N. To do this you
may have to use a hashing function.

https://hemanthrajhemu.github.io

6.9 Handling Unaligned Data 201

■ Use the switch value to index a table of function pointers or to branch to short
sections of code at regular intervals. The second technique is position independent;
the first isn’t.

6.9 Handling Unaligned Data
Recall that a load or store is unaligned if it uses an address that is not a multiple of the data
transfer width. For code to be portable across ARM architectures and implementations,
you must avoid unaligned access. Section 5.9 introduced unaligned accesses and ways of
handling them in C. In this section we look at how to handle unaligned accesses in assembly
code.

The simplest method is to use byte loads and stores to access one byte at a time. This
is the recommended method for any accesses that are not speed critical. The following
example shows how to access word values in this way.

Example

6.30
This example shows how to read or write a 32-bit word using the unaligned address p. We
use three scratch registers t0, t1, t2 to avoid interlocks. All unaligned word operations
take seven cycles on an ARM9TDMI. Note that we need separate functions for 32-bit words
stored in big- or little-endian format.

p RN 0
x RN 1
t0 RN 2
t1 RN 3
t2 RN 12

; int load_32_little(char *p)
load_32_little

LDRB x, [p]
LDRB t0, [p, #1]
LDRB t1, [p, #2]
LDRB t2, [p, #3]
ORR x, x, t0, LSL#8
ORR x, x, t1, LSL#16
ORR r0, x, t2, LSL#24
MOV pc, lr

; int load_32_big(char *p)
load_32_big

LDRB x, [p]
LDRB t0, [p, #1]
LDRB t1, [p, #2]

https://hemanthrajhemu.github.io

202 Chapter 6 Writing and Optimizing ARM Assembly Code

LDRB t2, [p, #3]
ORR x, t0, x, LSL#8
ORR x, t1, x, LSL#8
ORR r0, t2, x, LSL#8
MOV pc, lr

; void store_32_little(char *p, int x)
store_32_little

STRB x, [p]
MOV t0, x, LSR#8
STRB t0, [p, #1]
MOV t0, x, LSR#16
STRB t0, [p, #2]
MOV t0, x, LSR#24
STRB t0, [p, #3]
MOV pc, lr

; void store_32_big(char *p, int x)
store_32_big

MOV t0, x, LSR#24
STRB t0, [p]
MOV t0, x, LSR#16
STRB t0, [p, #1]
MOV t0, x, LSR#8
STRB t0, [p, #2]
STRB x, [p, #3]
MOV pc, lr ■

If you require better performance than seven cycles per access, then you can write
several variants of the routine, with each variant handling a different address alignment.
This reduces the cost of the unaligned access to three cycles: the word load and the two
arithmetic instructions required to join values together.

Example

6.31
This example shows how to generate a checksum of N words starting at a possibly unaligned
address data. The code is written for a little-endian memory system. Notice how we can
use the assembler MACRO directive to generate the four routines checksum_0, checksum_1,
checksum_2, and checksum_3. Routine checksum_a handles the case where data is an
address of the form 4q + a.

Using a macro saves programming effort. We need only write a single macro and
instantiate it four times to implement our four checksum routines.

sum RN 0 ; current checksum
N RN 1 ; number of words left to sum

https://hemanthrajhemu.github.io

6.9 Handling Unaligned Data 203

data RN 2 ; word aligned input data pointer
w RN 3 ; data word

; int checksum_32_little(char *data, unsigned int N)
checksum_32_little

BIC data, r0, #3 ; aligned data pointer
AND w, r0, #3 ; byte alignment offset
MOV sum, #0 ; initial checksum
LDR pc, [pc, w, LSL#2] ; switch on alignment
NOP ; padding
DCD checksum_0
DCD checksum_1
DCD checksum_2
DCD checksum_3

MACRO
CHECKSUM $alignment

checksum_$alignment
LDR w, [data], #4 ; preload first value

10 ; loop
IF $alignment<>0

ADD sum, sum, w, LSR#8*$alignment
LDR w, [data], #4
SUBS N, N, #1
ADD sum, sum, w, LSL#32-8*$alignment

ELSE
ADD sum, sum, w
LDR w, [data], #4
SUBS N, N, #1

ENDIF
BGT %BT10
MOV pc, lr
MEND

; generate four checksum routines
; one for each possible byte alignment
CHECKSUM 0
CHECKSUM 1
CHECKSUM 2
CHECKSUM 3

You can now unroll and optimize the routines as in Section 6.6.2 to achieve the fastest
speed. Due to the additional code size, only use the preceding technique for time-critical
routines. ■

https://hemanthrajhemu.github.io

204 Chapter 6 Writing and Optimizing ARM Assembly Code

Summary Handling Unaligned Data

■ If performance is not an issue, access unaligned data using multiple byte loads and
stores. This approach accesses data of a given endianness regardless of the pointer
alignment and the configured endianness of the memory system.

■ If performance is an issue, then use multiple routines, with a different routine optimized
for each possible array alignment. You can use the assembler MACRO directive to generate
these routines automatically.

6.10 Summary
For the best performance in an application you will need to write optimized assembly
routines. It is only worth optimizing the key routines that the performance depends on.
You can find these using a profiling or cycle counting tool, such as the ARMulator simulator
from ARM.

This chapter covered examples and useful techniques for optimizing ARM assembly.
Here are the key ideas:

■ Schedule code so that you do not incur processor interlocks or stalls. Use Appendix D
to see how quickly an instruction result is available. Concentrate particularly on load
and multiply instructions, which often take a long time to produce results.

■ Hold as much data in the 14 available general-purpose registers as you can. Sometimes
it is possible to pack several data items in a single register. Avoid stacking data in the
innermost loop.

■ For small if statements, use conditional data processing operations rather than
conditional branches.

■ Use unrolled loops that count down to zero for the maximum loop performance.

■ For packing and unpacking bit-packed data, use 32-bit register buffers to increase
efficiency and reduce memory data bandwidth.

■ Use branch tables and hash functions to implement efficient switch statements.

■ To handle unaligned data efficiently, use multiple routines. Optimize each routine for
a particular alignment of the input and output arrays. Select between the routines at
run time.

https://hemanthrajhemu.github.io

