

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Detailed Contents

Preface to the Second Edition iii

Preface to the First Edition vi

Brief Contents ix

1. Introduction to C++ 1
 1.1 A Review of Structures 1

 1.1.1 The Need for Structures 1
 1.1.2 Creating a New Data Type Using Structures 4
 1.1.3 Using Structures in Application Programs 5

 1.2 Procedure-Oriented Programming Systems 5
 1.3 Object-Oriented Programming Systems 7
 1.4 Comparison of C++ with C 8
 1.5 Console Input/Output in C++ 9

 1.5.1 Console Output 9
 1.5.2 Console Input 12

 1.6 Variables in C++ 13
 1.7 Reference Variables in C++ 14
 1.8 Function Prototyping 19
 1.9 Function Overloading 21
 1.10 Default Values for Formal Arguments of Functions 23
 1.11 Inline Functions 25

2. Classes and Objects 31
 2.1 Introduction to Classes and Objects 31

 2.1.1 Private and Public Members 33
 2.1.2 Objects 36
 2.1.3 Scope Resolution Operator 37
 2.1.4 Creating Libraries Using the Scope Resolution Operator 38
 2.1.5 Using Classes in Application Programs 39
 2.1.6 this Pointer 40
 2.1.7 Data Abstraction 45
 2.1.8 Explicit Address Manipulation 47
 2.1.9 Arrow Operator 47
 2.1.10 Calling One Member Function from Another 48

https://hemanthrajhemu.github.io

xii Detailed Contents

 2.2 Member Functions and Member Data 49
 2.2.1 Overloaded Member Functions 49
 2.2.2 Default Values for Formal Arguments of Member Functions 51
 2.2.3 Inline Member Functions 52
 2.2.4 Constant Member Functions 52
 2.2.5 Mutable Data Members 54
 2.2.6 Friends 54
 2.2.7 Static Members 59

 2.3 Objects and Functions 65
 2.4 Objects and Arrays 66

 2.4.1 Arrays of Objects 67
 2.4.2 Arrays Inside Objects 67

 2.5 Namespaces 68
 2.6 Nested Inner Classes 71

3. Dynamic Memory Management 78
 3.1 Introduction 78
 3.2 Dynamic Memory Allocation 79
 3.3 Dynamic Memory Deallocation 84
 3.4 set_new_handler() function 88

4. Constructors and Destructors 92
 4.1 Constructors 92

 4.1.1 Zero-argument Constructor 94
 4.1.2 Parameterized Constructors 97
 4.1.3 Explicit Constructors 103
 4.1.4 Copy Constructor 105

 4.2 Destructors 109
 4.3 Philosophy of OOPS 112

5. Inheritance 117
 5.1 Introduction 117

 5.1.1 Effects of Inheritance 118
 5.1.2 Bene ts of Inheritance 120
 5.1.3 Inheritance in Actual Practice 120
 5.1.4 Base Class and Derived Class Objects 121
 5.1.5 Accessing Members of the Base Class in the Derived Class 121

 5.2 Base Class and Derived Class Pointers 122
 5.3 Function Overriding 127
 5.4 Base Class Initialization 129
 5.5 Protected Access Speci er 132
 5.6 Deriving by Different Access Speci ers 133

 5.6.1 Deriving by the Public Access Speci er 133
 5.6.2 Deriving by the Protected Access Speci er 135
 5.6.3 Deriving by the Private Access Speci er 136

 5.7 Different Kinds of Inheritance 139
 5.7.1 Multiple Inheritance 139
 5.7.2 Ambiguities in Multiple Inheritance 141

https://hemanthrajhemu.github.io

Introduction to C++

This chapter introduces the reader to the fundamentals of object-oriented programming systems
(OOPS).

The chapter begins with an overview of structures, the reasons for their inclusion as a
language construct in C language, and their role in procedure-oriented programming systems.
Use of structures for creating new data types is described. Also, the drawbacks of structures
and the development of OOPS are elucidated.

The middle section of the chapter explains OOPS, supplemented with suitable examples
and analogies to help in understanding this tricky subject.

The concluding section of the chapter includes a study of a number of new features that are
implemented by C++ compilers but do not fall under the category of object-oriented features.
(Language constructs of C++ that implement object-oriented features are dealt with in the
next chapter.)

O

V

E

R

V

I

E

W

 1.1 A Review of Structures

In order to understand procedure-oriented programming systems, let us rst recapitulate our
understanding of structures in C. Let us review their necessity and use in creating new data
types.

1.1.1 The Need for Structures

There are cases where the value of one variable depends upon that of another variable.
Take the example of date. A date can be programmatically represented in C by three

different integer variables taken together. Say,
int d,m,y; //three integers for representing dates

Here ‘d’, ‘m’, and ‘y’ represent the day of the month, the month, and the year, respectively.
Observe carefully. Although these three variables are not grouped together in the code, they
actually belong to the same group. The value of one variable may in uence the value of the
other two. In order to understand this clearly, consider a function next_day() that accepts
the addresses of the three integers that represent a date and changes their values to represent
the next day. The prototype of this function will be

void next_day(int *,int *,int *); //function to calculate
 //the next day

1

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++2

Suppose,
d=1;
m=1;
y=2002; //1st January, 2002

Now, if we write
 next_day(&d,&m,&y);

‘d’ will become 2, ‘m’ will remain 1, and ‘y’ will remain 2002.

But if
 d=28;
m=2;
y=1999; //28th February, 1999

and we call the function as
next_day(&d,&m,&y);

‘d’ will become 1, ‘m’ will become 3, and ‘y’ will remain 1999.
Again, if

d=31;
m=12;
y=1999; //31st December, 1999

and we call the function as
next_day(&d,&m,&y);

‘d’ will become 1, ‘m’ will become 1, and ‘y’ will become 2000.
As you can see, ‘d’, ‘m’, and ‘y’ actually belong to the same group. A change in the value

of one may change the value of the other two. But there is no language construct that actually
places them in the same group. Thus, members of the wrong group may be accidentally sent
to the function (Listing 1.1)!

 Listing 1.1 Problem in passing groups of programmatically independent but logically
dependent variable

d1=28; m1=2; y1=1999; //28th February, 1999
d2=19; m2=3; y2=1999; //19th March, 1999
next_day(&d1,&m1,&y1); //OK
next_day(&d1,&m2,&y2); //What? Incorrect set passed!

As can be observed in Listing 1.1, there is nothing in the language itself that prevents the
wrong set of variables from being sent to the function. Moreover, integer-type variables that
are not meant to represent dates might also be sent to the function!

Let us try arrays to solve the problem. Suppose the next_day() function accepts an array
as a parameter. Its prototype will be

void next_day(int *);

 Let us declare date as an array of three integers.
int date[3];
date[0]=28;
date[1]=2;
date[2]=1999; //28th February, 1999

https://hemanthrajhemu.github.io

 Introduction to C++ 3

Now, let us call the function as follows:
next_day(date);

The values of ‘date[0]’, ‘date[1]’, and ‘date[2]’ will be correctly set to 1, 3, and 1999,
respectively. Although this method seems to work, it certainly appears unconvincing. After
all any integer array can be passed to the function, even if it does not necessarily represent
a date. There is no data type of date itself. Moreover, this solution of arrays will not work if
the variables are not of the same type. The solution to this problem is to create a data type
called date itself using structures

 struct date //a structure to represent dates
{
 int d, m, y;
};

Now, the next_day() function will accept the address of a variable of the structure date
as a parameter. Accordingly, its prototype will be as follows:

void next_day(struct date *);

Let us now call it as shown in Listing 1.2.

Listing 1.2 The need for structures

struct date d1;
d1.d=28;
d1.m=2;
d1.y=1999;
next_day(&d1);

‘d1.d’, ‘d1.m’, and ‘d1.y’ will be correctly set to 1, 3, and 1999, respectively. Since the
function takes the address of an entire structure variable as a parameter at a time, there is no
chance of variables of the different groups being sent to the function.

 Structure is a programming construct in C that allows us to put together variables that
should be together.

Library programmers use structures to create new data types. Application programs and
other library programs use these new data types by declaring variables of this data type.

struct date d1;

They call the associated functions by passing these variables or their addresses to them.
 d1.d=31;
d1.m=12;
d1.y=2003;
next_day(&d1);

Finally, they use the resultant value of the passed variable further as per requirements.
printf(“The next day is: %d/%d/%d\n”, d1.d, d1.m, d1.y);

Output
The next day is: 01/01/2004

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++4

1.1.2 Creating a New Data Type Using Structures

Creation of a new data type using structures is loosely a three-step process that is executed
by the library programmer.
Step 1: Put the structure de nition and the prototypes of the associated functions in a header
 le, as shown in Listing 1.3.

Listing 1.3 Header fi le containing defi nition of a structure variable and prototypes of its
associated functions

/*Beginning of date.h*/
/*This file contains the structure definition and
prototypes of its associated functions*/

struct date
{
 int d,m,y;
};
void next_day(struct date *); //get the next date
void get_sys_date(struct date *); //get the current
 //system date
/*
 Prototypes of other useful and relevant functions to
 work upon variables of the date structure
*/
/*End of date.h*/

Step 2: As shown in Listing 1.4, put the de nition of the associated functions in a source
code and create a library.

Listing 1.4 Defi ning the associated functions of a structure

/*Beginning of date.c*/
/*This file contains the definitions of the associated
functions*/
#include “date.h”

void next_day(struct date * p)
{
//calculate the date that immediately follows the one
//represented by *p and set it to *p.
}
void get_sys_date(struct date * p)
{
//determine the current system date and set it to *p
}
/*
 Definitions of other useful and relevant functions to work upon variables

of the date structure
*/
/*End of date.c*/

Step 3: Provide the header le and the library, in whatever media, to other programmers who
want to use this new data type.

Creation of a structure and creation of its associated functions are two separate steps that
together constitute one complete process.

https://hemanthrajhemu.github.io

 Introduction to C++ 5

1.1.3 Using Structures in Application Programs

The steps to use this new data type are as follows:
Step 1: Include the header le provided by the library programmer in the source code.

/*Beginning of dateUser.c*/
#include“date.h”
void main()
{

}
/*End of dateUser.c*/

Step 2: Declare variables of the new data type in the source code.
/*Beginning of dateUser.c*/
#include“date.h”
void main()
{
 struct date d;

}
/*End of dateUser.c*/

Step 3: As shown in Listing 1.5, embed calls to the associated functions by passing these
variables in the source code.

Listing 1.5 Using a structure in an application program

 /*Beginning of dateUser.c*/
#include“date.h”
void main()
{
 struct date d;
 d.d=28;
 d.m=2;
 d.y=1999;
 next_day(&d);

}
/*End of dateUser.c*/

 Step 4: Compile the source code to get the object le.
Step 5: Link the object le with the library provided by the library programmer to get the
executable or another library.

 1.2 Procedure-Oriented Programming Systems

In light of the previous discussion, let us understand the procedure-oriented programming
system. The foregoing pattern of programming divides the code into functions. Data (contained
in structure variables) is passed from one function to another to be read from or written into.
The focus is on procedures. This programming pattern is, therefore, a feature of the procedure-
oriented programming system.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++6

In the procedure-oriented programming system, procedures are dissociated from data and
are not a part of it. Instead, they receive structure variables or their addresses and work upon
them. The code design is centered around procedures. While this may sound obvious, this
programming pattern has its drawbacks.

The drawback with this programming pattern is that the data is not secure. It can be
manipulated by any procedure. Associated functions that were designed by the library
programmer do not have the exclusive rights to work upon the data. They are not a part of
the structure de nition itself. Let us see why this is a problem.

Suppose the library programmer has de ned a structure and its associated functions as
described above. Further, in order to perfect his/her creation, he/she has rigorously tested
the associated functions by calling them from small test applications. Despite his/her best
efforts, he/she cannot be sure that an application that uses the structure will be bug free. The
application program might modify the structure variables, not by the associated function he/
she has created, but by some code inadvertently written in the application program itself.
Compilers that implement the procedure-oriented programming system do not prevent
unauthorized functions from accessing/manipulating structure variables.

Now, let us look at the situation from the application programmer’s point of view. Consider
an application of around 25,000 lines (quite common in the real programming world), in
which variables of this structure have been used quite extensively. During testing, it is found
that the date being represented by one of these variables has become 29th February 1999!
The faulty piece of code that is causing this bug can be anywhere in the program. Therefore,
debugging will involve a visual inspection of the entire code (of 25000 lines!) and will not
be limited to the associated functions only.

The situation becomes especially grave if the execution of the code that is likely to corrupt
the data is conditional. For example,

if(<some condition>)
 d.m++; //d is a variable of date structure… d.m may
 //become 13!

The condition under which the bug-infested code executes may not arise during testing.
While distributing his/her application, the application programmer cannot be sure that it would
run successfully. Moreover, every new piece of code that accesses structure variables will
have to be visually inspected and tested again to ensure that it does not corrupt the members
of the structure. After all, compilers that implement procedure-oriented programming systems
do not prevent unauthorized functions from accessing/manipulating structure variables.

Let us think of a compiler that enables the library programmer to assign exclusive rights to
the associated functions for accessing the data members of the corresponding structure. If this
happens, then our problem is solved. If a function which is not one of the intended associated
functions accesses the data members of a structure variable, a compile-time error will result.
To ensure a successful compile of his/her application code, the application programmer will
be forced to remove those statements that access data members of structure variables. Thus,
the application that arises out of a successful compile will be the outcome of a piece of code
that is free of any unauthorized access to the data members of the structure variables used
therein. Consequently, if a run-time error arises, attention can be focused on the associated
library functions.

It is the lack of data security of procedure-oriented programming systems that led to object-
oriented programming systems (OOPS). This new system of programming is the subject of
our next discussion.

https://hemanthrajhemu.github.io

 Introduction to C++ 7

 1.3 Object-Oriented Programming Systems

In OOPS, we try to model real-world objects. But, what are real-world objects? Most real-
world objects have internal parts and interfaces that enable us to operate them. These interfaces
perfectly manipulate the internal parts of the objects. They also have the exclusive rights to
do so.

Let us understand this concept with the help of an example. Take the case of a simple
LCD projector (a real-world object). It has a fan and a lamp. There are two switches—one to
operate the fan and the other to operate the lamp. However, the operation of these switches is
necessarily governed by rules. If the lamp is switched on, the fan should automatically switch
itself on. Otherwise, the LCD projector will get damaged. For the same reason, the lamp should
automatically get switched off if the fan is switched off. In order to cater to these conditions,
the switches are suitably linked with each other. The interface to the LCD projector is perfect.
Further, this interface has the exclusive rights to operate the lamp and fan.

This, in fact, is a common characteristic of all real-world objects. If a perfect interface is
required to work on an object, it will also have exclusive rights to do so.

Coming back to C++ programming, we notice a resemblance between the observed
behaviour of the LCD projector and the desired behaviour of data structure’s variables. In
OOPS, with the help of a new programming construct and new keywords, associated functions
of the data structure can be given exclusive rights to work upon its variables. In other words,
all other pieces of code can be prevented from accessing the data members of the variables
of this structure.

Compilers that implement OOPS enable data security by diligently enforcing this
prohibition. They do this by throwing compile-time errors against pieces of code that violate
the prohibition. This prohibition, if enforced, will make structure variables behave like real-
world objects. Associated functions that are de ned to perfectly manipulate structure variables
can be given exclusive rights to do so.

There is still another characteristic of real-world objects—a guaranteed initialization of
data. After all, when you connect the LCD projector to the mains, it does not start up in an
invalid state (fan off and lamp on). By default, either both the lamp and the fan are off or
both are on. Users of the LCD projector need not do this explicitly. The same characteristic
is found in all real-world objects.

Programming languages that implement OOPS enable library programmers to incorporate
this characteristic of real-world objects into structure variables. Library programmers can
ensure a guaranteed initialization of data members of structure variables to the desired values.
For this, application programmers do not need to write code explicitly.

Two more features are incidental to OOPS. They are:
 Inherit ance
 Polymor phism

Inheritance allows one structure to inherit the characteristics of an existing structure.
As we know from our knowledge of structures, a variable of the new structure will contain

data members mentioned in the new structure’s de nition. However, because of inheritance,
it will also contain data members mentioned in the existing structure’s de nition from which
the new structure has inherited.

Further, associated functions of the new structure can work upon a variable of the new
structure. For this, the address/name of a variable of the new structure is passed to the associated
functions of the new structure. Again, as a result of inheritance, associated functions of the
existing structure from which the new structure has inherited will also be able to work upon

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++8

a variable of the new structure. For this, the address/name of a variable of the new structure
is passed to the associated functions of the existing structure.

In inheritance, data and interface may both be inherited. This is expected as data and
interface complement each other. The parent structure can be given the general common
characteristics while its child structures can be given the more speci c characteristics. This
allows code reusability by keeping the common code in a common place—the base structure.
Otherwise, the code would have to be replicated in all of the child structures, which will
lead to maintenance nightmares. Inheritance also enables code extensibility by allowing
the creation of new structures that are better suited to our requirements as compared to the
existing structures.

Polymorphism, as the name suggests, is the phenomena by virtue of which the same entity
can exist in two or more forms. In OOPS, functions can be made to exhibit polymorphic
behaviour. Functions with different set of formal arguments can have the same name.
Polymorphism is of two types: static and dynamic. We will understand how this feature enables
C++ programmers to reuse and extend existing code in the subsequent chapters.

 1.4 Comparison of C++ with C
C++ is an extension of C language. It is a proper superset of C language. This means that
a C++ compiler can compile programs written in C language. However, the reverse is not
true. A C++ compiler can understand all the keywords that a C compiler can understand.
Again, the reverse is not true. Decision-making constructs, looping constructs, structures,
functions, etc. are written in exactly the same way in C++ as they are in C language. Apart
from the keywords that implement these common programming constructs, C++ provides
a number of additional keywords and language constructs that enable it to implement the
object-oriented paradigm.

The header le given in Listing 1.6 shows how the structure Date, which has been our
running example so far, can be rewritten in C++.

Listing 1.6 Redefi ning the Date structure in C++

/*Beginning of Date.h*/
class Date //class instead of structure
{
 private:
 int d,m,y;
 public:
 Date();
 void get_sys_date(); //associated functions appear
 //within the class definition
 void next_day();
};
/*End of Date.h*/

The following differences can be noticed between Date structure in C (Listing 1.3) and C++
(Listing 1.6):

The keyword class has been used instead of struct.
Two new keywords— private and public—appear in the code.
Apart from data members, the class constructor also has member functions.
A function that has the same name as the class itself is also present in the class. Incidentally,
it has no return type specified. This is the class constructor and is discussed in Chapter 4
of this book.

https://hemanthrajhemu.github.io

 Introduction to C++ 9

The next chapter contains an in-depth study of the above class construct. It explains the
meaning and implications of this new feature. It also explains how this and many more
new features implement the features of OOPS, such as data hiding, data encapsulation, data
abstraction, and a guaranteed initialization of data. However, before proceeding to Chapter
2, let us digress slightly and study the following:

Console input/output in C++
Some non-object-oriented features provided exclusively in C++ (reference variables,
function overloading, default arguments, inline functions)
Remember that C++ program les have the extension ‘.cpp’ or ‘.C’. The former extension

is normally used for Windows or DOS-based compilers while the latter is normally used
for UNIX-based compilers. The compiler’s manual can be consulted to nd out the exact
extension.

 1.5 Console Input/Output in C++
This section discusses console input and output in C++.

1.5.1 Console Output
The output functions in C language, such as printf(), can be included in C++ programs
because they are anyway de ned in the standard library. However, there are some more ways
of outputting to the console in C++. Let us consider an example (see Listing 1.7).

Listing 1.7 Outputting in C++

 /*Beginning of cout.cpp*/
#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<x; //outputting to the console
}
/*End of cout.cpp*/

Output
10

The third statement in the main() function (Listing 1.7) needs to be understood.
 cout (pronounce see-out) is actually an object of the class ostream_withassign (you can

think of it as a variable of the structure ostream_withassign). It stands as an alias for the
console output device, that is, the monitor (hence the name).

The << symbol, originally the left shift operator, has had its de nition extended in C++.
In the given context, it operates as the insertion operator. It is a binary operator. It takes
two operands. The operand on its left must be some object of the ostream class. The operand
on its right must be a value of some fundamental data type. The value on the right side of
the insertion operator is ‘inserted’ (hence the name) into the stream headed towards the
device associated with the object on the left. Consequently, the value of ‘x’ is displayed on
the monitor.

The le iostream.h needs to be included in the source code to ensure successful compilation
because the object cout and the insertion operator have been declared in that le.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++10

Another object endl allows us to insert a new line into the output stream. Listing 1.8
illustrates this.

Listing 1.8 Inserting new line by ‘endl’

/*Beginning of endl.cpp*/
#include<iostream.h>
void main()
{
 int x,y;
 x=10;
 y=20;
 cout<<x;
 cout<<endl; //inserting a new line by endl
 cout<<y;
}
/*End of endl.cpp*/

Output
10
20

One striking feature of the insertion operator is that it works equally well with values of
all fundamental types as its right-hand operand. It does not need the format speci ers that are
needed in the printf() family of functions. Listing 1.9 exempli es this.

Listing 1.9 Outputting data with the insertion operator

 /*Beginning of cout.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
 char cVar;
 float fVar;
 double dVar;
 char * cPtr;
 iVar=10;
 cVar=‘x’;
 fVar=2.3;
 dVar=3.14159;
 cPtr=“Hello World”;
 cout<<iVar;
 cout<<endl;
 cout<<cVar;
 cout<<endl;
 cout<<fVar;
 cout<<endl;
 cout<<dVar;
 cout<<endl;
 cout<<cPtr;
 cout<<endl;
}
/*End of cout.cpp*/

https://hemanthrajhemu.github.io

 Introduction to C++ 11

Output
10
x
2.3
3.14159
Hello World

Just like the arithmetic addition operator, it is possible to cascade the insertion operator.
Listing 1.10 is a case in point.

Listing 1.10 Cascading the insertion operator

 /*Beginning of coutCascade.cpp*/
#include<iostream.h>
void main()
{
 int x;
 float y;
 x=10;
 y=2.2;
 cout<<x<<endl<<y; //cascading the insertion operator
}
/*End of coutCascade.cpp*/

Output
10
2.2

It is needless to say that we can pass constants instead of variables as operands to the insertion
operator, as shown in Listing 1.11.

Listing 1.11 Outputting constants using the insertion operator

 /*Beginning of coutMixed.cpp*/
#include<iostream.h>
void main()
{
 cout<<10<<endl<<“Hello World\n”<<3.4;
}
/*End of coutMixed.cpp*/

Ouput
10
Hello World
3.4

In Listing 1.11, note the use of the new line character in the string that is passed as one of the
operands to the insertion operator.

It was mentioned in the beginning of this section that cout is an object that is associated
with the console. Hence, if it is the left-hand side operand of the insertion operator, the
value on the right is displayed on the monitor. You will learn in the chapter on stream handling
that it is possible to pass objects of some other classes that are similarly associated with disk

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++12

 les as the left-hand side operand to the insertion operator. In such cases, the values on
the right get stored in the associated les.

1.5.2 Console Input

The input functions in C language, such as scanf(), can be included in C++ programs because
they are anyway de ned in the standard library. However, we do have some more ways of
inputting from the console in C++. Let us consider an example.

Listing 1.12 Inputting in C++

 /*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{
 int x;
 cout<<“Enter a number: ”;
 cin>>x; //console input in C++
 cout<<“You entered: ”<<x;
}
/*End of cin.cpp*/

 Output
Enter a number: 10<enter>
You entered: 10

The third statement in the main() function of Listing 1.12 needs to be understood.
cin (pronounce see-in) is actually an object of the class istream_withassign (you can

think of it as a variable of the structure istream_withassign). It stands as an alias for the
console input device, that is, the keyboard (hence the name).

The >> symbol, originally the right-shift operator, has had its de nition extended in C++.
In the given context, it operates as the extraction operator. It is a binary operator and takes
two operands. The operand on its left must be some object of the istream_withassign class.
The operand on its right must be a variable of some fundamental data type. The value for the
variable on the right side of the extraction operator is extracted (hence the name) from the
stream originating from the device associated with the object on the left. Consequently, the
value of ‘x’ is obtained from the keyboard.

The le iostream.h needs to be included in the source code to ensure successful compilation
because the object cin and the extraction operator have been declared in that le.

Again, just like the insertion operator, the extraction operator works equally well
with variables of all fundamental types as its right-hand operand. It does not need the format
speci ers that are needed in the scanf() family of functions. Listing 1.13 exempli es this.

Listing 1.13 Inputting data with the extraction operator

/*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{
 int iVar;

https://hemanthrajhemu.github.io

 Introduction to C++ 13

 char cVar;
 float fVar;
 cout<<“Enter a whole number: ”;
 cin>>iVar;
 cout<<“Enter a character: ”;
 cin>>cVar;
 cout<<“Enter a real number: ”;
 cin>>fVar;
 cout<<“You entered: ”<<iVar<<“ ”<<cVar<<“ ”<<fVar;
}
/*End of cin.cpp*/

Output
Enter a whole number: 10<enter>
Enter a character: x<enter>
Enter a real number: 2.3<enter>
You entered: 10 x 2.3

Just like the insertion operator, it is possible to cascade the extraction operator. Listing
1.14 is a case in point.

Listing 1.14 Cascading the extraction operator

/*Beginning of cinCascade.cpp*/
#include<iostream.h>
void main()
{
 int x,y;
 cout<<“Enter two numbers\n”;
 cin>>x>>y; //cascading the extraction operator
 cout<<“You entered ”<<x<<“ and ”<<y;
}
/*End of cinCascade.cpp*/

Output
Enter two numbers
10<enter>
20<enter>
You entered 10 and 20

It was mentioned in the beginning of this section that cin is an object that is associated with
the console. Hence, if it is the left-hand side operand of the extraction operator, the variable
on the right gets its value from the keyboard. You will learn in the chapter on stream handling
that it is possible to pass objects of some other classes that are similarly associated with disk
 les as the left-hand side operand to the extraction operator. In such cases, the variable on

the right gets its value from the associated les.

 1.6 Variables in C++

Variables in C++ can be declared anywhere inside a function and not necessarily at its very
beginning. For example, see Listing 1.15.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++14

Listing 1.15 Declaring variables in C++

#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<“Value of x= ”<<x<<endl;
 int * iPtr; //declaring a variable in the middle of a
 //function
 iPtr=&x;
 cout<<“Address of x= ”<<iPtr<<endl;
}

Output
Value of x=10
Address of x= 0x21878163

 1.7 Reference Variables in C++

First, let us understand the basics. How does the operating system (OS) display the value of
variables? How are assignment operations such as ‘x=y’ executed during run time? A detailed
answer to these questions is beyond the scope of this book. A brief study is, nevertheless,
possible and necessary for a good understanding of reference variables. What follows is a
simpli ed and tailored explanation.

The OS maintains the addresses of each variable as it allocates memory for them during run
time. In order to access the value of a variable, the OS rst nds the address of the variable
and then transfers control to the byte whose address matches that of the variable.

Suppose the following statement is executed (‘x’ and ‘y’ are integer type variables).
 x=y;

The steps followed are:
1. The OS first finds the address of ‘y’.
2. The OS transfers control to the byte whose address matches this address.
3. The OS reads the value from the block of four bytes that starts with this byte (most C++

compilers cause integer-type variables to occupy four bytes during run time and we will
accept this value for our purpose).

4. The OS pushes the read value into a temporary stack.
5. The OS finds the address of ‘x’.
6. The OS transfers control to the byte whose address matches this address.
7. The OS copies the value from the stack, where it had put it earlier, into the block of four

bytes that starts with the byte whose address it has found above (address of ‘x’).
Notice that addresses of the variables on the left as well as on the right of the assignment

operator are determined. However, the value of the right-hand operand is also determined. The
expression on the right must be capable of being evaluated to a value. This is an important
point and must be borne in mind. It will enable us to understand a number of concepts later.

https://hemanthrajhemu.github.io

 Introduction to C++ 15

Especially, you must remember that the expression on the left of the assignment operator
must be capable of being evaluated to a valid address at which data can be written.

Now, let us study reference variables. A reference variable is nothing but a reference for
an existing variable. It shares the memory location with an existing variable. The syntax for
declaring a reference variable is as follows:

<data-type> & <ref-var-name>=<existing-var-name>;

For example, if ‘x’ is an existing integer-type variable and we want to declare iRef as a
reference to it the statement is as follows:

 int & iRef=x;

iRef is a reference to ‘x’. This means that although iRef and ‘x’ have separate entries in the
OS, their addresses are actually the same!

Thus, a change in the value of ‘x’ will naturally reflect in iRef and vice versa.
Listing 1.16 illustrates this.

Listing 1.16 Reference variables

/*Beginning of reference01.cpp*/
#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<x<<endl;
 int & iRef=x; //iRef is a reference to x
 iRef=20; //same as x=10;
 cout<<x<<endl;
 x++; //same as iRef++;
 cout<<iRef<<endl;
}
/*End of reference01.cpp*/

Output
10
20
21

Reference variables must be initialized at the time of declaration (otherwise the compiler will
not know what address it has to record for the reference variable).

Reference variables are variables in their own right. They just happen to have the address
of another variable. After their creation, they function just like any other variable.

We have just seen what happens when a value is written into a reference variable. The
value of a reference variable can be read in the same way as the value of an ordinary variable
is read. Listing 1.17 illustrates this.

Listing 1.17 Reading the value of a reference variable

/*Beginning of reference02.cpp*/
#include<iostream.h>
void main()
{

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++16

 int x,y;
 x=10;
 int & iRef=x;
 y=iRef; //same as y=x;
 cout<<y<<endl;
 y++; //x and iRef unchanged
 cout<<x<<endl<<iRef<<endl<<y<<endl;
}
/*End of reference02.cpp*/

Output
10
10
10
11

 A reference variable can be a function argument and thus change the value of the parameter
that is passed to it in the function call. Listing 1.18 is an illustrative example.

Listing 1.18 Passing by reference

 /*Beginning of reference03.cpp*/
#include<iostream.h>
void increment(int &); //formal argument is a reference
 //to the passed parameter
void main()
{
 int x;
 x=10;
 increment(x);
 cout<<x<<endl;
}
void increment(int & r)
{
 r++; //same as x++;
}
/*End of reference03.cpp*/

Output
11

Functions can return by reference also. See Listing 1.19.

Listing 1.19 Returning by reference

/*Beginning of reference04.cpp*/
#include<iostream.h>
int & larger(int &, int &);
int main()
{
 int x,y;
 x=10;
 y=20;
 int & r=larger(x,y);
 r=-1;
 cout<<x<<endl<<y<<endl;
}

https://hemanthrajhemu.github.io

 Introduction to C++ 17

int & larger(int & a, int & b)
{
 if(a>b) //return a reference to the larger parameter
 return a;
 else
 return b;
}
/*End of reference04.cpp*/

Output
10
–1

In the foregoing listing, ‘a’ and ‘x’ refer to the same memory location while ‘b’ and ‘y’
refer to the same memory location. From the larger() function, a reference to ‘b’, that is,
reference to ‘y’ is returned and stored in a reference variable ‘r’. The larger() function does
not return the value ‘b’ because the return type is int& and not int. Thus, the address of ‘r’
becomes equal to the address of ‘y’. Consequently, any change in the value of ‘r’ also changes
the value of ‘y’. Listing 1.19 can be shortened as illustrated in Listing 1.20.

Listing 1.20 Returning by reference

/*Beginning of reference05.cpp*/
#include<iostream.h>
int & larger(int &, int &);
int main()
{
 int x,y;
 x=10;
 y=20;
 larger(x,y)=-1;
 cout<<x<<endl<<y<<endl;
}
int & larger(int & a, int & b)
{
 if(a>b) //return a reference to the larger parameter
 return a;
 else
 return b;
}
/*End of reference05.cpp*/

Output
10
–1

The name of a non-constant variable can be placed on the left of the assignment operator
because a valid address—the address of the variable—can be determined from it. A call to
a function that returns by reference can be placed on the left of the assignment operator for
the same reason.

If the compiler nds the name of a non-constant variable on the left of the assignment
operator in the source code, it writes instructions in the executable to

determine the address of the variable,
transfer control to the byte that has that address, and

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++18

write the value on the right of the assignment operator into the block that begins with
the byte found above.
A function that returns by reference primarily returns the address of the returned variable.

If the call is found on the left of the assignment operator, the compiler writes necessary
instructions in the executable to

transfer control to the byte whose address is returned by the function and
write the value on the right of the assignment operator into the block that begins with
the byte found above.
The name of a variable can be placed on the right of the assignment operator. A call to

a function that returns by reference can be placed on the right of the assignment operator
for the same reason.

If the compiler nds the name of a variable on the right of the assignment operator in the
source code, it writes instructions in the executable to

determine the address of the variable,
transfer control to the byte that has that address,
read the value from the block that begins with the byte found above, and
push the read value into the stack.
A function that returns by reference primarily returns the address of the returned variable.

If the call is found on the right of the assignment operator, the compiler writes necessary
instructions in the executable to

transfer control to the byte whose address is returned by the function,
read the value from the block that begins with the byte found above, and
push the read value into the stack.
A constant cannot be placed on the left of the assignment operator. This is because

constants do not have a valid address. Moreover, how can a constant be changed? Functions
that return by value, return the value of the returned variable, which is a constant. Therefore,
a call to a function that returns by value cannot be placed on the left of the assignment
operator.

You may notice that the formal arguments of the larger() function in the foregoing listing
have been declared as constant references because they are not supposed to change the values
of the passed parameters even accidentally.

We must avoid returning a reference to a local variable. For example, see Listing 1.21.

Listing 1.21 Returning the reference of a local variable

 /*Beginning of reference06.cpp*/
#include<iostream.h>
int & abc();
void main()
{
 abc()=-1;
}

int & abc()
{
 int x;
 return x; //returning reference of a local variable
}
/*End of reference06.cpp*/

https://hemanthrajhemu.github.io

 Introduction to C++ 19

The problem with the above program is that when the abc() function terminates, ‘x’ will
go out of scope. Consequently, the statement

 abc()=-1;

in the main() function will write ‘–1’ in an unallocated block of memory. This can lead to
run-time errors.

 1.8 Function Prototyping

Function prototyping is necessary in C++. A prototype describes the function’s interface to
the compiler. It tells the compiler the return type of the function as well as the number, type,
and sequence of its formal arguments.

The general syntax of function prototype is as follows:

return_type function_name(argument_list);

For example,
 int add(int, int);

This prototype indicates that the add() function returns a value of integer type and takes two
parameters both of integer type.

Since a function prototype is also a statement, a semicolon must follow it.
Providing names to the formal arguments in function prototypes is optional. Even if

such names are provided, they need not match those provided in the function de nition. For
example, see Listing 1.22.

 Listing 1.22 Function prototyping

/*Beginning of funcProto.cpp*/
#include<iostream.h>
int add(int,int); //function prototype

void main()
{
 int x,y,z;
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 z=add(x,y); //function call
 cout<<z<<endl;
}
int add(int a,int b) //function definition
{
 return (a+b);
}
/*End of funcProto.cpp*/

Output
Enter a number: 10<enter>
Enter another number: 20<enter>
30

 Why is prototyping important? By making prototyping necessary, the compiler ensures
the following:

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++20

The return value of a function is handled correctly.
Correct number and type of arguments are passed to a function.

Let us discuss these points.
Consider the following statement in Listing 1.22:

 int add(int, int);

The prototype tells the compiler that the add() function returns an integer-type value. Thus,
the compiler knows how many bytes have to be retrieved from the place where the add()
function is expected to write its return value and how these bytes are to be interpreted.

In the absence of prototypes, the compiler will have to assume the type of the returned
value. Suppose, it assumes that the type of the returned value is an integer. However, the
called function may return a value of an incompatible type (say a structure type). Now,
suppose an integer-type variable is equated to the call to a function where the function call
precedes the function de nition. In this situation, the compiler will report an error against
the function de nition and not the function call. This is because the function call abided by
its assumption, but the de nition did not. However, if the function de nition is in a different
 le to be compiled separately, then no compile-time errors will arise. Instead, wrong results

will arise during run time as Listing 1.23 shows.

Listing 1.23 Absence of function prototype produces weird results

 /*Beginning of def.c*/
/*function definition*/
struct abc
{
 char a;
 int b;
 float c;
};

struct abc test()
{
 struct abc a1;
 a1.a=‘x’;
 a1.b=10;
 a1.c=1.1;
 return a1;
}
/*End of def.c*/

/*Beginning of driver.c*/
void main()
{
 int x;
 x=test(); //no compile time error!!
 printf(“%d”,x);
}
/*End of driver.c*/

Output
1688

A compiler that does not enforce prototyping will de nitely compile the above program.
But then it will have no way of knowing what type of value the test() function returns.

https://hemanthrajhemu.github.io

 Introduction to C++ 21

Therefore, erroneous results will be obtained during run time as the output of Listing 1.23
clearly shows.

Since the C++ compiler necessitates function prototyping, it will report an error against
the function call because no prototype has been provided to resolve the function call. Again,
if the correct prototype is provided, the compiler will still report an error since this time the
function call does not match the prototype. The compiler will not be able to convert a struct
abc to an integer. Thus, function prototyping guarantees protection from errors arising out
of incorrect function calls.

What happens if the function prototype and the function call do not match? Such a situation
cannot arise. Both the function prototype and the function de nition are created by the same
person, that is, the library programmer. The library programmer puts the function’s prototype in
a header le. He/she provides the function’s de nition in a library. The application programmer
includes the header le in his/her application program le in which the function is called. He/
she creates an object le from this application program le and links this object le to the
library to get an executable le.

The function’s prototype also tells the compiler that the add() function accepts two
parameters. If the program fails to provide such parameters, the prototype enables the compiler
to detect the error. A compiler that does not enforce function prototyping will compile a
function call in which an incorrect number and/or type of parameters have been passed. Run-
time errors will arise as in the foregoing case.

Finally, function prototyping produces automatic-type conversion wherever appropriate.
We take the case of compilers that do not enforce prototyping. Suppose, a function expects an
integer-type value (assuming integers occupy four bytes) but a value of double type (assuming
doubles occupy eight bytes) is wrongly passed. During run time, the value in only the rst
four bytes of the passed eight bytes will be extracted. This is obviously undesirable. However,
the C++ compiler automatically converts the double-type value into an integer type. This
is because it inevitably encounters the function prototype before encountering the function
call and therefore knows that the function expects an integer-type value. However, it must
be remembered that such automatic-type conversions due to function prototypes occur only
when it makes sense. For example, the compiler will prevent an attempted conversion from
a structure type to integer type.

Nevertheless, can the same bene ts not be realized without prototyping? Is it not possible
for the compiler to simply scan the rest of the source code and nd out how the function has
been de ned? There are two reasons why this solution is inappropriate. They are:

It is inefficient. The compiler will have to suspend the compilation of the line containing
the function call and search the rest of the file.
Most of the times the function definition is not contained in the file where it is called. It
is usually contained in a library.
Such compile-time checking for prototypes is known as static-type-checking.

 1.9 Function Overloading

C++ allows two or more functions to have the same name. For this, however, they must have
different signatures. Signature of a function means the number, type, and sequence of formal
arguments of the function. In order to distinguish amongst the functions with the same name,
the compiler expects their signatures to be different. Depending upon the type of parameters
that are passed to the function call, the compiler decides which of the available de nitions

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++22

will be invoked. For this, function prototypes should be provided to the compiler for matching
the function calls. Accordingly, the linker, during link time, links the function call with the
correct function de nition. Listing 1.24 clari es this.

 Listing 1.24 Function overloading

/*Beginning of funcOverload.cpp*/
#include<iostream.h>
int add(int,int); //first prototype
int add(int,int,int); //second prototype

void main()
{
 int x,y;
 x=add(10,20); //matches first prototype
 y=add(30,40,50); //matches second prototype
 cout<<x<<endl<<y<<endl;
}

int add(int a,int b)
{
 return(a+b);
}

int add(int a,int b,int c)
{
 return(a+b+c);
}
/*End of funcOverload.cpp*/

Output
30
120

Just like ordinary functions, the de nitions of overloaded functions are also put in libraries.
Moreover, the function prototypes are placed in header les.

The two function prototypes at the beginning of the program tell the compiler the two
different ways in which the add() function can be called. When the compiler encounters the
two distinct calls to the add() function, it already has the prototypes to satisfy them both.
Thus, the compilation phase is completed successfully. During linking, the linker nds the
two necessary de nitions of the add() function and, hence, links successfully to create the
executable le.

The compiler decides which function is to be called based upon the number, type, and
sequence of parameters that are passed to the function call. When the compiler encounters
the rst function call,

 x=add(10,20);

it decides that the function that takes two integers as formal arguments is to be executed.
Accordingly, the linker then searches for the de nition of the add() function where there are
two integers as formal arguments.

Similarly, the second call to the add() function
 y=add(30,40,50);

is also handled by the compiler and the linker.

https://hemanthrajhemu.github.io

 Introduction to C++ 23

Note the importance of function prototyping. Since function prototyping is mandatory in
C++, it is possible for the compiler to support function overloading properly. The compiler
is able to not only restrict the number of ways in which a function can be called but also
support more than one way in which a function can be called. Function overloading is possible
because of the necessity to prototype functions.

By itself, function overloading is of little use. Instead of giving exactly the same name for
functions that perform similar tasks, it is always possible for us to give them similar names.
However, function overloading enables the C++ compiler to support another feature, that
is, function overriding (which in turn is not really a very useful thing by itself but forms the
basis for dynamic polymorphism—one of the most striking features of C++ that promotes
code reuse).

Function overloading is also known as function polymorphism because, just like
 polymorphism in the real world where an entity exists in more than one form, the same
function name carries different meanings.

Function polymorphism is static in nature because the function de nition to be executed
is selected by the compiler during compile time itself. Thus, an overloaded function is said
to exhibit static polymorphism.

 1.10 Default Values for Formal Arguments of Functions
It is possible to specify default values for some or all of the formal arguments of a function. If
no value is passed for an argument when the function is called, the default value speci ed for
it is passed. If parameters are passed in the normal fashion for such an argument, the default
value is ignored. Listing 1.25 is an illustrative example.

Listing 1.25 Default values for function arguments

 /*Beginning of defaultArg.cpp*/
#include<iostream.h>
int add(int,int,int c=0); //third argument has default value

void main()
{
 int x,y;
 x=add(10,20,30); //default value ignored
 y=add(40,50); //default value taken for the
 //third parameter
 cout<<x<<endl<<y<<endl;
}

int add(int a,int b,int c)
{
 return (a+b+c);
}
/*End of defaultArg.cpp*/

Output
60
90

In the above listing, a default value—zero—has been speci ed for the third argument of the
add() function. In the absence of a value being passed to it, the compiler assigns the default
value. If a value is passed to it, the compiler assigns the passed value. In the rst call

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++24

x=add(10,20,30);

the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 30, respectively. But, in the second function call
y=add(40,50);

the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 0, respectively. The default value—zero—for
the third parameter ‘c’ is taken. This explains the output of the above listing.

Default values can be assigned to more than one argument. Listing 1.26 illustrates this.

Listing 1.26 Default values for more than one argument

/*Beginning of multDefaultArg.cpp*/
#include<iostream.h>
int add(int,int b=0,int c=0); //second and third arguments
 //have default values

void main()
{
 int x,y,z;
 x=add(10,20,30); //all default values ignored
 y=add(40,50); //default value taken for the
 //third argument
 z=add(60); //default value taken for
 //the second and the third
 //arguments
 cout<<x<<endl<<y<<endl<<z<<endl;
}

int add(int a,int b,int c)
{
 return (a+b+c);
}
/*End of multDefaultArg.cpp*/

Output
60
90
60

There is no need to provide names to the arguments taking default values in the function
prototypes.

int add(int,int=0,int=0);

can be written instead of
int add(int,int b=0,int c=0);

Default values must be supplied starting from the rightmost argument. Before supplying
default value to an argument, all arguments to its right must be given default values. Suppose
you write

int add(int,int=0,int);

you are attempting to give a default value to the second argument from the right without
specifying a default value for the argument on its right. The compiler will report an error that
the default value is missing (for the third argument).

https://hemanthrajhemu.github.io

 Introduction to C++ 25

Default values must be speci ed in function prototypes alone. They should not be speci ed
in the function de nitions.

While compiling a function call, the compiler will de nitely have its prototype. Its de nition
will probably be located after the function call. It might be in the same le, or it will be in a
different le or library. Thus, to ensure a successful compilation of the function calls where
values for arguments having default values have not been passed, the compiler must be aware
of those default values. Hence, default values must be speci ed in the function prototype.

You must also remember that the function prototypes are placed in header les. These are
included in both the library les that contain the function’s de nition and the client program
 les that contain calls to the functions. While compiling the library le that contains the

function de nition, the compiler will obviously read the function prototype before it reads
the function de nition. Suppose the function de nition also contains default values for the
arguments. Even if the same default values are supplied for the same arguments, the compiler
will think that you are trying to supply two different default values for the same argument.
This is obviously unacceptable because the default value can be only one in number. Thus,
default values must be speci ed in the function prototypes and should not be speci ed again
in the function de nitions.

If default values are speci ed for the arguments of a function, the function behaves like
an overloaded function and, therefore, should be overloaded with care; otherwise ambiguity
errors might be caused. For example, if you prototype a function as follows:

int add(int,int,int=0);
int add(int,int);

This can confuse the compiler. If only two integers are passed as parameters to the function
call, both these prototypes will match. The compiler will not be able to decide with which
de nition the function call has to be resolved. This will lead to an ambiguity error.

Default values can be given to arguments of any data type as follows:
double hra(double,double=0.3);
void print(char=’a’);

 1.11 Inline Functions

Inline functions are used to increase the speed of execution of the executable les. C++ inserts
calls to the normal functions and the inline functions in different ways in an executable.

The executable program that is created after compiling the various source codes and linking
them consists of a set of machine language instructions. When a program is started, the
operating system loads these instructions into the computer’s memory. Thus, each instruction
has a particular memory address. The computer then goes through these instructions one by
one. If there are any instructions to branch out or loop, the control skips over instructions and
jumps backward or forward as needed. When a program reaches the function call instruction,
it stores the memory address of the instruction immediately following the function call. It then
jumps to the beginning of the function, whose address it nds in the function call instruction
itself, executes the function code, and jumps back to the instruction whose address it had
saved earlier.

Obviously, an overhead is involved in
making the control jump back and forth and

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++26

storing the address of the instruction to which the control should jump after the function
terminates.
The C++ inline function provides a solution to this problem. An inline function is a function

whose compiled code is ‘in line’ with the rest of the program. That is, the compiler replaces
the function call with the corresponding function code. With inline code, the program does
not have to jump to another location to execute the code and then jump back. Inline functions,
thus, run a little faster than regular functions.

However, there is a trade-off between memory and speed. If an inline function is
called repeatedly, then multiple copies of the function definition appear in the code
(see Figures 1.1 and 1.2). Thus, the executable program itself becomes so large that it occupies
a lot of space in the computer’s memory during run time. Consequently, the program runs
slow instead of running fast. Thus, inline functions must be chosen with care.

For specifying an inline function, you must:
prefix the definition of the function with the inline keyword and
define the function before all functions that call it, that is, define it in the header file
itself.
The following listing illustrates the inline technique with the inline cube() function that

cubes its argument. Note that the entire de nition is in one line. That is not a necessary
condition. But if the de nition of a function does not t in one line, the function is probably
a poor candidate for an inlne function!

Figure 1.1 Transfer of control in a non-inline function

https://hemanthrajhemu.github.io

 Introduction to C++ 27

Listing 1.27 Inline functions

 /*Beginning of inline.cpp*/
#include<iostream.h>

inline double cube(double x) { return x*x*x; }

void main()
{
 double a,b;
 double c=13.0;
 a=cube(5.0);
 b=cube(4.5+7.5);
 cout<<a<<endl;
 cout<<b<<endl;
 cout<<cube(c++)<<endl;
 cout<<c<<endl;
}
/*End of inline.cpp*/

Figure 1.2 Control does not get transferred in an inline function

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++28

Output
125
1728
2197
14

 However, under some circumstances, the compiler, despite your indications, may not expand the
function inline. Instead, it will issue a warning that the function could not be expanded inline
and then compile all calls to such functions in the ordinary fashion. Those conditions are:

The function is recursive.
There are looping constructs in the function.
There are static variables in the function.

Let us brie y compare macros in C and inline function in C++. Macros are a poor predecessor
to inline functions. For example, a macro for cubing a number is as follows:

#define CUBE(X) X*X*X

Here, a mere text substitution takes place with‘X’ being replaced by the macro parameter.
a=CUBE(5.0); //replaced by a=5.0*5.0*5.0;
b=CUBE(4.5+7.5); //replaced by
 //b=4.5+7.5*4.5+7.5*4.5+7.5;
c=CUBE(x++); //replaced by c=x++*x++*x++;

Only the rst statement works properly. An intelligent use of parentheses improves matters
slightly.

 #define CUBE(X) ((X)*(X)*(X))

Even now, CUBE(c++) undesirably increments ‘c’ thrice. But the inline cube() function
evaluates ‘c’, passes the value to be cubed, and then correctly increments ‘c’ once.

It is advisable to use inline functions instead of macros.

Variables sometimes in uence each other’s values.
A change in the value of one may necessitate a
corresponding adjustment in the value of another. It
is, therefore, necessary to pass these variables together
in a single group to functions. Structures enable us to
do this.

Structures are used to create new data types. This
is a two-step process.
Step 1: Create the structure itself.
Step 2: Create associated functions that work upon
variables of the structure.

While structures do fulfil the important need
described above, they nevertheless have limitations.
They do not enable the library programmer to make
variables of the structure that he/she has designed to

be safe from unintentional modi cation by functions
other than those de ned by him/her. Moreover, they do
not guarantee a proper initialization of data members
of structure variables.

Both of the above drawbacks are in direct
contradiction with the characteristics possessed by
real-world objects. A real-world object has not only
a perfect interface to manipulate its internal parts but
also exclusive rights to do so. Consequently, a real-
world object never reaches an invalid state during its
lifetime. When we start operating a real-world object, it
automatically assumes a valid state. In object-oriented
programming systems (OOPS), we can incorporate
these features of real-world objects into structure
variables.

Summary

https://hemanthrajhemu.github.io

 Introduction to C++ 29

Inheritance allows a structure to inherit both data
and functions of an existing structure. Polymorphism
allows different functions to have the same name. It is
of two types: static and dynamic.

Console output is achieved in C++ with the help
of insertion operator and the cout object. Console
input is achieved in C++ with the help of extraction
operator and the cin object.

In C++, variables can be de ned anywhere in a
function. A reference variable shares the same memory
location as the one of which it is a reference. Therefore,
any change in its value automatically changes the value

of the variable with which it is sharing memory. Calls
to functions that return by reference can be placed on
the left of the assignment operator.

Function prototyping is necessary in C++. Functions
can be overloaded. Functions with different signatures
can have the same name. A function argument can be
given a default value so that if no value is passed for it
in the function call, the default value is assigned to it.
If a function is declared inline, its de nition replaces
its call, thus, speeding up the execution of the resultant
executable.

Key Terms
creating new data types using structures
lack of data security in structures
no guaranteed initialization of data in structures
procedure-oriented programming system
object-oriented programming system
data security in classes
guaranteed initialization of data in classes
inheritance
polymorphism
console input/output in C++

- cout
- ostream_withassign class
- insertion operator

- cin
- istream_withassign class
- extraction operator
- iostream.h header le
- endl

reference variable
- passing by reference
- returning by reference

importance of function prototyping
function overloading
default values for function arguments
inline functions

Exercises

 1. Which programming needs do structures ful ll? Why
does C language enable us to create structures?

 2. What are the limitations of structures?
 3. What is the procedure-oriented programming

system?
 4. What is the object-oriented programming system?
 5. Which class is ‘cout’ an object of?
 6. Which class is ‘cin’ an object of?
 7. What bene ts does a programmer get if the compiler

forces him/her to prototype a function?
 8. Why will an ambiguity error arise if a default value

is given to an argument of an overloaded function?
 9. Why should default values be given to function

arguments in the function’s prototype and not in the
function’s de nition?

 10. State true or false.
(a) Structures enable a programmer to secure the

data contained in structure variables from being
changed by unauthorized functions.

(b) The insertion operator is used for outputting
in C++.

(c) The extraction operator is used for outputting
in C++.

(d) A call to a function that returns by reference
cannot be placed on the left of the assignment
operator.

(e) An inline function cannot have a looping
construct.

 11. Think of some examples from your own experience in
C programming where you felt the need for structures.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++30

Do you see an opportunity for programming in OOPS
in those examples?

 12. Structures in C do not enable the library programmers
to guarantee an initialization of data. Appreciate the
implications of this limitation by taking the date
structure as an example.

13. Calls to functions that return by reference can be put

on the left-hand side of the assignment operator.
Experiment and nd out whether such calls can be
chained. Consider the following:

f(a, b) = g(c, d) = x;

 where ‘f’ and ‘g’ are functions that return by reference
while ‘a’, ‘b’, ‘c’, ‘d’, and ‘x’ are variables.

https://hemanthrajhemu.github.io

Classes and Objects

The previous chapter refreshed the reader’s knowledge of the structure construct provided
by C language—its use and usage. It also dealt with a critical analysis of structures along with
their pitfalls and limitations. The reader was made aware of a strong need for data security and
for a guaranteed initialization of data that structures do not provide.

This chapter is a logical continuation to the previous one. It begins with a thorough
explanation of the class construct of C++ and the ways by which it ful ls the above-mentioned
needs. Superiority of the class construct of C++ over the structure construct of C language is
emphasized in this chapter.

This chapter also deals with how classes enable the library programmer to provide exclusive
rights to the associated functions.

A description of various types and features of member functions and member data nds a
prominent place in this chapter. This description covers:

Overloaded member functions
Default values for the arguments of member functions
Inline member functions
Constant member functions
Mutable data members
Friend functions and friend classes
Static members
A section in this chapter is devoted to namespaces. They enable the C++ programmer to

prevent pollution of the global namespace that leads to name clashes.
Example code to tackle arrays of objects and arrays inside objects form the penultimate

portion of this chapter.
The chapter ends with an essay on nested classes—their need and use.

O

V

E

R

V

I

E

W

2

 2.1 Introduction to Classes and Objects

Classes are to C++ what structures are to C. Both provide the library programmer a means
to create new data types.

Let us brie y recapitulate the issues faced while programming in C described in the previous
chapter. In C, the library programmer creates structures. He/she also provides a set of tested
bug-free functions that correctly manipulate the data members of structure variables.

The Date structure and its accompanying functions may be perfect. However, there is
absolutely no guarantee that the client programs will use only these functions to manipulate
the members of variables of the structure. See Listing 2.1.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++32

Listing 2.1 Undesirable manipulation of structures not prevented in C

struct Date d1;
setDate(&d1); //assign system date to d1.
printf(“%d”,d1.month);
d1.month = 13; //undesirable but unpreventable!!

The bug arising out of the last line of the main() function above is easily detected even
by a visual inspection. Nevertheless, the same will certainly not be the case if the code is
around 25,000 lines long. Lines similar to the last line of the main() function above may be
scattered all over the code. Thus, they will be dif cult to hunt down.

Notice that the absence of a facility to bind the data and the code that can have the exclusive
rights to manipulate the data can lead to dif cult-to-detect run-time bugs. C does not provide
the library programmer with the facilities to encapsulate data, to hide data, and to abstract
data.

The C++ compiler provides a solution to this problem. Structures (the struct keyword)
have been rede ned to allow member functions also. Listing 2.2 illustrates this.

Listing 2.2 C++ allows member functions in structures

/*Beginning of structDistance01.cpp*/
#include<iostream.h>

struct Distance
{
 int iFeet;
 float fInches;
 void setFeet(int x)
 {
 iFeet=x;
 }
 int getFeet()
 {
 return iFeet;
 }
 void setInches(float y)
 {
 fInches=y;
 }
 float getInches()
 {
 return fInches;
 }
};

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;

https://hemanthrajhemu.github.io

 Classes and Objects 33

}

/*End of structDistance01.cpp*/

Output
2 2.2
3 3.3

First, we must notice that functions have also been de ned within the scope of the structure
de nition. This means that not only the member data of the structure can be accessed through
the variables of the structures but also the member functions can be invoked. The struct
keyword has actually been rede ned in C++. This latter point is illustrated by the main()
function in Listing 2.2 above. We must make careful note of the way variables of the structure
have been declared and how the member functions have been invoked.

Member functions are invoked in much the same way as member data are accessed, that is,
by using the variable-to-member access operator. In a member function, one can refer directly
to members of the object for which the member function is invoked. For example, as a result
of the second line of the main() function in Listing 2.2, it is d1.iFeet that gets the value of
2. On the other hand, it is d2.iFeet that gets the value of 3 when the fourth line is invoked.
This is explained in the section on the this pointer that follows shortly.

Each structure variable contains a separate copy of the member data within itself. However,
only one copy of the member function exists. Again, the section on the this pointer explains
this.

However, in the above example, note that the member data of structure variables can still
be accessed directly. The following line of code illustrates this.

d1.iFeet=2; //legal!!

 2.1.1 Private and Public Members

What is the advantage of having member functions also in structures? We have put together
the data and functions that work upon the data but we have not been able to give exclusive
rights to these functions to work upon the data. Problems in code debugging can still arise
as before. Specifying member functions as public but member data as private obtains the
advantage. The syntax for this is illustrated by Listing 2.3.

Listing 2.3 Making members of structures private

 /*Beginning of structDistance02.cpp*/
#include<iostream.h>
struct Distance
{
 private:
 int iFeet;
 float fInches;
 public:
 void setFeet(int x)
{
 iFeet=x; //LEGAL: private member accessed by
 //member function
}
int getFeet()

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++34

{
 return iFeet;
}
void setInches(float y)
{
 fInches=y;
}
float getInches()
 {
 return fInches;
 }
};

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 d1.iFeet++; //ERROR!!: private member accessed by
 //non-member function
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
}
/*End of structDistance02.cpp*/

First, let us have a close look at the modi ed de nition of the structure Distance. Two
new keywords, private and public have been introduced in the de nition of the structure. Their
presence in the foregoing example tells the compiler that iFeet and fInches are private data
members of variables of the structure Distance and the member functions are public. Thus,
values of iFeet and fInches of each variable of the structure Distance can be accessed/
modi ed only through member functions of the structure and not by any non-member
function in the program (again note that it is the iFeet and fInches of the invoking object
that are accessed/modi ed by the member functions). Any attempt to violate this restriction
is prevented by the compiler because that is how the C++ compiler recognizes the private
keyword. Since the member functions are public, they can be invoked from any part of the
program.

As we can observe from Listing 2.3, the compiler refuses to compile the line in which a
private member of a structure variable is accessed from a non-member function (the main()
function in Listing 2.3).

The keywords private and public are also known as access modi ers or access speci ers
because they control the access to the members of structures.

C++ introduces a new keyword class as a substitute for the keyword struct. In a structure,
members are public by default. See the de nition in Listing 2.4.

Listing 2.4 Structure members are public by default

 struct Distance
{
 private:
 int iFeet;
 float fInches;

https://hemanthrajhemu.github.io

 Classes and Objects 35

 public:
 void setFeet(int x)
 {
 iFeet=x;
 }
 int getFeet()
 {
 return iFeet;
 }
 void setInches(float y)
 {
 fInches=y;
 }
 float getInches()
 {
 return fInches;
 }
};

can also be written as
struct Distance
{
 void setFeet(int x) //public by default
 {
 iFeet=x;
 }
 int getFeet() //public by default
 {
 return iFeet;
 }
 void setInches(float y) //public by default
 {
 fInches=y;
 }
 float getInches() //public by default
 {
 return fInches;
 }
 private:
 int iFeet;
 float fInches;
};

In Listing 2.4, the member functions have not been placed under any access modi er.
Therefore, they are public members by default.

On the other hand, class members are private by default. This is the only difference between
the class keyword and the struct keyword.

Thus, the structure Distance can be rede ned by using the class keyword as shown in
Listing 2.5.

Listing 2.5 Class members are private by default

 class Distance
{
 int iFeet; //private by default
 float fInches; //private by default

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++36

 public:
 void setFeet(int x)
 {
 iFeet=x;
 }
 int getFeet()
 {
 return iFeet;
 }
 void setInches(float y)
 {
 fInches=y;
 }
 float getInches()
 {
 return fInches;
 }
};

The struct keyword has been retained to maintain backward compatibility with C
language. A header le created in C might contain the de nition of a structure, and structures
in C will have member data only. A C++ compiler will easily compile a source code that has
included the above header le since the new de nition of the struct keyword allows, not
mandates, the inclusion of member functions in structures.

Functions in a C language source code access member data of structures. A C++ compiler
will easily compile such a source code since the C++ compiler treats members of structures
as public members by default.

 2.1.2 Objects

Variables of classes are known as objects.
An object of a class occupies the same amount of memory as a variable of a structure that

has the same data members. This is illustrated by Listing 2.6.

Listing 2.6 Size of a class object is equal to that of a structure variable with identical
data members

/*Beginning of objectSize.cpp*/
#include<iostream.h>

struct A
{
 char a;
 int b;
 float c;
};

class B //a class with the same data members
{
 char a;
 int b;
 float c;
};

void main()
{

https://hemanthrajhemu.github.io

 Classes and Objects 37

 cout<<sizeof(A)<<endl<<sizeof(B)<<endl;
}
/*End of objectSize.cpp*/

Output
9
9

Introducing member functions does not in uence the size of objects. The reason for this
will become apparent when we study the this pointer. Moreover, making data members
private or public does not in uence the size of objects. The access modi ers merely control
the accessibility of the members.

2.1.3 Scope Resolution Operator

It is possible and usually necessary for the library programmer to de ne the member functions
outside their respective classes. The scope resolution operator makes this possible. Listing
2.7 illustrates the use of the scope resolution operator (::).

 Listing 2.7 The scope resolution operator

/*Beginning of scopeResolution.cpp*/
class Distance
{
 int iFeet;
 float fInches;
 public:
 void setFeet(int); //prototype only
 int getFeet(); //prototype only
 void setInches(float); //prototype only
 float getInches(); //prototype only
};

void Distance::setFeet(int x) //definition
{
 iFeet=x;
}

int Distance::getFeet() //definition
{
 return iFeet;
}

void Distance::setInches(float y) //definition
{
 fInches=y;
}

float Distance::getInches() //definition
{
 return fInches;
}
/*End of scopeResolution.cpp*/

We can observe that the member functions have been only prototyped within the class;
they have been de ned outside. The scope resolution operator signi es the class to which they

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++38

belong. The class name is speci ed on the left-hand side of the scope resolution operator. The
name of the function being de ned is on the right-hand side.

2.1.4 Creating Libraries Using the Scope Resolution Operator

As in C language, creating a new data type in C++ using classes is also a three-step process
that is executed by the library programmer.
Step 1: Place the class de nition in a header le.

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance class*/

class Distance
{
 int iFeet;
 float fInches;
 public:
 void setFeet(int); //prototype only
 int getFeet(); //prototype only
 void setInches(float); //prototype only
 float getInches(); //prototype only
};
/*End of Distance.h*/

Step 2: Place the de nitions of the member functions in a C++ source le (the library source
code). A le that contains de nitions of the member functions of a class is known as the
implementation le of that class. Compile this implementation le and put in a library.

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet(int x) //definition
{
 iFeet=x;
}

int Distance::getFeet() //definition
{
 return iFeet;
}

void Distance::setInches(float y) //definition
{
 fInches=y;
}

float Distance::getInches() //definition
{
 return fInches;
}
/*End of Distlib.cpp*/

Step 3: Provide the header le and the library, in whatever media, to other programmers who
want to use this new data type.

https://hemanthrajhemu.github.io

 Classes and Objects 39

2.1.5 Using Classes in Application Programs

The steps followed by programmers for using this new data type are:
Step 1: Include the header le provided by the library programmer in their source code.

/*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()
{

}
/*End of Distmain.cpp*/

Step 2: Declare variables of the new data type in their source code.
 /*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()
{
 Distance d1,d2;

}
/*End of Distmain.cpp*/

Step 3: Embed calls to the associated functions by passing these variables in their source
code. See Listing 2.8.

 Listing 2.8 Using classes in application programs

/*Beginning of Distmain.cpp*/
/*A sample driver program for creating and using objects of the class Dis-
tance*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Step 4: Compile the source code to get the object le.
Step 5: Link the object le with the library provided by the library programmer to get the
executable or another library.

Output of Listing 2.8
2 2.2
3 3.3

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++40

Implementation les are compiled and converted into static and dynamic libraries in the
usual manner.

Again, we notice that there is no obvious connection between the member data being
accessed within the member function and the object that is invoking the function.

2.1.6 this Pointer

The facility to create and call member functions of class objects is provided by the C++
compiler. You have already seen how this facility is to be used. However, how does the
compiler support this facility? The compiler does this by using a unique pointer known as
the this pointer. A thorough understanding of the this pointer is vital for understanding
many concepts in C++.

The this pointer is always a constant pointer. The this pointer always points at the object
with respect to which the function was called. An explanation that follows shortly explains
why and how it functions.

After the compiler has ascertained that no attempt has been made to access the private
members of an object by non-member functions, it converts the C++ code into an ordinary
C language code as follows:
1. It converts the class into a structure with only data members as follows.

 Before
class Distance
{
 int iFeet;
 float fInches;
 public:
 void setFeet(int); //prototype only
 int getFeet(); //prototype only
 void setInches(float); //prototype only
 float getInches(); //prototype only
};

 After
struct Distance
{
 int iFeet;
 float fInches;
};

2. It puts a declaration of the this pointer as a leading formal argument in the prototypes
of all member functions as follows.

 Before
void setFeet(int);

 After
void setFeet(Distance * const, int);

 Before
 int getFeet();

https://hemanthrajhemu.github.io

 Classes and Objects 41

 After
int getFeet(Distance * const);

 Before
void setInches(float);

 After
void setInches(Distance * const, float);

 Before
float getInches();

 After
float getInches(Distance * const);

3. It puts the definition of the this pointer as a leading formal argument in the definitions
of all member functions as follows. It also modifies all the statements to access object
members by accessing them through the this pointer using the pointer-to-member access
operator (->).

 Before
void Distance::setFeet(int x)
{
 iFeet=x;
}

 After
void setFeet(Distance * const this, int x)
{
 this->iFeet=x;
}

 Before
int Distance::getFeet()
{
 return iFeet;
}

 After
int getFeet(Distance * const this)
{
 return this->iFeet;
}

 Before
void Distance::setInches(float y)
{
 fInches=y;
}

 After
void setInches(Distance * const this, float y)

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++42

{
 this->fInches=y;
}

 Before
float Distance::getInches()
{
 return fInches;
}

 After
float getInches(Distance * const this)
{
 return this->fInches;

}

 We must understand how the scope resolution operator works. The scope resolution
operator is also an operator. Just like any other operator, it operates upon its operands.
The scope resolution operator is a binary operator, that is, it takes two operands. The
operand on its left is the name of a pre-defined class. On its right is a member function of
that class. Based upon this information, the scope resolution operator inserts a constant
operator of the correct type as a leading formal argument to the function on its right.
For example, if the class name is Distance, as in the above case, the compiler inserts a
pointer of type Distance * const as a leading formal argument to the function on its
right.

4. It passes the address of invoking object as a leading parameter to each call to the member
functions as follows.

 Before
d1.setFeet(1);

 After
 setFeet(&d1,1);

 Before
d1.setInches(1.1);

 After
 setInches(&d1,1.1);

 Before
cout<<d1.getFeet()<<endl;

 After
 cout<<getFeet(&d1)<<endl;

 Before
cout<<d1.getInches()<<endl;

https://hemanthrajhemu.github.io

 Classes and Objects 43

 After
 cout<<getInches(&d1)<<endl;

 In the case of C++, the dot operator’s definition has been extended. It not only takes data
members as in C but also member functions as its right-hand side operand. If the operand
on its right is a data member, then the dot operator behaves just like it does in C language.
However, if the operand on its right is a member function, then the dot operator causes
the address of the object on its left to be passed as an implicit leading parameter to the
function call.

Clearly, members of the invoking object are referred to when they are accessed without
any quali ers in member functions. It should also be obvious that multiple copies of member
data exist (one inside each object) but only one copy exists for each member function.

It is evident that the this pointer should continue to point at the same object—the object
with respect to which the member function has been called—throughout its lifetime. For this
reason, the compiler creates it as a constant pointer.

The accessibility of the implicit object is the same as that of the other objects passed as
parameters in the function call and the local objects inside that function. Listing 2.9 illustrates
this. A new function—add()—has been added to the existing de nition of the Distance
class.

 Listing 2.9 Accessing data members of local objects inside member functions and of
objects that are passed as parameters

 /*Beginning of Distance.h*/
class Distance
{
 /*
 rest of the class Distance
 */
 Distance add(Distance);
};
/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet; //legal to access both
 //temp.iFeet and
 //dd.iFeet
 temp.fInches=fInches+dd.fInches; //ditto
 return temp;
}

/*
 definitions of the rest of the functions of class
 Distance
*/
/*End of Distlib.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++44

void main()
{
 Distance d1,d2,d3;
 d1.setFeet(1);
 d1.setInches(1.1);
 d2.setFeet(2);
 d2.setInches(2.2);
 d3=d1.add(d2);
 cout<<d3.getFeet()<<“’-”<<d3.getInches()<<“’’\n”;
}
/*End of Distmain.cpp*/

Output
3'-3.3'

The de nition of Distance :: add() function, after the previously described conversion
by the compiler is carried out, will appear as follows.

 Distance add(Distance * const this, Distance dd)
{
 Distance temp;
 temp.iFeet=this->iFeet+dd.iFeet;
 temp.fInches=this->fInches+dd.fInches;
 return temp;
}

When this function is called from the main() function with respect to ‘d1’, the this pointer
points at ‘d1’. Thus, it is the private data member of ‘d1’ that is being accessed in the second
and third lines of the add() function.

So, now we can
Declare a class
Define member data and member functions
Make members private and public
Declare objects and call member functions with respect to objects

What advantages does all this lead to? The advantage that library programmers can now
derive from this arrangement is epitomized in the following observation:

An executable le will not be created from a source code in which private data members
of an object have been accessed by non-member functions.

Once again, the importance of compile-time errors over run-time errors is emphasized.
Suppose, an if block exists in a function that is not intended by the library programmer to
access the data members of a structure. This if block contains a bug (say ‘d1.month’ has been
assigned the value of 13, where ‘d1’ is a variable of the structure ‘date’).

A pure C compiler would not recognize this statement as an invalid access. During testing,
the if condition of this if block might never become true. The bug would remain undetected;
the executable will get created with bugs. Thus, creating bug-free executables is dif cult
and unreliable in C. This is due to the absence of language constructs that enforce data
security.

On the other hand, a C++ compiler that also detects invalid access of private data members
would immediately throw an error during compile time itself and prevent the creation of the
executable. Thus, creating bug-free executables is easier and more reliable in C++ than in
C. This is due to the presence of language constructs that enforce data security.

https://hemanthrajhemu.github.io

 Classes and Objects 45

2.1.7 Data Abstraction

The class construct provides facilities to implement data abstraction. Data abstraction is
an important concept and should be understood properly. Let us take up the example of
the LCD projector from the previous chapter. It has member data (light and fan) as well as
member functions (switches that operate the light and the fan). This real-world object hides
its internal operations from the outside world. It, thus, obviates the need for the user to know
the possible pitfalls that might be encountered during its operation. During its operation, the
LCD projector never reaches an invalid state. Moreover, the LCD projector does not start in
an invalid state.

Data abstraction is a virtue by which an object hides its internal operations from the rest
of the program. It makes it unnecessary for the client programs to know how the data is
internally arranged in the object. Thus, it obviates the need for the client programs to write
precautionary code upon creating and while using objects.

Now, in order to understand this concept, let us take an example in C++. The library
programmer, who has designed the Distance class, wants to ensure that the fInches portion
of an object of the class should never exceed 12. If a value larger than 12 is speci ed by
an application programmer while calling the Distance::setInches() function, the logic
incorporated within the de nition of the function should automatically increment the value
of iFeet and decrement the value of fInches by suitable amounts. A modi ed de nition of
the Distance::setInches() function is as follows.

 void Distance::setInches(float y)
{
 fInches=y;
 if(fInches>=12)
 {
 iFeet+=fInches/12;
 fInches-=((int)fInches/12)*12;
 }
}

Here, we notice that an application programmer need not send values less than 12 while calling
the Distance::setInches() function. The default logic within the Distance::setInches()
function does the necessary adjustments. This is an example of data abstraction.

The above restriction may not appear mandatory. However, very soon we will create classes
where similar restrictions will be absolutely necessary (and also complicated).

Similarly, the de nition of the Distance::add() function should also be modi ed as
follows by the library programmer. Here, it can be assumed that the value of fInches portion
of neither the invoking object nor the object appearing as formal argument (‘dd’) can be
greater than 12.

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 return temp;
}

Now, if we write the statements shown in Listing 2.10

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++46

 Listing 2.10 Enforcing restrictions on the data members of a class

 d1.setFeet(1);
d1.setInches(9.5);
d2.setFeet(2);
d2.setInches(5.5);
d3=d1.add(d2);

then the value of d3.fInches will become 3 (not 15) and the value of d3.iFeet will become
4 (not 3).

It has already been mentioned that real-world objects never attain an invalid state. They
also do not start in an invalid state. Does C++ enable the library programmer to implement
this feature in class objects?

Let us continue with our earlier example—the Distance class. Recollect that it is the library
programmer’s intention to ensure that the value of fInches portion of none of the objects of
the class Distance should exceed 12. Now, let us consider Listing 2.11.

 Listing 2.11 Object gets created with improper values

 /*Beginning of DistJunk.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1;
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
}

/*End of DistJunk.cpp*/

Output
297 34.56

As you can see, the value of fInches of ‘d1’ is larger than 12! This happened because the
value of both iFeet and fInches automatically got set to junk values when ‘d1’ was allocated
memory and the junk value is larger than 12 for d1.fInches. Thus, the objective of the library
programmer to keep the value of fInches less than 12 has not yet been achieved.

It would be unrealistic to expect that an application programmer will explicitly initialize
each object that is declared.

 Distance d1;
d1.setFeet(0); //initialization
d1.setInches(0.0); //initialization

Obviously, the library programmer would like to add a function to the Distance class that
gets called automatically whenever an object is created and sets the values of the data members
of the object properly. Such a function is the constructor. The concept of constructor and a
related function, the destructor, is discussed in one of the later chapters.

But we may say that even if Distance was an ordinary structure and setInches()
function was a non-member function just as in C, data abstraction would still be in place.
Nevertheless, in the case of C, the library programmer cannot force calls to only those
functions that have been de ned. He/she cannot prevent calls to those functions that

https://hemanthrajhemu.github.io

 Classes and Objects 47

he/she has not de ned. Data abstraction is effective due to data hiding only (recall the case
of the overhead projector systems discussed earlier).

On the other side of the coin, in C language, life becomes dif cult for an application
programmer also. If a certain member of a structure variable acquires an invalid or a wrong
value, he/she has to hunt through the entire source code to detect the bug. This problem rapidly
gains signi cance as the code length increases. In actual practice, it is common to have code
of more than 25,000 lines.

Let us now sum up as follows:
Perfect de nitions of the member functions are guaranteed to achieve their objective

because of data hiding.
This is the essence of the object-oriented programming system. Real-world objects have

not only working parts but also an exclusive interface to these inner-working parts. A perfect
interface is guaranteed to work because of its exclusive rights.

2.1.8 Explicit Address Manipulation

An application programmer can manipulate the member data of any object by explicit address
manipulation. Listing 2.12 illustrates the point.

 Listing 2.12 Explicit address manipulation

 /*Beginning of DistAddrManip.cpp*/
#include“Distance.h”
#include<iostream.h>

void main()
{
 Distance d1;
 d1.setFeet(256);
 d1.setInches(2.2);
 char * p=(char *)&d1; //explicit address manipulation
 *p=1; //undesirable but unpreventable
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
}
/*End of DistAddrManip.cpp*/

 Output
257 2.2

However, such explicit address manipulation by an application programmer cannot be
prevented. It is left as an exercise for the readers to explain the output of the above program
(Listing 2.12).

2.1.9 Arrow Operator

Member functions can be called with respect to an object through a pointer pointing at the
object. The arrow operator (->) does this. An illustrative example is shown in Listing 2.13.

 Listing 2.13 Accessing members through pointers

/*Beginning of PointerToMember.cpp*/
#include<iostream.h>
#include“Distance.h”

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++48

void main()
{
 Distance d1; //object
 Distance * dPtr; //pointer
 dPtr=&d1; //pointer initialized
 /*Same as d1.setFeet(1) and d1.setInches(1.1)*/
 dPtr->setFeet(1); //calling member functions
 dPtr->setInches(1.1); //through pointers
 /*Same as d1.getFeet() and d1.getInches()*/
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches()<<endl;
}
/*End of PointerToMember.cpp*/

 Output
1 1.1

It is interesting to note that just like the dot (.) operator, the de nition of the arrow (->)
operator has also been extended in C++. It takes not only data members on its right as in C,
but also member functions as its right-hand side operand. If the operand on its right is a data
member, then the arrow operator behaves just as it does in C language. However, if it is a
member function of a class where a pointer of the same class type is its left-hand side operand,
then the compiler simply passes the value of the pointer as an implicit leading parameter to
the function call. Thus, the statement

dPtr->setFeet(1);

after conversion becomes
 setFeet(dPtr,1);

Now, the value of dPtr is copied into the this pointer. Therefore, the this pointer also
points at the same object at which dPtr points.

2.1.10 Calling One Member Function from Another

One member function can be called from another. An illustrative example is shown in
Listing 2.14.

 Listing 2.14 Calling one member function from another

 /*Beginning of NestedCall.cpp*/
class A
{
 int x;
 public:
 void setx(int);
 void setxindirect(int);
};

void A::setx(int p)
{
 x=p;
}

void A::setxindirect(int q)
{
 setx(q);

https://hemanthrajhemu.github.io

 Classes and Objects 49

}

void main()
{
 A A1;
 A1.setxindirect(1);
}
/*End of NestedCall.cpp*/

It is relatively simple to explain the above program. The call to the A::setxindirect()
function changes from

 A1.setxindirect(1);

to
 setxindirect(&A1,1);

The de nition of the A::setxindirect() function changes from
 void A::setxindirect(int q)
{
 setx(q);
}

to
void setxindirect(A * const this, int q)
{
 this->setx(q); //calling function through a pointer
}

which, in turn, changes to
void setxindirect(A * const this, int q)
{
 setx(this,q); //action of arrow operator
}

 2.2 Member Functions and Member Data

Let us study the various kinds of member functions and member data that classes in C++
have.

2.2.1 Overloaded Member Functions

Member functions can be overloaded just like non-member functions. Listing 2.15 illustrates
this point.

Listing 2.15 Overloaded member functions

 /*Beginning of memFuncOverload.cpp*/
#include<iostream.h>

class A
{
 public:
 void show();
 void show(int); //function show() overloaded!!
};

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++50

void A::show()
{
 cout<<“Hello\n”;
}

void A::show(int x)
{
 for(int i=0;i<x;i++)
 cout<<“Hello\n”;
}

void main()
{
 A A1;
 A1.show(); //first definition called
 A1.show(3); //second definition called
}
/*End of memFuncOverload.cpp*/

Output
Hello
Hello
Hello
Hello

 Function overloading enables us to have two functions of the same name and same signature
in two different classes. The class de nitions given in Listing 2.16 illustrate the point.

Listing 2.16 Facility of overloading functions permits member functions of two different
classes to have the same name

 class A
{
 public:
 void show();
};
class B
{
 public:
 void show();
};

A function of the same name show() is de ned in both the classes—‘A’ and ‘B’. The
signature also appears to be the same. But with our knowledge of the this pointer, we know
that the signatures are actually different. The function prototypes in the respective classes
are actually as follows.

void show(A * const);
void show(B * const);

Without the facility of function overloading, it would not be possible for us to have two
functions of the same name in different classes. Without the facility of function overloading,
choice of names for member functions would become more and more restricted. Later, we
will nd that function overloading enables function overriding that, in turn, enables dynamic
polymorphism.

https://hemanthrajhemu.github.io

 Classes and Objects 51

2.2.2 Default Values for Formal Arguments of Member Functions

We already know that default values can be assigned to arguments of non-member functions.
Default values can be speci ed for formal arguments of member functions also. An illustrative
example follows in Listing 2.17.

 Listing 2.17 Giving default values to arguments of member functions

/*Beginning of memFuncDefault.cpp*/
#include<iostream.h>

class A
{
 public:
 void show(int=1);
};

void A::show(int p)
{
 for(int i=0;i<p;i++)
 cout<<“Hello\n”;
}

void main()
{
 A A1;
 A1.show(); //default value taken
 A1.show(3); //default value overridden
}
/*End of memFuncDefault.cpp*/

Output
Hello
Hello
Hello
Hello

Again, it has to be kept in mind that a member function should be overloaded with care if
default values are speci ed for some or all of its formal arguments. For example, the compiler
will report an ambiguity error when it nds the second prototype for the show() function of
class A in Listing 2.18.

Listing 2.18 Giving default values to arguments of overloaded member functions can
lead to ambiguity errors

 class A
{
 public:
 void show();
 void show(int=0); //ambiguity error
};

Reasons for such ambiguity errors have already been explained in the section on function
overloading in Chapter 1. As in the case of non-member functions, if default values are
speci ed for more than one formal argument, they must be speci ed from the right to the

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++52

left. Similarly, default values must be speci ed in the function prototypes and not in function
de nitions. Further, default values can be speci ed for a formal argument of any type.

2.2.3 Inline Member Functions

Member functions are made inline by either of the following two methods.
By defining the function within the class itself (as in Listing 2.5)
By only prototyping and not defining the function within the class. The function is defined
outside the class by using the scope resolution operator. The definition is prefixed by the
inline keyword. As in non-member functions, the definition of the inline function must
appear before it is called. Hence, the function should be defined in the same header file
in which its class is defined. Listing 2.19 illustrates this.

Listing 2.19 Inline member functions

 /*Beginning of memInline.cpp*/
class A
{
 public:
 void show();
};

inline void A::show() //definition in header file itself
{
 //definition of A::show() function
}
/*End of memInline.cpp*/

2.2.4 Constant Member Functions

Let us consider this situation. The library programmer desires that one of the member functions
of his/her class should not be able to change the value of member data. This function should be
able to merely read the values contained in the data members, but not change them. However,
he/she fears that while de ning the function he/she might accidentally write the code to do
so. In order to prevent this, he/she seeks the compiler’s help. If he/she declares the function
as a constant function, and thereafter attempts to change the value of a data member through
the function, the compiler throws an error.

Let us consider the class Distance. The Distance::getFeet(), Distance::getInches(),
and the Distance::add() functions should obviously be constant functions. They should not
change the values of iFeet or fInches members of the invoking object even by accident.

Member functions are speci ed as constants by suf xing the prototype and the function
de nition header with the const keyword. The modi ed prototypes and de nitions of the
member functions of the class Distance are illustrated in Listing 2.20.

 Listing 2.20 Constant member functions

 /*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{

https://hemanthrajhemu.github.io

 Classes and Objects 53

 int iFeet;
 float fInches;
 public:
 void setFeet(int);
 int getFeet() const; //constant function
 void setInches(float);
 float getInches() const; //constant function
 Distance add(Distance) const; //constant function
};
/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet(int x)
{
 iFeet=x;
}
int Distance::getFeet() const //constant function
{
 iFeet++; //ERROR!!
 return iFeet;
}

void Distance::setInches(float y)
{
 fInches=y;
}

float Distance::getInches() const //constant function
{
 fInches=0.0; //ERROR!!
 return fInches;
}

Distance Distance::add(Distance dd) const //constant
 //function
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 iFeet++; //ERROR!!
 return temp;
}
/*End of Distlib.cpp*/

For constant member functions, the memory occupied by the invoking object is a read-
only memory. How does the compiler manage this? For constant member functions, the this
pointer becomes ‘a constant pointer to a constant’ instead of only ‘a constant pointer’. For
example, the this pointer is of type const Distance * const for the Distance::getFeet(),
Distance::getInches(), and Distance::add() functions. For the other member functions
of the class Distance, the this pointer is of type Distance * const.

Clearly, only constant member functions can be called with respect to constant objects. Non-
constant member functions cannot be called with respect to constant objects. However, constant
as well as non-constant functions can be called with respect to non-constant objects.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++54

2.2.5 Mutable Data Members

A mutable data member is never constant. It can be modi ed inside constant functions also.
Pre xing the declaration of a data member with the keyword mutable makes it mutable.
Listing 2.21 illustrates this.

Listing 2.21 Mutable data members

 /*Beginning of mutable.h*/
class A
{
 int x; //non-mutable data member
 mutable int y; //mutable data member

 public:

 void abc() const //a constant member function
 {
 x++; //ERROR: cannot modify a non-constant data
 //member in a constant member function
 y++; //OK: can modify a mutable data member in a
 //constant member function
 }

 void def() //a non-constant member function
 {
 x++; //OK: can modify a non-constant data member
 //in a non-constant member function
 y++; //OK: can modify a mutable data member in a
 //non-constant member function
 }
};
/*End of mutable.h*/

We frequently need a data member that can be modi ed even for constant objects. Suppose,
there is a member function that saves the data of the invoking object in a disk le. Obviously,
this function should be declared as a constant to prevent even an inadvertent change to data
members of the invoking object. If we need to maintain a ag inside each object that tells us
whether the object has already been saved or not, such a ag should be modi ed within the
above constant member function. Therefore, this data member should be declared a mutable
data member.

2.2.6 Friends

A class can have global non-member functions and member functions of other classes as
friends. Such functions can directly access the private data members of objects of the class.

 Friend non-member functions

A friend function is a non-member function that has special rights to access private data
members of any object of the class of whom it is a friend. In this section, we will study only
those friend functions that are not member functions of some other class.

A friend function is prototyped within the de nition of the class of which it is intended
to be a friend. The prototype is pre xed with the keyword friend. Since it is a non-member

https://hemanthrajhemu.github.io

 Classes and Objects 55

function, it is de ned without using the scope resolution operator. Moreover, it is not called
with respect to an object. An illustrative example is shown in Listing 2.22.

 Listing 2.22 Friend functions

 /*Beginning of friend.cpp*/
class A
{
 int x;
 public:
 friend void abc(A&); //prototype of the friend function
};

void abc(A& AObj) //definition of the friend function
{
 AObj.x++; //accessing private members of the object
}

void main()
{
 A A1;
 abc(A1);
}
/*End of friend.cpp*/

A few points about the friend functions that we must keep in mind are as follows:

friend keyword should appear in the prototype only and not in the definition.

Since it is a non-member function of the class of which it is a friend, it can be prototyped
in either the private or the public section of the class.

A friend function takes one extra parameter as compared to a member function that
performs the same task. This is because it cannot be called with respect to any object.
Instead, the object itself appears as an explicit parameter in the function call.

We need not and should not use the scope resolution operator while defining a friend
function.

There are situations where a function that needs to access the private data members of the
objects of a class cannot be called with respect to an object of the class. In such situations, the
function must be declared as a friend. We will encounter one such situation in Chapter 8.

Friend functions do not contradict the principles of OOPS. Since it is necessary to prototype
the friend function inside the class itself, the list of functions that can access the private
members of a class’s object remains well de ned and restricted. The bene ts provided by
data hiding are not compromised by friend functions.

 Friend classes

A class can be a friend of another class. Member functions of a friend class can access private
data members of objects of the class of which it is a friend. If class B is to be made a friend
of class A, then the statement

 friend class B;

should be written within the de nition of class A. Listing 2.23 illustrates this.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++56

 Listing 2.23 Declaring friend classes

 class A
{
 friend class B; //declaring B as a friend of A
 /*
 rest of the class A
 */
};

It does not matter whether the statement declaring class B as a friend is mentioned within
the private or the public section of class A. Now, member functions of class B can access the
private data members of objects of class A. Listing 2.24 exempli es this.

Listing 2.24 Effect of declaring a friend class

/*Beginning of friendClass.cpp*/
class B; //forward declaration… necessary because
 //definition of class B is after the statement
 //that declares class B a friend of class A.
class A
{
 int x;
 public:
 void setx(const int=0);
 int getx()const;
 friend class B; //declaring B as a friend of A
};
class B
{
 A * APtr;
 public:
 void Map(A * const);
 void test_friend(const int);
};
void B::Map(A * const p)
{
 APtr = p;
}
void B::test_friend(const int i)
{
 APtr->x=i; //accessing the private data member
}
/*End of friendClass.cpp*/

As we can see, member functions of class B are able to access private data member of
objects of the class A although they are not member functions of class A. This is because
they are member functions of class B that is a friend of class A.

Friendship is not transitive. For example, consider Listing 2.25.

https://hemanthrajhemu.github.io

 Classes and Objects 57

 Listing 2.25 Friendship is not transitive

class B;
class C;

 /*Beginning of friendTran.cpp*/
class A
{
 friend class B;
 int a;
};

class B
{
 friend class C;
};

class C
{
 void f(A * p)
 {
 p->a++; //error: C is not a friend of A
 //despite being a friend of a friend
 }
};
/*End of friendTran.cpp*/

 Friend member functions
How can we make some speci c member functions of one class friendly to another class? For
making only B::test_friend() function a friend of class A, replace the line

 friend class B;

in the declaration of the class A with the line
 friend void B::test_friend();

The modi ed de nition of the class A is
 class A
{
 /*
 rest of the class A
 */
 friend void B::test_friend();
};

However, in order to compile this code successfully, the compiler should rst see the
de nition of the class B. Otherwise, it does not know that test_friend() is a member
function of the class B. This means that we should put the de nition of class B before the
de nition of class A.

However, a pointer of type A * is a private data member of class B. So, the compiler should
also know that there is a class A before it compiles the de nition of class B. This problem of
circular dependence is solved by forward declaration. This is done by inserting the line

class A; //Declaration only! Not definition!!

before the de nition of class B. Now, the declarations and de nitions of the two classes
appear as shown in Listing 2.26.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++58

Listing 2.26 Forward declaring a class that requires a friend

 /*Beginning of friendMemFunc.h*/
class A;

class B
{
 A * APtr;
 public:
 void Map(const A * const);
 void test_friend(const int=0);
};

class A
{
 int x;
 public:
 friend void B::test_friend(const int=0);
};
/*End of friendMemFunc.h*/

Another problem arises if we try to de ne the B::test_friend() function as an inline
function by de ning it within class B itself. See Listing 2.27.

 Listing 2.27 Problem in declaring a friend member function inline

 class B
{
 /*
 rest of the class B
 */
 public:
 void test_friend(const int p)
 {
 APtr->x=p; //will not compile
 }
};

But how will the code inside B::test_friend() function compile? The compiler will
not know that there is a data member ‘x’ inside the de nition of class A. For overcoming
this problem, merely prototype B::test_friend() function within class B; de ne it as
inline after the de nition of class A in the header le itself. The revised de nitions appear
in Listing 2.28.

 Listing 2.28 Declaring a friend member function inline

 /*Beginning of friendMemFuncInline.h*/
class A;

class B
{
 A * APtr;
 public:
 void Map(const A * const);
 void test_friend(const int=0);
};

https://hemanthrajhemu.github.io

 Classes and Objects 59

class A
{
 int x;
 public:
 friend void B::test_friend(const int=0);
};

inline void B::test_friend(const int p)
{
 APtr->x=p;
}
/*End of friendMemFuncInline.h*/

Friends as bridges

Friend functions can be used as bridges between two classes.
Suppose there are two unrelated classes whose private data members need a simultaneous

update through a common function. This function should be declared as a friend to both the
classes. See Listing 2.29.

Listing 2.29 Friends as bridges

class B; //forward declaration

class A
{
 /*
 rest of the class A
 */
 friend void ab(const A&, const B&);
};

class B
{
 /*
 rest of the class B
 */
 friend void ab(const A&, const B&);
};

2.2.7 Static Members

 Static member data

Static data members hold global data that is common to all objects of the class. Examples of
such global data are

count of objects currently present,
common data accessed by all objects, etc.

Let us consider class Account. We want all objects of this class to calculate interest at the
rate of say 4.5%. Therefore, this data should be globally available to all objects of this class
(Listing 2.30).

This data cannot and should not be a member of the objects themselves. Otherwise, multiple
copies of this data will be embedded within the objects taking up unnecessary space. Same

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++60

value would have to be maintained for this data in all objects. This is very dif cult. Thus,
this data cannot be stored in a member variable of class Account.

At the same time, this data should not be stored in a global variable. Then the data is liable
to be changed by even non-member functions. It will also potentially lead to name con icts.
However, this means that it should be stored in a member variable of class Account!

How can this con ict be resolved? Storing the data in a static variable of the class resolves
this con ict. Static data members are members of the class and not of any object of the class,
that is, they are not contained inside any object.

We pre x the declaration of a variable within the class de nition with the keyword static
to make it a static data member of the class. See Listing 2.30.

 Listing 2.30 Declaring a static data member

 /*Beginning of Account.h*/
class Account
{
 static float interest_rate; //a static data member
 /*
 rest of the class Account
 */
};
/*End of Account.h*/

A statement declaring a static data member inside a class will obviously not cause any
memory to get allocated for it. Moreover, memory for a static data member will not get
allocated when objects of the class are declared. This is because a static data member is not a
member of any object. Therefore, we must not forget to write the statement to de ne (allocate
memory for) a static member variable. Explicitly de ning a static data member outside the
class is necessary. Otherwise, the linker produces an error. The following statement allocates
memory for interest_rate member of class Account.

 float Account::interest_rate;

The above statement initializes interest_rate to zero. If some other initial value (say 4.5)
is desired instead, the statement should be rewritten as follows.

 float Account::interest_rate=4.5;

Static data members should be de ned in the implementation les only. The header le is
included in both the implementation le and the driver program. If a static data member is
de ned in the header le, the static data member’s de nition would be in two les—the library
 le created from the implementation le and the object le created from the driver program.

But in order to get the executable, the linker will have to link these les. Upon nding two
de nitions of the static data member, the linker would throw an error.

Making static data members private prevents any change from non-member functions as
only member functions can change the values of static data members.

Introducing static data members does not increase the size of objects of the class. Static data
members are not contained within objects. There is only one copy of the static data member
in the memory. Let us try the following program (Listing 2.31) to nd out.

https://hemanthrajhemu.github.io

 Classes and Objects 61

 Listing 2.31 Static data members are not a part of objects

/*Beginning of staticSize.cpp*/
#include<iostream.h>
class A
{
 int x;
 char y;
 float z;
 static float s;
};
float A::s=1.1;
void main()
{
 cout<<sizeof(A)<<endl;
}
/*End of staticSize.cpp*/

Output
9

 Static data members can be of any type. For example, name of the bank that has the
accounts can be stored as a character array in a static data member of the class as illustrated
in Listing 2.32.

 Listing 2.32 Static data member can be of any type

 /*Beginning of Account.h*/

class Account
{
 static float interest_rate;
 static char name[30];
 /*
 rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float A::interest_rate=4.5;
char A::name[30]=“The Rich and Poor Bank”;
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Static data members of integral type can be initialized within the class itself if the need
arises. For example, see Listing 2.33.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++62

 Listing 2.33 Initializing integral static data members within the class itself

 /*Beginning of Account.h*/

class Account
{
 static int nameLength=30;
 static char name[nameLength];
 /*
 rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

int A::nameLength;
char A::name[nameLength]=“The Rich and Poor Bank”;
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

We must notice that the static data member that has been initialized inside the class must be
still de ned outside the class to allocate memory for it. Once the initial value has been supplied
within the class, the static data member must not be re-initialized when it is de ned.

Non-integral static data members cannot be initialized like this. For example, see
Listing 2.34.

 Listing 2.34 Non-integral static data members cannot be initialized within the class

 /*Beginning of Account.h*/

class Account
{
 static char name[30]=“The Rich and Poor Bank”; //error!!
 /*
 rest of the class Account
 */
};
/*End of Account.h*/

In Listing 2.33, the variable nameLength is referred to directly without the class name and
the scope resolution operator while de ning the variable name. One static data member can
directly refer to another without using the scope resolution operator.

Member functions can refer to static data members directly. An example follows (Listing
2.35).

 Listing 2.35 Accessing static data members from non-static member functions

 /*Beginning of Account.h*/

class Account
{
 static float interest_rate;
 public:

https://hemanthrajhemu.github.io

 Classes and Objects 63

 void updateBalance();
 /*
 rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate=4.5;
void Account::updateBalance()
{
 if(end_of_year)
 balance+=balance*interest_rate/100;
}
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

The object-to-member access operator can be used to refer to the static data member
of a class with respect to an object. The class name with the scope resolution operator can
do this directly.

f=a1.interest_rate; //a1 is an object of the class Account
f=Account::interest_rate;

There are some things static data members can do but non-static data members cannot.
A static data member can be of the same type as the class of which it is a member. See
Listing 2.36.

 Listing 2.36 Static data members can be of the same type as their class

 class A
{
 static A A1; //OK : static
 A * APtr; //OK : pointer
 A A2; //ERROR!! : non-static
};

A static data member can appear as the default value for the formal arguments of member
functions of its class. See Listing 2.37.

 Listing 2.37 A static data member can appear as the default argument in the member
functions

class A
{
 static int x;
 int y;
 public:
 void abc(int=x); //OK
 void def(int=y); //ERROR!! : object required
};

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++64

A static data member can be declared to be a constant. In that case, the member functions
will be able to only read it but not modify its value.

 Static member functions

How do we create a member function that need not be called with respect to an existing
object? This function’s sole purpose is to access and/or modify static data members of the
class. Static member functions ful ll the above criteria. Pre xing the function prototype with
the keyword static speci es it as a static member function. However, the keyword static
should not reappear in the de nition of the function.

Suppose there is a function set_interest_rate() that sets the value of the interest_rate
static data member of class Account. The application programmer should be able to call this
function even if no objects have been declared. As discussed previously, this function should
be static. Its de nition can be as shown in Listing 2.38.

 Listing 2.38 Static member function

 /*Beginning of Account.h*/
class Account
{
 static float interest_rate;
 public:
 static void set_interest_rate(float);
 /*
 rest of the class Account
 */
};
/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate = 4.5;

void Account::set_interest_rate(float p)
{
 interest_rate=p;
}
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Now, the Account::set_interest_rate() function can be called directly without an
object.

Account::set_interest_rate(5);

Static member functions do not take the this pointer as a formal argument. Therefore,
accessing non-static data members through a static member function results in compile-time
errors. Static member functions can access only static data members of the class.

Static member functions can still be called with respect to objects.
a1.set_interest_rate(5); //a1 is an object of the class
 //Account

https://hemanthrajhemu.github.io

 Classes and Objects 65

 2.3 Objects and Functions

Objects can appear as local variables inside functions. They can also be passed by value or by
reference to functions. Finally, they can be returned by value or by reference from functions.
Listings 2.39 and 2.40 illustrate all this.

Listing 2.39 Returning class objects

/*Beginning of Distance.h*/
class Distance
{
 public:
 /*function to add the invoking object with another
 object passed as a parameter and return the resultant
 object*/
 Distance add(Distance);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 return temp;
}
/*
 definitions of the rest of the functions of class
 Distance
*/

/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1,d2,d3;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(3);
 d2.setInches(6.25);
 d3=d1.add(d2);
 cout<<d3.getFeet()<<“ ”<<d3.getInches()<<endl;
}

/*End of Distmain.cpp*/

Output
9 1.75

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++66

 Listing 2.40 Returning class objects by reference

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{
/*definition of the class Distance*/
};
Distance& larger(Distance&, Distance&);
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include”Distance.h”
Distance& larger(Distance& dd1, Distance& dd2)
{
 float i,j;
 i=dd1.getFeet()*12+dd1.getInches();
 j=dd2.getFeet()*12+dd2.getInches();
 if(i>j)
 return dd1;
 else
 return dd2;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include”Distance.h”
void main()
{
 Distance d1,d2;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(5);
 d2.setInches(6.25);
 Distance& d3=larger(d1,d2);
 d3.setFeet(0);
 d3.setInches(0.0);
 cout<<d1.getFeet()<<» «<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<» «<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Output
0 0.0
5 6.25

 2.4 Objects and Arrays

Let us understand how arrays of objects and arrays inside objects are handled in C++.

https://hemanthrajhemu.github.io

