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 Listing 2.40 Returning class objects by reference

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{
/*definition of the class Distance*/
};
Distance& larger(Distance&, Distance&);
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include”Distance.h”
Distance& larger(Distance& dd1, Distance& dd2)
{
 float i,j;
 i=dd1.getFeet()*12+dd1.getInches();
 j=dd2.getFeet()*12+dd2.getInches();
 if(i>j)
  return dd1;
 else
  return dd2;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include”Distance.h”
void main()
{
 Distance d1,d2;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(5);
 d2.setInches(6.25);
 Distance& d3=larger(d1,d2);
 d3.setFeet(0);
 d3.setInches(0.0);
 cout<<d1.getFeet()<<» «<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<» «<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Output
0 0.0
5 6.25

 2.4  Objects and Arrays  

Let us understand how arrays of objects and arrays inside objects are handled in C++.
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2.4.1  Arrays of Objects

We can create arrays of objects. The following program shows how.

Listing 2.41 Array of objects

 /*Beginning of DistArray.cpp*/
#include“Distance.h”
#include<iostream.h>
#define SIZE 3

void main()
{
 Distance dArray[SIZE];
 int a;
 float b;
 for(int i=0;i<SIZE;i++)
 {
  cout<<“Enter the feet : ”;
  cin>>a;
  dArray[i].setFeet(a);
  cout<<“Enter the inches : ”;
  cin>>b;
  dArray[i].setInches(b);
 }
 for(int i=0;i<SIZE;i++)
 {
  cout <<dArray[i].getFeet()<<“ ”  
    <<dArray[i].getInches()<<endl;
 }
}

/*End of DistArray.cpp*/

Output
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
1 1.1
2 2.2
3 3.3

2.4.2  Arrays Inside Objects

An array can be declared inside a class. Such an array becomes a member of all objects of 
the class. It can be manipulated/accessed by all member functions of the class. The class 
de  nition shown in Listing 2.42 illustrates this.

https://hemanthrajhemu.github.io



 Object-Oriented Programming with C++68

 Listing 2.42 Arrays inside objects

 #define SIZE 3
/*A class to duplicate the behaviour of an integer array*/
class A
{
  int iArray[SIZE];
 public:
  void setElement(unsigned int,int);
  int getElement(unsigned int);
};
/*function to write the value passed as second parameter at the position passed 
as first parameter*/
void A::setElement(unsigned int p,int v)
{
 if(p>=SIZE)
  return; //better to throw an exception
 iArray[p]=v;
}
/*function to read the value from the position passed as parameter*/
int A::getElement(unsigned int p)
{
 if(p>=SIZE)
  return –1; //better to throw an exception
 return iArray[p];
}

The class de  nition is self-explanatory. However, the comments indicate that it is better 
to throw exceptions rather than terminate the function. What are exceptions? How are they 
thrown? What are the bene  ts of using them? All these questions are answered in the chapter 
on Exception Handling.

 2.5   Namespaces  

Namespaces enable the C++ programmer to prevent pollution of the global namespace that 
leads to name clashes.

The term ‘global namespace’ refers to the entire source code. It also includes all the directly 
and indirectly included header  les. By default, the name of each class is visible in the entire 
source code, that is, in the global namespace. This can lead to problems.

Suppose a class with the same name is de  ned in two header  les.
/*Beginning of A1.h*/
class A
{
};
/*End of A1.h*/

/*Beginning of A2.h*/
class A //a class with an existing name
{
};
/*End of A2.h*/ 

Now, let us include both these header  les in a program and see what happens if we declare 
an object of the class. See Listing 2.43.
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 Listing 2.43 Referring to a globally declared class can lead to ambiguity error

/*Beginning of multiDef01.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A AObj; //ERROR: Ambiguity error due to multiple
    //definitions of A
}
/*End of multiDef01.cpp*/

The scenario in Listing 2.43 is quite likely in large programs. The global visibility of 
the de  nition of class A makes the inclusion of the two header  les mutually exclusive. 
Consequently, this also makes use of the two de  nitions of class A mutually exclusive.

How can this problem be overcome? How can we ensure that an application is able to 
use both de  nitions of class A simultaneously? Enclosing the two de  nitions of the class in 
separate namespaces overcomes this problem.

 /*Beginning of A1.h*/
namespace A1 //beginning of a namespace A1
{
 class A
 {
 };
}    //end of a namespace A1
/*End of A1.h*/

/*Beginning of A2.h*/
namespace A2 //beginning of a namespace A2
{
 class A
 {
 };
}    //end of a namespace A2
/*End of A2.h*/

Now, the two de  nitions of the class are enveloped in two different namespaces. The 
corresponding namespace, followed by the scope resolution operator, must be pre  xed to 
the name of the class while referring to it anywhere in the source code. Thus, the ambiguity 
encountered in the above listing can be overcome. A revised de  nition of the main() function 
from Listing 2.43 illustrates this (Listing 2.44).

 Listing 2.44 Enclosing classes in namespaces prevents pollution of the global 
namespace

/*Beginning of multiDef02.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A1::A AObj1; //OK: AObj1 is an object of the class
    //defined in A1.h
 A2::A AObj2; //OK: AObj2 is an object of the class
    //defined in A2.h
}
/*End of multiDef02.cpp*/
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Qualifying the name of the class with that of the namespace can be cumbersome. The 
 using directive enables us to make the class de  nition inside a namespace visible so that 
qualifying the name of the referred class by the name of the namespace is no longer required. 
Listing 2.45 shows how this is done.

  Listing 2.45 The using directive makes qualifying of referred class names by names of 
enclosing namespaces unnecessary

 /*Beginning of using.cpp*/
#include“A1.h”
#include“A2.h”
void main()
{
 using namespace A1;
 A AObj1; //OK: AObj1 is an object of the class 
    //defined in A1.h
A2::A AObj2; //OK: AObj2 is an object of the class 
    //defined in A2.h
}
/*Beginning of using.cpp*/

However, we must note that the using directive brings back the global namespace pollution 
that the namespaces mechanism was supposed to remove in the  rst place! The last line in 
the above listing compiles only because the class name was quali  ed by the name of the 
namespace.

Some namespaces have long names. Qualifying the name of a class that is enclosed within 
such a namespace, with the name of the namespace, is cumbersome. See Listing 2.46.

 Listing 2.46 Cumbersome long names for namespace

 /*Beginning of longName01.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };
}

void main()
{
 a_very_very_long_name::A A1; //cumbersome long name
}
/*End of longName01.cpp*/

Assigning a suitably short alias to such a long namespace name solves the problem as 
illustrated in Listing 2.47.

 Listing 2.47 Providing an alias for a namespace

 /*Beginning of longName02.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };
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}

namespace x = a_very_very_long_name; //declaring an 

     //alias
void main()
{
 x::A A1; //convenient short name
}
/*End of longName02.cpp*/

Aliases provide an incidental bene  t also. Suppose an alias has been used at a number 
of places in the source code. Changing the alias declaration so that it stands as an alias for 
a different namespace will make each reference of the enclosed class refer to a completely 
different class. Suppose an alias X refers to a namespace ‘N1’.

namespace X = N1; //declaring an alias 

Further, suppose that this alias has been used extensively in the source code.
X::A AObj; //AObj is an object of class A that is 
   //enclosed in namespace N1.
AObj.f1(); //f1() is a member function of the above
   //class. 

If the declaration of alias X is modi  ed as follows (‘N2’ is also a namespace)
 namespace X = N2; //modifying the alias

then, all existing quali  cations of referred class names that use X would now refer to class 
A that is contained in namespace ‘N2’. Of course, the lines having such references would 
compile only if both of the namespaces, ‘N1’ and ‘N2’, contain a class named A, and if these 
two classes have the same interface.

For keeping the explanations simple, classes that have been given as examples in the rest 
of this book are not enclosed in namespaces.

 2.6   Nested Inner Classes  
A class can be de  ned inside another class. Such a class is known as a nested class. The 
class that contains the nested class is known as the enclosing class. Nested classes can be 
de  ned in the private, protected, or public portions of the enclosing class (protected access 
speci  er is explained in the chapter on inheritance).

In Listing 2.48, class B is de  ned in the private section of class A.

  Listing 2.48 Nested classes

 /*Beginning of nestPrivate.h*/
class A
{
 class B
 {
  /*
   definition of class B
  */
 };
 /*
  definition of class A
 */
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};
/*End of nestPrivate.h*/

In Listing 2.49, class B is de  ned in the public section of class A.

 Listing 2.49 A public nested class

 /*Beginning of nestPublic.h*/
class A
{
 public:
 class B
 {
  /*
   definition of class B
  */
 };
 /*
  definition of class A
 */
};
/*End of nestPublic.h*/

A nested class is created if it does not have any relevance outside its enclosing class. By 
de  ning the class as a nested class, we avoid a name collision. In Listings 2.48 and 2.49, even if 
there is a class B de  ned as a global class, its name will not clash with the nested class B.

The size of objects of an enclosing class is not affected by the presence of nested classes. 
See Listing 2.50.

Listing 2.50 Size of objects of the enclosing class

/*Beginning of nestSize.cpp*/
#include<iostream.h>

class A
{
  int x;
 public:
  class B
  {
    int y;
  };
};

void main()
{
 cout<<sizeof(int)<<endl;
 cout<<sizeof(A)<<endl;
}
/*End of nestSize.cpp*/

 Output
4
4

How are the member functions of a nested class de  ned? Member functions of a nested 
class can be de  ned outside the de  nition of the enclosing class. This is done by pre  xing 
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the function name with the name of the enclosing class followed by the scope resolution 
operator. This, in turn, is followed by the name of the nested class followed again by the 
scope resolution operator. This is illustrated by Listing 2.51.

Listing 2.51 Defi ning member functions of nested classes

/*Beginning of nestClassDef.h*/
class A
{
 public:
 class B
 {
  public:
   void BTest(); //prototype only
 };
 /*
  definition of class A
 */
};
/*End of nestClassDef.h*/

/*Beginning of nestClassDef.cpp*/
#include“nestClassDef.h”
void A::B::BTest()
{
 //definition of A::B::BTest() function
}

/*
 definitions of the rest of the functions of class B
*/
/*End of nestClassDef.cpp*/ 

A nested class may be only prototyped within its enclosing class and de  ned later. Again, 
the name of the enclosing class followed by the scope resolution operator is required. See 
Listing 2.52.

 Listing 2.52 Defi ning a nested class outside the enclosing class

 /*Beginning of nestClassDef.h*/
class A
{
 class B; //prototype only
};

class A::B
{
 /*
  definition of the class B
 */
};
/*End of nestClassDef.h*/

Objects of the nested class are de  ned outside the member functions of the enclosing 
class in much the same way (by using the name of the enclosing class followed by the scope 
resolution operator).

 A::B B1;
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However, the above line will compile only if class B is de  ned within the public section 
of class A. Otherwise, a compile-time error will result.

An object of the nested class can be used in any of the member functions of the enclosing 
class without the scope resolution operator. Moreover, an object of the nested class can be a 
member of the enclosing class. In either case, only the public members of the object can be 
accessed unless the enclosing class is a friend of the nested class. See Listing 2.53.

Listing 2.53 Declaring objects of the nested class in the member functions of the 
enclosing class

 /*Beginning of nestClassObj.h*/
class A
{
  class B
  {
   public:
    void BTest(); //prototype only
  };
  B B1;
 public:
  void ATest();
};
/*End of nestClassObj.h*/

/*Beginning of nestClassObj.cpp*/
#include“nestClassObj.h”

void A::ATest()
{
 B1.BTest();
 B B2;
 B2.BTest();
}
/*End of nestClassObj.cpp*/

Member functions of the nested class can access the non-static public members of the 
enclosing class through an object, a pointer, or a reference only. An illustrative example 
follows in Listing 2.54.

 Listing 2.54 Accessing non-static members of the enclosing class in member functions 
of the nested class.

 /*Beginning of enclClassObj.h*/
class A
{
 public:
  void ATest();
  class B
  {
   public:
    void BTest(A&);
    void BTest1();
  };
};
/*End of enclClassObj.h*/
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/*Beginning of enclClassObj.cpp*/
#include“enclClassObj.h”

void A::B::BTest(A& ARef)
{
 ARef.ATest(); //OK
}

void A::B::BTest1()
{
 ATest(); //ERROR!!
}
/*End of enclClassObj.cpp*/

It can be observed that an error is produced when a direct access is made to a member 
of the enclosing class through a function of the nested class. This is as it should be. After 
all, creation of an object of the nested class does not cause an object of the enclosing class 
to be created. The classes are nested to merely control the visibility. Since ‘A::B::BTest()’ 
function will be called with respect to an object of class B, a direct access to a member of the 
enclosing class A can be made through an object of that class only.

By default, the enclosing class and the nested class do not have any access rights to each 
other’s private data members. They can do so only if they are friends to each other.

Classes have both member data and member functions. 
Member functions can be given exclusive rights to 
access data members. Member functions and mem-
ber data can be private, protected, or public. The 
struct keyword has been rede  ned in C++. Apart 
from member data, structures in C++ can have mem-
ber functions also. In a class, members are private 
by default. In a structure, members are public by 
default.

The scope resolution operator is used to separate 
the class de  nition from the de  nitions of the member 
functions. The class de  nition can be placed in a header 
 le. Member functions, with the aid of scope resolution 

operator, can be placed in a separate implementation 
 le.

The this pointer is implicitly inserted by the com-
piler, as a leading formal argument, in the prototype 
and in the de  nition of each member function of each 
class. When a member function is called with respect 
to an object, the compiler inserts the address of the 
calling object as a leading parameter to the function 
call. Consequently, the this pointer, which exists as 
the implicit leading formal argument in all member 
functions, always points at the object with respect to 
which the member function has been called.

Access to member data and member functions 
from within member functions is resolved by the this 
pointer. The this pointer is a constant pointer in case 
of non-constant member functions and a constant 
pointer to a constant in case of constant member 
functions.

If the operand on its right is a data member, then 
the object-to-member access operator (.) behaves just 
as it does in C language. However, if it is a member 
function of a class whereas an object of the same class 
is its left-hand side operand, then the compiler simply 
passes the address of the object as an implicit leading 
parameter to the function call.

Similarly, if the operand on its right is a data 
member, then the pointer-to-member access operator 
(->) behaves just as it does in C language. However, 
if it is a member function of a class whereas a pointer 
to an object of the same class is its left-hand side 
operand, then the compiler simply passes the value 
of the pointer as an implicit leading parameter to the 
function call. Member functions can call each other. 
Calls are resolved through the this pointer. Member 
functions can be overloaded. Default values can be 
given to the formal arguments of member functions.

Summary
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Programs having inline functions tend to run faster 
than equivalent programs with non-inline functions. A 
function is declared inline either by de  ning it inside 
a class or by declaring it inside a class and de  ning it 
outside with the keyword inline. This feature should 
be used sparingly. Otherwise, the increased size of the 
executable can slow it down.

If required, member functions can be declared 
as constant functions to prevent even an inadvertent 
change in the data members. A function can be declared 
as a constant function by suf  xing its prototype and the 
header of its de  nition by the keyword const.

A mutable data member is never constant. It is 
modi  able inside constant functions also. A friend 
function is a non-member function that has a special 
right to access private data members of objects of the 
class of which it is a friend. This does not really negate 
the philosophy of OOPS. A friend function still needs 
to be declared inside the class of which it is a friend. 
The advantage that a friend function provides is that it 
is not called with respect to an object.

A global non-member function can be declared as 
a friend to a class. Member function of one class can 
be declared as a friend function of another. An entire 
class can be declared as a friend of another too. A class 
or a function is declared friend to a desired class by 
prototyping it in the class and pre  xing the prototype 
with the keyword friend.

Only one copy of a static data member exists for 
the entire class. This is in contrast to non-static data 
members that exist separately in each object. Static 
data members are used to keep data that relates to the 
entire set of objects that exist at any given point during 
the program’s execution. A data member is declared as 
a static member of a class by pre  xing its declaration 
in the class by the keyword static.

Static member functions can access static data 
members only. They can be called without declaring 
any objects. A member function is declared as a static 
member of a class by pre  xing its declaration in the 
class by the keyword static.

Objects can appear as local variables inside 
functions. They can also be passed by value or by 
reference to functions. Finally, they can be returned 
by value or by reference from functions.

Arrays of objects can be created. Arrays can be 
created inside classes also. One class can be de  ned 
inside another class. Such a class is known as a nested 
class. The class that contains the nested class is known 
as the enclosing class. Nested classes can be de  ned 
in the private, protected, or public portions of the 
enclosing class.

Namespaces enable the C++ programmer to prevent 
pollution of the global namespace. They help prevent 
name classes.

Key Terms 
class
private access speci  er
public access speci  er
objects
scope resolution operator
the this pointer
data abstraction
arrow operator
overloaded member functions
default values for formal arguments of member 
functions

inline member functions
constant member functions
mutable data members
friend non-member functions
friend classes
friend member functions
friends as bridges
static member data
static member functions
namespaces
nested classes

Exercises
1. How does the class construct enable data security?
2. What is the use of the scope resolution operator?
3. What is the this pointer? Where and why does the 

compiler insert it implicitly?

 4. What is data abstraction? How is it implemented in 
C++?

 5. Which operator is used to access a class member with 
respect to a pointer?
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 6. What is the difference between a mutable data 
member and a static data member?

 7. Describe the two ways in which a member function 
can be declared as an inline function.

 8. How can a global non-member function be declared 
as a friend to a class?

 9. What is the use of declaring a class as a friend of 
another?

 10. Explain why friend functions do not contradict the 
principles of OOPS.

 11. Explain why static data members should be explicitly 
declared outside the class.

 12. Why should static data members be de  ned in the 
implementation  les only?

 13. What is the use of static member functions?
 14. How do namespaces help in preventing pollution of 

the global namespace?
 15. What is a nested class? What is its use?
 16. How are the member functions of a nested class 

defined outside the definition of the enclosing 
class?

 17. State true or false.
(a) Structures in C++ can have member functions 

also.
(b) Structure members are private by default.
(c) The this pointer is always a constant pointer.
(d) Member functions cannot be overloaded.
(e) Default values can be given to the formal 

arguments of member functions.
(f) Only constant member function can be called for 

constant objects.
(h) The keyword friend should appear in the 

prototype as well as the de  nition of the function 
that is being declared as a friend.

(i) A friend function can be prototyped in only the 
public section of the class.

(j) Friendship is not transitive.
(k) A static data member can be of the same type as 

the class of which it is a member.
(l) The size of objects of an enclosing class is 

affected by the presence of nested classes.
(m) An object of the nested class can be used in any 

of the member functions of the enclosing class 
without the scope resolution operator. 

(n) An object of the nested class cannot be a member 
of the enclosing class. 

(o) Public members of the nested class’s object 

which have been declared in a function of the 
enclosing class can always be accessed.

 18. Your compiler should provide a structure 
and associated functions to fetch the current 
system date. Suppose the name of the structure 
is date_d and the name of the associated 
functions to fetch the current system date is 
getSysDate().

   Create a class with a name that is similar to 
the above structure. This class should contain 
a variable of the above structure as its private 
data member. Introduce a member function 
in the class that calls the associated function 
of the date structure. Thus, create a wrapper 
class and make an available structure safe to 
use.

class date_D //a wrapper class
{
  date_d d;
 public:
  void getSysDate();
};

void date_D::getSysDate()
{
getSysDate(&d); // calling the associ-

ated function from 
    //the member function
} 

  Also, write a small test program to test the 
above class.

 19. Create a class named Distance_mks. This class 
should be similar to the class Distance, except for 
the following differences:

 The data members of this new class would be 
iMeters (type integer; for representing the 
meters portion of a distance) and fCentimeters 
(type float; for representing the centimeters 
portion of a distance) instead of iFeet and 
fInches.

 Suitably designed member functions to work 
upon the new data members should replace the 
ones that we have seen for the class Distance. 
The member functions should ensure that the 
fCentimeters of no object should ever exceed 
100.
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Constructors and Destructors

We are already aware of the need to include a member function in our class that initializes 
the data members of its class to desired default values and gets called automatically for each 
object that has just got created. Constructors ful  ll this need and the  rst portion of this chapter 
deals with constructors. Various types of constructors are described in the middle portion of 
this chapter.

There is also the need to include a member function in our class that gets called automatically 
for each object that is going out of scope. Destructors ful  ll this need and the penultimate 
portion of this chapter deals with destructors.

Along with the class construct and the access speci  ers, constructors and destructors 
complete the requirements needed to created new data type—safe and ef  cient data types. 
This is discussed in the last portion of this chapter.

O 

V 

E 

R 

V 

I 

E 

W

4

 4.1   Constructors 

The constructor gets called automatically for each object that has just got created. It appears 
as member function of each class, whether it is de  ned or not. It has the same name as that 
of the class. It may or may not take parameters. It does not return anything (not even void). 
The prototype of a constructor is

<class name> (<parameter list>);

The need for a function that guarantees initialization of member data of a class was felt in 
Chapter 2. Constructors ful  ll this need. Domain constraints on the values of data members 
can also be implemented via constructors. For example, we want the value of data member 
 nches of each object of the class Distance to be between 0.0 and 12.0 at all times within 
the lifetime of the object. But this condition may get violated in case an object has just got 
created. However, introducing a suitable constructor to the class Distance can enforce this 
condition.

The compiler embeds a call to the constructor for each object when it is created. Suppose 
a class A has been declared as follows:

/*Beginning of A.h*/
class A
{
  int x;

public:
  void setx(const int=0);
  int getx();
};
/*End of A.h*/
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Consider the statement that declares an object of a class A in Listing 4.1.

Listing 4.1 Constructor gets called automatically for each object when it is created

/*Beginning of AMain.cpp*/
#include“A.h”
void main()
{
 A A1;  //object declared … constructor called
}
/*End of AMain.cpp*/

The statement in the function main() in Listing 4.1 is transformed into the following 
statements.

A A1;   //memory allocated for the object (4 bytes)
A1.A();  //constructor called implicitly by compiler

The second statement above is then transformed to
A(&A1); //see Chapter 2

Similarly, the constructor is called for each object that is created dynamically in the heap by 
the new operator.

A * APtr;
APtr = new A; //constructor called implicitly by compiler

The second statement above is transformed into the following two statements.
APtr = new A; //memory allocated
APtr->A(); //constructor called implicitly by compiler

The second statement above is then transformed into
A(APtr); //see Chapter 2

The foregoing explanations make one thing very clear. Unlike their name, constructors do 
not actually allocate memory for objects. They are member functions that are called for each 
object immediately after memory has been allocated for the object. 

The constructor is called in this manner separately for each object that is created. But did 
we prototype and de  ne a public function with the name ‘A()’ inside the class A? The answer 
is ‘no’. Then how did the above function call get resolved? The compiler prototypes and 
de  nes the constructor for us. But what statements does the de  nition of such a constructor 
have? The answer is ‘nothing’.

Before
class A
{
  . . . .
  . . . .
 public:
  . . . .
  . . . .
  //no constructor
};

https://hemanthrajhemu.github.io



 Object-Oriented Programming with C++94

After
class A
{
  . . . .
  . . . .
 public:
  A(); //prototype inserted implicitly by compiler
  . . . .
  . . . .
};

A::A()
{
 //empty definition inserted implicitly by compiler
}

As we can see, the name of the constructor is the same as the name of the class. Also, the 
constructor does not return anything. The compiler de  nes the constructor in order to resolve 
the call to the constructor that it compulsorily places for the object being created. 

For reasons that we will discuss later, it is forbidden to call the constructor explicitly for 
an existing object as follows.

A1.A(); //not legal C++ code!

4.1.1  Zero-argument Constructor

We can and should de  ne our own constructors if the need arises. If we do so, the compiler 
does not de  ne the constructor. However, it still embeds implicit calls to the constructor as 
before.

The constructor is a non-static member function. It is called for an object. It, therefore, takes 
the this pointer as a leading formal argument just like other non-static member functions. 
Correspondingly, the address of the invoking object is passed as a leading parameter to the 
constructor call. This means that the members of the invoking object can be accessed from 
within the de  nition of the constructor.

Let us add our own constructor to class A de  ned in Listing 4.1 and verify whether the 
constructor is actually called implicitly by the compiler or not. See Listing 4.2.

Listing 4.2 Constructor gets called for each object when the object is created

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A();   //our own constructor
 void setx(const int=0);
 int getx();
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include”A.h”
#include<iostream.h>
A::A()   //our own constructor
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{
 cout<<”Constructor of class A called\n”;
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A A1;
 cout<<”End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program

Let us now de  ne our own constructor for the class Distance. What should the constructor 
do to the invoking object? We would like it to set the values of the iFeet and fInches 
data members of the invoking object to 0 and 0.0, respectively. Accordingly, let us add the 
prototype of the function within the class de  nition in the header  le and its de  nition in the 
library source code. See Listing 4.3.

Listing 4.3 A user-defi ned constructor to implement domain constraints on the data 
members of a class

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance(); //our own constructor
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance() //our own constructor
{
 iFeet=0;
 fInches=0.0;
}
/*
 definitions of the rest of the functions of class 
 Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest.cpp*/
#include<iostream.h>
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#include“Distance.h”
void main()
{
 Distance d1; //constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest.cpp*/

Output
0 0.0

Now, due to the presence of the constructor within the class Distance, there is a  guaranteed 
initialization of the data of all objects of the class Distance. Our objective of keeping the 
fInches portion of all objects of the class Distance within 12.0 is now ful  lled.

The constructor that we have de  ned in Listing 4.2 does not take any arguments and is 
called the zero-argument constructor. The constructor provided by default by the compiler also 
does not take any arguments. Therefore, the terms ‘zero-argument constructor’ and ‘default 
constructor’ are used interchangeably.

Now, let us start the study of a class that will enable us to abstract character arrays and 
overcome many of the drawbacks that exist in them. This class will be our running example 
for explaining most of the concepts of this book. We will de  ne it incrementally. Our purpose 
is to ultimately de  ne a class that can be used instead of character arrays. 

Let us call the class String. It will have two data members. Both these data members will 
be private. The  rst data member will be a character pointer. It will point at a dynamically 
allocated block of memory that contains the actual character array. The other data member 
will be a long unsigned integer that will contain the length of this character array.

/*Beginning of String.h*/
class String
{
  char * cStr; //character pointer to point at 
    //the character array

  long unsigned int len; //to hold the length of the 
    //character array

  /*
   rest of the class String
  */

};
/*End of String.h*/

Suppose ‘s1’ is an object of the class String and the string ‘abc’ has been assigned to it. 
Diagrammatically this situation can be depicted in Figure 4.1.

The address of the  rst byte of the memory block containing the string is 101. This value 
is stored in the ‘cStr’ portion of ‘s1’. The address of ‘s1’ is 27.

Also, we would religiously implement the following two conditions on all objects of the 
class String.

• ‘cStr’ should either point at a dynamically allocated block of memory exclusively allocated 
for it (that is, no other pointer should point at the block of memory being pointed at by 
‘cStr’) or ‘cStr’ should be NULL.

• There should be no memory leaks.
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Obviously, when an object of the class String is created, the ‘cStr’ portion of the object 
should be initially set to NULL (and ‘len’ should be set to 0). Accordingly, the prototype and 
the de  nition of the constructor are as shown in Listing 4.4.

Listing 4.4 A user-defi ned constructor

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  String(); //prototype of the constructor
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
String::String() //definition of the constructor
{    //When an object is created …
 cStr=NULL; //…nullify its pointer and…
 len=0; //…set the length as zero.
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

4.1.2  Parameterized Constructors

Constructors take arguments and can, therefore, be overloaded. Suppose, for the class 
Distance, the library programmer decides that while creating an object, the application 
programmer should be able to pass some initial values for the data members contained in the 
object. For this, he/she can create a parameterized constructor as shown in Listing 4.5.

Figure 4.1 Memory layout of an object of the class String
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Listing 4.5 A user-defi ned parameterized constructor—called by creating an object in 
the stack

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance(); //prototypes provided by the 
    //library programmer
  Distance(int,float); //prototype of the parameterized 
    //constructor
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance()
{
 iFeet=0;
 fInches=0.0;
}
Distance::Distance(int p, float q)
{
 iFeet=p;
 setInches(q);
}

/*
 definitions of the rest of the functions of class 
Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest1.cpp*/
#include<iostream.h>
#include“Distance.h”
void main()
{
 Distance d1(1,1.1); //parameterized constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest1.cpp*/

Output
1 1.1

Listing 4.5 demonstrates a user-de  ned parameterized costructor being called by creating 
an object in the stack while Listing 4.6 demonstrates a user-de  ned parameterized constructor 
being called in the heap.

Listing 4.6 A user-defi ned parameterized constructor—called by creating an object in 
the heap

/*Beginning of DistTest2.cpp*/
#include<iostream.h>
#include“Distance.h”
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void main()
{
 Distance * dPtr;
 dPtr = new Distance(1,1.1); // parameterized 
    //constructor called Output
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches();
}
/*End of DistTest2.cpp*/

Output
1 1.1

The  rst line of the function main() in Listing 4.5 and the second line of the main() 
function in Listing 4.6 show the syntax for passing values to the parameterized constructor. 
The parameterized constructor is prototyped and de  ned just like any other member function 
except for the fact that it does not return any value. 

We must remember that if the parameterized constructor is provided and the zero-argument 
constructor is not provided, the compiler will not provide the default constructor. In such a 
case, the following statement will not compile.

Distance d1; //ERROR: No matching constructor

Just like in other member functions, the formal arguments of the parameterized constructor 
can be assigned default values. But in that case, the zero-argument constructor should be 
provided. Otherwise, an ambiguity error will arise when we attempt to create an object without 
passing any values for the constructor. See Listing 4.7.

Listing 4.7 Default values given to parameters of a parameterized constructor make the 
zero-argument constructor unnecessary 

/*Beginning of Distance.h*/
class Distance
{
 public:
  //Distance();zero-argument constructor commented out
  Distance(int=0,float=0.0); //default values given
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

If we write,
Distance d1;

an ambiguity error arises if the zero-argument constructor is also de  ned. This is because 
both the zero-argument constructor and the parameterized constructor can resolve this 
statement.

Let us now create a parameterized constructor for the class String. We will also assign 
a default value for the argument of the parameterized constructor. The constructor would 
handle the following statements.

String s1(“abc”);
OR
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char * cPtr = “abc”;
String s1(cPtr);
OR
char cArr[10] = “abc”;
String s1(cArr);

In each of these statements, we are essentially passing the base address of the memory 
block in which the string itself is stored to the constructor. 

In the  rst case, base address of the memory block of four bytes in which the string “abc” 
is stored is passed as a parameter to the constructor. But the constructor of the class String 
should be de  ned in such a manner that ‘s1.cStr’ is made to point at the base of a different 
memory block of four bytes in the heap area that has been exclusively allocated for the purpose. 
Only the contents of the memory block, whose base address is passed to the constructor, should 
be copied into the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ should be set to 
3. The formal argument of the parameterized constructor for the class String will obviously 
be a character pointer because the address of a memory block containing a string has to be 
passed to it. Let us call this pointer ‘p’. Then, after the statements String s1 (“abc”); 
executes, the scenario shown in Figure 4.2 should emerge.

Figure 4.2 Assigning a string to an object of the class String
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In Figure 4.2, ‘p’ is the formal argument of the constructor. The address of the memory 
block that contains the passed string is 50. This address is passed to the constructor and stored 
in ‘p’. Therefore, the value of ‘p’ is 50. But the constructor should execute in such a manner 
that a different block that is suf  ciently long to hold the string at which ‘p’ is pointing should 
also be allocated dynamically in the heap area (see Figure 4.2). This memory block extends 
from byte numbers 101 to 104. The base address of this block of memory is then stored in the 
pointer embedded in ‘s1’. The string is copied from the memory block at which ‘p’ points to 
the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ is appropriately set to 3.

In the second case
char * cPtr = “abc”;
String s1(cPtr);

the value of ‘cPtr’ is passed as a parameter to the constructor. This value is stored in ‘p’. 
Thus, both ‘p’ and ‘cPtr’ point at the same place. As in the previous case, the constructor of 
the class String should be de  ned in such a manner that ‘s1.cStr’ should be made to point 
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at the base of a different memory block of four bytes that has been exclusively allocated for 
the purpose. Only the contents of the memory block whose base address is passed to the 
constructor should be copied into the memory block at which ‘s1.cStr’ points.

In Figure 4.3, ‘cPtr’ points at the memory block containing the string. In other words, the 
value of ‘cPtr’ is the address of the memory block containing the string.

The third case 
char cArr[10] = “abc”;
String s1(cArr);

is very similar to the second. In this, we are passing the name of the array as a parameter to 
the constructor. But we know that the name of an array is itself a  xed pointer that contains 
the base address of the memory block containing the actual contents of the array. This can 
be seen in Figure 4.4.

Let us now de  ne the constructor that produces these effects. We must realize that ‘p’ (the 
formal argument of the constructor) should be as follows:

const char * const

First, it should be a constant pointer because throughout the execution of the constructor, 
it should continue to point at the same memory block. Second, it should be a pointer to a 
constant because even inadvertently, the library programmer should not dereference it to 
change the contents of the memory block at which it is pointing. Additionally, we would 
like to specify a default value for ‘p’ (NULL) so that there is no need to separately de  ne a 
zero-argument constructor.

The de  nition of the class String along with the prototype of the constructor and its 
de  nition are shown in Listing 4.8.

Figure 4.3 Assigning a string to an object of the class String
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Listing 4.8 A user-defi ned parameterized constructor for acquiring memory outside the 
object

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  /*no zero-argument constructor*/
  String(const char * const p = NULL);
  const char * getString();
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
  cStr=NULL; //…nullify
  len=0;
 }
 else  //…otherwise…
 {
  len=strlen(p);

Figure 4.4 Assigning an array to an object of the class String
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  cStr=new char[len+1]; //…dynamically allocate a 
    //separate memory block
  strcpy(cStr,p); //…and copy into it
 }
}

const char * String::getString()
{
 return cStr;
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”); //pass a string to the 
    //parameterized constructor
 cout<<s1.getString()<<endl; //display the string
}
/*End of StringMain.cpp*/

Output
abc

Another function called getString() has also been introduced to the class String. It 
will enable us to display the string itself. The function returns a const char * so that only 
a pointer to a constant can be equated to a call to this function. 

const char * p = s1.getString();

Such a pointer will effectively point at the same memory block at which the invoking 
object’s pointer points. As a result of the above statement both ‘p’ and ‘s1.cStr’ would end 
up pointing at the same place. Yet it will not be able to change the values contained in the 
memory block since it is a pointer to a constant. We must note that for securing data that is 
outside the object itself, extra efforts are required on the part of the library programmer.

We can reprogram the above main() function and verify that the newly de  ned constructor 
is capable of producing the effects depicted in Figures 4.2, 4.3, and 4.4.

4.1.3 Explicit Constructors

Note that the  rst statement of the main() function in Listing 4.8 calls the constructor of the 
class String. Now, look at the following statement.

String s1 = “abc”;

The above statement also calls the constructor of the class String. The above statement 
compiles because there is a constructor in the class String that takes a string as a parameter. 
This constructor implicitly converts the string “abc” into an object of the class String. It is 
as if the above statement was written as follows (note the cast):

String s1 = (String)“abc”;
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But, we did not provide a cast in the statement that we wrote. Then how did the conversion 
take place? As mentioned earlier, it is the constructor that is carrying out the conversion 
for us.

However, if the constructor is declared as an explicit constructor, statements like the one 
above will not compile. Explicit constructors do not allow implicit conversions like the one 
that occurred in the above example.

Constructors are declared explicit by pre  xing their declarations with the explicit keyword. 
Let us  rst look at the syntax for declaring an explicit constructor (see Listing 4.9). We will 
then look at a program that will illustrate the situation under which we can get the error if a 
constructor has been declared as an explicit constructor.

Listing 4.9 The explicit constructor

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  /*no zero-argument constructor*/
  /*
   The next statement declares an explicit constructor. 
   Note the explicit keyword.
  */
  explicit String(const char * const p = NULL);
  const char * getString();
  /*
   rest of the class String
  */
};
/*End of String.h*/

Let us look at Listing 4.10, which illustrates the error we can get when a constructor is 
declared as an explicit constructor.

Listing 4.10 Error caused by the explicit constructor

/*Beginning of StringMain.cpp*/
#include<iostream.h>
#include“String.h”
void main()
{
 String s1(“abc”);  //ok: explicit constructor called
 String s2 = “def”; //error: will not compile due to 
    //the explicit constructor
}
/*End of StringMain.cpp*/

Note that the error in the above program will go away if the statement is written as 
follows:

String s2 = (String)“def”; //ok

It is obvious that the explicit constructor is preventing an implicit conversion of string 
into an object of the class String and is forcing the application programmer to do explicit 
conversion.
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Further note that we need to mention the explicit keyword in the declaration of the 
constructor only. It is not necessary to pre  x the de  nition of the constructor with the explicit 
keyword.

Explicit constructors can prove to be useful for the programmer if he is creating a class 
for which an implicit conversion by the constructor is undesirable.

4.1.4  Copy Constructor

The copy constructor is a special type of parameterized constructor. As its name implies, it 
copies one object to another. It is called when an object is created and equated to an existing 
object at the same time. The copy constructor is called for the object being created. The pre-
existing object is passed as a parameter to it. The copy constructor member-wise copies the 
object passed as a parameter to it into the object for which it is called.

If we do not de  ne the copy constructor for a class, the compiler de  nes it for us. But in 
either case, a call is embedded to it under the following three circumstances. 

When an object is created and simultaneously equated  to another existing object, the copy 
constructor is called for the object being created. The object to which this object was 
equated is passed as a parameter to the copy constructor.

A A1;   //zero-argument/default constructor called
A A2=A1; //copy constructor called

or
A A2(A1); //copy constructor called

or
A * APtr = new A(A1); //copy constructor called

 Here, the copy constructor is called for ‘A2’ and for ‘Aptr’ while ‘A1’ is passed as a 
parameter to the copy constructor in both cases.

When an object is created as a non-reference formal argument  of a function. The copy 
constructor is called for the argument object. The object passed as a parameter to the 
function is passed as a parameter to the copy constructor.

void abc(A);
A A1;   //zero-argument/default constructor called
abc(A1); //copy constructor called

void abc(A A2)
{
 /*
  definition of abc()
 */
}

 Here again the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter to 
the copy constructor.
When an object is created and simultaneously equated to a call to a function that returns  
an object. The copy constructor is called for the object that is equated to the function call. 
The object returned from the function is passed as a parameter to the constructor.

A abc()
{
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 A A1;  //zero-argument/default constructor called
 /*
  remaining definition of abc()
 */
 return A1;
}
A A2=abc(); //copy constructor called

 Once more, the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter 
to the copy constructor.

The prototype and the de  nition of the default copy constructor de  ned by the compiler are 
as follows.

class A
{
 public:
  A(A&); //the default copy constructor
};

A::A(A& AOBj) //the default copy constructor
{
*this=AObj; //copies the passed object into the invoking 
    //object
}

As is obvious, the default copy constructor does exactly what it is supposed to do—it copies. 
The statement

A A2=A1;

is converted as follows:
A A2;   //memory allocated for A2
A2.A(A1); //copy constructor is called for A2 and A1 is 
    //passed as a parameter to it

This last statement is then transformed to
A(&A2,A1); //see the section on ‘this’ pointer in Chapter 2

When the above statement executes, ‘AObj’ (the formal argument in the copy constructor) 
becomes a reference to ‘A1’, whereas the this pointer points at ‘A2’ (the invoking object). 
Similarly, the other statements where the object is created as a formal argument or is returned 
from a function can also be explained.

But why does the compiler create the formal argument of the default copy constructor as a 
reference object? And when the compiler does de  ne a copy constructor in the expected way, 
then why should we de  ne one on our own? Both these questions are answered now.

First, let us  nd out why objects are passed by reference to the copy constructor. Suppose 
the formal argument (‘AObj’) of the copy constructor is not a reference. Now, suppose the 
following statement executes.

A A2=A1;

The copy constructor will be called for ‘A2’ and ‘A1’ will be passed as a parameter to it. 
Then the copy constructor will be called for ‘AObj’ and ‘A1’ will be passed as a parameter to 
it. This is because ‘AObj’ is a non-reference formal argument of the copy constructor. Thus, an 
endless chain of calls to the copy constructor will be initiated. However, if the formal argument 
of the copy constructor is a reference, then no constructor (not even the copy constructor) will 
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be called for it. This is because a reference to an object is not a separate object. No separate 
memory is allocated for it. Therefore, a call to a constructor is not embedded for it.

Now we come to a crucial question. Why should we de  ne our own copy constructor? 
After all, the default copy constructor (which is provided free of cost by the complier) does 
a pretty decent job. First, recollect the conditions we decided to implement for all objects 
of the class String. Suppose an object of the class String is created and at the same time 
equated to another object of the class. For example,

String s1(“abc”);
String s2=s1; //copy constructor is called for s2 and s1 
    //is passed as a parameter to it

Since we have not de  ned the copy constructor for the class String, the compiler has 
done it for us. What does this default copy constructor do in the above case? It simply copies 
the values of ‘s1’ to ‘s2’! This means that the value of ‘s2.cStr’ becomes equal to ‘s1.cStr’. 
Thus, both the pointers point at the same place! This is certainly a violation of our conditions. 
The behaviour of the default copy constructor is undesirable in this case. To overcome this 
problem of the default copy constructor, we must de  ne our own copy constructor.

From within the copy constructor of the class String, a separate memory block must be 
 rst allocated dynamically in the heap. This memory block must be equal in length to that of 

the string at which the pointer of the object passed as a parameter (‘s1’ in this case) points. 
The pointer of the invoking object (‘s2’ in this case) must then be made to point at this newly 
allocated memory block. The value of ‘len’ variable of the invoking object should also be 
set appropriately. However, if the pointer in the object passed as a parameter is NULL, then 
the value of the pointer and ‘len’ variable of the invoking object must be set to NULL and 
zero, respectively.

Accordingly, the prototype and the de  nition of the copy constructor of the class String 
appear as shown in Listing 4.11.

Listing 4.11 A user-defi ned copy constructor

/*Beginning of String.h*/
#include<iostream.h>
class String
{
 char * cStr;
 long unsigned int len;

 public:
 String(const String&); //our own copy constructor
 /*
  rest of the class String
 */
  explicit String(const char * const p = NULL);
const char * getString();
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include”String.h”
#include<string.h>
String::String(const String& ss) //our own copy constructor
{
 if(ss.cStr==NULL) //if passed object’s pointer is NULL…
 {
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  cStr=NULL; //… then nullify the invoking object’s
    //pointer too
  len=0;
 }
 else  //otherwise…
 {
  len=ss.len;
  cStr = new char[len+1]; //…dynamically allocate a
    //separate memory block
  strcpy(cStr,ss.cStr); //…and copy into it
 }
}
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
  cStr=NULL; //…nullify
  len=0;
 }
 else  //…otherwise…
 {
  len=strlen(p);
  cStr=new char[len+1]; //…dynamically allocate a
    //separate memory block
  strcpy(cStr,p); //…and copy into it
 }
}
const char * String::getString()
{
 return cStr;
}
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include”String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”);
 String s2=s1;
 cout<<s1.getString()<<endl;
 cout<<s2.getString()<<endl;
}
/*End of StringMain.cpp*/

Output
abc
abc

In the copy constructor (Listing 4.11), the formal argument is a constant. It has to be a 
reference in order to prevent an endless chain of calls to itself. But at the same time the library 
programmer would certainly want to prevent even an inadvertent change in the values of the 
object that gets passed to the copy constructor. He/she would like the compiler to report a 
compile-time error if he/she inadvertently writes statements like the following. 

ss.cStr=NULL; //pointer of parameter object modified!
ss.len++; //len variable of the parameter object
    //modified!
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 4.2   Destructors
The destructor gets called for each object that is about to go out of scope. It appears as a 
member function of each class whether we de  ne it or not. It has the same name as that of 
the class but pre  xed with a tilde sign. It does not take parameters. It does not return anything 
(not even void). The prototype of a destructor is

~ <class name> ();

The need for a function that guarantees deinitialization of member data of a class and frees 
up the resources acquired by the object during its lifetime will be explained soon. Destructors 
ful  ll this need.

The compiler embeds a call to the destructor for every object when it is destroyed. Let us 
have one more look at the main() function of Listing 4.1.

void main()
{
 A A1;
} //A1 goes out of scope here

‘A1’ goes out of scope just before the main() function terminates. At this point, the compiler 
embeds a call to the destructor for ‘A1’. It embeds the following statement.

A1.~A(); //destructor called … not legal C++ code

An explicit call to the destructor for an existing object is forbidden. The above statement 
is then transformed into

~A(&A1); //see chapter 2

The destructor will also be called for an object that has been dynamically created in the 
heap just before the delete operator is applied on the pointer pointing at it.

A * APtr;
APtr = new A; //object created … constructor called
. . . .
. . . .
delete APtr; //object destroyed … destructor called

The last statement is transformed into
APtr->~A(); //destructor called for *APtr
delete APtr; //memory for *APtr released

First, the destructor is called for the object that is going out of scope. Thereafter, the 
memory occupied by the object itself is deallocated. The second last statement above is 
transformed into

~A(APtr); //see the section on ‘this’ pointer in Chapter 2

Unlike its name, the destructor does not ‘destroy’ or deallocate memory that an object 
occupies. It is merely a member function that is called for each object just before the object 
goes out of scope (gets destroyed).

As can be readily observed, the compiler embeds a call to the destructor for each and every 
object that is going out of scope. But we did not prototype and de  ne the destructor inside 
the class. Then how was the above call to the destructor resolved? The compiler prototypes 
and de  nes the destructor for us. But what statements does the de  nition of such a destructor 
have? The answer is ‘nothing’. An example of a compiler-de  ned destructor follows.
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Before
class A
{
  . . . .
  . . . .
 public:
  . . . .
  . . . .
  //no destructor
};

After
class A
{
  . . . .
  . . . .
 public:
  ~A(); //prototype inserted implicitly by compiler
  . . . .
  . . . .
};

A::~A()
{
 //empty definition inserted implicitly by compiler
}

Let us add our own destructor to the class A de  ned in Listing 4.2 and verify whether the 
destructor is actually called implicitly by the compiler or not. See Listing 4.12.

Listing 4.12 Destructor gets called for each object when the object is destroyed

/*Beginning of A.h*/
class A
{
  int x;
 public:
  A(); 
  void setx(const int=0);
  int getx();
  ~A(); //our own destructor
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
#include<iostream.h>
A::A()
{
 cout<<“Constructor of class A called\n”;
}

A::~A()  //our own destructor
{
 cout<<“Destructor of class A called\n”;
}

/*
 definitions of the rest of the functions of class A
*/
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/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include“A.h”
#include<iostream.h>
void main()
{
 A A1;
 cout<<“End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program
Destructor of class A called

As we can see, the name of the destructor is the same as the name of the class but pre  xed 
with a tilde sign. Moreover, the destructor does not return anything. The compiler de  nes 
the destructor in order to resolve the call to the destructor that it compulsorily places for the 
object going out of scope. 

Destructors do not take any arguments. Therefore, they cannot be overloaded.
Why should we de  ne our own destructor? We must remember that the destructor is also 

a member function. It is called for objects. Therefore, it can access the data members of the 
object for which it has been called. 

Let us think of a relevant de  nition for the destructor of the class Distance. What would 
we like it to do for us? What should it do to the data members of the object that is going out 
of scope? Should it set them to zero?

Distance::~Distance()
{
 iFeet=0;
 fInches=0.0;
}

But what is the use? The object is anyway going out of scope immediately after the 
destructor executes.

But we must de  ne the destructor for classes whose objects, during their lifetime, acquire 
resources that are outside the objects themselves. Let us take the example of the class String. 
We consider the following code block.

{
 . . . .
 . . . .
 String s1(“abc”);
 . . . .
 . . . .
}

The memory that was allocated to ‘s1’ itself gets deallocated when this block  nishes 
execution. But ‘s1.cStr’ was pointing at a memory block that was dynamically allocated in the 
heap area. This memory block was outside the memory block occupied by ‘s1’ itself. After 
‘s1’ gets destroyed, this memory block remains allocated as a locked up lost resource. The 
only pointer that was pointing at it (‘s1.cStr’) is no longer available. This is  memory leak. It 
should be  prevented. We should deallocate the memory block at which the pointer inside any 
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object of the class String is pointing exactly when the object goes out of scope. This means 
that we must call the delete operator for the pointer inside the class String and place this 
statement inside the destructor. See Listing 4.13.

Listing 4.13 A user-defi ned destructor

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  ~String(); //our own destructor
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::~String() //our own destructor
{
 if(cStr!=NULL) //if memory exists
  delete[] cStr; //… destroy it
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

 4.3  Philosophy of OOPS 

Now, let us digress and appreciate the basic philosophy of OOPS. One of the aims in OOPS 
is to abolish the use of fundamental data types. Classes can contain huge amounts of func-
tionality (member functions) that free the application programmer from the worry of taking 
precautions against bugs. 

The class String is one such data type. By adding some more relevant functions, we can 
conveniently use objects of the class String. Consider adding the following function to the 
class String.

void String::addChar(char); //function to add a character
    //to the string

As its name suggests, this function will append a character to the string at which the pointer 
inside the invoking object points.

String s1(“abc”);

As a result of this statement, the pointer inside ‘s1’ points at a memory block of four bytes 
(last one containing NULL). Now, if we write

s1.addChar(‘d’); //add a character to the string

the following things should happen.
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Another block of five bytes should get allocated. 
The string contained in the memory block at which ‘s1.cStr’  is currently pointing should 
get copied into this new memory block.
The character ‘d’  should get appended to the string.
The null character should get further appended to the string. 
‘s1.cStr’  should be made to point at this new memory block.
The memory block at which ‘s1.cStr’  was pointing previously should be deallocated (to 
prevent memory leaks).

Figure 4.5 shows adding a character to a stretchable string in the object-oriented way.

Before
String s1(“abc”);

cStr 101

3

27

len

a b c \0

s1

101

After
s1.addChar(‘d’);

Figure 4.5 Adding a character to a stretchable string—the object-oriented way

One possible way of using this function is by using a loop to obtain a string from the user, 
which can be of any length. While writing the program, the application programmer need not 
predict the length of the string the user will enter. The following code can be used for adding 
a character to a stretchable string in the object-oriented way.

while(1) //potentially infinite loop
{
 ch=getche();
 if(ch==‘\n’) //if user finishes entering the string
  break; //… break the loop
 s1.addChar(ch); //…else append the character to it
}
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As the user keeps adding characters to the string, the allocated memory keeps getting 
stretched in a manner that is transparent to the application programmer. Such an effect is 
simply unthinkable with character arrays.

We would also like to add a function that will replace the string associated with an object 
with the string that we pass to it. We let this function be

void String::setString(const char * const);

Suppose the following statements are executed.
String s1(“abc”);
s1.setString(“def”); //replace “abc” by “def”

Then the following events should take place when the second statement executes (‘s1.cStr’ 
is already pointing at a memory block that contains the string abc and is not NULL).

A block of four bytes should be dynamically allocated to accommodate the string “def  ”.
The string  def should get written in that memory block with the null character 
appended.
s1.cStr  should be made to point at this new block of memory.
The block of memory at which  s1.cStr was previously pointing should be deallocated 
to prevent memory leak.
The formal argument of the String::setString() function is a const char * const. The 

reasons for this have already been discussed under the section on parameterized constructor. 
We may think that the de  nition of this function will be the same as that of the constructor. But 
this is not so. When the constructor starts executing, cStr may or may not be NULL (it may 
contain junk value). But if it is not NULL, it does not mean that it is pointing at a dynamically 
allocated block of memory. But when the String::setString() function starts executing, if 
cStr is not NULL, then it is de  nitely pointing at a dynamically allocated block of memory. 
Statements to check this condition and to deallocate the memory block and to nullify cStr 
and to set ‘len’ to zero should be inserted at the beginning of the String::setString() 
function. Otherwise a memory leak will occur. De  ning the String::addChar() and 
String::setString() functions is left as an exercise. 

Let us think of more such relevant functions that can be added to the class String. There 
can be a function that will change the value of a character at a particular position in the string 
at which the pointer of the invoking object points. Moreover, there can be a function that 
reads the value from a particular position in the string at which the pointer of the invoking 
object points. These functions can have built-in checks to prevent values from being written 
to or read from bytes that are beyond the memory block allocated. Again, such a check is not 
built into character arrays. The application programmer has to put in extra efforts on his/her 
own to prevent the program from exceeding the bounds of the array. 

After we have added all such functions to the class String, we will get a new data type 
that will be safe, ef  cient, and convenient to use.

Suitably de  ned constructors and destructors have a vital role to play in the creation of 
such data types. Together they ensure that

There are no memory leaks (the destructor frees up unwanted memory). 
There are no run-time errors (no two calls to the destructor try to free up the same block  
of memory).
Data is never in an invalid state and domain constraints on the values of data members  
are never violated.
After such data types have been de  ned, new data types can be created that extend the 

de  nitions of existing data types. They contain the de  nition of the existing data types and at 
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the same time add more specialized features on their own. This facility of de  ning new data 
types by making use of existing data types is known as inheritance. Chapter 5 deals with this 
feature of OOPS and its implementation in C++.

Constructors can be used to guarantee a proper 
initialization of data members of a class. Domain 
constraints on values of data members can be 
implemented via constructors.

Constructors are member functions and have the 
same name as that of the class itself. The compiler 
creates a zero-argument constructor and a copy 
constructor if we do not de  ne them. Constructors take 
parameters and, therefore, can be overloaded. They 
do not return anything (not even void). The compiler 
implicitly embeds a call to the constructor for each 
object that is being created. An explicit call to the 
constructor for an existing object is forbidden.

If necessary, destructors can be used to guarantee 
a proper clean up when an object goes out of scope. 
Destructors are member functions and have the same 
name as that of the class itself but with the tilde sign 
pre  xed. The compiler creates a destructor if we do 
not de  ne one. Destructors do not take parameters and, 
therefore, cannot be overloaded. They do not return 
anything (not even void). The compiler implicitly 
embeds a call to the destructor for each object that is 
going out of scope (being destroyed). An explicit call 
to the destructor for an existing object is forbidden.

Summary

Key Terms 
constructors

– called automatically for each object that has just 
got created

– de  ned by default
– has the same name as that of the class

– does not return anything
zero-argument constructor
parameterized constructors
copy constructor
destructors

Exercises

 1. What are constructors? When are they called? What 
is their utility?

 2. Why should the formal argument of a copy 
constructor be a reference object?

 3. What are destructors? When are they called? What 
is their utility?

 4. Is a destructor necessary for the following class?

class Time
{
  int hours, minutes, seconds;
 public:
  /*
    rest of the class Time … but no 

more data members
  */
};

 5. De  ne a suitable parameterized constructor with 
default values for the class Time given in question 
4.

 6. Four member functions are provided by default by 
the compiler for each class that we de  ne. We have 
studied three of them in this chapter. Name them.

 7. State true or false.
(a) Memory occupied by an object is allocated by 

the constructor of its class.
(b) Constructors can be used to acquire memory 

outside the objects.
(c) Constructors can be overloaded.
(d) A constructor can have a return statement in its 

de  nition.
(e) Memory occupied by an object is deallocated by 

the destructor of its class.
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(f ) Destructors can be used to release memory that 
has been acquired outside the objects.

(g) Destructors can be overloaded.
(h) A destructor can have a return statement in its 

de  nition.
8. The copy constructor has been explicitly de  ned for 

the class String so that no two objects of the class 
String end up sharing the same resource, that is, 
end up with their contained pointers pointing at the 
same block of dynamically allocated memory. In 
this case, two such blocks may contain two copies 
of the same data as a result of the copy constructor, 

which is perfectly acceptable. However, there are 
situations where no two objects should share even 
copies of the same data. If A is a class for whose 
objects this restriction needs to be applied, then we 
should ensure that a statement like the second one 
below should not compile.

A A1;
A A2 = A1;

  How can this objective be achieved? (Hint: Member 
functions are not always public and the copy 
constructor is a member function.)
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