

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

xii Detailed Contents

 2.2 Member Functions and Member Data 49
 2.2.1 Overloaded Member Functions 49
 2.2.2 Default Values for Formal Arguments of Member Functions 51
 2.2.3 Inline Member Functions 52
 2.2.4 Constant Member Functions 52
 2.2.5 Mutable Data Members 54
 2.2.6 Friends 54
 2.2.7 Static Members 59

 2.3 Objects and Functions 65
 2.4 Objects and Arrays 66

 2.4.1 Arrays of Objects 67
 2.4.2 Arrays Inside Objects 67

 2.5 Namespaces 68
 2.6 Nested Inner Classes 71

3. Dynamic Memory Management 78
 3.1 Introduction 78
 3.2 Dynamic Memory Allocation 79
 3.3 Dynamic Memory Deallocation 84
 3.4 set_new_handler() function 88

4. Constructors and Destructors 92
 4.1 Constructors 92

 4.1.1 Zero-argument Constructor 94
 4.1.2 Parameterized Constructors 97
 4.1.3 Explicit Constructors 103
 4.1.4 Copy Constructor 105

 4.2 Destructors 109
 4.3 Philosophy of OOPS 112

5. Inheritance 117
 5.1 Introduction 117

 5.1.1 Effects of Inheritance 118
 5.1.2 Bene ts of Inheritance 120
 5.1.3 Inheritance in Actual Practice 120
 5.1.4 Base Class and Derived Class Objects 121
 5.1.5 Accessing Members of the Base Class in the Derived Class 121

 5.2 Base Class and Derived Class Pointers 122
 5.3 Function Overriding 127
 5.4 Base Class Initialization 129
 5.5 Protected Access Speci er 132
 5.6 Deriving by Different Access Speci ers 133

 5.6.1 Deriving by the Public Access Speci er 133
 5.6.2 Deriving by the Protected Access Speci er 135
 5.6.3 Deriving by the Private Access Speci er 136

 5.7 Different Kinds of Inheritance 139
 5.7.1 Multiple Inheritance 139
 5.7.2 Ambiguities in Multiple Inheritance 141

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++66

 Listing 2.40 Returning class objects by reference

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{
/*definition of the class Distance*/
};
Distance& larger(Distance&, Distance&);
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include”Distance.h”
Distance& larger(Distance& dd1, Distance& dd2)
{
 float i,j;
 i=dd1.getFeet()*12+dd1.getInches();
 j=dd2.getFeet()*12+dd2.getInches();
 if(i>j)
 return dd1;
 else
 return dd2;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include”Distance.h”
void main()
{
 Distance d1,d2;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(5);
 d2.setInches(6.25);
 Distance& d3=larger(d1,d2);
 d3.setFeet(0);
 d3.setInches(0.0);
 cout<<d1.getFeet()<<» «<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<» «<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Output
0 0.0
5 6.25

 2.4 Objects and Arrays

Let us understand how arrays of objects and arrays inside objects are handled in C++.

https://hemanthrajhemu.github.io

 Classes and Objects 67

2.4.1 Arrays of Objects

We can create arrays of objects. The following program shows how.

Listing 2.41 Array of objects

 /*Beginning of DistArray.cpp*/
#include“Distance.h”
#include<iostream.h>
#define SIZE 3

void main()
{
 Distance dArray[SIZE];
 int a;
 float b;
 for(int i=0;i<SIZE;i++)
 {
 cout<<“Enter the feet : ”;
 cin>>a;
 dArray[i].setFeet(a);
 cout<<“Enter the inches : ”;
 cin>>b;
 dArray[i].setInches(b);
 }
 for(int i=0;i<SIZE;i++)
 {
 cout <<dArray[i].getFeet()<<“ ”
 <<dArray[i].getInches()<<endl;
 }
}

/*End of DistArray.cpp*/

Output
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
1 1.1
2 2.2
3 3.3

2.4.2 Arrays Inside Objects

An array can be declared inside a class. Such an array becomes a member of all objects of
the class. It can be manipulated/accessed by all member functions of the class. The class
de nition shown in Listing 2.42 illustrates this.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++68

 Listing 2.42 Arrays inside objects

 #define SIZE 3
/*A class to duplicate the behaviour of an integer array*/
class A
{
 int iArray[SIZE];
 public:
 void setElement(unsigned int,int);
 int getElement(unsigned int);
};
/*function to write the value passed as second parameter at the position passed
as first parameter*/
void A::setElement(unsigned int p,int v)
{
 if(p>=SIZE)
 return; //better to throw an exception
 iArray[p]=v;
}
/*function to read the value from the position passed as parameter*/
int A::getElement(unsigned int p)
{
 if(p>=SIZE)
 return –1; //better to throw an exception
 return iArray[p];
}

The class de nition is self-explanatory. However, the comments indicate that it is better
to throw exceptions rather than terminate the function. What are exceptions? How are they
thrown? What are the bene ts of using them? All these questions are answered in the chapter
on Exception Handling.

 2.5 Namespaces

Namespaces enable the C++ programmer to prevent pollution of the global namespace that
leads to name clashes.

The term ‘global namespace’ refers to the entire source code. It also includes all the directly
and indirectly included header les. By default, the name of each class is visible in the entire
source code, that is, in the global namespace. This can lead to problems.

Suppose a class with the same name is de ned in two header les.
/*Beginning of A1.h*/
class A
{
};
/*End of A1.h*/

/*Beginning of A2.h*/
class A //a class with an existing name
{
};
/*End of A2.h*/

Now, let us include both these header les in a program and see what happens if we declare
an object of the class. See Listing 2.43.

https://hemanthrajhemu.github.io

 Classes and Objects 69

 Listing 2.43 Referring to a globally declared class can lead to ambiguity error

/*Beginning of multiDef01.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A AObj; //ERROR: Ambiguity error due to multiple
 //definitions of A
}
/*End of multiDef01.cpp*/

The scenario in Listing 2.43 is quite likely in large programs. The global visibility of
the de nition of class A makes the inclusion of the two header les mutually exclusive.
Consequently, this also makes use of the two de nitions of class A mutually exclusive.

How can this problem be overcome? How can we ensure that an application is able to
use both de nitions of class A simultaneously? Enclosing the two de nitions of the class in
separate namespaces overcomes this problem.

 /*Beginning of A1.h*/
namespace A1 //beginning of a namespace A1
{
 class A
 {
 };
} //end of a namespace A1
/*End of A1.h*/

/*Beginning of A2.h*/
namespace A2 //beginning of a namespace A2
{
 class A
 {
 };
} //end of a namespace A2
/*End of A2.h*/

Now, the two de nitions of the class are enveloped in two different namespaces. The
corresponding namespace, followed by the scope resolution operator, must be pre xed to
the name of the class while referring to it anywhere in the source code. Thus, the ambiguity
encountered in the above listing can be overcome. A revised de nition of the main() function
from Listing 2.43 illustrates this (Listing 2.44).

 Listing 2.44 Enclosing classes in namespaces prevents pollution of the global
namespace

/*Beginning of multiDef02.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A1::A AObj1; //OK: AObj1 is an object of the class
 //defined in A1.h
 A2::A AObj2; //OK: AObj2 is an object of the class
 //defined in A2.h
}
/*End of multiDef02.cpp*/

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++70

Qualifying the name of the class with that of the namespace can be cumbersome. The
 using directive enables us to make the class de nition inside a namespace visible so that
qualifying the name of the referred class by the name of the namespace is no longer required.
Listing 2.45 shows how this is done.

 Listing 2.45 The using directive makes qualifying of referred class names by names of
enclosing namespaces unnecessary

 /*Beginning of using.cpp*/
#include“A1.h”
#include“A2.h”
void main()
{
 using namespace A1;
 A AObj1; //OK: AObj1 is an object of the class
 //defined in A1.h
A2::A AObj2; //OK: AObj2 is an object of the class
 //defined in A2.h
}
/*Beginning of using.cpp*/

However, we must note that the using directive brings back the global namespace pollution
that the namespaces mechanism was supposed to remove in the rst place! The last line in
the above listing compiles only because the class name was quali ed by the name of the
namespace.

Some namespaces have long names. Qualifying the name of a class that is enclosed within
such a namespace, with the name of the namespace, is cumbersome. See Listing 2.46.

 Listing 2.46 Cumbersome long names for namespace

 /*Beginning of longName01.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };
}

void main()
{
 a_very_very_long_name::A A1; //cumbersome long name
}
/*End of longName01.cpp*/

Assigning a suitably short alias to such a long namespace name solves the problem as
illustrated in Listing 2.47.

 Listing 2.47 Providing an alias for a namespace

 /*Beginning of longName02.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };

https://hemanthrajhemu.github.io

 Classes and Objects 71

}

namespace x = a_very_very_long_name; //declaring an

 //alias
void main()
{
 x::A A1; //convenient short name
}
/*End of longName02.cpp*/

Aliases provide an incidental bene t also. Suppose an alias has been used at a number
of places in the source code. Changing the alias declaration so that it stands as an alias for
a different namespace will make each reference of the enclosed class refer to a completely
different class. Suppose an alias X refers to a namespace ‘N1’.

namespace X = N1; //declaring an alias

Further, suppose that this alias has been used extensively in the source code.
X::A AObj; //AObj is an object of class A that is
 //enclosed in namespace N1.
AObj.f1(); //f1() is a member function of the above
 //class.

If the declaration of alias X is modi ed as follows (‘N2’ is also a namespace)
 namespace X = N2; //modifying the alias

then, all existing quali cations of referred class names that use X would now refer to class
A that is contained in namespace ‘N2’. Of course, the lines having such references would
compile only if both of the namespaces, ‘N1’ and ‘N2’, contain a class named A, and if these
two classes have the same interface.

For keeping the explanations simple, classes that have been given as examples in the rest
of this book are not enclosed in namespaces.

 2.6 Nested Inner Classes
A class can be de ned inside another class. Such a class is known as a nested class. The
class that contains the nested class is known as the enclosing class. Nested classes can be
de ned in the private, protected, or public portions of the enclosing class (protected access
speci er is explained in the chapter on inheritance).

In Listing 2.48, class B is de ned in the private section of class A.

 Listing 2.48 Nested classes

 /*Beginning of nestPrivate.h*/
class A
{
 class B
 {
 /*
 definition of class B
 */
 };
 /*
 definition of class A
 */

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++72

};
/*End of nestPrivate.h*/

In Listing 2.49, class B is de ned in the public section of class A.

 Listing 2.49 A public nested class

 /*Beginning of nestPublic.h*/
class A
{
 public:
 class B
 {
 /*
 definition of class B
 */
 };
 /*
 definition of class A
 */
};
/*End of nestPublic.h*/

A nested class is created if it does not have any relevance outside its enclosing class. By
de ning the class as a nested class, we avoid a name collision. In Listings 2.48 and 2.49, even if
there is a class B de ned as a global class, its name will not clash with the nested class B.

The size of objects of an enclosing class is not affected by the presence of nested classes.
See Listing 2.50.

Listing 2.50 Size of objects of the enclosing class

/*Beginning of nestSize.cpp*/
#include<iostream.h>

class A
{
 int x;
 public:
 class B
 {
 int y;
 };
};

void main()
{
 cout<<sizeof(int)<<endl;
 cout<<sizeof(A)<<endl;
}
/*End of nestSize.cpp*/

 Output
4
4

How are the member functions of a nested class de ned? Member functions of a nested
class can be de ned outside the de nition of the enclosing class. This is done by pre xing

https://hemanthrajhemu.github.io

 Classes and Objects 73

the function name with the name of the enclosing class followed by the scope resolution
operator. This, in turn, is followed by the name of the nested class followed again by the
scope resolution operator. This is illustrated by Listing 2.51.

Listing 2.51 Defi ning member functions of nested classes

/*Beginning of nestClassDef.h*/
class A
{
 public:
 class B
 {
 public:
 void BTest(); //prototype only
 };
 /*
 definition of class A
 */
};
/*End of nestClassDef.h*/

/*Beginning of nestClassDef.cpp*/
#include“nestClassDef.h”
void A::B::BTest()
{
 //definition of A::B::BTest() function
}

/*
 definitions of the rest of the functions of class B
*/
/*End of nestClassDef.cpp*/

A nested class may be only prototyped within its enclosing class and de ned later. Again,
the name of the enclosing class followed by the scope resolution operator is required. See
Listing 2.52.

 Listing 2.52 Defi ning a nested class outside the enclosing class

 /*Beginning of nestClassDef.h*/
class A
{
 class B; //prototype only
};

class A::B
{
 /*
 definition of the class B
 */
};
/*End of nestClassDef.h*/

Objects of the nested class are de ned outside the member functions of the enclosing
class in much the same way (by using the name of the enclosing class followed by the scope
resolution operator).

 A::B B1;

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++74

However, the above line will compile only if class B is de ned within the public section
of class A. Otherwise, a compile-time error will result.

An object of the nested class can be used in any of the member functions of the enclosing
class without the scope resolution operator. Moreover, an object of the nested class can be a
member of the enclosing class. In either case, only the public members of the object can be
accessed unless the enclosing class is a friend of the nested class. See Listing 2.53.

Listing 2.53 Declaring objects of the nested class in the member functions of the
enclosing class

 /*Beginning of nestClassObj.h*/
class A
{
 class B
 {
 public:
 void BTest(); //prototype only
 };
 B B1;
 public:
 void ATest();
};
/*End of nestClassObj.h*/

/*Beginning of nestClassObj.cpp*/
#include“nestClassObj.h”

void A::ATest()
{
 B1.BTest();
 B B2;
 B2.BTest();
}
/*End of nestClassObj.cpp*/

Member functions of the nested class can access the non-static public members of the
enclosing class through an object, a pointer, or a reference only. An illustrative example
follows in Listing 2.54.

 Listing 2.54 Accessing non-static members of the enclosing class in member functions
of the nested class.

 /*Beginning of enclClassObj.h*/
class A
{
 public:
 void ATest();
 class B
 {
 public:
 void BTest(A&);
 void BTest1();
 };
};
/*End of enclClassObj.h*/

https://hemanthrajhemu.github.io

 Classes and Objects 75

/*Beginning of enclClassObj.cpp*/
#include“enclClassObj.h”

void A::B::BTest(A& ARef)
{
 ARef.ATest(); //OK
}

void A::B::BTest1()
{
 ATest(); //ERROR!!
}
/*End of enclClassObj.cpp*/

It can be observed that an error is produced when a direct access is made to a member
of the enclosing class through a function of the nested class. This is as it should be. After
all, creation of an object of the nested class does not cause an object of the enclosing class
to be created. The classes are nested to merely control the visibility. Since ‘A::B::BTest()’
function will be called with respect to an object of class B, a direct access to a member of the
enclosing class A can be made through an object of that class only.

By default, the enclosing class and the nested class do not have any access rights to each
other’s private data members. They can do so only if they are friends to each other.

Classes have both member data and member functions.
Member functions can be given exclusive rights to
access data members. Member functions and mem-
ber data can be private, protected, or public. The
struct keyword has been rede ned in C++. Apart
from member data, structures in C++ can have mem-
ber functions also. In a class, members are private
by default. In a structure, members are public by
default.

The scope resolution operator is used to separate
the class de nition from the de nitions of the member
functions. The class de nition can be placed in a header
 le. Member functions, with the aid of scope resolution

operator, can be placed in a separate implementation
 le.

The this pointer is implicitly inserted by the com-
piler, as a leading formal argument, in the prototype
and in the de nition of each member function of each
class. When a member function is called with respect
to an object, the compiler inserts the address of the
calling object as a leading parameter to the function
call. Consequently, the this pointer, which exists as
the implicit leading formal argument in all member
functions, always points at the object with respect to
which the member function has been called.

Access to member data and member functions
from within member functions is resolved by the this
pointer. The this pointer is a constant pointer in case
of non-constant member functions and a constant
pointer to a constant in case of constant member
functions.

If the operand on its right is a data member, then
the object-to-member access operator (.) behaves just
as it does in C language. However, if it is a member
function of a class whereas an object of the same class
is its left-hand side operand, then the compiler simply
passes the address of the object as an implicit leading
parameter to the function call.

Similarly, if the operand on its right is a data
member, then the pointer-to-member access operator
(->) behaves just as it does in C language. However,
if it is a member function of a class whereas a pointer
to an object of the same class is its left-hand side
operand, then the compiler simply passes the value
of the pointer as an implicit leading parameter to the
function call. Member functions can call each other.
Calls are resolved through the this pointer. Member
functions can be overloaded. Default values can be
given to the formal arguments of member functions.

Summary

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++76

Programs having inline functions tend to run faster
than equivalent programs with non-inline functions. A
function is declared inline either by de ning it inside
a class or by declaring it inside a class and de ning it
outside with the keyword inline. This feature should
be used sparingly. Otherwise, the increased size of the
executable can slow it down.

If required, member functions can be declared
as constant functions to prevent even an inadvertent
change in the data members. A function can be declared
as a constant function by suf xing its prototype and the
header of its de nition by the keyword const.

A mutable data member is never constant. It is
modi able inside constant functions also. A friend
function is a non-member function that has a special
right to access private data members of objects of the
class of which it is a friend. This does not really negate
the philosophy of OOPS. A friend function still needs
to be declared inside the class of which it is a friend.
The advantage that a friend function provides is that it
is not called with respect to an object.

A global non-member function can be declared as
a friend to a class. Member function of one class can
be declared as a friend function of another. An entire
class can be declared as a friend of another too. A class
or a function is declared friend to a desired class by
prototyping it in the class and pre xing the prototype
with the keyword friend.

Only one copy of a static data member exists for
the entire class. This is in contrast to non-static data
members that exist separately in each object. Static
data members are used to keep data that relates to the
entire set of objects that exist at any given point during
the program’s execution. A data member is declared as
a static member of a class by pre xing its declaration
in the class by the keyword static.

Static member functions can access static data
members only. They can be called without declaring
any objects. A member function is declared as a static
member of a class by pre xing its declaration in the
class by the keyword static.

Objects can appear as local variables inside
functions. They can also be passed by value or by
reference to functions. Finally, they can be returned
by value or by reference from functions.

Arrays of objects can be created. Arrays can be
created inside classes also. One class can be de ned
inside another class. Such a class is known as a nested
class. The class that contains the nested class is known
as the enclosing class. Nested classes can be de ned
in the private, protected, or public portions of the
enclosing class.

Namespaces enable the C++ programmer to prevent
pollution of the global namespace. They help prevent
name classes.

Key Terms
class
private access speci er
public access speci er
objects
scope resolution operator
the this pointer
data abstraction
arrow operator
overloaded member functions
default values for formal arguments of member
functions

inline member functions
constant member functions
mutable data members
friend non-member functions
friend classes
friend member functions
friends as bridges
static member data
static member functions
namespaces
nested classes

Exercises
1. How does the class construct enable data security?
2. What is the use of the scope resolution operator?
3. What is the this pointer? Where and why does the

compiler insert it implicitly?

 4. What is data abstraction? How is it implemented in
C++?

 5. Which operator is used to access a class member with
respect to a pointer?

https://hemanthrajhemu.github.io

 Classes and Objects 77

 6. What is the difference between a mutable data
member and a static data member?

 7. Describe the two ways in which a member function
can be declared as an inline function.

 8. How can a global non-member function be declared
as a friend to a class?

 9. What is the use of declaring a class as a friend of
another?

 10. Explain why friend functions do not contradict the
principles of OOPS.

 11. Explain why static data members should be explicitly
declared outside the class.

 12. Why should static data members be de ned in the
implementation les only?

 13. What is the use of static member functions?
 14. How do namespaces help in preventing pollution of

the global namespace?
 15. What is a nested class? What is its use?
 16. How are the member functions of a nested class

defined outside the definition of the enclosing
class?

 17. State true or false.
(a) Structures in C++ can have member functions

also.
(b) Structure members are private by default.
(c) The this pointer is always a constant pointer.
(d) Member functions cannot be overloaded.
(e) Default values can be given to the formal

arguments of member functions.
(f) Only constant member function can be called for

constant objects.
(h) The keyword friend should appear in the

prototype as well as the de nition of the function
that is being declared as a friend.

(i) A friend function can be prototyped in only the
public section of the class.

(j) Friendship is not transitive.
(k) A static data member can be of the same type as

the class of which it is a member.
(l) The size of objects of an enclosing class is

affected by the presence of nested classes.
(m) An object of the nested class can be used in any

of the member functions of the enclosing class
without the scope resolution operator.

(n) An object of the nested class cannot be a member
of the enclosing class.

(o) Public members of the nested class’s object

which have been declared in a function of the
enclosing class can always be accessed.

 18. Your compiler should provide a structure
and associated functions to fetch the current
system date. Suppose the name of the structure
is date_d and the name of the associated
functions to fetch the current system date is
getSysDate().

 Create a class with a name that is similar to
the above structure. This class should contain
a variable of the above structure as its private
data member. Introduce a member function
in the class that calls the associated function
of the date structure. Thus, create a wrapper
class and make an available structure safe to
use.

class date_D //a wrapper class
{
 date_d d;
 public:
 void getSysDate();
};

void date_D::getSysDate()
{
getSysDate(&d); // calling the associ-

ated function from
 //the member function
}

 Also, write a small test program to test the
above class.

 19. Create a class named Distance_mks. This class
should be similar to the class Distance, except for
the following differences:

 The data members of this new class would be
iMeters (type integer; for representing the
meters portion of a distance) and fCentimeters
(type float; for representing the centimeters
portion of a distance) instead of iFeet and
fInches.

 Suitably designed member functions to work
upon the new data members should replace the
ones that we have seen for the class Distance.
The member functions should ensure that the
fCentimeters of no object should ever exceed
100.

https://hemanthrajhemu.github.io

Constructors and Destructors

We are already aware of the need to include a member function in our class that initializes
the data members of its class to desired default values and gets called automatically for each
object that has just got created. Constructors ful ll this need and the rst portion of this chapter
deals with constructors. Various types of constructors are described in the middle portion of
this chapter.

There is also the need to include a member function in our class that gets called automatically
for each object that is going out of scope. Destructors ful ll this need and the penultimate
portion of this chapter deals with destructors.

Along with the class construct and the access speci ers, constructors and destructors
complete the requirements needed to created new data type—safe and ef cient data types.
This is discussed in the last portion of this chapter.

O

V

E

R

V

I

E

W

4

 4.1 Constructors

The constructor gets called automatically for each object that has just got created. It appears
as member function of each class, whether it is de ned or not. It has the same name as that
of the class. It may or may not take parameters. It does not return anything (not even void).
The prototype of a constructor is

<class name> (<parameter list>);

The need for a function that guarantees initialization of member data of a class was felt in
Chapter 2. Constructors ful ll this need. Domain constraints on the values of data members
can also be implemented via constructors. For example, we want the value of data member
 nches of each object of the class Distance to be between 0.0 and 12.0 at all times within
the lifetime of the object. But this condition may get violated in case an object has just got
created. However, introducing a suitable constructor to the class Distance can enforce this
condition.

The compiler embeds a call to the constructor for each object when it is created. Suppose
a class A has been declared as follows:

/*Beginning of A.h*/
class A
{
 int x;

public:
 void setx(const int=0);
 int getx();
};
/*End of A.h*/

https://hemanthrajhemu.github.io

 Constructors and Destructors 93

Consider the statement that declares an object of a class A in Listing 4.1.

Listing 4.1 Constructor gets called automatically for each object when it is created

/*Beginning of AMain.cpp*/
#include“A.h”
void main()
{
 A A1; //object declared … constructor called
}
/*End of AMain.cpp*/

The statement in the function main() in Listing 4.1 is transformed into the following
statements.

A A1; //memory allocated for the object (4 bytes)
A1.A(); //constructor called implicitly by compiler

The second statement above is then transformed to
A(&A1); //see Chapter 2

Similarly, the constructor is called for each object that is created dynamically in the heap by
the new operator.

A * APtr;
APtr = new A; //constructor called implicitly by compiler

The second statement above is transformed into the following two statements.
APtr = new A; //memory allocated
APtr->A(); //constructor called implicitly by compiler

The second statement above is then transformed into
A(APtr); //see Chapter 2

The foregoing explanations make one thing very clear. Unlike their name, constructors do
not actually allocate memory for objects. They are member functions that are called for each
object immediately after memory has been allocated for the object.

The constructor is called in this manner separately for each object that is created. But did
we prototype and de ne a public function with the name ‘A()’ inside the class A? The answer
is ‘no’. Then how did the above function call get resolved? The compiler prototypes and
de nes the constructor for us. But what statements does the de nition of such a constructor
have? The answer is ‘nothing’.

Before
class A
{

 public:

 //no constructor
};

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++94

After
class A
{

 public:
 A(); //prototype inserted implicitly by compiler

};

A::A()
{
 //empty definition inserted implicitly by compiler
}

As we can see, the name of the constructor is the same as the name of the class. Also, the
constructor does not return anything. The compiler de nes the constructor in order to resolve
the call to the constructor that it compulsorily places for the object being created.

For reasons that we will discuss later, it is forbidden to call the constructor explicitly for
an existing object as follows.

A1.A(); //not legal C++ code!

4.1.1 Zero-argument Constructor

We can and should de ne our own constructors if the need arises. If we do so, the compiler
does not de ne the constructor. However, it still embeds implicit calls to the constructor as
before.

The constructor is a non-static member function. It is called for an object. It, therefore, takes
the this pointer as a leading formal argument just like other non-static member functions.
Correspondingly, the address of the invoking object is passed as a leading parameter to the
constructor call. This means that the members of the invoking object can be accessed from
within the de nition of the constructor.

Let us add our own constructor to class A de ned in Listing 4.1 and verify whether the
constructor is actually called implicitly by the compiler or not. See Listing 4.2.

Listing 4.2 Constructor gets called for each object when the object is created

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A(); //our own constructor
 void setx(const int=0);
 int getx();
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include”A.h”
#include<iostream.h>
A::A() //our own constructor

https://hemanthrajhemu.github.io

 Constructors and Destructors 95

{
 cout<<”Constructor of class A called\n”;
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A A1;
 cout<<”End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program

Let us now de ne our own constructor for the class Distance. What should the constructor
do to the invoking object? We would like it to set the values of the iFeet and fInches
data members of the invoking object to 0 and 0.0, respectively. Accordingly, let us add the
prototype of the function within the class de nition in the header le and its de nition in the
library source code. See Listing 4.3.

Listing 4.3 A user-defi ned constructor to implement domain constraints on the data
members of a class

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance(); //our own constructor
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance() //our own constructor
{
 iFeet=0;
 fInches=0.0;
}
/*
 definitions of the rest of the functions of class
 Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest.cpp*/
#include<iostream.h>

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++96

#include“Distance.h”
void main()
{
 Distance d1; //constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest.cpp*/

Output
0 0.0

Now, due to the presence of the constructor within the class Distance, there is a guaranteed
initialization of the data of all objects of the class Distance. Our objective of keeping the
fInches portion of all objects of the class Distance within 12.0 is now ful lled.

The constructor that we have de ned in Listing 4.2 does not take any arguments and is
called the zero-argument constructor. The constructor provided by default by the compiler also
does not take any arguments. Therefore, the terms ‘zero-argument constructor’ and ‘default
constructor’ are used interchangeably.

Now, let us start the study of a class that will enable us to abstract character arrays and
overcome many of the drawbacks that exist in them. This class will be our running example
for explaining most of the concepts of this book. We will de ne it incrementally. Our purpose
is to ultimately de ne a class that can be used instead of character arrays.

Let us call the class String. It will have two data members. Both these data members will
be private. The rst data member will be a character pointer. It will point at a dynamically
allocated block of memory that contains the actual character array. The other data member
will be a long unsigned integer that will contain the length of this character array.

/*Beginning of String.h*/
class String
{
 char * cStr; //character pointer to point at
 //the character array

 long unsigned int len; //to hold the length of the
 //character array

 /*
 rest of the class String
 */

};
/*End of String.h*/

Suppose ‘s1’ is an object of the class String and the string ‘abc’ has been assigned to it.
Diagrammatically this situation can be depicted in Figure 4.1.

The address of the rst byte of the memory block containing the string is 101. This value
is stored in the ‘cStr’ portion of ‘s1’. The address of ‘s1’ is 27.

Also, we would religiously implement the following two conditions on all objects of the
class String.

• ‘cStr’ should either point at a dynamically allocated block of memory exclusively allocated
for it (that is, no other pointer should point at the block of memory being pointed at by
‘cStr’) or ‘cStr’ should be NULL.

• There should be no memory leaks.

https://hemanthrajhemu.github.io

 Constructors and Destructors 97

Obviously, when an object of the class String is created, the ‘cStr’ portion of the object
should be initially set to NULL (and ‘len’ should be set to 0). Accordingly, the prototype and
the de nition of the constructor are as shown in Listing 4.4.

Listing 4.4 A user-defi ned constructor

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 String(); //prototype of the constructor
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
String::String() //definition of the constructor
{ //When an object is created …
 cStr=NULL; //…nullify its pointer and…
 len=0; //…set the length as zero.
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

4.1.2 Parameterized Constructors

Constructors take arguments and can, therefore, be overloaded. Suppose, for the class
Distance, the library programmer decides that while creating an object, the application
programmer should be able to pass some initial values for the data members contained in the
object. For this, he/she can create a parameterized constructor as shown in Listing 4.5.

Figure 4.1 Memory layout of an object of the class String

cStr 101

3

27

len

a b c \0

s1

101

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++98

Listing 4.5 A user-defi ned parameterized constructor—called by creating an object in
the stack

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance(); //prototypes provided by the
 //library programmer
 Distance(int,float); //prototype of the parameterized
 //constructor
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance()
{
 iFeet=0;
 fInches=0.0;
}
Distance::Distance(int p, float q)
{
 iFeet=p;
 setInches(q);
}

/*
 definitions of the rest of the functions of class
Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest1.cpp*/
#include<iostream.h>
#include“Distance.h”
void main()
{
 Distance d1(1,1.1); //parameterized constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest1.cpp*/

Output
1 1.1

Listing 4.5 demonstrates a user-de ned parameterized costructor being called by creating
an object in the stack while Listing 4.6 demonstrates a user-de ned parameterized constructor
being called in the heap.

Listing 4.6 A user-defi ned parameterized constructor—called by creating an object in
the heap

/*Beginning of DistTest2.cpp*/
#include<iostream.h>
#include“Distance.h”

https://hemanthrajhemu.github.io

 Constructors and Destructors 99

void main()
{
 Distance * dPtr;
 dPtr = new Distance(1,1.1); // parameterized
 //constructor called Output
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches();
}
/*End of DistTest2.cpp*/

Output
1 1.1

The rst line of the function main() in Listing 4.5 and the second line of the main()
function in Listing 4.6 show the syntax for passing values to the parameterized constructor.
The parameterized constructor is prototyped and de ned just like any other member function
except for the fact that it does not return any value.

We must remember that if the parameterized constructor is provided and the zero-argument
constructor is not provided, the compiler will not provide the default constructor. In such a
case, the following statement will not compile.

Distance d1; //ERROR: No matching constructor

Just like in other member functions, the formal arguments of the parameterized constructor
can be assigned default values. But in that case, the zero-argument constructor should be
provided. Otherwise, an ambiguity error will arise when we attempt to create an object without
passing any values for the constructor. See Listing 4.7.

Listing 4.7 Default values given to parameters of a parameterized constructor make the
zero-argument constructor unnecessary

/*Beginning of Distance.h*/
class Distance
{
 public:
 //Distance();zero-argument constructor commented out
 Distance(int=0,float=0.0); //default values given
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

If we write,
Distance d1;

an ambiguity error arises if the zero-argument constructor is also de ned. This is because
both the zero-argument constructor and the parameterized constructor can resolve this
statement.

Let us now create a parameterized constructor for the class String. We will also assign
a default value for the argument of the parameterized constructor. The constructor would
handle the following statements.

String s1(“abc”);
OR

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++100

char * cPtr = “abc”;
String s1(cPtr);
OR
char cArr[10] = “abc”;
String s1(cArr);

In each of these statements, we are essentially passing the base address of the memory
block in which the string itself is stored to the constructor.

In the rst case, base address of the memory block of four bytes in which the string “abc”
is stored is passed as a parameter to the constructor. But the constructor of the class String
should be de ned in such a manner that ‘s1.cStr’ is made to point at the base of a different
memory block of four bytes in the heap area that has been exclusively allocated for the purpose.
Only the contents of the memory block, whose base address is passed to the constructor, should
be copied into the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ should be set to
3. The formal argument of the parameterized constructor for the class String will obviously
be a character pointer because the address of a memory block containing a string has to be
passed to it. Let us call this pointer ‘p’. Then, after the statements String s1 (“abc”);
executes, the scenario shown in Figure 4.2 should emerge.

Figure 4.2 Assigning a string to an object of the class String

cStr 101

3

27

len

a b c \0

s1

a b c \050

p

50

101

In Figure 4.2, ‘p’ is the formal argument of the constructor. The address of the memory
block that contains the passed string is 50. This address is passed to the constructor and stored
in ‘p’. Therefore, the value of ‘p’ is 50. But the constructor should execute in such a manner
that a different block that is suf ciently long to hold the string at which ‘p’ is pointing should
also be allocated dynamically in the heap area (see Figure 4.2). This memory block extends
from byte numbers 101 to 104. The base address of this block of memory is then stored in the
pointer embedded in ‘s1’. The string is copied from the memory block at which ‘p’ points to
the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ is appropriately set to 3.

In the second case
char * cPtr = “abc”;
String s1(cPtr);

the value of ‘cPtr’ is passed as a parameter to the constructor. This value is stored in ‘p’.
Thus, both ‘p’ and ‘cPtr’ point at the same place. As in the previous case, the constructor of
the class String should be de ned in such a manner that ‘s1.cStr’ should be made to point

https://hemanthrajhemu.github.io

 Constructors and Destructors 101

at the base of a different memory block of four bytes that has been exclusively allocated for
the purpose. Only the contents of the memory block whose base address is passed to the
constructor should be copied into the memory block at which ‘s1.cStr’ points.

In Figure 4.3, ‘cPtr’ points at the memory block containing the string. In other words, the
value of ‘cPtr’ is the address of the memory block containing the string.

The third case
char cArr[10] = “abc”;
String s1(cArr);

is very similar to the second. In this, we are passing the name of the array as a parameter to
the constructor. But we know that the name of an array is itself a xed pointer that contains
the base address of the memory block containing the actual contents of the array. This can
be seen in Figure 4.4.

Let us now de ne the constructor that produces these effects. We must realize that ‘p’ (the
formal argument of the constructor) should be as follows:

const char * const

First, it should be a constant pointer because throughout the execution of the constructor,
it should continue to point at the same memory block. Second, it should be a pointer to a
constant because even inadvertently, the library programmer should not dereference it to
change the contents of the memory block at which it is pointing. Additionally, we would
like to specify a default value for ‘p’ (NULL) so that there is no need to separately de ne a
zero-argument constructor.

The de nition of the class String along with the prototype of the constructor and its
de nition are shown in Listing 4.8.

Figure 4.3 Assigning a string to an object of the class String

cStr 101

3

27

len

a b c \0

s1

a b c \050

p

50

101

50

cPtr

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++102

Listing 4.8 A user-defi ned parameterized constructor for acquiring memory outside the
object

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 /*no zero-argument constructor*/
 String(const char * const p = NULL);
 const char * getString();
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
 cStr=NULL; //…nullify
 len=0;
 }
 else //…otherwise…
 {
 len=strlen(p);

Figure 4.4 Assigning an array to an object of the class String

cStr 101

3

27

len

a b c \0

s1

a b c \050

p

50

101

50

cArr

https://hemanthrajhemu.github.io

 Constructors and Destructors 103

 cStr=new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,p); //…and copy into it
 }
}

const char * String::getString()
{
 return cStr;
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”); //pass a string to the
 //parameterized constructor
 cout<<s1.getString()<<endl; //display the string
}
/*End of StringMain.cpp*/

Output
abc

Another function called getString() has also been introduced to the class String. It
will enable us to display the string itself. The function returns a const char * so that only
a pointer to a constant can be equated to a call to this function.

const char * p = s1.getString();

Such a pointer will effectively point at the same memory block at which the invoking
object’s pointer points. As a result of the above statement both ‘p’ and ‘s1.cStr’ would end
up pointing at the same place. Yet it will not be able to change the values contained in the
memory block since it is a pointer to a constant. We must note that for securing data that is
outside the object itself, extra efforts are required on the part of the library programmer.

We can reprogram the above main() function and verify that the newly de ned constructor
is capable of producing the effects depicted in Figures 4.2, 4.3, and 4.4.

4.1.3 Explicit Constructors

Note that the rst statement of the main() function in Listing 4.8 calls the constructor of the
class String. Now, look at the following statement.

String s1 = “abc”;

The above statement also calls the constructor of the class String. The above statement
compiles because there is a constructor in the class String that takes a string as a parameter.
This constructor implicitly converts the string “abc” into an object of the class String. It is
as if the above statement was written as follows (note the cast):

String s1 = (String)“abc”;

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++104

But, we did not provide a cast in the statement that we wrote. Then how did the conversion
take place? As mentioned earlier, it is the constructor that is carrying out the conversion
for us.

However, if the constructor is declared as an explicit constructor, statements like the one
above will not compile. Explicit constructors do not allow implicit conversions like the one
that occurred in the above example.

Constructors are declared explicit by pre xing their declarations with the explicit keyword.
Let us rst look at the syntax for declaring an explicit constructor (see Listing 4.9). We will
then look at a program that will illustrate the situation under which we can get the error if a
constructor has been declared as an explicit constructor.

Listing 4.9 The explicit constructor

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 /*no zero-argument constructor*/
 /*
 The next statement declares an explicit constructor.
 Note the explicit keyword.
 */
 explicit String(const char * const p = NULL);
 const char * getString();
 /*
 rest of the class String
 */
};
/*End of String.h*/

Let us look at Listing 4.10, which illustrates the error we can get when a constructor is
declared as an explicit constructor.

Listing 4.10 Error caused by the explicit constructor

/*Beginning of StringMain.cpp*/
#include<iostream.h>
#include“String.h”
void main()
{
 String s1(“abc”); //ok: explicit constructor called
 String s2 = “def”; //error: will not compile due to
 //the explicit constructor
}
/*End of StringMain.cpp*/

Note that the error in the above program will go away if the statement is written as
follows:

String s2 = (String)“def”; //ok

It is obvious that the explicit constructor is preventing an implicit conversion of string
into an object of the class String and is forcing the application programmer to do explicit
conversion.

https://hemanthrajhemu.github.io

 Constructors and Destructors 105

Further note that we need to mention the explicit keyword in the declaration of the
constructor only. It is not necessary to pre x the de nition of the constructor with the explicit
keyword.

Explicit constructors can prove to be useful for the programmer if he is creating a class
for which an implicit conversion by the constructor is undesirable.

4.1.4 Copy Constructor

The copy constructor is a special type of parameterized constructor. As its name implies, it
copies one object to another. It is called when an object is created and equated to an existing
object at the same time. The copy constructor is called for the object being created. The pre-
existing object is passed as a parameter to it. The copy constructor member-wise copies the
object passed as a parameter to it into the object for which it is called.

If we do not de ne the copy constructor for a class, the compiler de nes it for us. But in
either case, a call is embedded to it under the following three circumstances.

When an object is created and simultaneously equated to another existing object, the copy
constructor is called for the object being created. The object to which this object was
equated is passed as a parameter to the copy constructor.

A A1; //zero-argument/default constructor called
A A2=A1; //copy constructor called

or
A A2(A1); //copy constructor called

or
A * APtr = new A(A1); //copy constructor called

 Here, the copy constructor is called for ‘A2’ and for ‘Aptr’ while ‘A1’ is passed as a
parameter to the copy constructor in both cases.

When an object is created as a non-reference formal argument of a function. The copy
constructor is called for the argument object. The object passed as a parameter to the
function is passed as a parameter to the copy constructor.

void abc(A);
A A1; //zero-argument/default constructor called
abc(A1); //copy constructor called

void abc(A A2)
{
 /*
 definition of abc()
 */
}

 Here again the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter to
the copy constructor.
When an object is created and simultaneously equated to a call to a function that returns
an object. The copy constructor is called for the object that is equated to the function call.
The object returned from the function is passed as a parameter to the constructor.

A abc()
{

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++106

 A A1; //zero-argument/default constructor called
 /*
 remaining definition of abc()
 */
 return A1;
}
A A2=abc(); //copy constructor called

 Once more, the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter
to the copy constructor.

The prototype and the de nition of the default copy constructor de ned by the compiler are
as follows.

class A
{
 public:
 A(A&); //the default copy constructor
};

A::A(A& AOBj) //the default copy constructor
{
*this=AObj; //copies the passed object into the invoking
 //object
}

As is obvious, the default copy constructor does exactly what it is supposed to do—it copies.
The statement

A A2=A1;

is converted as follows:
A A2; //memory allocated for A2
A2.A(A1); //copy constructor is called for A2 and A1 is
 //passed as a parameter to it

This last statement is then transformed to
A(&A2,A1); //see the section on ‘this’ pointer in Chapter 2

When the above statement executes, ‘AObj’ (the formal argument in the copy constructor)
becomes a reference to ‘A1’, whereas the this pointer points at ‘A2’ (the invoking object).
Similarly, the other statements where the object is created as a formal argument or is returned
from a function can also be explained.

But why does the compiler create the formal argument of the default copy constructor as a
reference object? And when the compiler does de ne a copy constructor in the expected way,
then why should we de ne one on our own? Both these questions are answered now.

First, let us nd out why objects are passed by reference to the copy constructor. Suppose
the formal argument (‘AObj’) of the copy constructor is not a reference. Now, suppose the
following statement executes.

A A2=A1;

The copy constructor will be called for ‘A2’ and ‘A1’ will be passed as a parameter to it.
Then the copy constructor will be called for ‘AObj’ and ‘A1’ will be passed as a parameter to
it. This is because ‘AObj’ is a non-reference formal argument of the copy constructor. Thus, an
endless chain of calls to the copy constructor will be initiated. However, if the formal argument
of the copy constructor is a reference, then no constructor (not even the copy constructor) will

https://hemanthrajhemu.github.io

 Constructors and Destructors 107

be called for it. This is because a reference to an object is not a separate object. No separate
memory is allocated for it. Therefore, a call to a constructor is not embedded for it.

Now we come to a crucial question. Why should we de ne our own copy constructor?
After all, the default copy constructor (which is provided free of cost by the complier) does
a pretty decent job. First, recollect the conditions we decided to implement for all objects
of the class String. Suppose an object of the class String is created and at the same time
equated to another object of the class. For example,

String s1(“abc”);
String s2=s1; //copy constructor is called for s2 and s1
 //is passed as a parameter to it

Since we have not de ned the copy constructor for the class String, the compiler has
done it for us. What does this default copy constructor do in the above case? It simply copies
the values of ‘s1’ to ‘s2’! This means that the value of ‘s2.cStr’ becomes equal to ‘s1.cStr’.
Thus, both the pointers point at the same place! This is certainly a violation of our conditions.
The behaviour of the default copy constructor is undesirable in this case. To overcome this
problem of the default copy constructor, we must de ne our own copy constructor.

From within the copy constructor of the class String, a separate memory block must be
 rst allocated dynamically in the heap. This memory block must be equal in length to that of

the string at which the pointer of the object passed as a parameter (‘s1’ in this case) points.
The pointer of the invoking object (‘s2’ in this case) must then be made to point at this newly
allocated memory block. The value of ‘len’ variable of the invoking object should also be
set appropriately. However, if the pointer in the object passed as a parameter is NULL, then
the value of the pointer and ‘len’ variable of the invoking object must be set to NULL and
zero, respectively.

Accordingly, the prototype and the de nition of the copy constructor of the class String
appear as shown in Listing 4.11.

Listing 4.11 A user-defi ned copy constructor

/*Beginning of String.h*/
#include<iostream.h>
class String
{
 char * cStr;
 long unsigned int len;

 public:
 String(const String&); //our own copy constructor
 /*
 rest of the class String
 */
 explicit String(const char * const p = NULL);
const char * getString();
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include”String.h”
#include<string.h>
String::String(const String& ss) //our own copy constructor
{
 if(ss.cStr==NULL) //if passed object’s pointer is NULL…
 {

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++108

 cStr=NULL; //… then nullify the invoking object’s
 //pointer too
 len=0;
 }
 else //otherwise…
 {
 len=ss.len;
 cStr = new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,ss.cStr); //…and copy into it
 }
}
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
 cStr=NULL; //…nullify
 len=0;
 }
 else //…otherwise…
 {
 len=strlen(p);
 cStr=new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,p); //…and copy into it
 }
}
const char * String::getString()
{
 return cStr;
}
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include”String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”);
 String s2=s1;
 cout<<s1.getString()<<endl;
 cout<<s2.getString()<<endl;
}
/*End of StringMain.cpp*/

Output
abc
abc

In the copy constructor (Listing 4.11), the formal argument is a constant. It has to be a
reference in order to prevent an endless chain of calls to itself. But at the same time the library
programmer would certainly want to prevent even an inadvertent change in the values of the
object that gets passed to the copy constructor. He/she would like the compiler to report a
compile-time error if he/she inadvertently writes statements like the following.

ss.cStr=NULL; //pointer of parameter object modified!
ss.len++; //len variable of the parameter object
 //modified!

https://hemanthrajhemu.github.io

 Constructors and Destructors 109

 4.2 Destructors
The destructor gets called for each object that is about to go out of scope. It appears as a
member function of each class whether we de ne it or not. It has the same name as that of
the class but pre xed with a tilde sign. It does not take parameters. It does not return anything
(not even void). The prototype of a destructor is

~ <class name> ();

The need for a function that guarantees deinitialization of member data of a class and frees
up the resources acquired by the object during its lifetime will be explained soon. Destructors
ful ll this need.

The compiler embeds a call to the destructor for every object when it is destroyed. Let us
have one more look at the main() function of Listing 4.1.

void main()
{
 A A1;
} //A1 goes out of scope here

‘A1’ goes out of scope just before the main() function terminates. At this point, the compiler
embeds a call to the destructor for ‘A1’. It embeds the following statement.

A1.~A(); //destructor called … not legal C++ code

An explicit call to the destructor for an existing object is forbidden. The above statement
is then transformed into

~A(&A1); //see chapter 2

The destructor will also be called for an object that has been dynamically created in the
heap just before the delete operator is applied on the pointer pointing at it.

A * APtr;
APtr = new A; //object created … constructor called
. . . .
. . . .
delete APtr; //object destroyed … destructor called

The last statement is transformed into
APtr->~A(); //destructor called for *APtr
delete APtr; //memory for *APtr released

First, the destructor is called for the object that is going out of scope. Thereafter, the
memory occupied by the object itself is deallocated. The second last statement above is
transformed into

~A(APtr); //see the section on ‘this’ pointer in Chapter 2

Unlike its name, the destructor does not ‘destroy’ or deallocate memory that an object
occupies. It is merely a member function that is called for each object just before the object
goes out of scope (gets destroyed).

As can be readily observed, the compiler embeds a call to the destructor for each and every
object that is going out of scope. But we did not prototype and de ne the destructor inside
the class. Then how was the above call to the destructor resolved? The compiler prototypes
and de nes the destructor for us. But what statements does the de nition of such a destructor
have? The answer is ‘nothing’. An example of a compiler-de ned destructor follows.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++110

Before
class A
{

 public:

 //no destructor
};

After
class A
{

 public:
 ~A(); //prototype inserted implicitly by compiler

};

A::~A()
{
 //empty definition inserted implicitly by compiler
}

Let us add our own destructor to the class A de ned in Listing 4.2 and verify whether the
destructor is actually called implicitly by the compiler or not. See Listing 4.12.

Listing 4.12 Destructor gets called for each object when the object is destroyed

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A();
 void setx(const int=0);
 int getx();
 ~A(); //our own destructor
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
#include<iostream.h>
A::A()
{
 cout<<“Constructor of class A called\n”;
}

A::~A() //our own destructor
{
 cout<<“Destructor of class A called\n”;
}

/*
 definitions of the rest of the functions of class A
*/

https://hemanthrajhemu.github.io

 Constructors and Destructors 111

/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include“A.h”
#include<iostream.h>
void main()
{
 A A1;
 cout<<“End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program
Destructor of class A called

As we can see, the name of the destructor is the same as the name of the class but pre xed
with a tilde sign. Moreover, the destructor does not return anything. The compiler de nes
the destructor in order to resolve the call to the destructor that it compulsorily places for the
object going out of scope.

Destructors do not take any arguments. Therefore, they cannot be overloaded.
Why should we de ne our own destructor? We must remember that the destructor is also

a member function. It is called for objects. Therefore, it can access the data members of the
object for which it has been called.

Let us think of a relevant de nition for the destructor of the class Distance. What would
we like it to do for us? What should it do to the data members of the object that is going out
of scope? Should it set them to zero?

Distance::~Distance()
{
 iFeet=0;
 fInches=0.0;
}

But what is the use? The object is anyway going out of scope immediately after the
destructor executes.

But we must de ne the destructor for classes whose objects, during their lifetime, acquire
resources that are outside the objects themselves. Let us take the example of the class String.
We consider the following code block.

{

 String s1(“abc”);

}

The memory that was allocated to ‘s1’ itself gets deallocated when this block nishes
execution. But ‘s1.cStr’ was pointing at a memory block that was dynamically allocated in the
heap area. This memory block was outside the memory block occupied by ‘s1’ itself. After
‘s1’ gets destroyed, this memory block remains allocated as a locked up lost resource. The
only pointer that was pointing at it (‘s1.cStr’) is no longer available. This is memory leak. It
should be prevented. We should deallocate the memory block at which the pointer inside any

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++112

object of the class String is pointing exactly when the object goes out of scope. This means
that we must call the delete operator for the pointer inside the class String and place this
statement inside the destructor. See Listing 4.13.

Listing 4.13 A user-defi ned destructor

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 ~String(); //our own destructor
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::~String() //our own destructor
{
 if(cStr!=NULL) //if memory exists
 delete[] cStr; //… destroy it
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

 4.3 Philosophy of OOPS

Now, let us digress and appreciate the basic philosophy of OOPS. One of the aims in OOPS
is to abolish the use of fundamental data types. Classes can contain huge amounts of func-
tionality (member functions) that free the application programmer from the worry of taking
precautions against bugs.

The class String is one such data type. By adding some more relevant functions, we can
conveniently use objects of the class String. Consider adding the following function to the
class String.

void String::addChar(char); //function to add a character
 //to the string

As its name suggests, this function will append a character to the string at which the pointer
inside the invoking object points.

String s1(“abc”);

As a result of this statement, the pointer inside ‘s1’ points at a memory block of four bytes
(last one containing NULL). Now, if we write

s1.addChar(‘d’); //add a character to the string

the following things should happen.

https://hemanthrajhemu.github.io

 Constructors and Destructors 113

Another block of five bytes should get allocated.
The string contained in the memory block at which ‘s1.cStr’ is currently pointing should
get copied into this new memory block.
The character ‘d’ should get appended to the string.
The null character should get further appended to the string.
‘s1.cStr’ should be made to point at this new memory block.
The memory block at which ‘s1.cStr’ was pointing previously should be deallocated (to
prevent memory leaks).

Figure 4.5 shows adding a character to a stretchable string in the object-oriented way.

Before
String s1(“abc”);

cStr 101

3

27

len

a b c \0

s1

101

After
s1.addChar(‘d’);

Figure 4.5 Adding a character to a stretchable string—the object-oriented way

One possible way of using this function is by using a loop to obtain a string from the user,
which can be of any length. While writing the program, the application programmer need not
predict the length of the string the user will enter. The following code can be used for adding
a character to a stretchable string in the object-oriented way.

while(1) //potentially infinite loop
{
 ch=getche();
 if(ch==‘\n’) //if user finishes entering the string
 break; //… break the loop
 s1.addChar(ch); //…else append the character to it
}

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++114

As the user keeps adding characters to the string, the allocated memory keeps getting
stretched in a manner that is transparent to the application programmer. Such an effect is
simply unthinkable with character arrays.

We would also like to add a function that will replace the string associated with an object
with the string that we pass to it. We let this function be

void String::setString(const char * const);

Suppose the following statements are executed.
String s1(“abc”);
s1.setString(“def”); //replace “abc” by “def”

Then the following events should take place when the second statement executes (‘s1.cStr’
is already pointing at a memory block that contains the string abc and is not NULL).

A block of four bytes should be dynamically allocated to accommodate the string “def ”.
The string def should get written in that memory block with the null character
appended.
s1.cStr should be made to point at this new block of memory.
The block of memory at which s1.cStr was previously pointing should be deallocated
to prevent memory leak.
The formal argument of the String::setString() function is a const char * const. The

reasons for this have already been discussed under the section on parameterized constructor.
We may think that the de nition of this function will be the same as that of the constructor. But
this is not so. When the constructor starts executing, cStr may or may not be NULL (it may
contain junk value). But if it is not NULL, it does not mean that it is pointing at a dynamically
allocated block of memory. But when the String::setString() function starts executing, if
cStr is not NULL, then it is de nitely pointing at a dynamically allocated block of memory.
Statements to check this condition and to deallocate the memory block and to nullify cStr
and to set ‘len’ to zero should be inserted at the beginning of the String::setString()
function. Otherwise a memory leak will occur. De ning the String::addChar() and
String::setString() functions is left as an exercise.

Let us think of more such relevant functions that can be added to the class String. There
can be a function that will change the value of a character at a particular position in the string
at which the pointer of the invoking object points. Moreover, there can be a function that
reads the value from a particular position in the string at which the pointer of the invoking
object points. These functions can have built-in checks to prevent values from being written
to or read from bytes that are beyond the memory block allocated. Again, such a check is not
built into character arrays. The application programmer has to put in extra efforts on his/her
own to prevent the program from exceeding the bounds of the array.

After we have added all such functions to the class String, we will get a new data type
that will be safe, ef cient, and convenient to use.

Suitably de ned constructors and destructors have a vital role to play in the creation of
such data types. Together they ensure that

There are no memory leaks (the destructor frees up unwanted memory).
There are no run-time errors (no two calls to the destructor try to free up the same block
of memory).
Data is never in an invalid state and domain constraints on the values of data members
are never violated.
After such data types have been de ned, new data types can be created that extend the

de nitions of existing data types. They contain the de nition of the existing data types and at

https://hemanthrajhemu.github.io

 Constructors and Destructors 115

the same time add more specialized features on their own. This facility of de ning new data
types by making use of existing data types is known as inheritance. Chapter 5 deals with this
feature of OOPS and its implementation in C++.

Constructors can be used to guarantee a proper
initialization of data members of a class. Domain
constraints on values of data members can be
implemented via constructors.

Constructors are member functions and have the
same name as that of the class itself. The compiler
creates a zero-argument constructor and a copy
constructor if we do not de ne them. Constructors take
parameters and, therefore, can be overloaded. They
do not return anything (not even void). The compiler
implicitly embeds a call to the constructor for each
object that is being created. An explicit call to the
constructor for an existing object is forbidden.

If necessary, destructors can be used to guarantee
a proper clean up when an object goes out of scope.
Destructors are member functions and have the same
name as that of the class itself but with the tilde sign
pre xed. The compiler creates a destructor if we do
not de ne one. Destructors do not take parameters and,
therefore, cannot be overloaded. They do not return
anything (not even void). The compiler implicitly
embeds a call to the destructor for each object that is
going out of scope (being destroyed). An explicit call
to the destructor for an existing object is forbidden.

Summary

Key Terms
constructors

– called automatically for each object that has just
got created

– de ned by default
– has the same name as that of the class

– does not return anything
zero-argument constructor
parameterized constructors
copy constructor
destructors

Exercises

 1. What are constructors? When are they called? What
is their utility?

 2. Why should the formal argument of a copy
constructor be a reference object?

 3. What are destructors? When are they called? What
is their utility?

 4. Is a destructor necessary for the following class?

class Time
{
 int hours, minutes, seconds;
 public:
 /*
 rest of the class Time … but no

more data members
 */
};

 5. De ne a suitable parameterized constructor with
default values for the class Time given in question
4.

 6. Four member functions are provided by default by
the compiler for each class that we de ne. We have
studied three of them in this chapter. Name them.

 7. State true or false.
(a) Memory occupied by an object is allocated by

the constructor of its class.
(b) Constructors can be used to acquire memory

outside the objects.
(c) Constructors can be overloaded.
(d) A constructor can have a return statement in its

de nition.
(e) Memory occupied by an object is deallocated by

the destructor of its class.

https://hemanthrajhemu.github.io

 Object-Oriented Programming with C++116

(f) Destructors can be used to release memory that
has been acquired outside the objects.

(g) Destructors can be overloaded.
(h) A destructor can have a return statement in its

de nition.
8. The copy constructor has been explicitly de ned for

the class String so that no two objects of the class
String end up sharing the same resource, that is,
end up with their contained pointers pointing at the
same block of dynamically allocated memory. In
this case, two such blocks may contain two copies
of the same data as a result of the copy constructor,

which is perfectly acceptable. However, there are
situations where no two objects should share even
copies of the same data. If A is a class for whose
objects this restriction needs to be applied, then we
should ensure that a statement like the second one
below should not compile.

A A1;
A A2 = A1;

 How can this objective be achieved? (Hint: Member
functions are not always public and the copy
constructor is a member function.)

https://hemanthrajhemu.github.io

