

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Contents
Preface . xxix

Part I The Java Language

1 The History and Evolution of Java . 3
Java’s Lineage . 3

The Birth of Modern Programming: C 4
C++: The Next Step . 5
The Stage Is Set for Java . 6

The Creation of Java . 6
The C# Connection . 8

How Java Changed the Internet . 8
Java Applets . 8
Security . 9
Portability . 9

Java’s Magic: The Bytecode . 9
Servlets: Java on the Server Side . 10
The Java Buzzwords . 10

Simple . 11
Object-Oriented . 11
Robust . 11
Multithreaded . 12
Architecture-Neutral . 12
Interpreted and High Performance . 12
Distributed . 12
Dynamic . 13

The Evolution of Java . 13
Java SE 6 . 14

A Culture of Innovation . 14

2 An Overview of Java . 15
Object-Oriented Programming . 15

Two Paradigms . 15
Abstraction . 16
The Three OOP Principles . 16

A First Simple Program . 21
Entering the Program . 21
Compiling the Program . 22
A Closer Look at the First Sample Program 22

v i i

https://hemanthrajhemu.github.io

A Second Short Program . 24
Two Control Statements . 26

The if Statement . 26
The for Loop . 27

Using Blocks of Code . 29
Lexical Issues . 30

Whitespace . 30
Identifiers . 30
Literals . 31
Comments . 31
Separators . 31
The Java Keywords . 31

The Java Class Libraries . 32

3 Data Types, Variables, and Arrays . 33
Java Is a Strongly Typed Language . 33
The Primitive Types . 33
Integers . 34

byte . 35
short . 35
int . 35
long . 35

Floating-Point Types . 36
float . 36
double . 36

Characters . 37
Booleans . 38
A Closer Look at Literals . 39

Integer Literals . 39
Floating-Point Literals . 40
Boolean Literals . 40
Character Literals . 40
String Literals . 40

Variables . 41
Declaring a Variable . 41
Dynamic Initialization . 42
The Scope and Lifetime of Variables . 42

Type Conversion and Casting . 45
Java’s Automatic Conversions . 45
Casting Incompatible Types . 45

Automatic Type Promotion in Expressions . 47
The Type Promotion Rules . 47

Arrays . 48
One-Dimensional Arrays . 48
Multidimensional Arrays . 51
Alternative Array Declaration Syntax . 55

v i i i J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

A Few Words About Strings . 55
A Note to C/C++ Programmers About Pointers 56

4 Operators . 57
Arithmetic Operators . 57

The Basic Arithmetic Operators . 58
The Modulus Operator . 59
Arithmetic Compound Assignment Operators 59
Increment and Decrement . 60

The Bitwise Operators . 62
The Bitwise Logical Operators . 63
The Left Shift . 65
The Right Shift . 66
The Unsigned Right Shift . 68
Bitwise Operator Compound Assignments 69

Relational Operators . 70
Boolean Logical Operators . 71

Short-Circuit Logical Operators . 72
The Assignment Operator . 73
The ? Operator . 73
Operator Precedence . 74
Using Parentheses . 74

5 Control Statements . 77
Java’s Selection Statements . 77

if . 77
switch . 80

Iteration Statements . 84
while . 84
do-while . 86
for . 88
The For-Each Version of the for Loop . 92
Nested Loops . 97

Jump Statements . 98
Using break . 98
Using continue . 102
return . 103

6 Introducing Classes . 105
Class Fundamentals . 105

The General Form of a Class . 105
A Simple Class . 106

Declaring Objects . 109
A Closer Look at new . 109

Assigning Object Reference Variables . 111
Introducing Methods . 111

Adding a Method to the Box Class . 112

C o n t e n t s ix

https://hemanthrajhemu.github.io

1
The History and

Evolution of Java

To fully understand Java, one must understand the reasons behind its creation, the
forces that shaped it, and the legacy that it inherits. Like the successful computer
languages that came before, Java is a blend of the best elements of its rich heritage

combined with the innovative concepts required by its unique mission. While the remaining
chapters of this book describe the practical aspects of Java—including its syntax, key libraries,
and applications—this chapter explains how and why Java came about, what makes it so
important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the
Internet, it is important to remember that Java is first and foremost a programming language.
Computer language innovation and development occurs for two fundamental reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal
measure.

Java’s Lineage
Java is related to C++, which is a direct descendant of C. Much of the character of Java
is inherited from these two languages. From C, Java derives its syntax. Many of Java’s
object-oriented features were influenced by C++. In fact, several of Java’s defining
characteristics come from—or are responses to—its predecessors. Moreover, the creation of
Java was deeply rooted in the process of refinement and adaptation that has been occurring
in computer programming languages for the past several decades. For these reasons, this
section reviews the sequence of events and forces that led to Java. As you will see, each
innovation in language design was driven by the need to solve a fundamental problem
that the preceding languages could not solve. Java is no exception.

3

https://hemanthrajhemu.github.io

The Birth of Modern Programming: C
The C language shook the computer world. Its impact should not be underestimated, because
it fundamentally changed the way programming was approached and thought about. The
creation of C was a direct result of the need for a structured, efficient, high-level language that
could replace assembly code when creating systems programs. As you probably know, when
a computer language is designed, trade-offs are often made, such as the following:

• Ease-of-use versus power

• Safety versus efficiency

• Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one set of
traits or the other. For example, although FORTRAN could be used to write fairly efficient
programs for scientific applications, it was not very good for system code. And while BASIC
was easy to learn, it wasn’t very powerful, and its lack of structure made its usefulness
questionable for large programs. Assembly language can be used to produce highly efficient
programs, but it is not easy to learn or use effectively. Further, debugging assembly code
can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to understand.
While languages like Pascal are structured, they were not designed for efficiency, and failed
to include certain features necessary to make them applicable to a wide range of programs.
(Specifically, given the standard dialects of Pascal available at the time, it was not practical
to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By
the early 1970s, the computer revolution was beginning to take hold, and the demand for
software was rapidly outpacing programmers’ ability to produce it. A great deal of effort
was being expended in academic circles in an attempt to create a better computer language.
But, and perhaps most importantly, a secondary force was beginning to be felt. Computer
hardware was finally becoming common enough that a critical mass was being reached.
No longer were computers kept behind locked doors. For the first time, programmers
were gaining virtually unlimited access to their machines. This allowed the freedom to
experiment. It also allowed programmers to begin to create their own tools. On the eve
of C’s creation, the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX
operating system, C was the result of a development process that started with an older
language called BCPL, developed by Martin Richards. BCPL influenced a language called
B, invented by Ken Thompson, which led to the development of C in the 1970s. For many
years, the de facto standard for C was the one supplied with the UNIX operating system
and described in The C Programming Language by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1978). C was formally standardized in December 1989, when the American
National Standards Institute (ANSI) standard for C was adopted.

4 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 : T h e H i s t o r y a n d E v o l u t i o n o f J a v a 5

The creation of C is considered by many to have marked the beginning of the modern
age of computer languages. It successfully synthesized the conflicting attributes that had
so troubled earlier languages. The result was a powerful, efficient, structured language that
was relatively easy to learn. It also included one other, nearly intangible aspect: it was a
programmer’s language. Prior to the invention of C, computer languages were generally
designed either as academic exercises or by bureaucratic committees. C is different. It was
designed, implemented, and developed by real, working programmers, reflecting the way
that they approached the job of programming. Its features were honed, tested, thought
about, and rethought by the people who actually used the language. The result was a
language that programmers liked to use. Indeed, C quickly attracted many followers
who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the
programmer community. In short, C is a language designed by and for programmers.
As you will see, Java inherited this legacy.

C++: The Next Step
During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language, you
might ask why a need for something else existed. The answer is complexity. Throughout the
history of programming, the increasing complexity of programs has driven the need for better
ways to manage that complexity. C++ is a response to that need. To better understand why
managing program complexity is fundamental to the creation of C++, consider the following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done by
manually toggling in the binary machine instructions by use of the front panel. As long as
programs were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger, increasingly
complex programs by using symbolic representations of the machine instructions. As programs
continued to grow, high-level languages were introduced that gave the programmer more tools
with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an
impressive first step, it is hardly a language that encourages clear and easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of programming
championed by languages such as C. The use of structured languages enabled programmers
to write, for the first time, moderately complex programs fairly easily. However, even with
structured programming methods, once a project reaches a certain size, its complexity exceeds
what a programmer can manage. By the early 1980s, many projects were pushing the structured
approach past its limits. To solve this problem, a new way to program was invented, called
object-oriented programming (OOP). Object-oriented programming is discussed in detail later in
this book, but here is a brief definition: OOP is a programming methodology that helps organize
complex programs through the use of inheritance, encapsulation, and polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once the size of a program exceeds a
certain point, it becomes so complex that it is difficult to grasp as a totality. While the
precise size at which this occurs differs, depending upon both the nature of the program
and the programmer, there is always a threshold at which a program becomes
unmanageable. C++ added features that enabled this threshold to be broken, allowing
programmers to comprehend and manage larger programs.

https://hemanthrajhemu.github.io

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories
in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.”
However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented
features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes,
and benefits. This is a crucial reason for the success of C++ as a language. The invention of C++
was not an attempt to create a completely new programming language. Instead, it was an
enhancement to an already highly successful one.

The Stage Is Set for Java
By the end of the 1980s and the early 1990s, object-oriented programming using C++ took
hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect
language. Because C++ blended the high efficiency and stylistic elements of C with the
object-oriented paradigm, it was a language that could be used to create a wide range of
programs. However, just as in the past, forces were brewing that would, once again, drive
computer language evolution forward. Within a few years, the World Wide Web and the
Internet would reach critical mass. This event would precipitate another revolution in
programming.

The Creation of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working
version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between
the initial implementation of Oak in the fall of 1992 and the public announcement of Java in
the spring of 1995, many more people contributed to the design and evolution of the language.
Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were key
contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the
primary motivation was the need for a platform-independent (that is, architecture-neutral)
language that could be used to create software to be embedded in various consumer electronic
devices, such as microwave ovens and remote controls. As you can probably guess, many
different types of CPUs are used as controllers. The trouble with C and C++ (and most other
languages) is that they are designed to be compiled for a specific target. Although it is possible
to compile a C++ program for just about any type of CPU, to do so requires a full C++ compiler
targeted for that CPU. The problem is that compilers are expensive and time-consuming to
create. An easier—and more cost-efficient—solution was needed. In an attempt to find such a
solution, Gosling and others began work on a portable, platform-independent language that
could be used to produce code that would run on a variety of CPUs under differing
environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor was emerging that would play a crucial role in the future of Java.
This second force was, of course, the World Wide Web. Had the Web not taken shape at
about the same time that Java was being implemented, Java might have remained a useful
but obscure language for programming consumer electronics. However, with the emergence
of the World Wide Web, Java was propelled to the forefront of computer language design,
because the Web, too, demanded portable programs.

6 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 : T h e H i s t o r y a n d E v o l u t i o n o f J a v a 7

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat to
other, more pressing problems. Further, because (at that time) much of the computer world
had divided itself into the three competing camps of Intel, Macintosh, and UNIX, most
programmers stayed within their fortified boundaries, and the urgent need for portable
code was reduced. However, with the advent of the Internet and the Web, the old problem
of portability returned with a vengeance. After all, the Internet consists of a diverse,
distributed universe populated with various types of computers, operating systems, and
CPUs. Even though many kinds of platforms are attached to the Internet, users would like
them all to be able to run the same program. What was once an irritating but low-priority
problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of
portability frequently encountered when creating code for embedded controllers are also
found when attempting to create code for the Internet. In fact, the same problem that Java
was initially designed to solve on a small scale could also be applied to the Internet on a
large scale. This realization caused the focus of Java to switch from consumer electronics
to Internet programming. So, while the desire for an architecture-neutral programming
language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by
intent. The Java designers knew that using the familiar syntax of C and echoing the
object-oriented features of C++ would make their language appealing to the legions of
experienced C/C++ programmers. In addition to the surface similarities, Java shares some
of the other attributes that helped make C and C++ successful. First, Java was designed,
tested, and refined by real, working programmers. It is a language grounded in the needs
and experiences of the people who devised it. Thus, Java is a programmer’s language.
Second, Java is cohesive and logically consistent. Third, except for those constraints
imposed by the Internet environment, Java gives you, the programmer, full control. If you
program well, your programs reflect it. If you program poorly, your programs reflect that,
too. Put differently, Java is not a language with training wheels. It is a language for
professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as simply
the “Internet version of C++.” However, to do so would be a large mistake. Java has significant
practical and philosophical differences. While it is true that Java was influenced by C++, it is
not an enhanced version of C++. For example, Java is neither upwardly nor downwardly
compatible with C++. Of course, the similarities with C++ are significant, and if you are a
C++ programmer, then you will feel right at home with Java. One other point: Java was not
designed to replace C++. Java was designed to solve a certain set of problems. C++ was
designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons:
to adapt to changes in environment and to implement advances in the art of programming.
The environmental change that prompted Java was the need for platform-independent
programs destined for distribution on the Internet. However, Java also embodies changes
in the way that people approach the writing of programs. For example, Java enhanced
and refined the object-oriented paradigm used by C++, added integrated support for
multithreading, and provided a library that simplified Internet access. In the final analysis,
though, it was not the individual features of Java that made it so remarkable. Rather, it was

https://hemanthrajhemu.github.io

the language as a whole. Java was the perfect response to the demands of the then newly
emerging, highly distributed computing universe. Java was to Internet programming what
C was to system programming: a revolutionary force that changed the world.

The C# Connection
The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become part
of the baseline for any new language. The success of Java is simply too important to ignore.

Perhaps the most important example of Java’s influence is C#. Created by Microsoft to
support the .NET Framework, C# is closely related to Java. For example, both share the
same general syntax, support distributed programming, and utilize the same object model.
There are, of course, differences between Java and C#, but the overall “look and feel” of
these languages is very similar. This “cross-pollination” from Java to C# is the strongest
testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a
profound effect on the Internet. In addition to simplifying web programming in general,
Java innovated a new type of networked program called the applet that changed the way
the online world thought about content. Java also addressed some of the thorniest issues
associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets
An applet is a special kind of Java program that is designed to be transmitted over the
Internet and automatically executed by a Java-compatible web browser. Furthermore, an
applet is downloaded on demand, without further interaction with the user. If the user
clicks a link that contains an applet, the applet will be automatically downloaded and run in
the browser. Applets are intended to be small programs. They are typically used to display
data provided by the server, handle user input, or provide simple functions, such as a loan
calculator, that execute locally, rather than on the server. In essence, the applet allows some
functionality to be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the
universe of objects that can move about freely in cyberspace. In general, there are two very
broad categories of objects that are transmitted between the server and the client: passive
information and dynamic, active programs. For example, when you read your e-mail, you are
viewing passive data. Even when you download a program, the program’s code is still only
passive data until you execute it. By contrast, the applet is a dynamic, self-executing program.
Such a program is an active agent on the client computer, yet it is initiated by the server.

As desirable as dynamic, networked programs are, they also present serious problems
in the areas of security and portability. Obviously, a program that downloads and executes
automatically on the client computer must be prevented from doing harm. It must also be
able to run in a variety of different environments and under different operating systems. As
you will see, Java solved these problems in an effective and elegant way. Let’s look a bit
more closely at each.

8 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Security
As you are likely aware, every time you download a “normal” program, you are taking a
risk, because the code you are downloading might contain a virus, Trojan horse, or other
harmful code. At the core of the problem is the fact that malicious code can cause its damage
because it has gained unauthorized access to system resources. For example, a virus program
might gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java
to enable applets to be downloaded and executed on the client computer safely, it was
necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment
and not allowing it access to other parts of the computer. (You will see how this is
accomplished shortly.) The ability to download applets with confidence that no harm will
be done and that no security will be breached is considered by many to be the single most
innovative aspect of Java.

Portability
Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on
virtually any computer connected to the Internet, there needed to be some way to enable
that program to execute on different systems. For example, in the case of an applet, the
same applet must be able to be downloaded and executed by the wide variety of CPUs,
operating systems, and browsers connected to the Internet. It is not practical to have
different versions of the applet for different computers. The same code must work on all
computers. Therefore, some means of generating portable executable code was needed. As
you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’s Magic: The Bytecode
The key that allows Java to solve both the security and the portability problems just described
is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is
a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as
an interpreter for bytecode. This may come as a bit of a surprise since many modern languages
are designed to be compiled into executable code because of performance concerns. However,
the fact that a Java program is executed by the JVM helps solve the major problems associated
with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in
a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run
on it. Remember, although the details of the JVM will differ from platform to platform, all
understand the same Java bytecode. If a Java program were compiled to native code, then
different versions of the same program would have to exist for each type of CPU connected
to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by
the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it can contain the program and prevent it from generating

C h a p t e r 1 : T h e H i s t o r y a n d E v o l u t i o n o f J a v a 9

https://hemanthrajhemu.github.io

side effects outside of the system. As you will see, safety is also enhanced by certain
restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted
by a virtual machine, it runs slower than it would run if compiled to executable code.
However, with Java, the differential between the two is not so great. Because bytecode has
been highly optimized, the use of bytecode enables the JVM to execute programs much
faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance.
For this reason, Sun began supplying its HotSpot technology not long after Java’s initial
release. HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler
is part of the JVM, selected portions of bytecode are compiled into executable code in real
time, on a piece-by-piece, demand basis. It is important to understand that it is not practical
to compile an entire Java program into executable code all at once, because Java performs
various run-time checks that can be done only at run time. Instead, a JIT compiler compiles
code as it is needed, during execution. Furthermore, not all sequences of bytecode are
compiled—only those that will benefit from compilation. The remaining code is simply
interpreted. However, the just-in-time approach still yields a significant performance boost.
Even when dynamic compilation is applied to bytecode, the portability and safety features
still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side
As useful as applets can be, they are just one half of the client/server equation. Not long
after the initial release of Java, it became obvious that Java would also be useful on the
server side. The result was the servlet. A servlet is a small program that executes on the
server. Just as applets dynamically extend the functionality of a web browser, servlets
dynamically extend the functionality of a web server. Thus, with the advent of the servlet,
Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the
client. For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that is sent
to the browser. Although dynamically generated content is available through mechanisms such
as CGI (Common Gateway Interface), the servlet offers several advantages, including
increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed
by the JVM, they are highly portable. Thus, the same servlet can be used in a variety of
different server environments. The only requirements are that the server support the JVM
and a servlet container.

The Java Buzzwords
No discussion of Java’s history is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security,
other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the following list of buzzwords:

10 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s
examine what each of the others implies.

Simple
Java was designed to be easy for the professional programmer to learn and use effectively.
Assuming that you have some programming experience, you will not find Java hard to master.
If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the
object-oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented
Although influenced by its predecessors, Java was not designed to be source-code compatible
with any other language. This allowed the Java team the freedom to design with a blank
slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing
liberally from many seminal object-software environments of the last few decades, Java
manages to strike a balance between the purist’s “everything is an object” paradigm and
the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy
to extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust
The multiplatformed environment of the Web places extraordinary demands on a program,
because the program must execute reliably in a variety of systems. Thus, the ability to create
robust programs was given a high priority in the design of Java. To gain reliability, Java
restricts you in a few key areas to force you to find your mistakes early in program
development. At the same time, Java frees you from having to worry about many of the
most common causes of programming errors. Because Java is a strictly typed language, it
checks your code at compile time. However, it also checks your code at run time. Many
hard-to-track-down bugs that often turn up in hard-to-reproduce run-time situations are
simply impossible to create in Java. Knowing that what you have written will behave in a
predictable way under diverse conditions is a key feature of Java.

C h a p t e r 1 : T h e H i s t o r y a n d E v o l u t i o n o f J a v a 11

https://hemanthrajhemu.github.io

12 P a r t I : T h e J a v a L a n g u a g e

To better understand how Java is robust, consider two of the main reasons for program
failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious task in traditional
programming environments. For example, in C/C++, the programmer must manually allocate
and free all dynamic memory. This sometimes leads to problems, because programmers will
either forget to free memory that has been previously allocated or, worse, try to free some
memory that another part of their code is still using. Java virtually eliminates these problems
by managing memory allocation and deallocation for you. (In fact, deallocation is completely
automatic, because Java provides garbage collection for unused objects.) Exceptional conditions
in traditional environments often arise in situations such as division by zero or “file not found,”
and they must be managed with clumsy and hard-to-read constructs. Java helps in this area
by providing object-oriented exception handling. In a well-written Java program, all run-time
errors can—and should—be managed by your program.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows
you to write programs that do many things simultaneously. The Java run-time system
comes with an elegant yet sophisticated solution for multiprocess synchronization that
enables you to construct smoothly running interactive systems. Java’s easy-to-use approach
to multithreading allows you to think about the specific behavior of your program, not the
multitasking subsystem.

Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. One of the
main problems facing programmers is that no guarantee exists that if you write a program
today, it will run tomorrow—even on the same machine. Operating system upgrades,
processor upgrades, and changes in core system resources can all combine to make a
program malfunction. The Java designers made several hard decisions in the Java language
and the Java Virtual Machine in an attempt to alter this situation. Their goal was “write
once; run anywhere, any time, forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance
As described earlier, Java enables the creation of cross-platform programs by compiling
into an intermediate representation called Java bytecode. This code can be executed on
any system that implements the Java Virtual Machine. Most previous attempts at
cross-platform solutions have done so at the expense of performance. As explained earlier,
the Java bytecode was carefully designed so that it would be easy to translate directly into
native machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed
Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a
file. Java also supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

https://hemanthrajhemu.github.io

C h a p t e r 1 : T h e H i s t o r y a n d E v o l u t i o n o f J a v a 13

Dynamic
Java programs carry with them substantial amounts of run-time type information that
is used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness of
the Java environment, in which small fragments of bytecode may be dynamically updated
on a running system.

The Evolution of Java
The initial release of Java was nothing short of revolutionary, but it did not mark the end of
Java’s era of rapid innovation. Unlike most other software systems that usually settle into a
pattern of small, incremental improvements, Java continued to evolve at an explosive pace.
Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The
features added by Java 1.1 were more significant and substantial than the increase in the
minor revision number would have you think. Java 1.1 added many new library elements,
redefined the way events are handled, and reconfigured many features of the 1.0 library. It
also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus,
Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”
The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern
age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the
first release of Java 2 used the 1.2 version number. The reason is that it originally referred
to the internal version number of the Java libraries, but then was generalized to refer to
the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform
Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections
Framework, and it enhanced the Java Virtual Machine and various programming tools. Java
2 also contained a few deprecations. The most important affected the Thread class in which
the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,
it added to existing functionality and “tightened up” the development environment. In
general, programs written for version 1.2 and those written for version 1.3 are source-code
compatible. Although version 1.3 contained a smaller set of changes than the preceding
three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important
upgrades, enhancements, and additions. For example, it added the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also made changes to the
Collections Framework and the networking classes. In addition, numerous small changes
were made throughout. Despite the significant number of new features, version 1.4
maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous
Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally
expanded the scope, power, and range of the language. To grasp the magnitude of the
changes that J2SE 5 made to Java, consider the following list of its major new features:

• Generics
• Annotations
• Autoboxing and auto-unboxing

https://hemanthrajhemu.github.io

14 P a r t I : T h e J a v a L a n g u a g e

• Enumerations

• Enhanced, for-each style for loop

• Variable-length arguments (varargs)

• Static import

• Formatted I/O

• Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents
a significant addition to the Java language. Some, such as generics, the enhanced for, and
varargs, introduce new syntax elements. Others, such as autoboxing and auto-unboxing,
alter the semantics of the language. Annotations add an entirely new dimension to
programming. In all cases, the impact of these additions went beyond their direct effects.
They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number
“5.” The next version number for Java would normally have been 1.5. However, the new
features were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the
magnitude of the change. Instead, Sun elected to increase the version number to 5 as a way
of emphasizing that a major event was taking place. Thus, it was named J2SE 5, and the
developer’s kit was called JDK 5. However, in order to maintain consistency, Sun decided
to use 1.5 as its internal version number, which is also referred to as the developer version
number. The “5” in J2SE 5 is called the product version number.

Java SE 6
The newest release of Java is called Java SE 6, and the material in this book has been updated
to reflect this latest version of Java. With the release of Java SE 6, Sun once again decided to
change the name of the Java platform. First, notice that the “2” has been dropped. Thus, the
platform now has the name Java SE, and the official product name is Java Platform, Standard
Edition 6. As with J2SE 5, the 6 in Java SE 6 is the product version number. The internal,
developer version number is 1.6.

Java SE 6 builds on the base of J2SE 5, adding incremental improvements. Java SE 6
adds no major features to the Java language proper, but it does enhance the API libraries,
add several new packages, and offer improvements to the run time. As it relates to this
book, it is the changes to the core API that are the most notable. Many of the packages
have new classes, and many of the classes have new methods. These changes are indicated
throughout the book. In general, the release of Java SE 6 serves to further solidify the
advances made by J2SE 5.

A Culture of Innovation
Since the beginning, Java has been at the center of a culture of innovation. Its original release
redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode
changed the way we think about security and portability. The applet (and then the servlet)
made the Web come alive. The Java Community Process (JCP) redefined the way that new
ideas are assimilated into the language. The world of Java has never stood still for very
long. Java SE 6 is the latest release in Java’s ongoing, dynamic history.

https://hemanthrajhemu.github.io

2
An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation.
Rather, they work together to form the language as a whole. However, this
interrelatedness can make it difficult to describe one aspect of Java without

involving several others. Often a discussion of one feature implies prior knowledge of
another. For this reason, this chapter presents a quick overview of several key features
of Java. The material described here will give you a foothold that will allow you to write
and understand simple programs. Most of the topics discussed will be examined in greater
detail in the remaining chapters of Part I.

Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at
least some extent object-oriented. OOP is so integral to Java that it is best to understand its
basic principles before you begin writing even simple Java programs. Therefore, this chapter
begins with a discussion of the theoretical aspects of OOP.

Two Paradigms
All computer programs consist of two elements: code and data. Furthermore, a program can
be conceptually organized around its code or around its data. That is, some programs are
written around “what is happening” and others are written around “who is being affected.”
These are the two paradigms that govern how a program is constructed. The first way is
called the process-oriented model. This approach characterizes a program as a series of linear
steps (that is, code). The process-oriented model can be thought of as code acting on data.
Procedural languages such as C employ this model to considerable success. However, as
mentioned in Chapter 1, problems with this approach appear as programs grow larger and
more complex.

To manage increasing complexity, the second approach, called object-oriented programming,
was conceived. Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented program can be
characterized as data controlling access to code. As you will see, by switching the controlling
entity to data, you can achieve several organizational benefits.

1 5

https://hemanthrajhemu.github.io

Abstraction
An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of tens
of thousands of individual parts. They think of it as a well-defined object with its own
unique behavior. This abstraction allows people to use a car to drive to the grocery store
without being overwhelmed by the complexity of the parts that form the car. They can
ignore the details of how the engine, transmission, and braking systems work. Instead,
they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see that
the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,
cellular phone, and so on. In turn, each of these subsystems is made up of more specialized
units. For instance, the sound system consists of a radio, a CD player, and/or a tape player.
The point is that you manage the complexity of the car (or any other complex system)
through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects. A sequence of process steps can become a collection of messages
between these objects. Thus, each of these objects describes its own unique behavior. You
can treat these objects as concrete entities that respond to messages telling them to do something.
This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural paradigm
for creating programs that survive the inevitable changes accompanying the life cycle of any
major software project, including conception, growth, and aging. For example, once you
have well-defined objects and clean, reliable interfaces to those objects, you can gracefully
decommission or replace parts of an older system without fear.

The Three OOP Principles
All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s take
a look at these concepts now.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse. One way to think about encapsulation
is as a protective wrapper that prevents the code and data from being arbitrarily accessed
by other code defined outside the wrapper. Access to the code and data inside the wrapper
is tightly controlled through a well-defined interface. To relate this to the real world, consider
the automatic transmission on an automobile. It encapsulates hundreds of bits of information
about your engine, such as how much you are accelerating, the pitch of the surface you are
on, and the position of the shift lever. You, as the user, have only one method of affecting

16 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 2 : A n O v e r v i e w o f J a v a 17

this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission
by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a
well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the
transmission does not affect objects outside the transmission. For example, shifting gears
does not turn on the headlights! Because an automatic transmission is encapsulated, dozens
of car manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming.
The power of encapsulated code is that everyone knows how to access it and thus can use
it regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in great
detail later in this book, the following brief discussion will be helpful now. A class defines
the structure and behavior (data and code) that will be shared by a set of objects. Each object
of a given class contains the structure and behavior defined by the class, as if it were stamped
out by a mold in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.
Collectively, these elements are called members of the class. Specifically, the data defined by
the class are referred to as member variables or instance variables. The code that operates on
that data is referred to as member methods or just methods. (If you are familiar with C/C++, it
may help to know that what a Java programmer calls a method, a C/C++ programmer calls a
function.) In properly written Java programs, the methods define how the member variables
can be used. This means that the behavior and interface of a class are defined by the methods
that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable in a
class may be marked private or public. The public interface of a class represents everything
that external users of the class need to know, or may know. The private methods and data
can only be accessed by code that is a member of the class. Therefore, any other code that
is not a member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’
public methods, you can ensure that no improper actions take place. Of course, this means
that the public interface should be carefully designed not to expose too much of the inner
workings of a class (see Figure 2-1).

Inheritance
Inheritance is the process by which one object acquires the properties of another object. This
is important because it supports the concept of hierarchical classification. As mentioned
earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.
For example, a Golden Retriever is part of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal. Without the use of hierarchies, each
object would need to define all of its characteristics explicitly. However, by use of inheritance,
an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case. Let’s take a closer
look at this process.

https://hemanthrajhemu.github.io

18 P a r t I : T h e J a v a L a n g u a g e

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size, intelligence,
and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,
and sleep. This description of attributes and behavior is the class definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they would
have more specific attributes, such as type of teeth, and mammary glands. This is known as
a subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the attributes
from animals. A deeply inherited subclass inherits all of the attributes from each of its ancestors
in the class hierarchy.

FIGURE 2-1
Encapsulation:
public methods
can be used to
protect private
data

https://hemanthrajhemu.github.io

C h a p t e r 2 : A n O v e r v i e w o f J a v a 19

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part of its
specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow
in complexity linearly rather than geometrically. A new subclass inherits all of the attributes
of all of its ancestors. It does not have unpredictable interactions with the majority of the rest
of the code in the system.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to
be used for a general class of actions. The specific action is determined by the exact nature

FIGURE 2-2 Labrador inherits the encapsulation of all its superclasses

https://hemanthrajhemu.github.io

20 P a r t I : T h e J a v a L a n g u a g e

of the situation. Consider a stack (which is a last-in, first-out list). You might have a program
that requires three types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. The algorithm that implements each stack is the same, even
though the data being stored differs. In a non–object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in Java you can specify a general set of stack routines
that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to
a group of related activities. This helps reduce complexity by allowing the same interface
to be used to specify a general class of action. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, do not need to make
this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a cat,
it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.
The same sense of smell is at work in both situations. The difference is what is being smelled,
that is, the type of data being operated upon by the dog’s nose! This same general concept
can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together
When properly applied, polymorphism, encapsulation, and inheritance combine to produce
a programming environment that supports the development of far more robust and scalable
programs than does the process-oriented model. A well-designed hierarchy of classes is the
basis for reusing the code in which you have invested time and effort developing and testing.
Encapsulation allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism allows you to create
clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but
cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)
of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family
minivan, drivers can all more or less find and operate the steering wheel, the brakes, and
the accelerator. After a bit of gear grinding, most people can even manage the difference
between a stick shift and an automatic, because they fundamentally understand their common
superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas pedals
hide an incredible array of complexity with an interface so simple you can operate them
with your feet! The implementation of the engine, the style of brakes, and the size of the
tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get an
antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,
or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering
wheel to change direction, and press the accelerator when you want to move. The same
interface can be used to control a number of different implementations.

https://hemanthrajhemu.github.io

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented principles,
the various parts of a complex program can be brought together to form a cohesive, robust,
maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put
more precisely, every Java program involves encapsulation, inheritance, and polymorphism.
Although the short example programs shown in the rest of this chapter and in the next few
chapters may not seem to exhibit all of these features, they are nevertheless present. As you
will see, many of the features supplied by Java are part of its built-in class libraries, which
do make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program
Now that the basic object-oriented underpinning of Java has been discussed, let’s look at
some actual Java programs. Let’s start by compiling and running the short sample program
shown here. As you will see, this involves a little more work than you might imagine.

/*
This is a simple Java program.
Call this file "Example.java".

*/
class Example {
// Your program begins with a call to main().
public static void main(String args[]) {
System.out.println("This is a simple Java program.");

}
}

NOTEOTE The descriptions that follow use the standard Java SE 6 Development Kit (JDK 6), which is
available from Sun Microsystems. If you are using a different Java development environment,
then you may need to follow a different procedure for compiling and executing Java programs.
In this case, consult your compiler’s documentation for details.

Entering the Program
For most computer languages, the name of the file that holds the source code to a program
is immaterial. However, this is not the case with Java. The first thing that you must learn
about Java is that the name you give to a source file is very important. For this example,
the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains one
or more class definitions. The Java compiler requires that a source file use the .java filename
extension.

As you can see by looking at the program, the name of the class defined by the program
is also Example. This is not a coincidence. In Java, all code must reside inside a class. By
convention, the name of that class should match the name of the file that holds the program.
You should also make sure that the capitalization of the filename matches the class name.

C h a p t e r 2 : A n O v e r v i e w o f J a v a 21

https://hemanthrajhemu.github.io

The reason for this is that Java is case-sensitive. At this point, the convention that filenames
correspond to class names may seem arbitrary. However, this convention makes it easier to
maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version
of the program. As discussed earlier, the Java bytecode is the intermediate representation of
your program that contains instructions the Java Virtual Machine will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher, called java.
To do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give
your Java source files the same name as the class they contain—the name of the source file
will match the name of the .class file. When you execute java as just shown, you are actually
specifying the name of the class that you want to execute. It will automatically search for
a file by that name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

A Closer Look at the First Sample Program
Although Example.java is quite short, it includes several key features that are common to
all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
This is a simple Java program.
Call this file "Example.java".

*/

This is a comment. Like most other programming languages, Java lets you enter a remark into
a program’s source file. The contents of a comment are ignored by the compiler. Instead, a
comment describes or explains the operation of the program to anyone who is reading its
source code. In this case, the comment describes the program and reminds you that the source
file should be called Example.java. Of course, in real applications, comments generally explain
how some part of the program works or what a specific feature does.

22 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Java supports three styles of comments. The one shown at the top of the program is called
a multiline comment. This type of comment must begin with /* and end with */. Anything
between these two comment symbols is ignored by the compiler. As the name suggests, a
multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an
identifier that is the name of the class. The entire class definition, including all of its members,
will be between the opening curly brace ({) and the closing curly brace (}). For the moment,
don’t worry too much about the details of a class except to note that in Java, all program
activity occurs within one. This is one reason why all Java programs are (at least a little bit)
object-oriented.

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with
a // and ends at the end of the line. As a general rule, programmers use multiline comments
for longer remarks and single-line comments for brief, line-by-line descriptions. The third
type of comment, a documentation comment, will be discussed in the “Comments” section later
in this chapter.

The next line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the line
at which the program will begin executing. All Java applications begin execution by calling
main(). The full meaning of each part of this line cannot be given now, since it involves
a detailed understanding of Java’s approach to encapsulation. However, since most of the
examples in the first part of this book will use this line of code, let’s take a brief look at each
part now.

The public keyword is an access specifier, which allows the programmer to control the
visibility of class members. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared. (The opposite of public
is private, which prevents a member from being used by code defined outside of its class.)
In this case, main() must be declared as public, since it must be called by code outside of
its class when the program is started. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value. As you will see, methods may also
return values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind that
Java is case-sensitive. Thus, Main is different from main. It is important to understand that
the Java compiler will compile classes that do not contain a main() method. But java has no
way to run these classes. So, if you had typed Main instead of main, the compiler would

C h a p t e r 2 : A n O v e r v i e w o f J a v a 23

https://hemanthrajhemu.github.io

24 P a r t I : T h e J a v a L a n g u a g e

still compile your program. However, java would report an error because it would be unable
to find the main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are called
parameters. If there are no parameters required for a given method, you still need to include
the empty parentheses. In main(), there is only one parameter, albeit a complicated one. String
args[] declares a parameter named args, which is an array of instances of the class String.
(Arrays are collections of similar objects.) Objects of type String store character strings. In this
case, args receives any command-line arguments present when the program is executed.
This program does not make use of this information, but other programs shown later in this
book will.

The last character on the line is the {. This signals the start of main()’s body. All of the
code that comprises a method will occur between the method’s opening curly brace and its
closing curly brace.

One other point: main() is simply a starting place for your program. A complex program
will have dozens of classes, only one of which will need to have a main() method to get
things started. When you begin creating applets—Java programs that are embedded in web
browsers—you won’t use main() at all, since the web browser uses a different means of
starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string “This is a simple Java program.” followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display
other types of information, too. The line begins with System.out. While too complicated to
explain in detail at this time, briefly, System is a predefined class that provides access to the
system, and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in
most real-world Java programs and applets. Since most modern computing environments
are windowed and graphical in nature, console I/O is used mostly for simple utility
programs and for demonstration programs. Later in this book, you will learn other ways to
generate output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end
with a semicolon. The reason that the other lines in the program do not end in a semicolon
is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program
Perhaps no other concept is more fundamental to a programming language than that of a
variable. As you probably know, a variable is a named memory location that may be assigned
a value by your program. The value of a variable may be changed during the execution of
the program. The next program shows how a variable is declared and how it is assigned a
value. The program also illustrates some new aspects of console output. As the comments
at the top of the program state, you should call this file Example2.java.

https://hemanthrajhemu.github.io

C h a p t e r 2 : A n O v e r v i e w o f J a v a 25

/*
Here is another short example.
Call this file "Example2.java".

*/

class Example2 {
public static void main(String args[]) {
int num; // this declares a variable called num

num = 100; // this assigns num the value 100

System.out.println("This is num: " + num);

num = num * 2;

System.out.print("The value of num * 2 is ");
System.out.println(num);

}
}

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program
is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires
that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the variable.
If you want to declare more than one variable of the specified type, you may use a comma-
separated list of variable names. Java defines several data types, including integer, character,
and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string “This is num:”.

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that
precedes it, and then the resulting string is output. (Actually, num is first converted from an
integer into its string equivalent and then concatenated with the string that precedes it. This

https://hemanthrajhemu.github.io

process is described in detail later in this book.) This approach can be generalized. Using
the + operator, you can join together as many items as you want within a single println()
statement.

The next line of code assigns num the value of num times 2. Like most other languages,
Java uses the * operator to indicate multiplication. After this line executes, num will contain
the value 200.

Here are the next two lines in the program:

System.out.print("The value of num * 2 is ");
System.out.println(num);

Several new things are occurring here. First, the built-in method print() is used to display
the string “The value of num * 2 is ”. This string is not followed by a newline. This means
that when the next output is generated, it will start on the same line. The print() method is
just like println(), except that it does not output a newline character after each call. Now
look at the call to println(). Notice that num is used by itself. Both print() and println()
can be used to output values of any of Java’s built-in types.

Two Control Statements
Although Chapter 5 will look closely at control statements, two are briefly introduced here so
that they can be used in example programs in Chapters 3 and 4. They will also help illustrate
an important aspect of Java: blocks of code.

The if Statement
The Java if statement works much like the IF statement in any other language. Further, it is
syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.
If condition is false, then the statement is bypassed. Here is an example:

if(num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is
true, and println() will execute. If num contains a value greater than or equal to 100, then
the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than

== Equal to

Notice that the test for equality is the double equal sign.

26 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 2 : A n O v e r v i e w o f J a v a 27

Here is a program that illustrates the if statement:

/*
Demonstrate the if.

Call this file "IfSample.java".
*/
class IfSample {
public static void main(String args[]) {
int x, y;

x = 10;
y = 20;

if(x < y) System.out.println("x is less than y");

x = x * 2;
if(x == y) System.out.println("x now equal to y");

x = x * 2;
if(x > y) System.out.println("x now greater than y");

// this won't display anything
if(x == y) System.out.println("you won't see this");

}
}

The output generated by this program is shown here:

x is less than y
x now equal to y
x now greater than y

Notice one other thing in this program. The line

int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop
As you may know from your previous programming experience, loop statements are an
important part of nearly any programming language. Java is no exception. In fact, as you
will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable
to an initial value. The condition is a Boolean expression that tests the loop control variable.
If the outcome of that test is true, the for loop continues to iterate. If it is false, the loop

https://hemanthrajhemu.github.io

terminates. The iteration expression determines how the loop control variable is changed
each time the loop iterates. Here is a short program that illustrates the for loop:

/*
Demonstrate the for loop.

Call this file "ForTest.java".
*/
class ForTest {
public static void main(String args[]) {
int x;

for(x = 0; x<10; x = x+1)
System.out.println("This is x: " + x);

}
}

This program generates the following output:

This is x: 0
This is x: 1
This is x: 2
This is x: 3
This is x: 4
This is x: 5
This is x: 6
This is x: 7
This is x: 8
This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization portion
of the for. At the start of each iteration (including the first one), the conditional test x < 10 is
performed. If the outcome of this test is true, the println() statement is executed, and then
the iteration portion of the loop is executed. This process continues until the conditional test
is false.

As a point of interest, in professionally written Java programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you will
seldom see statements like this:

x = x + 1;

The reason is that Java includes a special increment operator which performs this operation
more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The
increment operator increases its operand by one. By use of the increment operator, the
preceding statement can be written like this:

x++;

Thus, the for in the preceding program will usually be written like this:

28 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 2 : A n O v e r v i e w o f J a v a 29

for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it did
before.

Java also provides a decrement operator, which is specified as – –. This operator decreases
its operand by one.

Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a
block of code has been created, it becomes a logical unit that can be used any place that a
single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(x < y) { // begin a block
x = y;
y = 0;

} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without
the other also executing. The key point here is that whenever you need to logically link two
or more statements, you do so by creating a block.

Let’s look at another example. The following program uses a block of code as the target
of a for loop.

/*
Demonstrate a block of code.

Call this file "BlockTest.java"
*/
class BlockTest {
public static void main(String args[]) {
int x, y;

y = 20;

// the target of this loop is a block
for(x = 0; x<10; x++) {
System.out.println("This is x: " + x);
System.out.println("This is y: " + y);
y = y - 2;

}
}

}

The output generated by this program is shown here:

This is x: 0
This is y: 20

https://hemanthrajhemu.github.io

30 P a r t I : T h e J a v a L a n g u a g e

This is x: 1
This is y: 18
This is x: 2
This is y: 16
This is x: 3
This is y: 14
This is x: 4
This is y: 12
This is x: 5
This is y: 10
This is x: 6
This is y: 8
This is x: 7
This is y: 6
This is x: 8
This is y: 4
This is x: 9
This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

Lexical Issues
Now that you have seen several short Java programs, it is time to more formally describe
the atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,
comments, operators, separators, and keywords. The operators are described in the next
chapter. The others are described next.

Whitespace
Java is a free-form language. This means that you do not need to follow any special indentation
rules. For instance, the Example program could have been written all on one line or in any
other strange way you felt like typing it, as long as there was at least one whitespace character
between each token that was not already delineated by an operator or separator. In Java,
whitespace is a space, tab, or newline.

Identifiers
Identifiers are used for class names, method names, and variable names. An identifier may
be any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore
and dollar-sign characters. They must not begin with a number, lest they be confused with a
numeric literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value.
Some examples of valid identifiers are

AvgTemp count a4 $test this_is_ok

https://hemanthrajhemu.github.io

C h a p t e r 2 : A n O v e r v i e w o f J a v a 31

Invalid identifier names include these:

2count high-temp Not/ok

Literals
A constant value in Java is created by using a literal representation of it. For example, here
are some literals:

100 98.6 'X' "This is a test"

Left to right, the first literal specifies an integer, the next is a floating-point value, the third is
a character constant, and the last is a string. A literal can be used anywhere a value of its type
is allowed.

Comments
As mentioned, there are three types of comments defined by Java. You have already seen two:
single-line and multiline. The third type is called a documentation comment. This type of comment
is used to produce an HTML file that documents your program. The documentation comment
begins with a /** and ends with a */. Documentation comments are explained in Appendix A.

Separators
In Java, there are a few characters that are used as separators. The most commonly used
separator in Java is the semicolon. As you have seen, it is used to terminate statements.
The separators are shown in the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and invocation.
Also used for defining precedence in expressions, containing expressions
in control statements, and surrounding cast types.

{ } Braces Used to contain the values of automatically initialized arrays. Also used
to define a block of code, for classes, methods, and local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also used to
chain statements together inside a for statement.

. Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.

The Java Keywords
There are 50 keywords currently defined in the Java language (see Table 2-1). These keywords,
combined with the syntax of the operators and separators, form the foundation of the Java
language. These keywords cannot be used as names for a variable, class, or method.

https://hemanthrajhemu.github.io

32 P a r t I : T h e J a v a L a n g u a g e

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java only defines the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes,
and so on.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are members of the System class,
which is a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/O, string handling, networking,
and graphics. The standard classes also provide support for windowed output. Thus, Java
as a totality is a combination of the Java language itself, plus its standard classes. As you
will see, the class libraries provide much of the functionality that comes with Java. Indeed,
part of becoming a Java programmer is learning to use the standard Java classes. Throughout
Part I of this book, various elements of the standard library classes and methods are described
as needed. In Part II, the class libraries are described in detail.

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

TABLE 2-1 Java Keywords

https://hemanthrajhemu.github.io

3
Data Types, Variables,

and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables,
and arrays. As with all modern programming languages, Java supports several types
of data. You may use these types to declare variables and to create arrays. As you will

see, Java’s approach to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part of
Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility. There are no automatic coercions or conversions of conflicting types as
in some languages. The Java compiler checks all expressions and parameters to ensure that
the types are compatible. Any type mismatches are errors that must be corrected before the
compiler will finish compiling the class.

The Primitive Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean.
The primitive types are also commonly referred to as simple types, and both terms will be
used in this book. These can be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

• Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

3 3

https://hemanthrajhemu.github.io

• Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

• Boolean This group includes boolean, which is a special type for representing
true/false values.

You can use these types as-is, or to construct arrays or your own class types. Thus, they
form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the primitive types are not. They are analogous to
the simple types found in most other non–object-oriented languages. The reason for this is
efficiency. Making the primitive types into objects would have degraded performance too much.

The primitive types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the dictates
of the execution environment. However, Java is different. Because of Java’s portability
requirement, all data types have a strictly defined range. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are guaranteed
to run without porting on any machine architecture. While strictly specifying the size of an
integer may cause a small loss of performance in some environments, it is necessary in order
to achieve portability.

Let’s look at each type of data in turn.

Integers
Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages support both signed and unsigned integers. However, Java’s designers
felt that unsigned integers were unnecessary. Specifically, they felt that the concept of unsigned
was used mostly to specify the behavior of the high-order bit, which defines the sign of an integer
value. As you will see in Chapter 4, Java manages the meaning of the high-order bit differently,
by adding a special “unsigned right shift” operator. Thus, the need for an unsigned integer type
was eliminated.

The width of an integer type should not be thought of as the amount of storage it consumes,
but rather as the behavior it defines for variables and expressions of that type. The Java run-time
environment is free to use whatever size it wants, as long as the types behave as you declared
them. The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Let’s look at each type of integer.

34 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

byte
The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to 127.
Variables of type byte are especially useful when you’re working with a stream of data from
a network or file. They are also useful when you’re working with raw binary data that may
not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

short
short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used
Java type. Here are some examples of short variable declarations:

short s;
short t;

int
The most commonly used integer type is int. It is a signed 32-bit type that has a range
from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Although you might think that
using a byte or short would be more efficient than using an int in situations in which the
larger range of an int is not needed, this may not be the case. The reason is that when byte
and short values are used in an expression they are promoted to int when the expression is
evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the best
choice when an integer is needed.

long
long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful
when big, whole numbers are needed. For example, here is a program that computes the
number of miles that light will travel in a specified number of days.

// Compute distance light travels using long variables.
class Light {
public static void main(String args[]) {
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 35

https://hemanthrajhemu.github.io

36 P a r t I : T h e J a v a L a n g u a g e

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);
System.out.print(" days light will travel about ");
System.out.println(distance + " miles.");

}
}

This program generates the following output:

In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or transcendentals
such as sine and cosine, result in a value whose precision requires a floating-point type. Java
implements the standard (IEEE–754) set of floating-point types and operators. There are two
kinds of floating-point types, float and double, which represent single- and double-precision
numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

Each of these floating-point types is examined next.

float
The type float specifies a single-precision value that uses 32 bits of storage. Single precision is
faster on some processors and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small. Variables of type float are useful
when you need a fractional component, but don’t require a large degree of precision. For
example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double
Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have been
optimized for high-speed mathematical calculations. All transcendental math functions, such
as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy over

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 37

many iterative calculations, or are manipulating large-valued numbers, double is the best
choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area {
public static void main(String args[]) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);
}

}

Characters
In Java, the data type used to store characters is char. However, C/C++ programmers beware:
char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is not the
case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully
international character set that can represent all of the characters found in all human
languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic,
Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits. Thus, in
Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars.
The standard set of characters known as ASCII still ranges from 0 to 127 as always, and the
extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is designed to
allow programs to be written for worldwide use, it makes sense that it would use Unicode to
represent characters. Of course, the use of Unicode is somewhat inefficient for languages such
as English, German, Spanish, or French, whose characters can easily be contained within 8 bits.
But such is the price that must be paid for global portability.

NOTEOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
public static void main(String args[]) {
char ch1, ch2;

ch1 = 88; // code for X
ch2 = 'Y';

System.out.print("ch1 and ch2: ");
System.out.println(ch1 + " " + ch2);

}
}

https://hemanthrajhemu.github.io

38 P a r t I : T h e J a v a L a n g u a g e

This program displays the following output:

ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127
values in the Unicode character set. For this reason, all the “old tricks” that you may have
used with characters in other languages will work in Java, too.

Although char is designed to hold Unicode characters, it can also be thought of as an
integer type on which you can perform arithmetic operations. For example, you can add
two characters together, or increment the value of a character variable. Consider the
following program:

// char variables behave like integers.
class CharDemo2 {
public static void main(String args[]) {
char ch1;

ch1 = 'X';
System.out.println("ch1 contains " + ch1);

ch1++; // increment ch1
System.out.println("ch1 is now " + ch1);

}
}

The output generated by this program is shown here:

ch1 contains X
ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in ch1
containing Y, the next character in the ASCII (and Unicode) sequence.

Booleans
Java has a primitive type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, as in the
case of a < b. boolean is also the type required by the conditional expressions that govern
the control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest {
public static void main(String args[]) {
boolean b;

b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);

// a boolean value can control the if statement

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 39

if(b) System.out.println("This is executed.");

b = false;
if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

}
}

The output generated by this program is shown here:

b is false
b is true
This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see, when
a boolean value is output by println(), “true” or “false” is displayed. Second, the value of a
boolean variable is sufficient, by itself, to control the if statement. There is no need to write
an if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10 > 9 displays the value “true.” Further, the extra set of parentheses around 10 > 9
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals
Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally
described, let’s take a closer look at them.

Integer Literals
Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,
meaning they are describing a base 10 number. There are two other bases which can be used
in integer literals, octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java
by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly
valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7 range.
A more common base for numbers used by programmers is hexadecimal, which matches
cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a hexadecimal
constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is 0 to 15, so A
through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is
strongly typed, you might be wondering how it is possible to assign an integer literal to one
of Java’s other integer types, such as byte or long, without causing a type mismatch error.
Fortunately, such situations are easily handled. When a literal value is assigned to a byte or
short variable, no error is generated if the literal value is within the range of the target type.

https://hemanthrajhemu.github.io

40 P a r t I : T h e J a v a L a n g u a g e

An integer literal can always be assigned to a long variable. However, to specify a long
literal, you will need to explicitly tell the compiler that the literal value is of type long. You
do this by appending an upper- or lowercase L to the literal. For example, 0x7ffffffffffffffL
or 9223372036854775807L is the largest long. An integer can also be assigned to a char as
long as it is within range.

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component. They can be
expressed in either standard or scientific notation. Standard notation consists of a whole number
component followed by a decimal point followed by a fractional component. For example, 2.0,
3.14159, and 0.6667 represent valid standard-notation floating-point numbers. Scientific notation
uses a standard-notation, floating-point number plus a suffix that specifies a power of 10 by
which the number is to be multiplied. The exponent is indicated by an E or e followed by a
decimal number, which can be positive or negative. Examples include 6.022E23, 314159E–05,
and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an F or f to the constant. You can also explicitly specify a double literal by
appending a D or d. Doing so is, of course, redundant. The default double type consumes 64
bits of storage, while the less-accurate float type requires only 32 bits.

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can have,
true and false. The values of true and false do not convert into any numerical representation.
The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, they can only
be assigned to variables declared as boolean, or used in expressions with Boolean operators.

Character Literals
Characters in Java are indices into the Unicode character set. They are 16-bit values that can
be converted into integers and manipulated with the integer operators, such as the addition
and subtraction operators. A literal character is represented inside a pair of single quotes. All
of the visible ASCII characters can be directly entered inside the quotes, such as ‘a’, ‘z’, and ‘@’.
For characters that are impossible to enter directly, there are several escape sequences that allow
you to enter the character you need, such as ‘\’’ for the single-quote character itself and ‘\n’ for
the newline character. There is also a mechanism for directly entering the value of a character in
octal or hexadecimal. For octal notation, use the backslash followed by the three-digit
number. For example, ‘\141’ is the letter ‘a’. For hexadecimal, you enter a backslash-u (\u), then
exactly four hexadecimal digits. For example, ‘\u0061’ is the ISO-Latin-1 ‘a’ because the top byte
is zero. ‘\ua432’ is a Japanese Katakana character. Table 3-1 shows the character escape sequences.

String Literals
String literals in Java are specified like they are in most other languages—by enclosing
a sequence of characters between a pair of double quotes. Examples of string literals are

“Hello World”
“two\nlines”
“\”This is in quotes\”“

https://hemanthrajhemu.github.io

The escape sequences and octal/hexadecimal notations that were defined for character
literals work the same way inside of string literals. One important thing to note about Java
strings is that they must begin and end on the same line. There is no line-continuation escape
sequence as there is in some other languages.

NOTEOTE As you may know, in some other languages, including C/C++, strings are implemented as
arrays of characters. However, this is not the case in Java. Strings are actually object types. As
you will see later in this book, because Java implements strings as objects, Java includes extensive
string-handling capabilities that are both powerful and easy to use.

Variables
The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have
a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep in mind
that the initialization expression must result in a value of the same (or compatible) type as that
specified for the variable. To declare more than one variable of the specified type, use a comma-
separated list.

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 41

Escape Sequence Description

\ddd Octal character (ddd)

\uxxxx Hexadecimal Unicode character (xxxx)

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line (also known as line feed)

\f Form feed

\t Tab

\b Backspace

TABLE 3-1
Character Escape
Sequences

https://hemanthrajhemu.github.io

42 P a r t I : T h e J a v a L a n g u a g e

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing

// d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates their
type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows variables
to be initialized dynamically, using any expression valid at the time the variable is declared.

For example, here is a short program that computes the length of the hypotenuse of
a right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {

public static void main(String args[]) {
double a = 3.0, b = 4.0;

// c is dynamically initialized
double c = Math.sqrt(a * a + b * b);

System.out.println("Hypotenuse is " + c);
}

}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized
by constants. However, c is initialized dynamically to the length of the hypotenuse (using
the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(), which
is a member of the Math class, to compute the square root of its argument. The key point here is
that the initialization expression may use any element valid at the time of the initialization,
including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables
So far, all of the variables used have been declared at the start of the main() method. However,
Java allows variables to be declared within any block. As explained in Chapter 2, a block is
begun with an opening curly brace and ended by a closing curly brace. A block defines a
scope. Thus, each time you start a new block, you are creating a new scope. A scope determines
what objects are visible to other parts of your program. It also determines the lifetime of
those objects.

Many other computer languages define two general categories of scopes: global and local.
However, these traditional scopes do not fit well with Java’s strict, object-oriented model.
While it is possible to create what amounts to being a global scope, it is by far the exception,

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 43

not the rule. In Java, the two major scopes are those defined by a class and those defined by
a method. Even this distinction is somewhat artificial. However, since the class scope has
several unique properties and attributes that do not apply to the scope defined by a method,
this distinction makes some sense. Because of the differences, a discussion of class scope
(and variables declared within it) is deferred until Chapter 6, when classes are described.
For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. Although this book
will look more closely at parameters in Chapter 6, for the sake of this discussion, they work
the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to
code that is defined outside that scope. Thus, when you declare a variable within a scope, you
are localizing that variable and protecting it from unauthorized access and/or modification.
Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating
a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means
that objects declared in the outer scope will be visible to code within the inner scope. However,
the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
public static void main(String args[]) {
int x; // known to all code within main

x = 10;
if(x == 10) { // start new scope
int y = 20; // known only to this block

// x and y both known here.
System.out.println("x and y: " + x + " " + y);
x = y * 2;

}
// y = 100; // Error! y not known here

// x is still known here.
System.out.println("x is " + x);

}
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is only visible to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol, a
compile-time error will occur, because y is not visible outside of its block. Within the if block,
x can be used because code within a block (that is, a nested scope) has access to variables
declared by an enclosing scope.

https://hemanthrajhemu.github.io

44 P a r t I : T h e J a v a L a n g u a g e

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the code
within that method. Conversely, if you declare a variable at the end of a block, it is effectively
useless, because no code will have access to it. For example, this fragment is invalid because
count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized each
time the block in which it is declared is entered. For example, consider the next program.

// Demonstrate lifetime of a variable.
class LifeTime {
public static void main(String args[]) {
int x;

for(x = 0; x < 3; x++) {
int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}

}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even though it
is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have the
same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr {

public static void main(String args[]) {

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 45

int bar = 1;
{ // creates a new scope
int bar = 2; // Compile-time error – bar already defined!

}
}

}

Type Conversion and Casting
If you have previous programming experience, then you already know that it is fairly common
to assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to
assign an int value to a long variable. However, not all types are compatible, and thus, not
all type conversions are implicitly allowed. For instance, there is no automatic conversion
defined from double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit conversion
between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, there are no automatic conversions from the
numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a
literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion will not
be performed automatically, because a byte is smaller than an int. This kind of conversion is
sometimes called a narrowing conversion, since you are explicitly making the value narrower
so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

https://hemanthrajhemu.github.io

46 P a r t I : T h e J a v a L a n g u a g e

Here, target-type specifies the desired type to convert the specified value to. For example, the
following fragment casts an int to a byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;
byte b;
// ...
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As you know, integers do not have fractional components. Thus,
when a floating-point value is assigned to an integer type, the fractional component is lost.
For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 will have been truncated. Of course, if the size of the whole number component is
too large to fit into the target integer type, then that value will be reduced modulo the target
type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {
public static void main(String args[]) {
byte b;
int i = 257;
double d = 323.142;

System.out.println("\nConversion of int to byte.");
b = (byte) i;
System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");
b = (byte) d;
System.out.println("d and b " + d + " " + b);

}
}

This program generates the following output:

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 67

https://hemanthrajhemu.github.io

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result
is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case.
When the d is converted to an int, its fractional component is lost. When d is converted to
a byte, its fractional component is lost, and the value is reduced modulo 256, which in this
case is 67.

Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions may occur:
in expressions. To see why, consider the following. In an expression, the precision required
of an intermediate value will sometimes exceed the range of either operand. For example,
examine the following expression:

byte a = 40;
byte b = 50;
byte c = 100;
int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression a * b
is performed using integers—not bytes. Thus, 2,000, the result of the intermediate expression,
50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time errors.
For example, this seemingly correct code causes a problem:

byte b = 50;
b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte variable.
However, because the operands were automatically promoted to int when the expression was
evaluated, the result has also been promoted to int. Thus, the result of the expression is now
of type int, which cannot be assigned to a byte without the use of a cast. This is true even if,
as in this particular case, the value being assigned would still fit in the target type.

In cases where you understand the consequences of overflow, you should use an explicit
cast, such as

byte b = 50;
b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows: First,
all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands is double, the result is double.

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 47

https://hemanthrajhemu.github.io

The following program demonstrates how each value in the expression gets promoted
to match the second argument to each binary operator:

class Promote {
public static void main(String args[]) {
byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;
double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
System.out.println("result = " + result);

}
}

Let’s look closely at the type promotions that occur in this line from the program:

double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i / c, c is promoted to int, and the result is of type int. Then,
in d * s, the value of s is promoted to double, and the type of the subexpression is double.
Finally, these three intermediate values, float, int, and double, are considered. The outcome
of float plus an int is a float. Then the resultant float minus the last double is promoted to
double, which is the type for the final result of the expression.

Arrays
An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an array
is accessed by its index. Arrays offer a convenient means of grouping related information.

NOTEOTE If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in
those languages.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one-dimensional
array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type of each
element that comprises the array. Thus, the base type for the array determines what type of
data the array will hold. For example, the following declares an array named month_days
with the type “array of int”:

int month_days[];

48 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Although this declaration establishes the fact that month_days is an array variable, no
array actually exists. In fact, the value of month_days is set to null, which represents an array
with no value. To link month_days with an actual, physical array of integers, you must allocate
one using new and assign it to month_days. new is a special operator that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to allocate
memory for arrays. The general form of new as it applies to one-dimensional arrays appears
as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in
the array, and array-var is the array variable that is linked to the array. That is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The elements
in the array allocated by new will automatically be initialized to zero. This example allocates
a 12-element array of integers and links them to month_days.

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable of
the desired array type. Second, you must allocate the memory that will hold the array, using
new, and assign it to the array variable. Thus, in Java all arrays are dynamically allocated. If
the concept of dynamic allocation is unfamiliar to you, don’t worry. It will be described at
length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days.

month_days[1] = 28;

The next line displays the value stored at index 3.

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the number
of days in each month.

// Demonstrate a one-dimensional array.
class Array {
public static void main(String args[]) {
int month_days[];
month_days = new int[12];
month_days[0] = 31;
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 49

https://hemanthrajhemu.github.io

50 P a r t I : T h e J a v a L a n g u a g e

month_days[7] = 31;
month_days[8] = 30;
month_days[9] = 31;
month_days[10] = 30;
month_days[11] = 31;
System.out.println("April has " + month_days[3] + " days.");

}
}

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the
array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.
Arrays can be initialized when they are declared. The process is much the same as that

used to initialize the simple types. An array initializer is a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The array
will automatically be created large enough to hold the number of elements you specify in the
array initializer. There is no need to use new. For example, to store the number of days in
each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
public static void main(String args[]) {

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };

System.out.println("April has " + month_days[3] + " days.");
}

}

When you run this program, you see the same output as that generated by the previous version.
Java strictly checks to make sure you do not accidentally try to store or reference values

outside of the range of the array. The Java run-time system will check to be sure that all array
indexes are in the correct range. For example, the run-time system will check the value of
each index into month_days to make sure that it is between 0 and 11 inclusive. If you try to
access elements outside the range of the array (negative numbers or numbers greater than
the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a set
of numbers.

// Average an array of values.
class Average {
public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 51

for(i=0; i<5; i++)
result = result + nums[i];

System.out.println("Average is " + result / 5);
}

}

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look
and act like regular multidimensional arrays. However, as you will see, there are a couple
of subtle differences. To declare a multidimensional array variable, specify each additional
index using another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as
an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String args[]) {
int twoD[][]= new int[4][5];
int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");

System.out.println();
}

}
}

This program generates the following output:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions

https://hemanthrajhemu.github.io

52 P a r t I : T h e J a v a L a n g u a g e

separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in
this situation, there may be in others. For example, when you allocate dimensions manually,
you do not need to allocate the same number of elements for each dimension. As stated earlier,
since multidimensional arrays are actually arrays of arrays, the length of each array is under
your control. For example, the following program creates a two-dimensional array in which
the sizes of the second dimension are unequal.

// Manually allocate differing size second dimensions.
class TwoDAgain {
public static void main(String args[]) {
int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<i+1; j++) {

FIGURE 3-1 A conceptual view of a 4 by 5, two-dimensional array

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 53

twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++) {
for(j=0; j<i+1; j++)
System.out.print(twoD[i][j] + " ");

System.out.println();
}

}
}

This program generates the following output:

0
1 2
3 4 5
6 7 8 9

The array created by this program looks like this:

The use of uneven (or, irregular) multidimensional arrays may not be appropriate for many
applications, because it runs contrary to what people expect to find when a multidimensional
array is encountered. However, irregular arrays can be used effectively in some situations. For
example, if you need a very large two-dimensional array that is sparsely populated (that is,
one in which not all of the elements will be used), then an irregular array might be a perfect
solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each dimension’s
initializer within its own set of curly braces. The following program creates a matrix where
each element contains the product of the row and column indexes. Also notice that you can
use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
public static void main(String args[]) {
double m[][] = {
{ 0*0, 1*0, 2*0, 3*0 },
{ 0*1, 1*1, 2*1, 3*1 },
{ 0*2, 1*2, 2*2, 3*2 },

https://hemanthrajhemu.github.io

54 P a r t I : T h e J a v a L a n g u a g e

{ 0*3, 1*3, 2*3, 3*3 }
};
int i, j;

for(i=0; i<4; i++) {
for(j=0; j<4; j++)
System.out.print(m[i][j] + " ");

System.out.println();
}

}
}

When you run this program, you will get the following output:

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.
Let’s look at one more example that uses a multidimensional array. The following program

creates a 3 by 4 by 5, three-dimensional array. It then loads each element with the product
of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
public static void main(String args[]) {
int threeD[][][] = new int[3][4][5];
int i, j, k;

for(i=0; i<3; i++)
for(j=0; j<4; j++)
for(k=0; k<5; k++)
threeD[i][j][k] = i * j * k;

for(i=0; i<3; i++) {
for(j=0; j<4; j++) {
for(k=0; k<5; k++)
System.out.print(threeD[i][j][k] + " ");

System.out.println();
}
System.out.println();

}
}

}

This program generates the following output:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

https://hemanthrajhemu.github.io

C h a p t e r 3 : D a t a T y p e s , V a r i a b l e s , a n d A r r a y s 55

0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12

0 0 0 0 0
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.
For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the
same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for
a method. Both forms are used in this book.

A Few Words About Strings
As you may have noticed, in the preceding discussion of data types and arrays there has been
no mention of strings or a string data type. This is not because Java does not support such a
type—it does. It is just that Java’s string type, called String, is not a simple type. Nor is it simply
an array of characters. Rather, String defines an object, and a full description of it requires an
understanding of several object-related features. As such, it will be covered later in this book,
after objects are described. However, so that you can use simple strings in example programs,
the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.
A quoted string constant can be assigned to a String variable. A variable of type String can

https://hemanthrajhemu.github.io

be assigned to another variable of type String. You can use an object of type String as an
argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str);

Here, str is an object of type String. It is assigned the string “this is a test”. This string is
displayed by the println() statement.

As you will see later, String objects have many special features and attributes that
make them quite powerful and easy to use. However, for the next few chapters, you will
be using them only in their simplest form.

A Note to C/C++ Programmers About Pointers
If you are an experienced C/C++ programmer, then you know that these languages provide
support for pointers. However, no mention of pointers has been made in this chapter. The
reason for this is simple: Java does not support or allow pointers. (Or more properly, Java
does not support pointers that can be accessed and/or modified by the programmer.) Java
cannot allow pointers, because doing so would allow Java programs to breach the firewall
between the Java execution environment and the host computer. (Remember, a pointer can
be given any address in memory—even addresses that might be outside the Java run-time
system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss
is a significant disadvantage to Java. However, this is not true. Java is designed in such a way
that as long as you stay within the confines of the execution environment, you will never need
to use a pointer, nor would there be any benefit in using one.

56 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

4
Operators

Java provides a rich operator environment. Most of its operators can be divided into the
following four groups: arithmetic, bitwise, relational, and logical. Java also defines some
additional operators that handle certain special situations. This chapter describes all

of Java’s operators except for the type comparison operator instanceof, which is examined
in Chapter 13.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.

5 7

https://hemanthrajhemu.github.io

58 P a r t I : T h e J a v a L a n g u a g e

The Basic Arithmetic Operators
The basic arithmetic operations—addition, subtraction, multiplication, and division— all
behave as you would expect for all numeric types. The minus operator also has a unary form
that negates its single operand. Remember that when the division operator is applied to an
integer type, there will be no fractional component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also
illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath {
public static void main(String args[]) {
// arithmetic using integers
System.out.println("Integer Arithmetic");
int a = 1 + 1;
int b = a * 3;
int c = b / 4;
int d = c - a;
int e = -d;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);
System.out.println("e = " + e);

// arithmetic using doubles
System.out.println("\nFloating Point Arithmetic");
double da = 1 + 1;
double db = da * 3;
double dc = db / 4;
double dd = dc - a;
double de = -dd;
System.out.println("da = " + da);
System.out.println("db = " + db);
System.out.println("dc = " + dc);
System.out.println("dd = " + dd);
System.out.println("de = " + de);

}
}

When you run this program, you will see the following output:

Integer Arithmetic
a = 2
b = 6
c = 1
d = -1
e = 1

Floating Point Arithmetic
da = 2.0
db = 6.0

https://hemanthrajhemu.github.io

C h a p t e r 4 : O p e r a t o r s 59

dc = 1.5
dd = -0.5
de = 0.5

The Modulus Operator
The modulus operator, %, returns the remainder of a division operation. It can be applied to
floating-point types as well as integer types. The following example program demonstrates
the %:

// Demonstrate the % operator.
class Modulus {
public static void main(String args[]) {
int x = 42;
double y = 42.25;

System.out.println("x mod 10 = " + x % 10);
System.out.println("y mod 10 = " + y % 10);

}
}

When you run this program, you will get the following output:

x mod 10 = 2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators
Java provides special operators that can be used to combine an arithmetic operation with
an assignment. As you probably know, statements like the following are quite common in
programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same
action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a/2 and puts that result back into a.
There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form

var = var op expression;

https://hemanthrajhemu.github.io

60 P a r t I : T h e J a v a L a n g u a g e

can be rewritten as

var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit of
typing, because they are “shorthand” for their equivalent long forms. Second, they are
implemented more efficiently by the Java run-time system than are their equivalent long
forms. For these reasons, you will often see the compound assignment operators used in
professionally written Java programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c = 3;

a += 5;
b *= 4;
c += a * b;
c %= 6;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}

The output of this program is shown here:

a = 6
b = 8
c = 3

Increment and Decrement
The ++ and the – – are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some special
properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator decreases
its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

https://hemanthrajhemu.github.io

C h a p t e r 4 : O p e r a t o r s 61

is equivalent to

x--;

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand. In the
foregoing examples, there is no difference between the prefix and postfix forms. However,
when the increment and/or decrement operators are part of a larger expression, then a
subtle, yet powerful, difference between these two forms appears. In the prefix form, the
operand is incremented or decremented before the value is obtained for use in the expression.
In postfix form, the previous value is obtained for use in the expression, and then the operand
is modified. For example:

x = 42;
y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is assigned
to y. Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;
y = x;

However, when written like this,

x = 42;
y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.
Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two
statements:

y = x;
x = x + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c;
int d;
c = ++b;
d = a++;
c++;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);

}
}

https://hemanthrajhemu.github.io

62 P a r t I : T h e J a v a L a n g u a g e

The output of this program follows:

a = 2
b = 3
c = 4
d = 1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are
summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer, it is important to
understand what effects such manipulations may have on a value. Specifically, it is useful
to know how Java stores integer values and how it represents negative numbers. So, before
continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For
example, the byte value for 42 in binary is 00101010, where each position represents a power
of two, starting with 20 at the rightmost bit. The next bit position to the left would be 21, or 2,
continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions
1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can represent
negative values as well as positive ones. Java uses an encoding known as two’s complement,
which means that negative numbers are represented by inverting (changing 1’s to 0’s and
vice versa) all of the bits in a value, then adding 1 to the result. For example, –42 is represented
by inverting all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which
results in 11010110, or –42. To decode a negative number, first invert all of the bits, then add 1.
For example, –42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

https://hemanthrajhemu.github.io

C h a p t e r 4 : O p e r a t o r s 63

The reason Java (and most other computer languages) uses two’s complement is easy to
see when you consider the issue of zero crossing. Assuming a byte value, zero is represented by
00000000. In one’s complement, simply inverting all of the bits creates 11111111, which creates
negative zero. The trouble is that negative zero is invalid in integer math. This problem is solved
by using two’s complement to represent negative values. When using two’s complement, 1 is
added to the complement, producing 100000000. This produces a 1 bit too far to the left to
fit back into the byte value, resulting in the desired behavior, where –0 is the same as 0, and
11111111 is the encoding for –1. Although we used a byte value in the preceding example,
the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not.
To avoid unpleasant surprises, just remember that the high-order bit determines the sign
of an integer no matter how that high-order bit gets set.

The Bitwise Logical Operators
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of
each operation. In the discussion that follows, keep in mind that the bitwise operators are
applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all
other cases. Here is an example:

00101010 42
& 00001111 15

00001010 10

https://hemanthrajhemu.github.io

64 P a r t I : T h e J a v a L a n g u a g e

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15

00101111 47

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.
Otherwise, the result is zero. The following example shows the effect of the ^. This example
also demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42
is inverted wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit,
the first operand is unchanged. You will find this property useful when performing some
types of bit manipulations.

00101010 42
^ 00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {
public static void main(String args[]) {
String binary[] = {
"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"

};
int a = 3; // 0 + 2 + 1 or 0011 in binary
int b = 6; // 4 + 2 + 0 or 0110 in binary
int c = a | b;
int d = a & b;
int e = a ^ b;
int f = (~a & b) | (a & ~b);
int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);
System.out.println(" b = " + binary[b]);
System.out.println(" a|b = " + binary[c]);
System.out.println(" a&b = " + binary[d]);
System.out.println(" a^b = " + binary[e]);
System.out.println("~a&b|a&~b = " + binary[f]);
System.out.println(" ~a = " + binary[g]);

}
}

https://hemanthrajhemu.github.io

In this example, a and b have bit patterns that present all four possibilities for two
binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the
results in c and d. The values assigned to e and f are the same and illustrate how the ^ works.
The string array named binary holds the human-readable, binary representation of the numbers
0 through 15. In this example, the array is indexed to show the binary representation of each
result. The array is constructed such that the correct string representation of a binary value
n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in binary) in order
to reduce its value to less than 16, so it can be printed by use of the binary array. Here is the
output from this program:

a = 0011
b = 0110

a|b = 0111
a&b = 0010
a^b = 0101

~a&b|a&~b = 0101
~a = 1100

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.
It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<
moves all of the bits in the specified value to the left by the number of bit positions specified
by num. For each shift left, the high-order bit is shifted out (and lost), and a zero is brought
in on the right. This means that when a left shift is applied to an int operand, bits are lost
once they are shifted past bit position 31. If the operand is a long, then bits are lost after bit
position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when an
expression is evaluated. Furthermore, the result of such an expression is also an int. This
means that the outcome of a left shift on a byte or short value will be an int, and the bits
shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte
or short value will be sign-extended when it is promoted to int. Thus, the high-order bits
will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies
that you must discard the high-order bytes of the int result. For example, if you left-shift
a byte value, that value will first be promoted to int and then shifted. This means that you
must discard the top three bytes of the result if what you want is the result of a shifted byte
value. The easiest way to do this is to simply cast the result back into a byte. The following
program demonstrates this concept:

// Left shifting a byte value.
class ByteShift {
public static void main(String args[]) {
byte a = 64, b;
int i;

C h a p t e r 4 : O p e r a t o r s 65

https://hemanthrajhemu.github.io

i = a << 2;
b = (byte) (a << 2);

System.out.println("Original value of a: " + a);
System.out.println("i and b: " + i + " " + b);

}
}

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

Since each left shift has the effect of doubling the original value, programmers frequently
use this fact as an efficient alternative to multiplying by 2. But you need to watch out. If you
shift a 1 bit into the high-order position (bit 31 or 63), the value will become negative. The
following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
public static void main(String args[]) {
int i;
int num = 0xFFFFFFE;

for(i=0; i<4; i++) {
num = num << 1;
System.out.println(num);

}
}

}

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is interpreted
as negative.

The Right Shift
The right shift operator, >>, shifts all of the bits in a value to the right a specified number of
times. Its general form is shown here:

value >> num

66 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 4 : O p e r a t o r s 67

Here, num specifies the number of positions to right-shift the value in value. That is, the >>
moves all of the bits in the specified value to the right the number of bit positions specified
by num.

The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a = a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next
code fragment shifts the value 35 to the right two positions, which causes the two low-order
bits to be lost, resulting again in a being set to 8.

int a = 35;
a = a >> 2; // a still contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any
remainder. You can take advantage of this for high-performance integer division by 2. Of
course, you must be sure that you are not shifting any bits off the right end.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled in
with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which,
in binary, is

11111000 –8
>>1
11111100 –4

It is interesting to note that if you shift –1 right, the result always remains –1, since sign
extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the
right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of hexadecimal
characters.

// Masking sign extension.
class HexByte {
static public void main(String args[]) {
char hex[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};

https://hemanthrajhemu.github.io

byte b = (byte) 0xf1;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
}

}

Here is the output of this program:

b = 0xf1

The Unsigned Right Shift
As you have just seen, the >> operator automatically fills the high-order bit with its previous
contents each time a shift occurs. This preserves the sign of the value. However, sometimes
this is undesirable. For example, if you are shifting something that does not represent a numeric
value, you may not want sign extension to take place. This situation is common when you
are working with pixel-based values and graphics. In these cases, you will generally want to
shift a zero into the high-order bit no matter what its initial value was. This is known as an
unsigned shift. To accomplish this, you will use Java’s unsigned, shift-right operator, >>>,
which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all
32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros,
ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in
expressions. This means that sign-extension occurs and that the shift will take place on a
32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift
on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value
that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift {
static public void main(String args[]) {
char hex[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

};
byte b = (byte) 0xf1;
byte c = (byte) (b >> 4);
byte d = (byte) (b >>> 4);
byte e = (byte) ((b & 0xff) >> 4);

68 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 4 : O p e r a t o r s 69

System.out.println(" b = 0x"
+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

System.out.println(" b >> 4 = 0x"
+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);

System.out.println(" b >>> 4 = 0x"
+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

System.out.println("(b & 0xff) >> 4 = 0x"
+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

}
}

The following output of this program shows how the >>> operator appears to do nothing
when dealing with bytes. The variable b is set to an arbitrary negative byte value for this
demonstration. Then c is assigned the byte value of b shifted right by four, which is 0xff
because of the expected sign extension. Then d is assigned the byte value of b unsigned
shifted right by four, which you might have expected to be 0x0f, but is actually 0xff because
of the sign extension that happened when b was promoted to int before the shift. The last
expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted
right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right
operator was not used for d, since the state of the sign bit after the AND was known.

b = 0xf1
b >> 4 = 0xff

b >>> 4 = 0xff
(b & 0xff) >> 4 = 0x0f

Bitwise Operator Compound Assignments
All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a = a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

a = a | b;
a |= b;

The following program creates a few integer variables and then uses compound bitwise
operator assignments to manipulate the variables:

class OpBitEquals {
public static void main(String args[]) {
int a = 1;
int b = 2;
int c = 3;

a |= 4;
b >>= 1;

https://hemanthrajhemu.github.io

70 P a r t I : T h e J a v a L a n g u a g e

c <<= 1;
a ^= c;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}

The output of this program is shown here:

a = 3
b = 1
c = 6

Relational Operators
The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java
equality is denoted with two equal signs, not one. (Remember: a single equal sign is the
assignment operator.) Only numeric types can be compared using the ordering operators.
That is, only integer, floating-point, and character operands may be compared to see which
is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,
the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++, these

types of statements are very common:

https://hemanthrajhemu.github.io

int done;
// ...
if(!done) ... // Valid in C/C++
if(done) ... // but not in Java.

In Java, these statements must be written like this:

if(done == 0) ... // This is Java-style.
if(done != 0) ...

The reason is that Java does not define true and false in the same way as C/C++. In C/C++,
true is any nonzero value and false is zero. In Java, true and false are nonnumeric values that
do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you must explicitly
employ one or more of the relational operators.

Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way
that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:
!true == false and !false == true. The following table shows the effect of each logical operation:

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

C h a p t e r 4 : O p e r a t o r s 71

https://hemanthrajhemu.github.io

Here is a program that is almost the same as the BitLogic example shown earlier, but it
operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic {
public static void main(String args[]) {
boolean a = true;
boolean b = false;
boolean c = a | b;
boolean d = a & b;
boolean e = a ^ b;
boolean f = (!a & b) | (a & !b);
boolean g = !a;
System.out.println(" a = " + a);
System.out.println(" b = " + b);
System.out.println(" a|b = " + c);
System.out.println(" a&b = " + d);
System.out.println(" a^b = " + e);
System.out.println("!a&b|a&!b = " + f);
System.out.println(" !a = " + g);

}
}

After running this program, you will see that the same logical rules apply to boolean
values as they did to bits. As you can see from the following output, the string representation
of a Java boolean value is one of the literal values true or false:

a = true
b = false

a|b = true
a&b = false
a^b = true

a&b|a&!b = true
!a = false

Short-Circuit Logical Operators
Java provides two interesting Boolean operators not found in many other computer languages.
These are secondary versions of the Boolean AND and OR operators, and are known as
short-circuit logical operators. As you can see from the preceding table, the OR operator
results in true when A is true, no matter what B is. Similarly, the AND operator results in
false when A is false, no matter what B is. If you use the || and && forms, rather than the
| and & forms of these operators, Java will not bother to evaluate the right-hand operand
when the outcome of the expression can be determined by the left operand alone. This is
very useful when the right-hand operand depends on the value of the left one in order
to function properly. For example, the following code fragment shows how you can take
advantage of short-circuit logical evaluation to be sure that a division operation will be valid
before evaluating it:

if (denom != 0 && num / denom > 10)

72 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time
exception when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving
Boolean logic, leaving the single-character versions exclusively for bitwise operations. However,
there are exceptions to this rule. For example, consider the following statement:

if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether c
is equal to 1 or not.

The Assignment Operator
You have been using the assignment operator since Chapter 2. Now it is time to take a formal
look at it. The assignment operator is the single equal sign, =. The assignment operator works in
Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.
The assignment operator does have one interesting attribute that you may not be familiar

with: it allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a
“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of if-then-else
statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can be
used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is
true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required
to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

C h a p t e r 4 : O p e r a t o r s 73

https://hemanthrajhemu.github.io

74 P a r t I : T h e J a v a L a n g u a g e

When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark and
the colon is evaluated and used as the value of the entire ? expression. If denom does not
equal zero, then the expression after the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate ?.
class Ternary {
public static void main(String args[]) {
int i, k;

i = 10;
k = i < 0 ? -i : i; // get absolute value of i
System.out.print("Absolute value of ");
System.out.println(i + " is " + k);

i = -10;
k = i < 0 ? -i : i; // get absolute value of i
System.out.print("Absolute value of ");
System.out.println(i + " is " + k);

}
}

The output generated by the program is shown here:

Absolute value of 10 is 10
Absolute value of -10 is 10

Operator Precedence
Table 4-1 shows the order of precedence for Java operators, from highest to lowest. Notice
that the first row shows items that you may not normally think of as operators: parentheses,
square brackets, and the dot operator. Technically, these are called separators, but they act
like operators in an expression. Parentheses are used to alter the precedence of an operation.
As you know from the previous chapter, the square brackets provide array indexing. The dot
operator is used to dereference objects and will be discussed later in this book.

Using Parentheses
Parentheses raise the precedence of the operations that are inside them. This is often necessary
to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression
can be rewritten using redundant parentheses like this:

a >> (b + 3)

https://hemanthrajhemu.github.io

C h a p t e r 4 : O p e r a t o r s 75

However, if you want to first shift a right by b positions and then add 3 to that result,
you will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can sometimes
be used to help clarify the meaning of an expression. For anyone reading your code, a
complicated expression can be difficult to understand. Adding redundant but clarifying
parentheses to complex expressions can help prevent confusion later. For example, which of
the following expressions is easier to read?

a | 4 + c >> b & 7
(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of
your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

Highest

() [] .

++ – – ~ !

* / %

+ –

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

Lowest

TABLE 4-1
The Precedence of
the Java Operators

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

5
Control Statements

Aprogramming language uses control statements to cause the flow of execution to
advance and branch based on changes to the state of a program. Java’s program
control statements can be put into the following categories: selection, iteration, and

jump. Selection statements allow your program to choose different paths of execution based
upon the outcome of an expression or the state of a variable. Iteration statements enable
program execution to repeat one or more statements (that is, iteration statements form
loops). Jump statements allow your program to execute in a nonlinear fashion. All of Java’s
control statements are examined here.

Java’s Selection Statements
Java supports two selection statements: if and switch. These statements allow you to control the
flow of your program’s execution based upon conditions known only during run time. You will
be pleasantly surprised by the power and flexibility contained in these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if statement
is Java’s conditional branch statement. It can be used to route program execution through
two different paths. Here is the general form of the if statement:

if (condition) statement1;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The else
clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,
statement2 (if it exists) is executed. In no case will both statements be executed. For example,
consider the following:

int a, b;
// ...
if(a < b) a = 0;
else b = 0;

7 7

https://hemanthrajhemu.github.io

78 P a r t I : T h e J a v a L a n g u a g e

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they
both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single
boolean variable, as shown in this code fragment:

boolean dataAvailable;
// ...
if (dataAvailable)
ProcessData();

else
waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you want
to include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else
waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater than zero.
Some programmers find it convenient to include the curly braces when using the if,

even when there is only one statement in each clause. This makes it easy to add another
statement at a later date, and you don’t have to worry about forgetting the braces. In fact,
forgetting to define a block when one is needed is a common cause of errors. For example,
consider the following code fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else
waitForMoreData();
bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside
the else clause, because of the indentation level. However, as you recall, whitespace is
insignificant to Java, and there is no way for the compiler to know what was intended. This
code will compile without complaint, but it will behave incorrectly when run. The preceding
example is fixed in the code that follows:

int bytesAvailable;
// ...

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 79

if (bytesAvailable > 0) {
ProcessData();
bytesAvailable -= n;

} else {
waitForMoreData();
bytesAvailable = n;

}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very common
in programming. When you nest ifs, the main thing to remember is that an else statement
always refers to the nearest if statement that is within the same block as the else and that is
not already associated with an else. Here is an example:

if(i == 10) {
if(j < 20) a = b;
if(k > 100) c = d; // this if is
else a = c; // associated with this else

}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i==10). The inner else refers to if(k>100) because it is the closest if
within the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

.

.

.
else

statement;

The if statements are executed from the top down. As soon as one of the conditions controlling
the if is true, the statement associated with that if is executed, and the rest of the ladder is
bypassed. If none of the conditions is true, then the final else statement will be executed.
The final else acts as a default condition; that is, if all other conditional tests fail, then the

https://hemanthrajhemu.github.io

80 P a r t I : T h e J a v a L a n g u a g e

last else statement is performed. If there is no final else and all other conditions are false,
then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse {
public static void main(String args[]) {
int month = 4; // April
String season;

if(month == 12 || month == 1 || month == 2)
season = "Winter";

else if(month == 3 || month == 4 || month == 5)
season = "Spring";

else if(month == 6 || month == 7 || month == 8)
season = "Summer";

else if(month == 9 || month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

System.out.println("April is in the " + season + ".");
}

}

Here is the output produced by the program:

April is in the Spring.

You might want to experiment with this program before moving on. As you will find,
no matter what value you give month, one and only one assignment statement within the
ladder will be executed.

switch
The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch
execution to different parts of your code based on the value of an expression. As such, it often
provides a better alternative than a large series of if-else-if statements. Here is the general form
of a switch statement:

switch (expression) {
case value1:

// statement sequence
break;

case value2:
// statement sequence
break;

.

.

.
case valueN:

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 81

// statement sequence
break;

default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the
case statements must be of a type compatible with the expression. (An enumeration value can
also be used to control a switch statement. Enumerations are described in Chapter 12.) Each
case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case
values are not allowed.

The switch statement works like this: The value of the expression is compared with each
of the literal values in the case statements. If a match is found, the code sequence following
that case statement is executed. If none of the constants matches the value of the expression,
then the default statement is executed. However, the default statement is optional. If no case
matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When
a break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
public static void main(String args[]) {
for(int i=0; i<6; i++)
switch(i) {
case 0:
System.out.println("i is zero.");
break;

case 1:
System.out.println("i is one.");
break;

case 2:
System.out.println("i is two.");
break;

case 3:
System.out.println("i is three.");
break;

default:
System.out.println("i is greater than 3.");

}
}

}

The output produced by this program is shown here:

i is zero.
i is one.
i is two.
i is three.
i is greater than 3.
i is greater than 3.

https://hemanthrajhemu.github.io

82 P a r t I : T h e J a v a L a n g u a g e

As you can see, each time through the loop, the statements associated with the case constant
that matches i are executed. All others are bypassed. After i is greater than 3, no case statements
match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue on into the
next case. It is sometimes desirable to have multiple cases without break statements between
them. For example, consider the following program:

// In a switch, break statements are optional.
class MissingBreak {
public static void main(String args[]) {
for(int i=0; i<12; i++)
switch(i) {
case 0:
case 1:
case 2:
case 3:
case 4:
System.out.println("i is less than 5");
break;

case 5:
case 6:
case 7:
case 8:
case 9:
System.out.println("i is less than 10");
break;

default:
System.out.println("i is 10 or more");

}
}

}

This program generates the following output:

i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is 10 or more
i is 10 or more

As you can see, execution falls through each case until a break statement (or the end of the
switch) is reached.

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 83

While the preceding example is, of course, contrived for the sake of illustration, omitting the
break statement has many practical applications in real programs. To sample its more realistic
usage, consider the following rewrite of the season example shown earlier. This version uses a
switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {

public static void main(String args[]) {
int month = 4;
String season;
switch (month) {
case 12:
case 1:
case 2:
season = "Winter";
break;

case 3:
case 4:
case 5:
season = "Spring";
break;

case 6:
case 7:
case 8:
season = "Summer";
break;

case 9:
case 10:
case 11:
season = "Autumn";
break;

default:
season = "Bogus Month";

}
System.out.println("April is in the " + season + ".");

}
}

Nested switch Statements
You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between the
case constants in the inner switch and those in the outer switch. For example, the following
fragment is perfectly valid:

switch(count) {
case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;

https://hemanthrajhemu.github.io

case 1: // no conflicts with outer switch
System.out.println("target is one");
break;

}
break;

case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement in
the outer switch. The count variable is only compared with the list of cases at the outer level.
If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if
can evaluate any type of Boolean expression. That is, the switch looks only for a
match between the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler
works. When it compiles a switch statement, the Java compiler will inspect each of the case
constants and create a “jump table” that it will use for selecting the path of execution depending
on the value of the expression. Therefore, if you need to select among a large group of values,
a switch statement will run much faster than the equivalent logic coded using a sequence of
if-elses. The compiler can do this because it knows that the case constants are all the same type
and simply must be compared for equality with the switch expression. The compiler has no
such knowledge of a long list of if expressions.

Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

while
The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true. Here is its general form:

while(condition) {
// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long
as the conditional expression is true. When condition becomes false, control passes to the
next line of code immediately following the loop. The curly braces are unnecessary if only
a single statement is being repeated.

84 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

// Demonstrate the while loop.
class While {
public static void main(String args[]) {
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n--;

}
}

}

When you run this program, it will “tick” ten times:

tick 10
tick 9
tick 8
tick 7
tick 6
tick 5
tick 4
tick 3
tick 2
tick 1

Since the while loop evaluates its conditional expression at the top of the loop, the body
of the loop will not execute even once if the condition is false to begin with. For example, in
the following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a null
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,
consider the following program:

// The target of a loop can be empty.
class NoBody {
public static void main(String args[]) {
int i, j;

i = 100;
j = 200;

// find midpoint between i and j
while(++i < --j) ; // no body in this loop

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 85

https://hemanthrajhemu.github.io

86 P a r t I : T h e J a v a L a n g u a g e

System.out.println("Midpoint is " + i);
}

}

This program finds the midpoint between i and j. It generates the following output:

Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop
stops. Upon exit from the loop, i will hold a value that is midway between the original values
of i and j. (Of course, this procedure only works when i is less than j to begin with.) As you
can see, there is no need for a loop body; all of the action occurs within the conditional
expression, itself. In professionally written Java code, short loops are frequently coded
without bodies when the controlling expression can handle all of the details itself.

do-while
As you just saw, if the conditional expression controlling a while loop is initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable
to execute the body of a loop at least once, even if the conditional expression is false to
begin with. In other words, there are times when you would like to test the termination
expression at the end of the loop rather than at the beginning. Fortunately, Java supplies a
loop that does just that: the do-while. The do-while loop always executes its body at least
once, because its conditional expression is at the bottom of the loop. Its general form is

do {
// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop
terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop.
It generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
public static void main(String args[]) {
int n = 10;

do {
System.out.println("tick " + n);
n--;

} while(n > 0);
}

}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

https://hemanthrajhemu.github.io

do {
System.out.println("tick " + n);

} while(--n > 0);

In this example, the expression (– –n > 0) combines the decrement of n and the test for zero
into one expression. Here is how it works. First, the – –n statement executes, decrementing
n and returning the new value of n. This value is then compared with zero. If it is greater
than zero, the loop continues; otherwise it terminates.

The do-while loop is especially useful when you process a menu selection, because you
will usually want the body of a menu loop to execute at least once. Consider the following
program, which implements a very simple help system for Java’s selection and iteration
statements:

// Using a do-while to process a menu selection
class Menu {
public static void main(String args[])
throws java.io.IOException {
char choice;

do {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out.println(" 4. do-while");
System.out.println(" 5. for\n");
System.out.println("Choose one:");
choice = (char) System.in.read();

} while(choice < '1' || choice > '5');

System.out.println("\n");

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '4':

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 87

https://hemanthrajhemu.github.io

System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '5':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

}
}

}

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for

Choose one:
4
The do-while:
do {
statement;

} while (condition);

In the program, the do-while loop is used to verify that the user has entered a valid choice.
If not, then the user is reprompted. Since the menu must be displayed at least once, the do-
while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard
by calling System.in.read(). This is one of Java’s console input functions. Although Java’s
console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used
here to obtain the user’s choice. It reads characters from standard input (returned as integers,
which is why the return value was cast to char). By default, standard input is line buffered, so
you must press ENTER before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java
programs will be graphical and window-based. For these reasons, not much use of console
input has been made in this book. However, it is useful in this context. One other point to
consider: Because System.in.read() is being used, the program must specify the throws
java.io.IOException clause. This line is necessary to handle input errors. It is part of Java’s
exception handling features, which are discussed in Chapter 10.

for
You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a
powerful and versatile construct.

88 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form
that has been in use since the original version of Java. The second is the new “for-each” form.
Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {
// body

}

If only one statement is being repeated, there is no need for the curly braces.
The for loop operates as follows. When the loop first starts, the initialization portion of

the loop is executed. Generally, this is an expression that sets the value of the loop control
variable, which acts as a counter that controls the loop. It is important to understand that
the initialization expression is only executed once. Next, condition is evaluated. This must be
a Boolean expression. It usually tests the loop control variable against a target value. If this
expression is true, then the body of the loop is executed. If it is false, the loop terminates.
Next, the iteration portion of the loop is executed. This is usually an expression that increments
or decrements the loop control variable. The loop then iterates, first evaluating the conditional
expression, then executing the body of the loop, and then executing the iteration expression
with each pass. This process repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick {
public static void main(String args[]) {
int n;

for(n=10; n>0; n--)
System.out.println("tick " + n);

}
}

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is only needed for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, here is the preceding program recoded so that
the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
public static void main(String args[]) {

// here, n is declared inside of the for loop
for(int n=10; n>0; n--)
System.out.println("tick " + n);

}
}

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 89

https://hemanthrajhemu.github.io

to use the loop control variable elsewhere in your program, you will not be able to declare
it inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime numbers.
Notice that the loop control variable, i, is declared inside the for since it is not needed elsewhere.

// Test for primes.
class FindPrime {
public static void main(String args[]) {
int num;
boolean isPrime = true;

num = 14;
for(int i=2; i <= num/i; i++) {
if((num % i) == 0) {
isPrime = false;
break;

}
}
if(isPrime) System.out.println("Prime");
else System.out.println("Not Prime");

}
}

Using the Comma
There will be times when you will want to include more than one statement in the initialization
and iteration portions of the for loop. For example, consider the loop in the following program:

class Sample {
public static void main(String args[]) {
int a, b;

b = 4;
for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + b);
b--;

}
}

}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is
governed by two variables, it would be useful if both could be included in the for statement,
itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish
this. To allow two or more variables to control a for loop, Java permits you to include multiple
statements in both the initialization and iteration portions of the for. Each statement is separated
from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded as shown here:

// Using the comma.
class Comma {

90 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

public static void main(String args[]) {
int a, b;

for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);

}
}

}

In this example, the initialization portion sets the values of both a and b. The two comma-
separated statements in the iteration portion are executed each time the loop repeats. The
program generates the following output:

a = 1
b = 4
a = 2
b = 3

NOTEOTE If you are familiar with C/C++, then you know that in those languages the comma is an
operator that can be used in any valid expression. However, this is not the case with Java. In
Java, the comma is a separator.

Some for Loop Variations
The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts—the initialization, the conditional test, and the
iteration—do not need to be used for only those purposes. In fact, the three sections of the
for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically,
this expression does not need to test the loop control variable against some target value. In
fact, the condition controlling the for can be any Boolean expression. For example, consider
the following fragment:

boolean done = false;

for(int i=1; !done; i++) {
// ...
if(interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is set to true.
It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration
expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
public static void main(String args[]) {
int i;

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 91

https://hemanthrajhemu.github.io

boolean done = false;

i = 0;
for(; !done;) {
System.out.println("i is " + i);
if(i == 10) done = true;
i++;

}
}

}

Here, the initialization and iteration expressions have been moved out of the for. Thus, parts
of the for are empty. While this is of no value in this simple example—indeed, it would be
considered quite poor style—there can be times when this type of approach makes sense.
For example, if the initial condition is set through a complex expression elsewhere in the
program or if the loop control variable changes in a nonsequential manner determined by
actions that occur within the body of the loop, it may be appropriate to leave these parts of
the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop
that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {
// ...

}

This loop will run forever because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors, that
require an infinite loop, most “infinite loops” are really just loops with special termination
requirements. As you will soon see, there is a way to terminate a loop— even an infinite
loop like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop
Beginning with JDK 5, a second form of for was defined that implements a “for-each” style
loop. As you may know, contemporary language theory has embraced the for-each concept,
and it is quickly becoming a standard feature that programmers have come to expect. A for-
each style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. Unlike some languages, such as C#, that implement
a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing
the for statement. The advantage of this approach is that no new keyword is required, and no
preexisting code is broken. The for-each style of for is also referred to as the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that
can be used with the for, but the only type used in this chapter is the array. (Other types of
collections that can be used with the for, such as those defined by the Collections Framework,

92 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

are discussed later in this book.) With each iteration of the loop, the next element in the
collection is retrieved and stored in itr-var. The loop repeats until all elements in the collection
have been obtained.

Because the iteration variable receives values from the collection, type must be the same
as (or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
type must be compatible with the base type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus,
the entire array is read in strictly sequential order. This is accomplished by manually
indexing the nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need
to establish a loop counter, specify a starting and ending value, and manually index the
array. Instead, it automatically cycles through the entire array, obtaining one element at
a time, in sequence, from beginning to end. For example, here is the preceding fragment
rewritten using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element
in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.
Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

// use for-each style for to display and sum the values
for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;

}

System.out.println("Summation: " + sum);
}

}

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 93

https://hemanthrajhemu.github.io

The output from the program is shown here.

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7
Value is: 8
Value is: 9
Value is: 10
Summation: 55

As this output shows, the for-each style for automatically cycles through an array in sequence
from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
it is possible to terminate the loop early by using a break statement. For example, this program
sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 {
public static void main(String args[]) {
int sum = 0;
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values
for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;
if(x == 5) break; // stop the loop when 5 is obtained

}
System.out.println("Summation of first 5 elements: " + sum);

}
}

This is the output produced:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break statement
can also be used with Java’s other loops, and it is discussed in detail later in this chapter.

There is one important point to understand about the for-each style loop. Its iteration
variable is “read-only” as it relates to the underlying array. An assignment to the
iteration variable has no effect on the underlying array. In other words, you can’t change

94 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 95

the contents of the array by assigning the iteration variable a new value. For example,
consider this program:

// The for-each loop is essentially read-only.
class NoChange {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x : nums) {
System.out.print(x + " ");
x = x * 10; // no effect on nums

}

System.out.println();

for(int x : nums)
System.out.print(x + " ");

System.out.println();
}

}

The first for loop increases the value of the iteration variable by a factor of 10. However,
this assignment has no effect on the underlying array nums, as the second for loop illustrates.
The output, shown here, proves this point:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays
The enhanced version of the for also works on multidimensional arrays. Remember,
however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,
a two-dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array, because each iteration obtains the next array, not an
individual element. Furthermore, the iteration variable in the for loop must be compatible
with the type of array being obtained. For example, in the case of a two-dimensional array,
the iteration variable must be a reference to a one-dimensional array. In general, when
using the for-each for to iterate over an array of N dimensions, the objects obtained will be
arrays of N–1 dimensions. To understand the implications of this, consider the following
program. It uses nested for loops to obtain the elements of a two-dimensional array in row-
order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 {
public static void main(String args[]) {
int sum = 0;
int nums[][] = new int[3][5];

// give nums some values
for(int i = 0; i < 3; i++)

https://hemanthrajhemu.github.io

for(int j=0; j < 5; j++)
nums[i][j] = (i+1)*(j+1);

// use for-each for to display and sum the values
for(int x[] : nums) {
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;

}
}
System.out.println("Summation: " + sum);

}
}

The output from this program is shown here:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 2
Value is: 4
Value is: 6
Value is: 8
Value is: 10
Value is: 3
Value is: 6
Value is: 9
Value is: 12
Value is: 15
Summation: 90

In the program, pay special attention to this line:

for(int x[] : nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for
Since the for-each style for can only cycle through an array sequentially, from start to finish,
you might think that its use is limited, but this is not true. A large number of algorithms
require exactly this mechanism. One of the most common is searching. For example, the
following program uses a for loop to search an unsorted array for a value. It stops if the
value is found.

96 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 97

// Search an array using for-each style for.
class Search {
public static void main(String args[]) {
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;

// use for-each style for to search nums for val
for(int x : nums) {
if(x == val) {
found = true;
break;

}
}

if(found)
System.out.println("Value found!");

}
}

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other
types of applications that benefit from for-each style loops include computing an average,
finding the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style
for is especially useful when operating on collections defined by the Collections Framework,
which is described in Part II. More generally, the for can cycle through the elements of any
collection of objects, as long as that collection satisfies a certain set of constraints, which are
described in Chapter 17.

Nested Loops
Like all other programming languages, Java allows loops to be nested. That is, one loop may
be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
public static void main(String args[]) {
int i, j;

for(i=0; i<10; i++) {
for(j=i; j<10; j++)
System.out.print(".");

System.out.println();
}

}
}

https://hemanthrajhemu.github.io

The output produced by this program is shown here:

..........

.........

........

.......

......

.....

....

...

..

.

Jump Statements
Java supports three jump statements: break, continue, and return. These statements transfer
control to another part of your program. Each is examined here.

NOTEOTE In addition to the jump statements discussed here, Java supports one other way that you
can change your program’s flow of execution: through exception handling. Exception handling
provides a structured method by which run-time errors can be trapped and handled by your
program. It is supported by the keywords try, catch, throw, throws, and finally. In essence,
the exception handling mechanism allows your program to perform a nonlocal branch. Since
exception handling is a large topic, it is discussed in its own chapter, Chapter 10.

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as
a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is
encountered inside a loop, the loop is terminated and program control resumes at the next
statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
public static void main(String args[]) {
for(int i=0; i<100; i++) {
if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + i);

}
System.out.println("Loop complete.");

}
}

98 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

This program generates the following output:

i: 0
i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
i: 7
i: 8
i: 9
Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement
causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, here is the preceding program coded by use of a while loop.
The output from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
public static void main(String args[]) {
int i = 0;

while(i < 100) {
if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + i);
i++;

}
System.out.println("Loop complete.");

}
}

When used inside a set of nested loops, the break statement will only break out of the
innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 {
public static void main(String args[]) {
for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");
for(int j=0; j<100; j++) {
if(j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");

}
System.out.println();

}
System.out.println("Loops complete.");

}
}

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 99

https://hemanthrajhemu.github.io

100 P a r t I : T h e J a v a L a n g u a g e

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9
Pass 1: 0 1 2 3 4 5 6 7 8 9
Pass 2: 0 1 2 3 4 5 6 7 8 9
Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency
to destructure your code. Second, the break that terminates a switch statement affects only
that switch statement and not any enclosing loops.

REMEMBEREMEMBER break was not designed to provide the normal means by which a loop is terminated.
The loop’s conditional expression serves this purpose. The break statement should be used to
cancel a loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement because it provides a way to branch in an arbitrary and unstructured manner.
This usually makes goto-ridden code hard to understand and hard to maintain. It also prohibits
certain compiler optimizations. There are, however, a few places where the goto is a valuable
and legitimate construct for flow control. For example, the goto can be useful when you are
exiting from a deeply nested set of loops. To handle such situations, Java defines an expanded
form of the break statement. By using this form of break, you can, for example, break out of
one or more blocks of code. These blocks need not be part of a loop or a switch. They can be
any block. Further, you can specify precisely where execution will resume, because this form
of break works with a label. As you will see, break gives you the benefits of a goto without its
problems.

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-alone
block of code but it can also be a block that is the target of another statement. When this form of
break executes, control is transferred out of the named block. The labeled block must enclose
the break statement, but it does not need to be the immediately enclosing block. This means,
for example, that you can use a labeled break statement to exit from a set of nested blocks.
But you cannot use break to transfer control out of a block that does not enclose the break
statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed
by a colon. Once you have labeled a block, you can then use this label as the target of a
break statement. Doing so causes execution to resume at the end of the labeled block. For
example, the following program shows three nested blocks, each with its own label. The
break statement causes execution to jump forward, past the end of the block labeled second,
skipping the two println() statements.

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 101

// Using break as a civilized form of goto.
class Break {
public static void main(String args[]) {
boolean t = true;

first: {
second: {
third: {
System.out.println("Before the break.");
if(t) break second; // break out of second block
System.out.println("This won't execute");

}
System.out.println("This won't execute");

}
System.out.println("This is after second block.");

}
}

}

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.
For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4 {
public static void main(String args[]) {
outer: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");
for(int j=0; j<100; j++) {
if(j == 10) break outer; // exit both loops
System.out.print(j + " ");

}
System.out.println("This will not print");

}
System.out.println("Loops complete.");

}
}

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been terminated.
Notice that this example labels the for statement, which has a block of code as its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {

https://hemanthrajhemu.github.io

public static void main(String args[]) {

one: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");

}

for(int j=0; j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

}
}

}

Since the loop labeled one does not enclose the break statement, it is not possible to transfer
control out of that block.

Using continue
Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue
running the loop but stop processing the remainder of the code in its body for this particular
iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. The continue
statement performs such an action. In while and do-while loops, a continue statement
causes control to be transferred directly to the conditional expression that controls the loop.
In a for loop, control goes first to the iteration portion of the for statement and then to the
conditional expression. For all three loops, any intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on
each line:

// Demonstrate continue.
class Continue {
public static void main(String args[]) {
for(int i=0; i<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("");

}
}

}

This code uses the % operator to check if i is even. If it is, the loop continues without printing
a newline. Here is the output from this program:

0 1
2 3
4 5
6 7
8 9

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue to print a triangular
multiplication table for 0 through 9.

102 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 5 : C o n t r o l S t a t e m e n t s 103

// Using continue with a label.
class ContinueLabel {
public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {
for(int j=0; j<10; j++) {
if(j > i) {
System.out.println();
continue outer;

}
System.out.print(" " + (i * j));

}
}
System.out.println();

}
}

The continue statement in this example terminates the loop counting j and continues with
the next iteration of the loop counting i. Here is the output of this program:

0
0 1
0 2 4
0 3 6 9
0 4 8 12 16
0 5 10 15 20 25
0 6 12 18 24 30 36
0 7 14 21 28 35 42 49
0 8 16 24 32 40 48 56 64
0 9 18 27 36 45 54 63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in which
early iteration is needed, the continue statement provides a structured way to accomplish it.

return
The last control statement is return. The return statement is used to explicitly return from
a method. That is, it causes program control to transfer back to the caller of the method.
As such, it is categorized as a jump statement. Although a full discussion of return must
wait until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method the return statement can be used to cause execution to branch
back to the caller of the method. Thus, the return statement immediately terminates the
method in which it is executed. The following example illustrates this point. Here, return
causes execution to return to the Java run-time system, since it is the run-time system that
calls main().

// Demonstrate return.
class Return {
public static void main(String args[]) {
boolean t = true;

https://hemanthrajhemu.github.io

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");
}

}

The output from this program is shown here:

Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,
control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the
Java compiler would flag an “unreachable code” error because the compiler would know
that the last println() statement would never be executed. To prevent this error, the if statement
is used here to trick the compiler for the sake of this demonstration.

104 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

