

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

A Few Words About Strings . 55
A Note to C/C++ Programmers About Pointers 56

4 Operators . 57
Arithmetic Operators . 57

The Basic Arithmetic Operators . 58
The Modulus Operator . 59
Arithmetic Compound Assignment Operators 59
Increment and Decrement . 60

The Bitwise Operators . 62
The Bitwise Logical Operators . 63
The Left Shift . 65
The Right Shift . 66
The Unsigned Right Shift . 68
Bitwise Operator Compound Assignments 69

Relational Operators . 70
Boolean Logical Operators . 71

Short-Circuit Logical Operators . 72
The Assignment Operator . 73
The ? Operator . 73
Operator Precedence . 74
Using Parentheses . 74

5 Control Statements . 77
Java’s Selection Statements . 77

if . 77
switch . 80

Iteration Statements . 84
while . 84
do-while . 86
for . 88
The For-Each Version of the for Loop . 92
Nested Loops . 97

Jump Statements . 98
Using break . 98
Using continue . 102
return . 103

6 Introducing Classes . 105
Class Fundamentals . 105

The General Form of a Class . 105
A Simple Class . 106

Declaring Objects . 109
A Closer Look at new . 109

Assigning Object Reference Variables . 111
Introducing Methods . 111

Adding a Method to the Box Class . 112

C o n t e n t s ix

https://hemanthrajhemu.github.io

Returning a Value . 114
Adding a Method That Takes Parameters 115

Constructors . 117
Parameterized Constructors . 119

The this Keyword . 120
Instance Variable Hiding . 121

Garbage Collection . 121
The finalize() Method . 121
A Stack Class . 122

7 A Closer Look at Methods and Classes . 125
Overloading Methods . 125

Overloading Constructors . 128
Using Objects as Parameters . 130
A Closer Look at Argument Passing . 132
Returning Objects . 134
Recursion . 135
Introducing Access Control . 138
Understanding static . 141
Introducing final . 143
Arrays Revisited . 143
Introducing Nested and Inner Classes . 145
Exploring the String Class . 148
Using Command-Line Arguments . 150
Varargs: Variable-Length Arguments . 151

Overloading Vararg Methods . 154
Varargs and Ambiguity . 155

8 Inheritance . 157
Inheritance Basics . 157

Member Access and Inheritance . 159
A More Practical Example . 160
A Superclass Variable Can Reference a Subclass Object 162

Using super . 163
Using super to Call Superclass Constructors 163
A Second Use for super . 166

Creating a Multilevel Hierarchy . 167
When Constructors Are Called . 170
Method Overriding . 171
Dynamic Method Dispatch . 174

Why Overridden Methods? . 175
Applying Method Overriding . 176

Using Abstract Classes . 177
Using final with Inheritance . 180

Using final to Prevent Overriding . 180
Using final to Prevent Inheritance . 181

The Object Class . 181

x J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

9 Packages and Interfaces . 183
Packages . 183

Defining a Package . 184
Finding Packages and CLASSPATH . 184
A Short Package Example . 185

Access Protection . 186
An Access Example . 187

Importing Packages . 190
Interfaces . 192

Defining an Interface . 193
Implementing Interfaces . 194
Nested Interfaces . 196
Applying Interfaces . 197
Variables in Interfaces . 200
Interfaces Can Be Extended . 202

10 Exception Handling . 205
Exception-Handling Fundamentals . 205
Exception Types . 206
Uncaught Exceptions . 206
Using try and catch . 207

Displaying a Description of an Exception 209
Multiple catch Clauses . 209
Nested try Statements . 211
throw . 213
throws . 214
finally . 216
Java’s Built-in Exceptions . 217
Creating Your Own Exception Subclasses . 219
Chained Exceptions . 221
Using Exceptions . 222

11 Multithreaded Programming . 223
The Java Thread Model . 224

Thread Priorities . 224
Synchronization . 225
Messaging . 225
The Thread Class and the Runnable Interface 226

The Main Thread . 226
Creating a Thread . 228

Implementing Runnable . 228
Extending Thread . 230
Choosing an Approach . 232

Creating Multiple Threads . 232
Using isAlive() and join() . 233
Thread Priorities . 236

C o n t e n t s x i

https://hemanthrajhemu.github.io

6
Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java
language is built because it defines the shape and nature of an object. As such, the
class forms the basis for object-oriented programming in Java. Any concept you wish

to implement in a Java program must be encapsulated within a class.
Because the class is so fundamental to Java, this and the next few chapters will be devoted

to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been used. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new data
type. Once defined, this new type can be used to create objects of that type. Thus, a class is
a template for an object, and an object is an instance of a class. Because an object is an instance
of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying the
data that it contains and the code that operates on that data. While very simple classes may
contain only code or only data, most real-world classes contain both. As you will see, a class’
code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to this
point are actually very limited examples of its complete form. Classes can (and usually do)
get much more complex. A simplified general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;

1 0 5

https://hemanthrajhemu.github.io

// ...
type instance-variableN;

type methodname1(parameter-list) {
// body of method

}
type methodname2(parameter-list) {

// body of method
}
// ...
type methodnameN(parameter-list) {

// body of method
}

}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class are
called members of the class. In most classes, the instance variables are acted upon and accessed
by the methods defined for that class. Thus, as a general rule, it is the methods that determine
how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of the
class (that is, each object of the class) contains its own copy of these variables. Thus, the data
for one object is separate and unique from the data for another. We will come back to this point
shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general form
of a class does not specify a main() method. Java classes do not need to have a main() method.
You only specify one if that class is the starting point for your program. Further, applets don’t
require a main() method at all.

NOTEOTE C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes for very
large .java files, since any class must be entirely defined in a single source file. This design feature
was built into Java because it was felt that in the long run, having specification, declaration, and
implementation all in one place makes for code that is easier to maintain.

A Simple Class
Let’s begin our study of the class with a simple example. Here is a class called Box that defines
three instance variables: width, height, and depth. Currently, Box does not contain any
methods (but some will be added soon).

class Box {
double width;
double height;
double depth;

}

106 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

As stated, a class defines a new type of data. In this case, the new data type is called Box.
You will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an object
that contains its own copy of each instance variable defined by the class. Thus, every Box
object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of the
object with the name of an instance variable. For example, to assign the width variable of
mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the instance
variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {
double width;
double height;
double depth;

}

// This class declares an object of type Box.
class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box();
double vol;

// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);
}

}

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 107

https://hemanthrajhemu.github.io

You should call the file that contains this program BoxDemo.java, because the main() method
is in the class called BoxDemo, not the class called Box. When you compile this program, you
will find that two .class files have been created, one for Box and one for BoxDemo. The Java
compiler automatically puts each class into its own .class file. It is not necessary for both the
Box and the BoxDemo class to actually be in the same source file. You could put each class
in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means that
if you have two Box objects, each has its own copy of depth, width, and height. It is important
to understand that changes to the instance variables of one object have no effect on the instance
variables of another. For example, the following program declares two Box objects:

// This program declares two Box objects.

class Box {
double width;
double height;
double depth;

}

class BoxDemo2 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;
System.out.println("Volume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

}
}

108 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new operator.
The new operator dynamically allocates (that is, allocates at run time) memory for an object
and returns a reference to it. This reference is, more or less, the address in memory of the object
allocated by new. This reference is then stored in the variable. Thus, in Java, all class objects
must be dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line executes,
mybox contains the value null, which indicates that it does not yet point to an actual object.
Any attempt to use mybox at this point will result in a compile-time error. The next line
allocates an actual object and assigns a reference to it to mybox. After the second line executes,
you can use mybox as if it were a Box object. But in reality, mybox simply holds the memory
address of the actual Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTEOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new
As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname();

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 109

https://hemanthrajhemu.github.io

Here, class-var is a variable of the class type being created. The classname is the name of the
class that is being instantiated. The class name followed by parentheses specifies the constructor
for the class. A constructor defines what occurs when an object of a class is created. Constructors
are an important part of all classes and have many significant attributes. Most real-world
classes explicitly define their own constructors within their class definition. However, if no
explicit constructor is specified, then Java will automatically supply a default constructor.
This is the case with Box. For now, we will use the default constructor. Soon, you will see
how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to treat
them differently than it treats the primitive types. By not applying the same overhead to the
primitive types that applies to objects, Java can implement the primitive types more efficiently.
Later, you will see object versions of the primitive types that are available for your use in
those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory exists.
If this happens, a run-time exception will occur. (You will learn how to handle this and other
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class, you
are creating an instance of that class. Thus, a class is a logical construct. An object has physical
reality. (That is, an object occupies space in memory.) It is important to keep this distinction
clearly in mind.

110 P a r t I : T h e J a v a L a n g u a g e

FIGURE 6-1
Declaring an object
of type Box

https://hemanthrajhemu.github.io

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 111

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to by
b1. That is, you might think that b1 and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the
same object. The assignment of b1 to b2 did not allocate any memory or copy any part of the
original object. It simply makes b2 refer to the same object as does b1. Thus, any changes
made to the object through b2 will affect the object to which b1 is referring, since they are the
same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1 from the original object
without affecting the object or affecting b2. For example:

Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBEREMEMBER When you assign one object reference variable to another object reference variable,
you are not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However, there
are some fundamentals that you need to learn now so that you can begin to add methods to
your classes.

https://hemanthrajhemu.github.io

This is the general form of a method:

type name(parameter-list) {
// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially variables
that receive the value of the arguments passed to the method when it is called. If the method
has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine using
the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods, including

those that take parameters and those that return values.

Adding a Method to the Box Class
Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In fact,
methods define the interface to most classes. This allows the class implementor to hide the
specific layout of internal data structures behind cleaner method abstractions. In addition
to defining methods that provide access to data, you can also define methods that are used
internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while looking
at the preceding programs that the computation of a box’s volume was something that was
best handled by the Box class rather than the BoxDemo class. After all, since the volume of
a box is dependent upon the size of the box, it makes sense to have the Box class compute it.
To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box
void volume() {
System.out.print("Volume is ");
System.out.println(width * height * depth);

}
}

112 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

class BoxDemo3 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// display volume of first box
mybox1.volume();

// display volume of second box
mybox2.volume();

}
}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();
mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined by
its class, it does so directly, without explicit reference to an object and without use of the dot
operator. This is easy to understand if you think about it. A method is always invoked relative
to some object of its class. Once this invocation has occurred, the object is known. Thus, within

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 113

https://hemanthrajhemu.github.io

114 P a r t I : T h e J a v a L a n g u a g e

a method, there is no need to specify the object a second time. This means that width, height,
and depth inside volume() implicitly refer to the copies of those variables found in the object
that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the class
in which that instance variable is defined, it must be done through an object, by use of the
dot operator. However, when an instance variable is accessed by code that is part of the same
class as the instance variable, that variable can be referred to directly. The same thing applies
to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume inside
the Box class where it belongs, it is not the best way to do it. For example, what if another
part of your program wanted to know the volume of a box, but not display its value? A better
way to implement volume() is to have it compute the volume of the box and return the result
to the caller. The following example, an improved version of the preceding program, does
just that:

// Now, volume() returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume() {
return width * height * depth;

}
}

class BoxDemo4 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

https://hemanthrajhemu.github.io

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is boolean,
you could not return an integer.

• The variable receiving the value returned by a method (such as vol, in this case) must
also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is " + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters
While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be used
in a number of slightly different situations. To illustrate this point, let’s use a very simple
example. Here is a method that returns the square of the number 10:

int square()
{
return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square(int i)
{
return i * i;

}

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 115

https://hemanthrajhemu.github.io

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather than
just 10.

Here is an example:

int x, y;
x = square(5); // x equals 25
x = square(9); // x equals 81
y = 2;
x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter is a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the parameter i
receives that value.

You can use a parameterized method to improve the Box class. In the preceding examples,
the dimensions of each box had to be set separately by use of a sequence of statements, such as:

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone. For
example, it would be easy to forget to set a dimension. Second, in well-designed Java programs,
instance variables should be accessed only through methods defined by their class. In the
future, you can change the behavior of a method, but you can’t change the behavior of an
exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that takes
the dimensions of a box in its parameters and sets each instance variable appropriately. This
concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume() {
return width * height * depth;

}

// sets dimensions of box
void setDim(double w, double h, double d) {
width = w;

116 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 117

height = h;
depth = d;

}
}

class BoxDemo5 {
public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// initialize each box
mybox1.setDim(10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d. Inside
setDim() the values of w, h, and d are then assigned to width, height, and depth, respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you, then you
might want to take some time to experiment before moving on. The concepts of the method
invocation, parameters, and return values are fundamental to Java programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created. Even
when you add convenience functions like setDim(), it would be simpler and more concise
to have all of the setup done at the time the object is first created. Because the requirement
for initialization is so common, Java allows objects to initialize themselves when they are
created. This automatic initialization is performed through the use of a constructor.

A constructor initializes an object immediately upon creation. It has the same name as the
class in which it resides and is syntactically similar to a method. Once defined, the constructor
is automatically called immediately after the object is created, before the new operator completes.
Constructors look a little strange because they have no return type, not even void. This is
because the implicit return type of a class’ constructor is the class type itself. It is the constructor’s
job to initialize the internal state of an object so that the code creating an instance will have
a fully initialized, usable object immediately.

https://hemanthrajhemu.github.io

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each box
to the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the
dimensions of a box.

*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box() {
System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

class BoxDemo6 {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box mybox1 = new Box();
Box mybox2 = new Box();

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

118 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 119

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor when
they were created. Since the constructor gives all boxes the same dimensions, 10 by 10 by 10,
both mybox1 and mybox2 will have the same volume. The println() statement inside Box()
is for the sake of illustration only. Most constructors will not display anything. They will
simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an
object, you use the following general form:

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is actually
happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding line
of code worked in earlier versions of Box that did not define a constructor. The default
constructor automatically initializes all instance variables to zero. The default constructor is
often sufficient for simple classes, but it usually won’t do for more sophisticated ones. Once
you define your own constructor, the default constructor is no longer used.

Parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object, it is not
very useful—all boxes have the same dimensions. What is needed is a way to construct Box
objects of various dimensions. The easy solution is to add parameters to the constructor. As
you can probably guess, this makes them much more useful. For example, the following version
of Box defines a parameterized constructor that sets the dimensions of a box as specified by
those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
initialize the dimensions of a box.

*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

https://hemanthrajhemu.github.io

class BoxDemo7 {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.
Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines
the this keyword. this can be used inside any method to refer to the current object. That is,
this is always a reference to the object on which the method was invoked. You can use this
anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is
redundant in this case, this is useful in other contexts, one of which is explained in the next
section.

120 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 121

Instance Variable Hiding
As you know, it is illegal in Java to declare two local variables with the same name inside
the same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which overlap with the names of the class’ instance variables. However,
when a local variable has the same name as an instance variable, the local variable hides the
instance variable. This is why width, height, and depth were not used as the names of the
parameters to the Box() constructor inside the Box class. If they had been, then width would
have referred to the formal parameter, hiding the instance variable width. While it is usually
easier to simply use different names, there is another way around this situation. Because this
lets you refer directly to the object, you can use it to resolve any name space collisions that
might occur between instance variables and local variables. For example, here is another
version of Box(), which uses width, height, and depth for parameter names and then uses
this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
this.width = width;
this.height = height;
this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing, and
some programmers are careful not to use local variables and formal parameter names that
hide instance variables. Of course, other programmers believe the contrary—that it is a good
convention to use the same names for clarity, and use this to overcome the instance variable
hiding. It is a matter of taste which approach you adopt.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be wondering
how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of
a delete operator. Java takes a different approach; it handles deallocation for you automatically.
The technique that accomplishes this is called garbage collection. It works like this: when no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object can be reclaimed. There is no explicit need to destroy objects as in C++.
Garbage collection only occurs sporadically (if at all) during the execution of your program.
It will not occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage collection,
but for the most part, you should not have to think about it while writing your programs.

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For example, if
an object is holding some non-Java resource such as a file handle or character font, then you
might want to make sure these resources are freed before an object is destroyed. To handle

https://hemanthrajhemu.github.io

122 P a r t I : T h e J a v a L a n g u a g e

such situations, Java provides a mechanism called finalization. By using finalization, you can
define specific actions that will occur when an object is just about to be reclaimed by the
garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.
The garbage collector runs periodically, checking for objects that are no longer referenced by
any running state or indirectly through other referenced objects. Right before an asset is freed,
the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined
outside its class. This and the other access specifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope, for example. This means that you cannot
know when—or even if—finalize() will be executed. Therefore, your program should provide
other means of releasing system resources, etc., used by the object. It must not rely on finalize()
for normal program operation.

NOTEOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for
a class, which is called when an object goes out-of-scope. Java does not support this idea or provide
for destructors. The finalize() method only approximates the function of a destructor. As you
get more experienced with Java, you will see that the need for destructor functions is minimal
because of Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little practical
value. To show the real power of classes, this chapter will conclude with a more sophisticated
example. As you recall from the discussion of object-oriented programming (OOP) presented in
Chapter 2, one of OOP’s most important benefits is the encapsulation of data and the code that
manipulates that data. As you have seen, the class is the mechanism by which encapsulation
is achieved in Java. By creating a class, you are creating a new data type that defines both the
nature of the data being manipulated and the routines used to manipulate it. Further, the
methods define a consistent and controlled interface to the class’ data. Thus, you can use
the class through its methods without having to worry about the details of its implementation
or how the data is actually managed within the class. In a sense, a class is like a “data engine.”
No knowledge of what goes on inside the engine is required to use the engine through its
controls. In fact, since the details are hidden, its inner workings can be changed as needed.
As long as your code uses the class through its methods, internal details can change without
causing side effects outside the class.

https://hemanthrajhemu.github.io

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 123

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the
table is the last plate to be used. Stacks are controlled through two operations traditionally
called push and pop. To put an item on top of the stack, you will use push. To take an item off
the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack mechanism.

Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.
class Stack {
int stck[] = new int[10];
int tos;

// Initialize top-of-stack
Stack() {
tos = -1;

}

// Push an item onto the stack
void push(int item) {
if(tos==9)
System.out.println("Stack is full.");

else
stck[++tos] = item;

}

// Pop an item from the stack
int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

As you can see, the Stack class defines two data items and three methods. The stack of integers
is held by the array stck. This array is indexed by the variable tos, which always contains the
index of the top of the stack. The Stack() constructor initializes tos to –1, which indicates an
empty stack. The method push() puts an item on the stack. To retrieve an item, call pop().
Since access to the stack is through push() and pop(), the fact that the stack is held in an
array is actually not relevant to using the stack. For example, the stack could be held in a
more complicated data structure, such as a linked list, yet the interface defined by push()
and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer stacks,
pushes some values onto each, and then pops them off.

class TestStack {
public static void main(String args[]) {
Stack mystack1 = new Stack();
Stack mystack2 = new Stack();

https://hemanthrajhemu.github.io

// push some numbers onto the stack
for(int i=0; i<10; i++) mystack1.push(i);
for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<10; i++)

System.out.println(mystack2.pop());
}

}

This program generates the following output:

Stack in mystack1:
9
8
7
6
5
4
3
2
1
0
Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.
One last point about the Stack class. As it is currently implemented, it is possible for the

array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves
Stack open to misuse or mischief. In the next chapter, you will see how to remedy this situation.

124 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

8
Inheritance

Inheritance is one of the cornerstones of object-oriented programming because it allows
the creation of hierarchical classifications. Using inheritance, you can create a general
class that defines traits common to a set of related items. This class can then be inherited

by other, more specific classes, each adding those things that are unique to it. In the terminology
of Java, a class that is inherited is called a superclass. The class that does the inheriting is called
a subclass. Therefore, a subclass is a specialized version of a superclass. It inherits all of the
instance variables and methods defined by the superclass and adds its own, unique elements.

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another by using
the extends keyword. To see how, let’s begin with a short example. The following program
creates a superclass called A and a subclass called B. Notice how the keyword extends is
used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.
class A {
int i, j;

void showij() {
System.out.println("i and j: " + i + " " + j);

}
}

// Create a subclass by extending class A.
class B extends A {
int k;

void showk() {
System.out.println("k: " + k);

}
void sum() {
System.out.println("i+j+k: " + (i+j+k));

}
}

1 5 7

https://hemanthrajhemu.github.io

class SimpleInheritance {
public static void main(String args[]) {
A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10;
superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();

/* The subclass has access to all public members of
its superclass. */

subOb.i = 7;
subOb.j = 8;
subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();

System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is
why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred
to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be used
by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class

}

158 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. You can, as stated,
create a hierarchy of inheritance in which a subclass becomes a superclass of another subclass.
However, no class can be a superclass of itself.

Member Access and Inheritance
Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider the
following simple class hierarchy:

/* In a class hierarchy, private members remain
private to their class.

This program contains an error and will not
compile.

*/

// Create a superclass.
class A {
int i; // public by default
private int j; // private to A

void setij(int x, int y) {
i = x;
j = y;

}
}

// A's j is not accessible here.
class B extends A {
int total;
void sum() {
total = i + j; // ERROR, j is not accessible here

}
}

class Access {
public static void main(String args[]) {
B subOb = new B();

subOb.setij(10, 12);

subOb.sum();
System.out.println("Total is " + subOb.total);

}
}

This program will not compile because the reference to j inside the sum() method of B
causes an access violation. Since j is declared as private, it is only accessible by other members
of its own class. Subclasses have no access to it.

C h a p t e r 8 : I n h e r i t a n c e 159

https://hemanthrajhemu.github.io

REMEMBEREMEMBER A class member that has been declared as private will remain private to its class. It is
not accessible by any code outside its class, including subclasses.

A More Practical Example
Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be extended
to include a fourth component called weight. Thus, the new class will contain a box’s width,
height, depth, and weight.

// This program uses inheritance to extend Box.
class Box {
double width;
double height;
double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

// Here, Box is extended to include weight.
class BoxWeight extends Box {
double weight; // weight of box

160 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 8 : I n h e r i t a n c e 161

// constructor for BoxWeight
BoxWeight(double w, double h, double d, double m) {
width = w;
height = h;
depth = d;
weight = m;

}
}

class DemoBoxWeight {
public static void main(String args[]) {
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);

}
}

The output from this program is shown here:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight component.
It is not necessary for BoxWeight to re-create all of the features found in Box. It can simply
extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that defines
the attributes common to a set of objects, it can be used to create any number of more specific
subclasses. Each subclass can precisely tailor its own classification. For example, the following
class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
int color; // color of box

ColorBox(double w, double h, double d, int c) {
width = w;
height = h;
depth = d;
color = c;

}
}

https://hemanthrajhemu.github.io

162 P a r t I : T h e J a v a L a n g u a g e

Remember, once you have created a superclass that defines the general aspects of an
object, that superclass can be inherited to form specialized classes. Each subclass simply
adds its own unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object
A reference variable of a superclass can be assigned a reference to any subclass derived from
that superclass. You will find this aspect of inheritance quite useful in a variety of situations.
For example, consider the following:

class RefDemo {
public static void main(String args[]) {
BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
Box plainbox = new Box();
double vol;

vol = weightbox.volume();
System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " +

weightbox.weight);
System.out.println();

// assign BoxWeight reference to Box reference
plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox
does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);
}

}

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box objects.
Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference to the
weightbox object.

It is important to understand that it is the type of the reference variable—not the type of
the object that it refers to—that determines what members can be accessed. That is, when a
reference to a subclass object is assigned to a superclass reference variable, you will have access
only to those parts of the object defined by the superclass. This is why plainbox can’t access
weight even when it refers to a BoxWeight object. If you think about it, this makes sense,
because the superclass has no knowledge of what a subclass adds to it. This is why the last
line of code in the preceding fragment is commented out. It is not possible for a Box reference
to access the weight field, because Box does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

https://hemanthrajhemu.github.io

C h a p t e r 8 : I n h e r i t a n c e 163

Using super
In the preceding examples, classes derived from Box were not implemented as efficiently or
as robustly as they could have been. For example, the constructor for BoxWeight explicitly
initializes the width, height, and depth fields of Box(). Not only does this duplicate code
found in its superclass, which is inefficient, but it implies that a subclass must be granted access
to these members. However, there will be times when you will want to create a superclass that
keeps the details of its implementation to itself (that is, that keeps its data members private).
In this case, there would be no way for a subclass to directly access or initialize these variables
on its own. Since encapsulation is a primary attribute of OOP, it is not surprising that Java
provides a solution to this problem. Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second is
used to access a member of the superclass that has been hidden by a member of a subclass.
Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.

To see how super() is used, consider this improved version of the BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;

}
}

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box()
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value unique
to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since constructors
can be overloaded, super() can be called using any form defined by the superclass. The
constructor executed will be the one that matches the arguments. For example, here is a
complete implementation of BoxWeight that provides constructors for the various ways

https://hemanthrajhemu.github.io

that a box can be constructed. In each case, super() is called using the appropriate arguments.
Notice that width, height, and depth have been made private within Box.

// A complete implementation of BoxWeight.
class Box {
private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {

164 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

super(w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight() {
super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m) {
super(len);
weight = m;

}
}

class DemoSuper {
public static void main(String args[]) {
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);
double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);
System.out.println();

vol = mybox3.volume();
System.out.println("Volume of mybox3 is " + vol);
System.out.println("Weight of mybox3 is " + mybox3.weight);
System.out.println();

vol = myclone.volume();
System.out.println("Volume of myclone is " + vol);
System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();

}
}

C h a p t e r 8 : I n h e r i t a n c e 165

https://hemanthrajhemu.github.io

166 P a r t I : T h e J a v a L a n g u a g e

This program generates the following output:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight():

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box. This still
invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable can be
used to reference any object derived from that class. Thus, we are able to pass a BoxWeight
object to the Box constructor. Of course, Box only has knowledge of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass
immediately above the calling class. This is true even in a multileveled hierarchy. Also, super()
must always be the first statement executed inside a subclass constructor.

A Second Use for super
The second form of super acts somewhat like this, except that it always refers to the superclass
of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member names of

a subclass hide members by the same name in the superclass. Consider this simple class
hierarchy:

// Using super to overcome name hiding.
class A {
int i;

}

https://hemanthrajhemu.github.io

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A
i = b; // i in B

}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}

class UseSuper {
public static void main(String args[]) {
B subOb = new B(1, 2);

subOb.show();
}

}

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined
in the superclass. As you will see, super can also be used to call methods that are hidden by a
subclass.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.
For example, given three classes called A, B, and C, C can be a subclass of B, which is a
subclass of A. When this type of situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all aspects of B and A. To see how
a multilevel hierarchy can be useful, consider the following program. In it, the subclass
BoxWeight is used as a superclass to create the subclass called Shipment. Shipment inherits
all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost of
shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.
class Box {
private double width;
private double height;
private double depth;

C h a p t e r 8 : I n h e r i t a n c e 167

https://hemanthrajhemu.github.io

168 P a r t I : T h e J a v a L a n g u a g e

// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {
width = height = depth = len;

}

// compute and return volume
double volume() {
return width * height * depth;

}
}

// Add weight.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
super(ob);
weight = ob.weight;

}
// constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight() {
super();
weight = -1;

}

https://hemanthrajhemu.github.io

// constructor used when cube is created
BoxWeight(double len, double m) {
super(len);
weight = m;

}
}

// Add shipping costs.
class Shipment extends BoxWeight {
double cost;

// construct clone of an object
Shipment(Shipment ob) { // pass object to constructor
super(ob);
cost = ob.cost;

}

// constructor when all parameters are specified
Shipment(double w, double h, double d,

double m, double c) {
super(w, h, d, m); // call superclass constructor
cost = c;

}

// default constructor
Shipment() {
super();
cost = -1;

}

// constructor used when cube is created
Shipment(double len, double m, double c) {
super(len, m);
cost = c;

}
}

class DemoShipment {
public static void main(String args[]) {
Shipment shipment1 =

new Shipment(10, 20, 15, 10, 3.41);
Shipment shipment2 =

new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();
System.out.println("Volume of shipment1 is " + vol);
System.out.println("Weight of shipment1 is "

+ shipment1.weight);
System.out.println("Shipping cost: $" + shipment1.cost);
System.out.println();

C h a p t e r 8 : I n h e r i t a n c e 169

https://hemanthrajhemu.github.io

vol = shipment2.volume();
System.out.println("Volume of shipment2 is " + vol);
System.out.println("Weight of shipment2 is "

+ shipment2.weight);
System.out.println("Shipping cost: $" + shipment2.cost);

}
}

The output of this program is shown here:

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of Box
and BoxWeight, adding only the extra information it needs for its own, specific application.
This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor
in the closest superclass. The super() in Shipment calls the constructor in BoxWeight. The
super() in BoxWeight calls the constructor in Box. In a class hierarchy, if a superclass
constructor requires parameters, then all subclasses must pass those parameters “up the
line.” This is true whether or not a subclass needs parameters of its own.

NOTEOTE In the preceding program, the entire class hierarchy, including Box, BoxWeight, and
Shipment, is shown all in one file. This is for your convenience only. In Java, all three classes
could have been placed into their own files and compiled separately. In fact, using separate
files is the norm, not the exception, in creating class hierarchies.

When Constructors Are Called
When a class hierarchy is created, in what order are the constructors for the classes that make up
the hierarchy called? For example, given a subclass called B and a superclass called A, is A’s
constructor called before B’s, or vice versa? The answer is that in a class hierarchy, constructors
are called in order of derivation, from superclass to subclass. Further, since super() must be the
first statement executed in a subclass’ constructor, this order is the same whether or not super()
is used. If super() is not used, then the default or parameterless constructor of each superclass
will be executed. The following program illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {
A() {
System.out.println("Inside A's constructor.");

}
}

170 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 8 : I n h e r i t a n c e 171

// Create a subclass by extending class A.
class B extends A {
B() {
System.out.println("Inside B's constructor.");

}
}

// Create another subclass by extending B.
class C extends B {
C() {
System.out.println("Inside C's constructor.");

}
}

class CallingCons {
public static void main(String args[]) {
C c = new C();

}
}

The output from this program is shown here:

Inside A’s constructor
Inside B’s constructor
Inside C’s constructor

As you can see, the constructors are called in order of derivation.
If you think about it, it makes sense that constructors are executed in order of derivation.

Because a superclass has no knowledge of any subclass, any initialization it needs to perform
is separate from and possibly prerequisite to any initialization performed by the subclass.
Therefore, it must be executed first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as
a method in its superclass, then the method in the subclass is said to override the method in
the superclass. When an overridden method is called from within a subclass, it will always
refer to the version of that method defined by the subclass. The version of the method defined
by the superclass will be hidden. Consider the following:

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

}
}

https://hemanthrajhemu.github.io

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}

// display k – this overrides show() in A
void show() {
System.out.println("k: " + k);

}
}

class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B
}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you wish to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}
void show() {
super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

If you substitute this version of A into the previous program, you will see the following
output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

172 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not
// overridden.
class A {
int i, j;

A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

}
}

// Create a subclass by extending class A.
class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}

// overload show()
void show(String msg) {
System.out.println(msg + k);

}
}

class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or name
hiding) takes place. Instead, the version of show() in B simply overloads the version of
show() in A.

C h a p t e r 8 : I n h e r i t a n c e 173

https://hemanthrajhemu.github.io

174 P a r t I : T h e J a v a L a n g u a g e

Dynamic Method Dispatch
While the examples in the preceding section demonstrate the mechanics of method overriding,
they do not show its power. Indeed, if there were nothing more to method overriding than
a name space convention, then it would be, at best, an interesting curiosity, but of little real
value. However, this is not the case. Method overriding forms the basis for one of Java’s most
powerful concepts: dynamic method dispatch. Dynamic method dispatch is the mechanism
by which a call to an overridden method is resolved at run time, rather than compile time.
Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer
to a subclass object. Java uses this fact to resolve calls to overridden methods at run time. Here
is how. When an overridden method is called through a superclass reference, Java determines
which version of that method to execute based upon the type of the object being referred
to at the time the call occurs. Thus, this determination is made at run time. When different
types of objects are referred to, different versions of an overridden method will be called.
In other words, it is the type of the object being referred to (not the type of the reference variable)
that determines which version of an overridden method will be executed. Therefore, if a
superclass contains a method that is overridden by a subclass, then when different types
of objects are referred to through a superclass reference variable, different versions of the
method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {

void callme() {
System.out.println("Inside A's callme method");

}
}

class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme method");

}
}

class C extends A {
// override callme()
void callme() {
System.out.println("Inside C's callme method");

}
}

class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A

https://hemanthrajhemu.github.io

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme(); // calls C's version of callme

}
}

The output from the program is shown here:

Inside A’s callme method
Inside B’s callme method
Inside C’s callme method

This program creates one superclass called A and two subclasses of it, called B and C.
Subclasses B and C override callme() declared in A. Inside the main() method, objects of
type A, B, and C are declared. Also, a reference of type A, called r, is declared. The program
then in turn assigns a reference to each type of object to r and uses that reference to invoke
callme(). As the output shows, the version of callme() executed is determined by the type
of object being referred to at the time of the call. Had it been determined by the type of the
reference variable, r, you would see three calls to A’s callme() method.

NOTEOTE Readers familiar with C++ or C# will recognize that overridden methods in Java are similar
to virtual functions in those languages.

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some or all of those methods. Overridden
methods are another way that Java implements the “one interface, multiple methods” aspect
of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater specialization.
Used correctly, the superclass provides all elements that a subclass can use directly. It also
defines those methods that the derived class must implement on its own. This allows the
subclass the flexibility to define its own methods, yet still enforces a consistent interface.
Thus, by combining inheritance with overridden methods, a superclass can define the general
form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that object-
oriented design brings to bear on code reuse and robustness. The ability of existing code
libraries to call methods on instances of new classes without recompiling while maintaining
a clean abstract interface is a profoundly powerful tool.

C h a p t e r 8 : I n h e r i t a n c e 175

https://hemanthrajhemu.github.io

176 P a r t I : T h e J a v a L a n g u a g e

Applying Method Overriding
Let’s look at a more practical example that uses method overriding. The following program
creates a superclass called Figure that stores the dimensions of a two-dimensional object. It
also defines a method called area() that computes the area of an object. The program derives
two subclasses from Figure. The first is Rectangle and the second is Triangle. Each of
these subclasses overrides area() so that it returns the area of a rectangle and a triangle,
respectively.

// Using run-time polymorphism.
class Figure {
double dim1;
double dim2;

Figure(double a, double b) {
dim1 = a;
dim2 = b;

}

double area() {
System.out.println("Area for Figure is undefined.");
return 0;

}
}

class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);

}

// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);

}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}

class FindAreas {
public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);

https://hemanthrajhemu.github.io

Figure figref;

figref = r;
System.out.println("Area is " + figref.area());

figref = t;
System.out.println("Area is " + figref.area());

figref = f;
System.out.println("Area is " + figref.area());

}
}

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is possible
to define one consistent interface that is used by several different, yet related, types of objects.
In this case, if an object is derived from Figure, then its area can be obtained by calling area().
The interface to this operation is the same no matter what type of figure is being used.

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the structure
of a given abstraction without providing a complete implementation of every method. That
is, sometimes you will want to create a superclass that only defines a generalized form that
will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a
class determines the nature of the methods that the subclasses must implement. One way
this situation can occur is when a superclass is unable to create a meaningful implementation
for a method. This is the case with the class Figure used in the preceding example. The
definition of area() is simply a placeholder. It will not compute and display the area of any
type of object.

As you will see as you create your own class libraries, it is not uncommon for a method
to have no meaningful definition in the context of its superclass. You can handle this situation
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. While this approach can be useful in certain situations—such as debugging—it is
not usually appropriate. You may have methods that must be overridden by the subclass
in order for the subclass to have any meaning. Consider the class Triangle. It has no meaning
if area() is not defined. In this case, you want some way to ensure that a subclass does, indeed,
override all necessary methods. Java’s solution to this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier. These methods are sometimes referred to as subclasser responsibility
because they have no implementation specified in the superclass. Thus, a subclass must

C h a p t e r 8 : I n h e r i t a n c e 177

https://hemanthrajhemu.github.io

override them—it cannot simply use the version defined in the superclass. To declare an
abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared abstract. To

declare a class abstract, you simply use the abstract keyword in front of the class keyword
at the beginning of the class declaration. There can be no objects of an abstract class. That is,
an abstract class cannot be directly instantiated with the new operator. Such objects would
be useless, because an abstract class is not fully defined. Also, you cannot declare abstract
constructors, or abstract static methods. Any subclass of an abstract class must either implement
all of the abstract methods in the superclass, or be itself declared abstract.

Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

// A Simple demonstration of abstract.
abstract class A {
abstract void callme();

// concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.");

}
}

class B extends A {
void callme() {
System.out.println("B's implementation of callme.");

}
}

class AbstractDemo {
public static void main(String args[]) {
B b = new B();

b.callme();
b.callmetoo();

}
}

Notice that no objects of class A are declared in the program. As mentioned, it is not
possible to instantiate an abstract class. One other point: class A implements a concrete
method called callmetoo(). This is perfectly acceptable. Abstract classes can include as
much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to create
object references, because Java’s approach to run-time polymorphism is implemented through
the use of superclass references. Thus, it must be possible to create a reference to an abstract
class so that it can be used to point to a subclass object. You will see this feature put to use in
the next example.

178 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Using an abstract class, you can improve the Figure class shown earlier. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following version
of the program declares area() as abstract inside Figure. This, of course, means that all classes
derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {
double dim1;
double dim2;

Figure(double a, double b) {
dim1 = a;
dim2 = b;

}

// area is now an abstract method
abstract double area();

}

class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);

}

// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);

}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}

class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created

figref = r;
System.out.println("Area is " + figref.area());

C h a p t e r 8 : I n h e r i t a n c e 179

https://hemanthrajhemu.github.io

figref = t;
System.out.println("Area is " + figref.area());

}
}

As the comment inside main() indicates, it is no longer possible to declare objects of
type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To
prove this to yourself, try creating a subclass that does not override area(). You will receive
a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference
variable of type Figure. The variable figref is declared as a reference to Figure, which means
that it can be used to refer to an object of any class derived from Figure. As explained, it is
through superclass reference variables that overridden methods are resolved at run time.

Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply
to inheritance. Both are examined here.

Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times when
you will want to prevent it from occurring. To disallow a method from being overridden,
specify final as a modifier at the start of its declaration. Methods declared as final cannot
be overridden. The following fragment illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");

}
}

class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");

}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do
so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden
by a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,
thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at run
time. This is called late binding. However, since final methods cannot be overridden, a call
to one can be resolved at compile time. This is called early binding.

180 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 8 : I n h e r i t a n c e 181

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its methods
as final, too. As you might expect, it is illegal to declare a class as both abstract and final
since an abstract class is incomplete by itself and relies upon its subclasses to provide
complete implementations.

Here is an example of a final class:

final class A {
// ...

}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class
There is one special class, Object, defined by Java. All other classes are subclasses of Object.
That is, Object is a superclass of all other classes. This means that a reference variable of type
Object can refer to an object of any other class. Also, since arrays are implemented as classes,
a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking object.

void notify() Resumes execution of a thread waiting on the invoking object.

void notifyAll() Resumes execution of all threads waiting on the invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,

int nanoseconds)

Waits on another thread of execution.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You
may override the others. These methods are described elsewhere in this book. However,
notice two methods now: equals() and toString(). The equals() method compares the
contents of two objects. It returns true if the objects are equivalent, and false otherwise.

https://hemanthrajhemu.github.io

The precise definition of equality can vary, depending on the type of objects being
compared. The toString() method returns a string that contains a description of the object
on which it is called. Also, this method is automatically called when an object is output
using println(). Many classes override this method. Doing so allows them to tailor a
description specifically for the types of objects that they create.

182 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

10
Exception Handling

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal
condition that arises in a code sequence at run time. In other words, an exception is a
run-time error. In computer languages that do not support exception handling, errors

must be checked and handled manually—typically through the use of error codes, and so
on. This approach is as cumbersome as it is troublesome. Java’s exception handling avoids
these problems and, in the process, brings run-time error management into the object-
oriented world.

Exception-Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition that has
occurred in a piece of code. When an exceptional condition arises, an object representing
that exception is created and thrown in the method that caused the error. That method may
choose to handle the exception itself, or pass it on. Either way, at some point, the exception
is caught and processed. Exceptions can be generated by the Java run-time system, or they
can be manually generated by your code. Exceptions thrown by Java relate to fundamental
errors that violate the rules of the Java language or the constraints of the Java execution
environment. Manually generated exceptions are typically used to report some error condition
to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. Briefly, here is how they work. Program statements that you want to monitor for
exceptions are contained within a try block. If an exception occurs within the try block, it is
thrown. Your code can catch this exception (using catch) and handle it in some rational manner.
System-generated exceptions are automatically thrown by the Java run-time system. To
manually throw an exception, use the keyword throw. Any exception that is thrown out of
a method must be specified as such by a throws clause. Any code that absolutely must be
executed after a try block completes is put in a finally block.

This is the general form of an exception-handling block:

try {
// block of code to monitor for errors

}

2 0 5

https://hemanthrajhemu.github.io

206 P a r t I : T h e J a v a L a n g u a g e

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2

}
// ...
finally {

// block of code to be executed after try block ends
}

Here, ExceptionType is the type of exception that has occurred. The remainder of this chapter
describes how to apply this framework.

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy. Immediately below Throwable are two subclasses that
partition exceptions into two distinct branches. One branch is headed by Exception. This class
is used for exceptional conditions that user programs should catch. This is also the class that
you will subclass to create your own custom exception types. There is an important subclass
of Exception, called RuntimeException. Exceptions of this type are automatically defined for
the programs that you write and include things such as division by zero and invalid array
indexing.

The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program. Exceptions of type Error are used
by the Java run-time system to indicate errors having to do with the run-time environment,
itself. Stack overflow is an example of such an error. This chapter will not be dealing with
exceptions of type Error, because these are typically created in response to catastrophic failures
that cannot usually be handled by your program.

Uncaught Exceptions
Before you learn how to handle exceptions in your program, it is useful to see what happens
when you don’t handle them. This small program includes an expression that intentionally
causes a divide-by-zero error:

class Exc0 {
public static void main(String args[]) {
int d = 0;
int a = 42 / d;

}
}

When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception. This causes the execution of Exc0 to

https://hemanthrajhemu.github.io

stop, because once an exception has been thrown, it must be caught by an exception handler
and dealt with immediately. In this example, we haven’t supplied any exception handlers of
our own, so the exception is caught by the default handler provided by the Java run-time
system. Any exception that is not caught by your program will ultimately be processed by
the default handler. The default handler displays a string describing the exception, prints a
stack trace from the point at which the exception occurred, and terminates the program.

Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the type
of exception thrown is a subclass of Exception called ArithmeticException, which more
specifically describes what type of error happened. As discussed later in this chapter, Java
supplies several built-in exception types that match the various sorts of run-time errors that
can be generated.

The stack trace will always show the sequence of method invocations that led up to
the error. For example, here is another version of the preceding program that introduces the
same error but in a method separate from main():

class Exc1 {
static void subroutine() {
int d = 0;
int a = 10 / d;

}
public static void main(String args[]) {
Exc1.subroutine();

}
}

The resulting stack trace from the default exception handler shows how the entire call
stack is displayed:

java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:4)
at Exc1.main(Exc1.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(),
which caused the exception at line 4. The call stack is quite useful for debugging, because it
pinpoints the precise sequence of steps that led to the error.

Using try and catch
Although the default exception handler provided by the Java run-time system is useful for
debugging, you will usually want to handle an exception yourself. Doing so provides two
benefits. First, it allows you to fix the error. Second, it prevents the program from automatically
terminating. Most users would be confused (to say the least) if your program stopped

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 207

https://hemanthrajhemu.github.io

208 P a r t I : T h e J a v a L a n g u a g e

running and printed a stack trace whenever an error occurred! Fortunately, it is quite easy
to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want
to monitor inside a try block. Immediately following the try block, include a catch clause
that specifies the exception type that you wish to catch. To illustrate how easily this can be
done, the following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero error:

class Exc2 {
public static void main(String args[]) {
int d, a;

try { // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error
System.out.println("Division by zero.");

}
System.out.println("After catch statement.");

}
}

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception
is thrown, program control transfers out of the try block into the catch block. Put differently,
catch is not “called,” so execution never “returns” to the try block from a catch. Thus, the
line “This will not be printed.” is not displayed. Once the catch statement has executed,
program control continues with the next line in the program following the entire try/catch
mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to
those statements specified by the immediately preceding try statement. A catch statement
cannot catch an exception thrown by another try statement (except in the case of nested try
statements, described shortly). The statements that are protected by try must be surrounded
by curly braces. (That is, they must be within a block.) You cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened. For example, in the next
program each iteration of the for loop obtains two random integers. Those two integers are
divided by each other, and the result is used to divide the value 12345. The final result is put
into a. If either division operation causes a divide-by-zero error, it is caught, the value of a is
set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError {
public static void main(String args[]) {

https://hemanthrajhemu.github.io

int a=0, b=0, c=0;
Random r = new Random();

for(int i=0; i<32000; i++) {
try {
b = r.nextInt();
c = r.nextInt();
a = 12345 / (b/c);

} catch (ArithmeticException e) {
System.out.println("Division by zero.");
a = 0; // set a to zero and continue

}
System.out.println("a: " + a);

}
}

}

Displaying a Description of an Exception
Throwable overrides the toString() method (defined by Object) so that it returns a string
containing a description of the exception. You can display this description in a println()
statement by simply passing the exception as an argument. For example, the catch block
in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-
zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of
an exception is valuable in other circumstances—particularly when you are experimenting
with exceptions or when you are debugging.

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To handle
this type of situation, you can specify two or more catch clauses, each catching a different
type of exception. When an exception is thrown, each catch statement is inspected in order,
and the first one whose type matches that of the exception is executed. After one catch
statement executes, the others are bypassed, and execution continues after the try/catch
block. The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultiCatch {
public static void main(String args[]) {
try {

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 209

https://hemanthrajhemu.github.io

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);

}
System.out.println("After try/catch blocks.");

}
}

This program will cause a division-by-zero exception if it is started with no command-
line arguments, since a will equal zero. It will survive the division if you provide a
command-line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program
attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses. This is because a catch statement
that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a
subclass would never be reached if it came after its superclass. Further, in Java, unreachable
code is an error. For example, consider the following program:

/* This program contains an error.

A subclass must come before its superclass in
a series of catch statements. If not,
unreachable code will be created and a
compile-time error will result.

*/
class SuperSubCatch {
public static void main(String args[]) {
try {
int a = 0;
int b = 42 / a;

} catch(Exception e) {

210 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 211

System.out.println("Generic Exception catch.");
}
/* This catch is never reached because

ArithmeticException is a subclass of Exception. */
catch(ArithmeticException e) { // ERROR - unreachable
System.out.println("This is never reached.");

}
}

}

If you try to compile this program, you will receive an error message stating that the
second catch statement is unreachable because the exception has already been caught. Since
ArithmeticException is a subclass of Exception, the first catch statement will handle all
Exception-based errors, including ArithmeticException. This means that the second catch
statement will never execute. To fix the problem, reverse the order of the catch statements.

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of another try.
Each time a try statement is entered, the context of that exception is pushed on the stack. If an
inner try statement does not have a catch handler for a particular exception, the stack is
unwound and the next try statement’s catch handlers are inspected for a match. This continues
until one of the catch statements succeeds, or until all of the nested try statements are exhausted.
If no catch statement matches, then the Java run-time system will handle the exception. Here
is an example that uses nested try statements:

// An example of nested try statements.
class NestTry {
public static void main(String args[]) {
try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block
/* If one command-line arg is used,

then a divide-by-zero exception
will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {
int c[] = { 1 };

https://hemanthrajhemu.github.io

212 P a r t I : T h e J a v a L a n g u a g e

c[42] = 99; // generate an out-of-bounds exception
}

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

As you can see, this program nests one try block within another. The program works as
follows. When you execute the program with no command-line arguments, a divide-by-zero
exception is generated by the outer try block. Execution of the program with one command-line
argument generates a divide-by-zero exception from within the nested try block. Since the
inner block does not catch this exception, it is passed on to the outer try block, where it is
handled. If you execute the program with two command-line arguments, an array boundary
exception is generated from within the inner try block. Here are sample runs that illustrate
each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a = 1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two
a = 2
Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.
For example, you can enclose a call to a method within a try block. Inside that method is
another try statement. In this case, the try within the method is still nested inside the outer try
block, which calls the method. Here is the previous program recoded so that the nested
try block is moved inside the method nesttry():

/* Try statements can be implicitly nested via
calls to methods. */

class MethNestTry {
static void nesttry(int a) {
try { // nested try block
/* If one command-line arg is used,

then a divide-by-zero exception
will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

https://hemanthrajhemu.github.io

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 213

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " + e);

}
}

public static void main(String args[]) {
try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;
System.out.println("a = " + a);

nesttry(a);
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

The output of this program is identical to that of the preceding example.

throw
So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw
statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.
Primitive types, such as int or char, as well as non-Throwable classes, such as String and
Object, cannot be used as exceptions. There are two ways you can obtain a Throwable object:
using a parameter in a catch clause, or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace.

https://hemanthrajhemu.github.io

Here is a sample program that creates and throws an exception. The handler that catches
the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
static void demoproc() {
try {
throw new NullPointerException("demo");

} catch(NullPointerException e) {
System.out.println("Caught inside demoproc.");
throw e; // rethrow the exception

}
}

public static void main(String args[]) {
try {
demoproc();

} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

}
}

}

This program gets two chances to deal with the same error. First, main() sets up an exception
context and then calls demoproc(). The demoproc() method then sets up another exception-
handling context and immediately throws a new instance of NullPointerException, which
is caught on the next line. The exception is then rethrown. Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay
close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. Many of Java’s built-
in run-time exceptions have at least two constructors: one with no parameter and one that
takes a string parameter. When the second form is used, the argument specifies a string that
describes the exception. This string is displayed when the object is used as an argument to
print() or println(). It can also be obtained by a call to getMessage(), which is defined by
Throwable.

throws
If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You do
this by including a throws clause in the method’s declaration. A throws clause lists the types
of exceptions that a method might throw. This is necessary for all exceptions, except those of

214 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

type Error or RuntimeException, or any of their subclasses. All other exceptions that a method
can throw must be declared in the throws clause. If they are not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{

// body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.
Following is an example of an incorrect program that tries to throw an exception that it

does not catch. Because the program does not specify a throws clause to declare this fact, the
program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
static void throwOne() {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}
public static void main(String args[]) {
throwOne();

}
}

To make this example compile, you need to make two changes. First, you need to declare
that throwOne() throws IllegalAccessException. Second, main() must define a try/catch
statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
static void throwOne() throws IllegalAccessException {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}
public static void main(String args[]) {
try {
throwOne();

} catch (IllegalAccessException e) {
System.out.println("Caught " + e);

}
}

}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 215

https://hemanthrajhemu.github.io

216 P a r t I : T h e J a v a L a n g u a g e

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path
that alters the normal flow through the method. Depending upon how the method is coded,
it is even possible for an exception to cause the method to return prematurely. This could
be a problem in some methods. For example, if a method opens a file upon entry and
closes it upon exit, then you will not want the code that closes the file to be bypassed
by the exception-handling mechanism. The finally keyword is designed to address this
contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally
block will execute even if no catch statement matches the exception. Any time a method
is about to return to the caller from inside a try/catch block, via an uncaught exception or
an explicit return statement, the finally clause is also executed just before the method
returns. This can be useful for closing file handles and freeing up any other resources that
might have been allocated at the beginning of a method with the intent of disposing of them
before returning. The finally clause is optional. However, each try statement requires at
least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways, none
without executing their finally clauses:

// Demonstrate finally.
class FinallyDemo {
// Through an exception out of the method.
static void procA() {
try {
System.out.println("inside procA");
throw new RuntimeException("demo");

} finally {
System.out.println("procA's finally");

}
}

// Return from within a try block.
static void procB() {
try {
System.out.println("inside procB");
return;

} finally {
System.out.println("procB's finally");

}
}

// Execute a try block normally.
static void procC() {
try {
System.out.println("inside procC");

} finally {

https://hemanthrajhemu.github.io

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 217

System.out.println("procC's finally");
}

}

public static void main(String args[]) {
try {
procA();

} catch (Exception e) {
System.out.println("Exception caught");

}
procB();
procC();

}
}

In this example, procA() prematurely breaks out of the try by throwing an exception.
The finally clause is executed on the way out. procB()’s try statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the try statement
executes normally, without error. However, the finally block is still executed.

REMEMBEREMEMBER If a finally block is associated with a try, the finally block will be executed upon
conclusion of the try.

Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few have
been used by the preceding examples. The most general of these exceptions are subclasses
of the standard type RuntimeException. As previously explained, these exceptions need
not be included in any method’s throws list. In the language of Java, these are called
unchecked exceptions because the compiler does not check to see if a method handles or
throws these exceptions. The unchecked exceptions defined in java.lang are listed in
Table 10-1. Table 10-2 lists those exceptions defined by java.lang that must be included
in a method’s throws list if that method can generate one of these exceptions and does
not handle it itself. These are called checked exceptions. Java defines several other types
of exceptions that relate to its various class libraries.

https://hemanthrajhemu.github.io

218 P a r t I : T h e J a v a L a n g u a g e

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined enumeration value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked
thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread
state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

TABLE 10-1 Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the Cloneable
interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

TABLE 10-2 Java’s Checked Exceptions Defined in java.lang

https://hemanthrajhemu.github.io

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 219

Creating Your Own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, you will probably want
to create your own exception types to handle situations specific to your applications. This
is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of
Throwable). Your subclasses don’t need to actually implement anything—it is their existence
in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable. Thus, all exceptions, including those that you create,
have the methods defined by Throwable available to them. They are shown in Table 10-3.

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains a completed
stack trace. This object can be rethrown.

Throwable getCause() Returns the exception that underlies the current
exception. If there is no underlying exception, null
is returned.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

StackTraceElement[] getStackTrace() Returns an array that contains the stack trace, one
element at a time, as an array of StackTraceElement.
The method at the top of the stack is the last method
called before the exception was thrown. This method
is found in the first element of the array. The
StackTraceElement class gives your program access
to information about each element in the trace, such
as its method name.

Throwable initCause(Throwable
causeExc)

Associates causeExc with the invoking exception as a
cause of the invoking exception. Returns a reference
to the exception.

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement
elements[])

Sets the stack trace to the elements passed in
elements. This method is for specialized applications,
not normal use.

String toString() Returns a String object containing a description of the
exception. This method is called by println() when
outputting a Throwable object.

TABLE 10-3 The Methods Defined by Throwable

https://hemanthrajhemu.github.io

220 P a r t I : T h e J a v a L a n g u a g e

You may also wish to override one or more of these methods in exception classes that you
create.

Exception defines four constructors. Two were added by JDK 1.4 to support chained
exceptions, described in the next section. The other two are shown here:

Exception()

Exception(String msg)

The first form creates an exception that has no description. The second form lets you specify
a description of the exception.

Although specifying a description when an exception is created is often useful, sometimes
it is better to override toString(). Here’s why: The version of toString() defined by Throwable
(and inherited by Exception) first displays the name of the exception followed by a colon, which
is then followed by your description. By overriding toString(), you can prevent the exception
name and colon from being displayed. This makes for a cleaner output, which is desirable in
some cases.

The following example declares a new subclass of Exception and then uses that subclass
to signal an error condition in a method. It overrides the toString() method, allowing a
carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;

MyException(int a) {
detail = a;

}

public String toString() {
return "MyException[" + detail + "]";

}
}

class ExceptionDemo {
static void compute(int a) throws MyException {
System.out.println("Called compute(" + a + ")");
if(a > 10)
throw new MyException(a);

System.out.println("Normal exit");
}

public static void main(String args[]) {
try {
compute(1);
compute(20);

} catch (MyException e) {
System.out.println("Caught " + e);

}
}

}

This example defines a subclass of Exception called MyException. This subclass is quite
simple: it has only a constructor plus an overloaded toString() method that displays the

https://hemanthrajhemu.github.io

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 221

value of the exception. The ExceptionDemo class defines a method named compute() that
throws a MyException object. The exception is thrown when compute()’s integer parameter
is greater than 10. The main() method sets up an exception handler for MyException, then
calls compute() with a legal value (less than 10) and an illegal one to show both paths through
the code. Here is the result:

Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

Chained Exceptions
Beginning with JDK 1.4, a new feature has been incorporated into the exception subsystem:
chained exceptions. The chained exception feature allows you to associate another exception
with an exception. This second exception describes the cause of the first exception. For example,
imagine a situation in which a method throws an ArithmeticException because of an attempt
to divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let the
calling code know that the underlying cause was an I/O error. Chained exceptions let you
handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to Throwable.
The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is, causeExc
is the underlying reason that an exception occurred. The second form allows you to specify
a description at the same time that you specify a cause exception. These two constructors
have also been added to the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3 and are repeated here for the sake of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception. If there
is no underlying exception, null is returned. The initCause() method associates causeExc with
the invoking exception and returns a reference to the exception. Thus, you can associate a
cause with an exception after the exception has been created. However, the cause exception
can be set only once. Thus, you can call initCause() only once for each exception object.
Furthermore, if the cause exception was set by a constructor, then you can’t set it again
using initCause(). In general, initCause() is used to set a cause for legacy exception classes
that don’t support the two additional constructors described earlier.

Here is an example that illustrates the mechanics of handling chained exceptions:

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {

https://hemanthrajhemu.github.io

// create an exception
NullPointerException e =
new NullPointerException("top layer");

// add a cause
e.initCause(new ArithmeticException("cause"));

throw e;
}

public static void main(String args[]) {
try {
demoproc();

} catch(NullPointerException e) {
// display top level exception
System.out.println("Caught: " + e);

// display cause exception
System.out.println("Original cause: " +

e.getCause());
}

}
}

The output from the program is shown here:

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added a cause
exception, ArithmeticException. When the exception is thrown out of demoproc(), it is
caught by main(). There, the top-level exception is displayed, followed by the underlying
exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause
exception can, itself, have a cause. Be aware that overly long chains of exceptions may
indicate poor design.

Chained exceptions are not something that every program will need. However, in cases
in which knowledge of an underlying cause is useful, they offer an elegant solution.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs that
have many dynamic run-time characteristics. It is important to think of try, throw, and catch
as clean ways to handle errors and unusual boundary conditions in your program’s logic.
Unlike some other languages in which error return codes are used to indicate failure, Java
uses exceptions. Thus, when a method can fail, have it throw an exception. This is a cleaner
way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a general
mechanism for nonlocal branching. If you do so, it will only confuse your code and make it
hard to maintain.

222 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

