

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

9 Packages and Interfaces . 183
Packages . 183

Defining a Package . 184
Finding Packages and CLASSPATH . 184
A Short Package Example . 185

Access Protection . 186
An Access Example . 187

Importing Packages . 190
Interfaces . 192

Defining an Interface . 193
Implementing Interfaces . 194
Nested Interfaces . 196
Applying Interfaces . 197
Variables in Interfaces . 200
Interfaces Can Be Extended . 202

10 Exception Handling . 205
Exception-Handling Fundamentals . 205
Exception Types . 206
Uncaught Exceptions . 206
Using try and catch . 207

Displaying a Description of an Exception 209
Multiple catch Clauses . 209
Nested try Statements . 211
throw . 213
throws . 214
finally . 216
Java’s Built-in Exceptions . 217
Creating Your Own Exception Subclasses . 219
Chained Exceptions . 221
Using Exceptions . 222

11 Multithreaded Programming . 223
The Java Thread Model . 224

Thread Priorities . 224
Synchronization . 225
Messaging . 225
The Thread Class and the Runnable Interface 226

The Main Thread . 226
Creating a Thread . 228

Implementing Runnable . 228
Extending Thread . 230
Choosing an Approach . 232

Creating Multiple Threads . 232
Using isAlive() and join() . 233
Thread Priorities . 236

C o n t e n t s x i

https://hemanthrajhemu.github.io

Synchronization . 238
Using Synchronized Methods . 239
The synchronized Statement . 241

Interthread Communication . 242
Deadlock . 247

Suspending, Resuming, and Stopping Threads 249
Suspending, Resuming, and Stopping Threads

Using Java 1.1 and Earlier . 249
The Modern Way of Suspending, Resuming,

and Stopping Threads . 251
Using Multithreading . 254

12 Enumerations, Autoboxing, and Annotations (Metadata) 255
Enumerations . 255

Enumeration Fundamentals . 255
The values() and valueOf() Methods . 258
Java Enumerations Are Class Types . 259
Enumerations Inherit Enum . 261
Another Enumeration Example . 263

Type Wrappers . 264
Autoboxing . 266

Autoboxing and Methods . 267
Autoboxing/Unboxing Occurs in Expressions 268
Autoboxing/Unboxing Boolean and Character Values 270
Autoboxing/Unboxing Helps Prevent Errors 271
A Word of Warning . 271

Annotations (Metadata) . 272
Annotation Basics . 272
Specifying a Retention Policy . 273
Obtaining Annotations at Run Time by Use of Reflection . . . 273
The AnnotatedElement Interface . 278
Using Default Values . 279
Marker Annotations . 280
Single-Member Annotations . 281
The Built-In Annotations . 282
Some Restrictions . 284

13 I/O, Applets, and Other Topics . 285
I/O Basics . 285

Streams . 286
Byte Streams and Character Streams . 286
The Predefined Streams . 288

Reading Console Input . 288
Reading Characters . 289
Reading Strings . 290

xi i J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

9
Packages and Interfaces

This chapter examines two of Java’s most innovative features: packages and interfaces.
Packages are containers for classes that are used to keep the class name space
compartmentalized. For example, a package allows you to create a class named List,

which you can store in your own package without concern that it will collide with some
other class named List stored elsewhere. Packages are stored in a hierarchical manner and
are explicitly imported into new class definitions.

In previous chapters, you have seen how methods define the interface to the data in
a class. Through the use of the interface keyword, Java allows you to fully abstract the
interface from its implementation. Using interface, you can specify a set of methods that
can be implemented by one or more classes. The interface, itself, does not actually define
any implementation. Although they are similar to abstract classes, interfaces have an
additional capability: A class can implement more than one interface. By contrast, a class
can only inherit a single superclass (abstract or otherwise).

Packages
In the preceding chapters, the name of each example class was taken from the same
name space. This means that a unique name had to be used for each class to avoid name
collisions. After a while, without some way to manage the name space, you could run out
of convenient, descriptive names for individual classes. You also need some way to be
assured that the name you choose for a class will be reasonably unique and not collide
with class names chosen by other programmers. (Imagine a small group of programmers
fighting over who gets to use the name “Foobar” as a class name. Or, imagine the entire
Internet community arguing over who first named a class “Espresso.”) Thankfully, Java
provides a mechanism for partitioning the class name space into more manageable
chunks. This mechanism is the package. The package is both a naming and a visibility
control mechanism. You can define classes inside a package that are not accessible by
code outside that package. You can also define class members that are only exposed
to other members of the same package. This allows your classes to have intimate
knowledge of each other, but not expose that knowledge to the rest of the world.

1 8 3

https://hemanthrajhemu.github.io

184 P a r t I : T h e J a v a L a n g u a g e

Defining a Package
To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored. If you omit the
package statement, the class names are put into the default package, which has no name.
(This is why you haven’t had to worry about packages before now.) While the default package
is fine for short, sample programs, it is inadequate for real applications. Most of the time,
you will define a package for your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package
called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called MyPackage.
Remember that case is significant, and the directory name must match the package name
exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package statement
is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to choose your
package names carefully. You cannot rename a package without renaming the directory in
which the classes are stored.

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important question:
How does the Java run-time system know where to look for packages that you create? The
answer has three parts. First, by default, the Java run-time system uses the current working
directory as its starting point. Thus, if your package is in a subdirectory of the current
directory, it will be found. Second, you can specify a directory path or paths by setting the

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 185

CLASSPATH environmental variable. Third, you can use the -classpath option with java
and javac to specify the path to your classes.

For example, consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program
can be executed from a directory immediately above MyPack, or the CLASSPATH must be
set to include the path to MyPack, or the -classpath option must specify the path to MyPack
when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself.
It must simply specify the path to MyPack. For example, in a Windows environment, if the
path to MyPack is

C:\MyPrograms\Java\MyPack

Then the class path to MyPack is

C:\MyPrograms\Java

The easiest way to try the examples shown in this book is to simply create the package
directories below your current development directory, put the .class files into the
appropriate directories, and then execute the programs from the development directory.
This is the approach used in the following example.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance {
String name;
double bal;

Balance(String n, double b) {
name = n;
bal = b;

}

void show() {
if(bal<0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}

class AccountBalance {
public static void main(String args[]) {
Balance current[] = new Balance[3];

https://hemanthrajhemu.github.io

186 P a r t I : T h e J a v a L a n g u a g e

current[0] = new Balance("K. J. Fielding", 123.23);
current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();
}

}

Call this file AccountBalance.java and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this command.
(Alternatively, you can use one of the other two options described in the preceding section to
specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it
cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection
In the preceding chapters, you learned about various aspects of Java’s access control mechanism
and its access specifiers. For example, you already know that access to a private member of
a class is granted only to other members of that class. Packages add another dimension to
access control. As you will see, Java provides many levels of protection to allow fine-grained
control over the visibility of variables and methods within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name space
and scope of variables and methods. Packages act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class is Java’s
smallest unit of abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways
to produce the many levels of access required by these categories. Table 9-1 sums up the
interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit access

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 187

specification, it is visible to subclasses as well as to other classes in the same package. This is
the default access. If you want to allow an element to be seen outside your current package,
but only to classes that subclass your class directly, then declare that element protected.

Table 9-1 applies only to members of classes. A non-nested class has only two possible
access levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code within its
same package. When a class is public, it must be the only public class declared in the file,
and the file must have the same name as the class.

An Access Example
The following example shows all combinations of the access control modifiers. This example
has two packages and five classes. Remember that the classes for the two different
packages need to be stored in directories named after their respective packages—in this
case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and SamePackage.
The first class defines four int variables in each of the legal protection modes. The variable n
is declared with the default protection, n_pri is private, n_pro is protected, and n_pub is
public.

Each subsequent class in this example will try to access the variables in an instance
of this class. The lines that will not compile due to access restrictions are commented out.
Before each of these lines is a comment listing the places from which this level of protection
would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one. The
third class, SamePackage, is not a subclass of Protection, but is in the same package and
also has access to all but n_pri.

Private No Modifier Protected Public

Same class Yes Yes Yes Yes

Same
package
subclass

No Yes Yes Yes

Same
package
non-subclass

No Yes Yes Yes

Different
package
subclass

No No Yes Yes

Different
package
non-subclass

No No No Yes

TABLE 9-1
Class Member
Access

https://hemanthrajhemu.github.io

This is file Protection.java:

package p1;

public class Protection {
int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection() {
System.out.println("base constructor");
System.out.println("n = " + n);
System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file Derived.java:

package p1;

class Derived extends Protection {
Derived() {
System.out.println("derived constructor");
System.out.println("n = " + n);

// class only
// System.out.println("n_pri = "4 + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file SamePackage.java:

package p1;

class SamePackage {
SamePackage() {

Protection p = new Protection();
System.out.println("same package constructor");
System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);
System.out.println("n_pub = " + p.n_pub);

}
}

188 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 189

Following is the source code for the other package, p2. The two classes defined in p2
cover the other two conditions that are affected by access control. The first class, Protection2, is
a subclass of p1.Protection. This grants access to all of p1.Protection’s variables except for
n_pri (because it is private) and n, the variable declared with the default protection. Remember,
the default only allows access from within the class or the package, not extra-package
subclasses. Finally, the class OtherPackage has access to only one variable, n_pub, which
was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {
Protection2() {
System.out.println("derived other package constructor");

// class or package only
// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file OtherPackage.java:

package p2;

class OtherPackage {
OtherPackage() {
p1.Protection p = new p1.Protection();
System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);
}

}

https://hemanthrajhemu.github.io

If you wish to try these two packages, here are two test files you can use. The one for
package p1 is shown here:

// Demo package p1.
package p1;

// Instantiate the various classes in p1.
public class Demo {
public static void main(String args[]) {
Protection ob1 = new Protection();
Derived ob2 = new Derived();
SamePackage ob3 = new SamePackage();

}
}

The test file for p2 is shown next:

// Demo package p2.
package p2;

// Instantiate the various classes in p2.
public class Demo {
public static void main(String args[]) {
Protection2 ob1 = new Protection2();
OtherPackage ob2 = new OtherPackage();

}
}

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse classes
from each other, it is easy to see why all of the built-in Java classes are stored in packages.
There are no core Java classes in the unnamed default package; all of the standard classes
are stored in some named package. Since classes within packages must be fully qualified
with their package name or names, it could become tedious to type in the long dot-separated
package path name for every class you want to use. For this reason, Java includes the import
statement to bring certain classes, or entire packages, into visibility. Once imported, a class
can be referred to directly, using only its name. The import statement is a convenience to
the programmer and is not technically needed to write a complete Java program. If you are
going to refer to a few dozen classes in your application, however, the import statement will
save a lot of typing.

In a Java source file, import statements occur immediately following the package statement
(if it exists) and before any class definitions. This is the general form of the import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on the
depth of a package hierarchy, except that imposed by the file system. Finally, you specify

190 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 191

either an explicit classname or a star (*), which indicates that the Java compiler should import
the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

CAUTIONAUTION The star form may increase compilation time—especially if you import several large
packages. For this reason it is a good idea to explicitly name the classes that you want to use
rather than importing whole packages. However, the star form has absolutely no effect on the
run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang. Normally, you have to import every package or class that you want to use, but
since Java is useless without much of the functionality in java.lang, it is implicitly imported
by the compiler for all programs. This is equivalent to the following line being at the top of
all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import using the
star form, the compiler will remain silent, unless you try to use one of the classes. In that case,
you will get a compile-time error and have to explicitly name the class specifying its package.

It must be emphasized that the import statement is optional. Any place you use a class
name, you can use its fully qualified name, which includes its full package hierarchy. For
example, this fragment uses an import statement:

import java.util.*;
class MyDate extends Date {
}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {
}

In this version, Date is fully-qualified.
As shown in Table 9-1, when a package is imported, only those items within the package

declared as public will be available to non-subclasses in the importing code. For example,
if you want the Balance class of the package MyPack shown earlier to be available as a
stand-alone class for general use outside of MyPack, then you will need to declare it as
public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
show() method are public. This means that they can
be used by non-subclass code outside their package.

*/
public class Balance {

https://hemanthrajhemu.github.io

192 P a r t I : T h e J a v a L a n g u a g e

String name;
double bal;

public Balance(String n, double b) {
name = n;
bal = b;

}

public void show() {
if(bal<0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside
the MyPack package. For example, here TestBalance imports MyPack and is then able to
make use of the Balance class:

import MyPack.*;

class TestBalance {
public static void main(String args[]) {

/* Because Balance is public, you may use Balance
class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()
}

}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it. Interfaces
are syntactically similar to classes, but they lack instance variables, and their methods are
declared without any body. In practice, this means that you can define interfaces that don’t
make assumptions about how they are implemented. Once it is defined, any number of
classes can implement an interface. Also, one class can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined by
the interface. However, each class is free to determine the details of its own implementation.
By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism.

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 193

Interfaces are designed to support dynamic method resolution at run time. Normally,
in order for a method to be called from one class to another, both classes need to be present
at compile time so the Java compiler can check to ensure that the method signatures are
compatible. This requirement by itself makes for a static and nonextensible classing
environment. Inevitably in a system like this, functionality gets pushed up higher and higher
in the class hierarchy so that the mechanisms will be available to more and more subclasses.
Interfaces are designed to avoid this problem. They disconnect the definition of a method or
set of methods from the inheritance hierarchy. Since interfaces are in a different hierarchy from
classes, it is possible for classes that are unrelated in terms of the class hierarchy to implement
the same interface. This is where the real power of interfaces is realized.

NOTEOTE Interfaces add most of the functionality that is required for many applications that would
normally resort to using multiple inheritance in a language such as C++.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;
type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as
public, the interface can be used by any other code. In this case, the interface must be the
only public interface declared in the file, and the file must have the same name as the interface.
name is the name of the interface, and can be any valid identifier. Notice that the methods that
are declared have no bodies. They end with a semicolon after the parameter list. They are,
essentially, abstract methods; there can be no default implementation of any method specified
within an interface. Each class that includes an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be
initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that contains
one method called callback() that takes a single integer parameter.

interface Callback {
void callback(int param);

}

https://hemanthrajhemu.github.io

194 P a r t I : T h e J a v a L a n g u a g e

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create
the methods defined by the interface. The general form of a class that includes the implements
clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {
// class-body

}

If a class implements more than one interface, the interfaces are separated with a comma. If
a class implements two interfaces that declare the same method, then the same method will
be used by clients of either interface. The methods that implement an interface must be
declared public. Also, the type signature of the implementing method must match exactly
the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);
}

}

Notice that callback() is declared using the public access specifier.

REMEMBEREMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client implements
callback() and adds the method nonIfaceMeth():

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("callback called with " + p);

}

void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +

"may also define other members, too.");
}

}

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 195

Accessing Implementations Through Interface References
You can declare variables as object references that use an interface rather than a class type.
Any instance of any class that implements the declared interface can be referred to by such
a variable. When you call a method through one of these references, the correct version will
be called based on the actual instance of the interface being referred to. This is one of the
key features of interfaces. The method to be executed is looked up dynamically at run time,
allowing classes to be created later than the code which calls methods on them. The calling
code can dispatch through an interface without having to know anything about the “callee.”
This process is similar to using a superclass reference to access a subclass object, as described
in Chapter 8.

CAUTIONAUTION Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use interfaces
casually in performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface {
public static void main(String args[]) {
Callback c = new Client();
c.callback(42);

}
}

The output of this program is shown here:

callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an
instance of Client. Although c can be used to access the callback() method, it cannot access
any other members of the Client class. An interface reference variable only has knowledge
of the methods declared by its interface declaration. Thus, c could not be used to access
nonIfaceMeth() since it is defined by Client but not Callback.

While the preceding example shows, mechanically, how an interface reference variable
can access an implementation object, it does not demonstrate the polymorphic power of
such a reference. To sample this usage, first create the second implementation of Callback,
shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("Another version of callback");
System.out.println("p squared is " + (p*p));

}
}

https://hemanthrajhemu.github.io

196 P a r t I : T h e J a v a L a n g u a g e

Now, try the following class:

class TestIface2 {
public static void main(String args[]) {
Callback c = new Client();
AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object
c.callback(42);

}
}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object
that c refers to at run time. While this is a very simple example, you will see another, more
practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by that
interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
int a, b;
void show() {
System.out.println(a + " " + b);

}
// ...

}

Here, the class Incomplete does not implement callback() and must be declared as abstract.
Any class that inherits Incomplete must implement callback() or be declared abstract itself.

Nested Interfaces
An interface can be declared a member of a class or another interface. Such an interface is
called a member interface or a nested interface. A nested interface can be declared as public,
private, or protected. This differs from a top-level interface, which must either be declared
as public or use the default access level, as previously described. When a nested interface is
used outside of its enclosing scope, it must be qualified by the name of the class or interface
of which it is a member. Thus, outside of the class or interface in which a nested interface is
declared, its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.
class A {

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 197

// this is a nested interface
public interface NestedIF {
boolean isNotNegative(int x);

}
}

// B implements the nested interface.
class B implements A.NestedIF {
public boolean isNotNegative(int x) {
return x < 0 ? false : true;

}
}

class NestedIFDemo {
public static void main(String args[]) {

// use a nested interface reference
A.NestedIF nif = new B();

if(nif.isNotNegative(10))
System.out.println("10 is not negative");

if(nif.isNotNegative(-12))
System.out.println("this won't be displayed");

}
}

Notice that A defines a member interface called NestedIF and that it is declared public.
Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the main()
method, an A.NestedIF reference called nif is created, and it is assigned a reference to a
B object. Because B implements A.NestedIF, this is legal.

Applying Interfaces
To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters, you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list, a
binary tree, and so on. No matter how the stack is implemented, the interface to the stack
remains the same. That is, the methods push() and pop() define the interface to the stack
independently of the details of the implementation. Because the interface to a stack is
separate from its implementation, it is easy to define a stack interface, leaving it to each
implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called IntStack.java.
This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack {
void push(int item); // store an item
int pop(); // retrieve an item

}

https://hemanthrajhemu.github.io

The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {
private int stck[];
private int tos;

// allocate and initialize stack
FixedStack(int size) {
stck = new int[size];
tos = -1;

}

// Push an item onto the stack
public void push(int item) {
if(tos==stck.length-1) // use length member
System.out.println("Stack is full.");

else
stck[++tos] = item;

}

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

class IFTest {
public static void main(String args[]) {
FixedStack mystack1 = new FixedStack(5);
FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack
for(int i=0; i<5; i++) mystack1.push(i);
for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)

System.out.println(mystack2.pop());
}

}

198 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 199

Following is another implementation of IntStack that creates a dynamic stack by use
of the same interface definition. In this implementation, each stack is constructed with an
initial length. If this initial length is exceeded, then the stack is increased in size. Each time
more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack {
private int stck[];
private int tos;

// allocate and initialize stack
DynStack(int size) {
stck = new int[size];
tos = -1;

}

// Push an item onto the stack
public void push(int item) {
// if stack is full, allocate a larger stack
if(tos==stck.length-1) {
int temp[] = new int[stck.length * 2]; // double size
for(int i=0; i<stck.length; i++) temp[i] = stck[i];
stck = temp;
stck[++tos] = item;

}
else
stck[++tos] = item;

}

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.");
return 0;

}
else
return stck[tos--];

}
}

class IFTest2 {
public static void main(String args[]) {
DynStack mystack1 = new DynStack(5);
DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow
for(int i=0; i<12; i++) mystack1.push(i);
for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");
for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

https://hemanthrajhemu.github.io

200 P a r t I : T h e J a v a L a n g u a g e

for(int i=0; i<20; i++)
System.out.println(mystack2.pop());

}
}

The following class uses both the FixedStack and DynStack implementations. It does
so through an interface reference. This means that calls to push() and pop() are resolved
at run time rather than at compile time.

/* Create an interface variable and
access stacks through it.

*/
class IFTest3 {
public static void main(String args[]) {
IntStack mystack; // create an interface reference variable
DynStack ds = new DynStack(5);
FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack
// push some numbers onto the stack
for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack
for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;
System.out.println("Values in dynamic stack:");
for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;
System.out.println("Values in fixed stack:");
for(int i=0; i<8; i++)

System.out.println(mystack.pop());
}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds,
it uses the versions of push() and pop() defined by the DynStack implementation. When it
refers to fs, it uses the versions of push() and pop() defined by FixedStack. As explained,
these determinations are made at run time. Accessing multiple implementations of an interface
through an interface reference variable is the most powerful way that Java achieves run-time
polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply declaring
an interface that contains variables that are initialized to the desired values. When you
include that interface in a class (that is, when you “implement” the interface), all of those
variable names will be in scope as constants. (This is similar to using a header file in C/C++
to create a large number of #defined constants or const declarations.) If an interface contains
no methods, then any class that includes such an interface doesn’t actually implement anything.

https://hemanthrajhemu.github.io

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 201

It is as if that class were importing the constant fields into the class name space as final
variables. The next example uses this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants {
int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3;
int SOON = 4;
int NEVER = 5;

}

class Question implements SharedConstants {
Random rand = new Random();
int ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 30)
return NO; // 30%

else if (prob < 60)
return YES; // 30%

else if (prob < 75)
return LATER; // 15%

else if (prob < 98)
return SOON; // 13%

else
return NEVER; // 2%

}
}

class AskMe implements SharedConstants {
static void answer(int result) {
switch(result) {
case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

}
}

https://hemanthrajhemu.github.io

202 P a r t I : T h e J a v a L a n g u a g e

public static void main(String args[]) {
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());

}
}

Notice that this program makes use of one of Java’s standard classes: Random. This class
provides pseudorandom numbers. It contains several methods that allow you to obtain
random numbers in the form required by your program. In this example, the method
nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined or
inherited them directly. Here is the output of a sample run of this program. Note that the
results are different each time it is run.

Later
Soon
No
Yes

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the same as
for inheriting classes. When a class implements an interface that inherits another interface,
it must provide implementations for all methods defined within the interface inheritance
chain. Following is an example:

// One interface can extend another.
interface A {
void meth1();
void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {
void meth3();

}

// This class must implement all of A and B
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");

}

public void meth2() {
System.out.println("Implement meth2().");

}

public void meth3() {

https://hemanthrajhemu.github.io

System.out.println("Implement meth3().");
}

}

class IFExtend {
public static void main(String arg[]) {
MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

As an experiment, you might want to try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that implements
an interface must implement all methods defined by that interface, including any that are
inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of packages
or interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs that you write in Java will be contained within packages. A number
will probably implement interfaces as well. It is important, therefore, that you be comfortable
with their usage.

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 203

https://hemanthrajhemu.github.io

This page intentionally left blank

https://hemanthrajhemu.github.io

11
Multithreaded Programming

Unlike many other computer languages, Java provides built-in support for multithreaded
programming. A multithreaded program contains two or more parts that can run
concurrently. Each part of such a program is called a thread, and each thread defines

a separate path of execution. Thus, multithreading is a specialized form of multitasking.
You are almost certainly acquainted with multitasking, because it is supported by virtually

all modern operating systems. However, there are two distinct types of multitasking: process-
based and thread-based. It is important to understand the difference between the two. For
most readers, process-based multitasking is the more familiar form. A process is, in essence,
a program that is executing. Thus, process-based multitasking is the feature that allows your
computer to run two or more programs concurrently. For example, process-based multitasking
enables you to run the Java compiler at the same time that you are using a text editor. In process-
based multitasking, a program is the smallest unit of code that can be dispatched by the
scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code. This means that a single program can perform two or more tasks simultaneously. For
instance, a text editor can format text at the same time that it is printing, as long as these
two actions are being performed by two separate threads. Thus, process-based multitasking
deals with the “big picture,” and thread-based multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Interprocess communication
is expensive and limited. Context switching from one process to another is also costly. Threads,
on the other hand, are lightweight. They share the same address space and cooperatively
share the same heavyweight process. Interthread communication is inexpensive, and context
switching from one thread to the next is low cost. While Java programs make use of process-
based multitasking environments, process-based multitasking is not under the control of
Java. However, multithreaded multitasking is.

Multithreading enables you to write very efficient programs that make maximum use of
the CPU, because idle time can be kept to a minimum. This is especially important for the
interactive, networked environment in which Java operates, because idle time is common.
For example, the transmission rate of data over a network is much slower than the rate at
which the computer can process it. Even local file system resources are read and written at a
much slower pace than they can be processed by the CPU. And, of course, user input is much
slower than the computer. In a single-threaded environment, your program has to wait for

2 2 3

https://hemanthrajhemu.github.io

each of these tasks to finish before it can proceed to the next one—even though the CPU is
sitting idle most of the time. Multithreading lets you gain access to this idle time and put it
to good use.

If you have programmed for operating systems such as Windows, then you are already
familiar with multithreaded programming. However, the fact that Java manages threads makes
multithreading especially convenient, because many of the details are handled for you.

The Java Thread Model
The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the entire
environment to be asynchronous. This helps reduce inefficiency by preventing the waste
of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its counterpart.
Single-threaded systems use an approach called an event loop with polling. In this model, a
single thread of control runs in an infinite loop, polling a single event queue to decide what
to do next. Once this polling mechanism returns with, say, a signal that a network file is
ready to be read, then the event loop dispatches control to the appropriate event handler.
Until this event handler returns, nothing else can happen in the system. This wastes CPU
time. It can also result in one part of a program dominating the system and preventing any
other events from being processed. In general, in a singled-threaded environment, when a
thread blocks (that is, suspends execution) because it is waiting for some resource, the entire
program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is eliminated.
One thread can pause without stopping other parts of your program. For example, the idle
time created when a thread reads data from a network or waits for user input can be utilized
elsewhere. Multithreading allows animation loops to sleep for a second between each frame
without causing the whole system to pause. When a thread blocks in a Java program, only
the single thread that is blocked pauses. All other threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as soon as
it gets CPU time. A running thread can be suspended, which temporarily suspends its activity.
A suspended thread can then be resumed, allowing it to pick up where it left off. A thread
can be blocked when waiting for a resource. At any time, a thread can be terminated, which
halts its execution immediately. Once terminated, a thread cannot be resumed.

Thread Priorities
Java assigns to each thread a priority that determines how that thread should be treated
with respect to the others. Thread priorities are integers that specify the relative priority
of one thread to another. As an absolute value, a priority is meaningless; a higher-priority
thread doesn’t run any faster than a lower-priority thread if it is the only thread running.
Instead, a thread’s priority is used to decide when to switch from one running thread to
the next. This is called a context switch. The rules that determine when a context switch
takes place are simple:

224 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

• A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping,
or blocking on pending I/O. In this scenario, all other threads are examined, and the
highest-priority thread that is ready to run is given the CPU.

• A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread
that does not yield the processor is simply preempted—no matter what it is doing—
by a higher-priority thread. Basically, as soon as a higher-priority thread wants to
run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows, threads of equal
priority are time-sliced automatically in round-robin fashion. For other types of operating
systems, threads of equal priority must voluntarily yield control to their peers. If they don’t,
the other threads will not run.

CAUTIONAUTION Portability problems can arise from the differences in the way that operating systems
context-switch threads of equal priority.

Synchronization
Because multithreading introduces an asynchronous behavior to your programs, there must be
a way for you to enforce synchronicity when you need it. For example, if you want two threads
to communicate and share a complicated data structure, such as a linked list, you need some
way to ensure that they don’t conflict with each other. That is, you must prevent one thread
from writing data while another thread is in the middle of reading it. For this purpose, Java
implements an elegant twist on an age-old model of interprocess synchronization: the monitor.
The monitor is a control mechanism first defined by C.A.R. Hoare. You can think of a monitor
as a very small box that can hold only one thread. Once a thread enters a monitor, all other
threads must wait until that thread exits the monitor. In this way, a monitor can be used to
protect a shared asset from being manipulated by more than one thread at a time.

Most multithreaded systems expose monitors as objects that your program must explicitly
acquire and manipulate. Java provides a cleaner solution. There is no class “Monitor”; instead,
each object has its own implicit monitor that is automatically entered when one of the object’s
synchronized methods is called. Once a thread is inside a synchronized method, no other
thread can call any other synchronized method on the same object. This enables you to write
very clear and concise multithreaded code, because synchronization support is built into the
language.

Messaging
After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you must
depend on the operating system to establish communication between threads. This, of
course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more
threads to talk to each other, via calls to predefined methods that all objects have. Java’s
messaging system allows a thread to enter a synchronized method on an object, and then
wait there until some other thread explicitly notifies it to come out.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 225

https://hemanthrajhemu.github.io

226 P a r t I : T h e J a v a L a n g u a g e

The Thread Class and the Runnable Interface
Java’s multithreading system is built upon the Thread class, its methods, and its companion
interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly refer
to the ethereal state of a running thread, you will deal with it through its proxy, the Thread
instance that spawned it. To create a new thread, your program will either extend Thread or
implement the Runnable interface.

The Thread class defines several methods that help manage threads. The ones that will
be used in this chapter are shown here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The remainder
of this chapter explains how to use Thread and Runnable to create and manage threads,
beginning with the one thread that all Java programs have: the main thread.

The Main Thread
When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various
shutdown actions.

Although the main thread is created automatically when your program is started, it can
be controlled through a Thread object. To do so, you must obtain a reference to it by calling
the method currentThread(), which is a public static member of Thread. Its general form is
shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a reference
to the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 227

// Controlling the main Thread.
class CurrentThreadDemo {
public static void main(String args[]) {
Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread
t.setName("My Thread");
System.out.println("After name change: " + t);

try {
for(int n = 5; n > 0; n--) {
System.out.println(n);
Thread.sleep(1000);

}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted");

}
}

}

In this program, a reference to the current thread (the main thread, in this case) is obtained
by calling currentThread(), and this reference is stored in the local variable t. Next, the program
displays information about the thread. The program then calls setName() to change the
internal name of the thread. Information about the thread is then redisplayed. Next, a loop
counts down from five, pausing one second between each line. The pause is accomplished
by the sleep() method. The argument to sleep() specifies the delay period in milliseconds.
Notice the try/catch block around this loop. The sleep() method in Thread might throw
an InterruptedException. This would happen if some other thread wanted to interrupt this
sleeping one. This example just prints a message if it gets interrupted. In a real program, you
would need to handle this differently. Here is the output generated by this program:

Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5
4
3
2
1

Notice the output produced when t is used as an argument to println(). This displays, in
order: the name of the thread, its priority, and the name of its group. By default, the name
of the main thread is main. Its priority is 5, which is the default value, and main is also the
name of the group of threads to which this thread belongs. A thread group is a data structure
that controls the state of a collection of threads as a whole. After the name of the thread is
changed, t is again output. This time, the new name of the thread is displayed.

https://hemanthrajhemu.github.io

228 P a r t I : T h e J a v a L a n g u a g e

Let’s look more closely at the methods defined by Thread that are used in the program.
The sleep() method causes the thread from which it is called to suspend execution for the
specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw
an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify the
period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short as
nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName().
You can obtain the name of a thread by calling getName() (but note that this is not shown in
the program). These methods are members of the Thread class and are declared like this:

final void setName(String threadName)

final String getName()

Here, threadName specifies the name of the thread.

Creating a Thread
In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

• You can implement the Runnable interface.

• You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable
The easiest way to create a thread is to create a class that implements the Runnable interface.
Runnable abstracts a unit of executable code. You can construct a thread on any object that
implements Runnable. To implement Runnable, a class need only implement a single method
called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just
like the main thread can. The only difference is that run() establishes the entry point for
another, concurrent thread of execution within your program. This thread will end when
run() returns.

https://hemanthrajhemu.github.io

After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will use
is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.
This defines where execution of the thread will begin. The name of the new thread is specified
by threadName.

After the new thread is created, it will not start running until you call its start() method,
which is declared within Thread. In essence, start() executes a call to run(). The start()
method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.
class NewThread implements Runnable {
Thread t;

NewThread() {
// Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for the second thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}
System.out.println("Exiting child thread.");

}
}

class ThreadDemo {
public static void main(String args[]) {
new NewThread(); // create a new thread

try {
for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 229

https://hemanthrajhemu.github.io

System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

Inside NewThread’s constructor, a new Thread object is created by the following
statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution beginning
at the run() method. This causes the child thread’s for loop to begin. After calling start(),
NewThread’s constructor returns to main(). When the main thread resumes, it enters its for
loop. Both threads continue running, sharing the CPU, until their loops finish. The output
produced by this program is as follows. (Your output may vary based on processor speed
and task load.)

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the
last thread to finish running. In fact, for some older JVMs, if the main thread finishes before
a child thread has completed, then the Java run-time system may “hang.” The preceding
program ensures that the main thread finishes last, because the main thread sleeps for 1,000
milliseconds between iterations, but the child thread sleeps for only 500 milliseconds. This
causes the child thread to terminate earlier than the main thread. Shortly, you will see a
better way to wait for a thread to finish.

Extending Thread
The second way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to begin execution of the new
thread. Here is the preceding program rewritten to extend Thread:

230 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 231

// Create a second thread by extending Thread
class NewThread extends Thread {

NewThread() {
// Create a new, second thread
super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}

// This is the entry point for the second thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}
System.out.println("Exiting child thread.");

}
}

class ExtendThread {
public static void main(String args[]) {
new NewThread(); // create a new thread

try {
for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

}
System.out.println("Main thread exiting.");

}
}

This program generates the same output as the preceding version. As you can see, the child
thread is created by instantiating an object of NewThread, which is derived from Thread.

Notice the call to super() inside NewThread. This invokes the following form of the
Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

https://hemanthrajhemu.github.io

232 P a r t I : T h e J a v a L a n g u a g e

Choosing an Approach
At this point, you might be wondering why Java has two ways to create child threads, and
which approach is better. The answers to these questions turn on the same point. The Thread
class defines several methods that can be overridden by a derived class. Of these methods,
the only one that must be overridden is run(). This is, of course, the same method required
when you implement Runnable. Many Java programmers feel that classes should be
extended only when they are being enhanced or modified in some way. So, if you will not
be overriding any of Thread’s other methods, it is probably best simply to implement
Runnable. This is up to you, of course. However, throughout the rest of this chapter, we
will create threads by using classes that implement Runnable.

Creating Multiple Threads
So far, you have been using only two threads: the main thread and one child thread. However,
your program can spawn as many threads as it needs. For example, the following program
creates three child threads:

// Create multiple threads.
class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {
try {

for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {
System.out.println(name + "Interrupted");

}
System.out.println(name + " exiting.");

}
}

class MultiThreadDemo {
public static void main(String args[]) {
new NewThread("One"); // start threads
new NewThread("Two");
new NewThread("Three");

https://hemanthrajhemu.github.io

try {
// wait for other threads to end
Thread.sleep(10000);

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");
}

}

The output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3
One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures
that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding examples,
this is accomplished by calling sleep() within main(), with a long enough delay to ensure
that all child threads terminate prior to the main thread. However, this is hardly a satisfactory
solution, and it also raises a larger question: How can one thread know when another thread
has ended? Fortunately, Thread provides a means by which you can answer this question.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 233

https://hemanthrajhemu.github.io

234 P a r t I : T h e J a v a L a n g u a g e

Two ways exist to determine whether a thread has finished. First, you can call isAlive()
on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns
false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to
wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the
concept of the calling thread waiting until the specified thread joins it. Additional forms of
join() allow you to specify a maximum amount of time that you want to wait for the specified
thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure that the
main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");

}
System.out.println(name + " exiting.");

}
}

class DemoJoin {
public static void main(String args[]) {
NewThread ob1 = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 = new NewThread("Three");

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 235

System.out.println("Thread One is alive: "
+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "
+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "
+ ob3.t.isAlive());

// wait for threads to finish
try {

System.out.println("Waiting for threads to finish.");
ob1.t.join();
ob2.t.join();
ob3.t.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: "
+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "
+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "
+ ob3.t.isAlive());

System.out.println("Main thread exiting.");
}

}

Sample output from this program is shown here. (Your output may vary based on processor
speed and task load.)

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2

https://hemanthrajhemu.github.io

One: 1
Two: 1
Three: 1
Two exiting.
Three exiting.
One exiting.
Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Thread priorities are used by the thread scheduler to decide when each thread should be
allowed to run. In theory, higher-priority threads get more CPU time than lower-priority
threads. In practice, the amount of CPU time that a thread gets often depends on several
factors besides its priority. (For example, how an operating system implements multitasking
can affect the relative availability of CPU time.) A higher-priority thread can also preempt a
lower-priority one. For instance, when a lower-priority thread is running and a higher-priority
thread resumes (from sleeping or waiting on I/O, for example), it will preempt the lower-
priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need to
be careful. Remember, Java is designed to work in a wide range of environments. Some of
those environments implement multitasking fundamentally differently than others. For safety,
threads that share the same priority should yield control once in a while. This ensures that
all threads have a chance to run under a nonpreemptive operating system. In practice, even
in nonpreemptive environments, most threads still get a chance to run, because most threads
inevitably encounter some blocking situation, such as waiting for I/O. When this happens,
the blocked thread is suspended and other threads can run. But, if you want smooth
multithreaded execution, you are better off not relying on this. Also, some types of tasks
are CPU-intensive. Such threads dominate the CPU. For these types of threads, you want
to yield control occasionally so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.
This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be
within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and
10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread,
shown here:

final int getPriority()

236 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 237

Implementations of Java may have radically different behavior when it comes to scheduling.
The Windows XP/98/NT/2000 versions work, more or less, as you would expect. However,
other versions may work quite differently. Most of the inconsistencies arise when you have
threads that are relying on preemptive behavior, instead of cooperatively giving up CPU
time. The safest way to obtain predictable, cross-platform behavior with Java is to use threads
that voluntarily give up control of the CPU.

The following example demonstrates two threads at different priorities, which do not
run on a preemptive platform in the same way as they run on a nonpreemptive platform.
One thread is set two levels above the normal priority, as defined by Thread.NORM_
PRIORITY, and the other is set to two levels below it. The threads are started and allowed
to run for ten seconds. Each thread executes a loop, counting the number of iterations. After
ten seconds, the main thread stops both threads. The number of times that each thread made
it through the loop is then displayed.

// Demonstrate thread priorities.
class clicker implements Runnable {
long click = 0;
Thread t;
private volatile boolean running = true;

public clicker(int p) {
t = new Thread(this);
t.setPriority(p);

}

public void run() {
while (running) {
click++;

}
}

public void stop() {
running = false;

}

public void start() {
t.start();

}
}

class HiLoPri {
public static void main(String args[]) {
Thread.currentThread().setPriority(Thread.MAX_PRIORITY);
clicker hi = new clicker(Thread.NORM_PRIORITY + 2);
clicker lo = new clicker(Thread.NORM_PRIORITY - 2);

lo.start();
hi.start();
try {
Thread.sleep(10000);

} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

}

https://hemanthrajhemu.github.io

lo.stop();
hi.stop();

// Wait for child threads to terminate.
try {
hi.t.join();
lo.t.join();

} catch (InterruptedException e) {
System.out.println("InterruptedException caught");

}

System.out.println("Low-priority thread: " + lo.click);
System.out.println("High-priority thread: " + hi.click);

}
}

The output of this program, shown as follows when run under Windows, indicates that
the threads did context switch, even though neither voluntarily yielded the CPU nor blocked
for I/O. The higher-priority thread got the majority of the CPU time.

Low-priority thread: 4408112
High-priority thread: 589626904

Of course, the exact output produced by this program depends on the speed of your CPU
and the number of other tasks running in the system. When this same program is run under
a nonpreemptive system, different results will be obtained.

One other note about the preceding program. Notice that running is preceded by the
keyword volatile. Although volatile is examined more carefully in Chapter 13, it is used
here to ensure that the value of running is examined each time the following loop iterates:

while (running) {
click++;

}

Without the use of volatile, Java is free to optimize the loop in such a way that a local copy
of running is created. The use of volatile prevents this optimization, telling Java that running
may change in ways not directly apparent in the immediate code.

Synchronization
When two or more threads need access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization. As you will see, Java provides unique, language-level
support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). A monitor
is an object that is used as a mutually exclusive lock, or mutex. Only one thread can own a
monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor.
All other threads attempting to enter the locked monitor will be suspended until the first
thread exits the monitor. These other threads are said to be waiting for the monitor. A thread
that owns a monitor can reenter the same monitor if it so desires.

238 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 239

If you have worked with synchronization when using other languages, such as C or C++,
you know that it can be a bit tricky to use. This is because these languages do not, themselves,
support synchronization. Instead, to synchronize threads, your programs need to utilize
operating system primitives. Fortunately, because Java implements synchronization through
language elements, most of the complexity associated with synchronization has been
eliminated.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods
Synchronization is easy in Java, because all objects have their own implicit monitor associated
with them. To enter an object’s monitor, just call a method that has been modified with the
synchronized keyword. While a thread is inside a synchronized method, all other threads
that try to call it (or any other synchronized method) on the same instance have to wait. To
exit the monitor and relinquish control of the object to the next waiting thread, the owner of
the monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does
not use it—but should. The following program has three simple classes. The first one, Callme,
has a single method named call(). The call() method takes a String parameter called msg.
This method tries to print the msg string inside of square brackets. The interesting thing
to notice is that after call() prints the opening bracket and the msg string, it calls Thread
.sleep(1000), which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme
class and a String, which are stored in target and msg, respectively. The constructor also creates
a new thread that will call this object’s run() method. The thread is started immediately. The
run() method of Caller calls the call() method on the target instance of Callme, passing in
the msg string. Finally, the Synch class starts by creating a single instance of Callme, and
three instances of Caller, each with a unique message string. The same instance of Callme
is passed to each Caller.

// This program is not synchronized.
class Callme {
void call(String msg) {
System.out.print("[" + msg);
try {
Thread.sleep(1000);

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
System.out.println("]");

}
}

class Caller implements Runnable {
String msg;
Callme target;
Thread t;

https://hemanthrajhemu.github.io

public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();

}

public void run() {
target.call(msg);

}
}

class Synch {
public static void main(String args[]) {
Callme target = new Callme();
Caller ob1 = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to end
try {
ob1.t.join();
ob2.t.join();
ob3.t.join();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}

}

Here is the output produced by this program:

Hello[Synchronized[World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to another
thread. This results in the mixed-up output of the three message strings. In this program,
nothing exists to stop all three threads from calling the same method, on the same object, at
the same time. This is known as a race condition, because the three threads are racing each
other to complete the method. This example used sleep() to make the effects repeatable and
obvious. In most situations, a race condition is more subtle and less predictable, because
you can’t be sure when the context switch will occur. This can cause a program to run right
one time and wrong the next.

To fix the preceding program, you must serialize access to call(). That is, you must restrict its
access to only one thread at a time. To do this, you simply need to precede call()’s definition
with the keyword synchronized, as shown here:

class Callme {
synchronized void call(String msg) {
...

240 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

This prevents other threads from entering call() while another thread is using it. After
synchronized has been added to call(), the output of the program is as follows:

[Hello]
[Synchronized]
[World]

Any time that you have a method, or group of methods, that manipulates the internal
state of an object in a multithreaded situation, you should use the synchronized keyword
to guard the state from race conditions. Remember, once a thread enters any synchronized
method on an instance, no other thread can enter any other synchronized method on the same
instance. However, nonsynchronized methods on that instance will continue to be callable.

The synchronized Statement
While creating synchronized methods within classes that you create is an easy and effective
means of achieving synchronization, it will not work in all cases. To understand why, consider
the following. Imagine that you want to synchronize access to objects of a class that was not
designed for multithreaded access. That is, the class does not use synchronized methods.
Further, this class was not created by you, but by a third party, and you do not have access
to the source code. Thus, you can’t add synchronized to the appropriate methods within
the class. How can access to an object of this class be synchronized? Fortunately, the solution
to this problem is quite easy: You simply put calls to the methods defined by this class inside
a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {
// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures
that a call to a method that is a member of object occurs only after the current thread has
successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.
class Callme {
void call(String msg) {
System.out.print("[" + msg);
try {
Thread.sleep(1000);

} catch (InterruptedException e) {
System.out.println("Interrupted");

}
System.out.println("]");

}
}

class Caller implements Runnable {
String msg;

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 241

https://hemanthrajhemu.github.io

242 P a r t I : T h e J a v a L a n g u a g e

Callme target;
Thread t;

public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();

}

// synchronize calls to call()
public void run() {
synchronized(target) { // synchronized block
target.call(msg);

}
}

}

class Synch1 {
public static void main(String args[]) {
Callme target = new Callme();
Caller ob1 = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to end
try {
ob1.t.join();
ob2.t.join();
ob3.t.join();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as the
preceding example, because each thread waits for the prior one to finish before proceeding.

Interthread Communication
The preceding examples unconditionally blocked other threads from asynchronous access
to certain methods. This use of the implicit monitors in Java objects is powerful, but you can
achieve a more subtle level of control through interprocess communication. As you will see,
this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing your
tasks into discrete, logical units. Threads also provide a secondary benefit: they do away
with polling. Polling is usually implemented by a loop that is used to check some condition
repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time.
For example, consider the classic queuing problem, where one thread is producing some
data and another is consuming it. To make the problem more interesting, suppose that the
producer has to wait until the consumer is finished before it generates more data. In a polling

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 243

system, the consumer would waste many CPU cycles while it waited for the producer to
produce. Once the producer was finished, it would start polling, wasting more CPU cycles
waiting for the consumer to finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via
the wait(), notify(), and notifyAll() methods. These methods are implemented as final
methods in Object, so all classes have them. All three methods can be called only from
within a synchronized context. Although conceptually advanced from a computer science
perspective, the rules for using these methods are actually quite simple:

• wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify().

• notify() wakes up a thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same object. One of
the threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notifyAll()

Additional forms of wait() exist that allow you to specify a period of time to wait.
Before working through an example that illustrates interthread communication, an

important point needs to be made. Although wait() normally waits until notify() or
notifyAll() is called, there is a possibility that in very rare cases the waiting thread could be
awakened due to a spurious wakeup. In this case, a waiting thread resumes without notify()
or notifyAll() having been called. (In essence, the thread resumes for no apparent reason.)
Because of this remote possibility, Sun recommends that calls to wait() should take place
within a loop that checks the condition on which the thread is waiting. The following
example shows this technique.

Let’s now work through an example that uses wait() and notify(). To begin, consider
the following sample program that incorrectly implements a simple form of the producer/
consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize;
Producer, the threaded object that is producing queue entries; Consumer, the threaded
object that is consuming queue entries; and PC, the tiny class that creates the single Q,
Producer, and Consumer.

// An incorrect implementation of a producer and consumer.
class Q {
int n;

synchronized int get() {
System.out.println("Got: " + n);
return n;

}

synchronized void put(int n) {
this.n = n;
System.out.println("Put: " + n);

}
}

https://hemanthrajhemu.github.io

244 P a r t I : T h e J a v a L a n g u a g e

class Producer implements Runnable {
Q q;

Producer(Q q) {
this.q = q;
new Thread(this, "Producer").start();

}

public void run() {
int i = 0;

while(true) {
q.put(i++);

}
}

}

class Consumer implements Runnable {
Q q;

Consumer(Q q) {
this.q = q;
new Thread(this, "Consumer").start();

}

public void run() {
while(true) {
q.get();

}
}

}

class PC {
public static void main(String args[]) {
Q q = new Q();
new Producer(q);
new Consumer(q);

System.out.println("Press Control-C to stop.");
}

}

Although the put() and get() methods on Q are synchronized, nothing stops the producer
from overrunning the consumer, nor will anything stop the consumer from consuming the
same queue value twice. Thus, you get the erroneous output shown here (the exact output
will vary with processor speed and task load):

Put: 1
Got: 1
Got: 1
Got: 1
Got: 1

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 245

Got: 1
Put: 2
Put: 3
Put: 4
Put: 5
Put: 6
Put: 7
Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five times
in a row. Then, the producer resumed and produced 2 through 7 without letting the consumer
have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal in
both directions, as shown here:

// A correct implementation of a producer and consumer.
class Q {
int n;
boolean valueSet = false;

synchronized int get() {
while(!valueSet)
try {
wait();

} catch(InterruptedException e) {
System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);
valueSet = false;
notify();
return n;

}

synchronized void put(int n) {
while(valueSet)
try {
wait();

} catch(InterruptedException e) {
System.out.println("InterruptedException caught");

}

this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();

}
}

class Producer implements Runnable {
Q q;

https://hemanthrajhemu.github.io

Producer(Q q) {
this.q = q;
new Thread(this, "Producer").start();

}

public void run() {
int i = 0;

while(true) {
q.put(i++);

}
}

}

class Consumer implements Runnable {
Q q;

Consumer(Q q) {
this.q = q;
new Thread(this, "Consumer").start();

}

public void run() {
while(true) {
q.get();

}
}

}

class PCFixed {
public static void main(String args[]) {
Q q = new Q();
new Producer(q);
new Consumer(q);

System.out.println("Press Control-C to stop.");
}

}

Inside get(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside get() resumes.
After the data has been obtained, get() calls notify(). This tells Producer that it is okay to
put more data in the queue. Inside put(), wait() suspends execution until the Consumer
has removed the item from the queue. When execution resumes, the next item of data is put
in the queue, and notify() is called. This tells the Consumer that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

Put: 1
Got: 1
Put: 2
Got: 2
Put: 3

246 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Got: 3
Put: 4
Got: 4
Put: 5
Got: 5

Deadlock
A special type of error that you need to avoid that relates specifically to multitasking is
deadlock, which occurs when two threads have a circular dependency on a pair of synchronized
objects. For example, suppose one thread enters the monitor on object X and another thread
enters the monitor on object Y. If the thread in X tries to call any synchronized method on Y,
it will block as expected. However, if the thread in Y, in turn, tries to call any synchronized
method on X, the thread waits forever, because to access X, it would have to release its own
lock on Y so that the first thread could complete. Deadlock is a difficult error to debug for
two reasons:

• In general, it occurs only rarely, when the two threads time-slice in just the right way.

• It may involve more than two threads and two synchronized objects. (That is, deadlock
can occur through a more convoluted sequence of events than just described.)

To understand deadlock fully, it is useful to see it in action. The next example creates two
classes, A and B, with methods foo() and bar(), respectively, which pause briefly before
trying to call a method in the other class. The main class, named Deadlock, creates an A
and a B instance, and then starts a second thread to set up the deadlock condition. The
foo() and bar() methods use sleep() as a way to force the deadlock condition to occur.

// An example of deadlock.
class A {
synchronized void foo(B b) {
String name = Thread.currentThread().getName();

System.out.println(name + " entered A.foo");

try {
Thread.sleep(1000);

} catch(Exception e) {
System.out.println("A Interrupted");

}

System.out.println(name + " trying to call B.last()");
b.last();

}

synchronized void last() {
System.out.println("Inside A.last");

}
}

class B {

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 247

https://hemanthrajhemu.github.io

synchronized void bar(A a) {
String name = Thread.currentThread().getName();
System.out.println(name + " entered B.bar");

try {
Thread.sleep(1000);

} catch(Exception e) {
System.out.println("B Interrupted");

}

System.out.println(name + " trying to call A.last()");
a.last();

}

synchronized void last() {
System.out.println("Inside A.last");

}
}

class Deadlock implements Runnable {
A a = new A();
B b = new B();

Deadlock() {
Thread.currentThread().setName("MainThread");
Thread t = new Thread(this, "RacingThread");
t.start();

a.foo(b); // get lock on a in this thread.
System.out.println("Back in main thread");

}

public void run() {
b.bar(a); // get lock on b in other thread.
System.out.println("Back in other thread");

}

public static void main(String args[]) {
new Deadlock();

}
}

When you run this program, you will see the output shown here:

MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last()

Because the program has deadlocked, you need to press CTRL-C to end the program. You
can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC . You will see
that RacingThread owns the monitor on b, while it is waiting for the monitor on a. At the

248 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 249

same time, MainThread owns a and is waiting to get b. This program will never complete.
As this example illustrates, if your multithreaded program locks up occasionally, deadlock
is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads
Sometimes, suspending execution of a thread is useful. For example, a separate thread can
be used to display the time of day. If the user doesn’t want a clock, then its thread can be
suspended. Whatever the case, suspending a thread is a simple matter. Once suspended,
restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between early versions of
Java, such as Java 1.0, and modern versions, beginning with Java 2. Although you should
use the modern approach for all new code, you still need to understand how these operations
were accomplished for earlier Java environments. For example, you may need to update or
maintain older, legacy code. You also need to understand why a change was made. For these
reasons, the next section describes the original way that the execution of a thread was controlled,
followed by a section that describes the modern approach.

Suspending, Resuming, and Stopping Threads Using Java 1.1 and Earlier
Prior to Java 2, a program used suspend() and resume(), which are methods defined by
Thread, to pause and restart the execution of a thread. They have the form shown below:

final void suspend()
final void resume()

The following program demonstrates these methods:

// Using suspend() and resume().
class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {
try {
for(int i = 15; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(200);

}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");

}
System.out.println(name + " exiting.");

}
}

https://hemanthrajhemu.github.io

class SuspendResume {
public static void main(String args[]) {
NewThread ob1 = new NewThread("One");
NewThread ob2 = new NewThread("Two");

try {
Thread.sleep(1000);
ob1.t.suspend();
System.out.println("Suspending thread One");
Thread.sleep(1000);
ob1.t.resume();
System.out.println("Resuming thread One");
ob2.t.suspend();
System.out.println("Suspending thread Two");
Thread.sleep(1000);
ob2.t.resume();
System.out.println("Resuming thread Two");

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
ob1.t.join();
ob2.t.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}
System.out.println("Main thread exiting.");

}
}

Sample output from this program is shown here. (Your output may differ based on processor
speed and task load.)

New thread: Thread[One,5,main]
One: 15
New thread: Thread[Two,5,main]
Two: 15
One: 14
Two: 14
One: 13
Two: 13
One: 12
Two: 12
One: 11
Two: 11
Suspending thread One
Two: 10
Two: 9
Two: 8

250 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

Two: 7
Two: 6
Resuming thread One
Suspending thread Two
One: 10
One: 9
One: 8
One: 7
One: 6
Resuming thread Two
Waiting for threads to finish.
Two: 5
One: 5
Two: 4
One: 4
Two: 3
One: 3
Two: 2
One: 2
Two: 1
One: 1
Two exiting.
One exiting.
Main thread exiting.

The Thread class also defines a method called stop() that stops a thread. Its signature is
shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

The Modern Way of Suspending, Resuming, and Stopping Threads
While the suspend(), resume(), and stop() methods defined by Thread seem to be a perfectly
reasonable and convenient approach to managing the execution of threads, they must not
be used for new Java programs. Here’s why. The suspend() method of the Thread class was
deprecated by Java 2 several years ago. This was done because suspend() can sometimes
cause serious system failures. Assume that a thread has obtained locks on critical data
structures. If that thread is suspended at that point, those locks are not relinquished. Other
threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, was deprecated by Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread is
writing to a critically important data structure and has completed only part of its changes.
If that thread is stopped at that point, that data structure might be left in a corrupted state.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 251

https://hemanthrajhemu.github.io

Because you can’t now use the suspend(), resume(), or stop() methods to control a
thread, you might be thinking that no way exists to pause, restart, or terminate a thread.
But, fortunately, this is not true. Instead, a thread must be designed so that the run() method
periodically checks to determine whether that thread should suspend, resume, or stop its
own execution. Typically, this is accomplished by establishing a flag variable that indicates
the execution state of the thread. As long as this flag is set to “running,” the run() method
must continue to let the thread execute. If this variable is set to “suspend,” the thread must
pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in
which to write such code, but the central theme will be the same for all programs.

The following example illustrates how the wait() and notify() methods that are inherited
from Object can be used to control the execution of a thread. This example is similar to the
program in the previous section. However, the deprecated method calls have been removed.
Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named suspendFlag, which
is used to control the execution of the thread. It is initialized to false by the constructor. The
run() method contains a synchronized statement block that checks suspendFlag. If that
variable is true, the wait() method is invoked to suspend the execution of the thread. The
mysuspend() method sets suspendFlag to true. The myresume() method sets suspendFlag
to false and invokes notify() to wake up the thread. Finally, the main() method has been
modified to invoke the mysuspend() and myresume() methods.

// Suspending and resuming a thread the modern way.
class NewThread implements Runnable {
String name; // name of thread
Thread t;
boolean suspendFlag;

NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
suspendFlag = false;
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {
try {
for(int i = 15; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(200);
synchronized(this) {
while(suspendFlag) {
wait();

}
}

}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");

}

252 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

System.out.println(name + " exiting.");
}

void mysuspend() {
suspendFlag = true;

}

synchronized void myresume() {
suspendFlag = false;
notify();

}
}

class SuspendResume {
public static void main(String args[]) {
NewThread ob1 = new NewThread("One");
NewThread ob2 = new NewThread("Two");

try {
Thread.sleep(1000);
ob1.mysuspend();
System.out.println("Suspending thread One");
Thread.sleep(1000);
ob1.myresume();
System.out.println("Resuming thread One");
ob2.mysuspend();
System.out.println("Suspending thread Two");
Thread.sleep(1000);
ob2.myresume();
System.out.println("Resuming thread Two");

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
ob1.t.join();
ob2.t.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");
}

}

The output from this program is identical to that shown in the previous section. Later
in this book, you will see more examples that use the modern mechanism of thread control.
Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the way required
to ensure that run-time errors don’t occur. It is the approach that must be used for all new code.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 253

https://hemanthrajhemu.github.io

Using Multithreading
The key to utilizing Java’s multithreading features effectively is to think concurrently rather
than serially. For example, when you have two subsystems within a program that can execute
concurrently, make them individual threads. With the careful use of multithreading, you can
create very efficient programs. A word of caution is in order, however: If you create too many
threads, you can actually degrade the performance of your program rather than enhance it.
Remember, some overhead is associated with context switching. If you create too many threads,
more CPU time will be spent changing contexts than executing your program!

254 P a r t I : T h e J a v a L a n g u a g e

https://hemanthrajhemu.github.io

