

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Simple Applet Display Methods . 623
Requesting Repainting . 625

A Simple Banner Applet . 626
Using the Status Window . 628
The HTML APPLET Tag . 629
Passing Parameters to Applets . 630

Improving the Banner Applet . 631
getDocumentBase() and getCodeBase() . 633
AppletContext and showDocument() . 634
The AudioClip Interface . 635
The AppletStub Interface . 635
Outputting to the Console . 636

22 Event Handling . 637
Two Event Handling Mechanisms . 637
The Delegation Event Model . 638

Events . 638
Event Sources . 638
Event Listeners . 639

Event Classes . 639
The ActionEvent Class . 640
The AdjustmentEvent Class . 641
The ComponentEvent Class . 642
The ContainerEvent Class . 642
The FocusEvent Class . 643
The InputEvent Class . 643
The ItemEvent Class . 644
The KeyEvent Class . 645
The MouseEvent Class . 646
The MouseWheelEvent Class . 647
The TextEvent Class . 648
The WindowEvent Class . 648

Sources of Events . 649
Event Listener Interfaces . 650

The ActionListener Interface . 650
The AdjustmentListener Interface . 651
The ComponentListener Interface . 651
The ContainerListener Interface . 651
The FocusListener Interface . 651
The ItemListener Interface . 651
The KeyListener Interface . 651
The MouseListener Interface . 652
The MouseMotionListener Interface . 652
The MouseWheelListener Interface . 652
The TextListener Interface . 652
The WindowFocusListener Interface . 652

xx J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

The WindowListener Interface . 653
Using the Delegation Event Model . 653

Handling Mouse Events . 653
Handling Keyboard Events . 656

Adapter Classes . 659
Inner Classes . 660

Anonymous Inner Classes . 662

23 Introducing the AWT: Working with Windows, Graphics,
and Text . 663

AWT Classes . 664
Window Fundamentals . 666

Component . 666
Container . 666
Panel . 667
Window . 667
Frame . 667
Canvas . 667

Working with Frame Windows . 667
Setting the Window’s Dimensions . 668
Hiding and Showing a Window . 668
Setting a Window’s Title . 668
Closing a Frame Window . 668

Creating a Frame Window in an Applet . 668
Handling Events in a Frame Window . 670

Creating a Windowed Program . 674
Displaying Information Within a Window . 676
Working with Graphics . 676

Drawing Lines . 677
Drawing Rectangles . 677
Drawing Ellipses and Circles . 678
Drawing Arcs . 679
Drawing Polygons . 680
Sizing Graphics . 681

Working with Color . 682
Color Methods . 683
Setting the Current Graphics Color . 684
A Color Demonstration Applet . 684

Setting the Paint Mode . 685
Working with Fonts . 686

Determining the Available Fonts . 687
Creating and Selecting a Font . 689
Obtaining Font Information . 690

Managing Text Output Using FontMetrics . 691
Displaying Multiple Lines of Text . 693

C o n t e n t s xx i

https://hemanthrajhemu.github.io

Two Pattern-Matching Options . 833
Exploring Regular Expressions . 833

Reflection . 833
Remote Method Invocation (RMI) . 837

A Simple Client/Server Application Using RMI 837
Text Formatting . 840

DateFormat Class . 840
SimpleDateFormat Class . 842

Part III Software Development Using Java

28 Java Beans . 847
What Is a Java Bean? . 847
Advantages of Java Beans . 848
Introspection . 848

Design Patterns for Properties . 848
Design Patterns for Events . 849
Methods and Design Patterns . 850
Using the BeanInfo Interface . 850

Bound and Constrained Properties . 850
Persistence . 851
Customizers . 851
The Java Beans API . 851

Introspector . 853
PropertyDescriptor . 854
EventSetDescriptor . 854
MethodDescriptor . 854

A Bean Example . 854

29 Introducing Swing . 859
The Origins of Swing . 859
Swing Is Built on the AWT . 860
Two Key Swing Features . 860

Swing Components Are Lightweight . 860
Swing Supports a Pluggable Look and Feel 860

The MVC Connection . 861
Components and Containers . 862

Components . 862
Containers . 863
The Top-Level Container Panes . 863

The Swing Packages . 863
A Simple Swing Application . 864
Event Handling . 868
Create a Swing Applet . 871
Painting in Swing . 873

xxiv J a v a : T h e C o m p l e t e R e f e r e n c e

https://hemanthrajhemu.github.io

Painting Fundamentals . 874
Compute the Paintable Area . 875
A Paint Example . 875

30 Exploring Swing . 879
JLabel and ImageIcon . 879
JTextField . 881
The Swing Buttons . 883

JButton . 883
JToggleButton . 885
Check Boxes . 887
Radio Buttons . 889

JTabbedPane . 891
JScrollPane . 893
JList . 895
JComboBox . 898
Trees . 900
JTable . 904
Continuing Your Exploration of Swing . 906

31 Servlets . 907
Background . 907
The Life Cycle of a Servlet . 908
Using Tomcat for Servlet Development . 908
A Simple Servlet . 910

Create and Compile the Servlet Source Code 910
Start Tomcat . 911
Start a Web Browser and Request the Servlet 911

The Servlet API . 911
The javax.servlet Package . 911

The Servlet Interface . 912
The ServletConfig Interface . 912
The ServletContext Interface . 912
The ServletRequest Interface . 913
The ServletResponse Interface . 913
The GenericServlet Class . 914
The ServletInputStream Class . 915
The ServletOutputStream Class . 915
The Servlet Exception Classes . 915

Reading Servlet Parameters . 915
The javax.servlet.http Package . 917

The HttpServletRequest Interface . 917
The HttpServletResponse Interface . 917
The HttpSession Interface . 917
The HttpSessionBindingListener Interface 919
The Cookie Class . 919

C o n t e n t s xxv

https://hemanthrajhemu.github.io

6 3 7

22
Event Handling

This chapter examines an important aspect of Java: the event. Event handling is
fundamental to Java programming because it is integral to the creation of applets and
other types of GUI-based programs. As explained in Chapter 21, applets are event-driven

programs that use a graphical user interface to interact with the user. Furthermore, any program
that uses a graphical user interface, such as a Java application written for Windows, is event
driven. Thus, you cannot write these types of programs without a solid command of event
handling. Events are supported by a number of packages, including java.util, java.awt, and
java.awt.event.

Most events to which your program will respond are generated when the user interacts
with a GUI-based program. These are the types of events examined in this chapter. They are
passed to your program in a variety of ways, with the specific method dependent upon the
actual event. There are several types of events, including those generated by the mouse, the
keyboard, and various GUI controls, such as a push button, scroll bar, or check box.

This chapter begins with an overview of Java’s event handling mechanism. It then examines
the main event classes and interfaces used by the AWT and develops several examples that
demonstrate the fundamentals of event processing. This chapter also explains how to use
adapter classes, inner classes, and anonymous inner classes to streamline event handling code.
The examples provided in the remainder of this book make frequent use of these techniques.

NOTEOTE This chapter focuses on events related to GUI-based programs. However, events are also
occasionally used for purposes not directly related to GUI-based programs. In all cases, the same
basic event handling techniques apply.

Two Event Handling Mechanisms
Before beginning our discussion of event handling, an important point must be made: The way
in which events are handled changed significantly between the original version of Java (1.0)
and modern versions of Java, beginning with version 1.1. The 1.0 method of event handling is
still supported, but it is not recommended for new programs. Also, many of the methods
that support the old 1.0 event model have been deprecated. The modern approach is the way
that events should be handled by all new programs and thus is the method employed by
programs in this book.

https://hemanthrajhemu.github.io

638 P a r t I I : T h e J a v a L i b r a r y

The Delegation Event Model
The modern approach to handling events is based on the delegation event model, which defines
standard and consistent mechanisms to generate and process events. Its concept is quite simple:
a source generates an event and sends it to one or more listeners. In this scheme, the listener
simply waits until it receives an event. Once an event is received, the listener processes the event
and then returns. The advantage of this design is that the application logic that processes events
is cleanly separated from the user interface logic that generates those events. A user interface
element is able to “delegate” the processing of an event to a separate piece of code.

In the delegation event model, listeners must register with a source in order to receive an
event notification. This provides an important benefit: notifications are sent only to listeners
that want to receive them. This is a more efficient way to handle events than the design used
by the old Java 1.0 approach. Previously, an event was propagated up the containment hierarchy
until it was handled by a component. This required components to receive events that they did
not process, and it wasted valuable time. The delegation event model eliminates this overhead.

NOTEOTE Java also allows you to process events without using the delegation event model. This can
be done by extending an AWT component. This technique is discussed at the end of Chapter 24.
However, the delegation event model is the preferred design for the reasons just cited.

The following sections define events and describe the roles of sources and listeners.

Events
In the delegation model, an event is an object that describes a state change in a source. It can
be generated as a consequence of a person interacting with the elements in a graphical user
interface. Some of the activities that cause events to be generated are pressing a button, entering
a character via the keyboard, selecting an item in a list, and clicking the mouse. Many other
user operations could also be cited as examples.

Events may also occur that are not directly caused by interactions with a user interface.
For example, an event may be generated when a timer expires, a counter exceeds a value,
a software or hardware failure occurs, or an operation is completed. You are free to define
events that are appropriate for your application.

Event Sources
A source is an object that generates an event. This occurs when the internal state of that object
changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications about
a specific type of event. Each type of event has its own registration method. Here is the
general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example,
the method that registers a keyboard event listener is called addKeyListener(). The method
that registers a mouse motion listener is called addMouseMotionListener(). When an event
occurs, all registered listeners are notified and receive a copy of the event object. This is known
as multicasting the event. In all cases, notifications are sent only to listeners that register to
receive them.

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 639

Some sources may allow only one listener to register. The general form of such a method
is this:

public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException

Here, Type is the name of the event, and el is a reference to the event listener. When such
an event occurs, the registered listener is notified. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an interest
in a specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example,
to remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates
events. For example, the Component class provides methods to add and remove keyboard
and mouse event listeners.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major requirements.
First, it must have been registered with one or more sources to receive notifications about
specific types of events. Second, it must implement methods to receive and process these
notifications.

The methods that receive and process events are defined in a set of interfaces found in
java.awt.event. For example, the MouseMotionListener interface defines two methods to
receive notifications when the mouse is dragged or moved. Any object may receive and process
one or both of these events if it provides an implementation of this interface. Many other
listener interfaces are discussed later in this and other chapters.

Event Classes
The classes that represent events are at the core of Java’s event handling mechanism. Thus, a
discussion of event handling must begin with the event classes. It is important to understand,
however, that Java defines several types of events and that not all event classes can be discussed
in this chapter. The most widely used events are those defined by the AWT and those defined by
Swing. This chapter focuses on the AWT events. (Most of these events also apply to Swing.)
Several Swing-specific events are described in Chapter 29, when Swing is covered.

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is the
superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.
EventObject contains two methods: getSource() and toString(). The getSource() method

returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.

https://hemanthrajhemu.github.io

The class AWTEvent, defined within the java.awt package, is a subclass of EventObject.
It is the superclass (either directly or indirectly) of all AWT-based events used by the delegation
event model. Its getID() method can be used to determine the type of the event. The signature
of this method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 24. At this point, it
is important to know only that all of the other classes discussed in this section are subclasses
of AWTEvent.

To summarize:

• EventObject is a superclass of all events.

• AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.

The package java.awt.event defines many types of events that are generated by various
user interface elements. Table 22-1 shows several commonly used event classes and provides
a brief description of when they are generated. Commonly used constructors and methods in
each class are described in the following sections.

The ActionEvent Class
An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a
menu item is selected. The ActionEvent class defines four integer constants that can be
used to identify any modifiers associated with an action event: ALT_MASK, CTRL_MASK,
META_MASK, and SHIFT_MASK. In addition, there is an integer constant, ACTION_
PERFORMED, which can be used to identify action events.

640 P a r t I I : T h e J a v a L i b r a r y

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu
item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs when a choice
selection is made or a checkable menu item is selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released;
also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated, deiconified,
iconified, opened, or quit.

TABLE 22-1 Main Event Classes in java.awt.event

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 641

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)
ActionEvent(Object src, int type, String cmd, int modifiers)
ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is specified
by type, and its command string is cmd. The argument modifiers indicates which modifier keys
(ALT, CTRL, META, and/or SHIFT) were pressed when the event was generated. The when
parameter specifies when the event occurred.

You can obtain the command name for the invoking ActionEvent object by using the
getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command
name equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys (ALT, CTRL,
META, and/or SHIFT) were pressed when the event was generated. Its form is shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is called the
event’s timestamp. The getWhen() method is shown here:

long getWhen()

The AdjustmentEvent Class
An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.
The AdjustmentEvent class defines integer constants that can be used to identify them. The
constants and their meanings are shown here:

BLOCK_DECREMENT The user clicked inside the scroll bar to decrease its value.

BLOCK_INCREMENT The user clicked inside the scroll bar to increase its value.

TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked to decrease its value.

UNIT_INCREMENT The button at the end of the scroll bar was clicked to increase its value.

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that
indicates that a change has occurred.

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id specifies the event. The
type of the adjustment is specified by type, and its associated data is data.

The getAdjustable() method returns the object that generated the event. Its form is
shown here:

Adjustable getAdjustable()

https://hemanthrajhemu.github.io

642 P a r t I I : T h e J a v a L i b r a r y

The type of the adjustment event may be obtained by the getAdjustmentType() method. It
returns one of the constants defined by AdjustmentEvent. The general form is shown here:

int getAdjustmentType()

The amount of the adjustment can be obtained from the getValue() method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the value represented
by that change.

The ComponentEvent Class
A ComponentEvent is generated when the size, position, or visibility of a component is
changed. There are four types of component events. The ComponentEvent class defines
integer constants that can be used to identify them. The constants and their meanings are
shown here:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,
FocusEvent, KeyEvent, MouseEvent, and WindowEvent.

The getComponent() method returns the component that generated the event. It is
shown here:

Component getComponent()

The ContainerEvent Class
A ContainerEvent is generated when a component is added to or removed from a container.
There are two types of container events. The ContainerEvent class defines int constants that
can be used to identify them: COMPONENT_ADDED and COMPONENT_REMOVED.
They indicate that a component has been added to or removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event is specified
by type, and the component that has been added to or removed from the container is comp.

You can obtain a reference to the container that generated this event by using the
getContainer() method, shown here:

https://hemanthrajhemu.github.io

Container getContainer()

The getChild() method returns a reference to the component that was added to or removed
from the container. Its general form is shown here:

Component getChild()

The FocusEvent Class
A FocusEvent is generated when a component gains or loses input focus. These events are
identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)
FocusEvent(Component src, int type, boolean temporaryFlag)
FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event is
specified by type. The argument temporaryFlag is set to true if the focus event is temporary.
Otherwise, it is set to false. (A temporary focus event occurs as a result of another user
interface operation. For example, assume that the focus is in a text field. If the user moves
the mouse to adjust a scroll bar, the focus is temporarily lost.)

The other component involved in the focus change, called the opposite component, is passed
in other. Therefore, if a FOCUS_GAINED event occurred, other will refer to the component that
lost focus. Conversely, if a FOCUS_LOST event occurred, other will refer to the component
that gains focus.

You can determine the other component by calling getOppositeComponent(),
shown here:

Component getOppositeComponent()

The opposite component is returned.
The isTemporary() method indicates if this focus change is temporary. Its form

is shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class
The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for
component input events. Its subclasses are KeyEvent and MouseEvent.

InputEvent defines several integer constants that represent any modifiers, such as the
control key being pressed, that might be associated with the event. Originally, the InputEvent
class defined the following eight values to represent the modifiers:

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

C h a p t e r 2 2 : E v e n t H a n d l i n g 643

https://hemanthrajhemu.github.io

644 P a r t I I : T h e J a v a L i b r a r y

However, because of possible conflicts between the modifiers used by keyboard events and
mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK BUTTON2_DOWN_MASK META_DOWN_MASK

ALT_GRAPH_DOWN_MASK BUTTON3_DOWN_MASK SHIFT_DOWN_MASK

BUTTON1_DOWN_MASK CTRL_DOWN_MASK

When writing new code, it is recommended that you use the new, extended modifiers rather
than the original modifiers.

To test if a modifier was pressed at the time an event is generated, use the isAltDown(),
isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown() methods. The
forms of these methods are shown here:

boolean isAltDown()
boolean isAltGraphDown()
boolean isControlDown()
boolean isMetaDown()
boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling the
getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by calling getModifiersEx(), which is shown here:

int getModifiersEx()

The ItemEvent Class
An ItemEvent is generated when a check box or a list item is clicked or when a checkable menu
item is selected or deselected. (Check boxes and list boxes are described later in this book.)
There are two types of item events, which are identified by the following integer constants:

DESELECTED The user deselected an item.

SELECTED The user selected an item.

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that
signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this might
be a list or choice element. The type of the event is specified by type. The specific item that
generated the item event is passed in entry. The current state of that item is in state.

The getItem() method can be used to obtain a reference to the item that generated an
event. Its signature is shown here:

Object getItem()

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 645

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable
object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the ItemSelectable
interface.

The getStateChange() method returns the state change (that is, SELECTED or
DESELECTED) for the event. It is shown here:

int getStateChange()

The KeyEvent Class
A KeyEvent is generated when keyboard input occurs. There are three types of key events,
which are identified by these integer constants: KEY_PRESSED, KEY_RELEASED, and
KEY_TYPED. The first two events are generated when any key is pressed or released. The
last event occurs only when a character is generated. Remember, not all keypresses result
in characters. For example, pressing SHIFT does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example, VK_0
through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers and
letters. Here are some others:

VK_ALT VK_DOWN VK_LEFT VK_RIGHT

VK_CANCEL VK_ENTER VK_PAGE_DOWN VK_SHIFT

VK_CONTROL VK_ESCAPE VK_PAGE_UP VK_UP

The VK constants specify virtual key codes and are independent of any modifiers, such as
control, shift, or alt.

KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the key was pressed is passed in when. The modifiers
argument indicates which modifiers were pressed when this key event occurred. The virtual
key code, such as VK_UP, VK_A, and so forth, is passed in code. The character equivalent
(if one exists) is passed in ch. If no valid character exists, then ch contains CHAR_UNDEFINED.
For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods, but the most commonly used ones are
getKeyChar(), which returns the character that was entered, and getKeyCode(), which
returns the key code. Their general forms are shown here:

char getKeyChar()
int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED. When
a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

https://hemanthrajhemu.github.io

646 P a r t I I : T h e J a v a L i b r a r y

The MouseEvent Class
There are eight types of mouse events. The MouseEvent class defines the following integer
constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers,
int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the mouse event occurred is passed in when. The
modifiers argument indicates which modifiers were pressed when a mouse event occurred.
The coordinates of the mouse are passed in x and y. The click count is passed in clicks. The
triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

Two commonly used methods in this class are getX() and getY(). These return the X and
Y coordinates of the mouse within the component when the event occurred. Their forms are
shown here:

int getX()
int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the mouse.
It is shown here:

Point getPoint()

It returns a Point object that contains the X,Y coordinates in its integer members: x and y.
The translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.
The getClickCount() method obtains the number of mouse clicks for this event.

Its signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this
platform. Its form is shown here:

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 647

boolean isPopupTrigger()

Also available is the getButton() method, shown here:

int getButton()

It returns a value that represents the button that caused the event. The return value will be
one of these constants defined by MouseEvent:

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.
Java SE 6 added three methods to MouseEvent that obtain the coordinates of the mouse

relative to the screen rather than the component. They are shown here:

Point getLocationOnScreen()

int getXOnScreen()

int getYOnScreen()

The getLocationOnScreen() method returns a Point object that contains both the X and
Y coordinate. The other two methods return the indicated coordinate.

The MouseWheelEvent Class
The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of MouseEvent.
Not all mice have wheels. If a mouse has a wheel, it is located between the left and right
buttons. Mouse wheels are used for scrolling. MouseWheelEvent defines these two integer
constants:

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers,
int x, int y, int clicks, boolean triggersPopup,
int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event is specified
by type. The system time at which the mouse event occurred is passed in when. The modifiers
argument indicates which modifiers were pressed when the event occurred. The coordinates
of the mouse are passed in x and y. The number of clicks the wheel has rotated is passed in
clicks. The triggersPopup flag indicates if this event causes a pop-up menu to appear on this
platform. The scrollHow value must be either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_
SCROLL. The number of units to scroll is passed in amount. The count parameter indicates
the number of rotational units that the wheel moved.

https://hemanthrajhemu.github.io

648 P a r t I I : T h e J a v a L i b r a r y

MouseWheelEvent defines methods that give you access to the wheel event. To obtain
the number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved
counterclockwise. If the value is negative, the wheel moved clockwise.

To obtain the type of scroll, call getScrollType(), shown next:

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.
If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units to scroll

by calling getScrollAmount(). It is shown here:

int getScrollAmount()

The TextEvent Class
Instances of this class describe text events. These are generated by text fields and text areas
when characters are entered by a user or program. TextEvent defines the integer constant
TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type.

The TextEvent object does not include the characters currently in the text component that
generated the event. Instead, your program must use other methods associated with the text
component to retrieve that information. This operation differs from other event objects
discussed in this section. For this reason, no methods are discussed here for the TextEvent
class. Think of a text event notification as a signal to a listener that it should retrieve information
from a specific text component.

The WindowEvent Class
There are ten types of window events. The WindowEvent class defines integer constants that
can be used to identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

https://hemanthrajhemu.github.io

WindowEvent is a subclass of ComponentEvent. It defines several constructors. The
first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.
The next three constructors offer more detailed control:

WindowEvent(Window src, int type, Window other)
WindowEvent(Window src, int type, int fromState, int toState)
WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus or activation event occurs. The
fromState specifies the prior state of the window, and toState specifies the new state that the
window will have when a window state change occurs.

A commonly used method in this class is getWindow(). It returns the Window object
that generated the event. Its general form is shown here:

Window getWindow()

WindowEvent also defines methods that return the opposite window (when a focus or
activation event has occurred), the previous window state, and the current window state.
These methods are shown here:

Window getOppositeWindow()
int getOldState()
int getNewState()

Sources of Events
Table 22-2 lists some of the user interface components that can generate the events described
in the previous section. In addition to these graphical user interface elements, any class derived

C h a p t e r 2 2 : E v e n t H a n d l i n g 649

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates item
events when an item is selected or deselected.

Menu Item Generates action events when a menu item is selected; generates item
events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed, deactivated,
deiconified, iconified, opened, or quit.

TABLE 22-2 Event Source Examples

https://hemanthrajhemu.github.io

from Component, such as Applet, can generate events. For example, you can receive key and
mouse events from an applet. (You may also build your own components that generate
events.) In this chapter, we will be handling only mouse and keyboard events, but the
following two chapters will be handling events from the sources shown in Table 22-2.

Event Listener Interfaces
As explained, the delegation event model has two parts: sources and listeners. Listeners are
created by implementing one or more of the interfaces defined by the java.awt.event package.
When an event occurs, the event source invokes the appropriate method defined by the
listener and provides an event object as its argument. Table 22-3 lists commonly used listener
interfaces and provides a brief description of the methods that they define. The following
sections examine the specific methods that are contained in each interface.

The ActionListener Interface
This interface defines the actionPerformed() method that is invoked when an action event
occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

650 P a r t I I : T h e J a v a L i b r a r y

Interface Description

ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden,
moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to
or removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses
keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released,
or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters
a component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or
moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or loses
input focus.

WindowListener Defines seven methods to recognize when a window is activated,
closed, deactivated, deiconified, iconified, opened, or quit.

TABLE 22-3 Commonly Used Event Listener Interfaces

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 651

The AdjustmentListener Interface
This interface defines the adjustmentValueChanged() method that is invoked when an
adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface
This interface defines four methods that are invoked when a component is resized, moved,
shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown(ComponentEvent ce)
void componentHidden(ComponentEvent ce)

The ContainerListener Interface
This interface contains two methods. When a component is added to a container,
componentAdded() is invoked. When a component is removed from a container,
componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)
void componentRemoved(ContainerEvent ce)

The FocusListener Interface
This interface defines two methods. When a component obtains keyboard focus, focusGained()
is invoked. When a component loses keyboard focus, focusLost() is called. Their general
forms are shown here:

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state of an
item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface
This interface defines three methods. The keyPressed() and keyReleased() methods are
invoked when a key is pressed and released, respectively. The keyTyped() method is invoked
when a character has been entered.

For example, if a user presses and releases the A key, three events are generated in sequence:
key pressed, typed, and released. If a user presses and releases the HOME key, two key events
are generated in sequence: key pressed and released.

https://hemanthrajhemu.github.io

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

The MouseListener Interface
This interface defines five methods. If the mouse is pressed and released at the same point,
mouseClicked() is invoked. When the mouse enters a component, the mouseEntered()
method is called. When it leaves, mouseExited() is called. The mousePressed() and
mouseReleased() methods are invoked when the mouse is pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface defines two methods. The mouseDragged() method is called multiple times
as the mouse is dragged. The mouseMoved() method is called multiple times as the mouse
is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

The MouseWheelListener Interface
This interface defines the mouseWheelMoved() method that is invoked when the mouse
wheel is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface
This interface defines the textChanged() method that is invoked when a change occurs
in a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

The WindowFocusListener Interface
This interface defines two methods: windowGainedFocus() and windowLostFocus(). These
are called when a window gains or loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)
void windowLostFocus(WindowEvent we)

652 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 653

The WindowListener Interface
This interface defines seven methods. The windowActivated() and windowDeactivated()
methods are invoked when a window is activated or deactivated, respectively. If a window
is iconified, the windowIconified() method is called. When a window is deiconified,
the windowDeiconified() method is called. When a window is opened or closed, the
windowOpened() or windowClosed() methods are called, respectively. The windowClosing()
method is called when a window is being closed. The general forms of these methods are

void windowActivated(WindowEvent we)
void windowClosed(WindowEvent we)
void windowClosing(WindowEvent we)
void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowIconified(WindowEvent we)
void windowOpened(WindowEvent we)

Using the Delegation Event Model
Now that you have learned the theory behind the delegation event model and have had an
overview of its various components, it is time to see it in practice. Using the delegation event
model is actually quite easy. Just follow these two steps:

1. Implement the appropriate interface in the listener so that it will receive the type
of event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient
for the event notifications.

Remember that a source may generate several types of events. Each event must be registered
separately. Also, an object may register to receive several types of events, but it must implement
all of the interfaces that are required to receive these events.

To see how the delegation model works in practice, we will look at examples that handle
two commonly used event generators: the mouse and keyboard.

Handling Mouse Events
To handle mouse events, you must implement the MouseListener and the MouseMotionListener
interfaces. (You may also want to implement MouseWheelListener, but we won’t be doing
so, here.) The following applet demonstrates the process. It displays the current coordinates
of the mouse in the applet’s status window. Each time a button is pressed, the word “Down”
is displayed at the location of the mouse pointer. Each time the button is released, the word
“Up” is shown. If a button is clicked, the message “Mouse clicked” is displayed in the upper-
left corner of the applet display area.

As the mouse enters or exits the applet window, a message is displayed in the upper-left
corner of the applet display area. When dragging the mouse, a * is shown, which tracks with
the mouse pointer as it is dragged. Notice that the two variables, mouseX and mouseY, store
the location of the mouse when a mouse pressed, released, or dragged event occurs. These
coordinates are then used by paint() to display output at the point of these occurrences.

// Demonstrate the mouse event handlers.
import java.awt.*;

https://hemanthrajhemu.github.io

654 P a r t I I : T h e J a v a L i b r a r y

import java.awt.event.*;
import java.applet.*;
/*
<applet code="MouseEvents" width=300 height=100>
</applet>

*/

public class MouseEvents extends Applet
implements MouseListener, MouseMotionListener {

String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init() {
addMouseListener(this);
addMouseMotionListener(this);

}

// Handle mouse clicked.
public void mouseClicked(MouseEvent me) {
// save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse clicked.";
repaint();

}

// Handle mouse entered.
public void mouseEntered(MouseEvent me) {
// save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse entered.";
repaint();

}

// Handle mouse exited.
public void mouseExited(MouseEvent me) {
// save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse exited.";
repaint();

}

// Handle button pressed.
public void mousePressed(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Down";
repaint();

}

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 655

// Handle button released.
public void mouseReleased(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Up";
repaint();

}

// Handle mouse dragged.
public void mouseDragged(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "*";
showStatus("Dragging mouse at " + mouseX + ", " + mouseY);
repaint();

}

// Handle mouse moved.
public void mouseMoved(MouseEvent me) {
// show status
showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display msg in applet window at current X,Y location.
public void paint(Graphics g) {
g.drawString(msg, mouseX, mouseY);

}
}

Sample output from this program is shown here:

Let’s look closely at this example. The MouseEvents class extends Applet and implements
both the MouseListener and MouseMotionListener interfaces. These two interfaces contain
methods that receive and process the various types of mouse events. Notice that the applet
is both the source and the listener for these events. This works because Component, which
supplies the addMouseListener() and addMouseMotionListener() methods, is a superclass
of Applet. Being both the source and the listener for events is a common situation for applets.

Inside init(), the applet registers itself as a listener for mouse events. This is done by using
addMouseListener() and addMouseMotionListener(), which, as mentioned, are members
of Component. They are shown here:

void addMouseListener(MouseListener ml)
void addMouseMotionListener(MouseMotionListener mml)

https://hemanthrajhemu.github.io

656 P a r t I I : T h e J a v a L i b r a r y

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the
object receiving mouse motion events. In this program, the same object is used for both.

The applet then implements all of the methods defined by the MouseListener and
MouseMotionListener interfaces. These are the event handlers for the various mouse
events. Each method handles its event and then returns.

Handling Keyboard Events
To handle keyboard events, you use the same general architecture as that shown in the
mouse event example in the preceding section. The difference, of course, is that you will
be implementing the KeyListener interface.

Before looking at an example, it is useful to review how key events are generated. When
a key is pressed, a KEY_PRESSED event is generated. This results in a call to the keyPressed()
event handler. When the key is released, a KEY_RELEASED event is generated and the
keyReleased() handler is executed. If a character is generated by the keystroke, then a
KEY_TYPED event is sent and the keyTyped() handler is invoked. Thus, each time the user
presses a key, at least two and often three events are generated. If all you care about are actual
characters, then you can ignore the information passed by the keypress and release events.
However, if your program needs to handle special keys, such as the arrow or function keys,
then it must watch for them through the keyPressed() handler.

The following program demonstrates keyboard input. It echoes keystrokes to the applet
window and shows the pressed/released status of each key in the status window.

// Demonstrate the key event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="SimpleKey" width=300 height=100>
</applet>

*/

public class SimpleKey extends Applet
implements KeyListener {

String msg = "";
int X = 10, Y = 20; // output coordinates

public void init() {
addKeyListener(this);

}

public void keyPressed(KeyEvent ke) {
showStatus("Key Down");

}

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {
msg += ke.getKeyChar();

https://hemanthrajhemu.github.io

C h a p t e r 2 2 : E v e n t H a n d l i n g 657

repaint();
}

// Display keystrokes.
public void paint(Graphics g) {
g.drawString(msg, X, Y);

}
}

Sample output is shown here:

If you want to handle the special keys, such as the arrow or function keys, you need to
respond to them within the keyPressed() handler. They are not available through keyTyped().
To identify the keys, you use their virtual key codes. For example, the next applet outputs
the name of a few of the special keys:

// Demonstrate some virtual key codes.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="KeyEvents" width=300 height=100>
</applet>

*/

public class KeyEvents extends Applet
implements KeyListener {

String msg = "";
int X = 10, Y = 20; // output coordinates

public void init() {
addKeyListener(this);

}

public void keyPressed(KeyEvent ke) {
showStatus("Key Down");

int key = ke.getKeyCode();
switch(key) {
case KeyEvent.VK_F1:
msg += "<F1>";
break;

case KeyEvent.VK_F2:

https://hemanthrajhemu.github.io

msg += "<F2>";
break;

case KeyEvent.VK_F3:
msg += "<F3>";
break;

case KeyEvent.VK_PAGE_DOWN:
msg += "<PgDn>";
break;

case KeyEvent.VK_PAGE_UP:
msg += "<PgUp>";
break;

case KeyEvent.VK_LEFT:
msg += "<Left Arrow>";
break;

case KeyEvent.VK_RIGHT:
msg += "<Right Arrow>";
break;

}

repaint();
}

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {
msg += ke.getKeyChar();
repaint();

}

// Display keystrokes.
public void paint(Graphics g) {
g.drawString(msg, X, Y);

}
}

Sample output is shown here:

The procedures shown in the preceding keyboard and mouse event examples can be
generalized to any type of event handling, including those events generated by controls. In
later chapters, you will see many examples that handle other types of events, but they will
all follow the same basic structure as the programs just described.

658 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

Adapter Classes
Java provides a special feature, called an adapter class, that can simplify the creation of event
handlers in certain situations. An adapter class provides an empty implementation of all
methods in an event listener interface. Adapter classes are useful when you want to receive
and process only some of the events that are handled by a particular event listener interface.
You can define a new class to act as an event listener by extending one of the adapter classes
and implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged()
and mouseMoved(), which are the methods defined by the MouseMotionListener
interface. If you were interested in only mouse drag events, then you could simply extend
MouseMotionAdapter and override mouseDragged(). The empty implementation of
mouseMoved() would handle the mouse motion events for you.

Table 22-4 lists the commonly used adapter classes in java.awt.event and notes the
interface that each implements.

The following example demonstrates an adapter. It displays a message in the status bar
of an applet viewer or browser when the mouse is clicked or dragged. However, all other
mouse events are silently ignored. The program has three classes. AdapterDemo extends
Applet. Its init() method creates an instance of MyMouseAdapter and registers that object
to receive notifications of mouse events. It also creates an instance of MyMouseMotionAdapter
and registers that object to receive notifications of mouse motion events. Both of the constructors
take a reference to the applet as an argument.

MyMouseAdapter extends MouseAdapter and overrides the mouseClicked() method.
The other mouse events are silently ignored by code inherited from the MouseAdapter
class. MyMouseMotionAdapter extends MouseMotionAdapter and overrides the
mouseDragged() method. The other mouse motion event is silently ignored by code
inherited from the MouseMotionAdapter class.

Note that both of the event listener classes save a reference to the applet. This information
is provided as an argument to their constructors and is used later to invoke the showStatus()
method.

// Demonstrate an adapter.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*

C h a p t e r 2 2 : E v e n t H a n d l i n g 659

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

TABLE 22-4
Commonly Used
Listener Interfaces
Implemented by
Adapter Classes

https://hemanthrajhemu.github.io

<applet code="AdapterDemo" width=300 height=100>
</applet>

*/

public class AdapterDemo extends Applet {
public void init() {

addMouseListener(new MyMouseAdapter(this));
addMouseMotionListener(new MyMouseMotionAdapter(this));

}
}

class MyMouseAdapter extends MouseAdapter {

AdapterDemo adapterDemo;
public MyMouseAdapter(AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.
public void mouseClicked(MouseEvent me) {
adapterDemo.showStatus("Mouse clicked");

}
}

class MyMouseMotionAdapter extends MouseMotionAdapter {
AdapterDemo adapterDemo;
public MyMouseMotionAdapter(AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.
public void mouseDragged(MouseEvent me) {
adapterDemo.showStatus("Mouse dragged");

}
}

As you can see by looking at the program, not having to implement all of the methods
defined by the MouseMotionListener and MouseListener interfaces saves you a considerable
amount of effort and prevents your code from becoming cluttered with empty methods. As
an exercise, you might want to try rewriting one of the keyboard input examples shown
earlier so that it uses a KeyAdapter.

Inner Classes
In Chapter 7, the basics of inner classes were explained. Here you will see why they are
important. Recall that an inner class is a class defined within another class, or even within an
expression. This section illustrates how inner classes can be used to simplify the code when
using event adapter classes.

To understand the benefit provided by inner classes, consider the applet shown in the
following listing. It does not use an inner class. Its goal is to display the string “Mouse Pressed”
in the status bar of the applet viewer or browser when the mouse is pressed. There are two

660 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

top-level classes in this program. MousePressedDemo extends Applet, and MyMouseAdapter
extends MouseAdapter. The init() method of MousePressedDemo instantiates
MyMouseAdapter and provides this object as an argument to the addMouseListener()
method.

Notice that a reference to the applet is supplied as an argument to the MyMouseAdapter
constructor. This reference is stored in an instance variable for later use by the mousePressed()
method. When the mouse is pressed, it invokes the showStatus() method of the applet
through the stored applet reference. In other words, showStatus() is invoked relative to
the applet reference stored by MyMouseAdapter.

// This applet does NOT use an inner class.
import java.applet.*;
import java.awt.event.*;
/*
<applet code="MousePressedDemo" width=200 height=100>
</applet>

*/

public class MousePressedDemo extends Applet {
public void init() {
addMouseListener(new MyMouseAdapter(this));

}
}

class MyMouseAdapter extends MouseAdapter {
MousePressedDemo mousePressedDemo;
public MyMouseAdapter(MousePressedDemo mousePressedDemo) {
this.mousePressedDemo = mousePressedDemo;

}
public void mousePressed(MouseEvent me) {
mousePressedDemo.showStatus("Mouse Pressed.");

}
}

The following listing shows how the preceding program can be improved by using an
inner class. Here, InnerClassDemo is a top-level class that extends Applet. MyMouseAdapter
is an inner class that extends MouseAdapter. Because MyMouseAdapter is defined within
the scope of InnerClassDemo, it has access to all of the variables and methods within the
scope of that class. Therefore, the mousePressed() method can call the showStatus() method
directly. It no longer needs to do this via a stored reference to the applet. Thus, it is no longer
necessary to pass MyMouseAdapter() a reference to the invoking object.

// Inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
<applet code="InnerClassDemo" width=200 height=100>
</applet>

*/

public class InnerClassDemo extends Applet {

C h a p t e r 2 2 : E v e n t H a n d l i n g 661

https://hemanthrajhemu.github.io

public void init() {
addMouseListener(new MyMouseAdapter());

}
class MyMouseAdapter extends MouseAdapter {
public void mousePressed(MouseEvent me) {
showStatus("Mouse Pressed");

}
}

}

Anonymous Inner Classes
An anonymous inner class is one that is not assigned a name. This section illustrates how an
anonymous inner class can facilitate the writing of event handlers. Consider the applet shown
in the following listing. As before, its goal is to display the string “Mouse Pressed” in the
status bar of the applet viewer or browser when the mouse is pressed.

// Anonymous inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
<applet code="AnonymousInnerClassDemo" width=200 height=100>
</applet>

*/

public class AnonymousInnerClassDemo extends Applet {
public void init() {
addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent me) {
showStatus("Mouse Pressed");

}
});

}
}

There is one top-level class in this program: AnonymousInnerClassDemo. The init()
method calls the addMouseListener() method. Its argument is an expression that defines
and instantiates an anonymous inner class. Let’s analyze this expression carefully.

The syntax new MouseAdapter() { ... } indicates to the compiler that the code between the
braces defines an anonymous inner class. Furthermore, that class extends MouseAdapter. This
new class is not named, but it is automatically instantiated when this expression is executed.

Because this anonymous inner class is defined within the scope of
AnonymousInnerClassDemo, it has access to all of the variables and methods within
the scope of that class. Therefore, it can call the showStatus() method directly.

As just illustrated, both named and anonymous inner classes solve some annoying
problems in a simple yet effective way. They also allow you to create more efficient code.

662 P a r t I I : T h e J a v a L i b r a r y

https://hemanthrajhemu.github.io

29
Introducing Swing

In Part II, you saw how to build user interfaces with the AWT classes. Although the AWT
is still a crucial part of Java, its component set is no longer widely used to create graphic
user interfaces. Today, most programmers use Swing for this purpose. Swing is a set of

classes that provides more powerful and flexible GUI components than does the AWT. Simply
put, Swing provides the look and feel of the modern Java GUI.

Coverage of Swing is divided between two chapters. This chapter introduces Swing.
It begins by describing Swing’s core concepts. It then shows the general form of a Swing
program, including both applications and applets. It concludes by explaining how painting
is accomplished in Swing. The following chapter presents several commonly used Swing
components. It is important to understand that the number of classes and interfaces in the
Swing packages is quite large, and they can’t all be covered in this book. (In fact, full
coverage of Swing requires an entire book of its own.) However, these two chapters will
give you a basic understanding of this important topic.

NOTEOTE For a comprehensive introduction to Swing, see my book Swing: A Beginner’s Guide
published by McGraw-Hill/Osborne (2007).

The Origins of Swing
Swing did not exist in the early days of Java. Rather, it was a response to deficiencies present
in Java’s original GUI subsystem: the Abstract Window Toolkit. The AWT defines a basic set
of controls, windows, and dialog boxes that support a usable, but limited graphical interface.
One reason for the limited nature of the AWT is that it translates its various visual components
into their corresponding, platform-specific equivalents, or peers. This means that the look
and feel of a component is defined by the platform, not by Java. Because the AWT components
use native code resources, they are referred to as heavyweight.

The use of native peers led to several problems. First, because of variations between
operating systems, a component might look, or even act, differently on different platforms.
This potential variability threatened the overarching philosophy of Java: write once, run
anywhere. Second, the look and feel of each component was fixed (because it is defined by
the platform) and could not be (easily) changed. Third, the use of heavyweight components
caused some frustrating restrictions. For example, a heavyweight component is always
rectangular and opaque.

8 5 9

https://hemanthrajhemu.github.io

860 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Not long after Java’s original release, it became apparent that the limitations and
restrictions present in the AWT were sufficiently serious that a better approach was needed.
The solution was Swing. Introduced in 1997, Swing was included as part of the Java
Foundation Classes (JFC). Swing was initially available for use with Java 1.1 as a separate
library. However, beginning with Java 1.2, Swing (and the rest of the JFC) was fully
integrated into Java.

Swing Is Built on the AWT
Before moving on, it is necessary to make one important point: although Swing eliminates
a number of the limitations inherent in the AWT, Swing does not replace it. Instead, Swing
is built on the foundation of the AWT. This is why the AWT is still a crucial part of Java.
Swing also uses the same event handling mechanism as the AWT. Therefore, a basic
understanding of the AWT and of event handling is required to use Swing. (The AWT
is covered in Chapters 23 and 24. Event handling is described in Chapter 22.)

Two Key Swing Features
As just explained, Swing was created to address the limitations present in the AWT. It does
this through two key features: lightweight components and a pluggable look and feel.
Together they provide an elegant, yet easy-to-use solution to the problems of the AWT.
More than anything else, it is these two features that define the essence of Swing. Each
is examined here.

Swing Components Are Lightweight
With very few exceptions, Swing components are lightweight. This means that they are written
entirely in Java and do not map directly to platform-specific peers. Because lightweight
components are rendered using graphics primitives, they can be transparent, which enables
nonrectangular shapes. Thus, lightweight components are more efficient and more flexible.
Furthermore, because lightweight components do not translate into native peers, the look and
feel of each component is determined by Swing, not by the underlying operating system. This
means that each component will work in a consistent manner across all platforms.

Swing Supports a Pluggable Look and Feel
Swing supports a pluggable look and feel (PLAF). Because each Swing component is rendered
by Java code rather than by native peers, the look and feel of a component is under the
control of Swing. This fact means that it is possible to separate the look and feel of a
component from the logic of the component, and this is what Swing does. Separating out
the look and feel provides a significant advantage: it becomes possible to change the way
that a component is rendered without affecting any of its other aspects. In other words, it is
possible to “plug in” a new look and feel for any given component without creating any
side effects in the code that uses that component. Moreover, it becomes possible to define
entire sets of look-and-feels that represent different GUI styles. To use a specific style, its
look and feel is simply “plugged in.” Once this is done, all components are automatically
rendered using that style.

Pluggable look-and-feels offer several important advantages. It is possible to define a
look and feel that is consistent across all platforms. Conversely, it is possible to create a look

https://hemanthrajhemu.github.io

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 861

and feel that acts like a specific platform. For example, if you know that an application will
be running only in a Windows environment, it is possible to specify the Windows look and
feel. It is also possible to design a custom look and feel. Finally, the look and feel can be
changed dynamically at run time.

Java SE 6 provides look-and-feels, such as metal and Motif, that are available to all Swing
users. The metal look and feel is also called the Java look and feel. It is platform-independent and
available in all Java execution environments. It is also the default look and feel. Windows
environments also have access to the Windows and Windows Classic look and feel. This
book uses the default Java look and feel (metal) because it is platform independent.

The MVC Connection
In general, a visual component is a composite of three distinct aspects:

• The way that the component looks when rendered on the screen

• The way that the component reacts to the user

• The state information associated with the component

No matter what architecture is used to implement a component, it must implicitly contain
these three parts. Over the years, one component architecture has proven itself to be
exceptionally effective: Model-View-Controller, or MVC for short.

The MVC architecture is successful because each piece of the design corresponds to an
aspect of a component. In MVC terminology, the model corresponds to the state information
associated with the component. For example, in the case of a check box, the model contains
a field that indicates if the box is checked or unchecked. The view determines how the
component is displayed on the screen, including any aspects of the view that are affected
by the current state of the model. The controller determines how the component reacts to the
user. For example, when the user clicks a check box, the controller reacts by changing the
model to reflect the user’s choice (checked or unchecked). This then results in the view
being updated. By separating a component into a model, a view, and a controller, the
specific implementation of each can be changed without affecting the other two. For instance,
different view implementations can render the same component in different ways without
affecting the model or the controller.

Although the MVC architecture and the principles behind it are conceptually sound,
the high level of separation between the view and the controller is not beneficial for Swing
components. Instead, Swing uses a modified version of MVC that combines the view and
the controller into a single logical entity called the UI delegate. For this reason, Swing’s
approach is called either the Model-Delegate architecture or the Separable Model architecture.
Therefore, although Swing’s component architecture is based on MVC, it does not use a
classical implementation of it.

Swing’s pluggable look and feel is made possible by its Model-Delegate architecture.
Because the view (look) and controller (feel) are separate from the model, the look and feel
can be changed without affecting how the component is used within a program.
Conversely, it is possible to customize the model without affecting the way that the
component appears on the screen or responds to user input.

To support the Model-Delegate architecture, most Swing components contain two objects.
The first represents the model. The second represents the UI delegate. Models are defined

https://hemanthrajhemu.github.io

862 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

by interfaces. For example, the model for a button is defined by the ButtonModel interface.
UI delegates are classes that inherit ComponentUI. For example, the UI delegate for a button
is ButtonUI. Normally, your programs will not interact directly with the UI delegate.

Components and Containers
A Swing GUI consists of two key items: components and containers. However, this distinction
is mostly conceptual because all containers are also components. The difference between the
two is found in their intended purpose: As the term is commonly used, a component is an
independent visual control, such as a push button or slider. A container holds a group of
components. Thus, a container is a special type of component that is designed to hold other
components. Furthermore, in order for a component to be displayed, it must be held within
a container. Thus, all Swing GUIs will have at least one container. Because containers are
components, a container can also hold other containers. This enables Swing to define what
is called a containment hierarchy, at the top of which must be a top-level container.

Let’s look a bit more closely at components and containers.

Components
In general, Swing components are derived from the JComponent class. (The only exceptions
to this are the four top-level containers, described in the next section.) JComponent provides
the functionality that is common to all components. For example, JComponent supports the
pluggable look and feel. JComponent inherits the AWT classes Container and Component.
Thus, a Swing component is built on and compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package
javax.swing. The following table shows the class names for Swing components (including
those used as containers).

JApplet JButton JCheckBox JCheckBoxMenuItem

JColorChooser JComboBox JComponent JDesktopPane

JDialog JEditorPane JFileChooser JFormattedTextField

JFrame JInternalFrame JLabel JLayeredPane

JList JMenu JMenuBar JMenuItem

JOptionPane JPanel JPasswordField JPopupMenu

JProgressBar JRadioButton JRadioButtonMenuItem JRootPane

JScrollBar JScrollPane JSeparator JSlider

JSpinner JSplitPane JTabbedPane JTable

JTextArea JTextField JTextPane JTogglebutton

JToolBar JToolTip JTree JViewport

JWindow

https://hemanthrajhemu.github.io

Notice that all component classes begin with the letter J. For example, the class for a label
is JLabel; the class for a push button is JButton; and the class for a scroll bar is JScrollBar.

Containers
Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,
JWindow, and JDialog. These containers do not inherit JComponent. They do, however,
inherit the AWT classes Component and Container. Unlike Swing’s other components,
which are lightweight, the top-level containers are heavyweight. This makes the top-level
containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment hierarchy.
A top-level container is not contained within any other container. Furthermore, every
containment hierarchy must begin with a top-level container. The one most commonly used
for applications is JFrame. The one used for applets is JApplet.

The second type of containers supported by Swing are lightweight containers. Lightweight
containers do inherit JComponent. An example of a lightweight container is JPanel, which
is a general-purpose container. Lightweight containers are often used to organize and
manage groups of related components because a lightweight container can be contained
within another container. Thus, you can use lightweight containers such as JPanel to create
subgroups of related controls that are contained within an outer container.

The Top-Level Container Panes
Each top-level container defines a set of panes. At the top of the hierarchy is an instance of
JRootPane. JRootPane is a lightweight container whose purpose is to manage the other
panes. It also helps manage the optional menu bar. The panes that comprise the root pane
are called the glass pane, the content pane, and the layered pane.

The glass pane is the top-level pane. It sits above and completely covers all other panes.
By default, it is a transparent instance of JPanel. The glass pane enables you to manage
mouse events that affect the entire container (rather than an individual control) or to paint
over any other component, for example. In most cases, you won’t need to use the glass pane
directly, but it is there if you need it.

The layered pane is an instance of JLayeredPane. The layered pane allows components
to be given a depth value. This value determines which component overlays another. (Thus,
the layered pane lets you specify a Z-order for a component, although this is not something
that you will usually need to do.) The layered pane holds the content pane and the (optional)
menu bar.

Although the glass pane and the layered panes are integral to the operation of a top-level
container and serve important purposes, much of what they provide occurs behind the
scene. The pane with which your application will interact the most is the content pane,
because this is the pane to which you will add visual components. In other words, when
you add a component, such as a button, to a top-level container, you will add it to the
content pane. By default, the content pane is an opaque instance of JPanel.

The Swing Packages
Swing is a very large subsystem and makes use of many packages. These are the packages
used by Swing that are defined by Java SE 6.

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 863

https://hemanthrajhemu.github.io

864 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

javax.swing javax.swing.border javax.swing.colorchooser

javax.swing.event javax.swing.filechooser javax.swing.plaf

javax.swing.plaf.basic javax.swing.plaf.metal javax.swing.plaf.multi

javax.swing.plaf.synth javax.swing.table javax.swing.text

javax.swing.text.html javax.swing.text.html.parser javax.swing.text.rtf

javax.swing.tree javax.swing.undo

The main package is javax.swing. This package must be imported into any program
that uses Swing. It contains the classes that implement the basic Swing components, such as
push buttons, labels, and check boxes.

A Simple Swing Application
Swing programs differ from both the console-based programs and the AWT-based programs
shown earlier in this book. For example, they use a different set of components and a
different container hierarchy than does the AWT. Swing programs also have special
requirements that relate to threading. The best way to understand the structure of a Swing
program is to work through an example. There are two types of Java programs in which
Swing is typically used. The first is a desktop application. The second is the applet. This
section shows how to create a Swing application. The creation of a Swing applet is described
later in this chapter.

Although quite short, the following program shows one way to write a Swing application.
In the process, it demonstrates several key features of Swing. It uses two Swing components:
JFrame and JLabel. JFrame is the top-level container that is commonly used for Swing
applications. JLabel is the Swing component that creates a label, which is a component that
displays information. The label is Swing’s simplest component because it is passive. That is,
a label does not respond to user input. It just displays output. The program uses a JFrame
container to hold an instance of a JLabel. The label displays a short text message.

// A simple Swing application.

import javax.swing.*;

class SwingDemo {

SwingDemo() {

// Create a new JFrame container.
JFrame jfrm = new JFrame("A Simple Swing Application");

// Give the frame an initial size.
jfrm.setSize(275, 100);

// Terminate the program when the user closes the application.
jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Create a text-based label.

https://hemanthrajhemu.github.io

JLabel jlab = new JLabel(" Swing means powerful GUIs.");

// Add the label to the content pane.
jfrm.add(jlab);

// Display the frame.
jfrm.setVisible(true);

}

public static void main(String args[]) {
// Create the frame on the event dispatching thread.
SwingUtilities.invokeLater(new Runnable() {
public void run() {
new SwingDemo();

}
});

}
}

Swing programs are compiled and run in the same way as other Java applications. Thus,
to compile this program, you can use this command line:

javac SwingDemo.java

To run the program, use this command line:

java SwingDemo

When the program is run, it will produce the window shown in Figure 29-1.
Because the SwingDemo program illustrates several core Swing concepts, we will

examine it carefully, line by line. The program begins by importing javax.swing. As
mentioned, this package contains the components and models defined by Swing. For
example, javax.swing defines classes that implement labels, buttons, text controls, and
menus. It will be included in all programs that use Swing.

Next, the program declares the SwingDemo class and a constructor for that class. The
constructor is where most of the action of the program occurs. It begins by creating a JFrame,
using this line of code:

JFrame jfrm = new JFrame("A Simple Swing Application");

This creates a container called jfrm that defines a rectangular window complete with a title
bar; close, minimize, maximize, and restore buttons; and a system menu. Thus, it creates a
standard, top-level window. The title of the window is passed to the constructor.

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 865

FIGURE 29-1 The window produced by the SwingDemo program

https://hemanthrajhemu.github.io

866 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Next, the window is sized using this statement:

jfrm.setSize(275, 100);

The setSize() method (which is inherited by JFrame from the AWT class Component) sets
the dimensions of the window, which are specified in pixels. Its general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the height is set to 100.
By default, when a top-level window is closed (such as when the user clicks the close

box), the window is removed from the screen, but the application is not terminated. While
this default behavior is useful in some situations, it is not what is needed for most applications.
Instead, you will usually want the entire application to terminate when its top-level
window is closed. There are a couple of ways to achieve this. The easiest way is to call
setDefaultCloseOperation(), as the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application to terminate. The
general form of setDefaultCloseOperation() is shown here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed. There are
several other options in addition to JFrame.EXIT_ON_CLOSE. They are shown here:

JFrame.DISPOSE_ON_CLOSE

JFrame.HIDE_ON_CLOSE

JFrame.DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in WindowConstants, which
is an interface declared in javax.swing that is implemented by JFrame.

The next line of code creates a Swing JLabel component:

JLabel jlab = new JLabel(" Swing means powerful GUIs.");

JLabel is the simplest and easiest-to-use component because it does not accept user input. It
simply displays information, which can consist of text, an icon, or a combination of the two.
The label created by the program contains only text, which is passed to its constructor.

The next line of code adds the label to the content pane of the frame:

jfrm.add(jlab);

As explained earlier, all top-level containers have a content pane in which components are
stored. Thus, to add a component to a frame, you must add it to the frame’s content pane.
This is accomplished by calling add() on the JFrame reference (jfrm in this case). The
general form of add() is shown here:

Component add(Component comp)

https://hemanthrajhemu.github.io

The add() method is inherited by JFrame from the AWT class Container.
By default, the content pane associated with a JFrame uses border layout. The version

of add() just shown adds the label to the center location. Other versions of add() enable
you to specify one of the border regions. When a component is added to the center, its size
is adjusted automatically to fit the size of the center.

Before continuing, an important historical point needs to be made. Prior to JDK 5, when
adding a component to the content pane, you could not invoke the add() method directly
on a JFrame instance. Instead, you needed to call add() on the content pane of the JFrame
object. The content pane can be obtained by calling getContentPane() on a JFrame instance.
The getContentPane() method is shown here:

Container getContentPane()

It returns a Container reference to the content pane. The add() method was then called on
that reference to add a component to a content pane. Thus, in the past, you had to use the
following statement to add jlab to jfrm:

jfrm.getContentPane().add(jlab); // old-style

Here, getContentPane() first obtains a reference to content pane, and then add() adds the
component to the container linked to this pane. This same procedure was also required to
invoke remove() to remove a component and setLayout() to set the layout manager for the
content pane. You will see explicit calls to getContentPane() frequently throughout pre-5.0
code. Today, the use of getContentPane() is no longer necessary. You can simply call add(),
remove(), and setLayout() directly on JFrame because these methods have been changed
so that they operate on the content pane automatically.

The last statement in the SwingDemo constructor causes the window to become visible:

jfrm.setVisible(true);

The setVisible() method is inherited from the AWT Component class. If its argument is
true, the window will be displayed. Otherwise, it will be hidden. By default, a JFrame is
invisible, so setVisible(true) must be called to show it.

Inside main(), a SwingDemo object is created, which causes the window and the label to
be displayed. Notice that the SwingDemo constructor is invoked using these lines of code:

SwingUtilities.invokeLater(new Runnable() {
public void run() {
new SwingDemo();

}
});

This sequence causes a SwingDemo object to be created on the event dispatching thread
rather than on the main thread of the application. Here’s why. In general, Swing programs
are event-driven. For example, when a user interacts with a component, an event is
generated. An event is passed to the application by calling an event handler defined by the
application. However, the handler is executed on the event dispatching thread provided by
Swing and not on the main thread of the application. Thus, although event handlers are
defined by your program, they are called on a thread that was not created by your program.

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 867

https://hemanthrajhemu.github.io

To avoid problems (including the potential for deadlock), all Swing GUI components must
be created and updated from the event dispatching thread, not the main thread of the
application. However, main() is executed on the main thread. Thus, main() cannot directly
instantiate a SwingDemo object. Instead, it must create a Runnable object that executes on
the event dispatching thread and have this object create the GUI.

To enable the GUI code to be created on the event dispatching thread, you must use one of
two methods that are defined by the SwingUtilities class. These methods are invokeLater()
and invokeAndWait(). They are shown here:

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)
throws InterruptedException, InvocationTargetException

Here, obj is a Runnable object that will have its run() method called by the event dispatching
thread. The difference between the two methods is that invokeLater() returns immediately,
but invokeAndWait() waits until obj.run() returns. You can use one of these methods to
call a method that constructs the GUI for your Swing application, or whenever you need to
modify the state of the GUI from code not executed by the event dispatching thread. You
will normally want to use invokeLater(), as the preceding program does. However, when
constructing the initial GUI for an applet, you will need to use invokeAndWait().

Event Handling
The preceding example showed the basic form of a Swing program, but it left out one
important part: event handling. Because JLabel does not take input from the user, it does
not generate events, so no event handling was needed. However, the other Swing components
do respond to user input and the events generated by those interactions need to be handled.
Events can also be generated in ways not directly related to user input. For example, an
event is generated when a timer goes off. Whatever the case, event handling is a large part
of any Swing-based application.

The event handling mechanism used by Swing is the same as that used by the AWT.
This approach is called the delegation event model, and it is described in Chapter 22. In many
cases, Swing uses the same events as does the AWT, and these events are packaged in
java.awt.event. Events specific to Swing are stored in javax.swing.event.

Although events are handled in Swing in the same way as they are with the AWT, it is
still useful to work through a simple example. The following program handles the event
generated by a Swing push button. Sample output is shown in Figure 29-2.

868 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

FIGURE 29-2 Output from the EventDemo program

https://hemanthrajhemu.github.io

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class EventDemo {

JLabel jlab;

EventDemo() {

// Create a new JFrame container.
JFrame jfrm = new JFrame("An Event Example");

// Specify FlowLayout for the layout manager.
jfrm.setLayout(new FlowLayout());

// Give the frame an initial size.
jfrm.setSize(220, 90);

// Terminate the program when the user closes the application.
jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Make two buttons.
JButton jbtnAlpha = new JButton("Alpha");
JButton jbtnBeta = new JButton("Beta");

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
jlab.setText("Alpha was pressed.");

}
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
jlab.setText("Beta was pressed.");

}
});

// Add the buttons to the content pane.
jfrm.add(jbtnAlpha);
jfrm.add(jbtnBeta);

// Create a text-based label.
jlab = new JLabel("Press a button.");

// Add the label to the content pane.
jfrm.add(jlab);

// Display the frame.

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 869

https://hemanthrajhemu.github.io

jfrm.setVisible(true);
}

public static void main(String args[]) {
// Create the frame on the event dispatching thread.
SwingUtilities.invokeLater(new Runnable() {
public void run() {
new EventDemo();

}
});

}
}

First, notice that the program now imports both the java.awt and java.awt.event
packages. The java.awt package is needed because it contains the FlowLayout class, which
supports the standard flow layout manager used to lay out components in a frame. (See
Chapter 24 for coverage of layout managers.) The java.awt.event package is needed because
it defines the ActionListener interface and the ActionEvent class.

The EventDemo constructor begins by creating a JFrame called jfrm. It then sets the
layout manager for the content pane of jfrm to FlowLayout. Recall that, by default, the content
pane uses BorderLayout as its layout manager. However, for this example, FlowLayout is
more convenient. Notice that FlowLayout is assigned using this statement:

jfrm.setLayout(new FlowLayout());

As explained, in the past you had to explicitly call getContentPane() to set the layout
manager for the content pane. This requirement was removed as of JDK 5.

After setting the size and default close operation, EventDemo() creates two push
buttons, as shown here:

JButton jbtnAlpha = new JButton("Alpha");
JButton jbtnBeta = new JButton("Beta");

The first button will contain the text “Alpha” and the second will contain the text “Beta.”
Swing push buttons are instances of JButton. JButton supplies several constructors. The
one used here is

JButton(String msg)

The msg parameter specifies the string that will be displayed inside the button.
When a push button is pressed, it generates an ActionEvent. Thus, JButton provides

the addActionListener() method, which is used to add an action listener. (JButton also
provides removeActionListener() to remove a listener, but this method is not used by
the program.) As explained in Chapter 22, the ActionListener interface defines only one
method: actionPerformed(). It is shown again here for your convenience:

void actionPerformed(ActionEvent ae)

This method is called when a button is pressed. In other words, it is the event handler that
is called when a button press event has occurred.

870 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 871

Next, event listeners for the button’s action events are added by the code shown here:

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
jlab.setText("Alpha was pressed.");

}
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
jlab.setText("Beta was pressed.");

}
});

Here, anonymous inner classes are used to provide the event handlers for the two buttons.
Each time a button is pressed, the string displayed in jlab is changed to reflect which button
was pressed.

Next, the buttons are added to the content pane of jfrm:

jfrm.add(jbtnAlpha);
jfrm.add(jbtnBeta);

Finally, jlab is added to the content pane and window is made visible. When you run the
program, each time you press a button, a message is displayed in the label that indicates
which button was pressed.

One last point: Remember that all event handlers, such as actionPerformed(), are called
on the event dispatching thread. Therefore, an event handler must return quickly in order to
avoid slowing down the application. If your application needs to do something time
consuming as the result of an event, it must use a separate thread.

Create a Swing Applet
The second type of program that commonly uses Swing is the applet. Swing-based applets
are similar to AWT-based applets, but with an important difference: A Swing applet extends
JApplet rather than Applet. JApplet is derived from Applet. Thus, JApplet includes all of
the functionality found in Applet and adds support for Swing. JApplet is a top-level Swing
container, which means that it is not derived from JComponent. Because JApplet is a
top-level container, it includes the various panes described earlier. This means that all
components are added to JApplet’s content pane in the same way that components are
added to JFrame’s content pane.

Swing applets use the same four lifecycle methods as described in Chapter 21: init(),
start(), stop(), and destroy(). Of course, you need override only those methods that are
needed by your applet. Painting is accomplished differently in Swing than it is in the AWT,
and a Swing applet will not normally override the paint() method. (Painting in Swing is
described later in this chapter.)

One other point: All interaction with components in a Swing applet must take place on
the event dispatching thread, as described in the previous section. This threading issue
applies to all Swing programs.

https://hemanthrajhemu.github.io

872 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Here is an example of a Swing applet. It provides the same functionality as the previous
application, but does so in applet form. Figure 29-3 shows the program when executed by
appletviewer.

// A simple Swing-based applet

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
This HTML can be used to launch the applet:

<object code="MySwingApplet" width=220 height=90>
</object>
*/

public class MySwingApplet extends JApplet {
JButton jbtnAlpha;
JButton jbtnBeta;

JLabel jlab;

// Initialize the applet.
public void init() {
try {
SwingUtilities.invokeAndWait(new Runnable () {
public void run() {
makeGUI(); // initialize the GUI

}
});

} catch(Exception exc) {
System.out.println("Can't create because of "+ exc);

}
}

// This applet does not need to override start(), stop(),
// or destroy().

// Set up and initialize the GUI.
private void makeGUI() {

FIGURE 29-3 Output from the example Swing applet

https://hemanthrajhemu.github.io

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 873

// Set the applet to use flow layout.
setLayout(new FlowLayout());

// Make two buttons.
jbtnAlpha = new JButton("Alpha");
jbtnBeta = new JButton("Beta");

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent le) {
jlab.setText("Alpha was pressed.");

}
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent le) {
jlab.setText("Beta was pressed.");

}
});

// Add the buttons to the content pane.
add(jbtnAlpha);
add(jbtnBeta);

// Create a text-based label.
jlab = new JLabel("Press a button.");

// Add the label to the content pane.
add(jlab);

}
}

There are two important things to notice about this applet. First, MySwingApplet
extends JApplet. As explained, all Swing-based applets extend JApplet rather than Applet.
Second, the init() method initializes the Swing components on the event dispatching thread
by setting up a call to makeGUI(). Notice that this is accomplished through the use of
invokeAndWait() rather than invokeLater(). Applets must use invokeAndWait() because
the init() method must not return until the entire initialization process has been completed.
In essence, the start() method cannot be called until after initialization, which means that
the GUI must be fully constructed.

Inside makeGUI(), the two buttons and label are created, and the action listeners are
added to the buttons. Finally, the components are added to the content pane. Although
this example is quite simple, this same general approach must be used when building any
Swing GUI that will be used by an applet.

Painting in Swing
Although the Swing component set is quite powerful, you are not limited to using it
because Swing also lets you write directly into the display area of a frame, panel, or one of
Swing’s other components, such as JLabel. Although many (perhaps most) uses of Swing
will not involve drawing directly to the surface of a component, it is available for those

https://hemanthrajhemu.github.io

applications that need this capability. To write output directly to the surface of a component,
you will use one or more drawing methods defined by the AWT, such as drawLine() or
drawRect(). Thus, most of the techniques and methods described in Chapter 23 also apply
to Swing. However, there are also some very important differences, and the process is
discussed in detail in this section.

Painting Fundamentals
Swing’s approach to painting is built on the original AWT-based mechanism, but Swing’s
implementation offers more finally grained control. Before examining the specifics of
Swing-based painting, it is useful to review the AWT-based mechanism that underlies it.

The AWT class Component defines a method called paint() that is used to draw output
directly to the surface of a component. For the most part, paint() is not called by your program.
(In fact, only in the most unusual cases should it ever be called by your program.) Rather,
paint() is called by the run-time system whenever a component must be rendered. This
situation can occur for several reasons. For example, the window in which the component
is displayed can be overwritten by another window and then uncovered. Or, the window
might be minimized and then restored. The paint() method is also called when a program
begins running. When writing AWT-based code, an application will override paint() when
it needs to write output directly to the surface of the component.

Because JComponent inherits Component, all Swing’s lightweight components inherit
the paint() method. However, you will not override it to paint directly to the surface of a
component. The reason is that Swing uses a bit more sophisticated approach to painting that
involves three distinct methods: paintComponent(), paintBorder(), and paintChildren().
These methods paint the indicated portion of a component and divide the painting process
into its three distinct, logical actions. In a lightweight component, the original AWT method
paint() simply executes calls to these methods, in the order just shown.

To paint to the surface of a Swing component, you will create a subclass of the component
and then override its paintComponent() method. This is the method that paints the interior
of the component. You will not normally override the other two painting methods. When
overriding paintComponent(), the first thing you must do is call super.paintComponent(), so
that the superclass portion of the painting process takes place. (The only time this is
not required is when you are taking complete, manual control over how a component is
displayed.) After that, write the output that you want to display. The paintComponent()
method is shown here:

protected void paintComponent(Graphics g)

The parameter g is the graphics context to which output is written.
To cause a component to be painted under program control, call repaint(). It works in

Swing just as it does for the AWT. The repaint() method is defined by Component. Calling
it causes the system to call paint() as soon as it is possible to do so. Because painting is a
time-consuming operation, this mechanism allows the run-time system to defer painting
momentarily until some higher-priority task has completed, for example. Of course, in
Swing the call to paint() results in a call to paintComponent(). Therefore, to output to the
surface of a component, your program will store the output until paintComponent() is
called. Inside the overridden paintComponent(), you will draw the stored output.

874 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

Compute the Paintable Area
When drawing to the surface of a component, you must be careful to restrict your output
to the area that is inside the border. Although Swing automatically clips any output that
will exceed the boundaries of a component, it is still possible to paint into the border, which
will then get overwritten when the border is drawn. To avoid this, you must compute the
paintable area of the component. This is the area defined by the current size of the component
minus the space used by the border. Therefore, before you paint to a component, you must
obtain the width of the border and then adjust your drawing accordingly.

To obtain the border width, call getInsets(), shown here:

Insets getInsets()

This method is defined by Container and overridden by JComponent. It returns an Insets
object that contains the dimensions of the border. The inset values can be obtained by using
these fields:

int top;

int bottom;

int left;

int right;

These values are then used to compute the drawing area given the width and the height of
the component. You can obtain the width and height of the component by calling getWidth()
and getHeight() on the component. They are shown here:

int getWidth()

int getHeight()

By subtracting the value of the insets, you can compute the usable width and height of the
component.

A Paint Example
Here is a program that puts into action the preceding discussion. It creates a class called
PaintPanel that extends JPanel. The program then uses an object of that class to display lines
whose endpoints have been generated randomly. Sample output is shown in Figure 10-4.

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 875

FIGURE 29-4 Sample output from the PaintPanel program

https://hemanthrajhemu.github.io

876 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

// Paint lines to a panel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

// This class extends JPanel. It overrides
// the paintComponent() method so that random
// lines are plotted in the panel.
class PaintPanel extends JPanel {
Insets ins; // holds the panel's insets

Random rand; // used to generate random numbers

// Construct a panel.
PaintPanel() {

// Put a border around the panel.
setBorder(
BorderFactory.createLineBorder(Color.RED, 5));

rand = new Random();
}

// Override the paintComponent() method.
protected void paintComponent(Graphics g) {
// Always call the superclass method first.
super.paintComponent(g);

int x, y, x2, y2;

// Get the height and width of the component.
int height = getHeight();
int width = getWidth();

// Get the insets.
ins = getInsets();

// Draw ten lines whose endpoints are randomly generated.
for(int i=0; i < 10; i++) {
// Obtain random coordinates that define
// the endpoints of each line.
x = rand.nextInt(width-ins.left);
y = rand.nextInt(height-ins.bottom);
x2 = rand.nextInt(width-ins.left);
y2 = rand.nextInt(height-ins.bottom);

// Draw the line.
g.drawLine(x, y, x2, y2);

}
}

}

https://hemanthrajhemu.github.io

// Demonstrate painting directly onto a panel.
class PaintDemo {

JLabel jlab;
PaintPanel pp;

PaintDemo() {

// Create a new JFrame container.
JFrame jfrm = new JFrame("Paint Demo");

// Give the frame an initial size.
jfrm.setSize(200, 150);

// Terminate the program when the user closes the application.
jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Create the panel that will be painted.
pp = new PaintPanel();

// Add the panel to the content pane. Because the default
// border layout is used, the panel will automatically be
// sized to fit the center region.
jfrm.add(pp);

// Display the frame.
jfrm.setVisible(true);

}

public static void main(String args[]) {
// Create the frame on the event dispatching thread.
SwingUtilities.invokeLater(new Runnable() {
public void run() {
new PaintDemo();

}
});

}
}

Let’s examine this program closely. The PaintPanel class extends JPanel. JPanel is one
of Swing’s lightweight containers, which means that it is a component that can be added to
the content pane of a JFrame. To handle painting, PaintPanel overrides the paintComponent()
method. This enables PaintPanel to write directly to the surface of the component when
painting takes place. The size of the panel is not specified because the program uses the
default border layout and the panel is added to the center. This results in the panel being
sized to fill the center. If you change the size of the window, the size of the panel will be
adjusted accordingly.

Notice that the constructor also specifies a 5-pixel wide, red border. This is
accomplished by setting the border by using the setBorder() method, shown here:

void setBorder(Border border)

C h a p t e r 2 9 : I n t r o d u c i n g S w i n g 877

https://hemanthrajhemu.github.io

Border is the Swing interface that encapsulates a border. You can obtain a border by calling
one of the factory methods defined by the BorderFactory class. The one used in the
program is createLineBorder(), which creates a simple line border. It is shown here:

static Border createLineBorder(Color clr, int width)

Here, clr specifies the color of the border and width specifies its width in pixels.
Inside the override of paintComponent(), notice that it first calls super.paintComponent().

As explained, this is necessary to ensure that the component is properly drawn. Next the width
and height of the panel are obtained along with the insets. These values are used to ensure the
lines lie within the drawing area of the panel. The drawing area is the overall width and height
of a component less the border width. The computations are designed to work with differently
sized PaintPanels and borders. To prove this, try changing the size of the window. The lines will
still all lie within the borders of the panel.

The PaintDemo class creates a PaintPanel and then adds the panel to the content pane.
When the application is first displayed, the overridden paintComponent() method is
called, and the lines are drawn. Each time you resize or hide and restore the window, a
new set of lines are drawn. In all cases, the lines fall within the paintable area.

878 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

30
Exploring Swing

The previous chapter described several of the core concepts relating to Swing and
showed the general form of both a Swing application and a Swing applet. This
chapter continues the discussion of Swing by presenting an overview of several

Swing components, such as buttons, check boxes, trees, and tables. The Swing components
provide rich functionality and allow a high level of customization. Because of space
limitations, it is not possible to describe all of their features and attributes. Rather, the
purpose of this overview is to give you a feel for the capabilities of the Swing component set.

The Swing component classes described in this chapter are shown here:

JButton JCheckBox JComboBox JLabel

JList JRadioButton JScrollPane JTabbedPane

JTable JTextField JToggleButton JTree

These components are all lightweight, which means that they are all derived from
JComponent.

Also discussed is the ButtonGroup class, which encapsulates a mutually exclusive set
of Swing buttons, and ImageIcon, which encapsulates a graphics image. Both are defined
by Swing and packaged in javax.swing.

One other point: The Swing components are demonstrated in applets because the code
for an applet is more compact than it is for a desktop application. However, the same
techniques apply to both applets and applications.

JLabel and ImageIcon
JLabel is Swing’s easiest-to-use component. It creates a label and was introduced in the
preceding chapter. Here, we will look at JLabel a bit more closely. JLabel can be used to
display text and/or an icon. It is a passive component in that it does not respond to user
input. JLabel defines several constructors. Here are three of them:

JLabel(Icon icon)
JLabel(String str)
JLabel(String str, Icon icon, int align)

8 7 9

https://hemanthrajhemu.github.io

880 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

Here, str and icon are the text and icon used for the label. The align argument specifies the
horizontal alignment of the text and/or icon within the dimensions of the label. It must be
one of the following values: LEFT, RIGHT, CENTER, LEADING, or TRAILING. These
constants are defined in the SwingConstants interface, along with several others used by
the Swing classes.

Notice that icons are specified by objects of type Icon, which is an interface defined
by Swing. The easiest way to obtain an icon is to use the ImageIcon class. ImageIcon
implements Icon and encapsulates an image. Thus, an object of type ImageIcon can be
passed as an argument to the Icon parameter of JLabel’s constructor. There are several ways
to provide the image, including reading it from a file or downloading it from a URL. Here is
the ImageIcon constructor used by the example in this section:

ImageIcon(String filename)

It obtains the image in the file named filename.
The icon and text associated with the label can be obtained by the following methods:

Icon getIcon()
String getText()

The icon and text associated with a label can be set by these methods:

void setIcon(Icon icon)
void setText(String str)

Here, icon and str are the icon and text, respectively. Therefore, using setText() it is possible
to change the text inside a label during program execution.

The following applet illustrates how to create and display a label containing both an
icon and a string. It begins by creating an ImageIcon object for the file france.gif, which
depicts the flag for France. This is used as the second argument to the JLabel constructor.
The first and last arguments for the JLabel constructor are the label text and the alignment.
Finally, the label is added to the content pane.

// Demonstrate JLabel and ImageIcon.
import java.awt.*;
import javax.swing.*;
/*
<applet code="JLabelDemo" width=250 height=150>
</applet>

*/

public class JLabelDemo extends JApplet {

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 881

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Create an icon.
ImageIcon ii = new ImageIcon("france.gif");

// Create a label.
JLabel jl = new JLabel("France", ii, JLabel.CENTER);

// Add the label to the content pane.
add(jl);

}
}

Output from the label example is shown here:

JTextField
JTextField is the simplest Swing text component. It is also probably its most widely used text
component. JTextField allows you to edit one line of text. It is derived from JTextComponent,
which provides the basic functionality common to Swing text components. JTextField uses
the Document interface for its model.

Three of JTextField’s constructors are shown here:

JTextField(int cols)
JTextField(String str, int cols)
JTextField(String str)

Here, str is the string to be initially presented, and cols is the number of columns in the text
field. If no string is specified, the text field is initially empty. If the number of columns is not
specified, the text field is sized to fit the specified string.

JTextField generates events in response to user interaction. For example, an ActionEvent
is fired when the user presses ENTER. A CaretEvent is fired each time the caret (i.e., the
cursor) changes position. (CaretEvent is packaged in javax.swing.event.) Other events are

https://hemanthrajhemu.github.io

also possible. In many cases, your program will not need to handle these events. Instead,
you will simply obtain the string currently in the text field when it is needed. To obtain the
text currently in the text field, call getText().

The following example illustrates JTextField. It creates a JTextField and adds it to the
content pane. When the user presses ENTER, an action event is generated. This is handled
by displaying the text in the status window.

// Demonstrate JTextField.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JTextFieldDemo" width=300 height=50>
</applet>

*/

public class JTextFieldDemo extends JApplet {
JTextField jtf;

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

// Add text field to content pane.
jtf = new JTextField(15);
add(jtf);
jtf.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
// Show text when user presses ENTER.
showStatus(jtf.getText());

}
});

}
}

Output from the text field example is shown here:

882 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

The Swing Buttons
Swing defines four types of buttons: JButton, JToggleButton, JCheckBox, and JRadioButton.
All are subclasses of the AbstractButton class, which extends JComponent. Thus, all
buttons share a set of common traits.

AbstractButton contains many methods that allow you to control the behavior of buttons.
For example, you can define different icons that are displayed for the button when it is
disabled, pressed, or selected. Another icon can be used as a rollover icon, which is displayed
when the mouse is positioned over a button. The following methods set these icons:

void setDisabledIcon(Icon di)
void setPressedIcon(Icon pi)
void setSelectedIcon(Icon si)
void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for the indicated purpose.
The text associated with a button can be read and written via the following methods:

String getText()
void setText(String str)

Here, str is the text to be associated with the button.
The model used by all buttons is defined by the ButtonModel interface. A button

generates an action event when it is pressed. Other events are possible. Each of the concrete
button classes is examined next.

JButton
The JButton class provides the functionality of a push button. You have already seen a
simple form of it in the preceding chapter. JButton allows an icon, a string, or both to be
associated with the push button. Three of its constructors are shown here:

JButton(Icon icon)
JButton(String str)
JButton(String str, Icon icon)

Here, str and icon are the string and icon used for the button.
When the button is pressed, an ActionEvent is generated. Using the ActionEvent object

passed to the actionPerformed() method of the registered ActionListener, you can obtain
the action command string associated with the button. By default, this is the string displayed
inside the button. However, you can set the action command by calling setActionCommand()
on the button. You can obtain the action command by calling getActionCommand() on the
event object. It is declared like this:

String getActionCommand()

The action command identifies the button. Thus, when using two or more buttons within
the same application, the action command gives you an easy way to determine which
button was pressed.

C h a p t e r 3 0 : E x p l o r i n g S w i n g 883

https://hemanthrajhemu.github.io

In the preceding chapter, you saw an example of a text-based button. The following
demonstrates an icon-based button. It displays four push buttons and a label. Each button
displays an icon that represents the flag of a country. When a button is pressed, the name
of that country is displayed in the label.

// Demonstrate an icon-based JButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JButtonDemo" width=250 height=450>
</applet>

*/

public class JButtonDemo extends JApplet
implements ActionListener {
JLabel jlab;

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

// Add buttons to content pane.
ImageIcon france = new ImageIcon("france.gif");
JButton jb = new JButton(france);
jb.setActionCommand("France");
jb.addActionListener(this);
add(jb);

ImageIcon germany = new ImageIcon("germany.gif");
jb = new JButton(germany);
jb.setActionCommand("Germany");
jb.addActionListener(this);
add(jb);

ImageIcon italy = new ImageIcon("italy.gif");
jb = new JButton(italy);
jb.setActionCommand("Italy");

884 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 885

jb.addActionListener(this);
add(jb);

ImageIcon japan = new ImageIcon("japan.gif");
jb = new JButton(japan);
jb.setActionCommand("Japan");
jb.addActionListener(this);
add(jb);

// Create and add the label to content pane.
jlab = new JLabel("Choose a Flag");
add(jlab);

}

// Handle button events.
public void actionPerformed(ActionEvent ae) {
jlab.setText("You selected " + ae.getActionCommand());

}
}

Output from the button example is shown here:

JToggleButton
A useful variation on the push button is called a
toggle button. A toggle button looks just like a push
button, but it acts differently because it has two
states: pushed and released. That is, when you press
a toggle button, it stays pressed rather than popping
back up as a regular push button does. When you
press the toggle button a second time, it releases
(pops up). Therefore, each time a toggle button is
pushed, it toggles between its two states.

Toggle buttons are objects of the JToggleButton
class. JToggleButton implements AbstractButton.
In addition to creating standard toggle buttons,
JToggleButton is a superclass for two other Swing
components that also represent two-state controls.
These are JCheckBox and JRadioButton, which are
described later in this chapter. Thus, JToggleButton
defines the basic functionality of all two-state
components.

JToggleButton defines several constructors. The
one used by the example in this section is shown here:

JToggleButton(String str)

This creates a toggle button that contains the text passed in str. By default, the button is in
the off position. Other constructors enable you to create toggle buttons that contain images,
or images and text.

https://hemanthrajhemu.github.io

JToggleButton uses a model defined by a nested class called JToggleButton
.ToggleButtonModel. Normally, you won’t need to interact directly with the model
to use a standard toggle button.

Like JButton, JToggleButton generates an action event each time it is pressed. Unlike
JButton, however, JToggleButton also generates an item event. This event is used by those
components that support the concept of selection. When a JToggleButton is pressed in, it is
selected. When it is popped out, it is deselected.

To handle item events, you must implement the ItemListener interface. Recall from
Chapter 22, that each time an item event is generated, it is passed to the itemStateChanged()
method defined by ItemListener. Inside itemStateChanged(), the getItem() method can
be called on the ItemEvent object to obtain a reference to the JToggleButton instance that
generated the event. It is shown here:

Object getItem()

A reference to the button is returned. You will need to cast this reference to JToggleButton.
The easiest way to determine a toggle button’s state is by calling the isSelected() method

(inherited from AbstractButton) on the button that generated the event. It is shown here:

boolean isSelected()

It returns true if the button is selected and false otherwise.
Here is an example that uses a toggle button. Notice how the item listener works.

It simply calls isSelected() to determine the button’s state.

// Demonstrate JToggleButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JToggleButtonDemo" width=200 height=80>
</applet>

*/

public class JToggleButtonDemo extends JApplet {

JLabel jlab;
JToggleButton jtbn;

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}

886 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 887

}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

// Create a label.
jlab = new JLabel("Button is off.");

// Make a toggle button.
jtbn = new JToggleButton("On/Off");

// Add an item listener for the toggle button.
jtbn.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent ie) {
if(jtbn.isSelected())
jlab.setText("Button is on.");

else
jlab.setText("Button is off.");

}

});

// Add the toggle button and label to the content pane.
add(jtbn);
add(jlab);

}
}

The output from the toggle button example is shown here:

Check Boxes
The JCheckBox class provides the functionality of a check box. Its immediate superclass is
JToggleButton, which provides support for two-state buttons, as just described. JCheckBox
defines several constructors. The one used here is

JCheckBox(String str)

It creates a check box that has the text specified by str as a label. Other constructors let you
specify the initial selection state of the button and specify an icon.

https://hemanthrajhemu.github.io

888 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

When the user selects or deselects a check box, an ItemEvent is generated. You can
obtain a reference to the JCheckBox that generated the event by calling getItem() on the
ItemEvent passed to the itemStateChanged() method defined by ItemListener. The easiest
way to determine the selected state of a check box is to call isSelected() on the JCheckBox
instance.

In addition to supporting the normal check box operation, JCheckBox lets you specify
the icons that indicate when a check box is selected, cleared, and rolled-over. We won’t be
using this capability here, but it is available for use in your own programs.

The following example illustrates check boxes. It displays four check boxes and a label.
When the user clicks a check box, an ItemEvent is generated. Inside the itemStateChanged()
method, getItem() is called to obtain a reference to the JCheckBox object that generated the
event. Next, a call to isSelected() determines if the box was selected or cleared. The getText()
method gets the text for that check box and uses it to set the text inside the label.

// Demonstrate JCheckbox.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JCheckBoxDemo" width=270 height=50>
</applet>

*/

public class JCheckBoxDemo extends JApplet
implements ItemListener {
JLabel jlab;

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

// Add check boxes to the content pane.
JCheckBox cb = new JCheckBox("C");
cb.addItemListener(this);
add(cb);

cb = new JCheckBox("C++");

https://hemanthrajhemu.github.io

cb.addItemListener(this);
add(cb);

cb = new JCheckBox("Java");
cb.addItemListener(this);
add(cb);

cb = new JCheckBox("Perl");
cb.addItemListener(this);
add(cb);

// Create the label and add it to the content pane.
jlab = new JLabel("Select languages");
add(jlab);

}

// Handle item events for the check boxes.
public void itemStateChanged(ItemEvent ie) {
JCheckBox cb = (JCheckBox)ie.getItem();

if(cb.isSelected())
jlab.setText(cb.getText() + " is selected");

else
jlab.setText(cb.getText() + " is cleared");

}
}

Output from this example is shown here:

Radio Buttons
Radio buttons are a group of mutually exclusive
buttons, in which only one button can be selected at
any one time. They are supported by the JRadioButton class, which extends JToggleButton.
JRadioButton provides several constructors. The one used in the example is shown here:

JRadioButton(String str)

Here, str is the label for the button. Other constructors let you specify the initial selection
state of the button and specify an icon.

In order for their mutually exclusive nature to be activated, radio buttons must be
configured into a group. Only one of the buttons in the group can be selected at any time.
For example, if a user presses a radio button that is in a group, any previously selected
button in that group is automatically deselected. A button group is created by the ButtonGroup
class. Its default constructor is invoked for this purpose. Elements are then added to the
button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.
A JRadioButton generates action events, item events, and change events each time the

button selection changes. Most often, it is the action event that is handled, which means

C h a p t e r 3 0 : E x p l o r i n g S w i n g 889

https://hemanthrajhemu.github.io

890 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

that you will normally implement the ActionListener interface. Recall that the only method
defined by ActionListener is actionPerformed(). Inside this method, you can use a number
of different ways to determine which button was selected. First, you can check its action
command by calling getActionCommand(). By default, the action command is the same
as the button label, but you can set the action command to something else by calling
setActionCommand() on the radio button. Second, you can call getSource() on the
ActionEvent object and check that reference against the buttons. Finally, you can simply
check each radio button to find out which one is currently selected by calling isSelected()
on each button. Remember, each time an action event occurs, it means that the button being
selected has changed and that one and only one button will be selected.

The following example illustrates how to use radio buttons. Three radio buttons are
created. The buttons are then added to a button group. As explained, this is necessary to cause
their mutually exclusive behavior. Pressing a radio button generates an action event, which is
handled by actionPerformed(). Within that handler, the getActionCommand() method gets
the text that is associated with the radio button and uses it to set the text within a label.

// Demonstrate JRadioButton
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JRadioButtonDemo" width=300 height=50>
</applet>

*/

public class JRadioButtonDemo extends JApplet
implements ActionListener {
JLabel jlab;

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

// Create radio buttons and add them to content pane.
JRadioButton b1 = new JRadioButton("A");
b1.addActionListener(this);
add(b1);

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 891

JRadioButton b2 = new JRadioButton("B");
b2.addActionListener(this);
add(b2);

JRadioButton b3 = new JRadioButton("C");
b3.addActionListener(this);
add(b3);

// Define a button group.
ButtonGroup bg = new ButtonGroup();
bg.add(b1);
bg.add(b2);
bg.add(b3);

// Create a label and add it to the content pane.
jlab = new JLabel("Select One");
add(jlab);

}

// Handle button selection.
public void actionPerformed(ActionEvent ae) {
jlab.setText("You selected " + ae.getActionCommand());

}
}

Output from the radio button example is shown here:

JTabbedPane
JTabbedPane encapsulates a tabbed pane. It manages a set of components by linking them
with tabs. Selecting a tab causes the component associated with that tab to come to the
forefront. Tabbed panes are very common in the modern GUI, and you have no doubt used
them many times. Given the complex nature of a tabbed pane, they are surprisingly easy to
create and use.

JTabbedPane defines three constructors. We will use its default constructor, which
creates an empty control with the tabs positioned across the top of the pane. The other two
constructors let you specify the location of the tabs, which can be along any of the four
sides. JTabbedPane uses the SingleSelectionModel model.

Tabs are added by calling addTab(). Here is one of its forms:

void addTab(String name, Component comp)

Here, name is the name for the tab, and comp is the component that should be added to
the tab. Often, the component added to a tab is a JPanel that contains a group of related
components. This technique allows a tab to hold a set of components.

https://hemanthrajhemu.github.io

892 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

The general procedure to use a tabbed pane is outlined here:

1. Create an instance of JTabbedPane.

2. Add each tab by calling addTab().

3. Add the tabbed pane to the content pane.

The following example illustrates a tabbed pane. The first tab is titled “Cities” and
contains four buttons. Each button displays the name of a city. The second tab is titled
“Colors” and contains three check boxes. Each check box displays the name of a color. The
third tab is titled “Flavors” and contains one combo box. This enables the user to select one
of three flavors.

// Demonstrate JTabbedPane.
import javax.swing.*;
/*
<applet code="JTabbedPaneDemo" width=400 height=100>
</applet>

*/

public class JTabbedPaneDemo extends JApplet {

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

JTabbedPane jtp = new JTabbedPane();
jtp.addTab("Cities", new CitiesPanel());
jtp.addTab("Colors", new ColorsPanel());
jtp.addTab("Flavors", new FlavorsPanel());
add(jtp);

}
}

// Make the panels that will be added to the tabbed pane.
class CitiesPanel extends JPanel {

public CitiesPanel() {
JButton b1 = new JButton("New York");
add(b1);
JButton b2 = new JButton("London");
add(b2);
JButton b3 = new JButton("Hong Kong");

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 893

add(b3);
JButton b4 = new JButton("Tokyo");
add(b4);

}
}

class ColorsPanel extends JPanel {

public ColorsPanel() {
JCheckBox cb1 = new JCheckBox("Red");
add(cb1);
JCheckBox cb2 = new JCheckBox("Green");
add(cb2);
JCheckBox cb3 = new JCheckBox("Blue");
add(cb3);

}
}

class FlavorsPanel extends JPanel {

public FlavorsPanel() {
JComboBox jcb = new JComboBox();
jcb.addItem("Vanilla");
jcb.addItem("Chocolate");
jcb.addItem("Strawberry");
add(jcb);

}
}

Output from the tabbed pane example is shown in the following three illustrations:

JScrollPane
JScrollPane is a lightweight container that automatically handles the scrolling of another
component. The component being scrolled can either be an individual component, such as

https://hemanthrajhemu.github.io

894 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

a table, or a group of components contained within another lightweight container, such as a
JPanel. In either case, if the object being scrolled is larger than the viewable area, horizontal
and/or vertical scroll bars are automatically provided, and the component can be scrolled
through the pane. Because JScrollPane automates scrolling, it usually eliminates the need
to manage individual scroll bars.

The viewable area of a scroll pane is called the viewport. It is a window in which the
component being scrolled is displayed. Thus, the viewport displays the visible portion of the
component being scrolled. The scroll bars scroll the component through the viewport. In its
default behavior, a JScrollPane will dynamically add or remove a scroll bar as needed. For
example, if the component is taller than the viewport, a vertical scroll bar is added. If the
component will completely fit within the viewport, the scroll bars are removed.

JScrollPane defines several constructors. The one used in this chapter is shown here:

JScrollPane(Component comp)

The component to be scrolled is specified by comp. Scroll bars are automatically displayed
when the content of the pane exceeds the dimensions of the viewport.

Here are the steps to follow to use a scroll pane:

1. Create the component to be scrolled.

2. Create an instance of JScrollPane, passing to it the object to scroll.

3. Add the scroll pane to the content pane.

The following example illustrates a scroll pane. First, a JPanel object is created, and 400
buttons are added to it, arranged into 20 columns. This panel is then added to a scroll pane,
and the scroll pane is added to the content pane. Because the panel is larger than the
viewport, vertical and horizontal scroll bars appear automatically. You can use the scroll
bars to scroll the buttons into view.

// Demonstrate JScrollPane.
import java.awt.*;
import javax.swing.*;
/*
<applet code="JScrollPaneDemo" width=300 height=250>
</applet>

*/

public class JScrollPaneDemo extends JApplet {

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 895

}

private void makeGUI() {

// Add 400 buttons to a panel.
JPanel jp = new JPanel();
jp.setLayout(new GridLayout(20, 20));
int b = 0;
for(int i = 0; i < 20; i++) {
for(int j = 0; j < 20; j++) {
jp.add(new JButton("Button " + b));
++b;

}
}

// Create the scroll pane.
JScrollPane jsp = new JScrollPane(jp);

// Add the scroll pane to the content pane.
// Because the default border layout is used,
// the scroll pane will be added to the center.
add(jsp, BorderLayout.CENTER);

}
}

Output from the scroll pane example is shown here:

JList
In Swing, the basic list class is called JList. It supports the selection of one or more items
from a list. Although the list often consists of strings, it is possible to create a list of just
about any object that can be displayed. JList is so widely used in Java that it is highly
unlikely that you have not seen one before.

https://hemanthrajhemu.github.io

896 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

JList provides several constructors. The one used here is

JList(Object[] items)

This creates a JList that contains the items in the array specified by items.
JList is based on two models. The first is ListModel. This interface defines how access

to the list data is achieved. The second model is the ListSelectionModel interface, which
defines methods that determine what list item or items are selected.

Although a JList will work properly by itself, most of the time you will wrap a JList
inside a JScrollPane. This way, long lists will automatically be scrollable, which simplifies
GUI design. It also makes it easy to change the number of entries in a list without having to
change the size of the JList component.

A JList generates a ListSelectionEvent when the user makes or changes a selection.
This event is also generated when the user deselects an item. It is handled by implementing
ListSelectionListener. This listener specifies only one method, called valueChanged(),
which is shown here:

void valueChanged(ListSelectionEvent le)

Here, le is a reference to the object that generated the event. Although ListSelectionEvent
does provide some methods of its own, normally you will interrogate the JList object itself
to determine what has occurred. Both ListSelectionEvent and ListSelectionListener are
packaged in javax.swing.event.

By default, a JList allows the user to select multiple ranges of items within the list, but
you can change this behavior by calling setSelectionMode(), which is defined by JList. It is
shown here:

void setSelectionMode(int mode)

Here, mode specifies the selection mode. It must be one of these values defined by
ListSelectionModel:

SINGLE_SELECTION

SINGLE_INTERVAL_SELECTION

MULTIPLE_INTERVAL_SELECTION

The default, multiple-interval selection, lets the user select multiple ranges of items within a
list. With single-interval selection, the user can select one range of items. With single selection,
the user can select only a single item. Of course, a single item can be selected in the other
two modes, too. It’s just that they also allow a range to be selected.

You can obtain the index of the first item selected, which will also be the index of the only
selected item when using single-selection mode, by calling getSelectedIndex(), shown here:

int getSelectedIndex()

Indexing begins at zero. So, if the first item is selected, this method will return 0. If no item
is selected, –1 is returned.

https://hemanthrajhemu.github.io

Instead of obtaining the index of a selection, you can obtain the value associated with
the selection by calling getSelectedValue():

Object getSelectedValue()

It returns a reference to the first selected value. If no value has been selected, it returns null.
The following applet demonstrates a simple JList, which holds a list of cities. Each time

a city is selected in the list, a ListSelectionEvent is generated, which is handled by the
valueChanged() method defined by ListSelectionListener. It responds by obtaining the
index of the selected item and displaying the name of the selected city in a label.

// Demonstrate JList.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

/*
<applet code="JListDemo" width=200 height=120>
</applet>

*/

public class JListDemo extends JApplet {
JList jlst;
JLabel jlab;
JScrollPane jscrlp;

// Create an array of cities.
String Cities[] = { "New York", "Chicago", "Houston",

"Denver", "Los Angeles", "Seattle",
"London", "Paris", "New Delhi",
"Hong Kong", "Tokyo", "Sydney" };

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

C h a p t e r 3 0 : E x p l o r i n g S w i n g 897

https://hemanthrajhemu.github.io

898 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

// Create a JList.
jlst = new JList(Cities);

// Set the list selection mode to single selection.
jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

// Add the list to a scroll pane.
jscrlp = new JScrollPane(jlst);

// Set the preferred size of the scroll pane.
jscrlp.setPreferredSize(new Dimension(120, 90));

// Make a label that displays the selection.
jlab = new JLabel("Choose a City");

// Add selection listener for the list.
jlst.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent le) {
// Get the index of the changed item.
int idx = jlst.getSelectedIndex();

// Display selection, if item was selected.
if(idx != -1)
jlab.setText("Current selection: " + Cities[idx]);

else // Otherwise, reprompt.
jlab.setText("Choose a City");

}
});

// Add the list and label to the content pane.
add(jscrlp);
add(jlab);

}
}

Output from the list example is shown here:

JComboBox
Swing provides a combo box (a combination of a text field and a drop-down list) through
the JComboBox class. A combo box normally displays one entry, but it will also display a
drop-down list that allows a user to select a different entry. You can also create a combo box

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 899

that lets the user enter a selection into the text field. The JComboBox constructor used by
the example is shown here:

JComboBox(Object[] items)

Here, items is an array that initializes the combo box. Other constructors are available.
JComboBox uses the ComboBoxModel. Mutable combo boxes (those whose entries can

be changed) use the MutableComboBoxModel.
In addition to passing an array of items to be displayed in the drop-down list, items can

be dynamically added to the list of choices via the addItem() method, shown here:

void addItem(Object obj)

Here, obj is the object to be added to the combo box. This method must be used only with
mutable combo boxes.

JComboBox generates an action event when the user selects an item from the list.
JComboBox also generates an item event when the state of selection changes, which occurs
when an item is selected or deselected. Thus, changing a selection means that two item
events will occur: one for the deselected item and another for the selected item. Often, it is
sufficient to simply listen for action events, but both event types are available for your use.

One way to obtain the item selected in the list is to call getSelectedItem() on the combo
box. It is shown here:

Object getSelectedItem()

You will need to cast the returned value into the type of object stored in the list.
The following example demonstrates the combo box. The combo box contains entries

for “France,” “Germany,” “Italy,” and “Japan.” When a country is selected, an icon-based
label is updated to display the flag for that country. You can see how little code is required
to use this powerful component.

// Demonstrate JComboBox.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JComboBoxDemo" width=300 height=100>
</applet>

*/

public class JComboBoxDemo extends JApplet {
JLabel jlab;
ImageIcon france, germany, italy, japan;
JComboBox jcb;

String flags[] = { "France", "Germany", "Italy", "Japan" };

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {

https://hemanthrajhemu.github.io

900 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

makeGUI();
}

}
);

} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Change to flow layout.
setLayout(new FlowLayout());

// Instantiate a combo box and add it to the content pane.
jcb = new JComboBox(flags);
add(jcb);

// Handle selections.
jcb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
String s = (String) jcb.getSelectedItem();
jlab.setIcon(new ImageIcon(s + ".gif"));

}
});

// Create a label and add it to the content pane.
jlab = new JLabel(new ImageIcon("france.gif"));
add(jlab);

}
}

Output from the combo box example is shown here:

Trees
A tree is a component that presents a hierarchical view of data. The user has the ability to
expand or collapse individual subtrees in this display. Trees are implemented in Swing by
the JTree class. A sampling of its constructors is shown here:

JTree(Object obj[])
JTree(Vector<?> v)
JTree(TreeNode tn)

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 901

In the first form, the tree is constructed from the elements in the array obj. The second form
constructs the tree from the elements of vector v. In the third form, the tree whose root node
is specified by tn specifies the tree.

Although JTree is packaged in javax.swing, its support classes and interfaces are
packaged in javax.swing.tree. This is because the number of classes and interfaces needed
to support JTree is quite large.

JTree relies on two models: TreeModel and TreeSelectionModel. A JTree generates a
variety of events, but three relate specifically to trees: TreeExpansionEvent,
TreeSelectionEvent, and TreeModelEvent. TreeExpansionEvent events occur when a node
is expanded or collapsed. A TreeSelectionEvent is generated when the user selects or
deselects a node within the tree. A TreeModelEvent is fired when the data or structure of the
tree changes. The listeners for these events are TreeExpansionListener, TreeSelectionListener,
and TreeModelListener, respectively. The tree event classes and listener interfaces are
packaged in javax.swing.event.

The event handled by the sample program shown in this section is TreeSelectionEvent.
To listen for this event, implement TreeSelectionListener. It defines only one method, called
valueChanged(), which receives the TreeSelectionEvent object. You can obtain the path to
the selected object by calling getPath(), shown here, on the event object.

TreePath getPath()

It returns a TreePath object that describes the path to the changed node. The TreePath class
encapsulates information about a path to a particular node in a tree. It provides several
constructors and methods. In this book, only the toString() method is used. It returns a
string that describes the path.

The TreeNode interface declares methods that obtain information about a tree node.
For example, it is possible to obtain a reference to the parent node or an enumeration of the
child nodes. The MutableTreeNode interface extends TreeNode. It declares methods that
can insert and remove child nodes or change the parent node.

The DefaultMutableTreeNode class implements the MutableTreeNode interface. It
represents a node in a tree. One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have a
parent or children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode can
be used. Its signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.
JTree does not provide any scrolling capabilities of its own. Instead, a JTree is typically

placed within a JScrollPane. This way, a large tree can be scrolled through a smaller viewport.
Here are the steps to follow to use a tree:

1. Create an instance of JTree.

2. Create a JScrollPane and specify the tree as the object to be scrolled.

3. Add the tree to the scroll pane.

4. Add the scroll pane to the content pane.

https://hemanthrajhemu.github.io

902 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

The following example illustrates how to create a tree and handle selections. The
program creates a DefaultMutableTreeNode instance labeled “Options.” This is the top
node of the tree hierarchy. Additional tree nodes are then created, and the add() method is
called to connect these nodes to the tree. A reference to the top node in the tree is provided
as the argument to the JTree constructor. The tree is then provided as the argument to the
JScrollPane constructor. This scroll pane is then added to the content pane. Next, a label
is created and added to the content pane. The tree selection is displayed in this label. To
receive selection events from the tree, a TreeSelectionListener is registered for the tree.
Inside the valueChanged() method, the path to the current selection is obtained and
displayed.

// Demonstrate JTree.
import java.awt.*;
import javax.swing.event.*;
import javax.swing.*;
import javax.swing.tree.*;
/*
<applet code="JTreeDemo" width=400 height=200>
</applet>

*/

public class JTreeDemo extends JApplet {
JTree tree;
JLabel jlab;

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Create top node of tree.
DefaultMutableTreeNode top = new DefaultMutableTreeNode("Options");

// Create subtree of "A".
DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");
top.add(a);
DefaultMutableTreeNode a1 = new DefaultMutableTreeNode("A1");
a.add(a1);
DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");
a.add(a2);

https://hemanthrajhemu.github.io

// Create subtree of "B".
DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");
top.add(b);
DefaultMutableTreeNode b1 = new DefaultMutableTreeNode("B1");
b.add(b1);
DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");
b.add(b2);
DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");
b.add(b3);

// Create the tree.
tree = new JTree(top);

// Add the tree to a scroll pane.
JScrollPane jsp = new JScrollPane(tree);

// Add the scroll pane to the content pane.
add(jsp);

// Add the label to the content pane.
jlab = new JLabel();
add(jlab, BorderLayout.SOUTH);

// Handle tree selection events.
tree.addTreeSelectionListener(new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent tse) {
jlab.setText("Selection is " + tse.getPath());

}
});

}
}

Output from the tree example is shown here:

The string presented in the text field describes the path from the top tree node to the
selected node.

C h a p t e r 3 0 : E x p l o r i n g S w i n g 903

https://hemanthrajhemu.github.io

JTable
JTable is a component that displays rows and columns of data. You can drag the cursor
on column boundaries to resize columns. You can also drag a column to a new position.
Depending on its configuration, it is also possible to select a row, column, or cell within the
table, and to change the data within a cell. JTable is a sophisticated component that offers
many more options and features than can be discussed here. (It is perhaps Swing’s most
complicated component.) However, in its default configuration, JTable still offers
substantial functionality that is easy to use—especially if you simply want to use the
table to present data in a tabular format. The brief overview presented here will give
you a general understanding of this powerful component.

Like JTree, JTable has many classes and interfaces associated with it. These are
packaged in javax.swing.table.

At its core, JTable is conceptually simple. It is a component that consists of one or more
columns of information. At the top of each column is a heading. In addition to describing
the data in a column, the heading also provides the mechanism by which the user can
change the size of a column or change the location of a column within the table. JTable does
not provide any scrolling capabilities of its own. Instead, you will normally wrap a JTable
inside a JScrollPane.

JTable supplies several constructors. The one used here is

JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and colHeads is a
one-dimensional array with the column headings.

JTable relies on three models. The first is the table model, which is defined by the
TableModel interface. This model defines those things related to displaying data in a
two-dimensional format. The second is the table column model, which is represented by
TableColumnModel. JTable is defined in terms of columns, and it is TableColumnModel that
specifies the characteristics of a column. These two models are packaged in javax.swing.table.
The third model determines how items are selected, and it is specified by the
ListSelectionModel, which was described when JList was discussed.

A JTable can generate several different events. The two most fundamental to a table’s
operation are ListSelectionEvent and TableModelEvent. A ListSelectionEvent is generated
when the user selects something in the table. By default, JTable allows you to select one or
more complete rows, but you can change this behavior to allow one or more columns, or
one or more individual cells to be selected. A TableModelEvent is fired when that table’s
data changes in some way. Handling these events requires a bit more work than it does to
handle the events generated by the previously described components and is beyond the
scope of this book. However, if you simply want to use JTable to display data (as the
following example does), then you don’t need to handle any events.

Here are the steps required to set up a simple JTable that can be used to display data:

1. Create an instance of JTable.

2. Create a JScrollPane object, specifying the table as the object to scroll.

3. Add the table to the scroll pane.

4. Add the scroll pane to the content pane.

904 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

C h a p t e r 3 0 : E x p l o r i n g S w i n g 905

The following example illustrates how to create and use a simple table. A one-dimensional
array of strings called colHeads is created for the column headings. A two-dimensional array
of strings called data is created for the table cells. You can see that each element in the array
is an array of three strings. These arrays are passed to the JTable constructor. The table is
added to a scroll pane, and then the scroll pane is added to the content pane. The table
displays the data in the data array. The default table configuration also allows the contents
of a cell to be edited. Changes affect the underlying array, which is data in this case.

// Demonstrate JTable.
import java.awt.*;
import javax.swing.*;
/*
<applet code="JTableDemo" width=400 height=200>
</applet>

*/

public class JTableDemo extends JApplet {

public void init() {
try {
SwingUtilities.invokeAndWait(
new Runnable() {
public void run() {
makeGUI();

}
}

);
} catch (Exception exc) {
System.out.println("Can't create because of " + exc);

}
}

private void makeGUI() {

// Initialize column headings.
String[] colHeads = { "Name", "Extension", "ID#" };

// Initialize data.
Object[][] data = {
{ "Gail", "4567", "865" },
{ "Ken", "7566", "555" },
{ "Viviane", "5634", "587" },
{ "Melanie", "7345", "922" },
{ "Anne", "1237", "333" },
{ "John", "5656", "314" },
{ "Matt", "5672", "217" },
{ "Claire", "6741", "444" },
{ "Erwin", "9023", "519" },
{ "Ellen", "1134", "532" },
{ "Jennifer", "5689", "112" },
{ "Ed", "9030", "133" },
{ "Helen", "6751", "145" }

};

https://hemanthrajhemu.github.io

// Create the table.
JTable table = new JTable(data, colHeads);

// Add the table to a scroll pane.
JScrollPane jsp = new JScrollPane(table);

// Add the scroll pane to the content pane.
add(jsp);

}
}

Output from this example is shown here:

Continuing Your Exploration of Swing
Swing defines a very large GUI toolkit. It has many more features that you will want to
explore on your own. For example, Swing provides toolbars, tooltips, and progress bars.
It also provides a complete menu subsystem. Swing’s pluggable look and feel lets you
substitute another appearance and behavior for an element. You can define your own
models for the various components, and you can change the way that cells are edited
and rendered when working with tables and trees. The best way to become familiar with
Swing’s capabilities is to experiment with it.

906 P a r t I I I : S o f t w a r e D e v e l o p m e n t U s i n g J a v a

https://hemanthrajhemu.github.io

