

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

B M S INSTITUTE OF TECHNOLOGY & MANAGEMENT

YELAHANKA, BENGALURU – 560064.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 MODULE -1 NOTES OF

OBJECT ORIENTED CONCEPTS -18CS45

 [As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Prepared by,

Mr. Muneshwara M S

Asst. Prof, Dept. of CSE

- 560064.

VISION AND MISSION OF THE CS&E DEPARTMENT

Vision

To develop technical professionals acquainted with recent trends and technologies of computer science to serve as valuable resource

for the nation/society.
Mission:

 Facilitating and exposing the students to various learning opportunities through dedicated academic teaching, guidance and

monitoring.

VISION AND MISSION OF THE INSTITUTE

Vision

To emerge as one of the finest technical institutions of higher learning, to develop engineering professionals who are technically

competent, ethical and environment friendly for betterment of the society.

Mission

Accomplish stimulating learning environment through high quality academic instruction, innovation and industry-institute interface

https://hemanthrajhemu.github.io

http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 1 Prepared by: , Mr. Muneshwara M S

MODULE 1 INTRODUCTION TO OBJECT ORIENTED CONCEPTS

The following concepts should be learn in this Module

A Review of structures, Procedure–Oriented Programming system, Object Oriented, Programming System,

Comparison of Object Oriented Language with C, Console I/O, variables and reference variables, Function

Prototyping, Function Overloading. Class and Objects: Introduction, member functions and data, objects

and functions.

Text book 1: Ch 1: 1.1 to 1.9 Ch 2: 2.1 to 2.3 , RBT: L1, L2

 A REVIEW OF STRUCTURES

Consider a function nextday() that accepts the addresses of 3 integers that represent a date

and changes these values to represent nextday.

Prototype of this function //for calculating the next day

Suppose

If we call

d=1; m=1;

y=2002; //1
st
 january 2002

.

Members of wrong group may be accidentally sent to the function

d1=28; m1=2; y1=1999; //28thfeb99

d2=19; m2=3; y2=1999; //19thmrch99

nextday(&d1,&m1,&y1); //ok

nextday(&d1,&m2,&y2); //incorrect set passed

There is nothing in language itself that prevents the wrong set of variables from being sent

to the function.

So we need structures

1) Putting structure definition and prototypes of associated functions in a header file(date.h)

Struct date

{

int d, m, y;

};

Void nextday(struct date *);

2) Put definition and other prototypes in a source code and create a library

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 2 Prepared by: , Mr. Muneshwara M S

void main()

{

Struct date d1;

d1.d=28;

d1.m=2; //Need for structures

d1.y=1999;

nextday(&d1);

}

3) Using Structures in Application Programs

 Include header file provided by programmer in the source code.

 Declare variables of new data type in the source code

 Embed calls to the associated functions by passing these variables in the source

code

PROCEDURE/ STRUCTURE ORIENTED PROGRAMMING

 Conventional programming, using high level languages such as COBOL, FORTRAN and
C, is commonly known as procedure-oriented programming (POP).

 In the procedure-oriented approach, the problem is viewed as a sequence of things to be
done such as reading, calculating and printing. A number of functions are written to

accomplish these tasks.

 The primary focus is on functions.

 Dividing a program into functions and modules is one of the cornerstones of Structured

Programming.

 Since many functions in a program can access global data / global variables, global data

can be corrupted by that have no business to change it.

 Hence we need a way to restrict the access to the data, to hide it from all but a few critical

functions. This protects the data, simplifies the maintenance and other benefits.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 3 Prepared by: , Mr. Muneshwara M S

Drawback/Disadvantage

1. Data is not secure and can be manipulated by any function/procedure.
2. Associated functions that were designed by library programmer don‟t have rights to work

upon the data.

3. They are not a part of structure definition itself because application program might

modify the structure variables by some code inadvertently written in application program

itself

OBJECT ORIENTED PROGRAMMING

 Emphasis is on data rather than procedure.

 Programs are divided into what are known as objects.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions(methods).

 An object functions are called Member functions in C++.

 Data and functions are said to be encapsulated in an object.

 Data Encapsulation & Data Hiding are the key terms in OOPs

OOPs simplify writing, debugging and maintaining the program. C++ program typically contain

a number of objects interacting with each other by calling one another‟s member functions.

 Procedure Oriented Programming Object Oriented Programming

Divided

Into

In POP, program is divided into

small parts called functions.

In OOP, program is divided into parts

called objects.

Importance In POP, Importance is not given

to data but to functions as well

as sequence of actions to be done.

In OOP, Importance is given to the data rather

than procedures or functions because it works

as a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up approach.

Access

Specifiers

POP does not have any access

specifier.

OOP has access specifiers named Public,

Private, Protected, etc.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 4 Prepared by: , Mr. Muneshwara M S

Data

Moving

In POP, Data can move freely from

function to function in the system.

In OOP, objects can move and communicate

with each other through member functions.

Expansion To add new data and function in

POP is not so easy.

OOP provides an easy way to add new data and

function.

Data Access In POP, Most function uses Global

data for sharing that can be accessed

freely from function to function in

the system.

In OOP, data can not move easily from

function to function,it can be kept public or

private so we can control the access of data.

Data Hiding POP does not have any proper way

for hiding data so it is less secure.

OOP provides Data Hiding so provides more

security.

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in the form of

Function Overloading and Operator

Overloading.

Examples Example of POP are : C, VB,

FORTRAN, Pascal.

Example of OOP are : C++, JAVA, VB.NET,

C#.NET.

Objects
Objects are the basic runtime entities in an object oriented system. They may represent a person, a place,

a bank account, a table of data or any item that the program has to handle.

Class
Object contains data, and code to manipulate that data. The entire set of data and code of an object can be

made a user-defined data type with the help of a class.

Data Encapsulation

 The wrapping up of data and functions into a single unit is known as encapsulation.

 The data is not accessible to the outside world, only those function which are wrapped in the class

can access it.

 These functions provide the interface between the object‟s data and the program.

 It hides the implementation details of an object from its users.

 Encapsulation prevents unauthorized access of data or functionality.

 This insulation of the data from direct access by the program is called data hiding or
information hiding.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 5 Prepared by: , Mr. Muneshwara M S

Data Abstraction
 Abstraction refers to the act of representing essential features without including the background

details or explanations.

 Since classes use the concept of data abstraction, they are known as Abstract Data Types(ADT).

 It separates unnecessary details or explanations so as to reduce complexities of understanding

requirements.

Inheritance
 Inheritance is the process by which objects of one class acquire the properties of objects of

another class.

 Parent class can be given the general characteristics, while its child may be given more specific

characteristics.

 Inheritance mechanism makes it possible for one object to be a specific instance of a more

general class.

 Reusability – adding additional features to an existing class without modifying it. That is,

deriving a new class from the existing one. The new class will have the combined features of both

the classes. New class is also called as Derived class and existing class is called as Base Class.

Polymorphism
 Polymorphism, a Greek term means to ability to take more than one form.

 An operation may exhibits different behaviors in different instances. The behavior depends upon

the type of data used in the operation.. Ex: Function Overloading

 For example consider the operation of addition for two numbers; the operation will generate a

sum. If the operands are string then the operation would produce a third string by concatenation.

 The process of making an operator to exhibit different behavior in different instances is known
operator overloading.

C C++

1. C compiler cannot execute C++ programs 1. C++ compiler can execute C programs

2. In C, u may / may not include function

prototypes

2. In C++, you must Include function

prototypes

3. C doesn’t allow for default arguments 3. C++ lets you to specify default arguments in

function prototype

4. Declaration of the variables must be at the

beginning

4. Declaration of the variables can be

anywhere before using

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 6 Prepared by: , Mr. Muneshwara M S

5. If a C program uses a Local variable that

has Same name as global variable, then C

uses the value of a local variable.

5. In C++, u can instruct program to use value

of global variable with scope resolution

Ex- cout << “Iamglobal var :” << ::I;

6. Fun overloading is not there. 6. Fun overloading exists

7. Function inside the structure is not

allowed

7. Function inside the structure is allowed

8. Object initialization doesn’t exist 8. Object initialization (constructor) exist

9. Data hiding, data abstraction and data

encapsulation feature doesn’t exist

9. Data hiding, data abstraction and data

encapsulation exists in C++

CONSOLE INPUT AND OUTPUT

Console output
The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen.

cout << constant/variable

cout<<endl;

cout<<“\n”;\\newline

Console input
The predefined object cin is an instance of istream class. The cin object is said to be attached to

the standard input device, which usually is the keyboard.

cin>> variable

Example : #include <iostream.h>

void main ()

{

int x;

cout << "Please enter an integer value: ";

cin >>x;

cout <<endl<< "Value you entered is " <<x;

cout << " and its double is " <<x*2 << ".\n";

}

Variables in C++
• Can be declared anywhere in the C++ program before using them.

Reference variable
• They are used as aliases for other variables within a function.
• All operations supposedly performed on the alias (i.e., the reference) are actually

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 7 Prepared by: , Mr. Muneshwara M S

performed on the original variable.

• An alias is simply another name for the original variable.

• Must be initialized at the time of declaration.

• Reference variable can be a function argument and thus change the value of the

parameter that is passed to it in the function call.

Syntax :

Example

Ex : #include <iostream.h>

void main()

{

int x=3;

int &y=x;

cout<<“x=“<<x endl<<“y=“<<y<<endl;

y=7;

cout<<“x=“<<x<<endl<<“y=“<<y<<endl;

}

Output :

x=3

y=3

x=7

Y=7

Ex: #include <iostream.h>

void main()

{

int x, y;

int x=100;

int & iRef=x;

y=iRef;

cout <<y<<endl;

y++; // x and iRef unchanged

cout <<x <<endl<<iRef<<endl<<y<<endl;

}

100

100

100

101

#include <iostream>

using namespace std;

int main ()

{

int i; double d;

int& r = i;

double& s = d;

i = 5;

cout << "Value of i : " << i << endl;

cout << "Value of i reference : " << r << endl;

d = 11.7;

cout << "Value of d : " << d << endl;
cout << "Value of d reference : " << s << endl;

return 0;
}

Output:
Value of i : 5

Value of i reference : 5

Value of d : 11.7

Value of d reference : 11.7

Swap 2 variables using reference variables

datatype &variable= existing variable

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 8 Prepared by: , Mr. Muneshwara M S

#include <iostream>

using namespace std;

void swap(int &x, int &y);

int main () {

int a = 100;

int b = 200;

cout << "Before swap, value of a :" << a << endl;

cout << "Before swap, value of b :" << b << endl;

FUNCTION PROTOTYPING

• C++ strongly supports function prototypes

• Prototype describes the function‟s interface to the compiler

• Tells the compiler the return type of function, number , type and sequence of its formal

arguments

Syntax : return_type function_name(argument_list);

Eg- int add (int, int);

With prototyping, compiler ensures following .The return value of a function is handled

correctly. Correct number and type of arguments are passed to a function. Since C++ compiler

requires function prototyping, it will report error against function call because no function

prototype is provided to resolve the function call. Prototyping guarantees protection from errors

arising out of incorrect function calls. A function heading without body.

swap(a, b);

cout << "After swap, value of a :" << a << endl;

cout << "After swap, value of b :" << b << endl;

return 0;

}

void swap(int &x, int &y) {

int temp;

temp = x;

x = y;

y = temp;

}

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 9 Prepared by: , Mr. Muneshwara M S

#include <iostream>

using namespace std;

void display(int);

void display(float);

void display(int, float);

FUNCTION OVERLOADING IN C++

C++ allows you to specify more than one definition for a function name or an operator in the

same scope, which is called function overloading. However to achieve this they must have

different signatures.

Signature of a function means number, type and sequence of formal arguments of the function.

Ways to overload a function

 By changing number of Arguments.

 By having different types of argument.

int main() {

int a = 5;

float b = 5.5;

display(a);

display(b);

display(a, b);

return 0;

void display(int var) {

cout << "Integer number: " << var << endl;

void display(float var) {

cout << "Float number: " << var << endl;

void display(int var1, float var2) {

cout << "Integer number: " << var1;

cout << " and float number:" << var2;

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 10 Prepared by: , Mr. Muneshwara M S

INLINE FUNCTIONS
Inline functions are actual functions, which are copied everywhere during compilation, like

preprocessor macro, so the overhead of function calling is reduced. All the functions defined

inside class definition are by default inline, but you can also make any non-class function inline

by using keyword inline with them. Functions can be instructed to compiler to make them inline

so that compiler can replace those function definition wherever those are being called.

For an inline function, declaration and definition must be done together. For example,

Syntax:

Example:

inline double cube(double a)
{

return(a * a * a);

}

Why to use –

In many places we create the functions for small work/functionality which contain simple and

less number of executable instruction. Imagine their calling overhead each time they are being

called by callers. With inline keyword, the compiler replaces the function call statement with the

function code itself (process called expansion) and then compiles the entire code. Thus, with

inline functions, the compiler does not have to jump to another location to execute the function,

and then jump back as the code of the called function is already available to the calling program.

CLASS AND OBJECTS

A class is a way to bind the data and its associated functions together. It allows the data and

functions to be hidden, if necessary, from external use. A class declaration is similar

syntactically to a structure.

General form of a class declaration is:

inline return_type function_name(arguments)

//function body

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 11 Prepared by: , Mr. Muneshwara M S

class class_name
{

private:

Variable declaration/data members;

Function declaration/ member

functions;

protected:

Variable declaration/data members;

Function declaration/ member

functions;

public:

Variable declaration/data members;

Function declaration/ member functions
};

Private members can be accessed only from within the

class.

Protected members can be accessed by own class and

its derived classes.

Public members can be accessed from outside the class

also.

 The variables declared inside the class definition are known as data members and the
functions declared inside a class are known as member functions.

 By default the data members and member function of a class are private.

 Private data members can be accessed by the functions that are wrapped inside the class.

How to access member of a class?

To access member of a class dot operator is used. i.e.

object-name . data-member and

object-name . member-function

Memory allocation of objects:

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 12 Prepared by: , Mr. Muneshwara M S

ex: #include<iostream.h>

class Add

{

int x, y, z;

public:

void getdata()
{

cout<<”Enter two numbers”;

cin>>x>>y;

}

void calculate(void);

void display(void);

};

Memory space for objects is allocated when they are declared and not when the class is

specified. Since all the objects belonging to that class use the same member functions, no

separate space is allocated for member functions when the objects are created.

Only space for member variables(data members) is allocated separately for each object. Separate

memory locations for the objects are essential, because the member variables will hold different

data values for different objects.

General steps to write a C++ program using class and object:
 Header files

 Class definition

 Member function definition

 void main function

void Add :: calculate()

{

z=x+y;

}

void Add :: display()

{

cout<<z;

}

void main()

{

Add a;

a.getdata();

a.calculate();

a.display();

}

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 13 Prepared by: , Mr. Muneshwara M S

class Student

{
private: // private data member

int rollno;

public: // public accessor functions

int getRollno()

{

return rollno;

}

void setRollno(int i)

{

rollno=i;
}

};

int main()
{

Student A;

A.rollono=1; //Compile time error

Output:

Enter two numbers 5 6
11

Private & Public Members
 The private keyword makes data and functions private. Private data and functions can be accessed

only from inside the same class.

 The public keyword makes data and functions public. Public data and functions can be accessed

out of the class.

cout<< A.rollno; //Compile time error

A.setRollno(1);

cout<< A.getRollno();

//Rollno initialized to 1
//Output will be 1

}

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 14 Prepared by: , Mr. Muneshwara M S

class Student

{

public:

int rollno;

string name;

};

int main()

{

Student A;

Student B;

A.rollno=1;

A.name="Adam";

B.rollno=2;

B.name="Bella";

cout <<"Name and Roll no of A is :"<< A.name << A.rollno;

cout <<"Name and Roll no of B is :"<< B.name << B.rollno;

}

Scope Resolution Operator (::)
It is possible and necessary for Library programmer to define member functions outside their

respective classes.

The definition of member function outside the class differs from normal function

definition, as the function name in the function header is preceded by the class name and the

scope resolution operator (: :). The scope resolution operator informs the compiler what class the

member belongs to. The syntax for defining a member function outside the class is

In C++, scope resolution operator is ::. It is used for following purposes.

1) To access a global variable when there is a local variable with same name

2) To define a function outside a class.

Return_type class_name :: function_name (parameter_list)

{

// body of the member function

}

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 15 Prepared by: , Mr. Muneshwara M S

class Box {

public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

double getVolume(void);

void setdata(double l, double b, double h);

};

double Box:: getVolume(void)

{
return length * breadth * height;

}

void Box::setLength(double l, double b, double h)

{
length = l;

breadth = b;

height = h;

}

int main()

{

Box Box1;
double volume = 0.0;

Box1.setdata(6.0,5.0,8.3);

volume = Box1.getVolume();

cout << "Volume of Box1 : " << volume <<endl;
}

3) To access a class’s static variables. [refer static data members]

4) In case of multiple Inheritance

Global variable access:

Define function outside the class

#include<iostream>

using namespace std;

int x; // Global x

int main()

{

int x = 10; // Local x

cout << "Value of global x is " << ::x;

cout << "\nValue of local x is " << x;

return 0;

}

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 16 Prepared by: , Mr. Muneshwara M S

void setFeet(Distance * const this, int x)

{

this -> iFeet = x;

}

class Test
{

private:

int x;

public:

void setX (int x)

{

this->x = x;

}

void print() { cout << "x = " << x << endl; }

};

int main()

{

Test obj;

int x = 20;

obj.setX(x);

obj.print();

return 0;

}

This pointer
The „this‟ pointer-The facility to create and call member functions of class objects is

provided by the compiler. Compiler does this by using a unique pointer -> this.

this pointer - always a constant pointer. It points at the object with respect to which the

function was called.

The „this‟ pointer is passed as a hidden argument to all nonstatic member function calls

and is available as a local variable within the body of all nonstatic functions. „this‟

pointer is a constant pointer that holds the memory address of the current object. „this‟

pointer is not available in static member functions as static member functions can be

called without any object (with class name).

 It puts a declaration of the this pointer as a leading formal argument in the

prototypes of all member functions as follows

It passes the address of invoking object as a leading parameter to each call to the member

functions.

Ex : setFeet(&d1, 1);

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 16 Prepared by: , Mr. Muneshwara M S

MEMBER FUNCTIONS AND MEMBER DATA

1) Default values for formal arguments of Member functions
Default values can be assigned to arguments of non-member functions and member

functions. Member functions should be overloaded with care, if default values are

specified for some or all of its arguments otherwise the compiler will report

ambiguity error.

Ex

Class A

{

int sum(int x, int y, int z=0)

{

return (x + y + z);

}

};

int main()

{

A A1;

A1. sum(10, 15) << endl;

A1. sum(10, 15, 25) << endl;

return 0;

}

Output: 25

50

Points to remember

 Default values are specified from right to left.

 Default values must be specified in the function prototypes and not in function definitions.

 int mul(int i, int j=5, int k=10); // Valid

 int mul(int i=5, int j); //InValid

 int mul(int i=0, int j, int k=10); // InValid

 int mul(int i=2, int j=5, int k=10); // Valid

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 17 Prepared by: , Mr. Muneshwara M S

Class Distance
{

int iFeet;

float fInches;

public:

void setdata(int,float);

void getdata() const;

};
//constant function

void Distance::setdata(int x, float y)
{

iFeet=x;

fInches=y;

}

void Distance::getdata()
{

iFeet++;

fInches=fInches+ 1;

Cout<<iFeet;

}

const //const function

//ERROR!!
//ERROR!!

2) Constant Member functions:

A function becomes const when const keyword is used in function‟s declaration. The idea of

const functions is not allow them to modify the object on which they are called.

The programmer desires that one of the member functions of a class should not be

able to change the value of data members. This function should be able to merely read

the values contained in the data members, but not change them.

3) Mutable Data Members

Mutable data member is never constant. It can be modified inside constant functions

also. Prefixing the declaration of a data member with the key word mutable makes it

mutable.

Class A

int x;

mutable int y;
public:

void abc() const

x++;

//a constant member function

// error: cant modify a non-constant

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 18 Prepared by: , Mr. Muneshwara M S

class Add

int x, y, z;

public:

Add(int, int);

friend int calculate(Add p);

};

Add :: Add(int a, int b)

{

x=a;

y=b;

}

4) Friend Class & Friend Functions:

Friend Function

 Scope of a friend function is not inside the class in which it is declared. It is prefixed with

the keyword friend.

 Since its scope is not inside the class, it cannot be called using the object of that class. It
can be called like a normal function without using any object.

 It cannot directly access the data members like other member function and it can access

the data members by using object through dot operator. A friend function is a non-

member function that has special rights to access private data members of any object of

the class of whom it is a friend

 It can be declared either in private or public part of the class definition. Usually it has the

objects as arguments.

y++; //ok can modify a mutable data member in

void def() //can modify

x++;

y++;

};

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 19 Prepared by: , Mr. Muneshwara M S

#include <iostream>

using namespace std;

class Rectangle;

class Square

friend class Rectangle; // declaring Rectangle as friend class

int side;

public:

Square (int s)

side = s;

};

int calculate(Add p)

{

return(p.x+p.y);

}

void main()

{

Add a(5, 6);

cout<<calculate(a);

}

Output:

11

Friend Class: A class can be friend of another class. Member Functions of a friend class can

access private data members of objects of class of which it is a friend. When this is the case, the

friend class and all of its member functions have access to the private members defined within

the other class.

class B; //Forward declaration.

class A

{

friend class B;

//rest of the class A

};

Friendship is not transitive. That is, If class A is friend with class B, and class B is friend

with class C. This doesn’t mean that class A is friend with class C.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 20 Prepared by: , Mr. Muneshwara M S

class A

int p;

static int q;

public:

class Rectangle

{

int length;

int breadth;

public:

int getArea()

{

return length * breadth;

}

void shape(Square a)

{

length = a.side;

breadth = a.side;

}

};

int main()

{

Square square(5);

Rectangle rectangle;

rectangle.shape(square);

cout << rectangle.getArea() << endl;

return 0;

}

Output:
25

5) Static Data Members

 The data member of a class preceded by the keyword static is known as static member.

 When we precede a member variable's declaration with static, we are telling the compiler

that only one copy of that variable will exist and that all objects of the class will share

that variable. Hence static variables are called class variables.

 Unlike regular data members, individual copies of a static member variable are not made

for each object. No matter how many objects of a class are created, only one copy of a

static data member exists. Thus, all objects of that class use that same variable.

 All static variables are initialized to zero before the first object is created.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 21 Prepared by: , Mr. Muneshwara M S

A();
void incr(void);

void display(void);

};

A :: A()

{

p=5;

}

int A:: q=10; // initialize static data member

void A:: incr()
{

p++;

q++;
}

void A:: display()

{

cout<<p<<”\t”<<q<<endl;

}

void main()

{

A a1, a2, a3;

a1.incr();

a1.display();

a2.incr();

a2.display();

a3.incr();

a3.display();
}

Output:

6 11

6 12

6 13

Static Member function/method
 A static function can have access to only other static members (functions or variables)

declared in the same class. (Of course, global functions and data may be accessed by

static member Function.). It is accessed by class name and not by object‟s name .

i.e. class-name::function-name

 The function name is preceded by the keyword static. A static member function does not

have this pointer.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 22 Prepared by: , Mr. Muneshwara M S

#include <iostream>

using namespace std;

class Counter

{

private:

static int count; //static data member as count

public:

Counter() //default constructor

{

count++;

}

static void Print() //static member function

{

cout<<"\nTotal objects are: "<<count;

}

};

int Counter :: count = 0; //count initialization with 0

int main()

{
Counter OB1;

OB1.Print();

Counter OB2;

OB2.Print();

Counter OB3;

OB3.Print();

return 0;
}

Output:

Total objects are: 1

Total objects are: 2

Total objects are: 3

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 23 Prepared by: , Mr. Muneshwara M S

OBJECTS & FUNCTIONS:

Objects appear as local variables. They can also be passed by reference to Functions. Finally

they can be returned by value or by reference from the functions.

#include <iostream>

using namespace std;

class Complex

{

private:

int real;

int imag;

public:

void readData()
{

cout << "Enter real and imaginary number

respectively:"<<endl;

cin >> real >> imag;

}

void addComplexNumbers(Complex comp1, Complex comp2)

{

real=comp1.real+comp2.real;

imag=comp1.imag+comp2.imag;

}

void displaySum()

{

cout << "Sum = " << real<< "+" << imag << "i";

}

};

int main()

{

Complex c1,c2,c3;

c1.readData();

c2.readData();

c3.addComplexNumbers(c1, c2);

c3.displaySum();

return 0;
}

Output:

1

2

1

2

Sum= 2+4i

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 24 Prepared by: , Mr. Muneshwara M S

class Add

int x, y, z;

public:

Add(int, int);

friend int calculate(Add p);

};

Add :: Add(int a, int b)

{

x=a;

y=b;

}

6) Friend Class & Friend Functions:

Friend Function

 Scope of a friend function is not inside the class in which it is declared. It is prefixed with

the keyword friend.

 Since its scope is not inside the class, it cannot be called using the object of that class. It
can be called like a normal function without using any object.

 It cannot directly access the data members like other member function and it can access

the data members by using object through dot operator. A friend function is a non-

member function that has special rights to access private data members of any object of

the class of whom it is a friend

 It can be declared either in private or public part of the class definition. Usually it has the

objects as arguments.

y++; //ok can modify a mutable data member in

void def() //can modify

x++;

y++;

};

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 25 Prepared by: , Mr. Muneshwara M S

#include <iostream>

using namespace std;

class Rectangle;

class Square

friend class Rectangle; // declaring Rectangle as friend class

int side;

public:

Square (int s)

side = s;

};

int calculate(Add p)

{

return(p.x+p.y);

}

void main()

{

Add a(5, 6);

cout<<calculate(a);

}

Output:

11

Friend Class: A class can be friend of another class. Member Functions of a friend class can

access private data members of objects of class of which it is a friend. When this is the case, the

friend class and all of its member functions have access to the private members defined within

the other class.

class B; //Forward declaration.

class A

{

friend class B;

//rest of the class A

};

Friendship is not transitive. That is, If class A is friend with class B, and class B is friend

with class C. This doesn’t mean that class A is friend with class C.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 26 Prepared by: , Mr. Muneshwara M S

class A

int p;

static int q;

public:

class Rectangle

{

int length;

int breadth;

public:

int getArea()

{

return length * breadth;

}

void shape(Square a)

{

length = a.side;

breadth = a.side;

}

};

int main()

{

Square square(5);

Rectangle rectangle;

rectangle.shape(square);

cout << rectangle.getArea() << endl;

return 0;

}

Output:
25

7) Static Data Members

 The data member of a class preceded by the keyword static is known as static member.

 When we precede a member variable's declaration with static, we are telling the compiler

that only one copy of that variable will exist and that all objects of the class will share

that variable. Hence static variables are called class variables.

 Unlike regular data members, individual copies of a static member variable are not made

for each object. No matter how many objects of a class are created, only one copy of a

static data member exists. Thus, all objects of that class use that same variable.

 All static variables are initialized to zero before the first object is created.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 27 Prepared by: , Mr. Muneshwara M S

A();
void incr(void);

void display(void);

};

A :: A()

{

p=5;

}

int A:: q=10; // initialize static data member

void A:: incr()
{

p++;

q++;
}

void A:: display()

{

cout<<p<<”\t”<<q<<endl;

}

void main()

{

A a1, a2, a3;

a1.incr();

a1.display();

a2.incr();

a2.display();

a3.incr();

a3.display();
}

Output:

6 11

6 12

6 13

Static Member function/method
 A static function can have access to only other static members (functions or variables)

declared in the same class. (Of course, global functions and data may be accessed by

static member Function.). It is accessed by class name and not by object‟s name .

i.e. class-name::function-name

 The function name is preceded by the keyword static. A static member function does not

have this pointer.

https://hemanthrajhemu.github.io

MODULE 1 : INTRODUCTION TO OBJECT ORIENTED CONCEPTS OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M 28 Prepared by: , Mr. Muneshwara M S

#include <iostream>

using namespace std;

class Counter

{

private:

static int count; //static data member as count

public:

Counter() //default constructor

{

count++;

}

static void Print() //static member function

{

cout<<"\nTotal objects are: "<<count;

}

};

int Counter :: count = 0; //count initialization with 0

int main()

{
Counter OB1;

OB1.Print();

Counter OB2;

OB2.Print();

Counter OB3;

OB3.Print();

return 0;
}

Output:

Total objects are: 1

Total objects are: 2

Total objects are: 3

https://hemanthrajhemu.github.io

