

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

B M S INSTITUTE OF TECHNOLOGY & MANAGEMENT

YELAHANKA, BENGALURU – 560064.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 MODULE -2 NOTES OF

OBJECT ORIENTED CONCEPTS -18CS45

 [As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Prepared by,

Mr. Muneshwara M S

Asst. Prof, Dept. of CSE

- 560064.

VISION AND MISSION OF THE CS&E DEPARTMENT

Vision

To develop technical professionals acquainted with recent trends and technologies of computer science to serve as valuable resource

for the nation/society.
Mission:

 Facilitating and exposing the students to various learning opportunities through dedicated academic teaching, guidance and

monitoring.

VISION AND MISSION OF THE INSTITUTE

Vision

To emerge as one of the finest technical institutions of higher learning, to develop engineering professionals who are technically

competent, ethical and environment friendly for betterment of the society.

Mission

Accomplish stimulating learning environment through high quality academic instruction, innovation and industry-institute interface

https://hemanthrajhemu.github.io

http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 1 Prepared by. Muneshwara M S

MODULE 2 CLASS AND OBJECTS (CONTD)

The following concepts should be learn in this Module

Objects and arrays, Namespaces, Nested classes, Constructors, Destructors. Introduction to Java:

Java’s magic: the Byte code; Java Development Kit (JDK); the Java Buzzwords, Object-oriented

programming; Simple Java programs. Data types, variables and arrays, Operators, Control

Statements.

Text book 1:Ch 2: 2.4 to 2.6Ch 4: 4.1 to 4.2

Text book 2: Ch:1 Ch: 2 Ch:3 Ch:4 Ch:5 , RBT: L1, L2

OBJECTS AND ARRAYS:

Like array of other user-defined data types, an array of type class can also be

created. The array of type class contains the objects of the class as its individual

elements. Thus, an array of a class type is also known as an array of objects. An

array of objects is declared in the same way as an array of any built-in data type.

The syntax for declaring an array of objects is

class_name array_name [size] ;

class Employee

{
char name[30];

int age;

public:
void getdata(void);

void putdata(void);

};
void Employee:: getdata(void)

{

cout<<‖Enter Name and Age:‖;

cin>>name>>age;

}

void Employee:: putdata(void)

{

cout<<name<<‖\t‖<<age<<endl;

}

void main()

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 2 Prepared by. Muneshwara M S

{
Employee e[5];

int i;

for(i=0; i<5; i++)

{

e[i].getdata();

}

for(i=0; i<5; i++)

{

e[i].putdata();

}

}

NAMESPACE:

Namespaces – enable C++ programmer to prevent pollution of global

namespace that lead to name clashes.

Global namespace refer to the entire source code. It includes all the directly and

indirectly included header files. By default, name of each class is visible in the

source code i.e. in the global space. This can lead to problems.

Namespace is used to define a scope where identifiers like variables, functions,

classes, etc are declared. The main purpose of using a namespace is to prevent

ambiguity that may occur when two identifiers have same name.

Consider

A1.h A2.h

class A

{

//body of A

}; class A

{

//body of A

};

Main_prog.cpp

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 3 Prepared by. Muneshwara M S

#include ―A1.h‖ #include ―A2.h‖ main()

{

A Aobj; //ERROR: Ambiguity error due to multiple definitions of A

}

Syntax of Namespace Definition:

The member can be accessed in the program as,

using namespace namepace_name namespace_name::member_name;

/*A1.h*/

namespace A1

{

class A

{

};

} /*end of namespace A1.h*/ /*A2.h*/

namespace A2

{

class A

{

};

} /*end of namespace A2.h*/

The using directive enable us to make class definition inside A namespace

visible so that qualifying the name of referred Class by name of namespace is

no longer required. Code below tells how this is done.

#include ―A1.h‖ #include ―A2.h‖ void main()

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 4 Prepared by. Muneshwara M S

{

using namespace A1;

A1::A Aobj1; //ok: Aobj1 is an object of class defined in A1.h

A2::A Aobj2; //ok: Aobj2 is an object of class defined in A1.h

}

Rules for namespace:

 Namespace declarations appear only at global scope.

 Namespace declarations can be nested within another namespace.

 Namespace declarations don‟t have access specifiers. (Public or private)

 No need to give semicolon after the closing brace of definition of

namespace.

using namespace std;

The using namespace statement specifies that the members defined in std

namespace will be used frequently throughout the program.

CONSTRUCTORS:

A class constructor is a special member function of a class that is executed

whenever we create new objects of that class. Constructors can be very useful

for setting initial values for certain member variables.

Constructors are special class functions which performs initialization of every

object. The Compiler calls the Constructor whenever an object is created.

Characteristics of a constructor

 They should be declared in the public section.

 They are invoked directly when an object is created.

 They don‟t have return type, not even void and hence can‟t return any

values.

 They can‟t be inherited; through a derived class, can call the base class

constructor.

 Like other C++ functions, they can have default arguments.

 Constructors can‟t be virtual.

 Constructors can be inside the class definition or outside the class

definition.

 Constructor can‟t be friend function.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 5 Prepared by. Muneshwara M S

 They make implicit calls to the operators new and delete when memory

allocation is required.

 When a constructor is declared for a class, initialization of the class

objects becomes necessary after declaring the constructor.

Different Types of Constructor

Default Constructor:-

Default Constructor is also called as Empty Constructor which has no

arguments and It is Automatically called when we creates the object of class but

Remember name of Constructor is same as name of class and Constructor never

declared with the help of Return Type.

class Add

{

int x, y, z;

public:
Add(); // Default Constructor

void display(void);

};

Add::Add()

{

x=6;

y=5;

}

void Add :: display()

{

cout<< x+y;

}

void main()

{

Add a;

a.display();

}

Output:
11

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 6 Prepared by. Muneshwara M S

Parameterized Constructor:-

This is Another type Constructor which has some Arguments and same name

as class name .We have to create object of Class by passing some Arguments at

the time of creating object with the name of class.

 class Add

{

Int x, y, z;

public:

Add(int, int);

void display(void);

};

Add :: Add(int a, int b)

{

x=a;

y=b;

}

void Add :: display()

{

cout<<x+y;

}

void main()

{

Add a(5, 6);

a.display();

}

Output:
11

A parameterized constructor can be called:

(i) Implicitly: Add a(5, 6);

(ii) Explicitly : Add a=Add(5, 6);

Copy Constructor:-

This is also Another type of Constructor. In this Constructor we pass the object

of class into the Another Object of Same Class. As name Suggests you Copy,

means Copy the values of one Object into the another Object of Class .

When we are using or passing an Object to a Constructor then we must have to

use the & Ampersand or Address Operator.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 7 Prepared by. Muneshwara M S

class Add

{
int x, y, z;

public:
Add(int a, int b)

{

x=a;

y=b;

}

Add(Add &);

void display(void);

};
Add :: Add(Add &p)

{

x=p.x;

y=p.y;

cout<<‖Value of x and y for new object: ‖<<x<<‖ and

‖<<y<<endl;

}

void Add :: display()

{

cout<<x+y;

}

void main()

{

Add a(5, 6);

Add b(a);

b.display();

}

Output:
Value of x and y for new object are 5 and 6 11

DESTRUCTORS

 It is a special member function which is executed automatically when an

object is destroyed.

 Its name is same as class name but it should be preceded by the symbol ~.

 It cannot be overloaded as it takes no argument.

 It is used to delete the memory space occupied by an object.

 It has no return type.

 It should be declared in the public section of the class.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 8 Prepared by. Muneshwara M S

 class A

{

A()
{

cout << "Constructor called";

}

~A()
{

cout << "Destructor called";

}

};

int main()

{

A obj1; // Constructor Called

int x=1

if(x)

{

A obj2; // Constructor Called

} // Destructor Called for obj2

} // Destructor called for obj1

NESTED CLASSES:

A class can be defined inside another class. Such a class is known as Nested

Class. The class that contains the nested class is known as enclosing class.

Nested classes can be defined in the private, protected, or public sections of the

enclosing class.

 A nested class is declared inside another class.

 The scope of inner class is restricted by the outer class.

 While declaring an object of inner class, the name of the inner class

must be preceded by the outer class name and scope resolution

operator.

A nested class is created if it does not have any relevance outside its enclosing

class. By defining class as a nested class, name collision can be avoided. That

is, if there is class B defined as global class, its name will not clash with the

nested class B. The size of the object of an enclosing class is not affected by the

presence of nested classes.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 9 Prepared by. Muneshwara M S

How are the member functions of a nested class defined?

Member functions of a nested class can be defined outside the definition of

enclosing class.

 Syntax:

class A

{

public:

class B

{

public:

void BTest();

};

}; // Defining function outside the class

void A :: B :: BTest()

{

//function body

}

#include <iostream.h>

 class Nest

{ public:

class Display

{ private:

int s;

public:

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 10 Prepared by. Muneshwara M S

void sum(int a, int b)

{ s =a+b;

}

void show()

{ cout << "\nSum of a and b is:: " << s;

}

};

};

void main()

{ Nest::Display x;

x.sum(12, 10);

x.show();

}

Sum of a and b is::22

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 11 Prepared by. Muneshwara M S

INTRODUCTION TO JAVA

Java Byte Code:

The key that allows Java to solve both the security and the portability problems

just described is that the output of a Java compiler is not executable code.

Rather, it is bytecode. Byte code is a highly optimized set of instructions

designed to be executed by the Java run-time system, which is called the Java

Virtual Machine (JVM).In essence, the original JVM was designed as an

interpreter for bytecode.

Translating a Java program into bytecode makes it much easier to run a program

in a wide variety of environments because only the JVM needs to be

implemented for each platform. Once the run-time package exists for a given

system, any Java program can run on it.

Bytecode is the intermediate representation of Java programs just as assembler is the

intermediate representation of C or C++ programs. Programming code, once

compiled, is run through a virtual machine instead of the computer‘s processor.

By using this approach, source code can be run on any platform once it has been

compiled and run through the virtual machine.

Bytecode is the compiled format for Java programs. Once a Java program has

been converted to bytecode, it can be transferred across a network and executed

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 12 Prepared by. Muneshwara M S

by Java Virtual Machine (JVM). Bytecode files generally have a .class

extension.

A method's bytecode stream is a sequence of instructions for the Java virtual

machine. Each instruction consists of a one-byte opcode followed by zero or

more operands. Rather than being interpreted one instruction at a time, Java

bytecode can be recompiled at each particular system platform by a just-in-time

compiler. Usually, this will enable the Java program to run faster.

Java Development Kit (JDK):

Java Development Kit contains two parts. One part contains the utilities like

javac, debugger, jar which helps in compiling the source code (.java files) into

byte code (.class files) and debug the programs. The other part is the JRE,

which contains the utilities like java which help in running/executing the byte

code. If we want to write programs and run them, then we need the JDK

installed.

Java Run-time Environment (JRE):

Java Run-time Environment helps in running the programs. JRE contains the

JVM, the java classes/packages and the run-time libraries. If we do not want to

write programs, but only execute the programs written by others, then JRE

alone will be sufficient.

Java Virtual Machine (JVM):

Java Virtual Machine is important part of the JRE, which actually runs the

programs (.class files), it uses the java class libraries and the run-time libraries

to execute those programs. Every operating system(OS) or platform will have a

different JVM.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 13 Prepared by. Muneshwara M S

Just In Time Compiler (JIT):

JIT is a module inside the JVM which helps in compiling certain parts of byte

code into the machine code for higher performance. Note that only certain parts

of byte code will be compiled to the machine code, the other parts are usually

interpreted and executed.

Java is distributed in two packages - JDK and JRE. When JDK is installed it

also contains the JRE, JVM and JIT apart from the compiler, debugging tools.

When JRE is installed it contains the JVM and JIT and the class libraries.

javac helps in compiling the program and java helps in running the program.

When the words Java Compiler, Compiler or javac is used it refers to javac,

when the words JRE, Run-time Enviroment, JVM, Virtual Machine are

used, it refers to java.

Write (Compile) Once and Run Anywhere (WORA)

https://hemanthrajhemu.github.io

https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg
https://i0.wp.com/javabeginnerstutorial.com/wp-content/uploads/2015/07/JDK_JRE_JVM.jpg

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 14 Prepared by. Muneshwara M S

This terminology was given by Sun Microsystem for their programming

language - Java. According to this concept, the same code must run on any

machine and hence the source code needs to be portable. So Java allows run

Java bytecode on any machine irrespective of the machine or the hardware,

using JVM (Java Virtual Machine). The bytecode generated by the compiler is

not platform-specific and hence takes help of JVM to run on a wide range of

machines. So we can call Java programs as a write once and run on any machine

residing anywhere.

Java Buzz Words

 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted

 High performance

 Distributed

 Dynamic

Simple

Java was designed to be easy for the professional programmer to learn and use

effectively. If you already understand the basic concepts of object-oriented

programming like C++, learning Java will be even easier.

Object Oriented:

 In Java, everything is an Object. The object model in Java is simple and easy to

extend, while primitive types, such as integers, are kept as high-performance

non-objects.

Platform Independent:

Unlike many other programming languages including C and C++, when Java is

compiled, it is not compiled into platform specific machine, rather into platform

independent byte code. This byte code is distributed over the web and

interpreted by the Virtual Machine (JVM) on whichever platform it is being run

on.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 15 Prepared by. Muneshwara M S

Secure: With Java's secure feature it enables to develop virus-free, tamper-free

systems. Authentication techniques are based on public-key encryption.

Architecture-neutral: Java compiler generates an architecture-neutral object

file format, which makes the compiled code executable on many processors,

with the presence of Java runtime system.

Portable: Being architecture-neutral and having no implementation dependent

aspects of the specification makes Java portable. Compiler in Java is written in

ANSI C with a clean portability boundary, which is a POSIX subset.

Robust: Java makes an effort to eliminate error prone situations by

emphasizing mainly on compile time error checking and runtime checking.

To better understand how Java is robust, consider two of the main reasons for

program failure: memory management mistakes and mishandled exceptional

conditions. For example, in C/C++, the programmer must manually allocate and

free all dynamic memory. This sometimes leads to problems, because

programmers will either forget to free memory that has been previously

allocated or, worse, try to free some memory that another part of their code is

still using. Java virtually eliminates these problems by managing memory

allocation and de-allocation for you. Java helps in this area by providing object-

oriented exception handling.

Multithreaded: With Java's multithreaded feature it is possible to write

programs that can perform many tasks simultaneously. This design feature

allows the developers to construct interactive applications that can run

smoothly.

Interpreted: Java byte code is translated on the fly to native machine

instructions and is not stored anywhere. The development process is more rapid

and analytical since the linking is an incremental and light-weight process.

High Performance: With the use of Just-In-Time compilers, Java enables high

performance.

Distributed: Java is designed for the distributed environment of the internet.

Java also supports Remote Method Invocation (RMI). It handles TCP/IP

protocols.

Dynamic: Java is considered to be more dynamic than C or C++ since it is

designed to adapt to an evolving environment. Java programs can carry

extensive amount of run-time information that can be used to verify and resolve

accesses to objects on run-time.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 16 Prepared by. Muneshwara M S

History of Java

James Gosling initiated Java language project in June 1991 for use in one of his

many set-top box projects. The language, initially called ‗Oak‘ after an oak tree

that stood outside Gosling's office, also went by the name ‗Green‘ and ended up

later being renamed as Java, from a list of random words.

Sun released the first public implementation as Java 1.0 in 1995. It promised

Write Once, Run Anywhere (WORA), providing no-cost run-times on popular

platforms.

On 13 November, 2006, Sun released much of Java as free and open source

software under the terms of the GNU General Public License (GPL).

On 8 May, 2007, Sun finished the process, making all of Java's core code free

and open-source, aside from a small portion of code to which Sun did not hold

the copyright.

Object Oriented Paradigm

Abstraction

An essential element of object-oriented programming is abstraction. Humans

manage complexity through abstraction.

From the outside, the car is a single object. Once inside, you see that the car

consists of several subsystems: steering, brakes, sound system, seat belts,

heating, cellular phone, and so on. In turn, each of these subsystems is made up

of more specialized units.

For instance, the sound system consists of a radio, a CD player, and/or a tape

player. The point is that you manage the complexity of the car (or any other

complex system) through the use of hierarchical abstractions.

Three OO Concepts:

 Encapsulation

 Inheritance

 Polymorphism

Encapsulation

Encapsulation is the mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interference and misuse. It acts

as a protective wrapper that prevents the code and data from being arbitrarily

accessed by other code defined outside the wrapper. Access to the code and data

inside the wrapper is tightly controlled through a well-defined interface.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 17 Prepared by. Muneshwara M S

A class defines the structure and behaviour (data and code) that will be shared

by a set of objects. Each object of a given class contains the structure and

behaviour defined by the class. For this reason, objects are sometimes referred

to as instances of a class.

When you create a class, you will specify the code and data that constitute that

class. Collectively, these elements are called members of the class. Specifically,

the data defined by the class are referred to as member variables or instance

variables. The code that operates on that data is referred to as member

methods or just methods.

Each method or variable in a class may be marked private or public.

 The public interface of a class represents everything that external users of

the class need to know, or may know.

 The private methods and data can only be accessed by code that is a

member of the class.

Inheritance

Inheritance is the process by which one object acquires the properties of another

object. This is important because it supports the concept of hierarchical

classification.

The class which inherits the properties of other is known as subclass (derived

class, child class) and the class whose properties are inherited is known as

superclass (base class, parent class).

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 18 Prepared by. Muneshwara M S

Since mammals are simply more precisely specified animals, they inherit all of

the attributes from animals. A deeply inherited subclass inherits all of the

attributes from each of its ancestors in the class hierarchy.

Polymorphism

Polymorphism (from Greek, meaning ―many forms‖) is a feature that allows

one interface to be used for a general class of actions. Polymorphism in java is

a concept by which we can perform a single action by different ways.

Polymorphism is derived from 2 Greek words: poly and morphs. The word

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 19 Prepared by. Muneshwara M S

"poly" means many and "morphs" means forms. So polymorphism means many

forms.

There are two types of polymorphism in java:

 compile time polymorphism and

 Runtime polymorphism.

We can perform polymorphism in java by method overloading and method

overriding.

Example: Consider a stack (which is a last-in, first-out list). You might have a

program that requires three types of stacks. One stack is used for integer values,

one for floating-point values, and one for characters. The algorithm that

implements each stack is the same, even though the data being stored differs.

Polymorphism, Encapsulation, and Inheritance Work Together

When properly applied, polymorphism, encapsulation, and inheritance combine

to produce a programming environment that supports the development of far

more robust and scalable programs than does the process-oriented model. A

well-designed hierarchy of classes is the basis for reusing the code in which you

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 20 Prepared by. Muneshwara M S

have invested time and effort developing and testing. Encapsulation allows you

to migrate your implementations over time without breaking the code that

depends on the public interface of your classes. Polymorphism allows you to

create clean, sensible, readable, and resilient code.

Java Basics

When we consider a Java program, it can be defined as a collection of objects

that communicate via invoking each other's methods. Let us now briefly look

into what do class, object, methods, and instance variables mean.

 Object - Objects have states and behaviours. Example: A dog has

states - colour, name, breed as well as behaviour such as wagging their

tail, barking, eating. An object is an instance of a class.

 Class - A class can be defined as a template/blueprint that describes

the behaviour/state that the object of its type supports.

 Methods - A method is basically behaviour. A class can contain many

methods. It is in methods where the logics are written, data is

manipulated and all the actions are executed.

 Instance Variables - Each object has its unique set of instance

variables. An object's state is created by the values assigned to these

instance variables.

First Java Program
Let us look at a simple code that will print the words Hello World.

public class MyFirstJavaProgram {

/* This is my first java program.

This will print 'Hello World' as the output */

 public static void main(String []args) {

 System.out.println("Hello World"); // prints Hello World

}

}

C:\> javac MyFirstJavaProgram.java

C:\> java MyFirstJavaProgram

Hello World

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 21 Prepared by. Muneshwara M S

Java supports three styles of comments.

1) The one shown at the top of the program is called a multiline comment.

This type of comment must begin with /* and end with */.

2) Single line comment . //

3) Documentation Comment

public static void main(String args[]) {

All Java applications begin execution by calling main().

When a class member is preceded by public, then that member may be accessed

by code outside the class in which it is declared.

The keyword static allows main() to be called without having to instantiate a

particular instance of the class. This is necessary since main() is called by the

Java Virtual Machine before any objects are made.

System.out.println("This is a simple Java program.");

This line outputs the string ―This is a simple Java program.‖ followed by a new

line on the

screen. In this case, println()displays the string which is passed to it.

System is a predefined class that provides access to the system, and out is the

output stream that is connected to the console.

DATATYPES

There are eight primitive datatypes supported by Java.

Data

Type
Range

Default

size

Boolean False/ true 1 bit

char 0-65536 2 byte

byte –128 to 127 1 byte

short –32,768 to 32,767 2 byte

int –2,147,483,648 to 2,147,483,647 4 byte

long
–9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
8 byte

float 1.4e–045 to 3.4e+038 4 byte

double 4.9e–324 to 1.8e+308 8 byte

Integers: Java does not support unsigned, positive-only integers.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 22 Prepared by. Muneshwara M S

Char: Java uses Unicode to represent characters. Unicode defines a fully

international character set that can represent all of the characters found in all

human languages. It is a unification of dozens of character sets, such as Latin,

Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more. For this

purpose, it requires 16 bits.

public class JavaCharExample {

 public static void main(String[] args) {

 char ch1 = 'a';

 char ch2 = 65; /* ASCII code of 'A'*/

 System.out.println("Value of char variable ch1 is :" +

ch1);

 System.out.println("Value of char variable ch2 is :" +

ch2);

 }

}

Output would be

Value of char variable ch1 is :a

Value of char variable ch2 is :A

 Byte are useful when you‘re working with raw binary data that may not

be directly compatible with Java‘s other built-in types.

public class JavaByteExample {

public static void main(String[] args) {

byte b1 = 100;

byte b2 = 20;

System.out.println("Value of byte variable b1 is :" + b1);

System.out.println("Value of byte variable b1 is :" + b2);

}

}

Output would be

Value of byte variable b1 is :100

Value of byte variable b1 is :20

 Boolean takes either True or false

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 23 Prepared by. Muneshwara M S

public class JavaBooleanExample {

public static void main(String[] args) {

 boolean b1 = true;

 boolean b2 = false;

 boolean b3 = (10 > 2)? true:false;

System.out.println("Value of boolean variable b1 is :" + b1);

System.out.println("Value of boolean variable b2 is :" + b2);

System.out.println("Value of boolean variable b3 is :" + b3);

}

}

Output would be

Value of boolean variable b1 is :true

Value of boolean variable b2 is :false

Value of boolean variable b3 is :true

 Floating-point numbers, also known as real numbers, are used when

evaluating expressions that require fractional precision.

import java.util.*;

public class JavaFloatExample {

 public static void main(String[] args) {

 float f = 10.4f;

 System.out.println("Value of float variable f is :" + f);

 }

}

Output would be

 Value of float variable f is :10.4

 Double precision is actually faster than single precision on some modern

processors that have been optimized for high-speed mathematical

calculations. All transcendental math functions, such as sin(), cos(), and

sqrt(), return double values.

public class JavaDoubleExample {

 public static void main(String[] args) {

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 24 Prepared by. Muneshwara M S

 double d = 1232.44;

 System.out.println("Value of double variable d is :" +

d);

 }

}

Output would be

Value of double variable f is :1232.44

Java Literals

A literal is a source code representation of a fixed value. They are represented

directly in the code without any computation. Literals can be assigned to any

primitive type variable.

 For example:

byte a = 68;

char a = 'A'

byte, int, long, and short can be expressed in decimal(base 10),

hexadecimal(base 16) or octal(base 8) number systems as well.

Prefix 0 is used to indicate octal, and prefix 0x indicates hexadecimal when

using these number systems for literals. For example:

int decimal = 100;

int octal = 0144;

int hexa = 0x64;

String literals in Java are specified like they are in most other languages by

enclosing a sequence of characters between a pair of double quotes. Examples

of string literals are:

"Hello World"

"two\nlines"

"\"This is in quotes\""

String and char types of literals can contain any Unicode characters. For

example:

char a = '\u0001';

String a = "\u0001";

Java language supports few special escape sequences for String and char literals

as well. They are:

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 25 Prepared by. Muneshwara M S

Notation Character represented

\n Newline (0x0a)

\r Carriage return (0x0d)

\f Form feed (0x0c)

\b Backspace (0x08)

\s Space (0x20)

\t tab

\" Double quote

\' Single quote

\\ backslash

\ddd Octal character (ddd)

\uxxxx Hexadecimal UNICODE character

(xxxx)

VARIABLES

The variable is the basic unit of storage in a Java program. A variable is defined

by the combination of an identifier, a type, and an optional initializer. Each

variable in Java has a specific type, which determines the size and layout of the

variable's memory; the range of values that can be stored within that memory;

Declaring a Variable

data type variable [= value][, variable [=

value] ...] ;

Following are valid examples of variable declaration and initialization in Java:

int a, b, c; // Declares three ints, a, b, and c.

int a = 10, b = 10; // Example of initialization

byte B = 22; // initializes a byte type variable B.

double pi = 3.14159; // declares and assigns a value of PI.

char a = 'a'; // the char variable a is initialized with value 'a'

There are three kinds of variables in Java:

 Local variables

 Instance variables

 Class/Static variables

Local Variables

 Local variables are declared in methods, constructors, or blocks.

 Local variables are implemented at stack level internally.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 26 Prepared by. Muneshwara M S

 Access modifiers cannot be used for local variables.

Instance Variables

 Instance variables are declared in a class, but outside a method,

constructor or any block.

 When a space is allocated for an object in the heap, a slot for each

instance variable value is created.

 Access modifiers can be given for instance variables.

Class/static Variables

 Class variables also known as static variables are declared with the static

keyword in a class, but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless

of how many objects are created from it.

 Static variables are stored in the static memory. It is rare to use static

variables other than declared final and used as either public or private

constants.

Dynamic Initialization

Java allows variables to be initialized dynamically, using any expression valid

at the time the variable is declared.

Ex:

class dyn {

public static void main(String args[]) {

double a = 3.0, b = 4.0;

// c is dynamically initialized

double c = Math.sqrt(a * a + b * b);

System.out.println("Hypotenuse is " + c);

}

}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are

initialized by constants. However, c is initialized dynamically to the length of

the hypotenuse

The Scope and Lifetime of Variables

Java allows variables to be declared within any block. A block defines a scope.

Thus, each time you start a new block, you are creating a new scope. A scope

determines what objects are visible to other parts of your program. It also

determines the lifetime of those objects.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 27 Prepared by. Muneshwara M S

 In Java, the two major scopes are those defined by a class and those defined by

a method.

As a general rule, variables declared inside a scope are not visible (that is,

accessible) to code that is defined outside that scope. Thus, when you declare a

variable within a scope, you are localizing that variable and protecting it from

unauthorized access and/or modification.

To understand the effect of nested scopes, consider the following program:

class Scope {

public static void main(String args[]) {

int x; // known to all code within main

x = 10;

if(x == 10) { // start new scope

int y = 20; // known only to this block

// x and y both known here.

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

// y = 100; // Error! y not known here

// x is still known here.

System.out.println("x is " + x);

}

}

Output

x and y: 10 20

x is 22

Type Conversion and Casting

 Widening Casting(Implicit)

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 28 Prepared by. Muneshwara M S

 Narrowing Casting(Explicitly done)

1) Java’s Automatic Conversions (Implicit Conversion)

When one type of data is assigned to another type of variable, an automatic type

conversion will take place if the following two conditions are met:

The two types are compatible. The destination type is larger than the source

type. Java also performs an automatic type conversion when storing a literal

integer constant into variables of type byte, short, long, or char.

 Ex:

//64 bit long integer

long l;

//32 bit long integer

int i;

l=i;

2) Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all

needs. To create a narrowing conversion between two incompatible types, you

must use a cast. A cast is simply an explicit type conversion.

 It has this general form: (target-type) value

public class Test

{

 public static void main(String[] args)

 {

 double d = 100.04;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 29 Prepared by. Muneshwara M S

 long l = (long)d; //explicit type casting required

 int i = (int)l; //explicit type casting required

 System.out.println("Double value "+d);

 System.out.println("Long value "+l);

 System.out.println("Int value "+i);

 }

}

Output :

Double value 100.04

Long value 100

Int value 100

Automatic Type Promotion in Expressions

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its

byte operands. To handle this kind of problem, Java automatically promotes

each byte, short, or char operand to int when evaluating an expression. This

means that the sub expression a*b is performed using integers—not bytes. Thus,

2,000, the result of the intermediate expression, 50 * 40, is legal even though a

and b are both specified as type byte.

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

byte b = 50;

b = (byte)(b * 2); //which yields the correct value of 100.

class Promote {

public static void main(String args[]) {

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 30 Prepared by. Muneshwara M S

System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));

System.out.println("result = " + result);

}

}

Output: will be of double data type

Type Promotion Rules
1.All byte, short and char values are promoted to int.

2.If one operand is a long, the whole expression is promoted to long.

 3.If one operand is a float, the entire expression is promoted to float.

4.If any of the operands is double, the result is double.

ARRAYS

An array is a group of like-typed variables that are referred to by a common

name. Arrays of any type can be created and may have one or more dimensions.

A specific element in an array is accessed by its index.

One-Dimensional Arrays

A one-dimensional array is essentially, a list of like-typed variables. To create

an array, you first must create an array variable of the desired type. The general

form of a one-dimensional

array declaration is:

datatype identifier [];

Or

datatype[] identifier;

Ex: int month_days[];

It declares an array variable but do not allocate any memory. New is a special

operator that allocates memory.

array-var = new type[size]; // (new will automatically be initialized to zero)

OR

dataType[] arrayVar = new dataType[arraySize];

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 31 Prepared by. Muneshwara M S

class Array {

public static void main(String args[]) {

int month_days[];

month_days = new int[12];

month_days[0] = 31;

month_days[1] = 28;

month_days[2] = 31;

month_days[3] = 30;

month_days[4] = 31;

month_days[5] = 30;

month_days[6] = 31;

month_days[7] = 31;

month_days[8] = 30;

month_days[9] = 31;

month_days[10] = 30;

month_days[11] = 31;

System.out.println("April has " + month_days[3] + " days.");

}

}

Arrays can be initialized when they are declared. There is no need to use new.

class AutoArray {

public static void main(String args[]) {

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

System.out.println("April has " + month_days[3] + " days.");

}

}

Output:

April has 30 days

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays.

int twoD[][] = new int[4][5];

Ex:

class TwoDArray {

public static void main(String args[]) {

int twoD[][]= new int[4][5];

int i, j, k = 0;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 32 Prepared by. Muneshwara M S

for(i=0; i<4; i++)

for(j=0; j<5; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

This program generates the following output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Ex:

String[][] sampleData = { {"a", "b", "c", "d"}, {"e", "f", "g", "h"}, {"i", "j",

"k", "l"},

 {"m", "n", "o", "p"} };

OPERATORS IN JAVA

Java provides a rich operator environment. Java provides a rich set of operators

to manipulate variables. We can divide all the Java operators into the following

groups:

Arithmetic Operators

Relational Operators

Bitwise Operators

Logical Operators

Ternary Operator and

Assignment Operator.

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 33 Prepared by. Muneshwara M S

Operators Precedence

Postfix expr++ expr--

Unary ++expr --expr +expr -expr ~ !

Multiplicative * / %

Additive + -

Shift << >> >>>

Relational < > <= >= instance of

Equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

Ternary ? :

Assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and

division—all behave as you would expect for all numeric types.

 The unary minus operator negates its single operand.

 The unary plus operator simply returns the value of its operand.

 class OperatorExample{

 public static void main(String args[]){ int a=10;

 int b=5;

 System.out.println(a+b);//15

 System.out.println(a-b);//5

 System.out.println(a*b);//50

 System.out.println(a/b);//2

 System.out.println(a%b);//0

 }}

Output

15

5

50

2

0

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 34 Prepared by. Muneshwara M S

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can

be applied to floating-point types as well as integer types. The following

example program demonstrates the %:

class Modulus {

public static void main(String args[]) {

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + y % 10);

}

}

x mod 10 = 2

y mod 10 = 2.25

Note: RESULT OF ARITHMETIC EXPRESSIONIS ALWAYS

MAX(int, type of a and type of b)

Ex: byte a=10;

 byte b= 20;

 c= a+b; // the result will be integer type

Arithmetic Compound Assignment Operators [Shorthand assignment]

Java provides special operators that can be used to combine an arithmetic

operation with an assignment.

var op= expression;

class OperatorExample{

 public static void main(String args[]){

 int a=10;

 int b=20;

 a+=4;//a=a+4 (a=10+4)

 b-=4;//b=b-4 (b=20-4)

 System.out.println(a);

 System.out.println(b);

 }}

The Relational Operators

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 35 Prepared by. Muneshwara M S

The relational operators determine the relationship that one operand has to the

other. The outcome of these operations is a boolean value. The relational

operators are most frequently used in the expressions that control the if

statement and the various loop statements.

operator Description

== Check if two operands are equal

!= Check if two operands are not equal.

> Check if operand on the left is greater than operand on the right

< Check operand on the left is smaller than right operand

>= check left operand is greater than or equal to right operand

<= Check if operand on left is smaller than or equal to right operand

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands

and relational expressions. All of the binary logical operators combine two

boolean values to form a resultant boolean value. The logical Boolean

operators, &, |, and ^, operate on boolean values in the same way that they

operate on the bits of an integer.

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in some other

computer languages. The OR operator results in true when A is true, no matter

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 36 Prepared by. Muneshwara M S

what B is. Similarly, the AND operator results in false when A is false, no

matter what B is.

Java will not bother to evaluate the right-hand operand when the outcome of the

expression can be determined by the left operand alone. This is very useful

when the right-hand operand depends on the value of the left one in order to

function properly.

For example, the following code fragment shows how you can take advantage

of short-circuit logical evaluation to be sure that a division operation will be

valid before evaluating it:

 if (denom != 0 && num / denom >10)

 Since the short-circuit form of AND (&&) is used, there is no risk of causing a

run-time exception when denom is zero. If this line of code was written using

the single ―&‖ version of AND, both sides would have to be evaluated, causing

a run-time exception when denom is zero.

class ShortCircuitAnd

{

 public static void main(String arg[])

 {

 int c = 0, d = 100, e = 50; // LINE A

 if(c == 1 && e++ < 100)

 {

 d = 150;

 }

 System.out.println("e = " + e);

 }

}

OUTPUT

e = 50

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 37 Prepared by. Muneshwara M S

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types:

long, int, short, char, and byte. These operators act upon the individual bits of

their operands. They are summarized in the following table:

operator description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< left shift

>> right shift

>>> Right Shift zero fill

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise X-OR assignment

>>>= Shift right zero fill assignment

>>= Shift right assignment

<<= Shift left assignment

A B ~A A & B A | B A ^ B

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

Java AND Operator: Logical && vs Bitwise &

class OperatorExample{

 public static void main(String args[]){

 int a=10;

 int b=5;

 int c=20;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 38 Prepared by. Muneshwara M S

 System.out.println(a<b && a++<c); //false && true = false

 System.out.println(a); //10 because second condition

is not checked

 System.out.println(a<b & a++<c); //false && true = false

 System.out.println(a); //11 because second condition is

checked

 }}

Output:

false

10

false

11

Java OR Operator: Logical || and Bitwise |

The logical || operator doesn't check second condition if first condition is true. It

checks second condition only if first one is false.

The bitwise | operator always checks both conditions whether first condition is

true or false.

class OperatorExample{

 public static void main(String args[]){

 int a=10;

 int b=5;

 int c=20;

 System.out.println(a>b||a<c); //true || true = true

 System.out.println(a>b|a<c); //true | true = true

 System.out.println(a>b||a++<c); //true || true = true

 System.out.println(a); //10 because second condition is not

checked

 System.out.println(a>b|a++<c); //true | true = true

 System.out.println(a); //11 because second condition is

checked

 }}

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 39 Prepared by. Muneshwara M S

Output:

true

true

true

10

true

11

Left Shift & Right Shift

 class OperatorExample

{

 public static void main(String args[]){

 System.out.println(10<<2); //10*2^2=10*4=40

 System.out.println(10<<3); //10*2^3=10*8=80

 System.out.println(10>>2); //10/2^2=10/4=2

 System.out.println(20>>2); //20/2^2=20/4=5

 System.out.println(20>>3); //20/2^3=20/8=2

 }

}

Java Shift Operator Example: >> vs >>>

>>> is also known as Unsigned Right Shift. For example, if you are shifting

something that does not represent a numeric value, you may not want sign

extension to take place. This situation is common when you are working with

pixel-based values and graphics. In these cases, you will generally want to shift

a zero into the high-order bit no matter what its initial value was. This is known

as an unsigned shift.

int x = 13 >>> 1;

Out put : 6

 // 13 =

00000000000000000000000000001101

 // 6 = 00000000000000000000000000000110

y = -8 >>> 2;

Output : 1073741822 // -8 =

11111111111111111111111111111000

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 40 Prepared by. Muneshwara M S

 // 1073741822 =

00111111111111111111111111111110

The following code fragment demonstrates the >>>. Here, a is set to –1, which

sets all 32 bits to 1 in binary. This value is then shifted right 24 bits, filling the

top 24 bits with zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is

happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an

int

 class OperatorExample{

 public static void main(String args[]){

 //For positive number, >> and >>> works same

 System.out.println(20>>2);

 System.out.println(20>>>2);

 //For nagative number, >>> changes parity bit (MSB) to 0

 System.out.println(-20>>2);

 System.out.println(-20>>>2);

 }

}

Output

5

5

-5

1073741819

Java Ternary Operator

Java includes a special ternary (three-way) operator that can replace certain

types of if-then else statements. This operator is the ?. It can seem somewhat

confusing at first, but the ? can be used very effectively once mastered.

The ? has this general form:

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 41 Prepared by. Muneshwara M S

expression1 ? expression2 : expression3

Here, expression1 can be any expression that Here, expression1 can be any

expression that evaluates to a boolean value. If expression1 is true, then

expression2 is evaluated; otherwise, expression3 is evaluated.

 class OperatorExample{

 public static void main(String args[]){

 int a=2;

 int b=5;

 int min=(a<b)?a:b;

 System.out.println(min);

 }}

Output:

2

Increment and Decrement

The ++ and the – – are Java‘s increment and decrement operators. The

increment operator increases its operand by one. The decrement operator

decreases its operand by one.

class IncDec {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c;

int d;

c = ++b;

d = a++;

c++;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}

}

Output

a = 2

b = 3

c = 4

d = 1

CONTROL STATEMENTS

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 42 Prepared by. Muneshwara M S

If- else:

The if statement is Java‘s conditional branch statement. It can be used to route

program execution through two different paths. Here is the general form of the

if statement:

if (condition)

statement1;

else

statement2;

Here, each statement may be a single statement or a compound statement

enclosed in curly braces (that is, a block). The condition is any expression that

returns a boolean value. The else clause is optional.

 public class IfExample {

 public static void main(String[] args) {

 int age=20;

 if(age>18)

{

 System.out.print("Eligible to vote");

 }

 }

 }

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are

very common in programming. When you nest ifs, the main thing to remember

is that an else statement always refers to the nearest if statement that is within

the same block as the else and that is not already associated with an else.

Syntax :

 if (condition)

 {

 if (condition){

 //Do something

 }

 //Do something

 }

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 43 Prepared by. Muneshwara M S

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is

the if-elseif

ladder. It looks like this:

Syntax: if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

.

else

statement;

public class ControlFlowDemo

{

 public static void main(String[] args)

 {

 char ch = 'o';

 if (ch == 'a' || ch == 'A')

 System.out.println(ch + " is vowel.");

 else if (ch == 'e' || ch == 'E')

 System.out.println(ch + " is vowel.");

 else if (ch == 'i' || ch == 'I')

 System.out.println(ch + " is vowel.");

 else if (ch == 'o' || ch == 'O')

 System.out.println(ch + " is vowel.");

 else if (ch == 'u' || ch == 'U')

 System.out.println(ch + " is vowel.");

 else
 System.out.println(ch + " is a consonant.");

 }

}

Switch

The switch statement is Java‘s multiway branch statement. It provides an easy

way to dispatch execution to different parts of your code based on the value of

an expression. As such, it often provides a better alternative than a large series

of if-else-if statements. Here is the general form of a switch statement:

https://hemanthrajhemu.github.io

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 44 Prepared by. Muneshwara M S

Syntax: switch (expression)

 {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

.

.

.

case valueN :

// statement sequence

break;

default:

// default statement sequence

}

expression must be of type byte, short, int, char, or enumerated data type(

String).

class StringSwitch {

public static void main(String args[]) {

String str = "two";

 switch(str)

{

 case "one":

 System.out.println("one");

 break;

case "two":

 System.out.println("two");

 break;

case "three":

 System.out.println("three");

 break;

default:

 System.out.println("no match");

 break;

}}}

Output : two

 public class SwitchExample {

 public static void main(String[] args) {

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 45 Prepared by. Muneshwara M S

 int number=20;

 switch(number){

 case 10: System.out.println("10");break;

 case 20: System.out.println("20");break;

 case 30: System.out.println("30");break;

 default:System.out.println("Not in 10, 20 or 30");

 }

 }

 }

Output : 20

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This

is called a nested switch. Since a switch statement defines its own block, no

conflicts arise between the

case constants in the inner switch and those in the outer switch.

For example, the following fragment is perfectly valid:

switch(count) {

case 1:

 switch(target)

{ // nested switch

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: //so on.

Iteration Statements

Java‘s iteration statements are for, while, and do-while. These statements create

what we commonly call loops. As you probably know, a loop repeatedly

executes the same set of instructions until a termination condition is met. As

you will see, Java has a loop to fit any programming need.

while

The while loop is Java‘s most fundamental loop statement. It repeats a

statement or block

while its controlling expression is true. Here is its general form:

while(condition)

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 46 Prepared by. Muneshwara M S

{

 // body of loop

 }

The condition can be any Boolean expression. The body of the loop will be

executed as long

as the conditional expression is true. When condition becomes false, control

passes to the next line of code immediately following the loop.

Example:

class WhileLoopExample{

 public static void main(String[] args){

 int num=0;

 while(num<=5){

 System.out.println(""+num);

 num++;

 }

 }

}

do-while

The do-while loop always executes its body at least once, because its

conditional expression is at the bottom of the loop. Its general form is

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then

evaluates the conditional expression. If this expression is true, the loop will

repeat. Otherwise, the loop terminates. As with all of Java‘s loops, condition

must be a Boolean expression.

The do-while loop is especially useful when you process a menu selection,

because you will

usually want the body of a menu loop to execute at least once.

class Menu {

public static void main(String args[])

{

char choice;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 47 Prepared by. Muneshwara M S

do

{

 System.out.println("Help on: ");

 System.out.println(" 1. if");

 System.out.println(" 2. switch");

 System.out.println(" 3. while");

 System.out.println(" 4. do-while");

 System.out.println(" 5. for\n");

 System.out.println("Choose one:");

choice = (char) System.in.read();

} while(choice < '1' || choice > '5');

System.out.println("\n");

switch(choice) {

case '1':

System.out.println("The if:\n");

System.out.println("if(condition) statement;");

System.out.println("else statement;");

break;

case '2':

System.out.println("The switch:\n");

System.out.println("switch(expression) {");

System.out.println(" case constant:");

System.out.println(" statement sequence");

System.out.println(" break;");

System.out.println(" //...");

System.out.println("}");

break;

case '3':

System.out.println("The while:\n");

System.out.println("while(condition) statement;");

break;

case '4':

System.out.println("The do-while:\n");

System.out.println("do {");

System.out.println(" statement;");

System.out.println("} while (condition);");

break;

case '5':

System.out.println("The for:\n");

System.out.print("for(init; condition; iteration)");

System.out.println(" statement;");

break;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 48 Prepared by. Muneshwara M S

}

}

}

 public class DoWhileExample {

 public static void main(String[] args) {

 int i=1;

 do{

 System.out.println(i);

 i++;

 }while(i<=10);

 }

 }

For:

There are two forms of the for loop.

The first is the traditional form that has been in use since the original version of

Java. The second is the newer ―for-each‖ form.

1) Here is the general form of the traditional for statement:

for(initialization; condition; iteration)

{

// body

}

Ex : int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int i=0; i < 10; i++)

 sum += nums[i];

2) For-Each Version of the for Loop:

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration

variable that will receive the elements from a collection(array), one at a

time, from beginning to end. The collection being cycled through is

specified by collection.

Ex : int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums)

sum += x;

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 49 Prepared by. Muneshwara M S

public class Test {

 public static void main(String args[]) {

 int [] numbers = {10, 20, 30, 40, 50};

 for(int x : numbers) {

 System.out.print(x);

 System.out.print(",");

 }

 System.out.print("\n");

 String [] names = {"James", "Larry", "Tom", "Lacy"};

 for(String name : names) {

 System.out.print(name);

 System.out.print(",");

 }

 }

}

10, 20, 30, 40, 50,

James, Larry, Tom, Lacy,

Iterating Over Multidimensional Arrays

class sample {

public static void main(String args[]) {

int sum = 0;

int nums[][] = new int[3][5];

for(int i = 0; i < 3; i++)

for(int j = 0; j < 5; j++)

 nums[i][j] = (i+1)*(j+1);

for(int x[] : nums) {

for(int y : x) {

System.out.println("Value is: " + y);

sum += y;

}

}

System.out.println("Summation: " + sum);

}}

Output:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 50 Prepared by. Muneshwara M S

Value is: 2

Value is: 4

Value is: 6

Value is: 8

Value is: 10

Value is: 3

Value is: 6

Value is: 9

Jump Statements

Using break

In Java, the break statement has three uses. First, as you have seen, it

terminates a statement sequence in a switch statement. Second, it can be used to

exit a loop. Third, it can be used as a ―civilized‖ form of goto.

1) Using break to Exit a Loop

2) Using break as a Form of Goto:

Java does not have a goto statement because it provides a way to branch

in an arbitrary and unstructured manner. This usually makes goto-ridden

code hard to understand and hard to maintain.

public class BreakDemo

{

 public static void main(String[] args)

 {

 for (int i = 1; i <= 10; i++)

 {

 if (i == 5)

 {

 break; // terminate loop if i is 5

 }

 System.out.print(i + " ");

 }

 System.out.println("Thank you.");

 }

}

Output 1 2 3 4 Thank you

Using continue

In while and do-while loops, a continue statement causes control to be

transferred directly to the conditional expression that controls the loop. In a for

loop, control goes first to the iteration portion of the for statement and then to

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 51 Prepared by. Muneshwara M S

the conditional expression. For all three loops, any intermediate code is

bypassed.

public class ContinueDemo

{

 public static void main(String[] args)

 {

 for (int i = 1; i <= 10; i++)

 {

 if (i % 2 == 0)

 {

 continue; // skip next statement if i is even

 }

 System.out.println(i + " ");

 }

 }

}

1 3 5 7 9

Break Continue

The break statement results in the

termination of the loop, it will come

out of the loop and stops further

iterations.

The continue statement stops the

current execution of the iteration and

proceeds to the next iteration

The break statement has two forms:

 labelled and

 unlabelled.

An unlabelled break statement

terminates the innermost switch, for,

while, or do-while statement, but a

labelled break terminates an outer

statement.

The continue statement skips the

current iteration of a for, while , or do-

while loop. The unlabelled form skips

to the end of the innermost loop's body

and evaluates the Boolean expression

that controls the loop.

A labelled continue statement skips the

current iteration of an outer loop

marked with the given label.

The general form of the labelled break

statement is shown here:

break label;

The general form of the labelled

continue statement is shown here:

continue label;

class Break {

public static void main(String args[]) {

boolean t = true;

first: { second: {

third: {

System.out.println("Before the

break.");

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<4; i++)

 {

for(int j=0; j<4; j++)

{

 if(j > i)

https://hemanthrajhemu.github.io

MODULE 2 : CLASS AND OBJECTS (CONTD) OOC-18CS45

4th Sem Dept. of CSE,BMSIT&M 52 Prepared by. Muneshwara M S

if(t)

break second; // break out of second

block

System.out.println("This won't

execute");

}

System.out.println("This won't

execute");

}

System.out.println("This is after

second block.");}}}

 {

 System.out.println();

 continue outer;

 }

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

Output:

Before the break.

This is after second block.

0

0 1

0 2 4

0 3 6 9

Return

The last control statement is return. The return statement is used to explicitly

return from a method. That is, it causes program control to transfer back to the

caller of the method. As such, it is categorized as a jump statement.

At any time in a method, the return statement can be used to cause

execution to branch back to the caller of the method. Thus, the return statement

immediately terminates the method in which it is executed.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

 if(t)

 return; // return to caller

System.out.println("This won't execute.");

}

}

The output from this program is shown here:

Before the return.

Here, return causes execution to return to the Java run-time system, since it is

the run-time system that call main():

https://hemanthrajhemu.github.io

