

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

B M S INSTITUTE OF TECHNOLOGY & MANAGEMENT

YELAHANKA, BENGALURU – 560064.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 MODULE -3 NOTES OF

OBJECT ORIENTED CONCEPTS -18CS45

 [As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Prepared by,

Mr. Muneshwara M S

Asst. Prof, Dept. of CSE

- 560064.

VISION AND MISSION OF THE CS&E DEPARTMENT

Vision

To develop technical professionals acquainted with recent trends and technologies of computer science to serve as valuable resource

for the nation/society.
Mission:

 Facilitating and exposing the students to various learning opportunities through dedicated academic teaching, guidance and

monitoring.

VISION AND MISSION OF THE INSTITUTE

Vision

To emerge as one of the finest technical institutions of higher learning, to develop engineering professionals who are technically

competent, ethical and environment friendly for betterment of the society.

Mission

Accomplish stimulating learning environment through high quality academic instruction, innovation and industry-institute interface

https://hemanthrajhemu.github.io

http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 1 Prepared by: , Mr. Muneshwara M S

`

MODULE 3. CLASSES, INHERITANCE,EXCEPTION HANDLING

The following concepts should be learn in this Module

 Classes: Classes fundamentals; Declaring objects; Constructors, this keyword,

garbage collection. Inheritance: inheritance basics,using super, creating multi level

hierarchy, method overriding. Exception handling:Exception handling in Java.

Text book 2: Ch:6 Ch: 8 Ch:10 , RBT: L1, L2, L3

CLASS FUNDAMENTALS:

A class is declared by using class keyword. class is a template for an object, and an object is
an instance of a class.
Syntax :
class classname {

type instance-variable1;

type instance-variable2;

// ...
type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method}

// ...

type methodnameN(parameter-list) {

// body of method}}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class are
called members of the class.

Declaring Objects/ Instantiating a Class:

Creating objects of a class is a two-step process.

 First, you must declare a variable of the class type which is simply a variable that can
refer to an object.

 Second, you must acquire an actual, physical copy of the object and assign it to that
variable using the new operator. The new operator dynamically allocates memory for
an object and returns a reference to it where the address is stored.

Box mybox = new Box();

OR

Box mybox;
mybox = new Box();

// declare reference to object

// allocate a Box object

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 2 Prepared by: , Mr. Muneshwara M S

`

Object:
o Object is a real world entity.
o Object is a run time entity.

o Object is an entity which has state and behavior.
o Object is an instance of a class.

Java Heap Space
Java Heap space is used by java runtime to allocate memory to Objects and JRE classes.
Whenever we create any object, it’s always created in the Heap space. Garbage Collection
runs on the heap memory to free the memory used by objects that doesn’t have any reference.

Java Stack Memory
Java Stack memory is used for execution of a thread. They contain method specific values
that are short-lived and references to other objects in the heap that are getting referred from
the method. Stack memory is always referenced in LIFO (Last-In-First-Out) order

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 3 Prepared by: , Mr. Muneshwara M S

`

A Simple Class
class Box {

double width;

double height;

double depth;

}

// This class declares an object of type Box.

Class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box();
double vol;

mybox.width = 10;
mybox.height = 20;

mybox.depth = 15;

vol = mybox.width * mybox.height *
mybox.depth; System.out.println(―Volume is ― +
vol); }
}

Introducing Methods

This is the general form of a method:

type name(parameter-list) {

// body of method

return value;

}

Methods define the interface to most classes. This allows the class implementer to hide the

specific layout of internal data structures behind cleaner method abstractions. Defining
methods provide access to data, you can also define methods that are used internally by the

class itself.
Class Box {

double width;

double height;

double depth;

double volume() {

return width * height * depth;

}

void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 4 Prepared by: , Mr. Muneshwara M S

`

}

}

class Demo {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

vol = mybox1.volume();
System.out.println(―Volume is ― + vol);

vol = mybox2.volume();

System.out.println(―Volume is ― + vol);

}
}

CONSTRUCTORS:

A constructor initializes an object immediately upon creation. It has the same name as the

class in which it resides and is syntactically similar to a method.A constructor doesn’t have a
return type.The name of the constructor must be the same as the name of the class.Unlike

methods, constructors are not considered members of a class.

A constructor is called automatically when a new instance of an object is created.

There are two types of constructors:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Default Constructor: It is a constructor which do not take any arguments.If you do not
define any constructor in your class, java generates one for you by default.

Class Box {
double width;

double height;

double depth;

Box()

{

System.out.println(―Constructing Box‖);

width = 10;

height = 10;

depth = 10;

}

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 5 Prepared by: , Mr. Muneshwara M S

`

double volume() {

return width * height * depth;

}

}

class demo

{

public static void main(String args[]) {

Box mybox1 = new Box();

double vol;

vol = mybox1.volume();

System.out.println(―Volume is ― + vol);
}

}

Parameterized constructor

A constructor that have parameters is known as parameterized constructor.

Class Student

{

int id;

String name;

Student(int I,String n)

{

id = I;

name = n;

}

void display()

{

System.out.println(id+‖ ―+name);

}

}

Class test{

public static void main(String args[])

{

Student s1 = new Student(111,‖Karan‖);

Student s2 = new Student(222,‖Aryan‖);

s1.display();

s2.display();

}

}

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 6 Prepared by: , Mr. Muneshwara M S

`

Objects as Parameters

Using Objects as Parameters: So far, we have only been using simple types as parameters to
methods. However, it is both correct and common to pass objects to methods. For example,
consider the following short program
class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}
// return true if o is equal to the invoking
object boolean equalTo(Test o) {
if(o.a == a && o.b == b) return
true; else return false;
}

}

class PassOb {
public static void main(String args[]) {
Test ob1 = new Test(100, 22);
Test ob2 = new Test(100, 22); Test ob3 = new Test(-1, -

1); System.out.println("ob1 == ob2: " +
ob1.equalTo(ob2)); System.out.println("ob1 == ob3: " +

ob1.equalTo(ob3));
}

}

Exercise 1:
Write a java program to create 2 objects of complex numbers and pass these objects as

parameters to the methods. Perform addition of 2 complex numbers and return the sum as

an object.

The this Keyword
Java defines the this keyword. It can be used inside any method to refer to the current object.

Box(double w, double h, double d)

{
this.width = w;

this.height = h;

this.depth = d;

}

 this keyword is used to refer to current object.

 this is always a reference to the object on which method was invoked.

 this can be used to invoke current class constructor.

 this can be passed as an argument to another method.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 7 Prepared by: , Mr. Muneshwara M S

`

Instance Variable Hiding:

Interestingly, you can have local variables, including formal parameters to methods, which
overlap with the names of the class’ instance variables. However, when a local variable has
the same name as an instance variable, the local variable hides the instance variable.
class Student

{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee)

{
this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display()

{

System.out.println(rollno+" "+name+" "+fee);

}

}

class Test

{

public static void main(String args[])

{

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}

}

Overloaded Constructors

Constructor overloading is a technique in Java in which a class can have any number of
constructors that differ in parameter lists.The compiler differentiates these constructors by

taking into account the number of parameters in the list and their type.

class Student{

int id;

String name;

int age;

Student (int i,String n)

{

id = i;

name = n;

}

Student (int i,String n,int a)

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 8 Prepared by: , Mr. Muneshwara M S

`

{

id = i;

name = n;

age=a;

}

void display()

{

System.out.println(id+" "+name+" "+age);

}

public static void main(String args[])

{

Student5 s1 = new Student5(111,"Karan");
Student5 s2 = new Student5(222,"Aryan",25);

s1.display();

s2.display();

}

}

Role of this () in constructor overloading
/*this() is used for calling the default constructor from parameterized constructor. It should

always be the first statement in constructor body. */

public class student

{

private int rollNum;

student()

{

rollNum =100;

}

student(int rnum)

{
this();
rollNum = rollNum+ rnum;

}

public int getRollNum() {

return rollNum;
}

public void setRollNum(int rollNum) {

this.rollNum = rollNum;

}

}

class TestDemo{

public static void main(String args[])

{

student obj = new student(12);

System.out.println(obj.getRollNum());

}

}

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 9 Prepared by: , Mr. Muneshwara M S

`

GARBAGE COLLECTION:
In some languages, such as C++, dynamically allocated objects must be manually released by

use of a delete operator. Java takes a different approach; it handles deallocation for you
automatically. The technique that accomplishes this is called garbage collection. It works

like this: when no references to an object exist, that object is assumed to be no longer needed,
and the memory occupied by the object can be reclaimed.
Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced
objects from heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to
make extra efforts.

finalize() method

The finalize() method is invoked each time before the object is garbage collected. This
method can be used to perform cleanup processing. This method is defined in Object class as:

protected void finalize()

{

//code

}

gc() method:
The gc() method is used to invoke the garbage collector to perform cleanup processing. The
gc() is found in System and Runtime classes.

public class TestGarbage1{
public void finalize(){System.out.println("object is garbage collected");}

public static void main(String args[]){ TestGarbage1 s1=new
TestGarbage1();
TestGarbage1 s2=new TestGarbage1();

s1=null;

s2=null;

System.gc();

}

}
object is garbage collected

object is garbage collected

A Stack Class:

class Stack

{

int stck[] = new int[10];

int top;
// Initialize top-of-
stack Stack()
{

top = -1;

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 10 Prepared by: , Mr. Muneshwara M S

`

}

void push(int item)

{

if(top==9)

System.out.println("Stack is full.");

else

stck[++top] = item;

}

int pop()

{

if(top < 0) {
System.out.println("Stack underflow.");

return 0;

}

else

return stck[top--];
}

}

class TestStack

{

public static void main(String args[])

{

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

// push some numbers onto the
stack for(int i=0; i<10; i++)
mystack1.push(i);
for(int i=10; i<20;
i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

}

}
Stack in mystack1:

9

8

7

6

5

4

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 11 Prepared by: , Mr. Muneshwara M S

`

3

2

1

0

Stack in mystack2:

19

18

17

16

15

14

13

12
11

10

Overloading Methods

In Java, it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different. Method overloading
is also known as Static Polymorphism.
Argument lists could differ in –
1. Number of parameters.

2. Data type of parameters.

3. Sequence of Data type of parameters.

When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method to actually call.

Thus, overloaded methods must differ in the type and/or number of their parameters. While

overloaded methods may have different return types, the return type alone is insufficient to
distinguish two versions of a method.

Advantage of method overloading
1) Method overloading increases the readability of the program.

class Calculate

{
void sum (int a, int b)

{

System.out.println("sum is"+(a+b)) ;

}

void sum (float a, float b)

{

System.out.println("sum is"+(a+b));

}

Public static void main (String[] args)

{

Calculate cal = new Calculate();

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 12 Prepared by: , Mr. Muneshwara M S

`

cal.sum (8,5); //sum(int a, int b) is method is called.

cal.sum (4.6f, 3.8f); //sum(float a, float b) is called.

}

}
Sum is 13

Sum is 8.4

class Overloading3

{

public void disp(char c, int num)

{

System.out.println("c ");

System.out.println("num ");

}

public void disp(int num, char c)

{

System.out.println("c ");

System.out.println("num ");

}

}

class Sample3

{

public static void main(String args[])

{

Overloading3 obj = new Overloading3();

obj.disp('x', 51);

obj.disp(52, 'y');

}

}

Recursion:

Java supports recursion. Recursion is the process of defining something in terms of itself. As
it relates to Java programming, recursion is the attribute that allows a method to call itself. A
method that calls itself is said to be recursive.
class Factorial {

int fact(int n) {

int result;

if(n==1)

return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 13 Prepared by: , Mr. Muneshwara M S

`

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}

}

Advantages of Recursion
1. Reduces time complexity.

2. Performs better in solving problems based on tree structures.

Access Control
The access modifiers in java specifies accessibility (scope) of a data member, method,
constructor or class.
There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

public:

A class, method, constructor, interface etc declared public can be accessed from any other
class. Therefore fields, methods, blocks declared inside a public class can be accessed from
any class belonging to the Java Universe. It has the widest scope among all other modifiers.

//save by A.java

package pack;

public class A

{

public void msg(){System.out.println("Hello");}

}
//save by B.java

package mypack;

import pack.*;

class B
{

public static void main(String args[]){

A obj = new A();

obj.msg();

}

}

private:

Methods, Variables and Constructors that are declared private can only be accessed within

the declared class itself. Private access modifier is the most restrictive access level. Class and
interfaces cannot be private. Variables that are declared private can be accessed outside the

class if public getter methods are present in the class.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 14 Prepared by: , Mr. Muneshwara M S

`

class A

{

private int data=40;

private void msg()

{

System.out.println("Hello java");}

}

public class Simple

. {

. public static void main(String args[])

{
A obj=new A();
System.out.println(obj.data); //Compile

obj.msg(); //Compile Time Error

Time Error

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 15 Prepared by: , Mr. Muneshwara M S

`

}

}

protected:

Variables, methods and constructors which are declared protected in a superclass can be accessed

only by the subclasses in other package or any class within the package of the protected members'
class. The protected access modifier cannot be applied to class and interfaces.

//save by A.java

package pack;

public class A{
protected void msg(){System.out.println("Hello");} }
//save by B.java

package mypack;

import pack.*;

class B extends A{
public static void main(String args[]){

B obj = new B();

obj.msg();

}

}

Default:

Default access modifier means we do not explicitly declare an access modifier for a class, field,
method, etc. A variable or method declared without any access control modifier is available to
any other class in the same package.

The fields in an interface are implicitly public static final and the methods in an interface are by
default public.

//save by A.java

package pack;

class A{

void msg(){System.out.println("Hello");}

}
//save by B.java

package mypack;
import pack.*;

class B{
public static void main(String args[]){

A obj = new A();//Compile Time Error

obj.msg();//Compile Time Error

}

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 16 Prepared by: , Mr. Muneshwara M S

`

Access within class within outside package by outside package

Modifier package subclass only

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Static:

It is a keyword which is used to define the class members that will be used independent
of any object of that class. Static members are initialized for the first time when class is loaded.
The most common example of a static member is main(). main() is declared as static because
it must be called before any objects exist.[i.e., without instantiating the class]

Static Methods
Methods declared as static have several restrictions:
• They can only directly call other static methods.

• They can only directly access static data.

• They cannot refer to this or super in any way.

Static Blocks:
Static blocks are also called Static initialization blocks . A static initialization block is a normal
block of code enclosed in braces, { }, and preceded by the static keyword.

static {

// whatever code is needed for initialization goes here
}

class UseStatic

{

static int a = 3;

static int b;

static void display (int x)

{
System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

static

{

System.out.println("Static block initialized.");

b = a * 4;

}

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 17 Prepared by: , Mr. Muneshwara M S

`

public static void main(String args[])

{

display (42);

}

}
Static block initialized.

x = 42

a = 3

b = 12

class StaticDemo

{

static int a = 42;

static int b = 99;

static void callme()

{

System.out.println("a = " + a);

}

}

class StaticByName

{
public static void main(String args[]) {

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}

}
a = 42

b = 99
Outside of the class in which they are defined, static methods and variables can be used
independently of any object. To do so, you need only specify the name of their class followed by
the dot operator.

Inheritance:

Inheritance in java is a mechanism in which one object acquires all the properties and

behaviours of parent object. The idea behind inheritance in java is that you can create new classes

that are built upon existing classes. When you inherit from an existing class, you can reuse
methods and fields of parent class, and you can add new methods and fields also.
Inheritance represents the IS-A relationship, also known as parent-child relationship. The class

which inherits the properties of other is known as subclass (derived class, child class) and the

class whose properties are inherited is known as superclass (base class, parent class). extends is
the keyword used to inherit the properties of a class.

Use of inheritance in java
o For Method Overriding (so runtime polymorphism can be achieved). o
For Code Reusability.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 18 Prepared by: , Mr. Muneshwara M S

`

Syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

//methods and fields

}

class Employee

{

float salary=40000;

}

class Programmer extends Employee

{

int bonus=10000;

public static void main(String args[])

{
Programmer p=new Programmer();
System.out.println("Programmer salary is:"+p.salary);
System.out.println("Bonus of Programmer is:"+p.bonus);

}

}
Programmer salary is:40000.0

Bonus of programmer is:10000

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 19 Prepared by: , Mr. Muneshwara M S

`

Types of Inheritance
1. Single Inheritance

2. Multilevel Inheritance

3. Hierarchical Inheritance

Single Level Inheritance :
One class extends one class only

class Animal

{

void eat()

{

System.out.println("eating...");

}

}

class Dog extends Animal

{

. void bark()

{

System.out.println("barking...");

}

}

class TestInheritance

{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}

}
barking...

eating...

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 20 Prepared by: , Mr. Muneshwara M S

`

Multilevel Inheritance:

Multilevel inheritance refers to a mechanism in OO technology where one can inherit from a
derived class, thereby making this derived class the base class for the new class.

class Animal

{

void eat(){

System.out.println("eating...");

}

}

class Dog extends Animal

{

void bark(){

System.out.println("barking...");

}

}

class BabyDog extends Dog{

void weep()

{

System.out.println("weeping...");

}
}

class TestInheritance2

{

public static void main(String args[])

{

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

}

}
weeping...

barking...
eating..

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 21 Prepared by: , Mr. Muneshwara M S

`

Hierarchical Inheritance :

In simple terms you can say that Hybrid inheritance is a combination

of Single and Multiple inheritance. In Hierarchical inheritance one parent class will be

inherited by many sub classes.

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//Compile Time.Error

}}

meowing...

eating...

Polymorphism:
Polymorphism in java is a concept by which we can perform a single action by different ways.
Polymorphism is derived from 2 greek words: poly and morphs. The word "poly" means many

and "morphs" means forms. So polymorphism means many forms. There are two types of
polymorphism in java:

 compile time polymorphism and

 runtime polymorphism.
Compile Time polymorphism can be achieved using overloading methods Run

Time Polymorphism can be achieved using overriding methods

Runtime Polymorphism
Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to an

overridden method is resolved at runtime rather than compile-time.

Child class has the same method as of base class. In such cases child class overrides the parent
class method without even touching the source code of the base class.

Advantage of Java Method Overriding
 Method Overriding is used to provide specific implementation of a method that is

already provided by its super class.
 Method Overriding is used for Runtime Polymorphism

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 22 Prepared by: , Mr. Muneshwara M S

`

Rules for Method Overriding
 method must have same name as in the parent class.

 method must have same parameter as in the parent class.

 must be IS-A relationship (inheritance).

class Bank{

float getRateOfInterest(){

return 0;

}

}

class SBI extends Bank{

float getRateOfInterest(){

return 8.4f;

}

}

class ICICI extends Bank{

float getRateOfInterest(){

return 7.3f;

}

}

class AXIS extends Bank{
float getRateOfInterest(){

return 9.7f;

}

}

class TestPolymorphism{

public static void main(String args[]){

Bank b;

b=new SBI();
System.out.println("SBI Rate of Interest: "+b.getRateOfInterest());
b=new ICICI();
System.out.println("ICICI Rate of Interest: "+b.getRateOfInterest());
b=new AXIS();

System.out.println("AXIS Rate of Interest: "+b.getRateOfInterest());

}

}
SBI Rate of Interest: 8.4

ICICI Rate of Interest: 7.3

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 23 Prepared by: , Mr. Muneshwara M S

`

AXIS Rate of Interest: 9.7

Difference between Overloading and Overriding

Overloading Overriding

 Whenever same method or Constructor is Whenever same method name is existing

 existing multiple times within a class either multiple time in both base and derived

 1 with different number of parameter or with class with same number of parameter or

 different type of parameter or with different same type of parameter or same order of

 order of parameter is known as Overloading. parameters is known as Overriding.

2

 Arguments of method must be different at Argument of method must be same

least arguments.

including order.

 3 Method signature must be different. Method signature must be same.

4

 Private, static and final methods can be Private, static and final methods can not be

overloaded.

override.

5

Access modifiers point of view no restriction.

 Access modifiers point of view not reduced

scope of Access modifiers but increased.

6

 Also known as compile time polymorphism or Also known as run time polymorphism or

static polymorphism or early binding.

dynamic polymorphism or late binding.

7

 Overloading can be exhibited both are method Overriding can be exhibited only at method

and constructor level.

label.

8

The scope of overloading is within the class.

 The scope of Overriding is base class and

derived class.

9

 Overloading can be done at both static and Overriding can be done only at non-static

non-static methods.

method.

10

 For overloading methods return type may or For overriding method return type should

may not be same.

be same.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 24 Prepared by: , Mr. Muneshwara M S

`

NOTE : Static methods cannot be overridden because, a static method is bounded with class

where as instance method is bounded with object.

Super Keyword:
The super keyword in java is a reference variable which is used to refer immediate parent
class object. Whenever you create the instance of subclass, an instance of parent class is
created implicitly which is referred by super reference variable.

Usage of java super Keyword
1. super can be used to refer immediate parent class instance variable.
2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

1) super is used to refer immediate parent class instance variable.
This scenario occurs when a derived class and base class has same data members. Hence we
use super keyword to refer a member of immediate parent class.

class Vehicle

{

int maxSpeed = 120;

}

class Car extends Vehicle

{

int maxSpeed = 180;

void display()

{

System.out.println("Derived class Speed: " + maxSpeed);

System.out.println("Base Speed: " + super.maxSpeed);

}

}

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 25 Prepared by: , Mr. Muneshwara M S

`

/* Driver program to test */

class Test

{

public static void main(String[] args)

{

Car small = new Car();

small.display();

}

}
Derived class Speed: 180

Base class Speed: 120

2) super can be used to invoke parent class method

The super keyword can also be used to invoke or call parent class method. It should be used
in case of method overriding. In other word super keyword use when base class method
name and derived class method name have same name.

class Student

{

void message()

{

System.out.println("Good Morning Sir");

}

}

class Faculty extends Student

{

void message()

{

System.out.println("Good Morning Students");

}

void display()

{

message(); //will invoke or call current class message() method

super.message(); //will invoke or call parent class message() method

}

public static void main(String args[])

{

Student s=new Student();

s.display();

}

}
Good Morning Students

Good Morning Sir

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 26 Prepared by: , Mr. Muneshwara M S

`

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke or call the parent class constructor.

Constructor are calling from bottom to top and executing from top to bottom.
To establish the connection between base class constructor and derived class constructors
JVM provides two implicit methods they are: If super is not used explicitly compiler will
automatically add super as the first statement.

 Super()

 Super(...)

Super():
Super() It is used for calling super class default constructor from the context of derived

class constructors.
class Employee

{

Employee()

{

System.out.println("Employee class Constructor");

}

}

class HR extends Employee

{

HR()

{
super(); //will invoke or call parent class constructor

System.out.println("HR class Constructor"); }

}

class Supercons

{

public static void main(String[] args)

{

HR obj=new HR();

}
}
Employee class Constructor

HR class Constructor

Super(...)
Super(...) It is used for calling super class parameterize constructor from the context of
derived class constructor.

class Person

{

int id;

String name;
Person(int id,String name)

{

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 27 Prepared by: , Mr. Muneshwara M S

`

this.id=id;

this.name=name;

}

}

class Emp extends Person

{

float salary;

Emp(int id,String name,float salary)

{

super(id,name);

this.salary=salary;

//reusing parent constructor

}

void display()

{

System.out.println(id+" "+name+" "+salary);}

}

class TestSuper5

{

public static void main(String[] args)

{

Emp e1=new Emp(1,"abc",5000f);

e1.display();

}

}
1 abc 5000

Important rules

Rule for default constructor
Whenever the derived class constructor want to call default constructor of base class, in
the context of derived class constructors we write super(). It is optional to write because
every base class constructor contains single form of default constructor
Rule for Parameterized constructor
Whenever the derived class constructor wants to call parameterized constructor of base
class in the context of derived class constructor we must write super(...). which is

mandatory to write because a base class may contain multiple forms of parameterized
constructors.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 28 Prepared by: , Mr. Muneshwara M S

`

Abstract Classes

An abstract class is a class that is declared abstract—It can have abstract and non-abstract
methods (method with body).Abstract classes cannot be instantiated, but they can be
subclassed.
That is we cannot create an object for abstract classes
Abstraction is a process of hiding the implementation details and showing only functionality

to the user.
Another way, it shows only important things to the user and hides the internal details for

example sending sms, you just type the text and send the message. You don't know the
internal processing about the message delivery.

 To use an abstract class, you have to inherit it from another class, provide
implementations to the abstract methods in it.

 If you inherit an abstract class, you have to provide implementations to all the
abstract methods in it.

Abstract method

Method that is declared without any body within an abstract class is called abstract method.

The method body will be defined by its subclass. Abstract method can never be final and
static. Any class that extends an abstract class must implement all the abstract methods

declared by the super class.

Syntax :

abstract return_type function_name ();

abstract class Shape

{

abstract void draw();

}

class Rectangle extends Shape{

void draw(){

System.out.println("drawing rectangle");}

}

class Circle extends Shape{

void draw(){

System.out.println("drawing circle");}

}

class TestAbstraction

{

public static void main(String args[])

{

Rectangle r = new Rectangle();

r.draw();

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 29 Prepared by: , Mr. Muneshwara M S

`

Shape s=new Circle();

s.draw();

}

}
drawing rectangle

drawing circle

abstract class Bank{

abstract int getRateOfInterest();

}

class SBI extends Bank{

int getRateOfInterest(){return 7;}

}
class PNB extends Bank{

int getRateOfInterest(){return 8;}

}

class TestBank{

public static void main(String args[]){

Bank b;

b=new SBI();
System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

b=new PNB();
System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

}

}
Rate of Interest is: 7 %

Rate of Interest is: 8 %

Abstract classes with constructors
abstract class Bike

{

Bike(){

System.out.println("bike is created");
}

abstract void run();

void changeGear(){

System.out.println("gear changed");}

}

class Honda extends Bike{

void run(){

System.out.println("running safely..");

}

}

class TestAbstraction2{

public static void main(String args[]){

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 30 Prepared by: , Mr. Muneshwara M S

`

Bike obj = new Honda();

obj.run();

obj.changeGear();

}

}
bike is created

running safely..

gear changed

When to use Abstract Methods & Abstract Class?
Abstract methods are usually declared where two or more subclasses are expected to

do a similar thing in different ways through different implementations. These subclasses

extend the same Abstract class and provide different implementations for the abstract
methods.
Abstract classes are used to define generic types of behaviours at the top of an object-oriented
programming class hierarchy, and use its subclasses to provide implementation details of the
abstract class.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 31 Prepared by: , Mr. Muneshwara M S

`

EXCEPTION HANDLING IN JAVA

An exception (or exceptional event) is a problem that arises during the execution of a

program. When an Exception occurs the normal flow of the program is disrupted and the
program/Application terminates abnormally, which is not recommended, therefore, these

exceptions are to be handled.
An exception can occur for many different reasons. Following are some scenarios where an
exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.
 A network connection has been lost in the middle of communications or the JVM has

run out of memory.

Some of these exceptions are caused by user error, others by programmer error, and others
by physical resources that have failed in some manner.

Difference between error and exception

Errors indicate serious problems and abnormal conditions that most applications should not
try to handle. Error defines problems that are not expected to be caught under normal

circumstances by our program. For example memory error, hardware error, JVM error etc.
Exceptions are conditions within the code. A developer can handle such conditions and take

necessary corrective actions.

Few examples –

 DivideByZero exception

 NullPointerException

 ArithmeticException

 ArrayIndexOutOfBoundsException

Advantages of Exception Handling
 Exception handling allows us to control the normal flow of the program by using

exception handling in program.

 It throws an exception whenever a calling method encounters an error providing that
the calling method takes care of that error.

 It also gives us the scope of organizing and differentiating between different error types
using a separate block of codes. This is done with the help of try-catch blocks.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 32 Prepared by: , Mr. Muneshwara M S

`

Exception hierarchy

Java Exception Handling Keywords

Java provides specific keywords for exception handling purposes,

1. try

2. catch

3. finally

4. throw

5. throws

try-catch –

try is the start of the block and catch is at the end of try block to handle the
exceptions. We can have multiple catch blocks with a try and try-catch block can be nested
also. catch block requires a parameter that should be of type Exception.

A catch block must be associated with a try block. The corresponding catch block
executes if an exception of a particular type occurs within the try block.

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 33 Prepared by: , Mr. Muneshwara M S

`

class Excp

{

public static void main(String args[])

{

int a,b,c;

try

import java.io.*;

public class ExcepTest

{

public static void main(String args[])

{

try {

int a[] = new int[2];

System.out.println("Access element three :" + a[3]);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Exception thrown :" + e);

}

System.out.println("Out of the block");

}
}

For example if an arithmetic exception occurs in try block then the statements enclosed
in catch block for arithmetic exception executes.

Syntax of try catch in java
try
{

//statements that may cause an exception
}

catch (exception(type) e(object))

{

//error handling code
}

https://hemanthrajhemu.github.io

http://beginnersbook.com/2013/04/exception-handling-examples/

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 34 Prepared by: , Mr. Muneshwara M S

`

{

a=0;

b=10;

c=b/a;

System.out.println("This line will not be executed");

}

catch(ArithmeticException e)

{

System.out.println("Divided by zero");

}

System.out.println("After exception is handled");

}

}

Multiple Catch Blocks
A try block can be followed by multiple catch blocks.
If the try block throws an exception, the appropriate catch block (if one exists) will catch
it –catch(ArithmeticException e) is a catch block that can catch ArithmeticException –
catch(NullPointerException e) is a catch block that can catch NullPointerException

All the statements in the catch block will be executed and then the program
continues. If the exception type of exception, matches with the first catch block it gets
caught, if not the exception is passed down to the next catch block.

class Example2{

public static void main(String args[]){

try{

int a[]=new int[7];

a[4]=30/0;

System.out.println("First print statement in try block");

}
catch(ArithmeticException e){

System.out.println("Warning: ArithmeticException");
}
catch(ArrayIndexOutOfBoundsException e){

System.out.println("Warning: ArrayIndexOutOfBoundsException");

}
catch(Exception e){

System.out.println("Warning: Some Other exception");

}

System.out.println("Out of try-catch block...");

}

}
Warning: ArithmeticException
Out of try-catch block...

Java finally block

https://hemanthrajhemu.github.io

http://beginnersbook.com/2013/04/java-throws/

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 35 Prepared by: , Mr. Muneshwara M S

`

Java finally block is a block that is used to execute important code such as closing

connection, stream etc.Java finally block is always executed whether exception is handled or

not.
Finally block is optional and can be used only with try-catch block. Since exception halts

the process of execution, we might have some resources open that will not get closed, so we
can use finally block. finally block gets executed always, whether exception occurred or not

class TestFinallyBlock1{

public static void main(String args[]){

try{

int data=25/0;

System.out.println(data);

}
catch(NullPointerException e)

{

System.out.println(e);

}

finally
{

System.out.println("finally block is always executed");

}

System.out.println("rest of the code...");

}

}
Output:finally block is always executed

Exception in thread main java.lang.ArithmeticException:/ by zero

Java throws keyword
The Java throws keyword is used to declare an exception. It gives an information to

the programmer that there may occur an exception so it is better for the programmer to
provide the exception handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs
any unchecked exception such as NullPointerException, it is programmers fault that he is not
performing check up before the code being used.

throws – When we are throwing any exception in a method and not handling it, then we need

to use throws keyword in method signature to let caller program know the exceptions that
might be thrown by the method. The caller method might handle these exceptions or

propagate it to its caller method using throws keyword. We can provide multiple exceptions
in the throws clause and it can be used with main() method also.

Syntax of java throws
return_type method_name() throws exception_class_name
{

//method code

}

throw –

https://hemanthrajhemu.github.io

http://www.journaldev.com/611/java-exception-in-thread-main-understanding-with-examples

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 36 Prepared by: , Mr. Muneshwara M S

`

We know that if any exception occurs, an exception object is getting created and then
Java runtime starts processing to handle them. Sometime we might want to generate

exception explicitly in our code, for example in a user authentication program we should

throw exception to client if the password is null. throw keyword is used to throw exception
to the runtime to handle it.

import java.io.*;

class M

{

void method()throws IOException

{

throw new IOException("device error");

}
}

class Testthrows4

{

public static void main(String args[]) throws IOException

{
M m=new M();

m.method();

System.out.println("normal flow...");

}

}
Exception in thread "main" java.io.IOException: device error

Final Class, Final methods & Final variables:

Final methods:
While method overriding is one of Java’s most powerful features, there will be times when
you will want to prevent it from occurring. To disallow a method from being overridden,

specify final as a modifier at the start of its declaration. Methods declared as final cannot be
overridden.

The following fragment illustrates final:

class Bike

{

final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

public static void main(String args[]){

Honda honda= new Honda();

https://hemanthrajhemu.github.io

MODULE 3 : CLASSES, INHERITANCE,EXCEPTION HANDLING OOC-18CS45

4TH Sem, Dept. of CSE, BMSIT&M Page 37 Prepared by: , Mr. Muneshwara M S

`

honda.run();
}

}
Complie Time Error as Final methods cannot be overridden

Final Class:
Sometimes you will want to prevent a class from being inherited. To do this, precede the

class declaration with final. Declaring a class as final implicitly declares all of its methods as
final, too. As you might expect, it is illegal to declare a class as both abstract and final since

an abstract class is incomplete by itself and relies upon its subclasses to provide complete
implementations.
Here is an example of a final class:

final class Bike{}

class Honda1 extends Bike{

void run(){System.out.println("running safely with 100kmph");}

public static void main(String args[]){

Honda1 honda= new Honda();

honda.run();

}

}
Output:Compile Time Error

Final variable
If you make any variable as final, you cannot change the value of final
variable (It will be constant).

class Bike

{

final int speedlimit=90; //final variable

void run()

{

speedlimit=400;

}

public static void main(String args[]){

Bike9 obj=new Bike9();

obj.run(); //Compile Time Error

}

}
Compile Time Error

https://hemanthrajhemu.github.io

