

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

B M S INSTITUTE OF TECHNOLOGY & MANAGEMENT

YELAHANKA, BENGALURU – 560064.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 MODULE -4 NOTES OF

OBJECT ORIENTED CONCEPTS -18CS45

 [As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Prepared by,

Mr. Muneshwara M S

Asst. Prof, Dept. of CSE

- 560064.

VISION AND MISSION OF THE CS&E DEPARTMENT

Vision

To develop technical professionals acquainted with recent trends and technologies of computer science to serve as valuable resource

for the nation/society.
Mission:

 Facilitating and exposing the students to various learning opportunities through dedicated academic teaching, guidance and

monitoring.

VISION AND MISSION OF THE INSTITUTE

Vision

To emerge as one of the finest technical institutions of higher learning, to develop engineering professionals who are technically

competent, ethical and environment friendly for betterment of the society.

Mission

Accomplish stimulating learning environment through high quality academic instruction, innovation and industry-institute interface

https://hemanthrajhemu.github.io

http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php
http://www.bmsit.in/computer-science-engineering.php

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 1 Prepared by: , Mr. Muneshwara M S

MODULE 4 PACKAGES AND INTERFACES

The following concepts should be learn in this Module

Packages, Access Protection,Importing Packages.Interfaces. Multi Threaded Programming:Multi

Threaded Programming: What are threads? How to make the classes threadable ; Extending threads;

Implementing runnable; Synchronization; Changing state of the thread; Bounded buffer problems,

producer consumer problems.

Text book 2: CH: 9 Ch 11: RBT: L1, L2, L3

Packages:

Packages in Java is a mechanism to encapsulate a group of classes, interfaces and sub

packages.To create a package is quite easy: simply include a package command as the first

statement in a Java source file. Any classes declared within that file will belong to the specified

package. The package statement defines a name space in which classes are stored. If you omit

the package statement, the class names are put into the default package, which has no name.

This is the general form of the package statement:

package pkg;

Java uses file system directories to store packages. For example, the .class files for any classes
you declare to be part of MyPackage must be stored in a directory called MyPackage.

You can create a hierarchy of packages.

package pkg1[.pkg2[.pkg3]];

Ex: package java.awt.image;

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 2 Prepared by: , Mr. Muneshwara M S

Advantages of using a package

 Reusability: Reusability of code is one of the most important requirements in the software

industry. Reusability saves time, effort and also ensures consistency. A class once

developed can be reused by any number of programs wishing to incorporate the class in
that particular program.

 Easy to locate the files.

 In real life situation there may arise scenarios where we need to define files of the same
name. This may lead to ―name-space collisions‖. Packages are a way of avoiding ―name-
space collisions‖.

Package are categorized into two forms

 Built-in Package:-Existing Java package for example java.lang, java.util etc.

 User-defined-package:- Java package created by user to categorized classes and interface

How to compile & Run java package?

If you are not using any IDE, you need to follow this:

Compile :- javac -d . Simple.java

Run :- java mypack.Simple

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 3 Prepared by: , Mr. Muneshwara M S

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but not
sub packages. The import keyword is used to make the classes and interface of another package
accessible to the current package.

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{ public static void main(String args[]){

A obj = new A();

obj.msg();

}

}

2) Using packagename.classname

If you import package.classname then only declared class of this package will be accessible.

//save by A.java

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 4 Prepared by: , Mr. Muneshwara M S

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

}

}

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible. Now

there is no need to import. But you need to use fully qualified name every time when you are

accessing the class or interface.

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B{

public static void main(String args[]){

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 5 Prepared by: , Mr. Muneshwara M S

pack.A obj = new pack.A();//using fully qualified name

obj.msg();}}

Access Specifiers

 private: accessible only in the class

 default : so-called ―package‖ access — accessible only in the same package

 protected: accessible (inherited) by subclasses, and accessible by code in same package

 public: accessible anywhere the class is accessible, and inherited by subclasses

Notice that private protected is not syntactically legal.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 6 Prepared by: , Mr. Muneshwara M S

Multi-Threaded Programming

Thread:

 A thread is a lightweight sub process, a smallest unit of processing.

 It is a separate path of execution.

 Threads are independent, if there occurs exception in one thread, it doesn't
affect other threads.

 It shares a common memory area.

t1, t2, t3 are threads

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 7 Prepared by: , Mr. Muneshwara M S

Java provides built-in support for multithreaded programming. The process of
executing multiple threads simultaneously is known as multithreading. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is called a

thread, and each thread defines a separate path of execution. Thus, multithreading is a

specialized form of multitasking.

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to
utilize the CPU. Multitasking can be achieved by two ways:

 Process-based Multitasking(Multiprocessing)
 Thread-based Multitasking(Multithreading)

1) Process-based Multitasking (Multiprocessing)

 Each process have its own address in memory i.e. each process allocates separate
memory area.

 Process is heavyweight.

 Cost of communication between the processes is high.

 Switching from one process to another require some time for saving and loading
registers, memory maps, updating lists etc.

 Less efficient

2) Thread-based Multitasking (Multithreading)

 Threads share the same address space.

 Thread is lightweight.

 Cost of communication between the threads is low.

 Highly efficient

Multithreading has several advantages over Multiprocessing such as;

 Threads are lightweight compared to processes

 Threads share the same address space and therefore can share both data and code.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 8 Prepared by: , Mr. Muneshwara M S

 Context switching between threads is usually less expensive than between processes

 Cost of thread intercommunication is relatively low that that of process

intercommunication

 Threads allow different tasks to be performed concurrently.

An instance of Thread class is just an object, like any other object in java. But a thread of
execution means an individual "lightweight" process that has its own call stack. In java each
thread has its own call stack

The Main Thread

When a Java program starts up, one thread begins running immediately. This is usually called the
main thread of your program, because it is the one that is executed when your program begins.
The main thread is important for two reasons:

• It is the thread from which other ―child‖ threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various shutdown actions.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 9 Prepared by: , Mr. Muneshwara M S

Life cycle of a Thread (Thread States)

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 10 Prepared by: , Mr. Muneshwara M S

1) New

The thread is in new state if you create an instance of Thread class but before the invocation of

start() method.

2) Runnable

When we call start() function on Thread object, it’s state is changed to Runnable. The control is

given to Thread scheduler to finish it’s execution. Whether to run this thread instantly or keep it

in runnable thread pool before running, depends on the OS implementation of thread scheduler.

3) Running

When thread is executing, it’s state is changed to Running. Thread scheduler picks one of the

thread from the runnable thread pool and change its state to Running. Then CPU starts executing

this thread. A thread can change state to Runnable, Dead or Blocked from running state depends

on time slicing, thread completion of run() method or waiting for some resources.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to run. Waiting −

Sometimes, a thread transitions to the waiting state while the thread waits for another thread to

perform a task. A thread transitions back to the runnable state, only when another thread signals

the waiting thread to continue its execution.

5) Terminated

A thread is in terminated or dead state when its run() method exits.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 11 Prepared by: , Mr. Muneshwara M S

Thread Creation

When the thread starts it schedules the time slots for several sub threads and the JVM scheduler

schedules the time slot to every thread based on round robin technique or priority based.

Method Description

Signature

String getName() Retrieves the name of running thread in the current context in String format

void start() This method will start a new thread of execution by calling run() method of

 Thread/runnable object.

void run() This method is the entry point of the thread. Execution of thread starts from

 this method.

void sleep(int This method suspend the thread for mentioned time duration in argument

sleeptime) (sleeptime in ms)

void yield() By invoking this method the current thread pause its execution temporarily

 and allow other threads to execute.

void join() This method used to queue up a thread in execution. Once called on thread,

 current thread will wait till calling thread completes its execution

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 12 Prepared by: , Mr. Muneshwara M S

There are two ways to create thread in java;

 Implement the Runnable interface (java.lang.Runnable)

 By Extending the Thread class (java.lang.Thread)

Extending Thread class

Creates a thread by a new class that extends Thread class. This creates an instance of that class.

The extending class must override run() method which is the entry point of new thread.

class Multi extends Thread{

public void run(){

System.out.println("thread is running...");

}

public static void main(String args[]){

Multi t1=new Multi();

t1.start();

}

}

thread is running

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 13 Prepared by: , Mr. Muneshwara M S

Implementing the Runnable Interface

The easiest way to create a thread is to create a class that implements the runnable interface.

After implementing runnable interface, the class needs to implement the run() method, which is
of form,

public void run()

 run() method introduces a concurrent thread into your program. This thread will end when
run() returns.

 You must specify the code for your thread inside run() method.

 run() method can call other methods, can use other classes and declare variables just like any
other normal method.

After you create a class that implements Runnable, you will instantiate an object of type Thread

from within that class. Thread defines several constructors. The one that we will use is shown
here:

Syntax :

Thread(Runnable threadOb, String threadName);

In this constructor, threadOb is an instance of a class that implements the Runnable interface.
This defines where execution of the thread will begin. The name of the new thread is specified
by threadName.

Ex : Thread t = new Thread(mt);

class MyThread implements Runnable

{

public void run()

{

System.out.println("concurrent thread started running..");

}

}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 14 Prepared by: , Mr. Muneshwara M S

class MyThreadDemo

{

public static void main(String args[])

{

MyThread mt = new MyThread();

Thread t = new Thread(mt);

t.start();

}

concurrent thread started running..

Creating Multiple Threads by implementing Runnable Interface

package applet1;

import java.io.*;

import java.util.*;

class A implements Runnable {

public void run() {

try {

for (int i = 5; i > 0; i--) {

System.out.println(i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 15 Prepared by: , Mr. Muneshwara M S

System.out.println(" exiting.");

}

}

class B implements Runnable {

public void run() {

try {

for (int i = 15; i > 10; i--) {

System.out.println(i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println(" exiting.");

}

}

class multithread {

public static void main(String args[]) {

A obj1 = new A();

B obj2= new B();

Thread t1=new Thread(obj1);

Thread t2=new Thread(obj2);

t1.start();

t2.start();

}}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 16 Prepared by: , Mr. Muneshwara M S

5

15

14

4

13

3

12

2

11

1

exiting.

exiting.

Notice the call to sleep(10000) in main(). This causes threads B and A to sleep for ten seconds

and ensures that it will finish last.

Note : Write a java application program for generating 3 threads to perform the
following operations.

i)Reading n numbers ii) Printing prime numbers iii) Computing average of n

numbers

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 17 Prepared by: , Mr. Muneshwara M S

isAlive() and join() methods

In java, isAlive() and join() are two different methods to check whether a thread has finished its

execution.

The isAlive() method returns true if the thread upon which it is called is still running otherwise it

returns false.

final boolean isAlive()

public class MyThread extends Thread

{

public void run()

{

System.out.println("r1 ");

try {

Thread.sleep(500);

}

catch(InterruptedException ie) { }

System.out.println("r2 ");

}

public static void main(String[] args)

{

MyThread t1=new MyThread();

MyThread t2=new MyThread();

t1.start();

t2.start();

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 18 Prepared by: , Mr. Muneshwara M S

System.out.println(t1.isAlive());

System.out.println(t2.isAlive());

}

}

Output :

r1

true

true

r1

r2

r2

But, join() method is used more commonly than isAlive(). This method waits until the thread on

which it is called terminates

final void join() throws InterruptedException

Using join() method, we tell our thread to wait until the specified thread completes its execution.

There are overloaded versions of join() method, which allows us to specify time for which you

want to wait for the specified thread to terminate.

public class MyThread extends Thread

{

public void run()

{

System.out.println("r1 ");

try {

Thread.sleep(500);

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 19 Prepared by: , Mr. Muneshwara M S

}catch(InterruptedException ie){ }

System.out.println("r2 ");

}

public static void main(String[] args)

{

MyThread t1=new MyThread();

MyThread t2=new MyThread();

t1.start();

try{

t1.join(); //Waiting for t1 to finish

}catch(InterruptedException ie){}

t2.start();

}

}

r1

r2

r1

r2

In this above program join() method on thread t1 ensures that t1 finishes it process before thread
t2 starts.

Specifying time with join()

If in the above program, we specify time while using join() with t1, then t1 will execute for that

time, and then t2 will join it.

t1.join(1500);

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 20 Prepared by: , Mr. Muneshwara M S

Synchronization

At times when more than one thread try to access a shared resource, we need to ensure that
resource will be used by only one thread at a time. The process by which this is achieved is

called synchronization. The synchronization keyword in java creates a block of code referred to

as critical section.

Key to synchronization is the concept of the monitor. A monitor is an object that is used

as a mutually exclusive lock. Only one thread can own a monitor at a given time. When a thread

acquires a lock, it is said to have entered the monitor. All other threads attempting to enter the

locked monitor will be suspended until the first thread exits the monitor. These other threads are

said to be waiting for the monitor.

Why use Synchronization

The synchronization is mainly used to

 To prevent thread interference.

 To prevent consistency problem.

Thread Synchronization & Mutual Exclusive

There are two types of thread synchronization mutual exclusive and inter-thread communication.

1. Mutual Exclusive

1. Synchronized method.

2. Synchronized block.

3. static synchronization.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 21 Prepared by: , Mr. Muneshwara M S

Using Synchronized Blocks

Synchronized block can be used to perform synchronization on any specific resource of the

method. Synchronized block is used to lock an object for any shared resource. Scope of

synchronized block is smaller than the method.

General Syntax :

synchronized (object)

{

//statement to be synchronized

}

class Table{

void display(int n)

{

synchronized(this)

{

for(int i=1;i<=5;i++)

{

System.out.println(n*i);

try{

Thread.sleep(400);

}

catch(Exception e){

System.out.println(e);

}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 22 Prepared by: , Mr. Muneshwara M S

}

}

}//end of the method

}

class A extends Thread

{

Table t;

A(Table t)

{

this.t=t;

}

public void run(){

t.display(5);

}

}

class B extends Thread{

Table t;

B(Table t)

{

this.t=t;

}

public void run(){

t.display(100);

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 23 Prepared by: , Mr. Muneshwara M S

}

}

public class synch

{

public static void main(String args[])

{

Table obj = new Table(); //only one object

A t1=new A(obj);

B t2=new B(obj);

t1.start();

t2.start();

}

}

5

10

15

20

25

100

200

300

400

500

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 24 Prepared by: , Mr. Muneshwara M S

Using Synchronized Methods

If you declare any method as synchronized, it is known as synchronized method. Synchronized

method is used to lock an object for any shared resource. When a thread invokes a synchronized

method, it automatically acquires the lock for that object and releases it when the thread

completes its task.

class Table{

synchronized void display(int n)

{

for(int i=1;i<=5;i++)

{

System.out.println(n*i);

try{

Thread.sleep(400);

}

catch(Exception e){

System.out.println(e);

}

}

}

}//end of the method

class A extends Thread

{

Table t;

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 25 Prepared by: , Mr. Muneshwara M S

A(Table t)

{

this.t=t;

}

public void run(){

t.display(5);

}

}

class B extends Thread{

Table t;

B(Table t){

this.t=t;

}

public void run(){

t.display(100);

}

}

public class synch

{

public static void main(String args[])

{

Table obj = new Table(); //only one object

A t1=new A(obj);

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 26 Prepared by: , Mr. Muneshwara M S

B t2=new B(obj);

t1.start();

t2.start();

}

}

5

10

15

20

25

100

200

300

400

In computing, the producer–consumer problem (also known as the bounded-buffer problem) is a
classic example of a multi-process synchronization problem. The problem describes two

processes, the producer and the consumer, which share a common, fixed-size buffer used as a
queue.

 The producer’s job is to generate data, put it into the buffer, and start again.

 At the same time, the consumer is consuming the data (i.e. removing it from the
buffer), one piece at a time.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 27 Prepared by: , Mr. Muneshwara M S

Solution:

This problem can be implemented or solved by different ways in Java, classical way is using wait

and notify method to communicate between Producer and Consumer thread and blocking each of them

on individual condition like full queue and empty queue.

wait() tells the calling thread to give up the monitor and go to sleep until some other thread
enters the same monitor and calls notify() or notifyAll().

notify() wakes up a thread that called wait() on the same object.

notifyAll() wakes up all the threads that called wait() on the same object. One of the threads
will be granted access.

These methods are declared within Object, as shown here:

 final void wait() throws InterruptedException

 final void notify()

 final void notify All()

public class ProducerConsumerTest {

public static void main(String[] args) {

Myclass c = new Myclass();

Producer p1 = new Producer(c, 1);

Consumer c1 = new Consumer(c, 1);

p1.start();

c1.start();

}

}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 28 Prepared by: , Mr. Muneshwara M S

class Myclass {

private int contents;

private boolean available = false;

public synchronized int get() {

while (available == false) {

try {

wait();

} catch (InterruptedException e) {}

}

available = false;

notifyAll();

return contents;

}

public synchronized void put(int value) {

while (available == true) {

try {

wait();

} catch (InterruptedException e) { }

}

contents = value;

available = true;

notifyAll();

}

}

class Consumer extends Thread {

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 29 Prepared by: , Mr. Muneshwara M S

private Myclass Myclass;

private int number;

public Consumer(Myclass c, int number) {

Myclass = c;

this.number = number;

}

public void run() {

int value = 0;

for (int i = 0; i < 10; i++) {

value = Myclass.get();

System.out.println("Consumer #" + this.number + " got: " + value);

}

}

}

class Producer extends Thread {

private Myclass Myclass;

private int number;

public Producer(Myclass c, int number) {

Myclass = c;

this.number = number;

}

public void run() {

for (int i = 0; i < 10; i++) {

Myclass.put(i);

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 30 Prepared by: , Mr. Muneshwara M S

System.out.println("Producer #" + this.number + " put: " + i); try
{

sleep((int)(Math.random() * 100));

} catch (InterruptedException e) { }

}

}}

Producer #1 put: 0

Consumer #1 got: 0

Producer #1 put: 1

Consumer #1 got: 1

Producer #1 put: 2

Consumer #1 got: 2

Producer #1 put: 3

Consumer #1 got: 3

Producer #1 put: 4

Consumer #1 got: 4

Producer #1 put: 5

Consumer #1 got: 5

Producer #1 put: 6

Consumer #1 got: 6

Producer #1 put: 7

Consumer #1 got: 7

Producer #1 put: 8

Consumer #1 got: 8

Producer #1 put: 9

Consumer #1 got: 9

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 31 Prepared by: , Mr. Muneshwara M S

Bounded Buffer Problem

Bounded buffer problem, which is also called producer consumer problem, is one of the classic
problems of synchronization.

Problem Statement:

There is a buffer of n slots and each slot is capable of storing one unit of data. There are two
processes running, namely, producer and consumer, which are operating on the buffer.

A producer tries to insert data into an empty slot of the buffer. A consumer tries to remove data
from a filled slot in the buffer. As you might have guessed by now, those two processes won’t
produce the expected output if they are being executed concurrently.

There needs to be a way to make the producer and consumer work in an independent manner.

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 32 Prepared by: , Mr. Muneshwara M S

import java.io.*;

import java.util.*;

class Buffer

{

private final int MaxBuffSize;

private int[] store;

private int BufferStart, BufferEnd, BufferSize;

public Buffer(int size)

{

MaxBuffSize = size;

BufferEnd = -1;

BufferStart = 0;

BufferSize = 0;

store = new int[MaxBuffSize];

}

public synchronized void insert(int ch)

{

try

{

while (BufferSize == MaxBuffSize) {

wait();

}

BufferEnd = (BufferEnd + 1) % MaxBuffSize;

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 33 Prepared by: , Mr. Muneshwara M S

BufferSize++;

notifyAll();

}

catch (InterruptedException e)

{

}

}

public synchronized int delete() {

int ch=0;

try {

while (BufferSize == 0) {

wait();

}

ch = store[BufferStart];

BufferStart = (BufferStart + 1) % MaxBuffSize;

BufferSize--;

notifyAll();

} catch (InterruptedException e) {

}

return ch;

}

}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 34 Prepared by: , Mr. Muneshwara M S

class Consumer extends Thread {

private final Buffer buffer;

public Consumer(Buffer b) {

buffer = b;

}

public void run() {

while (!Thread.currentThread().isInterrupted()) {

int c = buffer.delete();

System.out.print(c);

}

}

}

class Producer extends Thread {

private final Buffer buffer;

public Producer(Buffer b) {

buffer = b;

}

public void run() {

for(int c=0;c<10;c++)

buffer.insert(c);

}

}

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 35 Prepared by: , Mr. Muneshwara M S

class boundedbuffer {

public static void main(String[] args) {

System.out.println("program starting");

Buffer buffer = new Buffer(5); // buffer has size 5

Producer prod = new Producer(buffer);

Consumer cons = new Consumer(buffer);

prod.start();

cons.start();

try {

prod.join();

cons.interrupt();

} catch (InterruptedException e) {}

System.out.println("End of Program");

}

}

0

1

2

3

4

5

6

End of Program

https://hemanthrajhemu.github.io

MODULE 4 . PACKAGES AND INTERFACES` OOC-18CS45

4
TH

 Sem, Dept. of CSE, BMSIT&M 36 Prepared by: , Mr. Muneshwara M S

Readers Writer Problem

Readers writer problem is another example of a classic synchronization problem. There are many
variants of this problem, one of which is examined below.

Problem Statement:

There is a shared resource which should be accessed by multiple processes. There are two types

of processes in this context. They are reader and writer. Any number of readers can read from

the shared resource simultaneously, but only one writer can write to the shared resource. When a

writer is writing data to the resource, no other process can access the resource. A writer cannot

write to the resource if there are non-zero number of readers accessing the resource.

Solution:

From the above problem statement, it is evident that readers have higher priority than writer. If a

writer wants to write to the resource, it must wait until there are no readers currently accessing
that resource.

Refer any sample program for reader writer problem

https://hemanthrajhemu.github.io

