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C H A P T E R  6

Bandwidth Utilization:
Multiplexing and

Spectrum Spreading

n real life, we have links with limited bandwidths. The wise use of these bandwidths
has been, and will be, one of the main challenges of electronic communications.

However, the meaning of wise may depend on the application. Sometimes we need to
combine several low-bandwidth channels to make use of one channel with a larger
bandwidth. Sometimes we need to expand the bandwidth of a channel to achieve goals
such as privacy and antijamming. In this chapter, we explore these two broad categories
of bandwidth utilization: multiplexing and spectrum spreading. In multiplexing, our
goal is efficiency; we combine several channels into one. In spectrum spreading, our
goals are privacy and antijamming; we expand the bandwidth of a channel to insert
redundancy, which is necessary to achieve these goals. 

This chapter is divided into two sections:

❑ The first section discusses multiplexing. The first method described in this section
is called frequency-division multiplexing (FDM), which means to combine several
analog signals into a single analog signal. The second method is called wavelength-
division multiplexing (WDM), which means to combine several optical signals into
one optical signal.The third method is called time-division multiplexing (TDM),
which allows several digital signals to share a channel in time.

❑ The second section discusses spectrum spreading, in which we first spread the band-
width of a signal to add redundancy for the purpose of more secure transmission
before combining different channels. The first method described in this section is
called frequency hopping spread spectrum (FHSS), in which different modulation
frequencies are used in different periods of time. The second method is called direct
sequence spread spectrum (DSSS), in which a single bit in the original signal is
changed to a sequence before transmission. 

I
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156 PART II PHYSICAL LAYER

6.1 MULTIPLEXING
Whenever the bandwidth of a medium linking two devices is greater than the band-
width needs of the devices, the link can be shared. Multiplexing is the set of techniques
that allow the simultaneous transmission of multiple signals across a single data link.
As data and telecommunications use increases, so does traffic. We can accommodate
this increase by continuing to add individual links each time a new channel is needed;
or we can install higher-bandwidth links and use each to carry multiple signals. As
described in Chapter 7, today’s technology includes high-bandwidth media such as
optical fiber and terrestrial and satellite microwaves. Each has a bandwidth far in
excess of that needed for the average transmission signal. If the bandwidth of a link is
greater than the bandwidth needs of the devices connected to it, the bandwidth
is wasted. An efficient system maximizes the utilization of all resources; bandwidth is
one of the most precious resources we have in data communications.

In a multiplexed system, n lines share the bandwidth of one link. Figure 6.1 shows
the basic format of a multiplexed system. The lines on the left direct their transmission
streams to a multiplexer (MUX), which combines them into a single stream (many-to-
one). At the receiving end, that stream is fed into a demultiplexer (DEMUX), which
separates the stream back into its component transmissions (one-to-many) and
directs them to their corresponding lines. In the figure, the word link refers to the
physical path. The word channel refers to the portion of a link that carries a transmis-
sion between a given pair of lines. One link can have many (n) channels.  

There are three basic multiplexing techniques: frequency-division multiplexing,
wavelength-division multiplexing, and time-division multiplexing. The first two are
techniques designed for analog signals, the third, for digital signals (see Figure 6.2).

Figure 6.1 Dividing a link into channels

Figure 6.2 Categories of multiplexing
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CHAPTER 6 BANDWIDTH UTILIZATION: MULTIPLEXING AND SPECTRUM SPREADING 157

Although some textbooks consider carrier division multiple access (CDMA)
as a fourth multiplexing category, we discuss CDMA as an access method (see
Chapter 12). 

6.1.1 Frequency-Division Multiplexing
Frequency-division multiplexing (FDM) is an analog technique that can be applied
when the bandwidth of a link (in hertz) is greater than the combined bandwidths of
the signals to be transmitted. In FDM, signals generated by each sending device modu-
late different carrier frequencies. These modulated signals are then combined into a single
composite signal that can be transported by the link. Carrier frequencies are separated
by sufficient bandwidth to accommodate the modulated signal. These bandwidth
ranges are the channels through which the various signals travel. Channels can be sepa-
rated by strips of unused bandwidth—guard bands—to prevent signals from overlap-
ping. In addition, carrier frequencies must not interfere with the original data
frequencies. 

Figure 6.3 gives a conceptual view of FDM. In this illustration, the transmission path
is divided into three parts, each representing a channel that carries one transmission.

We consider FDM to be an analog multiplexing technique; however, this does not
mean that FDM cannot be used to combine sources sending digital signals. A digital
signal can be converted to an analog signal (with the techniques discussed in Chapter 5)
before FDM is used to multiplex them.   

Multiplexing Process

Figure 6.4 is a conceptual illustration of the multiplexing process. Each source gener-
ates a signal of a similar frequency range. Inside the multiplexer, these similar signals
modulate different carrier frequencies ( f1, f2, and f3). The resulting modulated signals
are then combined into a single composite signal that is sent out over a media link that
has enough bandwidth to accommodate it. 

Figure 6.3 Frequency-division multiplexing 

FDM is an analog multiplexing technique that combines analog signals. 
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158 PART II PHYSICAL LAYER

Demultiplexing Process

The demultiplexer uses a series of filters to decompose the multiplexed signal into its
constituent component signals. The individual signals are then passed to a demodulator
that separates them from their carriers and passes them to the output lines. Figure 6.5 is
a conceptual illustration of demultiplexing process. 

Example 6.1

Assume that a voice channel occupies a bandwidth of 4 kHz. We need to combine three voice
channels into a link with a bandwidth of 12 kHz, from 20 to 32 kHz. Show the configuration,
using the frequency domain. Assume there are no guard bands.

Solution
We shift (modulate) each of the three voice channels to a different bandwidth, as shown in Fig-
ure 6.6. We use the 20- to 24-kHz bandwidth for the first channel, the 24- to 28-kHz bandwidth

Figure 6.4 FDM process

Figure 6.5 FDM demultiplexing example
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CHAPTER 6 BANDWIDTH UTILIZATION: MULTIPLEXING AND SPECTRUM SPREADING 159

for the second channel, and the 28- to 32-kHz bandwidth for the third one. Then we combine
them as shown in Figure 6.6. At the receiver, each channel receives the entire signal, using a
filter to separate out its own signal. The first channel uses a filter that passes frequencies
between 20 and 24 kHz and filters out (discards) any other frequencies. The second channel
uses a filter that passes frequencies between 24 and 28 kHz, and the third channel uses a filter
that passes frequencies between 28 and 32 kHz. Each channel then shifts the frequency to start
from zero.

Example 6.2

Five channels, each with a 100-kHz bandwidth, are to be multiplexed together. What is the mini-
mum bandwidth of the link if there is a need for a guard band of 10 kHz between the channels to
prevent interference?

Solution
For five channels, we need at least four guard bands. This means that the required bandwidth is at
least 5 × 100 + 4 × 10 = 540 kHz, as shown in Figure 6.7.  

Example 6.3

Four data channels (digital), each transmitting at 1 Mbps, use a satellite channel of 1 MHz.
Design an appropriate configuration, using FDM. 

Solution
The satellite channel is analog. We divide it into four channels, each channel having a 250-kHz
bandwidth. Each digital channel of 1 Mbps is modulated so that each 4 bits is modulated to
1 Hz. One solution is 16-QAM modulation. Figure 6.8 shows one possible configuration.    

Figure 6.6 Example 6.1
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160 PART II PHYSICAL LAYER

The Analog Carrier System

To maximize the efficiency of their infrastructure, telephone companies have tradition-
ally multiplexed signals from lower-bandwidth lines onto higher-bandwidth lines. In
this way, many switched or leased lines can be combined into fewer but bigger chan-
nels. For analog lines, FDM is used.

One of these hierarchical systems used by telephone companies is made up of
groups, supergroups, master groups, and jumbo groups (see Figure 6.9).

In this analog hierarchy, 12 voice channels are multiplexed onto a higher-bandwidth
line to create a group. A group has 48 kHz of bandwidth and supports 12 voice channels.

At the next level, up to five groups can be multiplexed to create a composite signal
called a supergroup. A supergroup has a bandwidth of 240 kHz and supports up to
60 voice channels. Supergroups can be made up of either five groups or 60 independent
voice channels.

At the next level, 10 supergroups are multiplexed to create a master group. A
master group must have 2.40 MHz of bandwidth, but the need for guard bands between
the supergroups increases the necessary bandwidth to 2.52 MHz. Master groups support
up to 600 voice channels.

Finally, six master groups can be combined into a jumbo group. A jumbo group
must have 15.12 MHz (6 × 2.52 MHz) but is augmented to 16.984 MHz to allow for
guard bands between the master groups.

Figure 6.7 Example 6.2 

Figure 6.8 Example 6.3
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CHAPTER 6 BANDWIDTH UTILIZATION: MULTIPLEXING AND SPECTRUM SPREADING 161

Other Applications of FDM

A very common application of FDM is AM and FM radio broadcasting. Radio uses the
air as the transmission medium. A special band from 530 to 1700 kHz is assigned
to AM radio. All radio stations need to share this band. As discussed in Chapter 5, each
AM station needs 10 kHz of bandwidth. Each station uses a different carrier frequency,
which means it is shifting its signal and multiplexing. The signal that goes to the air is a
combination of signals. A receiver receives all these signals, but filters (by tuning) only
the one which is desired. Without multiplexing, only one AM station could broadcast
to the common link, the air. However, we need to know that there is no physical multi-
plexer or demultiplexer here. As we will see in Chapter 12, multiplexing is done at the
data-link layer.

The situation is similar in FM broadcasting. However, FM has a wider band of 88
to 108 MHz because each station needs a bandwidth of 200 kHz. 

Another common use of FDM is in television broadcasting. Each TV channel has
its own bandwidth of 6 MHz. 

The first generation of cellular telephones (See Chapter 16) also uses FDM. Each
user is assigned two 30-kHz channels, one for sending voice and the other for receiv-
ing. The voice signal, which has a bandwidth of 3 kHz (from 300 to 3300 Hz), is mod-
ulated by using FM. Remember that an FM signal has a bandwidth 10 times that of the
modulating signal, which means each channel has 30 kHz (10 × 3) of bandwidth.
Therefore, each user is given, by the base station, a 60-kHz bandwidth in a range avail-
able at the time of the call. 

Example 6.4

The Advanced Mobile Phone System (AMPS) uses two bands. The first band of 824 to 849 MHz
is used for sending, and 869 to 894 MHz is used for receiving. Each user has a bandwidth of
30 kHz in each direction. The 3-kHz voice is modulated using FM, creating 30 kHz of modulated
signal. How many people can use their cellular phones simultaneously?   

Figure 6.9 Analog hierarchy
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162 PART II PHYSICAL LAYER

Solution
Each band is 25 MHz. If we divide 25 MHz by 30 kHz, we get 833.33. In reality, the band
is divided into 832 channels. Of these, 42 channels are used for control, which means only
790 channels are available for cellular phone users. We discuss AMPS in greater detail in
Chapter 16.

Implementation

FDM can be implemented very easily. In many cases, such as radio and television
broadcasting, there is no need for a physical multiplexer or demultiplexer. As long as
the stations agree to send their broadcasts to the air using different carrier frequencies,
multiplexing is achieved. In other cases, such as the cellular telephone system, a base
station needs to assign a carrier frequency to the telephone user. There is not enough
bandwidth in a cell to permanently assign a bandwidth range to every telephone user.
When a user hangs up, her or his bandwidth is assigned to another caller. 

6.1.2 Wavelength-Division Multiplexing
Wavelength-division multiplexing (WDM) is designed to use the high-data-rate
capability of fiber-optic cable. The optical fiber data rate is higher than the data rate of
metallic transmission cable, but using a fiber-optic cable for a single line wastes the
available bandwidth. Multiplexing allows us to combine several lines into one.

WDM is conceptually the same as FDM, except that the multiplexing and demulti-
plexing involve optical signals transmitted through fiber-optic channels. The idea is the
same: We are combining different signals of different frequencies. The difference is
that the frequencies are very high. 

Figure 6.10 gives a conceptual view of a WDM multiplexer and demultiplexer.
Very narrow bands of light from different sources are combined to make a wider band
of light. At the receiver, the signals are separated by the demultiplexer. 

Although WDM technology is very complex, the basic idea is very simple. We
want to combine multiple light sources into one single light at the multiplexer and do
the reverse at the demultiplexer. The combining and splitting of light sources are easily
handled by a prism. Recall from basic physics that a prism bends a beam of light based
on the angle of incidence and the frequency. Using this technique, a multiplexer can be

Figure 6.10 Wavelength-division multiplexing
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CHAPTER 6 BANDWIDTH UTILIZATION: MULTIPLEXING AND SPECTRUM SPREADING 163

made to combine several input beams of light, each containing a narrow band of
frequencies, into one output beam of a wider band of frequencies. A demultiplexer can
also be made to reverse the process. Figure 6.11 shows the concept.

One application of WDM is the SONET network, in which multiple optical
fiber lines are multiplexed and demultiplexed. We discuss SONET in Chapter 14. 

A new method, called dense WDM (DWDM), can multiplex a very large number of
channels by spacing channels very close to one another. It achieves even greater efficiency.

6.1.3 Time-Division Multiplexing
Time-division multiplexing (TDM) is a digital process that allows several connections
to share the high bandwidth of a link. Instead of sharing a portion of the bandwidth as in
FDM, time is shared. Each connection occupies a portion of time in the link. Figure 6.12
gives a conceptual view of TDM. Note that the same link is used as in FDM; here, how-
ever, the link is shown sectioned by time rather than by frequency. In the figure, portions
of signals 1, 2, 3, and 4 occupy the link sequentially. 

Note that in Figure 6.12 we are concerned with only multiplexing, not switching.
This means that all the data in a message from source 1 always go to one specific desti-
nation, be it 1, 2, 3, or 4. The delivery is fixed and unvarying, unlike switching. 

We also need to remember that TDM is, in principle, a digital multiplexing technique.
Digital data from different sources are combined into one timeshared link. However, this

Figure 6.11 Prisms in wavelength-division multiplexing and demultiplexing

Figure 6.12 TDM
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164 PART II PHYSICAL LAYER

does not mean that the sources cannot produce analog data; analog data can be sampled,
changed to digital data, and then multiplexed by using TDM. 

We can divide TDM into two different schemes: synchronous and statistical. We
first discuss synchronous TDM and then show how statistical TDM differs. 

Synchronous TDM

In synchronous TDM, each input connection has an allotment in the output even if it is
not sending data. 

Time Slots and Frames
In synchronous TDM, the data flow of each input connection is divided into units,
where each input occupies one input time slot. A unit can be 1 bit, one character, or one
block of data. Each input unit becomes one output unit and occupies one output time
slot. However, the duration of an output time slot is n times shorter than the duration of
an input time slot. If an input time slot is T s, the output time slot is T/n s, where n is the
number of connections. In other words, a unit in the output connection has a shorter
duration; it travels faster. Figure 6.13 shows an example of synchronous TDM where n
is 3.

In synchronous TDM, a round of data units from each input connection is collected
into a frame (we will see the reason for this shortly). If we have n connections, a frame
is divided into n time slots and one slot is allocated for each unit, one for each input
line. If the duration of the input unit is T, the duration of each slot is T/n and the dura-
tion of each frame is T (unless a frame carries some other information, as we will see
shortly).

The data rate of the output link must be n times the data rate of a connection to
guarantee the flow of data. In Figure 6.13, the data rate of the link is 3 times the data
rate of a connection; likewise, the duration of a unit on a connection is 3 times that of

TDM is a digital multiplexing technique for combining
several low-rate channels into one high-rate one.

Figure 6.13 Synchronous time-division multiplexing
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CHAPTER 6 BANDWIDTH UTILIZATION: MULTIPLEXING AND SPECTRUM SPREADING 165

the time slot (duration of a unit on the link). In the figure we represent the data prior to
multiplexing as 3 times the size of the data after multiplexing. This is just to convey the
idea that each unit is 3 times longer in duration before multiplexing than after.    

Time slots are grouped into frames. A frame consists of one complete cycle of
time slots, with one slot dedicated to each sending device. In a system with n input
lines, each frame has n slots, with each slot allocated to carrying data from a specific
input line. 

Example 6.5

In Figure 6.13, the data rate for each input connection is 1 kbps. If 1 bit at a time is multiplexed
(a unit is 1 bit), what is the duration of 

1. each input slot, 
2. each output slot, and 
3. each frame?    

Solution
We can answer the questions as follows:

1. The data rate of each input connection is 1 kbps. This means that the bit duration is 1/1000 s
or 1 ms. The duration of the input time slot is 1 ms (same as bit duration).

2. The duration of each output time slot is one-third of the input time slot. This means that the
duration of the output time slot is 1/3 ms.

3. Each frame carries three output time slots. So the duration of a frame is 3 × 1/3 ms, or 1 ms.
The duration of a frame is the same as the duration of an input unit.

Example 6.6

Figure 6.14 shows synchronous TDM with a data stream for each input and one data stream for
the output. The unit of data is 1 bit. Find (1) the input bit duration, (2) the output bit duration,
(3) the output bit rate, and (4) the output frame rate.      

Solution
We can answer the questions as follows:

1. The input bit duration is the inverse of the bit rate: 1/1 Mbps = 1 μs.
2. The output bit duration is one-fourth of the input bit duration, or 1/4 μs. 

In synchronous TDM, the data rate of the link is n times faster,
and the unit duration is n times shorter.   

Figure 6.14 Example 6.6
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166 PART II PHYSICAL LAYER

3. The output bit rate is the inverse of the output bit duration, or 1/4 μs, or 4 Mbps. This can
also be deduced from the fact that the output rate is 4 times as fast as any input rate; so the
output rate = 4 × 1 Mbps = 4 Mbps.

4. The frame rate is always the same as any input rate. So the frame rate is 1,000,000 frames
per second. Because we are sending 4 bits in each frame, we can verify the result of the pre-
vious question by multiplying the frame rate by the number of bits per frame. 

Example 6.7

Four 1-kbps connections are multiplexed together. A unit is 1 bit. Find (1) the duration of 1 bit
before multiplexing, (2) the transmission rate of the link, (3) the duration of a time slot, and
(4) the duration of a frame.     

Solution
We can answer the questions as follows:

1. The duration of 1 bit before multiplexing is 1/1 kbps, or 0.001 s (1 ms).
2. The rate of the link is 4 times the rate of a connection, or 4 kbps.
3. The duration of each time slot is one-fourth of the duration of each bit before multiplexing,

or 1/4 ms or 250 μs. Note that we can also calculate this from the data rate of the link, 4 kbps.
The bit duration is the inverse of the data rate, or 1/4 kbps or 250 μs.

4. The duration of a frame is always the same as the duration of a unit before multiplexing, or
1 ms. We can also calculate this in another way. Each frame in this case has four time slots.
So the duration of a frame is 4 times 250 μs, or 1 ms. 

Interleaving
TDM can be visualized as two fast-rotating switches, one on the multiplexing side and
the other on the demultiplexing side. The switches are synchronized and rotate at the
same speed, but in opposite directions. On the multiplexing side, as the switch opens in
front of a connection, that connection has the opportunity to send a unit onto the path.
This process is called interleaving. On the demultiplexing side, as the switch opens in
front of a connection, that connection has the opportunity to receive a unit from the
path.

Figure 6.15 shows the interleaving process for the connection shown in Figure 6.13.
In this figure, we assume that no switching is involved and that the data from the first
connection at the multiplexer site go to the first connection at the demultiplexer. We
discuss switching in Chapter 8. 

Example 6.8

Four channels are multiplexed using TDM. If each channel sends 100 bytes/s and we multiplex
1 byte per channel, show the frame traveling on the link, the size of the frame, the duration of a
frame, the frame rate, and the bit rate for the link. 

Solution
The multiplexer is shown in Figure 6.16. Each frame carries 1 byte from each channel; the size of
each frame, therefore, is 4 bytes, or 32 bits. Because each channel is sending 100 bytes/s and a
frame carries 1 byte from each channel, the frame rate must be 100 frames per second. The
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duration of a frame is therefore 1/100 s. The link is carrying 100 frames per second, and since
each frame contains 32 bits, the bit rate is 100 × 32, or 3200 bps. This is actually 4 times the bit
rate of each channel, which is 100 × 8 = 800 bps.

Example 6.9

A multiplexer combines four 100-kbps channels using a time slot of 2 bits. Show the output with
four arbitrary inputs. What is the frame rate? What is the frame duration? What is the bit rate?
What is the bit duration?

Solution
Figure 6.17 shows the output for four arbitrary inputs. The link carries 50,000 frames per second
since each frame contains 2 bits per channel. The frame duration is therefore 1/50,000 s or 20 μs.
The frame rate is 50,000 frames per second, and each frame carries 8 bits; the bit rate is 50,000 ×
8 = 400,000 bits or 400 kbps. The bit duration is 1/400,000 s, or 2.5 μs. Note that the frame dura-
tion is 8 times the bit duration because each frame is carrying 8 bits. 

Empty Slots
Synchronous TDM is not as efficient as it could be. If a source does not have data to
send, the corresponding slot in the output frame is empty. Figure 6.18 shows a case in
which one of the input lines has no data to send and one slot in another input line has
discontinuous data.  

The first output frame has three slots filled, the second frame has two slots filled,
and the third frame has three slots filled. No frame is full. We learn in the next section

Figure 6.15 Interleaving

Figure 6.16 Example 6.8 
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that statistical TDM can improve the efficiency by removing the empty slots from the
frame. 

Data Rate Management
One problem with TDM is how to handle a disparity in the input data rates. In all our
discussion so far, we assumed that the data rates of all input lines were the same. However,
if data rates are not the same, three strategies, or a combination of them, can be used.
We call these three strategies multilevel multiplexing, multiple-slot allocation, and
pulse stuffing.

Multilevel Multiplexing Multilevel multiplexing is a technique used when the data
rate of an input line is a multiple of others. For example, in Figure 6.19, we have two
inputs of 20 kbps and three inputs of 40 kbps. The first two input lines can be multiplexed
together to provide a data rate equal to the last three. A second level of multiplexing can
create an output of 160 kbps.

Figure 6.17 Example 6.9

Figure 6.18 Empty slots

Figure 6.19 Multilevel multiplexing
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Multiple-Slot Allocation Sometimes it is more efficient to allot more than one slot in
a frame to a single input line. For example, we might have an input line that has a data
rate that is a multiple of another input. In Figure 6.20, the input line with a 50-kbps
data rate can be given two slots in the output. We insert a demultiplexer in the line to
make two inputs out of one. 

Pulse Stuffing Sometimes the bit rates of sources are not multiple integers of each
other. Therefore, neither of the above two techniques can be applied. One solution is to
make the highest input data rate the dominant data rate and then add dummy bits to the
input lines with lower rates. This will increase their rates. This technique is called pulse
stuffing, bit padding, or bit stuffing. The idea is shown in Figure 6.21. The input with a
data rate of 46 is pulse-stuffed to increase the rate to 50 kbps. Now multiplexing can
take place. 

Frame Synchronizing
The implementation of TDM is not as simple as that of FDM. Synchronization between
the multiplexer and demultiplexer is a major issue. If the multiplexer and the demulti-
plexer are not synchronized, a bit belonging to one channel may be received by the
wrong channel. For this reason, one or more synchronization bits are usually added to
the beginning of each frame. These bits, called framing bits, follow a pattern, frame
to frame, that allows the demultiplexer to synchronize with the incoming stream so that
it can separate the time slots accurately. In most cases, this synchronization information
consists of 1 bit per frame, alternating between 0 and 1, as shown in Figure 6.22.

Figure 6.20 Multiple-slot multiplexing

Figure 6.21 Pulse stuffing
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Example 6.10

We have four sources, each creating 250 characters per second. If the interleaved unit is a charac-
ter and 1 synchronizing bit is added to each frame, find (1) the data rate of each source, (2) the
duration of each character in each source, (3) the frame rate, (4) the duration of each frame,
(5) the number of bits in each frame, and (6) the data rate of the link.

Solution
We can answer the questions as follows:

1. The data rate of each source is 250 × 8 = 2000 bps = 2 kbps.
2. Each source sends 250 characters per second; therefore, the duration of a character is 1/250 s,

or 4 ms.
3. Each frame has one character from each source, which means the link needs to send

250 frames per second to keep the transmission rate of each source. 
4. The duration of each frame is 1/250 s, or 4 ms. Note that the duration of each frame is the

same as the duration of each character coming from each source.
5. Each frame carries 4 characters and 1 extra synchronizing bit. This means that each frame is

4 × 8 + 1 = 33 bits.
6. The link sends 250 frames per second, and each frame contains 33 bits. This means that the

data rate of the link is 250 × 33, or 8250 bps. Note that the bit rate of the link is greater than
the combined bit rates of the four channels. If we add the bit rates of four channels, we get
8000 bps. Because 250 frames are traveling per second and each contains 1 extra bit for
synchronizing, we need to add 250 to the sum to get 8250 bps.

Example 6.11

Two channels, one with a bit rate of 100 kbps and another with a bit rate of 200 kbps, are to be
multiplexed. How this can be achieved? What is the frame rate? What is the frame duration?
What is the bit rate of the link?

Solution
We can allocate one slot to the first channel and two slots to the second channel. Each frame car-
ries 3 bits. The frame rate is 100,000 frames per second because it carries 1 bit from the first
channel. The frame duration is 1/100,000 s, or 10 ms. The bit rate is 100,000 frames/s × 3 bits per
frame, or 300 kbps. Note that because each frame carries 1 bit from the first channel, the bit rate
for the first channel is preserved. The bit rate for the second channel is also preserved because
each frame carries 2 bits from the second channel. 

Figure 6.22 Framing bits
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Digital Signal Service
Telephone companies implement TDM through a hierarchy of digital signals, called
digital signal (DS) service or digital hierarchy. Figure 6.23 shows the data rates sup-
ported by each level.

❑ DS-0 is a single digital channel of 64 kbps. 

❑ DS-1 is a 1.544-Mbps service; 1.544 Mbps is 24 times 64 kbps plus 8 kbps of over-
head. It can be used as a single service for 1.544-Mbps transmissions, or it can be
used to multiplex 24 DS-0 channels or to carry any other combination desired by
the user that can fit within its 1.544-Mbps capacity.

❑ DS-2 is a 6.312-Mbps service; 6.312 Mbps is 96 times 64 kbps plus 168 kbps of
overhead. It can be used as a single service for 6.312-Mbps transmissions; or it can
be used to multiplex 4 DS-1 channels, 96 DS-0 channels, or a combination of these
service types. 

❑ DS-3 is a 44.376-Mbps service; 44.376 Mbps is 672 times 64 kbps plus 1.368 Mbps
of overhead. It can be used as a single service for 44.376-Mbps transmissions; or it
can be used to multiplex 7 DS-2 channels, 28 DS-1 channels, 672 DS-0 channels,
or a combination of these service types. 

❑ DS-4 is a 274.176-Mbps service; 274.176 is 4032 times 64 kbps plus 16.128 Mbps of
overhead. It can be used to multiplex 6 DS-3 channels, 42 DS-2 channels, 168 DS-1
channels, 4032 DS-0 channels, or a combination of these service types.

T Lines
DS-0, DS-1, and so on are the names of services. To implement those services, the tele-
phone companies use T lines (T-1 to T-4). These are lines with capacities precisely
matched to the data rates of the DS-1 to DS-4 services (see Table 6.1). So far only T-1
and T-3 lines are commercially available.

Figure 6.23 Digital hierarchy
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The T-1 line is used to implement DS-1; T-2 is used to implement DS-2; and so on.
As you can see from Table 6.1, DS-0 is not actually offered as a service, but it has been
defined as a basis for reference purposes.

T Lines for Analog Transmission
T lines are digital lines designed for the transmission of digital data, audio, or
video. However, they also can be used for analog transmission (regular telephone
connections), provided the analog signals are first sampled, then time-division
multiplexed.

The possibility of using T lines as analog carriers opened up a new generation of
services for the telephone companies. Earlier, when an organization wanted 24 separate
telephone lines, it needed to run 24 twisted-pair cables from the company to the central
exchange. (Remember those old movies showing a busy executive with 10 telephones
lined up on his desk? Or the old office telephones with a big fat cable running from
them? Those cables contained a bundle of separate lines.) Today, that same organization
can combine the 24 lines into one T-1 line and run only the T-1 line to the exchange.
Figure 6.24 shows how 24 voice channels can be multiplexed onto one T-1 line. (Refer
to Chapter 4 for PCM encoding.) 

The T-1 Frame As noted above, DS-1 requires 8 kbps of overhead. To understand
how this overhead is calculated, we must examine the format of a 24-voice-channel
frame.

Table 6.1 DS and T line rates

Service Line Rate (Mbps) Voice Channels

 DS-1 T-1 1.544 24

 DS-2 T-2 6.312 96

 DS-3 T-3 44.736 672

 DS-4 T-4 274.176 4032

Figure 6.24 T-1 line for multiplexing telephone lines
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The frame used on a T-1 line is usually 193 bits divided into 24 slots of 8 bits each
plus 1 extra bit for synchronization (24 × 8 + 1 = 193); see Figure 6.25. In other words,

each slot contains one signal segment from each channel; 24 segments are interleaved
in one frame. If a T-1 line carries 8000 frames, the data rate is 1.544 Mbps (193 × 8000 =
1.544 Mbps)—the capacity of the line.

E Lines
Europeans use a version of T lines called E lines. The two systems are conceptually
identical, but their capacities differ. Table 6.2 shows the E lines and their capacities.

More Synchronous TDM Applications
Some second-generation cellular telephone companies use synchronous TDM. For
example, the digital version of cellular telephony divides the available bandwidth into
30-kHz bands. For each band, TDM is applied so that six users can share the band. This
means that each 30-kHz band is now made of six time slots, and the digitized voice

Figure 6.25 T-1 frame structure
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signals of the users are inserted in the slots. Using TDM, the number of telephone users
in each area is now 6 times greater. We discuss second-generation cellular telephony in
Chapter 16.

Statistical Time-Division Multiplexing

As we saw in the previous section, in synchronous TDM, each input has a reserved slot
in the output frame. This can be inefficient if some input lines have no data to send. In
statistical time-division multiplexing, slots are dynamically allocated to improve band-
width efficiency. Only when an input line has a slot’s worth of data to send is it given a
slot in the output frame. In statistical multiplexing, the number of slots in each frame is
less than the number of input lines. The multiplexer checks each input line in round-
robin fashion; it allocates a slot for an input line if the line has data to send; otherwise,
it skips the line and checks the next line. 

Figure 6.26 shows a synchronous and a statistical TDM example. In the former,
some slots are empty because the corresponding line does not have data to send. In the
latter, however, no slot is left empty as long as there are data to be sent by any input
line.  

Addressing 
Figure 6.26 also shows a major difference between slots in synchronous TDM and sta-
tistical TDM. An output slot in synchronous TDM is totally occupied by data; in statis-
tical TDM, a slot needs to carry data as well as the address of the destination.
In synchronous TDM, there is no need for addressing; synchronization and preassigned
relationships between the inputs and outputs serve as an address. We know, for exam-
ple, that input 1 always goes to input 2. If the multiplexer and the demultiplexer are
synchronized, this is guaranteed. In statistical multiplexing, there is no fixed relation-
ship between the inputs and outputs because there are no preassigned or reserved slots.
We need to include the address of the receiver inside each slot to show where it is to be
delivered. The addressing in its simplest form can be n bits to define N different output

Figure 6.26 TDM slot comparison
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lines with n = log2 N. For example, for eight different output lines, we need a 3-bit
address.

Slot Size
Since a slot carries both data and an address in statistical TDM, the ratio of the data size
to address size must be reasonable to make transmission efficient. For example, it
would be inefficient to send 1 bit per slot as data when the address is 3 bits. This would
mean an overhead of 300 percent. In statistical TDM, a block of data is usually many
bytes while the address is just a few bytes. 

No Synchronization Bit 
There is another difference between synchronous and statistical TDM, but this time it is
at the frame level. The frames in statistical TDM need not be synchronized, so we do not
need synchronization bits. 

Bandwidth
In statistical TDM, the capacity of the link is normally less than the sum of the capaci-
ties of each channel. The designers of statistical TDM define the capacity of the link
based on the statistics of the load for each channel. If on average only x percent of the
input slots are filled, the capacity of the link reflects this. Of course, during peak times,
some slots need to wait. 

6.2 SPREAD SPECTRUM
Multiplexing combines signals from several sources to achieve bandwidth efficiency;
the available bandwidth of a link is divided between the sources. In spread spectrum
(SS), we also combine signals from different sources to fit into a larger bandwidth, but
our goals are somewhat different. Spread spectrum is designed to be used in wireless
applications (LANs and WANs). In these types of applications, we have some concerns
that outweigh bandwidth efficiency. In wireless applications, all stations use air (or a
vacuum) as the medium for communication. Stations must be able to share this medium
without interception by an eavesdropper and without being subject to jamming from a
malicious intruder (in military operations, for example).

To achieve these goals, spread spectrum techniques add redundancy; they spread
the original spectrum needed for each station. If the required bandwidth for each station
is B, spread spectrum expands it to Bss, such that Bss >> B. The expanded bandwidth
allows the source to wrap its message in a protective envelope for a more secure trans-
mission. An analogy is the sending of a delicate, expensive gift. We can insert the gift
in a special box to prevent it from being damaged during transportation, and we can use
a superior delivery service to guarantee the safety of the package.

Figure 6.27 shows the idea of spread spectrum. Spread spectrum achieves its goals
through two principles:

1. The bandwidth allocated to each station needs to be, by far, larger than what is
needed. This allows redundancy.
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2. The expanding of the original bandwidth B to the bandwidth Bss must be done by a
process that is independent of the original signal. In other words, the spreading
process occurs after the signal is created by the source. 

After the signal is created by the source, the spreading process uses a spreading
code and spreads the bandwidth. The figure shows the original bandwidth B and the
spread bandwidth BSS. The spreading code is a series of numbers that look random, but
are actually a pattern.

There are two techniques to spread the bandwidth: frequency hopping spread spec-
trum (FHSS) and direct sequence spread spectrum (DSSS).

6.2.1 Frequency Hopping Spread Spectrum 
The frequency hopping spread spectrum (FHSS) technique uses M different carrier
frequencies that are modulated by the source signal. At one moment, the signal modu-
lates one carrier frequency; at the next moment, the signal modulates another carrier
frequency. Although the modulation is done using one carrier frequency at a time,
M frequencies are used in the long run. The bandwidth occupied by a source after
spreading is BFHSS >> B. 

Figure 6.28 shows the general layout for FHSS. A pseudorandom code generator,
called pseudorandom noise (PN), creates a k-bit pattern for every hopping period Th.
The frequency table uses the pattern to find the frequency to be used for this hopping
period and passes it to the frequency synthesizer. The frequency synthesizer creates a
carrier signal of that frequency, and the source signal modulates the carrier signal. 

Suppose we have decided to have eight hopping frequencies. This is extremely low
for real applications and is just for illustration. In this case, M is 8 and k is 3. The pseudo-
random code generator will create eight different 3-bit patterns. These are mapped to
eight different frequencies in the frequency table (see Figure 6.29). 

The pattern for this station is 101, 111, 001, 000, 010, 011, 100. Note that the pat-
tern is pseudorandom; it is repeated after eight hoppings. This means that at hopping
period 1, the pattern is 101. The frequency selected is 700 kHz; the source signal mod-
ulates this carrier frequency. The second k-bit pattern selected is 111, which selects the
900-kHz carrier; the eighth pattern is 100, and the frequency is 600 kHz. After eight
hoppings, the pattern repeats, starting from 101 again. Figure 6.30 shows how the signal

Figure 6.27 Spread spectrum
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hops around from carrier to carrier. We assume the required bandwidth of the original
signal is 100 kHz.

It can be shown that this scheme can accomplish the previously mentioned goals. If
there are many k-bit patterns and the hopping period is short, a sender and receiver can
have privacy. If an intruder tries to intercept the transmitted signal, she can only access
a small piece of data because she does not know the spreading sequence to quickly
adapt herself to the next hop. The scheme also has an antijamming effect. A malicious
sender may be able to send noise to jam the signal for one hopping period (randomly),
but not for the whole period. 

Bandwidth Sharing

If the number of hopping frequencies is M, we can multiplex M channels into one by
using the same Bss bandwidth. This is possible because a station uses just one frequency
in each hopping period; M − 1 other frequencies can be used by M − 1 other stations. In

Figure 6.28 Frequency hopping spread spectrum (FHSS)

Figure 6.29 Frequency selection in FHSS
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other words, M different stations can use the same Bss if an appropriate modulation
technique such as multiple FSK (MFSK) is used. FHSS is similar to FDM, as shown in
Figure 6.31. 

Figure 6.31 shows an example of four channels using FDM and four channels using
FHSS. In FDM, each station uses 1/M of the bandwidth, but the allocation is fixed; in
FHSS, each station uses 1/M of the bandwidth, but the allocation changes hop to hop.

6.2.2 Direct Sequence Spread Spectrum
The direct sequence spread spectrum (DSSS) technique also expands the bandwidth
of the original signal, but the process is different. In DSSS, we replace each data bit
with n bits using a spreading code. In other words, each bit is assigned a code of n bits,
called chips, where the chip rate is n times that of the data bit. Figure 6.32 shows the
concept of DSSS.    

Figure 6.30 FHSS cycles

Figure 6.31 Bandwidth sharing
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As an example, let us consider the sequence used in a wireless LAN, the famous
Barker sequence, where n is 11. We assume that the original signal and the chips in
the chip generator use polar NRZ encoding. Figure 6.33 shows the chips and the result
of multiplying the original data by the chips to get the spread signal. 

In Figure 6.33, the spreading code is 11 chips having the pattern 10110111000 (in
this case). If the original signal rate is N, the rate of the spread signal is 11N. This
means that the required bandwidth for the spread signal is 11 times larger than the
bandwidth of the original signal. The spread signal can provide privacy if the intruder
does not know the code. It can also provide immunity against interference if each sta-
tion uses a different code. 

Bandwidth Sharing

Can we share a bandwidth in DSSS as we did in FHSS? The answer is no and yes. If
we use a spreading code that spreads signals (from different stations) that cannot be
combined and separated, we cannot share a bandwidth. For example, as we will see
in Chapter 15, some wireless LANs use DSSS and the spread bandwidth cannot be
shared. However, if we use a special type of sequence code that allows the combining
and separating of spread signals, we can share the bandwidth. As we will see in

Figure 6.32 DSSS

Figure 6.33 DSSS example
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Chapter 16, a special spreading code allows us to use DSSS in cellular telephony and
share a bandwidth among several users.

6.3 END-CHAPTER MATERIALS
6.3.1 Recommended Reading
For more details about subjects discussed in this chapter, we recommend the following
books. The items in brackets […] refer to the reference list at the end of the text.

Books

Multiplexing is discussed in [Pea92]. [Cou01] gives excellent coverage of TDM and
FDM. More advanced materials can be found in [Ber96]. Multiplexing is discussed
in [Sta04]. A good coverage of spread spectrum can be found in [Cou01] and
[Sta04].

6.3.2 Key Terms

6.3.3 Summary
Bandwidth utilization is the use of available bandwidth to achieve specific goals. Effi-
ciency can be achieved by using multiplexing; privacy and antijamming can be
achieved by using spreading.

Multiplexing is the set of techniques that allow the simultaneous transmission of
multiple signals across a single data link. In a multiplexed system, n lines share the
bandwidth of one link. The word link refers to the physical path. The word channel
refers to the portion of a link that carries a transmission. There are three basic multiplex-
ing techniques: frequency-division multiplexing, wavelength-division multiplexing, and
time-division multiplexing. The first two are techniques designed for analog signals, the
third, for digital signals. Frequency-division multiplexing (FDM) is an analog
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technique that can be applied when the bandwidth of a link (in hertz) is greater than the
combined bandwidths of the signals to be transmitted. Wavelength-division multiplex-
ing (WDM) is designed to use the high bandwidth capability of fiber-optic cable.
WDM is an analog multiplexing technique to combine optical signals. Time-division
multiplexing (TDM) is a digital process that allows several connections to share the
high bandwidth of a link. TDM is a digital multiplexing technique for combining sev-
eral low-rate channels into one high-rate one. We can divide TDM into two different
schemes: synchronous or statistical. In synchronous TDM, each input connection has
an allotment in the output even if it is not sending data. In statistical TDM, slots are
dynamically allocated to improve bandwidth efficiency.

In spread spectrum (SS), we combine signals from different sources to fit into a
larger bandwidth. Spread spectrum is designed to be used in wireless applications in
which stations must be able to share the medium without interception by an eavesdrop-
per and without being subject to jamming from a malicious intruder. The frequency
hopping spread spectrum (FHSS) technique uses M different carrier frequencies that
are modulated by the source signal. At one moment, the signal modulates one carrier
frequency; at the next moment, the signal modulates another carrier frequency. The
direct sequence spread spectrum (DSSS) technique expands the bandwidth of a signal
by replacing each data bit with n bits using a spreading code. In other words, each bit is
assigned a code of n bits, called chips.

6.4 PRACTICE SET
6.4.1 Quizzes
A set of interactive quizzes for this chapter can be found on the book website. It is
strongly recommended that the student take the quizzes to check his/her understanding
of the materials before continuing with the practice set.

6.4.2 Questions
Q6-1. Describe the goals of multiplexing.

Q6-2. List three main multiplexing techniques mentioned in this chapter.

Q6-3. Distinguish between a link and a channel in multiplexing.

Q6-4. Which of the three multiplexing techniques is (are) used to combine analog
signals? Which of the three multiplexing techniques is (are) used to combine
digital signals?

Q6-5. Define the analog hierarchy used by telephone companies and list different
levels of the hierarchy.

Q6-6. Define the digital hierarchy used by telephone companies and list different
levels of the hierarchy.

Q6-7. Which of the three multiplexing techniques is common for fiber-optic links?
Explain the reason.
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Q6-8. Distinguish between multilevel TDM, multiple-slot TDM, and pulse-stuffed
TDM.

Q6-9. Distinguish between synchronous and statistical TDM.

Q6-10. Define spread spectrum and its goal. List the two spread spectrum techniques
discussed in this chapter.

Q6-11. Define FHSS and explain how it achieves bandwidth spreading.

Q6-12. Define DSSS and explain how it achieves bandwidth spreading.

6.4.3 Problems
P6-1. Assume that a voice channel occupies a bandwidth of 4 kHz. We need to mul-

tiplex 10 voice channels with guard bands of 500 Hz using FDM. Calculate
the required bandwidth.

P6-2. We need to transmit 100 digitized voice channels using a passband channel of
20 KHz. What should be the ratio of bits/Hz if we use no guard band?

P6-3. In the analog hierarchy of Figure 6.9, find the overhead (extra bandwidth for
guard band or control) in each hierarchy level (group, supergroup, master
group, and jumbo group).

P6-4. We need to use synchronous TDM and combine 20 digital sources, each of
100 Kbps. Each output slot carries 1 bit from each digital source, but one extra
bit is added to each frame for synchronization. Answer the following questions:

a. What is the size of an output frame in bits?

b. What is the output frame rate?

c. What is the duration of an output frame?

d. What is the output data rate?

e. What is the efficiency of the system (ratio of useful bits to the total bits)?

P6-5. Repeat Problem 6-4 if each output slot carries 2 bits from each source.

P6-6. We have 14 sources, each creating 500 8-bit characters per second. Since only
some of these sources are active at any moment, we use statistical TDM to
combine these sources using character interleaving. Each frame carries 6 slots
at a time, but we need to add 4-bit addresses to each slot. Answer the follow-
ing questions:

a. What is the size of an output frame in bits?

b. What is the output frame rate?

c. What is the duration of an output frame?

d. What is the output data rate?

P6-7. Ten sources, six with a bit rate of 200 kbps and four with a bit rate of 400 kbps,
are to be combined using multilevel TDM with no synchronizing bits. Answer
the following questions about the final stage of the multiplexing:

a. What is the size of a frame in bits?

b. What is the frame rate?

c. What is the duration of a frame?

d. What is the data rate?
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P6-8. Four channels, two with a bit rate of 200 kbps and two with a bit rate of
150 kbps, are to be multiplexed using multiple-slot TDM with no synchroni-
zation bits. Answer the following questions:

a. What is the size of a frame in bits?

b. What is the frame rate?

c. What is the duration of a frame?

d. What is the data rate?

P6-9. Two channels, one with a bit rate of 190 kbps and another with a bit rate of
180 kbps, are to be multiplexed using pulse-stuffing TDM with no synchroni-
zation bits. Answer the following questions:

a. What is the size of a frame in bits?

b. What is the frame rate?

c. What is the duration of a frame?

d. What is the data rate?

P6-10. Answer the following questions about a T-1 line:

a. What is the duration of a frame?

b. What is the overhead (number of extra bits per second)?

P6-11. Show the contents of the five output frames for a synchronous TDM multi-
plexer that combines four sources sending the following characters. Note that
the characters are sent in the same order that they are typed. The third source
is silent.

a. Source 1 message: HELLO

b. Source 2 message: HI

c. Source 3 message:

d. Source 4 message: BYE

P6-12. Figure 6.34 shows a multiplexer in a synchronous TDM system. Each output
slot is only 10 bits long (3 bits taken from each input plus 1 framing bit). What
is the output stream? The bits arrive at the multiplexer as shown by the arrows.

P6-13. Figure 6.35 shows a demultiplexer in a synchronous TDM. If the input slot is
16 bits long (no framing bits), what is the bit stream in each output? The bits
arrive at the demultiplexer as shown by the arrows.

Figure 6.34 Problem P6-12

Frame of 10 bits

1 0 1 1 1 0 1 1 1 1 0 1

1 0 1 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 TDM
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P6-14. Answer the following questions about the digital hierarchy in Figure 6.23:

a. What is the overhead (number of extra bits) in the DS-1 service?

b. What is the overhead (number of extra bits) in the DS-2 service?

c. What is the overhead (number of extra bits) in the DS-3 service?

d. What is the overhead (number of extra bits) in the DS-4 service?

P6-15. What is the minimum number of bits in a PN sequence if we use FHSS with a
channel bandwidth of B = 4 KHz and Bss = 100 KHz?

P6-16. An FHSS system uses a 4-bit PN sequence. If the bit rate of the PN is 64 bits
per second, answer the following questions:

a. What is the total number of possible channels?

b. What is the time needed to finish a complete cycle of PN?

P6-17. A pseudorandom number generator uses the following formula to create a ran-
dom series: 

In which Ni defines the current random number and Ni+1 defines the next random
number. The term mod means the value of the remainder when dividing (5 +
7Ni) by 17. Show the sequence created by this generator to be used for spread
spectrum. 

P6-18. We have a digital medium with a data rate of 10 Mbps. How many 64-kbps
voice channels can be carried by this medium if we use DSSS with the Barker
sequence?

6.5 SIMULATION EXPERIMENTS
6.5.1 Applets
We have created some Java applets to show some of the main concepts discussed in this
chapter. It is strongly recommended that the students activate these applets on the book
website and carefully examine the protocols in action. 

Figure 6.35 Problem P6-13

Ni11 5 (5 1 7Ni) mod 17 2 1

1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 01 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
TDM
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C H A P T E R  8

Switching

witching is a topic that can be discussed at several layers. We have switching at the
physical layer, at the data-link layer, at the network layer, and even logically at the

application layer (message switching). We have decided to discuss the general idea
behind switching in this chapter, the last chapter related to the physical layer. We par-
ticularly discuss circuit-switching, which occurs at the physical layer. We introduce the
idea of packet-switching, which occurs at the data-link and network layers, but we
postpone the details of these topics until the appropriate chapters. Finally, we talk about
the physical structures of the switches and routers. 

This chapter is divided into four sections:

❑ The first section introduces switching. It mentions three methods of switching: cir-
cuit switching, packet switching, and message switching. The section then defines
the switching methods that can occur in some layers of the Internet model.

❑ The second section discusses circuit-switched networks. It first defines three
phases in these types of networks. It then describes the efficiency of these net-
works. The section also discusses the delay in circuit-switched networks.

❑ The third section briefly discusses packet-switched networks. It first describes
datagram networks, listing their characteristics and advantages. The section then
describes virtual circuit networks, explaining their features and operations. We will
discuss packet-switched networks in more detail in Chapter 18. 

❑ The last section discusses the structure of a switch. It first describes the structure of
a circuit switch. It then explains the structure of a packet switch. 

S
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8.1 INTRODUCTION
A network is a set of connected devices. Whenever we have multiple devices, we have
the problem of how to connect them to make one-to-one communication possible. One
solution is to make a point-to-point connection between each pair of devices (a mesh
topology) or between a central device and every other device (a star topology). These
methods, however, are impractical and wasteful when applied to very large networks.
The number and length of the links require too much infrastructure to be cost-efficient,
and the majority of those links would be idle most of the time. Other topologies
employing multipoint connections, such as a bus, are ruled out because the distances
between devices and the total number of devices increase beyond the capacities of the
media and equipment.

A better solution is switching. A switched network consists of a series of interlinked
nodes, called switches. Switches are devices capable of creating temporary connections
between two or more devices linked to the switch. In a switched network, some of these
nodes are connected to the end systems (computers or telephones, for example). Others
are used only for routing. Figure 8.1 shows a switched network. 

The end systems (communicating devices) are labeled A, B, C, D, and so on, and the
switches are labeled I, II, III, IV, and V. Each switch is connected to multiple links.

8.1.1 Three Methods of Switching
Traditionally, three methods of switching have been discussed: circuit switching,
packet switching, and message switching. The first two are commonly used today.
The third has been phased out in general communications but still has networking
applications. Packet switching can further be divided into two subcategories—virtual-
circuit approach and datagram approach—as shown in Figure 8.2. In this chapter, we
discuss only circuit switching and packet switching; message switching is more con-
ceptual than practical.   

Figure 8.1 Switched network
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8.1.2 Switching and TCP/IP Layers
Switching can happen at several layers of the TCP/IP protocol suite. 

Switching at Physical Layer

At the physical layer, we can have only circuit switching. There are no packets
exchanged at the physical layer. The switches at the physical layer allow signals to
travel in one path or another.

Switching at Data-Link Layer

At the data-link layer, we can have packet switching. However, the term packet in this
case means frames or cells. Packet switching at the data-link layer is normally done
using a virtual-circuit approach. 

Switching at Network Layer

At the network layer, we can have packet switching. In this case, either a virtual-circuit
approach or a datagram approach can be used. Currently the Internet uses a datagram
approach, as we see in Chapter 18, but the tendency is to move to a virtual-circuit
approach. 

Switching at Application Layer

At the application layer, we can have only message switching. The communication at
the application layer occurs by exchanging messages. Conceptually, we can say that
communication using e-mail is a kind of message-switched communication, but we do
not see any network that actually can be called a message-switched network. 

8.2 CIRCUIT-SWITCHED NETWORKS
A circuit-switched network consists of a set of switches connected by physical links.
A connection between two stations is a dedicated path made of one or more links. How-
ever, each connection uses only one dedicated channel on each link. Each link is nor-
mally divided into n channels by using FDM or TDM, as discussed in Chapter 6. 

Figure 8.2 Taxonomy of switched networks
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Figure 8.3 shows a trivial circuit-switched network with four switches and four
links. Each link is divided into n (n is 3 in the figure) channels by using FDM or TDM.

We have explicitly shown the multiplexing symbols to emphasize the division of
the link into channels even though multiplexing can be implicitly included in the switch
fabric. 

The end systems, such as computers or telephones, are directly connected to a
switch. We have shown only two end systems for simplicity. When end system A needs
to communicate with end system M, system A needs to request a connection to M that
must be accepted by all switches as well as by M itself. This is called the setup phase;
a circuit (channel) is reserved on each link, and the combination of circuits or channels
defines the dedicated path. After the dedicated path made of connected circuits (channels)
is established, the data-transfer phase can take place. After all data have been trans-
ferred, the circuits are torn down. 

We need to emphasize several points here:

❑ Circuit switching takes place at the physical layer.

❑ Before starting communication, the stations must make a reservation for the resources
to be used during the communication. These resources, such as channels (bandwidth
in FDM and time slots in TDM), switch buffers, switch processing time, and switch
input/output ports, must remain dedicated during the entire duration of data transfer
until the teardown phase. 

❑ Data transferred between the two stations are not packetized (physical layer transfer
of the signal). The data are a continuous flow sent by the source station and received
by the destination station, although there may be periods of silence. 

A circuit-switched network is made of a set of switches connected 
by physical links, in which each link is divided into n channels. 

Figure 8.3 A trivial circuit-switched network
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❑ There is no addressing involved during data transfer. The switches route the data
based on their occupied band (FDM) or time slot (TDM). Of course, there is end-to-
end addressing used during the setup phase, as we will see shortly.  

Example 8.1

As a trivial example, let us use a circuit-switched network to connect eight telephones in a small
area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to
connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4
shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course
the situation may change when new connections are made. The switch controls the connections.  

Example 8.2

As another example, consider a circuit-switched network that connects computers in two remote
offices of a private company. The offices are connected using a T-1 line leased from a communi-
cation service provider. There are two 4 × 8 (4 inputs and 8 outputs) switches in this network. For
each switch, four output ports are folded into the input ports to allow communication between
computers in the same office. Four other output ports allow communication between the two
offices. Figure 8.5 shows the situation. 

8.2.1 Three Phases
The actual communication in a circuit-switched network requires three phases: connec-
tion setup, data transfer, and connection teardown.

Setup Phase

Before the two parties (or multiple parties in a conference call) can communicate, a
dedicated circuit (combination of channels in links) needs to be established. The end sys-
tems are normally connected through dedicated lines to the switches, so connection setup

In circuit switching, the resources need to be reserved during the setup phase;
the resources remain dedicated for the entire duration of data transfer 

until the teardown phase. 

Figure 8.4 Circuit-switched network used in Example 8.1
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means creating dedicated channels between the switches. For example, in Figure 8.3,
when system A needs to connect to system M, it sends a setup request that includes the
address of system M, to switch I. Switch I finds a channel between itself and switch IV
that can be dedicated for this purpose. Switch I then sends the request to switch IV,
which finds a dedicated channel between itself and switch III. Switch III informs sys-
tem M of system A’s intention at this time. 

In the next step to making a connection, an acknowledgment from system M needs
to be sent in the opposite direction to system A. Only after system A receives this
acknowledgment is the connection established. 

Note that end-to-end addressing is required for creating a connection between the
two end systems. These can be, for example, the addresses of the computers assigned
by the administrator in a TDM network, or telephone numbers in an FDM network. 

Data-Transfer Phase

After the establishment of the dedicated circuit (channels), the two parties can transfer data. 

Teardown Phase

When one of the parties needs to disconnect, a signal is sent to each switch to release
the resources. 

8.2.2 Efficiency
It can be argued that circuit-switched networks are not as efficient as the other two
types of networks because resources are allocated during the entire duration of the con-
nection. These resources are unavailable to other connections. In a telephone network,
people normally terminate the communication when they have finished their conversation.
However, in computer networks, a computer can be connected to another computer
even if there is no activity for a long time. In this case, allowing resources to be dedicated
means that other connections are deprived. 

Figure 8.5 Circuit-switched network used in Example 8.2 
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8.2.3 Delay
Although a circuit-switched network normally has low efficiency, the delay in this type
of network is minimal. During data transfer the data are not delayed at each switch; the
resources are allocated for the duration of the connection. Figure 8.6 shows the idea of
delay in a circuit-switched network when only two switches are involved.  

As Figure 8.6 shows, there is no waiting time at each switch. The total delay is due
to the time needed to create the connection, transfer data, and disconnect the circuit. The
delay caused by the setup is the sum of four parts: the propagation time of the source
computer request (slope of the first gray box), the request signal transfer time (height of
the first gray box), the propagation time of the acknowledgment from the destination
computer (slope of the second gray box), and the signal transfer time of the acknowledg-
ment (height of the second gray box). The delay due to data transfer is the sum of two
parts: the propagation time (slope of the colored box) and data transfer time (height of
the colored box), which can be very long. The third box shows the time needed to tear
down the circuit. We have shown the case in which the receiver requests disconnection,
which creates the maximum delay.   

8.3 PACKET SWITCHING
In data communications, we need to send messages from one end system to another. If
the message is going to pass through a packet-switched network, it needs to be
divided into packets of fixed or variable size. The size of the packet is determined by
the network and the governing protocol. 

In packet switching, there is no resource allocation for a packet. This means that
there is no reserved bandwidth on the links, and there is no scheduled processing time
for each packet. Resources are allocated on demand. The allocation is done on a first-
come, first-served basis. When a switch receives a packet, no matter what the source or
destination is, the packet must wait if there are other packets being processed. As with

Figure 8.6 Delay in a circuit-switched network
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other systems in our daily life, this lack of reservation may create delay. For example, if
we do not have a reservation at a restaurant, we might have to wait. 

We can have two types of packet-switched networks: datagram networks and virtual-
circuit networks.

8.3.1 Datagram Networks
In a datagram network, each packet is treated independently of all others. Even if a
packet is part of a multipacket transmission, the network treats it as though it existed
alone. Packets in this approach are referred to as datagrams.

Datagram switching is normally done at the network layer. We briefly discuss
datagram networks here as a comparison with circuit-switched and virtual-circuit-
switched networks. In Chapter 18 of this text, we go into greater detail. 

Figure 8.7 shows how the datagram approach is used to deliver four packets from
station A to station X. The switches in a datagram network are traditionally referred to
as routers. That is why we use a different symbol for the switches in the figure. 

In this example, all four packets (or datagrams) belong to the same message, but
may travel different paths to reach their destination. This is so because the links may be
involved in carrying packets from other sources and do not have the necessary bandwidth
available to carry all the packets from A to X. This approach can cause the datagrams of
a transmission to arrive at their destination out of order with different delays between the
packets. Packets may also be lost or dropped because of a lack of resources. In most
protocols, it is the responsibility of an upper-layer protocol to reorder the datagrams or
ask for lost datagrams before passing them on to the application.

The datagram networks are sometimes referred to as connectionless networks. The
term connectionless here means that the switch (packet switch) does not keep information
about the connection state. There are no setup or teardown phases. Each packet is treated
the same by a switch regardless of its source or destination.

In a packet-switched network, there is no resource reservation;
resources are allocated on demand. 

Figure 8.7 A datagram network with four switches (routers)
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Routing Table

If there are no setup or teardown phases, how are the packets routed to their destinations
in a datagram network? In this type of network, each switch (or packet switch) has a rout-
ing table which is based on the destination address. The routing tables are dynamic and
are updated periodically. The destination addresses and the corresponding forwarding
output ports are recorded in the tables. This is different from the table of a circuit-
switched network (discussed later) in which each entry is created when the setup phase
is completed and deleted when the teardown phase is over. Figure 8.8 shows the routing
table for a switch. 

Destination Address
Every packet in a datagram network carries a header that contains, among other infor-
mation, the destination address of the packet. When the switch receives the packet,
this destination address is examined; the routing table is consulted to find the corre-
sponding port through which the packet should be forwarded. This address, unlike the
address in a virtual-circuit network, remains the same during the entire journey of the
packet.    

Efficiency
The efficiency of a datagram network is better than that of a circuit-switched net-
work; resources are allocated only when there are packets to be transferred. If a
source sends a packet and there is a delay of a few minutes before another packet can
be sent, the resources can be reallocated during these minutes for other packets from
other sources. 

Figure 8.8 Routing table in a datagram network
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Delay
There may be greater delay in a datagram network than in a virtual-circuit network.
Although there are no setup and teardown phases, each packet may experience a wait at a
switch before it is forwarded. In addition, since not all packets in a message necessarily
travel through the same switches, the delay is not uniform for the packets of a message.
Figure 8.9 gives an example of delay in a datagram network for one packet.  

The packet travels through two switches. There are three transmission times (3T ),
three propagation delays (slopes 3τ of the lines), and two waiting times (w1 + w2). We
ignore the processing time in each switch. The total delay is

8.3.2 Virtual-Circuit Networks
A virtual-circuit network is a cross between a circuit-switched network and a datagram
network. It has some characteristics of both.

1. As in a circuit-switched network, there are setup and teardown phases in addition
to the data transfer phase. 

2. Resources can be allocated during the setup phase, as in a circuit-switched network,
or on demand, as in a datagram network.

3. As in a datagram network, data are packetized and each packet carries an address in
the header. However, the address in the header has local jurisdiction (it defines what
the next switch should be and the channel on which the packet is being carried), not
end-to-end jurisdiction. The reader may ask how the intermediate switches know
where to send the packet if there is no final destination address carried by a packet.
The answer will be clear when we discuss virtual-circuit identifiers in the next section.

4. As in a circuit-switched network, all packets follow the same path established during
the connection.

Figure 8.9 Delay in a datagram network
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5. A virtual-circuit network is normally implemented in the data-link layer, while a
circuit-switched network is implemented in the physical layer and a datagram net-
work in the network layer. But this may change in the future. 

Figure 8.10 is an example of a virtual-circuit network. The network has switches that
allow traffic from sources to destinations. A source or destination can be a computer,
packet switch, bridge, or any other device that connects other networks. 

Addressing

In a virtual-circuit network, two types of addressing are involved: global and local
(virtual-circuit identifier). 

Global Addressing
A source or a destination needs to have a global address—an address that can be unique
in the scope of the network or internationally if the network is part of an international
network. However, we will see that a global address in virtual-circuit networks is used
only to create a virtual-circuit identifier, as discussed next.

Virtual-Circuit Identifier 
The identifier that is actually used for data transfer is called the virtual-circuit identifier
(VCI) or the label. A VCI, unlike a global address, is a small number that has only
switch scope; it is used by a frame between two switches. When a frame arrives at a
switch, it has a VCI; when it leaves, it has a different VCI. Figure 8.11 shows how the
VCI in a data frame changes from one switch to another. Note that a VCI does not need
to be a large number since each switch can use its own unique set of VCIs. 

Figure 8.10 Virtual-circuit network

Figure 8.11 Virtual-circuit identifier
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Three Phases

As in a circuit-switched network, a source and destination need to go through three
phases in a virtual-circuit network: setup, data transfer, and teardown. In the setup
phase, the source and destination use their global addresses to help switches make table
entries for the connection. In the teardown phase, the source and destination inform the
switches to delete the corresponding entry. Data transfer occurs between these two
phases. We first discuss the data-transfer phase, which is more straightforward; we then
talk about the setup and teardown phases.

Data-Transfer Phase
To transfer a frame from a source to its destination, all switches need to have a table
entry for this virtual circuit. The table, in its simplest form, has four columns. This
means that the switch holds four pieces of information for each virtual circuit that is
already set up. We show later how the switches make their table entries, but for the
moment we assume that each switch has a table with entries for all active virtual cir-
cuits. Figure 8.12 shows such a switch and its corresponding table. 

Figure 8.12 shows a frame arriving at port 1 with a VCI of 14. When the frame
arrives, the switch looks in its table to find port 1 and a VCI of 14. When it is found, the
switch knows to change the VCI to 22 and send out the frame from port 3. 

Figure 8.13 shows how a frame from source A reaches destination B and how its
VCI changes during the trip. Each switch changes the VCI and routes the frame. 

The data-transfer phase is active until the source sends all its frames to the destina-
tion. The procedure at the switch is the same for each frame of a message. The process
creates a virtual circuit, not a real circuit, between the source and destination.

Setup Phase
In the setup phase, a switch creates an entry for a virtual circuit. For example, suppose
source A needs to create a virtual circuit to B. Two steps are required: the setup request
and the acknowledgment.

Figure 8.12 Switch and tables in a virtual-circuit network
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Setup Request
A setup request frame is sent from the source to the destination. Figure 8.14 shows
the process. 

a. Source A sends a setup frame to switch 1.

b. Switch 1 receives the setup request frame. It knows that a frame going from A to B
goes out through port 3. How the switch has obtained this information is a point
covered in future chapters. The switch, in the setup phase, acts as a packet switch;
it has a routing table which is different from the switching table. For the moment,
assume that it knows the output port. The switch creates an entry in its table for
this virtual circuit, but it is only able to fill three of the four columns. The switch
assigns the incoming port (1) and chooses an available incoming VCI (14) and the

Figure 8.13 Source-to-destination data transfer in a virtual-circuit network 

Figure 8.14 Setup request in a virtual-circuit network
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outgoing port (3). It does not yet know the outgoing VCI, which will be found dur-
ing the acknowledgment step. The switch then forwards the frame through port 3
to switch 2.

c. Switch 2 receives the setup request frame. The same events happen here as at
switch 1; three columns of the table are completed: in this case, incoming port (1),
incoming VCI (66), and outgoing port (2). 

d. Switch 3 receives the setup request frame. Again, three columns are completed:
incoming port (2), incoming VCI (22), and outgoing port (3).

e. Destination B receives the setup frame, and if it is ready to receive frames from A,
it assigns a VCI to the incoming frames that come from A, in this case 77. This
VCI lets the destination know that the frames come from A, and not other sources. 

Acknowledgment 
A special frame, called the acknowledgment frame, completes the entries in the switch-
ing tables. Figure 8.15 shows the process. 

a. The destination sends an acknowledgment to switch 3. The acknowledgment carries
the global source and destination addresses so the switch knows which entry in the
table is to be completed. The frame also carries VCI 77, chosen by the destination as
the incoming VCI for frames from A. Switch 3 uses this VCI to complete the outgo-
ing VCI column for this entry. Note that 77 is the incoming VCI for destination B,
but the outgoing VCI for switch 3. 

b. Switch 3 sends an acknowledgment to switch 2 that contains its incoming VCI in the
table, chosen in the previous step. Switch 2 uses this as the outgoing VCI in the table.

c. Switch 2 sends an acknowledgment to switch 1 that contains its incoming VCI in the
table, chosen in the previous step. Switch 1 uses this as the outgoing VCI in the table.

d. Finally switch 1 sends an acknowledgment to source A that contains its incoming
VCI in the table, chosen in the previous step. 

e. The source uses this as the outgoing VCI for the data frames to be sent to destina-
tion B.

Figure 8.15 Setup acknowledgment in a virtual-circuit network
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Teardown Phase 

In this phase, source A, after sending all frames to B, sends a special frame called a
teardown request. Destination B responds with a teardown confirmation frame. All
switches delete the corresponding entry from their tables. 

Efficiency

As we said before, resource reservation in a virtual-circuit network can be made during
the setup or can be on demand during the data-transfer phase. In the first case, the delay
for each packet is the same; in the second case, each packet may encounter different
delays. There is one big advantage in a virtual-circuit network even if resource allocation
is on demand. The source can check the availability of the resources, without actually
reserving it. Consider a family that wants to dine at a restaurant. Although the restaurant
may not accept reservations (allocation of the tables is on demand), the family can call
and find out the waiting time. This can save the family time and effort. 

Delay in Virtual-Circuit Networks

In a virtual-circuit network, there is a one-time delay for setup and a one-time delay for
teardown. If resources are allocated during the setup phase, there is no wait time for
individual packets. Figure 8.16 shows the delay for a packet traveling through two
switches in a virtual-circuit network.  

The packet is traveling through two switches (routers). There are three transmis-
sion times (3T ), three propagation times (3τ), data transfer depicted by the sloping
lines, a setup delay (which includes transmission and propagation in two directions),

In virtual-circuit switching, all packets belonging to the same source and destination 
travel the same path, but the packets may arrive at the destination

with different delays if resource allocation is on demand.

Figure 8.16 Delay in a virtual-circuit network
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and a teardown delay (which includes transmission and propagation in one direction).
We ignore the processing time in each switch. The total delay time is

Circuit-Switched Technology in WANs

As we will see in Chapter 14, virtual-circuit networks are used in switched WANs such
as ATM networks. The data-link layer of these technologies is well suited to the virtual-
circuit technology.

8.4 STRUCTURE OF A SWITCH
We use switches in circuit-switched and packet-switched networks. In this section, we
discuss the structures of the switches used in each type of network. 

8.4.1 Structure of Circuit Switches
Circuit switching today can use either of two technologies: the space-division switch or
the time-division switch.

Space-Division Switch

In space-division switching, the paths in the circuit are separated from one another
spatially. This technology was originally designed for use in analog networks but is
used currently in both analog and digital networks. It has evolved through a long history
of many designs. 

Crossbar Switch
A crossbar switch connects n inputs to m outputs in a grid, using electronic micro-
switches (transistors) at each crosspoint (see Figure 8.17). The major limitation of this
design is the number of crosspoints required. To connect n inputs to m outputs using a

Total delay 1 3T 1 3τ 1 setup delay 1 teardown delay

Switching at the data-link layer in a switched WAN is normally
implemented by using virtual-circuit techniques. 

Figure 8.17 Crossbar switch with three inputs and four outputs
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crossbar switch requires n × m crosspoints. For example, to connect 1000 inputs to
1000 outputs requires a switch with 1,000,000 crosspoints. A crossbar switch [?] with
this number of crosspoints is impractical. Such a switch is also inefficient because sta-
tistics show that, in practice, fewer than 25 percent of the crosspoints are in use at any
given time. The rest are idle.

Multistage Switch
The solution to the limitations of the crossbar switch is the multistage switch, which
combines crossbar switches in several (normally three) stages, as shown in Figure 8.18.
In a single crossbar switch, only one row or column (one path) is active for any connec-
tion. So we need N ×  N crosspoints. If we can allow multiple paths inside the switch,
we can decrease the number of crosspoints. Each crosspoint in the middle stage can be
accessed by multiple crosspoints in the first or third stage.

To design a three-stage switch, we follow these steps:

1. We divide the N input lines into groups, each of n lines. For each group, we use one
crossbar of size n ×  k, where k is the number of crossbars in the middle stage. In
other words, the first stage has N/n crossbars of n ×  k crosspoints.

2. We use k crossbars, each of size (N/n) ×  (N/n) in the middle stage.

3. We use N/n crossbars, each of size k ×  n at the third stage. 

We can calculate the total number of crosspoints as follows:

Figure 8.18 Multistage switch
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In a three-stage switch, the total number of crosspoints is

2kN 1 k

which is much smaller than the number of crosspoints in a single-stage switch (N2). 
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Example 8.3

Design a three-stage, 200 × 200 switch (N = 200) with k = 4 and n = 20.

Solution
In the first stage we have N/n or 10 crossbars, each of size 20 × 4. In the second stage, we have
4 crossbars, each of size 10 × 10. In the third stage, we have 10 crossbars, each of size 4 × 20.
The total number of crosspoints is 2kN + k(N/n)2, or 2000 crosspoints. This is 5 percent of the
number of crosspoints in a single-stage switch (200 × 200 = 40,000). 

The multistage switch in Example 8.3 has one drawback—blocking during periods
of heavy traffic. The whole idea of multistage switching is to share the crosspoints in
the middle-stage crossbars. Sharing can cause a lack of availability if the resources are
limited and all users want a connection at the same time. Blocking refers to times when
one input cannot be connected to an output because there is no path available between
them—all the possible intermediate switches are occupied.

In a single-stage switch, blocking does not occur because every combination of
input and output has its own crosspoint; there is always a path. (Cases in which two
inputs are trying to contact the same output do not count. That path is not blocked; the
output is merely busy.) In the multistage switch described in Example 8.3, however,
only four of the first 20 inputs can use the switch at a time, only four of the second 20
inputs can use the switch at a time, and so on. The small number of crossbars at the
middle stage creates blocking.

In large systems, such as those having 10,000 inputs and outputs, the number of
stages can be increased to cut down on the number of crosspoints required. As the num-
ber of stages increases, however, possible blocking increases as well. Many people have
experienced blocking on public telephone systems in the wake of a natural disaster
when the calls being made to check on or reassure relatives far outnumber the regular
load of the system. 

Clos investigated the condition of nonblocking in multistage switches and came up
with the following formula. In a nonblocking switch, the number of middle-stage
switches must be at least 2n – 1. In other words, we need to have k ≥ 2n – 1.

Note that the number of crosspoints is still smaller than that in a single-stage
switch. Now we need to minimize the number of crosspoints with a fixed N by using
the Clos criteria. We can take the derivative of the equation with respect to n (the only
variable) and find the value of n that makes the result zero. This n must be equal to or
greater than (N/2)1/2. In this case, the total number of crosspoints is greater than or equal
to 4N [(2N)1/2 – 1]. In other words, the minimum number of crosspoints according to the
Clos criteria is proportional to N3/2. 

Example 8.4 

Redesign the previous three-stage, 200 × 200 switch, using the Clos criteria with a minimum
number of crosspoints.

Solution
We let n = (200/2)1/2, or n = 10. We calculate k = 2n – 1 = 19. In the first stage, we have 200/10,
or 20, crossbars, each with 10 × 19 crosspoints. In the second stage, we have 19 crossbars,

According to Clos criterion:  n = (N/2)1/2   and     k ≥ 2n 2 1
Total number of crosspoints  ≥ 4N [(2N)1/2 2 1]

https://hemanthrajhemu.github.io



CHAPTER 8 SWITCHING 225

each with 10 × 10 crosspoints. In the third stage, we have 20 crossbars each with 19 × 10
crosspoints. The total number of crosspoints is 20(10 × 19) + 19(10 × 10) + 20(19 × 10) =
9500. If we use a single-stage switch, we need 200 × 200 = 40,000 crosspoints. The number
of crosspoints in this three-stage switch is 24 percent that of a single-stage switch. More
points are needed than in Example 8.3 (5 percent). The extra crosspoints are needed to pre-
vent blocking. 

A multistage switch that uses the Clos criteria and a minimum number of crosspoints
still requires a huge number of crosspoints. For example, to have a 100,000 input/output
switch, we need something close to 200 million crosspoints (instead of 10 billion). This
means that if a telephone company needs to provide a switch to connect 100,000 tele-
phones in a city, it needs 200 million crosspoints. The number can be reduced if we
accept blocking. Today, telephone companies use time-division switching or a combina-
tion of space- and time-division switches, as we will see shortly. 

Time-Division Switch

Time-division switching uses time-division multiplexing (TDM) inside a switch. The
most popular technology is called the time-slot interchange (TSI).

Time-Slot Interchange
Figure 8.19 shows a system connecting four input lines to four output lines. Imagine
that each input line wants to send data to an output line according to the following pat-
tern: (1 → 3), (2 → 4), (3 → 1), and  (4 → 2), in which the arrow means “to.”

The figure combines a TDM multiplexer, a TDM demultiplexer, and a TSI consist-
ing of random access memory (RAM) with several memory locations. The size of each
location is the same as the size of a single time slot. The number of locations is the same
as the number of inputs (in most cases, the numbers of inputs and outputs are equal).
The RAM fills up with incoming data from time slots in the order received. Slots are
then sent out in an order based on the decisions of a control unit.

Figure 8.19 Time-slot interchange
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Time- and Space-Division Switch Combinations

When we compare space-division and time-division switching, some interesting facts
emerge. The advantage of space-division switching is that it is instantaneous. Its disadvan-
tage is the number of crosspoints required to make space-division switching acceptable in
terms of blocking.

The advantage of time-division switching is that it needs no crosspoints. Its disad-
vantage, in the case of TSI, is that processing each connection creates delays. Each time
slot must be stored by the RAM, then retrieved and passed on.

In a third option, we combine space-division and time-division technologies to
take advantage of the best of both. Combining the two results in switches that are
optimized both physically (the number of crosspoints) and temporally (the amount
of delay). Multistage switches of this sort can be designed as time-space-time (TST)
switches.

Figure 8.20 shows a simple TST switch that consists of two time stages and one
space stage and has 12 inputs and 12 outputs. Instead of one time-division switch, it
divides the inputs into three groups (of four inputs each) and directs them to three time-
slot interchanges. The result is that the average delay is one-third of what would result
from using one time-slot interchange to handle all 12 inputs.

The last stage is a mirror image of the first stage. The middle stage is a space-
division switch (crossbar) that connects the TSI groups to allow connectivity between
all possible input and output pairs (e.g., to connect input 3 of the first group to output 7
of the second group).

8.4.2 Structure of Packet Switches
A switch used in a packet-switched network has a different structure from a switch used
in a circuit-switched network.We can say that a packet switch has four components:
input ports, output ports, the routing processor, and the switching fabric, as shown
in Figure 8.21.

Figure 8.20 Time-space-time switch
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Input Ports

An input port performs the physical and data-link functions of the packet switch. The
bits are constructed from the received signal. The packet is decapsulated from the frame.
Errors are detected and corrected. The packet is now ready to be routed by the network
layer. In addition to a physical-layer processor and a data-link processor, the input port
has buffers (queues) to hold the packet before it is directed to the switching fabric.
Figure 8.22 shows a schematic diagram of an input port.

Output Port

The output port performs the same functions as the input port, but in the reverse order.
First the outgoing packets are queued, then the packet is encapsulated in a frame, and
finally the physical-layer functions are applied to the frame to create the signal to be
sent on the line. Figure 8.23 shows a schematic diagram of an output port.

Figure 8.21 Packet switch components
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Routing Processor

The routing processor performs the functions of the network layer. The destination
address is used to find the address of the next hop and, at the same time, the output port
number from which the packet is sent out. This activity is sometimes referred to as
table lookup because the routing processor searches the routing table. In the newer
packet switches, this function of the routing processor is being moved to the input ports
to facilitate and expedite the process. 

Switching Fabrics

The most difficult task in a packet switch is to move the packet from the input queue to
the output queue. The speed with which this is done affects the size of the input/output
queue and the overall delay in packet delivery. In the past, when a packet switch was
actually a dedicated computer, the memory of the computer or a bus was used as the
switching fabric. The input port stored the packet in memory; the output port retrieved
the packet from memory. Today, packet switches are specialized mechanisms that use a
variety of switching fabrics. We briefly discuss some of these fabrics here. 

Crossbar Switch
The simplest type of switching fabric is the crossbar switch, discussed in the previous
section.

Banyan Switch
A more realistic approach than the crossbar switch is the banyan switch (named after
the banyan tree). A banyan switch is a multistage switch with microswitches at each
stage that route the packets based on the output port represented as a binary string. For n
inputs and n outputs, we have log2 n stages with n/2 microswitches at each stage. The first
stage routes the packet based on the high-order bit of the binary string. The second stage
routes the packet based on the second high-order bit, and so on. Figure 8.24 shows a ban-
yan switch with eight inputs and eight outputs. The number of stages is log2(8) = 3.

Figure 8.25 shows the operation. In part a, a packet has arrived at input port 1 and
must go to output port 6 (110 in binary). The first microswitch (A-2) routes the packet

Figure 8.24 A banyan switch
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based on the first bit (1), the second microswitch (B-4) routes the packet based on the
second bit (1), and the third microswitch (C-4) routes the packet based on the third bit (0).
In part b, a packet has arrived at input port 5 and must go to output port 2 (010 in
binary). The first microswitch (A-2) routes the packet based on the first bit (0), the sec-
ond microswitch (B-2) routes the packet based on the second bit (1), and the third
microswitch (C-2) routes the packet based on the third bit (0).

Batcher-Banyan Switch The problem with the banyan switch is the possibility of
internal collision even when two packets are not heading for the same output port. We
can solve this problem by sorting the arriving packets based on their destination port. 

K. E. Batcher designed a switch that comes before the banyan switch and sorts the
incoming packets according to their final destinations. The combination is called the
Batcher-banyan switch. The sorting switch uses hardware merging techniques, but we
do not discuss the details here. Normally, another hardware module called a trap is
added between the Batcher switch and the banyan switch (see Figure 8.26) The trap
module prevents duplicate packets (the packets with the same output destination) from
passing to the banyan switch simultaneously. Only one packet for each destination is
allowed at each tick; if there is more than one, they wait for the next tick.

Figure 8.25 Examples of routing in a banyan switch

Figure 8.26 Batcher-banyan switch

a. Input 1 sending a cell to output 6 (110) b. Input 5 sending a cell to output 2 (010)

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1
0

2
3

4
5

6
7

1
0

2
3

4
5

6
7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1
0

2
3

4
5

6
7

1
0

2
3

4
5

6
7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

1
0

2
3

4
5

6
7

Trap
module

Batcher
switch

Banyan switch

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1
0

2
3

4
5

6
7

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

C-1

C-3

C-2

C-4

https://hemanthrajhemu.github.io



230 PART II PHYSICAL LAYER

8.5 END-CHAPTER MATERIALS
8.5.1 Recommended Reading
For more details about subjects discussed in this chapter, we recommend the following
books. The items in brackets [. . .] refer to the reference list at the end of the text.

Books

Switching is discussed in [Sta04] and [GW04]. Circuit-switching is fully discussed in
[BEL01]. 

8.5.2 Key terms

8.5.3 Summary
A switched network consists of a series of interlinked nodes, called switches. Tradition-
ally, three methods of switching have been important: circuit switching, packet switch-
ing, and message switching.

We can divide today’s networks into three broad categories: circuit-switched net-
works, packet-switched networks, and message-switched networks. Packet-switched
networks can also be divided into two subcategories: virtual-circuit networks and data-
gram networks. A circuit-switched network is made of a set of switches connected by
physical links, in which each link is divided into n channels. Circuit switching takes
place at the physical layer. In circuit switching, the resources need to be reserved dur-
ing the setup phase; the resources remain dedicated for the entire duration of the data-
transfer phase until the teardown phase.

In packet switching, there is no resource allocation for a packet. This means that
there is no reserved bandwidth on the links, and there is no scheduled processing time for
each packet. Resources are allocated on demand. In a datagram network, each packet is
treated independently of all others. Packets in this approach are referred to as datagrams.
There are no setup or teardown phases. A virtual-circuit network is a cross between a

banyan switch
Batcher-banyan switch
blocking
circuit switching
circuit-switched network
crossbar switch
crosspoint
data-transfer phase
datagram
datagram network
end system
input port
message switching
multistage switch
output port
packet switching

packet-switched network
routing processor
setup phase
space-division switching
switch
switching
switching fabric
table lookup
teardown phase
time-division switching
time-slot interchange (TSI)
time-space-time (TST) switch
trap
virtual-circuit identifier (VCI)
virtual-circuit network
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circuit-switched network and a datagram network. It has some characteristics of both.
Circuit switching uses either of two technologies: the space-division switch or the time-
division switch. A switch in a packet-switched network has a different structure from a
switch used in a circuit-switched network. We can say that a packet switch has four types
of components: input ports, output ports, a routing processor, and switching fabric.

8.6 PRACTICE SET
8.6.1 Quizzes
A set of interactive quizzes for this chapter can be found on the book website. It is
strongly recommended that the student take the quizzes to check his/her understanding
of the materials before continuing with the practice set.

8.6.2 Questions
Q8-1. Describe the need for switching and define a switch.

Q8-2. List the three traditional switching methods. Which are the most common
today?

Q8-3. What are the two approaches to packet switching?

Q8-4. Compare and contrast a circuit-switched network and a packet-switched network.

Q8-5. What is the role of the address field in a packet traveling through a datagram
network?

Q8-6. What is the role of the address field in a packet traveling through a virtual-
circuit network? 

Q8-7. Compare space-division and time-division switches. 

Q8-8. What is TSI and what is its role in time-division switching?

Q8-9. Compare and contrast the two major categories of circuit switches.

Q8-10. List four major components of a packet switch and their functions. 

8.6.3 Problems
P8-1. A path in a digital circuit-switched network has a data rate of 1 Mbps. The

exchange of 1000 bits is required for the setup and teardown phases. The dis-
tance between two parties is 5000 km. Answer the following questions if the
propagation speed is 2 × 108 m:

a. What is the total delay if 1000 bits of data are exchanged during the data-
transfer phase?

b. What is the total delay if 100,000 bits of data are exchanged during the
data-transfer phase?

c. What is the total delay if 1,000,000 bits of data are exchanged during the
data-transfer phase?

d. Find the delay per 1000 bits of data for each of the above cases and com-
pare them. What can you infer? 
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P8-2. Five equal-size datagrams belonging to the same message leave for the desti-
nation one after another. However, they travel through different paths as
shown in Table 8.1.

We assume that the delay for each switch (including waiting and processing)
is 3, 10, 20, 7, and 20 ms respectively. Assuming that the propagation speed is
2 × 108 m, find the order the datagrams arrive at the destination and the delay
for each. Ignore any other delays in transmission. 

P8-3. Transmission of information in any network involves end-to-end addressing
and sometimes local addressing (such as VCI). Table 8.2 shows the types of
networks and the addressing mechanism used in each of them.

Answer the following questions:

a. Why does a circuit-switched network need end-to-end addressing during the
setup and teardown phases? Why are no addresses needed during the data
transfer phase for this type of network? 

b. Why does a datagram network need only end-to-end addressing during the
data transfer phase, but no addressing during the setup and teardown phases?

c. Why does a virtual-circuit network need addresses during all three phases? 

P8-4. We mentioned that two types of networks, datagram and virtual-circuit, need a
routing or switching table to find the output port from which the information
belonging to a destination should be sent out, but a circuit-switched network
has no need for such a table. Give the reason for this difference.

P8-5. An entry in the switching table of a virtual-circuit network is normally created
during the setup phase and deleted during the teardown phase. In other words,
the entries in this type of network reflect the current connections, the activity
in the network. In contrast, the entries in a routing table of a datagram network
do not depend on the current connections; they show the configuration of the
network and how any packet should be routed to a final destination. The
entries may remain the same even if there is no activity in the network. The
routing tables, however, are updated if there are changes in the network. Can
you explain the reason for these two different characteristics? Can we say that

Table 8.1 P8-2

Datagram Path Length Visited Switches 
1    3200 km 1, 3, 5
2 11,700 km 1, 2, 5
3 12,200 km 1, 2, 3, 5
4 10,200 km 1, 4, 5
5 10,700 km 1, 4, 3, 5

Table 8.2 P8-3

Network Setup Data Transfer Teardown 
Circuit-switched End-to-end End-to-end

Datagram End-to-end
Virtual-circuit End-to-end Local End-to-end
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a virtual-circuit is a connection-oriented network and a datagram network is a
connectionless network because of the above characteristics? 

P8-6. The minimum number of columns in a datagram network is two; the minimum
number of columns in a virtual-circuit network is four. Can you explain the
reason? Is the difference related to the type of addresses carried in the packets
of each network? 

P8-7. Figure 8.27 shows a switch (router) in a datagram network. 

Find the output port for packets with the following destination addresses: 

P8-8. Figure 8.28 shows a switch in a virtual-circuit network. 

Find the output port and the output VCI for packets with the following input
port and input VCI addresses: 

P8-9. Answer the following questions:

a. Can a routing table in a datagram network have two entries with the same
destination address? Explain.

b. Can a switching table in a virtual-circuit network have two entries with the
same input port number? With the same output port number? With the
same incoming VCIs? With the same outgoing VCIs? With the same incom-
ing values (port, VCI)? With the same outgoing values (port, VCI)? 

Figure 8.27  Problem P8-7

a. Packet 1: 7176 b. Packet 2: 1233
c. Packet 3: 8766 d. Packet 4: 9144

Figure 8.28 Problem P8-8

a. Packet 1: 3, 78 b. Packet 2: 2, 92
c. Packet 3: 4, 56 d. Packet 4: 2, 71
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P8-10. It is obvious that a router or a switch needs to search to find information in the
corresponding table. The searching in a routing table for a datagram network
is based on the destination address; the searching in a switching table in a
virtual-circuit network is based on the combination of incoming port and
incoming VCI. Explain the reason and define how these tables must be
ordered (sorted) based on these values. 

P8-11. Consider an n × k crossbar switch with n inputs and k outputs. 

a. Can we say that the switch acts as a multiplexer if n > k?

b. Can we say that the switch acts as a demultiplexer if n < k?

P8-12. We need a three-stage space-division switch with N = 100. We use 10 cross-
bars at the first and third stages and 4 crossbars at the middle stage. 

a. Draw the configuration diagram. 

b. Calculate the total number of crosspoints. 

c. Find the possible number of simultaneous connections.

d. Find the possible number of simultaneous connections if we use a single
crossbar (100 × 100).

e. Find the blocking factor, the ratio of the number of connections in part c
and in part d. 

P8-13. Repeat Problem 8-12 if we use 6 crossbars at the middle stage. 

P8-14. Redesign the configuration of Problem 8-12 using the Clos criteria. 

P8-15. We need to have a space-division switch with 1000 inputs and outputs. What
is the total number of crosspoints in each of the following cases?

a. Using a single crossbar.

b. Using a multi-stage switch based on the Clos criteria. 

P8-16. We need a three-stage time-space-time switch with N = 100. We use 10 TSIs
at the first and third stages and 4 crossbars at the middle stage. 

a. Draw the configuration diagram. 

b. Calculate the total number of crosspoints. 

c. Calculate the total number of memory locations we need for the TSIs. 

8.7 SIMULATION EXPERIMENTS
8.7.1 Applets
We have created some Java applets to show some of the main concepts discussed in this
chapter. It is strongly recommended that the students activate these applets on the book
website and carefully examine the protocols in action. 
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C H A P T E R  1 0

Error Detection
and Correction

etworks must be able to transfer data from one device to another with acceptable
accuracy. For most applications, a system must guarantee that the data received are

identical to the data transmitted. Any time data are transmitted from one node to the
next, they can become corrupted in passage. Many factors can alter one or more bits of
a message. Some applications require a mechanism for detecting and correcting errors.

Some applications can tolerate a small level of error. For example, random errors
in audio or video transmissions may be tolerable, but when we transfer text, we expect
a very high level of accuracy. 

At the data-link layer, if a frame is corrupted between the two nodes, it needs to be
corrected before it continues its journey to other nodes. However, most link-layer proto-
cols simply discard the frame and let the upper-layer protocols handle the retransmission
of the frame. Some multimedia applications, however, try to correct the corrupted frame. 

This chapter is divided into five sections.

❑ The first section introduces types of errors, the concept of redundancy, and distin-
guishes between error detection and correction.  

❑ The second section discusses block coding. It shows how error can be detected
using block coding and also introduces the concept of Hamming distance. 

❑ The third section discusses cyclic codes. It discusses a subset of cyclic code, CRC,
that is very common in the data-link layer. The section shows how CRC can be
easily implemented in hardware and represented by polynomials.

❑ The fourth section discusses checksums. It shows how a checksum is calculated for
a set of data words. It also gives some other approaches to traditional checksum.  

❑ The fifth section discusses forward error correction. It shows how Hamming dis-
tance can also be used for this purpose. The section also describes cheaper meth-
ods to achieve the same goal, such as XORing of packets, interleaving chunks, or
compounding high and low resolutions packets. 

N
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10.1 INTRODUCTION
Let us first discuss some issues related, directly or indirectly, to error detection and
correction.

10.1.1 Types of Errors
Whenever bits flow from one point to another, they are subject to unpredictable
changes because of interference. This interference can change the shape of the signal.
The term single-bit error means that only 1 bit of a given data unit (such as a byte,
character, or packet) is changed from 1 to 0 or from 0 to 1. The term burst error means
that 2 or more bits in the data unit have changed from 1 to 0 or from 0 to 1. Figure 10.1
shows the effect of a single-bit and a burst error on a data unit. 

A burst error is more likely to occur than a single-bit error because the duration of
the noise signal is normally longer than the duration of 1 bit, which means that when
noise affects data, it affects a set of bits. The number of bits affected depends on the
data rate and duration of noise. For example, if we are sending data at 1 kbps, a noise of
1/100 second can affect 10 bits; if we are sending data at 1 Mbps, the same noise can
affect 10,000 bits. 

10.1.2 Redundancy
The central concept in detecting or correcting errors is redundancy. To be able to
detect or correct errors, we need to send some extra bits with our data. These redundant
bits are added by the sender and removed by the receiver. Their presence allows the
receiver to detect or correct corrupted bits.

10.1.3 Detection versus Correction
The correction of errors is more difficult than the detection. In error detection, we are
only looking to see if any error has occurred. The answer is a simple yes or no. We are not
even interested in the number of corrupted bits. A single-bit error is the same for us as a
burst error. In error correction, we need to know the exact number of bits that are cor-
rupted and, more importantly, their location in the message. The number of errors and the
size of the message are important factors. If we need to correct a single error in an 8-bit
data unit, we need to consider eight possible error locations; if we need to correct two

Figure 10.1 Single-bit and burst error

Sent

Received 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1

0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1

Corrupted bits

Length of burst error (8 bits)

Corrupted bit

0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 Sent

Received

a. Single-bit error b. Burst error
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CHAPTER 10 ERROR DETECTION AND CORRECTION 259

errors in a data unit of the same size, we need to consider 28 (permutation of 8 by 2)
possibilities. You can imagine the receiver’s difficulty in finding 10 errors in a data unit of
1000 bits.

10.1.4 Coding
Redundancy is achieved through various coding schemes. The sender adds redundant
bits through a process that creates a relationship between the redundant bits and the
actual data bits. The receiver checks the relationships between the two sets of bits to
detect errors. The ratio of redundant bits to data bits and the robustness of the process
are important factors in any coding scheme. 

We can divide coding schemes into two broad categories: block coding and convo-
lution coding. In this book, we concentrate on block coding; convolution coding is
more complex and beyond the scope of this book. 

10.2 BLOCK CODING
In block coding, we divide our message into blocks, each of k bits, called datawords.
We add r redundant bits to each block to make the length n = k + r. The resulting n-bit
blocks are called codewords. How the extra r bits are chosen or calculated is some-
thing we will discuss later. For the moment, it is important to know that we have a set
of datawords, each of size k, and a set of codewords, each of size of n. With k bits, we
can create a combination of 2k datawords; with n bits, we can create a combination of
2n codewords. Since n > k, the number of possible codewords is larger than the num-
ber of possible datawords. The block coding process is one-to-one; the same data-
word is always encoded as the same codeword. This means that we have 2n − 2k

codewords that are not used. We call these codewords invalid or illegal. The trick in
error detection is the existence of these invalid codes, as we discuss next. If the
receiver receives an invalid codeword, this indicates that the data was corrupted dur-
ing transmission.

10.2.1 Error Detection
How can errors be detected by using block coding? If the following two conditions are
met, the receiver can detect a change in the original codeword. 

1. The receiver has (or can find) a list of valid codewords.

2. The original codeword has changed to an invalid one.

Figure 10.2 shows the role of block coding in error detection.  The sender creates code-
words out of datawords by using a generator that applies the rules and procedures of
encoding (discussed later). Each codeword sent to the receiver may change during
transmission. If the received codeword is the same as one of the valid codewords, the
word is accepted; the corresponding dataword is extracted for use. If the received code-
word is not valid, it is discarded. However, if the codeword is corrupted during trans-
mission but the received word still matches a valid codeword, the error remains
undetected. 
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Example 10.1

Let us assume that k = 2 and n = 3. Table 10.1 shows the list of datawords and codewords. Later,
we will see how to derive a codeword from a dataword.  

Assume the sender encodes the dataword 01 as 011 and sends it to the receiver. Consider the
following cases: 

1. The receiver receives 011. It is a valid codeword. The receiver extracts the dataword 01 from it.

2. The codeword is corrupted during transmission, and 111 is received (the leftmost bit is cor-
rupted). This is not a valid codeword and is discarded.

3. The codeword is corrupted during transmission, and 000 is received (the right two bits are
corrupted). This is a valid codeword. The receiver incorrectly extracts the dataword 00. Two
corrupted bits have made the error undetectable.  

Hamming Distance

One of the central concepts in coding for error control is the idea of the Hamming dis-
tance. The Hamming distance between two words (of the same size) is the number of
differences between the corresponding bits. We show the Hamming distance between two
words x and y as d(x, y). We may wonder why Hamming distance is important for error
detection. The reason is that the Hamming distance between the received codeword and
the sent codeword is the number of bits that are corrupted during transmission. For exam-
ple, if the codeword 00000 is sent and 01101 is received, 3 bits are in error and the Ham-
ming distance between the two is d(00000, 01101) = 3. In other words, if the Hamming

Figure 10.2 Process of error detection in block coding

Table 10.1 A code for error detection in Example 10.1

Dataword Codeword Dataword Codeword
00 000 10 101
01 011 11 110

An error-detecting code can detect only the types of errors for 
which it is designed; other types of errors may remain undetected.
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distance between the sent and the received codeword is not zero, the codeword has been
corrupted during transmission. 

The Hamming distance can easily be found if we apply the XOR operation (⊕) on the
two words and count the number of 1s in the result. Note that the Hamming distance is
a value greater than or equal to zero.

Example 10.2

Let us find the Hamming distance between two pairs of words.

1. The Hamming distance d(000, 011) is 2 because (000 ⊕ 011) is 011 (two 1s). 

2. The Hamming distance d(10101, 11110) is 3 because (10101 ⊕ 11110) is 01011 (three 1s). 

Minimum Hamming Distance for Error Detection
In a set of codewords, the minimum Hamming distance is the smallest Hamming dis-
tance between all possible pairs of codewords. Now let us find the minimum Hamming
distance in a code if we want to be able to detect up to s errors. If s errors occur during
transmission, the Hamming distance between the sent codeword and received codeword
is s. If our system is to detect up to s errors, the minimum distance between the valid
codes must be (s + 1), so that the received codeword does not match a valid codeword.
In other words, if the minimum distance between all valid codewords is (s + 1), the
received codeword cannot be erroneously mistaken for another codeword. The error
will be detected. We need to clarify a point here: Although a code with dmin = s + 1 may
be able to detect more than s errors in some special cases, only s or fewer errors are
guaranteed to be detected.  

We can look at this criteria geometrically. Let us assume that the sent codeword x
is at the center of a circle with radius s. All received codewords that are created by 0 to
s errors are points inside the circle or on the perimeter of the circle. All other valid
codewords must be outside the circle, as shown in Figure 10.3. This means that dmin
must be an integer greater than s or dmin = s + 1. 

Example 10.3

The minimum Hamming distance for our first code scheme (Table 10.1) is 2. This code guaran-
tees detection of only a single error. For example, if the third codeword (101) is sent and one
error occurs, the received codeword does not match any valid codeword. If two errors occur,
however, the received codeword may match a valid codeword and the errors are not detected.   

Example 10.4

A code scheme has a Hamming distance dmin = 4. This code guarantees the detection of up to
three errors (d = s + 1 or s = 3). 

The Hamming distance between two words is the number
of differences between corresponding bits.

To guarantee the detection of up to s errors in all cases, the minimum
Hamming distance in a block code must be dmin 5 s 1 1.
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Linear Block Codes

Almost all block codes used today belong to a subset of block codes called linear block
codes. The use of nonlinear block codes for error detection and correction is not as
widespread because their structure makes theoretical analysis and implementation diffi-
cult. We therefore concentrate on linear block codes. The formal definition of linear
block codes requires the knowledge of abstract algebra (particularly Galois fields),
which is beyond the scope of this book. We therefore give an informal definition. For
our purposes, a linear block code is a code in which the exclusive OR (addition
modulo-2) of two valid codewords creates another valid codeword. 

Example 10.5

The code in Table 10.1 is a linear block code because the result of XORing any codeword with
any other codeword is a valid codeword. For example, the XORing of the second and third code-
words creates the fourth one.

Minimum Distance for Linear Block Codes
It is simple to find the minimum Hamming distance for a linear block code. The mini-
mum Hamming distance is the number of 1s in the nonzero valid codeword with the
smallest number of 1s. 

Example 10.6

In our first code (Table 10.1), the numbers of 1s in the nonzero codewords are 2, 2, and 2. So the
minimum Hamming distance is dmin = 2. 

Parity-Check Code
Perhaps the most familiar error-detecting code is the parity-check code. This code is
a linear block code. In this code, a k-bit dataword is changed to an n-bit codeword
where n = k + 1. The extra bit, called the parity bit, is selected to make the total
number of 1s in the codeword even. Although some implementations specify an odd
number of 1s, we discuss the even case. The minimum Hamming distance for this cat-
egory is dmin = 2, which means that the code is a single-bit error-detecting code. Our
first code (Table 10.1) is a parity-check code (k = 2 and n = 3). The code in Table 10.2
is also a parity-check code with k = 4 and n = 5.

Figure 10.3 Geometric concept explaining dmin in error detection

Radius sx  y

dmin > s

Any valid codeword

Legend

Any corrupted codeword
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Figure 10.4 shows a possible structure of an encoder (at the sender) and a decoder
(at the receiver). 

The calculation is done in modular arithmetic (see Appendix E). The encoder
uses a generator that takes a copy of a 4-bit dataword (a0, a1, a2, and a3) and generates
a parity bit r0. The dataword bits and the parity bit create the 5-bit codeword. The parity
bit that is added makes the number of 1s in the codeword even. This is normally done
by adding the 4 bits of the dataword (modulo-2); the result is the parity bit. In other
words,

If the number of 1s is even, the result is 0; if the number of 1s is odd, the result is 1.
In both cases, the total number of 1s in the codeword is even.

The sender sends the codeword, which may be corrupted during transmission. The
receiver receives a 5-bit word. The checker at the receiver does the same thing as the gen-
erator in the sender with one exception: The addition is done over all 5 bits. The result,

Table 10.2 Simple parity-check code C(5, 4)

Dataword Codeword Dataword Codeword
0000 00000 1000 10001
0001 00011 1001 10010
0010 00101 1010 10100
0011 00110 1011 10111
0100 01001 1100 11000
0101 01010 1101 11011
0110 01100 1110 11101
0111 01111 1111 11110

Figure 10.4 Encoder and decoder for simple parity-check code
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which is called the syndrome, is just 1 bit. The syndrome is 0 when the number of 1s in
the received codeword is even; otherwise, it is 1.

The syndrome is passed to the decision logic analyzer. If the syndrome is 0, there
is no detectable error in the received codeword; the data portion of the received code-
word is accepted as the dataword; if the syndrome is 1, the data portion of the received
codeword is discarded. The dataword is not created. 

Example 10.7

Let us look at some transmission scenarios. Assume the sender sends the dataword 1011. The code-
word created from this dataword is 10111, which is sent to the receiver. We examine five cases:

1. No error occurs; the received codeword is 10111. The syndrome is 0. The dataword 1011 is
created.

2. One single-bit error changes a1. The received codeword is 10011. The syndrome is 1. No
dataword is created. 

3. One single-bit error changes r0. The received codeword is 10110. The syndrome is 1. No data-
word is created. Note that although none of the dataword bits are corrupted, no dataword is
created because the code is not sophisticated enough to show the position of the corrupted bit. 

4. An error changes r0 and a second error changes a3. The received codeword is 00110. The syn-
drome is 0. The dataword 0011 is created at the receiver. Note that here the dataword is
wrongly created due to the syndrome value. The simple parity-check decoder cannot detect an
even number of errors. The errors cancel each other out and give the syndrome a value of 0. 

5. Three bits—a3, a2, and a1—are changed by errors. The received codeword is 01011. The
syndrome is 1. The dataword is not created. This shows that the simple parity check, guaran-
teed to detect one single error, can also find any odd number of errors.  

10.3 CYCLIC CODES
Cyclic codes are special linear block codes with one extra property. In a cyclic code, if
a codeword is cyclically shifted (rotated), the result is another codeword. For example,
if 1011000 is a codeword and we cyclically left-shift, then 0110001 is also a codeword.
In this case, if we call the bits in the first word a0 to a6, and the bits in the second word
b0 to b6, we can shift the bits by using the following:

In the rightmost equation, the last bit of the first word is wrapped around and
becomes the first bit of the second word. 

10.3.1 Cyclic Redundancy Check
We can create cyclic codes to correct errors. However, the theoretical background
required is beyond the scope of this book. In this section, we simply discuss a subset of

s0 5 b3 1 b2 1 b1 1 b0 1 q0 (modulo-2)

A parity-check code can detect an odd number of errors. 

b1 5 a0  b2 5 a1      b3 5 a2        b4 5 a3     b5 5 a4   b6 5 a5    b0 5 a6
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cyclic codes called the cyclic redundancy check (CRC), which is used in networks
such as LANs and WANs. 

Table 10.3 shows an example of a CRC code. We can see both the linear and cyclic
properties of this code.

Figure 10.5 shows one possible design for the encoder and decoder. 

In the encoder, the dataword has k bits (4 here); the codeword has n bits (7 here).
The size of the dataword is augmented by adding n − k (3 here) 0s to the right-hand side
of the word. The n-bit result is fed into the generator. The generator uses a divisor of size
n − k + 1 (4 here), predefined and agreed upon. The generator divides the augmented
dataword by the divisor (modulo-2 division). The quotient of the division is discarded;
the remainder (r2r1r0) is appended to the dataword to create the codeword.

The decoder receives the codeword (possibly corrupted in transition). A copy of all
n bits is fed to the checker, which is a replica of the generator. The remainder produced

Table 10.3 A CRC code with C(7, 4)

Dataword Codeword Dataword Codeword
0000 0000000 1000 1000101

0001 0001011 1001 1001110

0010 0010110 1010 1010011

0011 0011101 1011 1011000

0100 0100111 1100 1100010

0101 0101100 1101 1101001

0110 0110001 1110 1110100

0111 0111010 1111 1111111

Figure 10.5 CRC encoder and decoder

Accept

CheckerGenerator

Codeword

EncoderDataword Dataword

a3 a2 a1 a0a3 a2 a1 a0

q2 q1 q0b3 b2 b1 b0

Sender

0 0 0

Receiver

Decoder

Codeword

D
is

ca
rd

Syndrome

Decision
logic

s0s1s2

a3 a2 a1 a0 r2 r1 r0

Divisor

Shared

R
em

ai
nd

er

d1d3 d2 d0

Unreliable
transmission

https://hemanthrajhemu.github.io



266 PART III DATA-LINK LAYER

by the checker is a syndrome of n − k (3 here) bits, which is fed to the decision logic
analyzer. The analyzer has a simple function. If the syndrome bits are all 0s, the 4 left-
most bits of the codeword are accepted as the dataword (interpreted as no error); other-
wise, the 4 bits are discarded (error). 

Encoder

Let us take a closer look at the encoder. The encoder takes a dataword and augments it
with n − k number of 0s. It then divides the augmented dataword by the divisor, as
shown in Figure 10.6. 

The process of modulo-2 binary division is the same as the familiar division pro-
cess we use for decimal numbers. However, addition and subtraction in this case are the
same; we use the XOR operation to do both. 

As in decimal division, the process is done step by step. In each step, a copy of the
divisor is XORed with the 4 bits of the dividend. The result of the XOR operation
(remainder) is 3 bits (in this case), which is used for the next step after 1 extra bit is
pulled down to make it 4 bits long. There is one important point we need to remember
in this type of division. If the leftmost bit of the dividend (or the part used in each step)
is 0, the step cannot use the regular divisor; we need to use an all-0s divisor. 

When there are no bits left to pull down, we have a result. The 3-bit remainder
forms the check bits (r2, r1, and r0). They are appended to the dataword to create the
codeword. 

Figure 10.6 Division in CRC encoder
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Decoder

The codeword can change during transmission. The decoder does the same division
process as the encoder. The remainder of the division is the syndrome. If
the syndrome is all 0s, there is no error with a high probability; the dataword is sepa-
rated from the received codeword and accepted. Otherwise, everything is discarded.
Figure 10.7 shows two cases: The left-hand figure shows the value of the syndrome
when no error has occurred; the syndrome is 000. The right-hand part of the figure
shows the case in which there is a single error. The syndrome is not all 0s (it is 011).

Divisor

We may be wondering how the divisor 1011 is chosen. This depends on the expecta-
tion we have from the code. We will show some standard divisors later in the chapter
(Table 10.4) after we discuss polynomials.

10.3.2 Polynomials
A better way to understand cyclic codes and how they can be analyzed is to represent
them as polynomials. Again, this section is optional. 

A pattern of 0s and 1s can be represented as a polynomial with coefficients of 0 and
1. The power of each term shows the position of the bit; the coefficient shows the value
of the bit. Figure 10.8 shows a binary pattern and its polynomial representation. In Fig-
ure 10.8a we show how to translate a binary pattern into a polynomial; in Figure 10.8b
we show how the polynomial can be shortened by removing all terms with zero coeffi-
cients and replacing x1 by x and x0 by 1.  

Figure 10.8 shows one immediate benefit; a 7-bit pattern can be replaced by
three terms. The benefit is even more conspicuous when we have a polynomial such as

Figure 10.7 Division in the CRC decoder for two cases
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x23 + x3 + 1. Here the bit pattern is 24 bits in length (three 1s and twenty-one 0s) while
the polynomial is just three terms. 

Degree of a Polynomial

The degree of a polynomial is the highest power in the polynomial. For example, the
degree of the polynomial x6 + x + 1 is 6. Note that the degree of a polynomial is 1 less
than the number of bits in the pattern. The bit pattern in this case has 7 bits. 

Adding and Subtracting Polynomials

Adding and subtracting polynomials in mathematics are done by adding or subtracting
the coefficients of terms with the same power. In our case, the coefficients are only 0
and 1, and adding is in modulo-2. This has two consequences. First, addition and sub-
traction are the same. Second, adding or subtracting is done by combining terms and
deleting pairs of identical terms. For example, adding x5 + x4 + x2 and x6 + x4 + x2 gives
just x6 + x5. The terms x4 and x2 are deleted. However, note that if we add, for example,
three polynomials and we get x2 three times, we delete a pair of them and keep the third.

Multiplying or Dividing Terms

In this arithmetic, multiplying a term by another term is very simple; we just add the
powers. For example, x3 × x4 is x7. For dividing, we just subtract the power of the sec-
ond term from the power of the first. For example, x5/x2 is x3. 

Multiplying Two Polynomials

Multiplying a polynomial by another is done term by term. Each term of the first polyno-
mial must be multiplied by all terms of the second. The result, of course, is then simplified,
and pairs of equal terms are deleted. The following is an example:

Dividing One Polynomial by Another

Division of polynomials is conceptually the same as the binary division we discussed
for an encoder. We divide the first term of the dividend by the first term of the divisor to
get the first term of the quotient. We multiply the term in the quotient by the divisor and

Figure 10.8 A polynomial to represent a binary word

(x5 + x3 + x2 + x)(x2 + x + 1) = x7 + x6 + x5 + x5 + x4 + x3 + x4 + x3 + x2 + x3 + x2 + x
                                             = x7 + x6 + x3 + x

a. Binary pattern and polynomial b. Short form
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subtract the result from the dividend. We repeat the process until the dividend degree is
less than the divisor degree. We will show an example of division later in this chapter. 

Shifting

A binary pattern is often shifted a number of bits to the right or left. Shifting to the left
means adding extra 0s as rightmost bits; shifting to the right means deleting some right-
most bits. Shifting to the left is accomplished by multiplying each term of the polynomial
by xm, where m is the number of shifted bits; shifting to the right is accomplished by
dividing each term of the polynomial by xm. The following shows shifting to the left and
to the right. Note that we do not have negative powers in the polynomial representation.

When we augmented the dataword in the encoder of Figure 10.6, we actually
shifted the bits to the left. Also note that when we concatenate two bit patterns, we shift
the first polynomial to the left and then add the second polynomial. 

10.3.3 Cyclic Code Encoder Using Polynomials
Now that we have discussed operations on polynomials, we show the creation of a code-
word from a dataword. Figure 10.9 is the polynomial version of Figure 10.6. We can see
that the process is shorter. The dataword 1001 is represented as x3 + 1. The divisor 1011
is represented as x3 + x + 1. To find the augmented dataword, we have left-shifted the
dataword 3 bits (multiplying by x3). The result is x6 + x3. Division is straightforward. We
divide the first term of the dividend, x6, by the first term of the divisor, x3. The first term
of the quotient is then x6/x3, or x3. Then we multiply x3 by the divisor and subtract
(according to our previous definition of subtraction) the result from the dividend. The
result is x4, with a degree greater than the divisor’s degree; we continue to divide until
the degree of the remainder is less than the degree of the divisor. 

Shifting left 3 bits: 10011 becomes 10011000          

Shifting right 3 bits: 10011 becomes 10                    

x4 + x + 1   becomes  x7 + x4 + x3  

x4 + x  + 1  becomes  x

Figure 10.9 CRC division using polynomials
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It can be seen that the polynomial representation can easily simplify the operation
of division in this case, because the two steps involving all-0s divisors are not needed
here. (Of course, one could argue that the all-0s divisor step can also be eliminated in
binary division.) In a polynomial representation, the divisor is normally referred to as
the generator polynomial t(x). 

10.3.4 Cyclic Code Analysis
We can analyze a cyclic code to find its capabilities by using polynomials. We define
the following, where f(x) is a polynomial with binary coefficients.

If s(x) is not zero, then one or more bits is corrupted. However, if s(x) is zero, either
no bit is corrupted or the decoder failed to detect any errors. (Note that ¦ means divide). 

In our analysis we want to find the criteria that must be imposed on the generator,
g(x) to detect the type of error we especially want to be detected. Let us first find the
relationship among the sent codeword, error, received codeword, and the generator.
We can say

In other words, the received codeword is the sum of the sent codeword and the
error. The receiver divides the received codeword by g(x) to get the syndrome. We can
write this as 

The first term at the right-hand side of the equality has a remainder of zero
(according to the definition of codeword). So the syndrome is actually the remainder of
the second term on the right-hand side. If this term does not have a remainder (syn-
drome = 0), either e(x) is 0 or e(x) is divisible by g(x). We do not have to worry about
the first case (there is no error); the second case is very important. Those errors that are
divisible by g(x) are not caught.  

The divisor in a cyclic code is normally called the generator polynomial
or simply the generator. 

Dataword:  d(x) Codeword: c(x) Generator: g(x)       Syndrome: s(x)  Error: e(x)

In a cyclic code, 

1. If  s(x) ¦ 0, one or more bits is corrupted.

2. If  s(x) = 0, either

a. No bit is corrupted, or

b. Some bits are corrupted, but the decoder failed to detect them. 

Received codeword 5 c(x) 1 e(x)

Received codeword
g x( )

------------------------------------------------- 5
c x( )
g x( )
----------- 1

e x( )
g x( )
-----------
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Let us show some specific errors and see how they can be caught by a well-
designed g(x).

Single-Bit Error

What should the structure of g(x) be to guarantee the detection of a single-bit error? A
single-bit error is e(x) = xi, where i is the position of the bit. If a single-bit error is caught,
then xi is not divisible by g(x). (Note that when we say not divisible, we mean that there is
a remainder.) If g(x) has at least two terms (which is normally the case) and the coeffi-
cient of x0 is not zero (the rightmost bit is 1), then e(x) cannot be divided by g(x). 

Example 10.8

Which of the following g(x) values guarantees that a single-bit error is caught? For each case,
what is the error that cannot be caught? 

a. x + 1

b. x3 

c. 1

Solution
a. No xi can be divisible by x + 1. In other words, xi/(x + 1) always has a remainder. So the

syndrome is nonzero. Any single-bit error can be caught. 

b. If i is equal to or greater than 3, xi is divisible by g(x). The remainder of xi/x3 is zero, and
the receiver is fooled into believing that there is no error, although there might be one.
Note that in this case, the corrupted bit must be in position 4 or above. All single-bit
errors in positions 1 to 3 are caught. 

c. All values of i make xi divisible by g(x). No single-bit error can be caught. In addition, this
g(x) is useless because it means the codeword is just the dataword augmented with n − k
zeros. 

Two Isolated Single-Bit Errors

Now imagine there are two single-bit isolated errors. Under what conditions can this
type of error be caught? We can show this type of error as e(x) = xj + xi. The values of i
and j define the positions of the errors, and the difference j − i defines the distance
between the two errors, as shown in Figure 10.10. 

In a cyclic code, those e(x) errors that are divisible by g(x) are not caught.   

If the generator has more than one term and the coefficient of x0 is 1,
all single-bit errors can be caught.  

Figure 10.10 Representation of two isolated single-bit errors using polynomials

0

x0xixjxn–1

1 0 1 1 1 0 1 0 1 0 0 0 0 1

Difference: j – i

1
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We can write e(x) = xi(x j–i + 1). If g(x) has more than one term and one term is x0, it
cannot divide xi, as we saw in the previous section. So if g(x) is to divide e(x), it must divide
x j–i + 1. In other words, g(x) must not divide xt + 1, where t is between 0 and n − 1. How-
ever, t = 0 is meaningless and t = 1 is needed, as we will see later. This means t should be
between 2 and n – 1. 

Example 10.9

Find the status of the following generators related to two isolated, single-bit errors. 
a. x + 1

b. x4 + 1 

c. x7 + x6 + 1

d. x15 + x14 + 1

Solution
a. This is a very poor choice for a generator. Any two errors next to each other cannot be

detected. 

b. This generator cannot detect two errors that are four positions apart. The two errors can
be anywhere, but if their distance is 4, they remain undetected. 

c. This is a good choice for this purpose.

d. This polynomial cannot divide any error of type xt + 1 if t is less than 32,768. This means
that a codeword with two isolated errors that are next to each other or up to 32,768 bits
apart can be detected by this generator. 

Odd Numbers of Errors

A generator with a factor of x + 1 can catch all odd numbers of errors. This means that
we need to make x + 1 a factor of any generator. Note that we are not saying that the
generator itself should be x + 1; we are saying that it should have a factor of x + 1. If it
is only x + 1, it cannot catch the two adjacent isolated errors (see the previous section).
For example, x4 + x2 + x + 1 can catch all odd-numbered errors since it can be written
as a product of the two polynomials x + 1 and x3 + x2 + 1.

Burst Errors

Now let us extend our analysis to the burst error, which is the most important of all. A
burst error is of the form e(x) = (xj + . . . + xi). Note the difference between a burst error
and two isolated single-bit errors. The first can have two terms or more; the second can
only have two terms. We can factor out xi and write the error as xi(xj–i + . . . + 1). If our
generator can detect a single error (minimum condition for a generator), then it cannot
divide xi. What we should worry about are those generators that divide xj–i + . . . + 1. In
other words, the remainder of (xj–i + . . . + 1)/(xr + . . . + 1) must not be zero. Note that
the denominator is the generator polynomial. We can have three cases:

If a generator cannot divide xt 1 1 (t between 0 and n 2 1),
then all isolated double errors can be detected.  

A generator that contains a factor of x 1 1 can detect all odd-numbered errors.  
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1. If j − i < r, the remainder can never be zero. We can write j − i = L − 1, where L is
the length of the error. So L − 1 < r or L < r + 1 or L ð r. This means all burst errors
with length smaller than or equal to the number of check bits r will be detected.

2. In some rare cases, if j − i = r, or L = r + 1, the syndrome is 0 and the error is unde-
tected. It can be proved that in these cases, the probability of undetected burst error of
length r + 1 is (1/2)r–1. For example, if our generator is x14 + x3 + 1, in which r = 14, a
burst error of length L = 15 can slip by undetected with the probability of (1/2)14–1 or
almost 1 in 10,000. 

3. In some rare cases, if j − i > r, or L > r + 1, the syndrome is 0 and the error is unde-
tected. It can be proved that in these cases, the probability of undetected burst error
of length greater than r + 1 is (1/2)r. For example, if our generator is x14 + x3 + 1, in
which r = 14, a burst error of length greater than 15 can slip by undetected with the
probability of (1/2)14 or almost 1 in 16,000 cases. 

Example 10.10

Find the suitability of the following generators in relation to burst errors of different lengths. 
a. x6 + 1

b. x18 + x7 + x + 1 

c. x32 + x23 + x7 + 1 

Solution
a. This generator can detect all burst errors with a length less than or equal to 6 bits; 3 out

of 100 burst errors with length 7 will slip by; 16 out of 1000 burst errors of length 8 or
more will slip by. 

b. This generator can detect all burst errors with a length less than or equal to 18 bits; 8 out
of 1 million burst errors with length 19 will slip by; 4 out of 1 million burst errors of
length 20 or more will slip by.

c. This generator can detect all burst errors with a length less than or equal to 32 bits; 5 out
of 10 billion burst errors with length 33 will slip by; 3 out of 10 billion burst errors of
length 34 or more will slip by. 

Summary

We can summarize the criteria for a good polynomial generator:

❑ All burst errors with L ≤ r will be detected.

❑ All burst errors with L 5 r 1 1 will be detected with probability 1 – (1/2)r–1.
❑ All burst errors with L > r 1 1 will be detected with probability 1 – (1/2)r.

A good polynomial generator needs to have the following characteristics:

1. It should have at least two terms.

2. The coefficient of the term x0 should be 1.

3. It should not divide xt 1 1, for t between 2 and n 2 1.
4. It should have the factor x 1 1.   
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Standard Polynomials

Some standard polynomials used by popular protocols for CRC generation are shown
in Table 10.4 along with the corresponding bit pattern. 

10.3.5 Advantages of Cyclic Codes
We have seen that cyclic codes have a very good performance in detecting single-bit
errors, double errors, an odd number of errors, and burst errors. They can easily be
implemented in hardware and software. They are especially fast when implemented in
hardware. This has made cyclic codes a good candidate for many networks. 

10.3.6 Other Cyclic Codes
The cyclic codes we have discussed in this section are very simple. The check bits and
syndromes can be calculated by simple algebra. There are, however, more powerful
polynomials that are based on abstract algebra involving Galois fields. These are
beyond the scope of this book. One of the most interesting of these codes is the Reed-
Solomon code used today for both detection and correction. 

10.3.7 Hardware Implementation
One of the advantages of a cyclic code is that the encoder and decoder can easily and
cheaply be implemented in hardware by using a handful of electronic devices. Also, a
hardware implementation increases the rate of check bit and syndrome bit calculation.
In this section, we try to show, step by step, the process. The section, however, is
optional and does not affect the understanding of the rest of the chapter. 

Divisor

Let us first consider the divisor. We need to note the following points:

1. The divisor is repeatedly XORed with part of the dividend.

2. The divisor has n − k + 1 bits which either are predefined or are all 0s. In other
words, the bits do not change from one dataword to another. In our previous exam-
ple, the divisor bits were either 1011 or 0000. The choice was based on the leftmost
bit of the part of the augmented data bits that are active in the XOR operation. 

Table 10.4 Standard polynomials

Name  Polynomial Used in

CRC-8 x8 + x2 + x + 1

100000111

ATM 

header

CRC-10 x10 + x9 + x5 + x4 + x 2 + 1

11000110101

ATM 

AAL

CRC-16 x16 + x12 + x5 + 1
10001000000100001

HDLC

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

100000100110000010001110110110111

LANs
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3. A close look shows that only n − k bits of the divisor are needed in the XOR opera-
tion. The leftmost bit is not needed because the result of the operation is always 0,
no matter what the value of this bit. The reason is that the inputs to this XOR opera-
tion are either both 0s or both 1s. In our previous example, only 3 bits, not 4, are
actually used in the XOR operation. 

Using these points, we can make a fixed (hardwired) divisor that can be used for a cyclic
code if we know the divisor pattern. Figure 10.11 shows such a design for our previous
example. We have also shown the XOR devices used for the operation. 

Note that if the leftmost bit of the part of the dividend to be used in this step is 1,
the divisor bits (d2d1d0) are 011; if the leftmost bit is 0, the divisor bits are 000. The
design provides the right choice based on the leftmost bit. 

Augmented Dataword

In our paper-and-pencil division process in Figure 10.6, we show the augmented data-
word as fixed in position with the divisor bits shifting to the right, 1 bit in each step.
The divisor bits are aligned with the appropriate part of the augmented dataword. Now
that our divisor is fixed, we need instead to shift the bits of the augmented dataword to the
left (opposite direction) to align the divisor bits with the appropriate part. There is no
need to store the augmented dataword bits. 

Remainder

In our previous example, the remainder is 3 bits (n − k bits in general) in length. We can
use three registers (single-bit storage devices) to hold these bits. To find the final
remainder of the division, we need to modify our division process. The following is the
step-by-step process that can be used to simulate the division process in hardware (or
even in software).

1. We assume that the remainder is originally all 0s (000 in our example).

2. At each time click (arrival of 1 bit from an augmented dataword), we repeat the
following two actions:

a. We use the leftmost bit to make a decision about the divisor (011 or 000).

b. The other 2 bits of the remainder and the next bit from the augmented dataword
(total of 3 bits) are XORed with the 3-bit divisor to create the next remainder. 

Figure 10.11 Hardwired design of the divisor in CRC

Leftmost bit of the part
of the dividend involved

in XOR operation

XOR XOR

d2 d1 d0

Broken line:
 this bit is always 0 ++ +

XOR
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Figure 10.12 shows this simulator, but note that this is not the final design; there will be
more improvements.

At each clock tick, shown as different times, one of the bits from the augmented
dataword is used in the XOR process. If we look carefully at the design, we have seven
steps here, while in the paper-and-pencil method we had only four steps. The first three
steps have been added here to make each step equal and to make the design for each step
the same. Steps 1, 2, and 3 push the first 3 bits to the remainder registers; steps 4, 5, 6,
and 7 match the paper-and-pencil design. Note that the values in the remainder register
in steps 4 to 7 exactly match the values in the paper-and-pencil design. The final remain-
der is also the same.

The above design is for demonstration purposes only. It needs simplification to be
practical. First, we do not need to keep the intermediate values of the remainder bits;
we need only the final bits. We therefore need only 3 registers instead of 24. After the
XOR operations, we do not need the bit values of the previous remainder. Also, we do
not need 21 XOR devices; two are enough because the output of an XOR operation in
which one of the bits is 0 is simply the value of the other bit. This other bit can be used
as the output. With these two modifications, the design becomes tremendously simpler
and less expensive, as shown in Figure 10.13. 

Figure 10.12 Simulation of division in CRC encoder
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 We need, however, to make the registers shift registers. A 1-bit shift register holds
a bit for a duration of one clock time. At a time click, the shift register accepts the bit at
its input port, stores the new bit, and displays it on the output port. The content and the
output remain the same until the next input arrives. When we connect several 1-bit shift
registers together, it looks as if the contents of the register are shifting. 

General Design

A general design for the encoder and decoder is shown in Figure 10.14. 

Note that we have n − k 1-bit shift registers in both the encoder and decoder. We
have up to n − k XOR devices, but the divisors normally have several 0s in their pattern,
which reduces the number of devices. Also note that, instead of augmented datawords,
we show the dataword itself as the input because after the bits in the dataword are all
fed into the encoder, the extra bits, which all are 0s, do not have any effect on the right-
most XOR. Of course, the process needs to be continued for another n − k steps before
the check bits are ready. This fact is one of the criticisms of this design. Better schemes
have been designed to eliminate this waiting time (the check bits are ready after k steps),
but we leave this as a research topic for the reader. In the decoder, however, the entire
codeword must be fed to the decoder before the syndrome is ready. 

10.4 CHECKSUM
Checksum is an error-detecting technique that can be applied to a message of any
length. In the Internet, the checksum technique is mostly used at the network and trans-
port layer rather than the data-link layer. However, to make our discussion of error-
detecting techniques complete, we discuss the checksum in this chapter. 

Figure 10.13 The CRC encoder design using shift registers

Figure 10.14 General design of encoder and decoder of a CRC code
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At the source, the message is first divided into m-bit units. The generator then cre-
ates an extra m-bit unit called the checksum, which is sent with the message. At the
destination, the checker creates a new checksum from the combination of the message
and sent checksum. If the new checksum is all 0s, the message is accepted; otherwise,
the message is discarded (Figure 10.15). Note that in the real implementation, the
checksum unit is not necessarily added at the end of the message; it can be inserted in
the middle of the message.           

10.4.1 Concept
The idea of the traditional checksum is simple. We show this using a simple example. 

Example 10.11

Suppose the message is a list of five 4-bit numbers that we want to send to a destination. In
addition to sending these numbers, we send the sum of the numbers. For example, if the set of
numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 0, 6, 36), where 36 is the sum of the original num-
bers. The receiver adds the five numbers and compares the result with the sum. If the two are the
same, the receiver assumes no error, accepts the five numbers, and discards the sum. Otherwise,
there is an error somewhere and the message is not accepted. 

One’s Complement Addition

The previous example has one major drawback. Each number can be written as a 4-bit
word (each is less than 15) except for the sum. One solution is to use one’s comple-
ment arithmetic. In this arithmetic, we can represent unsigned numbers between 0
and 2m − 1 using only m bits. If the number has more than m bits, the extra leftmost
bits need to be added to the m rightmost bits (wrapping). 

Figure 10.15  Checksum
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Example 10.12

In the previous example, the decimal number 36 in binary is (100100)2. To change it to a 4-bit
number we add the extra leftmost bit to the right four bits as shown below. 

Instead of sending 36 as the sum, we can send 6 as the sum (7, 11, 12, 0, 6, 6). The receiver
can add the first five numbers in one’s complement arithmetic. If the result is 6, the numbers are
accepted; otherwise, they are rejected.

Checksum

We can make the job of the receiver easier if we send the complement of the sum, the
checksum. In one’s complement arithmetic, the complement of a number is found by
completing all bits (changing all 1s to 0s and all 0s to 1s). This is the same as subtract-
ing the number from 2m − 1. In one’s complement arithmetic, we have two 0s: one pos-
itive and one negative, which are complements of each other. The positive zero has all
m bits set to 0; the negative zero has all bits set to 1 (it is 2m − 1). If we add a number
with its complement, we get a negative zero (a number with all bits set to 1). When the
receiver adds all five numbers (including the checksum), it gets a negative zero. The
receiver can complement the result again to get a positive zero. 

Example 10.13

Let us use the idea of the checksum in Example 10.12. The sender adds all five numbers in one’s
complement to get the sum = 6. The sender then complements the result to get the checksum = 9,
which is 15 − 6. Note that 6 = (0110)2 and 9 = (1001)2; they are complements of each other. The
sender sends the five data numbers and the checksum (7, 11, 12, 0, 6, 9). If there is no corruption in
transmission, the receiver receives (7, 11, 12, 0, 6, 9) and adds them in one’s complement to get 15.
The sender complements 15 to get 0. This shows that data have not been corrupted. Figure 10.16
shows the process. 

(10)2 1 (0100)2 5 (0110)2  →   (6)10

Figure 10.16 Example 10.13
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Internet Checksum

Traditionally, the Internet has used a 16-bit checksum. The sender and the receiver follow
the steps depicted in Table 10.5. The sender or the receiver uses five steps. 

Algorithm

We can use the flow diagram of Figure 10.17 to show the algorithm for calculation of
the checksum. A program in any language can easily be written based on the algorithm.
Note that the first loop just calculates the sum of the data units in two’s complement;
the second loop wraps the extra bits created from the two’s complement calculation to
simulate the calculations in one’s complement. This is needed because almost all com-
puters today do calculation in two’s complement.   

Table 10.5 Procedure to calculate the traditional checksum 

Sender Receiver
1. The message is divided into 16-bit words. 1. The message and the checksum are received.
2. The value of the checksum word is 

initially set to zero.
2. The message is divided into 16-bit words.

3. All words including the checksum are 
added using one’s complement addition.

3. All words are added using one’s comple-
ment addition.

4. The sum is complemented and becomes 
the checksum.

4. The sum is complemented and becomes the 
new checksum.

5. The checksum is sent with the data. 5. If the value of the checksum is 0, the message 
is accepted; otherwise, it is rejected.

Figure 10.17 Algorithm to calculate a traditional checksum

Sum =  0

[yes]

[no]

[no]

More words?

Start

 Sum = Sum + Next Word

[yes]

a. Word and Checksum are each
 16 bits, but Sum is 32 bits.
b. Left(Sum) can be found by shifting
 Sum 16 bits to the right.
c. Right(Sum) can be found by
 ANDing Sum with (0000FFFF)16 .

d. After Checksum is found, truncate
 it to 16 bits.

Notes: 

Left(sum)
is nonzero?

Sum = Left(Sum) + Right(Sum)

Stop

Checksum = truncate (Checksum)

Checksum = Complement (Sum)
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Performance

The traditional checksum uses a small number of bits (16) to detect errors in a message
of any size (sometimes thousands of bits). However, it is not as strong as the CRC in
error-checking capability. For example, if the value of one word is incremented and the
value of another word is decremented by the same amount, the two errors cannot be
detected because the sum and checksum remain the same. Also, if the values of several
words are incremented but the sum and the checksum do not change, the errors are not
detected. Fletcher and Adler have proposed some weighted checksums that eliminate
the first problem. However, the tendency in the Internet, particularly in designing new
protocols, is to replace the checksum with a CRC. 

10.4.2 Other Approaches to the Checksum
As mentioned before, there is one major problem with the traditional checksum calcu-
lation. If two 16-bit items are transposed in transmission, the checksum cannot catch
this error. The reason is that the traditional checksum is not weighted: it treats each data
item equally. In other words, the order of data items is immaterial to the calculation.
Several approaches have been used to prevent this problem. We mention two of them
here: Fletcher and Adler. 

Fletcher Checksum

The Fletcher checksum was devised to weight each data item according to its position.
Fletcher has proposed two algorithms: 8-bit and 16-bit. The first, 8-bit Fletcher, calcu-
lates on 8-bit data items and creates a 16-bit checksum. The second, 16-bit Fletcher,
calculates on 16-bit data items and creates a 32-bit checksum. 

The 8-bit Fletcher is calculated over data octets (bytes) and creates a 16-bit check-
sum. The calculation is done modulo 256 (28), which means the intermediate results
are divided by 256 and the remainder is kept. The algorithm uses two accumulators,
L and R. The first simply adds data items together; the second adds a weight to the
calculation. There are many variations of the 8-bit Fletcher algorithm; we show a
simple one in Figure 10.18. 

The 16-bit Fletcher checksum is similar to the 8-bit Fletcher checksum, but it is
calculated over 16-bit data items and creates a 32-bit checksum. The calculation is done
modulo 65,536. 

Adler Checksum

The Adler checksum is a 32-bit checksum. Figure 10.19 shows a simple algorithm in
flowchart form. It is similar to the 16-bit Fletcher with three differences. First, calcula-
tion is done on single bytes instead of 2 bytes at a time. Second, the modulus is a prime
number (65,521) instead of 65,536. Third, L is initialized to 1 instead of 0. It has been
proved that a prime modulo has a better detecting capability in some combinations of
data.
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10.5 FORWARD ERROR CORRECTION
We discussed error detection and retransmission in the previous sections. However,
retransmission of corrupted and lost packets is not useful for real-time multimedia
transmission because it creates an unacceptable delay in reproducing: we need to wait
until the lost or corrupted packet is resent. We need to correct the error or reproduce the

Figure 10.18 Algorithm to calculate an 8-bit Fletcher checksum

Figure 10.19 Algorithm to calculate an Adler checksum

To see the behavior of the different checksum algorithms, check some of the applets 
for this chapter at the book website. 
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packet immediately. Several schemes have been designed and used in this case that are
collectively referred to as forward error correction (FEC) techniques. We briefly dis-
cuss some of the common techniques here.

10.5.1 Using Hamming Distance 
We earlier discussed the Hamming distance for error detection. We said that to detect s
errors, the minimum Hamming distance should be dmin = s + 1. For error detection, we
definitely need more distance. It can be shown that to detect t errors, we need to have
dmin = 2t + 1. In other words, if we want to correct 10 bits in a packet, we need to
make the minimum hamming distance 21 bits, which means a lot of redundant bits
need to be sent with the data. To give an example, consider the famous BCH code. In
this code, if data is 99 bits, we need to send 255 bits (extra 156 bits) to correct just 23
possible bit errors. Most of the time we cannot afford such a redundancy. We give some
examples of how to calculate the required bits in the practice set. Figure 10.20 shows
the geometrical representation of this concept. 

10.5.2 Using XOR
Another recommendation is to use the property of the exclusive OR operation as shown
below. 

In other words, if we apply the exclusive OR operation on N data items (P1 to PN), we
can recreate any of the data items by exclusive-ORing all of the items, replacing the
one to be created by the result of the previous operation (R). This means that we can
divide a packet into N chunks, create the exclusive OR of all the chunks and send N + 1
chunks. If any chunk is lost or corrupted, it can be created at the receiver site. Now the
question is what should the value of N be. If N = 4, it means that we need to send 25
percent extra data and be able to correct the data if only one out of four chunks is lost.

10.5.3 Chunk Interleaving
Another way to achieve FEC in multimedia is to allow some small chunks to be
missing at the receiver. We cannot afford to let all the chunks belonging to the same

Figure 10.20 Hamming distance for error correction 

R = P1 ⊕ P2 ⊕ … ⊕ Pi  ⊕… ⊕ PN        →      Pi = P1 ⊕ P2 ⊕ … ⊕ R ⊕ … ⊕ PN

Territory of yTerritory of x

Radius t Radius t

dmin > 2t

Any valid codeword

Legend

Any corrupted codeword
with 1 to t errors

x
y
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packet be missing; however, we can afford to let one chunk be missing in each packet.
Figure 10.21 shows that we can divide each packet into 5 chunks (normally the
number is much larger). We can then create data chunk by chunk (horizontally), but
combine the chunks into packets vertically. In this case, each packet sent carries a
chunk from several original packets. If the packet is lost, we miss only one chunk in
each packet, which is normally acceptable in multimedia communication. 

10.5.4 Combining Hamming Distance and Interleaving
Hamming distance and interleaving can be combined. We can first create n-bit packets
that can correct t-bit errors. Then we interleave m rows and send the bits column by col-
umn. In this way, we can automatically correct burst errors up to m × t-bit errors.

10.5.5 Compounding High- and Low-Resolution Packets
Still another solution is to create a duplicate of each packet with a low-resolution
redundancy and combine the redundant version with the next packet. For example, we
can create four low-resolution packets out of five high-resolution packets and send
them as shown in Figure 10.22. If a packet is lost, we can use the low-resolution ver-
sion from the next packet. Note that the low-resolution section in the first packet is
empty. In this method, if the last packet is lost, it cannot be recovered, but we use the
low-resolution version of a packet if the lost packet is not the last one. The audio and
video reproduction does not have the same quality, but the lack of quality is not recog-
nized most of the time.

Figure 10.21 Interleaving

a. Packet creation at sender

b. Packets sent

c. Packets received

d. Packet recreation at receiver
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10.6 END-CHAPTER MATERIALS
10.6.1 Recommended Reading
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items in brackets […] refer to the reference list at the end of the
text.

Books

Several excellent books discuss link-layer issues. Among them we recommend [Ham 80],
[Zar 02], [Ror 96], [Tan 03], [GW 04], [For 03], [KMK 04], [Sta 04], [Kes 02],
[PD 03], [Kei 02], [Spu 00], [KCK 98], [Sau 98], [Izz 00], [Per 00], and [WV 00].

RFCs

A discussion of the use of the checksum in the Internet can be found in RFC 1141. 

Figure 10.22 Compounding high- and low-resolution packets
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10.6.2 Key Terms

10.6.3 Summary
Data can be corrupted during transmission. Some applications require that errors be
detected and corrected. In a single-bit error, only one bit in the data unit has changed. A
burst error means that two or more bits in the data unit have changed. To detect or cor-
rect errors, we need to send extra (redundant) bits with data. There are two main meth-
ods of error correction: forward error correction and correction by retransmission.

We can divide coding schemes into two broad categories: block coding and convo-
lution coding. In coding, we need to use modulo-2 arithmetic. Operations in this arithme-
tic are very simple; addition and subtraction give the same results. We use the XOR
(exclusive OR) operation for both addition and subtraction. In block coding, we divide
our message into blocks, each of k bits, called datawords. We add r redundant bits to each
block to make the length n = k + r. The resulting n-bit blocks are called codewords.

In block coding, errors be detected by using the following two conditions:

a. The receiver has (or can find) a list of valid codewords.

b. The original codeword has changed to an invalid one.
The Hamming distance between two words is the number of differences between

corresponding bits. The minimum Hamming distance is the smallest Hamming dis-
tance between all possible pairs in a set of words. To guarantee the detection of up to s
errors in all cases, the minimum Hamming distance in a block code must be dmin = s +
1. To guarantee correction of up to t errors in all cases, the minimum Hamming dis-
tance in a block code must be dmin = 2t + 1.

In a linear block code, the exclusive OR (XOR) of any two valid codewords creates
another valid codeword.

A simple parity-check code is a single-bit error-detecting code in which n = k + 1
with dmin = 2. A simple parity-check code can detect an odd number of errors.

All Hamming codes discussed in this book have dmin = 3. The relationship
between m and n in these codes is n = 2m – 1.

Cyclic codes are special linear block codes with one extra property. In a cyclic code,
if a codeword is cyclically shifted (rotated), the result is another codeword. A category

block coding
burst error  
check bit
checksum
codeword
convolution coding
cyclic code
cyclic redundancy check (CRC)
dataword
error
error correction
error detection
forward error correction (FEC)
generator polynomial

Hamming distance
interference
linear block code
minimum Hamming distance
modular arithmetic
one’s complement
parity-check code
polynomial
redundancy
register
Reed-Solomon code
single-bit error
syndrome
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of cyclic codes called the cyclic redundancy check (CRC) is used in networks such as
LANs and WANs.

A pattern of 0s and 1s can be represented as a polynomial with coefficients of 0
and 1. Traditionally, the Internet has been using a 16-bit checksum, which uses one’s
complement arithmetic. In this arithmetic, we can represent unsigned numbers between
0 and 2n −1 using only n bits. 

10.7 PRACTICE SET
10.7.1 Quizzes
A set of interactive quizzes for this chapter can be found on the book website. It is
strongly recommended that the student take the quizzes to check his/her understanding
of the materials before continuing with the practice set. 

10.7.2 Questions
Q10-1. How does a single-bit error differ from a burst error?

Q10-2. What is the definition of a linear block code? 

Q10-3. In a block code, a dataword is 20 bits and the corresponding codeword is 25 bits.
What are the values of k, r, and n according to the definitions in the text? How
many redundant bits are added to each dataword?   

Q10-4. In a codeword, we add two redundant bits to each 8-bit data word. Find the
number of 

Q10-5. What is the minimum Hamming distance?

Q10-6. If we want to be able to detect two-bit errors, what should be the minimum
Hamming distance?

Q10-7. A category of error detecting (and correcting) code, called the Hamming
code, is a code in which dmin = 3. This code can detect up to two errors (or
correct one single error). In this code, the values of n, k, and r are related as:
n = 2r − 1 and k = n − r. Find the number of bits in the dataword and the code-
words if r is 3.

Q10-8. In CRC, if the dataword is 5 bits and the codeword is 8 bits, how many 0s need
to be added to the dataword to make the dividend? What is the size of the
remainder? What is the size of the divisor?

Q10-9. In CRC, which of the following generators (divisors) guarantees the detection
of a single bit error?

Q10-10. In CRC, which of the following generators (divisors) guarantees the detection
of an odd number of errors?

a. valid codewords. b. invalid codewords. 

a. 101 b. 100 c. 1

a. 10111 b. 101101 c. 111
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Q10-11. In CRC, we have chosen the generator 1100101. What is the probability of
detecting a burst error of length 

Q10-12. Assume we are sending data items of 16-bit length. If two data items are
swapped during transmission, can the traditional checksum detect this error?
Explain. 

Q10-13. Can the value of a traditional checksum be all 0s (in binary)? Defend your
answer. 

Q10-14. Show how the Fletcher algorithm (Figure 10.18) attaches weights to the data
items when calculating the checksum.

Q10-15. Show how the Adler algorithm (Figure 10.19) attaches weights to the data
items when calculating the checksum.

10.7.3 Problems
P10-1. What is the maximum effect of a 2-ms burst of noise on data transmitted at the

following rates?

P10-2. Assume that the probability that a bit in a data unit is corrupted during trans-
mission is p. Find the probability that x number of bits are corrupted in an n-
bit data unit for each of the following cases.

a. n = 8, x = 1, p = 0.2

b. n = 16, x = 3, p = 0.3

c. n = 32, x = 10, p = 0.4

P10-3. Exclusive-OR (XOR) is one of the most used operations in the calculation of
codewords. Apply the exclusive-OR operation on the following pairs of pat-
terns. Interpret the results. 

P10-4. In Table 10.1, the sender sends dataword 10. A 3-bit burst error corrupts the
codeword. Can the receiver detect the error? Defend your answer.

P10-5. Using the code in Table 10.2, what is the dataword if each of the following
codewords is received?

P10-6. Prove that the code represented by the following codewords is not linear. You
need to find only one case that violates the linearity. 

P10-7. What is the Hamming distance for each of the following codewords?

a. 5? b. 7? c. 10?

a. 1500 bps b. 12 kbps c. 100 kbps d. 100 Mbps

a. (10001)  ⊕ (10001) b. (11100)  ⊕ (00000) c. (10011)  ⊕ (11111)

a. 01011 b. 11111 c. 00000 d. 11011

{(00000), (01011), (10111), (11111)}

a. d (10000, 00000) b. d (10101, 10000)
c. d (00000, 11111) d. d (00000, 00000)
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P10-8. Although it can be formally proved that the code in Table 10.3 is both linear
and cyclic, use only two tests to partially prove the fact:

a. Test the cyclic property on codeword 0101100.

b. Test the linear property on codewords 0010110 and 1111111.

P10-9. Referring to the CRC-8 in Table 5.4, answer the following questions:

a. Does it detect a single error? Defend your answer.

b. Does it detect a burst error of size 6? Defend your answer.

c. What is the probability of detecting a burst error of size 9?

d. What is the probability of detecting a burst error of size 15?

P10-10. Assuming even parity, find the parity bit for each of the following data
units.

P10-11. A simple parity-check bit, which is normally added at the end of the word
(changing a 7-bit ASCII character to a byte), cannot detect even numbers of
errors. For example, two, four, six, or eight errors cannot be detected in this
way. A better solution is to organize the characters in a table and create row
and column parities. The bit in the row parity is sent with the byte, the column
parity is sent as an extra byte (Figure 10.23).  

Show how the following errors can be detected: 

a. An error at (R3, C3).

b. Two errors at (R3, C4) and (R3, C6).

c. Three errors at (R2, C4), (R2, C5), and (R3, C4). 

d. Four errors at (R1, C2), (R1, C6), (R3, C2), and (R3, C6). 

a. 1001011 b. 0001100 c. 1000000 d. 1110111

Figure 10.23 P10-11
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P10-12. Given the dataword 101001111 and the divisor 10111, show the generation of
the CRC codeword at the sender site (using binary division).

P10-13. Apply the following operations on the corresponding polynomials:

a. (x3 + x2 + x + 1) + (x4 + x2 + x + 1)

b. (x3 + x2 + x + 1) − (x4 + x2 + x + 1)

c. (x3 + x2) × (x4 + x2 + x + 1)

d. (x3 + x2 + x + 1) / (x2 + 1)   

P10-14. Answer the following questions:

a. What is the polynomial representation of 101110?

b. What is the result of shifting 101110 three bits to the left?

c. Repeat part b using polynomials.

d. What is the result of shifting 101110 four bits to the right?

e. Repeat part d using polynomials.

P10-15. Which of the following CRC generators guarantee the detection of a single
bit error?

P10-16. Referring to the CRC-8 polynomial in Table 10.7, answer the following ques-
tions:

a. Does it detect a single error? Defend your answer.

b. Does it detect a burst error of size 6? Defend your answer.

c. What is the probability of detecting a burst error of size 9?

d. What is the probability of detecting a burst error of size 15?

P10-17. Referring to the CRC-32 polynomial in Table 10.4, answer the following
questions:

a. Does it detect a single error? Defend your answer.

b. Does it detect a burst error of size 16? Defend your answer.

c. What is the probability of detecting a burst error of size 33?

d. What is the probability of detecting a burst error of size 55?

P10-18. Assume a packet is made only of four 16-bit words (A7A2)16, (CABF)16,
(903A)16, and (A123)16. Manually simulate the algorithm in Figure 10.17 to
find the checksum. 

P10-19. Traditional checksum calculation needs to be done in one’s complement
arithmetic. Computers and calculators today are designed to do calculations
in two’s complement arithmetic. One way to calculate the traditional check-
sum is to add the numbers in two’s complement arithmetic, find the quotient
and remainder of dividing the result by 216, and add the quotient and the
remainder to get the sum in one’s complement. The checksum can be found
by subtracting the sum from 216 − 1. Use the above method to find the
checksum of the following four numbers: 43,689, 64,463, 45,112, and
59,683. 

a. x3 + x + 1 b. x4 + x2 c. 1 d. x2 + 1
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P10-20. This problem shows a special case in checksum handling. A sender has
two data items to send: (4567)16 and (BA98)16. What is the value of the
checksum?

P10-21. Manually simulate the Fletcher algorithm (Figure 10.18) to calculate the
checksum of the following bytes: (2B)16, (3F)16, (6A)16, and (AF)16. Also
show that the result is a weighted checksum. 

P10-22. Manually simulate the Adler algorithm (Figure 10.19) to calculate the check-
sum of the following words: (FBFF)16 and (EFAA)16. Also show that the
result is a weighted checksum. 

P10-23. One of the examples of a weighted checksum is the ISBN-10 code we see
printed on the back cover of some books. In ISBN-10, there are 9 decimal dig-
its that define the country, the publisher, and the book. The tenth (rightmost)
digit is a checksum digit. The code, D1D2D3D4D5D6D7D8D9C, satisfies the
following. 

In other words, the weights are 10, 9, . . .,1. If the calculated value for C is 10,
one uses the letter X instead. By replacing each weight w with its complement
in modulo 11 arithmetic (11 − w), it can be shown that the check digit can be
calculated as shown below. 

Calculate the check digit for ISBN-10: 0-07-296775-C. 
P10-24. An ISBN-13 code, a new version of ISBN-10, is another example of a

weighted checksum with 13 digits, in which there are 12 decimal digits
defining the book and the last digit is the checksum digit. The code,
D1D2D3D4D5D6D7D8D9D10D11D12C, satisfies the following. 

In other words, the weights are 1 and 3 alternately. Using the above descrip-
tion, calculate the check digit for ISBN-13: 978-0-07-296775-C. 

P10-25. In the interleaving approach to FEC, assume each packet contains 10 samples
from a sampled piece of music. Instead of loading the first packet with the first
10 samples, the second packet with the second 10 samples, and so on, the
sender loads the first packet with the odd-numbered samples of the first 20
samples, the second packet with the even-numbered samples of the first 20
samples, and so on. The receiver reorders the samples and plays them. Now
assume that the third packet is lost in transmission. What will be missed at the
receiver site?

P10-26. Assume we want to send a dataword of two bits using FEC based on the Ham-
ming distance. Show how the following list of datawords/codewords can auto-
matically correct up to a one-bit error in transmission. 

 [(10 × D1) + (9 × D2) + (8 × D3) +  . . .  + (2 × D9) + (1 × C)] mod 11 = 0

 C = [(1 × D1) + (2 × D2) + (3 × D3) + . . . + (9 × D9)] mod 11

[(1 × D1) + (3 × D2) + (1 × D3) + . . . + (3 × D12) + (1 × C)] mod 10 = 0

00 → 00000 01→ 01011 10 → 10101 11 → 11110
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P10-27. Assume we need to create codewords that can automatically correct a one-bit
error. What should the number of redundant bits (r) be, given the number of
bits in the dataword (k)? Remember that the codeword needs to be n = k + r
bits, called C(n, k). After finding the relationship, find the number of bits in r
if k is 1, 2, 5, 50, or 1000.   

P10-28. In the previous problem we tried to find the number of bits to be added to a
dataword to correct a single-bit error. If we need to correct more than one bit,
the number of redundant bits increases. What should the number of redundant
bits (r) be to automatically correct one or two bits (not necessarily contiguous)
in a dataword of size k? After finding the relationship, find the number of bits
in r if k is 1, 2, 5, 50, or 1000.    

P10-29. Using the ideas in the previous two problems, we can create a general formula
for correcting any number of errors (m) in a codeword of size (n). Develop
such a formula. Use the combination of n objects taking x objects at a time. 

P10-30. In Figure 10.22, assume we have 100 packets. We have created two sets of
packets with high and low resolutions. Each high-resolution packet carries on
average 700 bits. Each low-resolution packet carries on average 400 bits. How
many extra bits are we sending in this scheme for the sake of FEC? What is
the percentage of overhead?

10.8 SIMULATION EXPERIMENTS
10.8.1 Applets
We have created some Java applets to show some of the main concepts discussed in this
chapter. It is strongly recommended that the students activate these applets on the book
website and carefully examine the protocols in action. 

10.9 PROGRAMMING ASSIGNMENTS
For each of the following assignments, write a program in the programming language
you are familiar with.

Prg10-1. A program to simulate the calculation of CRC.

Prg10-2. A program to simulate the calculation of traditional checksum.

Prg10-3. A program to simulate the calculation of Fletcher checksum.

Prg10-4. A program to simulate the calculation of Adler checksum.
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