

One Stop for All Study Materials

& Lab Programs

Fifure Vision By K B Hemanth Raj

Scan the QR Code to Visit the Web Page

Or

Visit : <u>https://hemanthrajhemu.github.io</u>

Gain Access to All Study Materials according to VTU, CSE – Computer Science Engineering, ISE – Information Science Engineering, ECE - Electronics and Communication Engineering & MORE...

Join Telegram to get Instant Updates: <u>https://bit.ly/VTU_TELEGRAM</u>

Contact: MAIL: <u>futurevisionbie@gmail.com</u>

INSTAGRAM: <u>www.instagram.com/hemanthraj_hemu/</u>

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: <u>https://bit.ly/FVBIESHARE</u>

	DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY					
(Effective from the academic year 2018 - 2019)						
SEMESTER – IV						
Course (Code	18CSL47	CIE Marks	40		
Number of Contact Hours/Week		0:2:2	SEE Marks	60		
Total Number of Lab Contact Hours		36	Exam Hours	03		
Credits – 2						
Course Learning Objectives: This course (18CSL47) will enable students to:						
• Design and implement various algorithms in JAVA						
• Employ various design strategies for problem solving.						
Measure and compare the performance of different algorithms.						
Descriptions (if any):						
• Design, develop, and implement the specified algorithms for the following problems using Java						
language under LINUX /Windows environment. Netbeans / Eclipse or IntellijIdea Community						
Edition IDE tool can be used for development and demonstration.						
• Installation procedure of the required software must be demonstrated, carried out in						
-	groups and documented in the journal	•				
Program	ns List:					
1.						
	a. Create a Java class called <i>Student</i> w	ith the following	g details as variables with	hin it.		
	(1) USN					
	(ii) Name					
	(iii) Programme					
	(IV) Phone Write a Java program to graata nStu	dant objects and	print the USN Name D	rogramma and		
	Phone of these objects with suitable	bendings	print the USIN, Manie, P	rogramme, and		
	h Write a Java program to implement	nearings.	sing arrays Write Due	h() Pop() and		
	Display() methods to demonstrate it	working	sing arrays. which has	an(), 1 op(), and		
2		5 working.				
2.	a. Design a superclass called Staff wi	th details as Sta	ffId. Name. Phone. Sala	ary. Extend this		
	class by writing three subclasses	namely <i>Teach</i>	ing (domain, publication	ons). <i>Technical</i>		
	(skills), and <i>Contract</i> (period). Wr	ite a Java progr	am to read and display	at least 3 staff		
	objects of all three categories.	1 0	1 5	55		
	b. Write a Java class called <i>Customer</i>	to store their nar	ne and date_of_birth. Th	he date_of_birth		
	format should be dd/mm/yyyy.	Write methods	to read customer d	ata as <name,< td=""></name,<>		
	dd/mm/yyyy> and display as <r< td=""><td>name, dd, mm,</td><td>yyyy> using String</td><td>Fokenizer class</td></r<>	name, dd, mm,	yyyy> using String	Fokenizer class		
	considering the delimiter character a	ıs "/".				
3.						
	a. Write a Java program to read two in	tegers a and b . C	ompute <i>a/b</i> and print, w	hen b is not zero.		
	Raise an exception when b is equal t	to zero.				
	b. Write a Java program that implement	nts a multi-thread	l application that has thr	ee threads. First		
	thread generates a random integer for	or every 1 second	d; second thread comput	tes the square of		
	the number andprints; third thread w	ill print the valu	e of cube of the number.			
4.	Sort a given set of <i>n</i> integer elem	ents using Qui	ck Sort method and co	ompute its time		
	complexity. Run the program for va	ried values of <i>n</i> >	> 5000 and record the tir	ne taken to sort.		
	Plot a graph of the time taken versu	s n on graph she	et. The elements can be	read from a file		
	or can be generated using the rando	om number gene	erator. Demonstrate usin	ng Java how the		
	divide-and-conquer method works	along with its	time complexity analys	sis: worst case,		
	average case and best case.		C (1 1 1	· · · ·		
Э.	Sort a given set of <i>n</i> integer elem	ents using Mer	ge Sort method and co	Simplified the stress time		

https://hemanthrajhemu.github.io

	complexity. Run the program for varied values of $n > 5000$, and record the time taken to			
	sort. Plot a graph of the time taken versus n on graph sheet. The elements can be read from			
	file or can be generated using the random number generator. Demonstrate using Java how			
	the divide-and-conquer method works along with its time complexity analysis: worst case.			
	average case and best case.			
6.	Implement in Java, the 0/1 Knapsack problem using (a) Dynamic Programming method (b)			
	Greedy method.			
7.	From a given vertex in a weighted connected graph, find shortest paths to other vertices			
	using Dijkstra's algorithm . Write the program in Java.			
8.	Find Minimum Cost Spanning Tree of a given connected undirected graph using			
	Kruskal'salgorithm. Use Union-Find algorithms in your program			
9.	Find Minimum Cost Spanning Tree of a given connected undirected graph using			
	Prim's algorithm.			
10.	Write Java programs to			
	(a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm.			
	(b) Implement Travelling Sales Person problem using Dynamic programming.			
11.	Design and implement in Java to find a subset of a given set $S = \{S_1, S_2, \dots, S_n\}$ of <i>n</i>			
	positive integers whose SUM is equal to a given positive integer d. For example, if $S = \{1, 2, \dots, N\}$			
	5, 6, 8} and $d= 9$, there are two solutions {1,2,6} and {1,8}. Display a suitable message, if			
	the given problem instance doesn't have a solution.			
12.	Design and implement in Java to find all Hamiltonian Cycles in a connected undirected			
	Graph G of <i>n</i> vertices using backtracking principle.			
Laboratory Outcomes: The student should be able to:				
Design algorithms using appropriate design techniques (brute-force, greedy, dynamic				
programming, etc.)				
• Im	• Implement a variety of algorithms such assorting, graph related, combinatorial, etc., in a high			
lev	rel language.			
• Analyze and compare the performance of algorithms using language features.				
• Apply and implement learned algorithm design techniques and data structures to solve real-world				
pro	problems.			
Conduct of Practical Examination:				
• Ex	periment distribution			
	• For laboratories having only one part: Students are allowed to pick one experiment from			
	the lot with equal opportunity.			
	 For laboratories having PART A and PART B: Students are allowed to pick one 			
	experiment from PART A and one experiment from PART B, with equal opportunity.			
• Ch	ange of experiment is allowed only once and marks allotted for procedure to be made zero of			
the changed part only.				
• Marks Distribution (Courseed to change in accoradance with university regulations)				
e) For laboratories having only one part – Procedure + Execution + Viva-Voce: 15+70+15 =				
	100 Marks			
f	For laboratories having PART A and PART B			
	i. Part A – Procedure + Execution + Viva = $6 + 28 + 6 = 40$ Marks			
	ii. Part B – Procedure + Execution + Viva = $9 + 42 + 9 = 60$ Marks			

https://hemanthrajhemu.github.io