FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE

CBCS Scheme

USN

Fourth Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Additional Mathematics - II

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.
1 a. Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cccc}\frac{\text { Module-1 }}{2} & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ by applying elimentary row transformations.
(06 Marks)
b. Solve the following system of equations by Gauss-elimination method: $x+y+z=9$, $x-2 y+3 z=8$ and $2 x+y-z=3$.
(05 Marks)
c. Find the inverse of the matrix $\left[\begin{array}{cc}5 & -2 \\ 3 & 1\end{array}\right]$ using Cayley-Hamilton theorem.
(05 Marks)

2 a. Find the rank of the matrix $\left[\begin{array}{cccc}1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5\end{array}\right]$ by reducing it to echelon form. (06 Marks)
b. Solve the following system of equations by Gauss-elimination method: $x+y+z=9$, $2 x-3 y+4 z=13$ and $3 x+4 y+5 z=40$.
(05 Marks)
c. Find the eigen values of $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
(05 Marks)

Module-2

3 a. Solve $\left(D^{4}-2 D^{3}+5 D^{2}-8 D+4\right) y=0$.
(05 Marks)
b. Solve $\frac{d^{2} y}{d x^{2}}-4 y=\cosh (2 x-1)+3^{x}$.
(05 Marks)
c. Solve by the method of variation of parameters $y^{\prime \prime}+a^{2} y=\sec a x$.
(06 Marks)
OR
4 a. Solve $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-2 y=e^{x}$.
(05 Marks)
b. Solve $\left(D^{2}+5 D+6\right) y=\sin x$.
(05 Marks)
c. Solve by the method of undetermined coefficients $y^{\prime \prime}+2 y^{\prime}+y=x^{2}+2 x$
(06 Marks)

Module-3

5 a. Find the Laplace transform of $\cos t \cdot \cos 2 \mathrm{t} \cdot \cos 3 \mathrm{t}$.
(06 Marks)
b. Find the Laplace transform $f(t)=\frac{K t}{T}, \quad 0<t<\pi, f(t+T)=f(t)$.
(05 Marks)
c. Express $f(t)=\left\{\begin{array}{cc}\cos t, & 0<t<\pi \\ \sin t, & t>\pi\end{array}\right\}$ in terms of unit step function, and hence find $\mathrm{L}[\mathrm{f}(\mathrm{t})]$.

OR

6 a. Find the Laplace transform of (i) $t \cos a t$, (ii) $\frac{1-e^{-a t}}{t}$.
(05 Marks)
b. Find the Laplace transform of a periodic function a period 2 a , given that

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}
\mathrm{t}, & 0 \leq \mathrm{t}<\mathrm{a} \\
2 \mathrm{a}-\mathrm{t}, & \mathrm{a} \leq \mathrm{t}<2 \mathrm{a}
\end{array}\right\} \mathrm{f}(\mathrm{t}+2 \mathrm{a})=\mathrm{f}(\mathrm{t})
$$

(05 Marks)
c. Express $f(t)=\left\{\begin{array}{ll}1, & 0<t<1 \\ t, & 1<t \leq 2 \\ t^{2}, & t>2\end{array}\right\}$ in terms of unit step function and hence find its Laplace transform.
(05 Marks)

Module-4

7 a. Find the inverse Laplace transform of (i) $\frac{(\mathrm{s}+2)^{3}}{\mathrm{~s}^{6}}$, (ii) $\frac{\mathrm{s}+5}{\mathrm{~s}^{2}-6 \mathrm{~s}+13}$.
b. Find inverse Laplace transform of $\log \left[\frac{s^{2}+4}{s(s+4)(s-4)}\right]$.
(05 Marks)
c. Solve by using Laplace transforms $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+\mathrm{k}^{2} \mathrm{y}=0$, given that $\mathrm{y}(0)=2, \mathrm{y}^{\prime}(0)=0$. (05 Marks)

8 a. Find the inverse Laplace transform of $\frac{4 s+5}{(s+1)^{2}(s+2)}$.
(06 Marks)
b. Find the inverse Laplace transform of $\cot ^{-1}\left(\frac{s+a}{b}\right)$.
(05 Marks)
c. Using Laplace transforms solve the differential equation $\mathrm{y}^{\prime \prime}+4 \mathrm{y}^{\prime}+3 \mathrm{y}=\mathrm{e}^{-t}$ with $\mathrm{y}(0)=1$, $y^{\prime}(0)=1$.
(05 Marks)

Module-5

9 a. If A and B are any two events of S , which are not mutually exclusive then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
(05 Marks)
b. The probability that 3 students A, B, C, solve a problem are $1 / 2,1 / 3,1 / 4$ respectively. If the problem is simultaneously assigned to all of them, what is the probability that the problem is solved?
(05 Marks)
c. In a class 70% are boys and 30% are girls. 5% of boys, 3% of girls are irregular to the classes. What is the probability of a student selected at random is irregular to the classes and what is the probability that the irregular student is a girl?
(06 Marks)
OR
10 a. If A and B are independent events then prove that \bar{A} and $\overline{\mathrm{B}}$ are also independent events.
(05 Marks)
b. State and prove Baye's theorem.
(05 Marks)
c. A Shooter can hit a target in 3 out of 4 shots and another shooter can hit the target in 2 out or 3 shoots. Find the probability that the target is being hit:
(i) when both of them try
(ii) by only one shooter.
(06 Marks)

