FUTURE VISION BIE

One Stop for All Study Materialls
\& Labl Prograns

Firupe Vision
By-K-B-Hemanth Raj-
Scan the QR Code to Wisit the Web Page

Or
Visit : https://hemanthrajhemu.github.io
Gain Access to All Study Materials according to VTU, CSE - Computer Science Engineering, ISE - Information Science Engineering, ECE - Electronics and Communication Engineering \& \mathbb{M} ORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM
Contact: MAIL: futurevisionbie@gmail.com
INSTAGRAM: www.instagram.com/hemanthraj_hemu/
INSTAGRAM: www.instagram.com/futurevisionbie/
WHATSAPP SHARE: https://bit.ly/FVBIESHARE
B.L.D.E.ASSOCIATION: VACHANA PITAMAHA DR.P. G. HALAKATTI

USN

15MATDIP41

Fourth Semester B.E. Degree Examination, June/July 2018 Additional Mathematics - II
Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

b. Use Cayley-Hamilton theorem to find the inverse of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
(05 Marks)
c. Apply Gauss eiimination method to solve the equations $x+4 y-z=-5 ; x+y-6 z=-12$; $3 x-y-z=4$
(05 Marks)

OR

2 a. Find all the eigen values and eigen vector corresponding to the largest eigen value of $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.
(96 Marks)
b. Find the rank of the matrix by elementary row transformations $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right]$.
(05 Marks)
c. Solve the system of linear equations $x+y+z=6 ; 2 x-3 y+4 z=8 ; x-y+2 z=5$ by Gauss elimination method.
(05 Marks)

Module-2

3 a. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ by the method of variation of parameters.
(06 Marks)
b. Solve $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0$, given $x(0)=0, \frac{d x}{d t}(0)=15$.
(05 Marks)
c. Solve $\left(D^{2}+5 D+6\right) y=e^{x}$.
(05 Marks)
OR
4 a. Solve by the method of undetermined coefficients $\left(D^{2}-2 D+5\right) y=25 x^{2}+12$. (06 Marks)
b. Solve $\left(D^{2}+3 D+2\right) y=\sin 2 x$.
(05 Marks)
c. Solve $\left(D^{2}-2 D-1\right) y=e^{x} \cos x$.
(05 Marks)

Module-3

5 a. Find the Laplace transforms of, (i) $\mathrm{t} \cos ^{2} \mathrm{t}$ (ii) $\frac{1-\mathrm{e}^{-1}}{\mathrm{t}} \quad$ (06 Marks)
b. Find the Laplace transforms of, (i) $e^{-2 t}(2 \cos 5 t-\sin 5 t)$
(ii) $3 \sqrt{t}+\frac{4}{\sqrt{t}}$.
(05 Marks)
c. Express the function, $f(t)=\left\{\begin{array}{ll}t, & 0<t<4 \\ 5, & t>4\end{array}\right.$ in terms of unit step function and hence find its Laplace transform.
(05 Marks)

$$
1 \text { of } 2
$$

B.L.D.E. ASSOCIATION:

6 a. Find the Laplace transform of the periodic function defined by $f(t)=E \sin \omega t, 0<t<\frac{\pi}{\omega}$ having period $\frac{\pi}{\omega}$.
(06 Marks)
b. Find the Laplace transform of $2^{t}+t \sin t$.
(05 Marks)
c. Find the Laplace transform of $\frac{2 \sin t \sin 5 t}{t}$.

Module-4

7 a. Using laplace transforms method, solve $y^{\prime \prime}-6 y^{\prime}+9=t^{2} e^{3 t}, y(0)=2, y^{\prime}(0)=6 . \quad$ (06 Marks)
b. Find the inverse Lapiace transforms of, (i) $\frac{s^{2}-3 s+4}{s^{3}} \quad$ (ii) $\frac{s+3}{s^{2}-4 s+13} \quad$ (05 Marks)
c. Find the inverse Laplace transforms of, (i) $\log \left(\frac{s+1}{s-1}\right) \quad$ (ii) $\frac{s^{2}}{(s-2)^{3}}$
(05 Marks)

OR

8
a. Solve the simultaneous equations $\frac{d x}{d t}+5 x-2 y=t, \frac{d y}{d t}+2 x+y=0$ being given $x=y=0$ when $t=0$.
(06 Marks)
b. Find the inverse Laplace transforms of $\cot ^{-1}\left(\frac{s}{2}\right)$.
(05 Marks)
c. Find the inverse Laplace transforms of $\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}$.
(05 Marks)

Module-5

a. For any three arbitrary events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ prove that,
$\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{A})+\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
(04 Marks)
b. A class has 10 boys and 5 girls. Three students are selected at random, one after the other. Find probability that, (i) first two are boys and third is girl (ii) first and third boys and second is girl. (iii) first and third of same sex and the second is of opposite sex.
(06 Marks)
c. In a certain college 25% of boys and 10% of girls are studying mathematics. The girls constitute 60% of the student body. (i) what is the probability that mathematics is being studied? (ii) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (iii) a boy?
(06 Marks)

OR

(04 Marks)
10 a. State and prove Bayes theorem.
b. A problem in mathematics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved?
(06 Marks)
c. A pair of dice is iossed twice. Find the probability of scoring 7 points. (i) Once, (ii) at least once (iii) twice.
(06 Marks)

