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Three-Dimensional Object
Representations

1 Polyhedra

2 OpenGL Polyhedron Functions

3 Curved Surfaces

4 Quadric Surfaces

5 Superquadrics

6 OpenGL Quadric-Surface and
Cubic-Surface Functions

7 Summary

G raphics scenes can contain many different kinds of objects

and material surfaces: trees, flowers, clouds, rocks, water,

bricks, wood paneling, rubber, paper, marble, steel, glass,

plastic, and cloth, just to mention a few. So it may not be surprising

that there is no single method that we can use to describe objects

that will include all the characteristics of these different materials.

Polygon and quadric surfaces provide precise descriptions for

simple Euclidean objects such as polyhedrons and ellipsoids. They are

examples of boundary representations (B-reps), which describe

a three-dimensional object as a set of surfaces that separate the

object interior from the environment. In this chapter, we consider

the features of these types of representation schemes and how they

are used in computer-graphics applications.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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1 Polyhedra
The most commonly used boundary representation for a three-dimensional
graphics object is a set of surface polygons that enclose the object interior. Many
graphics systems store all object descriptions as sets of surface polygons. This
simplifies and speeds up the surface rendering and display of objects because all
surfaces are described with linear equations. For this reason, polygon descriptions
are often referred to as standard graphics objects. In some cases, a polygonal repre-
sentation is the only one available, but many packages also allow object surfaces
to be described with other schemes, such as spline surfaces, which are usually con-
verted to polygonal representations for processing through the viewing pipeline.

To describe an object as a set of polygon facets, we give the list of vertex coordi-
nates for each polygon section over the object surface. The vertex coordinates
and edge information for the surface sections are then stored in tables along with
other information, such as the surface normal vector for each polygon. Some
graphics packages provide routines for generating a polygon-surface mesh as a
set of triangles or quadrilaterals. This allows us to describe a large section of an
object’s bounding surface, or even the entire surface, with a single command.
And some packages also provide routines for displaying common shapes, such
as a cube, sphere, or cylinder, represented with polygon surfaces. Sophisticated
graphics systems use fast hardware-implemented polygon renderers that have the
capability for displaying a million or more shaded polygons (usually triangles) per
second, including the application of surface texture and special lighting effects.

2 OpenGL Polyhedron Functions
We have two methods for specifying polygon surfaces in an OpenGL program.
Using the polygon primitives we can generate a variety of polyhedron shapes and
surface meshes. In addition, we can use GLUT functions to display the five reg-
ular polyhedra.

OpenGL Polygon Fill-Area Functions
A set of polygon patches for a section of an object surface, or a complete
description for a polyhedron, can be given using the OpenGL primitive constants
GL POLYGON, GL TRIANGLES, GL TRIANGLE STRIP, GL TRIANGLE FAN,
GL QUADS, and GL QUAD STRIP. For example, we could tessellate the lateral
(axial) surface of a cylinder using a quadrilateral strip. Similarly, all faces of a par-
allelogram can be described with a set of rectangles, and all faces of a triangular
pyramid could be specified using a set of connected triangular surfaces.

GLUT Regular Polyhedron Functions
Some standard shapes—the five regular polyhedra—are predefined by routines
in the GLUT library. These polyhedra, also called the Platonic solids, are distin-
guished by the fact that all the faces of any regular polyhedron are identical reg-
ular polygons. Thus, all edges in a regular polyhedron are equal, all edge angles
are equal, and all angles between faces are equal. Polyhedra are named according
to the number of faces in each of the solids, and the five regular polyhedra are the
regular tetrahedron (or triangular pyramid, with 4 faces), the regular hexahedron
(or cube, with 6 faces), the regular octahedron (8 faces), the regular dodecahedron
(12 faces), and the regular icosahedron (20 faces).
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Ten functions are provided in GLUT for generating these solids: five of
the functions produce wire-frame objects, and five display the polyhedra facets
as shaded fill areas. The displayed surface characteristics for the fill areas are
determined by the material properties and the lighting conditions that we set for
a scene. Each regular polyhedron is described in modeling coordinates, so that
each is centered at the world-coordinate origin.

We obtain the four-sided, regular triangular pyramid using either of these
two functions:

glutWireTetrahedron ( );

or

glutSolidTetrahedron ( );

This polyhedron is generated with its center at the world-coordinate origin and
with a radius (distance from the center of the tetrahedron to any vertex) equal
to

√
3.
The six-sided regular hexahedron (cube) is displayed with

glutWireCube (edgeLength);

or

glutSolidCube (edgeLength);

Parameter edgeLength can be assigned any positive, double-precision floating-
point value, and the cube is centered on the coordinate origin.

To display the eight-sided regular octahedron, we invoke either of the follow-
ing commands:

glutWireOctahedron ( );

or

glutSolidOctahedron ( );

This polyhedron has equilateral triangular faces, and the radius (distance from
the center of the octahedron at the coordinate origin to any vertex) is 1.0.

The twelve-sided regular dodecahedron, centered at the world-coordinate
origin, is generated with

glutWireDodecahedron ( );

or

glutSolidDodecahedron ( );

Each face of this polyhedron is a pentagon.
The following two functions generate the twenty-sided regular icosahedron:

glutWireIcosahedron ( );

or

glutSolidIcosahedron ( );

Default radius (distance from the polyhedron center at the coordinate origin to
any vertex) for the icosahedron is 1.0, and each face is an equilateral triangle.
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F I G U R E 1
A perspective view of the five GLUT
polyhedra, scaled and positioned
within a display window by procedure
displayWirePolyhedra.

Example GLUT Polyhedron Program
Using the GLUT functions for the Platonic solids, the following program gener-
ates a transformed, wire-frame perspective display of these polyhedrons. All five
solids are positioned within one display window (shown in Figure 1).

#include <GL/glut.h>

GLsizei winWidth = 500, winHeight = 500; // Initial display-window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0); // White display window.
}

void displayWirePolyhedra (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set line color to blue.

/* Set viewing transformation. */
gluLookAt (5.0, 5.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

/* Scale cube and display as wire-frame parallelepiped. */
glScalef (1.5, 2.0, 1.0);
glutWireCube (1.0);

Three-Dimensional Object Representations

392

https://hemanthrajhemu.github.io



/* Scale, translate, and display wire-frame dodecahedron. */
glScalef (0.8, 0.5, 0.8);
glTranslatef (-6.0, -5.0, 0.0);
glutWireDodecahedron ( );

/* Translate and display wire-frame tetrahedron. */
glTranslatef (8.6, 8.6, 2.0);
glutWireTetrahedron ( );

/* Translate and display wire-frame octahedron. */
glTranslatef (-3.0, -1.0, 0.0);
glutWireOctahedron ( );

/* Scale, translate, and display wire-frame icosahedron. */
glScalef (0.8, 0.8, 1.0);
glTranslatef (4.3, -2.0, 0.5);
glutWireIcosahedron ( );

glFlush ( );
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);
glFrustum (-1.0, 1.0, -1.0, 1.0, 2.0, 20.0);

glMatrixMode (GL_MODELVIEW);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Wire-Frame Polyhedra");

init ( );
glutDisplayFunc (displayWirePolyhedra);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

3 Curved Surfaces
Equations for objects with curved boundaries can be expressed in either a para-
metric or a nonparametric form. The various objects that are often useful in graphics 
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applications include quadric surfaces, superquadrics, polynomial and exponen-
tial functions, and spline surfaces. These input object descriptions typically are
tessellated to produce polygon-mesh approximations for the surfaces.

4 Quadric Surfaces
A frequently used class of objects are the quadric surfaces, which are described
with second-degree equations (quadratics). They include spheres, ellipsoids, tori,
paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellip-
soids, are common elements of graphics scenes, and routines for generating these
surfaces are often available in graphics packages. Also, quadric surfaces can be
produced with rational spline representations.

Sphere
In Cartesian coordinates, a spherical surface with radius r centered on the coor-
dinate origin is defined as the set of points (x, y, z) that satisfy the equation

x2 + y2 + z2 = r2 (1)

z axis

y axis

x axis

P = (x, y, z)

r

u

f

F I G U R E 2
Parametric coordinate position
( r , θ , φ) on the surface of a sphere
with radius r .

z axis

y axis

x axis

P

u

f
r

F I G U R E 3
Spherical coordinate parameters
( r , θ , φ) , using colatitude for angle φ.

z

y

x

rx

rz

ry

F I G U R E 4
An ellipsoid with radii r x , r y , and r z ,
centered on the coordinate origin.

We can also describe the spherical surface in parametric form, using latitude and
longitude angles (Figure 2):

x = r cos φ cos θ , − π/2 ≤ φ ≤ π/2

y = r cos φ sin θ , − π ≤ θ ≤ π (2)

z = r sin φ

The parametric representation in Equations 2 provides a symmetric range
for the angular parameters θ and φ. Alternatively, we could write the parametric
equations using standard spherical coordinates, where angle φ is specified as the
colatitude (Figure 3). Then, φ is defined over the range 0 ≤ φ ≤ π , and θ is
often taken in the range 0 ≤ θ ≤ 2π . We could also set up the representation using
parameters u and v defined over the range from 0 to 1 by substituting φ = πu
and θ = 2πv.

Ellipsoid
An ellipsoidal surface can be described as an extension of a spherical surface
where the radii in three mutually perpendicular directions can have different
values (Figure 4). The Cartesian representation for points over the surface of an
ellipsoid centered on the origin is

(
x
rx

)2

+
(

y
ry

)2

+
(

z
rz

)2

= 1 (3)

And a parametric representation for the ellipsoid in terms of the latitude angle φ

and the longitude angle θ in Figure 2 is

x = rx cos φ cos θ , − π/2 ≤ φ ≤ π/2

y = ry cos φ sin θ , − π ≤ θ ≤ π (4)

z = rz sin φ
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Top ViewSide View

0 y axis

(x, y, z)

x axis

u

0

z axis

raxial

r
y axis

(0, y, z)

f

F I G U R E 5
A torus, centered on the coordinate
origin, with a circular cross-section and
with the torus axis along the z axis.

Torus
A doughnut-shaped object is called a torus or anchor ring. Most often it is described
as the surface generated by rotating a circle or an ellipse about a coplanar axis
line that is external to the conic. The defining parameters for a torus are then the
distance of the conic center from the rotation axis and the dimensions of the conic.
A torus generated by the rotation of a circle with radius r in the yz plane about
the z axis is shown in Figure 5. With the circle center on the y axis, the axial
radius, raxial, of the resulting torus is equal to the distance along the y axis to the
circle center from the z axis (the rotation axis); and the cross-sectional radius of
the torus is the radius of the generating circle.

The equation for the cross-sectional circle shown in the side view of
Figure 5 is

(y − raxial)
2 + z2 = r2

Rotating this circle about the z axis produces the torus whose surface positions
are described with the Cartesian equation

(√

x2 + y2 − raxial
)2 + z2 = r2 (5)

The corresponding parametric equations for the torus with a circular cross-section
are

x = (raxial + r cos φ) cos θ , − π ≤ φ ≤ π

y = (raxial + r cos φ) sin θ , − π ≤ θ ≤ π (6)

z = r sin φ

We could also generate a torus by rotating an ellipse, instead of a circle, about
the z axis. For an ellipse in the yz plane with semimajor and semiminor axes
denoted as ry and rz, we can write the ellipse equation as

(
y − raxial

ry

)2

+
(

z
rz

)2

= 1

where raxial is the distance along the y axis from the rotation z axis to the ellipse
center. This generates a torus that can be described with the Cartesian equation

(√

x2 + y2 − raxial

ry

)

+
(

z
rz

)2

= 1 (7)
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The corresponding parametric representation for the torus with an elliptical cross-
section is

x = (raxial + ry cos φ) cos θ , − π ≤ φ ≤ π

y = (raxial + ry cos φ) sin θ , − π ≤ θ ≤ π (8)

z = rz sin φ

Other variations on the preceding torus equations are possible. For example,
we could generate a torus surface by rotating either a circle or an ellipse along an
elliptical path around the rotation axis.

5 Superquadrics
The class of objects called Superquadrics is a generalization of the quadric rep-
resentations. Superquadrics are formed by incorporating additional parameters
into the quadric equations to provide increased flexibility for adjusting object
shapes. One additional parameter is added to curve equations, and two addi-
tional parameters are used in surface equations.

Superellipse
We obtain a Cartesian representation for a superellipse from the corresponding
equation for an ellipse by allowing the exponent on the x and y terms to be variable.
One way to do this is to write the Cartesian superellipse equation in the form

(
x
rx

)2/s

+
(

y
ry

)2/s

= 1 (9)

where parameter s can be assigned any real value. When s = 1, we have an ordi-
nary ellipse.

Corresponding parametric equations for the superellipse of Equation 9 can
be expressed as

x = rx coss θ , − π ≤ θ ≤ π

y = ry sins θ
(10)

Figure 6 illustrates superellipse shapes that can be generated using various
values for parameter s.

F I G U R E 6
Superellipses plotted with values for parameter s ranging from 0.5 to 3.0 and with r x = r y .
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Superellipsoid
A Cartesian representation for a superellipsoid is obtained from the equation for
an ellipsoid by incorporating two exponent parameters as follows:

[(
x
rx

)2/s2

+
(

y
ry

)2/s2
]s2/s1

+
(

z
rz

)2/s1

= 1 (11)

For s1 = s2 = 1, we have an ordinary ellipsoid.
We can then write the corresponding parametric representation for the

superellipsoid of Equation 11 as

x = rx coss1 φ coss2 θ , − π/2 ≤ φ ≤ π/2
y = ry coss1 φ sins2 θ , − π ≤ θ ≤ π (12)

z = rz sins1 φ

Color Plate 10 illustrates superellipsoid shapes that can be generated using various
values for parameters s1 and s2. These and other superquadric shapes can be
combined to create more complex structures, such as depictions of furniture,
threaded bolts, and other hardware.

6 OpenGL Quadric-Surface and
Cubic-Surface Functions

A sphere and a number of other three-dimensional quadric-surface objects can
be displayed using functions that are included in the OpenGL Utility Toolkit
(GLUT) and in the OpenGL Utility (GLU). In addition, GLUT has one function
for displaying a teapot shape that is defined with bicubic surface patches. The
GLUT functions, which are easy to incorporate into an application program, have
two versions each. One version of each function displays a wire-frame surface, and
the other displays the surface as a rendered set of fill-area polygon patches. With
the GLUT functions, we can display a sphere, cone, torus, or the teapot. Quadric-
surface GLU functions are a little more involved to set up, but they provide a few
more options. With the GLU functions, we can display a sphere, cylinder, tapered
cylinder, cone, flat circular ring (or hollow disk), and a section of a circular ring
(or disk).

GLUT Quadric-Surface Functions
We generate a GLUT sphere with either of these two functions:

glutWireSphere (r, nLongitudes, nLatitudes);

or

glutSolidSphere (r, nLongitudes, nLatitudes);

where the sphere radius is determined by the double-precision floating-point
number assigned to parameter r. Parameters nLongitudes and nLatitudes
are used to select the integer number of longitude and latitude lines that will
be used to approximate the spherical surface as a quadrilateral mesh. Edges of
the quadrilateral surface patches are straight-line approximations of the longitude
and latitude lines. The sphere is defined in modeling coordinates, centered at the
world-coordinate origin with its polar axis along the z axis.
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A GLUT cone is obtained with

glutWireCone (rBase, height, nLongitudes, nLatitudes);

or

glutSolidCone (rBase, height, nLongitudes, nLatitudes);

We set double-precision, floating-point values for the radius of the cone base and
for the cone height using parameters rbase and height, respectively. As with a
GLUT sphere, parameters nLongitudes and nLatitudes are assigned integer
values that specify the number of orthogonal surface lines for the quadrilateral
mesh approximation. A cone longitude line is a straight-line segment along the
cone surface from the apex to the base that lies in a plane containing the cone
axis. Each latitude line is displayed as a set of straight-line segments around
the circumference of a circle on the cone surface that is parallel to the cone base
and that lies in a plane perpendicular to the cone axis. The cone is described in
modeling coordinates, with the center of the base at the world-coordinate origin
and with the cone axis along the world z axis.

Wire-frame or surface-shaded displays of a torus with a circular cross-section
are produced with

glutWireTorus (rCrossSection, rAxial, nConcentrics,
nRadialSlices);

or

glutSolidTorus (rCrossSection, rAxial, nConcentrics,
nRadialSlices);

The torus obtained with these GLUT routines can be described as the surface gen-
erated by rotating a circle with radius rCrossSection about the coplanar z axis,
where the distance of the circle center from the z axis is rAxial (see Section 4).
We select a size for the torus using double-precision, floating-point values for
these radii in the GLUT functions. And the size of the quadrilaterals in the
approximating surface mesh for the torus is set with integer values for parameters
nConcentrics and nRadialSlices. Parameter nConcentrics specifies the
number of concentric circles (with center on the z axis) to be used on the torus
surface, and parameter nRadialSlices specifies the number of radial slices
through the torus surface. These two parameters designate the number of orthog-
onal grid lines over the torus surface, with the grid lines displayed as straight-line
segments (the boundaries of the quadrilaterals) between intersection positions.
The displayed torus is centered on the world-coordinate origin, with its axis along
the world z axis.

GLUT Cubic-Surface Teapot Function
During the early development of computer-graphics methods, sets of polygon-
mesh data tables were constructed for the description of several three-dimensional
objects that could be used to test rendering techniques. These objects included
the surfaces of a Volkswagen automobile and a teapot, developed at the Uni-
versity of Utah. The data set for the Utah teapot, as constructed by Martin
Newell in 1975, contains 306 vertices, defining 32 bicubic Bézier surface patches.
Since determining the surface coordinates for a complex object is time-consuming,
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these data sets, particularly the teapot surface mesh, became widely used.
We can display the teapot, as a mesh of over 1,000 bicubic surface patches,

using either of the following two GLUT functions:

glutWireTeapot (size);

or

glutSolidTeapot (size);

The teapot surface is generated using OpenGL Bézier curve functions
Parameter size sets the double-precision floating-point value for the maximum
radius of the teapot bowl. The teapot is centered on the world-coordinate origin
coordinate origin with its vertical axis along the y axis.

GLU Quadric-Surface Functions
To generate a quadric surface using GLU functions, we need to assign a name
to the quadric, activate the GLU quadric renderer, and designate values for the
surface parameters. In addition, we can set other parameter values to control the
appearance of a GLU quadric surface.

The following statements illustrate the basic sequence of calls for displaying
a wire-frame sphere centered on the world-coordinate origin:

GLUquadricObj *sphere1;

sphere1 = gluNewQuadric ( );
gluQuadricDrawStyle (sphere1, GLU_LINE);

gluSphere (sphere1, r, nLongitudes, nLatitudes);

A name for the quadric object is defined in the first statement, and, for this
example, we have chosen the name sphere1. This name is then used in other
GLU functions to reference this particular quadric surface. Next, the quadric ren-
derer is activated with the gluNewQuadric function, and then the display mode
GLU LINE is selected forsphere1with thegluQuadricDrawStyle command.
Thus, the sphere is displayed in a wire-frame form with a straight-line segment
between each pair of surface vertices. Parameter r is assigned a double-precision
value for the sphere radius, and the sphere surface is divided into a set of poly-
gon facets by the equally spaced longitude and latitude lines. We specify the
integer number of longitude lines and latitude lines as values for parameters
nLongitudes and nLatitudes.

Three other display modes are available for GLU quadric surfaces. Using
the symbolic constant GLU POINT in the gluQuadricDrawStyle, we display a
quadric surface as a point plot. For the sphere, a point is displayed at each surface
vertex formed by the intersection of a longitude line and a latitude line. Another
option is the symbolic constant GLU SILHOUETTE. This produces a wire-frame
display without the shared edges between two coplanar polygon facets. And
with the symbolic constant GLU FILL, we display the polygon patches as shaded
fill areas.

.
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We generate displays of the other GLU quadric-surface primitives using the
same basic sequence of commands. To produce a view of a cone, cylinder, or
tapered cylinder, we replace the gluSphere function with

gluCylinder (quadricName, rBase, rTop, height, nLongitudes,
nLatitudes);

The base of this object is in the xy plane (z = 0), and the axis is the z axis. We assign a
double-precision radius value to the base of this quadric surface using parameter
rBase, and we assign a radius to the top of the quadric surface using parameter
rTop. IfrTop= 0.0, we get a cone; ifrTop= rBase, we obtain a cylinder. Otherwise,
a tapered cylinder is displayed. A double-precision height value is assigned to
parameter height, and the surface is divided into a number of equally spaced
vertical and horizontal lines as determined by the integer values assigned to
parameters nLongitudes and nLatitudes.

A flat, circular ring or solid disk is displayed in the xy plane (z = 0) and
centered on the world-coordinate origin with

gluDisk (ringName, rInner, rOuter, nRadii, nRings);

We set double-precision values for an inner radius and an outer radius with
parameters rInner and rOuter. If rInner = 0, the disk is solid. Otherwise, it
is displayed with a concentric hole in the center of the disk. The disk surface is
divided into a set of facets with integer parameters nRadii and nRings, which
specify the number of radial slices to be used in the tessellation and the number
of concentric circular rings, respectively. Orientation for the ring is defined with
respect to the z axis, with the front of the ring facing in the +z direction and the
back of the ring facing in the −z direction.

We can specify a section of a circular ring with the following GLU function:

gluPartialDisk (ringName, rInner, rOuter, nRadii, nRings,
startAngle, sweepAngle);

The double-precision parameter startAngle designates an angular position
in degrees in the xy plane measured clockwise from the positive y axis. Simi-
larly, parameter sweepAngle denotes an angular distance in degrees from the
startAngle position. Thus, a section of a flat, circular disk is displayed from
angular position startAngle to startAngle + sweepAngle. For example, if
startAngle= 0.0 and sweepAngle= 90.0, then the section of the disk lying in
the first quadrant of the xy plane is displayed.

Allocated memory for any GLU quadric surface can be reclaimed and the
surface eliminated with

gluDeleteQuadric (quadricName);

Also, we can define the front and back directions for any quadric surface with the
following orientation function:

gluQuadricOrientation (quadricName, normalVectorDirection);

Parameter normalVectorDirection is assigned either GLU OUTSIDE or
GLU INSIDE to indicate a direction for the surface normal vectors, where
“outside” indicates the front-face direction and “inside” indicates the
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back-face direction. The default value isGLU OUTSIDE. For the flat, circular ring,
the default front-face direction is in the direction of the positive z axis (“above”
the disk). Another option is the generation of surface-normal vectors, as follows:

gluQuadricNormals (quadricName, generationMode);

A symbolic constant is assigned to parameter generationMode to indicate how
surface-normal vectors should be generated. The default is GLU NONE, which
means that no surface normals are to be generated and no lighting conditions
typically are applied to the quadric surface. For flat surface shading (a constant
color value for each surface), we use the symbolic constant GLU FLAT. This pro-
duces one surface normal for each polygon facet. When other lighting and shading
conditions are to be applied, we use the constant GLU SMOOTH, which generates
a normal vector for each surface vertex position.

Other options for GLU quadric surfaces include setting surface-texture
parameters. In addition, we can designate a function that is to be invoked if
an error occurs during the generation of a quadric surface:

gluQuadricCallback (quadricName, GLU_ERROR, function);

Example Program Using GLUT and GLU
Quadric-Surface Functions
Three quadric-surface objects (sphere, cone, and cylinder) are displayed in a wire-
frame representation by the following example program. We set the view-up
direction as the positive z axis so that the axis for all displayed objects is vertical.
The three objects are positioned at different locations within a single display
window, as shown in Figure 7.

F I G U R E 7
Display of a GLUT sphere, GLUT cone,
and GLU cylinder, positioned within a
display window by procedure
wireQuadSurfs.
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#include <GL/glut.h>

GLsizei winWidth = 500, winHeight = 500; // Initial display-window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color.
}

void wireQuadSurfs (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set line-color to blue.

/* Set viewing parameters with world z axis as view-up direction. */
gluLookAt (2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

/* Position and display GLUT wire-frame sphere. */
glPushMatrix ( );
glTranslatef (1.0, 1.0, 0.0);
glutWireSphere (0.75, 8, 6);
glPopMatrix ( );

/* Position and display GLUT wire-frame cone. */
glPushMatrix ( );
glTranslatef (1.0, -0.5, 0.5);
glutWireCone (0.7, 2.0, 7, 6);
glPopMatrix ( );

/* Position and display GLU wire-frame cylinder. */
GLUquadricObj *cylinder; // Set name for GLU quadric object.
glPushMatrix ( );
glTranslatef (0.0, 1.2, 0.8);
cylinder = gluNewQuadric ( );
gluQuadricDrawStyle (cylinder, GLU_LINE);
gluCylinder (cylinder, 0.6, 0.6, 1.5, 6, 4);
glPopMatrix ( );

glFlush ( );
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);
glOrtho (-2.0, 2.0, -2.0, 2.0, 0.0, 5.0);

glMatrixMode (GL_MODELVIEW);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
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glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Wire-Frame Quadric Surfaces");

init ( );
glutDisplayFunc (wireQuadSurfs);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

7 Summary
Many representations have been developed for modeling the wide variety of
objects and materials that we might want to display in a computer-graphics scene.
In most cases, a three-dimensional object representation is rendered by a software
package as a standard graphics object, whose surfaces are displayed as a polygon
mesh.

Functions for displaying some common quadric surfaces, such as spheres and
ellipsoids, are often available in graphics packages. Extensions of the quadrics,
called superquadrics, provide additional parameters for creating a wider variety
of object shapes.

Polygon surface facets for a standard graphics object can be specified in
OpenGL using the polygon, triangle, or quadrilateral primitive functions. Also,
GLUT routines are available for displaying the five regular polyhedra. Spheres,
cones, and other quadric-surface objects can be displayed with GLUT and GLU
functions, and a GLUT routine is provided for the generation of the cubic-surface
Utah teapot. Tables 1 and 2 summarize the OpenGL polyhedron and quadric func-
tions discussed in this chapter.

T A B L E 1

Summary of OpenGL Polyhedron Functions

Function Description

glutWireTetrahedron Displays a wire-frame tetrahedron.

glutSolidTetrahedron Displays a surface-shaded tetrahedron.

glutWireCube Displays a wire-frame cube.

glutSolidCube Displays a surface-shaded cube.

glutWireOctahedron Displays a wire-frame octahedron.

glutSolidOctahedron Displays a surface-shaded octahedron.

glutWireDodecahedron Displays a wire-frame dodecahedron.

glutSolidDodecahedron Displays a surface-shaded dodecahedron.

glutWireIcosahedron Displays a wire-frame icosahedron.

glutSolidIcosahedron Displays a surface-shaded icosahedron.
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T A B L E 2

Summary of OpenGL Quadric-Surface and Cubic-Surface Functions

Function Description

glutWireSphere Displays a wire-frame GLUT sphere.

glutSolidSphere Displays a surface-shaded GLUT sphere.

glutWireCone Displays a wire-frame GLUT cone.

glutSolidCone Displays a surface-shaded GLUT cone.

glutWireTorus Displays a wire-frame GLUT torus with a circular
cross-section.

glutSolidTorus Displays a surface-shaded, circular cross-section
GLUT torus.

glutWireTeapot Displays a wire-frame GLUT teapot.

glutSolidTeapot Displays a surface-shaded GLUT teapot.

gluNewQuadric Activates the GLU quadric renderer for an object
name that has been defined with the declaration:
GLUquadricObj *nameOfObject;

gluQuadricDrawStyle Selects a display mode for a predefined GLU object name.

gluSphere Displays a GLU sphere.

gluCylinder Displays a GLU cone, cylinder, or tapered cylinder.

gluDisk Displays a GLU flat, circular ring or solid disk.

gluPartialDisk Displays a section of a GLU flat, circular ring or solid disk.

gluDeleteQuadric Eliminates a GLU quadric object.

gluQuadricOrientation Defines inside and outside orientations for a
GLU quadric object.

gluQuadricNormals Specifies how surface-normal vectors should be
generated for a GLU quadric object.

gluQuadricCallback Specifies a callback error function for a GLU quadric object.

REFERENCES
A detailed discussion of superquadrics is contained in
Barr (1981). Programming techniques for various repre-
sentations can be found in Glassner (1990), Arvo (1991),
Kirk (1992), Heckbert (1994), and Paeth (1995). Kilgard
(1996) discusses the GLUT functions for displaying poly-
hedrons, quadric surfaces, and the Utah teapot. And a
complete listing of the OpenGL functions in the core
library and in GLU is presented in Shreiner (2000).

EXERCISES
1 Set up an algorithm for converting a given sphere

to a polygon-mesh representation.

2 Set up an algorithm for converting a given ellip-
soid to a polygon-mesh representation.

3 Set up an algorithm for converting a given cylin-
der to a polygon-mesh representation.

4 Set up an algorithm for converting a given
superellipsoid to a polygon-mesh representation.

5 Set up an algorithm for converting a given torus
with a circular cross section to a polygon mesh
representation.

6 Set up an algorithm for converting a given torus
with an ellipsoidal cross section to a polygon
mesh representation.
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7 Write a program that displays a sphere in the
display window and allows the user to switch
between solid and wire-frame views of the sphere,
translate the sphere along any dimension, rotate
the sphere around its center in any direction, and
change the size of the sphere (i.e., its radius).

8 Write a program that displays a torus in the
display window and allows the user to switch
between solid and wire-frame views of the torus,
translate the torus along any dimension, rotate
the torus around its center in any direction, and
change the sizes of the torus’ defining properties
(i.e., the radius of its cross section ellipse and its
axial radius).

9 Write a program that displays a sphere of fixed
radius at world coordinate origin and allows the
user to adjust the number of longitude and lati-
tude lines used to approximate the sphere’s sur-
face as a quadrilateral mesh. The user should
also be able to switch between solid and wire-
frame views of the sphere. Vary the resolu-
tion of the mesh approximation and observe the
visual appearance of the sphere in both solid and
wire-frame mode.

10 Write a program that displays a cylinder of fixed
height and radius at world coordinate origin and
allows the user to adjust the number of lon-
gitude and latitude lines used to approximate
the cylinder’s surface as a quadrilateral mesh.
The user should also be able to switch between
solid and wire-frame views of the cylinder. Vary
the resolution of the mesh approximation and
observe the visual appearance of the cylinder in
both solid and wire-frame mode.

IN MORE DEPTH
1 The material presented in this chapter will allow

you to increase the complexity of the repre-
sentations of the objects in your application
by constructing more complex three-dimensional

shapes. Choose the most appropriate three-
dimensional shapes introduced in this chapter
to replace the polygonal approximations of the
objects in your application with which you have
been working so far. Be sure to include at least a
few curved-surface objects, using the GLU and
GLUT functions for generating spheres, ellip-
soids, and other quadric and cubic surfaces. Use
the shaded fill areas to render the objects, not
wire-frame views. Choose a reasonable setting for
the number of latitude and longitude lines used
to generate the polygon mesh approximation to
these curved-surface objects. Write routines to call
the appropriate functions and display the shapes
in the appropriate positions and orientations in
the scene. Use techniques in hierarchical model-
ing to generate objects that are better approximat-
ed as a group of these more-primitive shapes if
appropriate.

2 In this exercise, you will experiment with vary-
ing the resolution of the polygon meshes that
serve as the approximations to the curved-surface
objects specified in the previous exercise. Choose
a minimum number of latitude and longitude
lines at which the representation of the objects is
minimally acceptable as far as visual appearance
goes. Using this as a baseline, render the scene
from the previous exercise several times, each
time increasing the number of latitude and lon-
gitude lines that define the mesh approximations
of the objects by some fixed amount. For each set-
ting of resolution, record the amount of time that
it takes to render the scene using shaded fill areas
to render the objects. Continue doing this until
the resolution produces little or no noticeable dif-
ference in approximation quality. Then, make a
plot of rendering time as a function of resolution
parameters (number of latitude and longitude
lines) and discuss the properties of the plot. Is
there an ideal setting for this scene that balances
visual quality with performance?

Three-Dimensional Object Representations

405

https://hemanthrajhemu.github.io



This page intentionally left blank 

https://hemanthrajhemu.github.io



C o l o r P l a t e 1 0
Superellipsoids plotted with values for parameters s1 and s2 ranging
from 0.0 to 2.5 and with r x = r y = r z .

Three-Dimensional Object
Representations Color Plate

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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Spline Representations

1 Interpolation and Approximation
Splines

2 Parametric Continuity Conditions

3 Geometric Continuity Conditions

4 Spline Specifications

5 Spline Surfaces

6 Trimming Spline Surfaces

7 Cubic-Spline Interpolation Methods

8 Bézier Spline Curves

9 Bézier Surfaces

10 B-Spline Curves

11 B-Spline Surfaces

12 Beta-Splines

13 Rational Splines

14 Conversion Between Spline
Representations

15 Displaying Spline Curves and Surfaces

16 OpenGL Approximation-Spline
Functions

17 Summary
S plines are another example of boundary representation

modeling techniques. In drafting terminology, a spline is a

flexible strip used to produce a smooth curve through a des-

ignated set of points. Several small weights are distributed along the

length of the strip to hold it in position on the drafting table as the

curve is drawn. The term spline curve originally referred to a curve

drawn in this manner. We can mathematically describe such a curve

with a piecewise cubic polynomial function whose first and second

derivatives are continuous across the various curve sections. In com-

puter graphics, the term spline curve now refers to any composite

curve formed with polynomial sections satisfying any specified conti-

nuity conditions at the boundary of the pieces. A spline surface can

be described with two sets of spline curves. There are several differ-

ent kinds of spline specifications that are used in computer-graphics

applications. Each individual specification simply refers to a particular

type of polynomial with certain prescribed boundary conditions.

From Chapter 14 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson 
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Splines are used to design curve and surface shapes, to digitize drawings, and

to specify animation paths for the objects or the camera position in a scene. Typical

computer-aided design (CAD) applications for splines include the design of automobile

bodies, aircraft and spacecraft surfaces, ship hulls, and home appliances.

1 Interpolation and Approximation Splines

F I G U R E 1
A set of six control points interpolated
with piecewise continuous polynomial
sections.

We specify a spline curve by giving a set of coordinate positions, called control
points, which indicate the general shape of the curve. These coordinate positions
are then fitted with piecewise-continuous, parametric polynomial functions in one
of two ways. When polynomial sections are fitted so that all the control points
are connected, as in Figure 1, the resulting curve is said to interpolate the set
of control points. On the other hand, when the generated polynomial curve is
plotted so that some, or all, of the control points are not on the curve path, the re-
sulting curve is said to approximate the set of control points (Figure 2). Similar
methods are used to construct interpolation or approximation spline surfaces.

F I G U R E 2
A set of six control points
approximated with piecewise
continuous polynomial sections.

Interpolation methods are commonly used to digitize drawings or to specify
animation paths. Approximation methods are used primarily as design tools to
create object shapes. Figure 3 shows the screen display of an approximation
spline surface for a design application. Straight lines connect the control-point
positions above the surface.

A spline curve or surface is defined, modified, and manipulated with oper-
ations on the control points. By interactively selecting spatial positions for the
control points, a designer can set up an initial shape. After the polynomial fit
is displayed for a given set of control points, the designer can then reposition
some of or all the control points to restructure the shape of the object. Geomet-
ric transformations (translation, rotation, and scaling) are applied to the object
by transforming the control points. In addition, CAD packages sometimes insert
extra control points to aid a designer in adjusting the object shapes.

A set of control points forms a boundary for a region of space that is called the
convex hull. One way to envision the shape of a convex hull for a two-dimensional
curve is to imagine a rubber band stretched around the positions of the control

F I G U R E 3
An approximation spline surface for a
CAD application in automotive design.
Surface contours are plotted with
polynomial curve sections, and the
surface control points are connected
with straight-line segments. (Courtesy
of Evans & Sutherland.)
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F I G U R E 4
Convex-hull shapes (dashed lines) for
two sets of control points in the x y
plane.
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p1 F I G U R E 5
Control-graph shapes (dashed lines)
for two sets of control points in the x y
plane.

points so that each control point is either on the perimeter of this boundary or
inside it (Figure 4). Thus, the convex hull for a two-dimensional spline curve is
a convex polygon. In three-dimensional space, the convex hull for a set of spline
control points forms a convex polyhedron. Convex hulls provide a measure for
the deviation of a curve or surface from the region of space near the control points.
In most cases, a spline is bounded by its convex hull, which ensures that the object
shape follows the control points without erratic oscillations. Also, the convex hull
provides a measure of the coordinate extents of a designed curve or surface, so it
is useful in clipping and viewing routines.

A polyline connecting the sequence of control points for an approximation
spline curve is usually displayed to remind a designer of the control-point posi-
tions and ordering. This set of connected line segments is called the control graph
for the curve. Often the control graph is alluded to as the “control polygon” or
the “characteristic polygon,” even though the control graph is a polyline and not
a polygon. Figure 5 shows the shape of the control graph for the control-point
sequences in Figure 4. For a spline surface, two sets of polyline control-point
connectors form the edges for the polygon facets in a quadrilateral mesh for
the surface control graph, as in Figure 3.

2 Parametric Continuity Conditions
To ensure a smooth transition from one section of a piecewise parametric spline to
the next, we can impose various continuity conditions at the connection points.
If each section of a spline curve is described with a set of parametric coordinate
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functions of the form

x = x(u), y = y(u), z = z(u), u1 ≤ u ≤ u2

we set parametric continuity by matching the parametric derivatives of adjoining
curve sections at their common boundary.

Zero-order parametric continuity, represented as C0 continuity, means sim-
ply that the curves meet. That is, the values of x, y, and z evaluated at u2 for the
first curve section are equal, respectively, to the values of x, y, and z evaluated at
u1 for the next curve section. First-order parametric continuity, referred to as C1

continuity, means that the first parametric derivatives (tangent lines) of the coor-
dinate functions in Equation 1 for two successive curve sections are equal at
their joining point. Second-order parametric continuity, or C2 continuity, means
that both the first and second parametric derivatives of the two curve sections are
the same at the intersection. Higher-order parametric continuity conditions are
defined similarly. Figure 6 shows examples of C 0, C 1, and C 2 continuity.

(a)

(b)

(c)

F I G U R E 6
Piecewise construction of a curve by
joining two curve segments using
different orders of continuity:
(a) zero-order continuity only,
(b) first-order continuity, and
(c) second-order continuity.

With second-order parametric continuity, the rates of change of the tangent
vectors of connecting sections are equal at their intersection. Thus, the tangent line
transitions smoothly from one section of the curve to the next [Figure 6(c)]. With
first-order parametric continuity, however, the rate of change of tangent vectors for
the two sections can be quite different [Figure 6(b)], so that the general shapes
of the two adjacent sections can change abruptly. First-order parametric continu-
ity is often sufficient for digitizing drawings and some design applications, while
second-order parametric continuity is useful for setting up animation paths for
camera motion and for many precision CAD requirements. A camera traveling
along the curve path in Figure 6(b) with equal steps in parameter u would
experience an abrupt change in acceleration at the boundary of the two sections,
producing a discontinuity in the motion sequence. But if the camera was trav-
eling along the path in Figure 6(c), the frame sequence for the motion would
smoothly transition across the boundary.

3 Geometric Continuity Conditions
Another method for joining two successive curve sections is to specify conditions
for geometric continuity. In this case, we require only that the parametric deriva-
tives of the two sections are proportional to each other at their common boundary,
instead of requiring equality.

Zero-order geometric continuity, described as G0 continuity, is the same as
zero-order parametric continuity. That is, two successive curve sections must
have the same coordinate position at the boundary point. First-order geometric
continuity, or G1 continuity, means that the parametric first derivatives are pro-
portional at the intersection of two successive sections. If we denote the parametric
position on the curve as P(u), the direction of the tangent vector P′(u), but not
necessarily its magnitude, will be the same for two successive curve sections at
their common point under G1 continuity. Second-order geometric continuity,
or G2 continuity, means that both the first and second parametric derivatives of
the two curve sections are proportional at their boundary. Under G2 continuity,
curvatures of two curve sections will match at the joining position.

A curve generated with geometric continuity conditions is similar to one
generated with parametric continuity, but with slight differences in curve shape.
Figure 7 provides a comparison of geometric and parametric continuity. With
geometric continuity, the curve is pulled toward the section with the greater mag-
nitude for the tangent vector.
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p0
p1

p2

C1

C3

F I G U R E 7
Three control points fitted with two curve sections joined with (a) parametric continuity and (b)
geometric continuity, where the tangent vector of curve C 3 at point P1 has a greater magnitude
than the tangent vector of curve C 1 at P1.

4 Spline Specifications
There are three equivalent methods for specifying a particular spline representa-
tion, given the degree of the polynomial and the control-point positions: (1) We
can state the set of boundary conditions that are imposed on the spline; or
(2) we can state the matrix that characterizes the spline; or (3) we can state the set
of blending functions (or basis functions) that determine how specified constraints
on the curve are combined to calculate positions along the curve path.

To illustrate these three equivalent specifications, suppose we have the fol-
lowing parametric cubic polynomial representation for the x coordinate along the
path of a spline-curve section:

x(u) = ax u3 + bx u2 + cx u + dx, 0 ≤ u ≤ 1 (2)

Boundary conditions for this curve can be set for the endpoint coordinate positions
x(0) and x(1) and for the parametric first derivatives at the endpoints: x′(0) and
x′(1). These four boundary conditions are sufficient to determine the values of the
four coefficients ax, bx, cx, and dx.

From the boundary conditions, we can obtain the matrix that characterizes
this spline curve by first rewriting Equation 2 as the following matrix product:

x(u) = [u3 u2 u 1]

⎡

⎢
⎢
⎣

ax

bx

cx

dx

⎤

⎥
⎥
⎦

= U · C (3)

where U is the row matrix of powers of parameter u and C is the coefficient column
matrix. Using Equation 3, we can write the boundary conditions in matrix form
and solve for the coefficient matrix C as

C = Mspline · Mgeom (4)

where Mgeom is a four-element column matrix containing the geometric constraint
values (boundary conditions) on the spline, and Mspline is the 4 by 4 matrix that
transforms the geometric constraint values to the polynomial coefficients and
provides a characterization for the spline curve. Matrix Mgeom contains control-
point coordinate values and other geometric constraints that have been specified.
Thus, we can substitute the matrix representation for C into Equation 3 to
obtain

x(u) = U · Mspline · Mgeom (5)

The matrix Mspline, characterizing a spline representation, sometimes called the
basis matrix, is particularly useful for transforming from one spline representation
to another.
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Finally, we can expand Equation 5 to obtain a polynomial representation
for coordinate x in terms of the geometric constraint parameters gk , such as the
control-point coordinates and slope of the curve at the control points:

x(u) =
3∑

k=0

gk · BFk(u) (6)

The polynomials BFk(u), for k = 0, 1, 2, 3, are called blending functions or ba-
sis functions because they combine (blend) the geometric constraint values to
obtain coordinate positions along the curve. In subsequent sections, we explore
the features of the various spline curves and surfaces that are useful in computer-
graphics applications, including the specification of their matrix and blending-
function representations.

5 Spline Surfaces
The usual procedure for defining a spline surface is to specify two sets of spline
curves using a mesh of control points over some region of space. If we denote the
control-point positions as pku,kv

, then any point position on the spline surface can
be computed as the product of the spline-curve blending functions as follows:

P(u, v) =
∑

ku,kv

pku,kv
BFku(u)BFkv

(v) (7)

Surface parameters u and v often vary over the range from 0 to 1, but this range
depends on the type of spline curves we use. One method for designating the
three-dimensional control-point positions is to select height values above a two-
dimensional mesh of positions on a ground plane.

6 Trimming Spline Surfaces
In CAD applications, a surface design may require some features that are not
implemented just by adjusting control-point positions. For instance, a section of
a spline surface may need to be snipped off to fit two design pieces together, or
a hole may be needed so that a conduit can pass through the surface. For these
applications, graphics packages often provide functions to generate trimming
curves that can be used to take out sections of a spline surface, as illustrated
in Figure 8. Trimming curves are typically defined in parametric uv surface
coordinates, and often they must be specified as closed curves.

F I G U R E 8
Modification of a surface section using trimming curves.

Trimming
Curves
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7 Cubic-Spline Interpolation Methods
This class of splines is most often used to set up paths for object motions or
to provide a representation for an existing object or drawing, but interpolation
splines are also used sometimes to design object shapes. Cubic polynomials offer
a reasonable compromise between flexibility and speed of computation. Com-
pared to higher-order polynomials, cubic splines require less calculations and
storage space, and they are more stable. Compared to quadratic polynomials
and straight-line segments, cubic splines are more flexible for modeling object
shapes.

Given a set of control points, cubic interpolation splines are obtained by fitting
the input points with a piecewise cubic polynomial curve that passes through
every control point. Suppose that we have n + 1 control points specified with
coordinates

pk = (xk , yk , zk), k = 0, 1, 2, . . . , n

A cubic interpolation fit of these points is illustrated in Figure 9. We can describe
the parametric cubic polynomial that is to be fitted between each pair of control
points with the following set of equations:

x(u) = ax u3 + bx u2 + cx u + dx

y(u) = ay u3 + by u2 + cy u + dy, (0 ≤ u ≤ 1) (8)

z(u) = az u3 + bz u2 + cz u + dz

For each of these three equations, we need to determine the values for the four
coefficients a , b, c, and d in the polynomial representation for each of the n curve
sections between the n + 1 control points. We do this by setting enough boundary
conditions at the control-point positions between curve sections so that we can
obtain numerical values for all the coefficients. In the following sections, we dis-
cuss common methods for setting the boundary conditions for cubic interpolation
splines.

Natural Cubic Splines
One of the first spline curves to be developed for graphics applications is the
natural cubic spline. This interpolation curve is a mathematical representation of
the original drafting spline. We formulate a natural cubic spline by requiring that
two adjacent curve sections have the same first and second parametric derivatives
at their common boundary. Thus, natural cubic splines have C2 continuity.

If we have n + 1 control points, as in Figure 9, then we have n curve
sections with a total of 4n polynomial coefficients to be determined. At each of
the n − 1 interior control points, we have four boundary conditions: The two
curve sections on either side of a control point must have the same first and
second parametric derivatives at that control point, and each curve must pass
through that control point. This gives us 4n − 4 equations to be satisfied by the 4n
polynomial coefficients. We obtain an additional equation from the first control
point p0, the position of the beginning of the curve, and another condition from
control point pn, which must be the last point on the curve. However, we still need

p0

p1
pk

p2

pn

pk�1
…

…

F I G U R E 9
A piecewise continuous cubic-spline
interpolation of n + 1 control points.
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two more conditions to be able to determine values for all the coefficients. One
method for obtaining the two additional conditions is to set the second derivatives
at p0 and pn equal to 0. Another approach is to add two extra control points (called
dummy points), one at each end of the original control-point sequence. That is, we
add a control point labeled p−1 at the beginning of the curve and a control point
labeled pn+1 at the end. Then all the original control points are interior points, and
we have the necessary 4n boundary conditions.

pk

pk � 1

P(u) � (x(u), y(u), z(u))

F I G U R E 1 0
Parametric point function P( u) for a
Hermite curve section between control
points pk and pk+1.

Although natural cubic splines are a mathematical model for the drafting
spline, they have a major disadvantage. If the position of any of the control points
is altered, the entire curve is affected. Thus, natural cubic splines allow for no
“local control,” so that we cannot restructure part of the curve without specifying
an entirely new set of control points. For this reason, other representations for a
cubic-spline interpolation have been developed.

Hermite Interpolation
A Hermite spline (named after the French mathematician Charles Hermite) is an
interpolating piecewise cubic polynomial with a specified tangent at each control
point. Unlike the natural cubic splines, Hermite splines can be adjusted locally
because each curve section depends only on its endpoint constraints.

If P(u) represents a parametric cubic point function for the curve section
between control points pk and pk+1, as shown in Figure 10, then the boundary
conditions that define this Hermite curve section are

P(0) = pk

P(1) = pk+1

P′(0) = Dpk

P′(1) = Dpk+1

(9)

with Dpk and Dpk+1 specifying the values for the parametric derivatives (slope
of the curve) at control points pk and pk+1, respectively.

We can write the vector equivalent of Equations 8 for this Hermite curve
section as

P(u) = a u3 + b u2 + c u + d, 0 ≤ u ≤ 1 (10)

where the x component of P(u) is x(u) = ax u3 + bx u2 + cx u + dx, and similarly
for the y and z components. The matrix equivalent of Equation 10 is

P(u) = [u3 u2 u 1] ·

⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

(11)

and the derivative of the point function can be expressed as

P′(u) = [3u2 2u 1 0] ·

⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

(12)

Substituting endpoint values 0 and 1 for parameter u into the preceding two equa-
tions, we can express the Hermite boundary conditions 9 in the matrix form

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

(13)
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Solving this equation for the polynomial coefficients, we get
⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

⎤

⎥
⎥
⎦

−1

·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

= MH ·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

(14)

where MH , the Hermite matrix, is the inverse of the boundary constraint matrix.
Equation 11 can thus be written in terms of the boundary conditions as

P(u) = [u3 u2 u 1] · MH ·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

(15)

Finally, we can determine expressions for the polynomial Hermite blending
functions, Hk(u) for k = 0, 1, 2, 3, by carrying out the matrix multiplications in
Equation 15 and collecting coefficients for the boundary constraints to obtain
the polynomial form

P(u) = pk(2u3 − 3u2 + 1) + pk+1(−2u3 + 3u2) + Dpk(u
3 − 2u2 + u)

+ Dpk+1(u
3 − u2)

= pk H0(u) + pk+1 H1 + Dpk H2 + Dpk+1 H3 (16)

Figure 11 shows the shape of the four Hermite blending functions.
Hermite polynomials can be useful for some digitizing applications, where

it may not be too difficult to specify or approximate the curve slopes. But for
most problems in computer graphics, it is more useful to generate spline curves
without requiring input values for curve slopes or other geometric information,
in addition to control-point coordinates. Cardinal splines and Kochanek-Bartels
splines, discussed in the following two sections, are variations on the Hermite
splines that do not require input values for the curve derivatives at the control
points. Procedures for these splines compute parametric derivatives from the
coordinate positions of the control points.

Cardinal Splines
As with Hermite splines, the cardinal splines are interpolating piecewise cubic
polynomials with specified endpoint tangents at the boundary of each curve sec-
tion. The difference is that we do not input the values for the endpoint tangents.
For a cardinal spline, the slope at a control point is calculated from the coordinates
of the two adjacent control points.
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(a)
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H0(u)

(d)
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(c)
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0 0
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(b)

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1
H1(u)

F I G U R E 1 1
The Hermite blending functions.

A cardinal spline section is completely specified with four consecutive
control-point positions. The middle two control points are the section endpoints,
and the other two points are used in the calculation of the endpoint slopes. If
we take P(u) as the representation for the parametric cubic point function for the
curve section between control points pk and pk+1, as in Figure 12, then the four
control points from pk−1 to pk+1 are used to set the boundary conditions for the
cardinal-spline section as

P(0) = pk

P(1) = pk+1

P′(0) = 1
2
(1 − t)(pk+1 − pk−1)

P′(1) = 1
2
(1 − t)(pk+2 − pk)

(17)

pk � 1

pk � 2

pk
p(u)

pk � 1

F I G U R E 1 2
Parametric point function P( u) for a
cardinal-spline section between
control points pk and pk+1.

pk � 2pk � 1

pk pk � 1

F I G U R E 1 3
Tangent vectors at the endpoints of a
cardinal-spline section are parallel to
the chords formed with neighboring
control points (dashed lines).

Thus, the slopes at control points pk and pk+1 are taken to be proportional, respec-
tively, to the chords pk−1pk+1 and pkpk+2 (Figure 13). Parameter t is called the
tension parameter because it controls how loosely or tightly the cardinal spline
fits the input control points. Figure 14 illustrates the shape of a cardinal curve
for very small and very large values of tension t. When t = 0, this class of curves
is referred to as Catmull-Rom splines, or Overhauser splines.
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t � 0
(Looser Curve)

t � 0
(Tighter Curve)

F I G U R E 1 4
Effect of the tension parameter on the
shape of a cardinal-spline section.

Using methods similar to those for Hermite splines, we can convert the bound-
ary conditions 17 into the matrix form

P(u) = [u3 u2 u 1] · MC ·

⎡

⎢
⎢
⎢
⎣

pk−1

pk

pk+1

pk+2

⎤

⎥
⎥
⎥
⎦

(18)

where the cardinal matrix is

MC =

⎡

⎢
⎢
⎣

−s 2 − s s − 2 s
2s s − 3 3 − 2s −s
−s 0 s 0
0 1 0 0

⎤

⎥
⎥
⎦

(19)

with s = (1 − t)/2.
Expanding Equation 18 into polynomial form, we have

P(u) = pk−1(−s u3 + 2s u2 − s u) + pk[(2 − s)u3 + (s − 3)u2 + 1]
+ pk+1[(s − 2)u3 + (3 − 2s)u2 + s u] + pk+2(s u3 − s u2)

= pk−1 CAR0(u) + pk CAR1(u) + pk+1 CAR2(u) + pk+2 CAR3(u) (20)

where the polynomials CARk(u) for k = 0, 1, 2, 3 are the cardinal-spline blending
(basis) functions. Figure 15 gives a plot of the basis functions for cardinal
splines with t = 0.

(a)

0.2 0.4 0.6 0.8 1
u

CAR0(u)

1

0.8

0.6

0.4

0.2

0

�0.2

(d)

0.2 0.4 0.6 0.8 1
u

CAR3(u)

1

0.8

0.6

0.4

0.2

0

�0.2

(b)
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u

CAR1(u)
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0.8

0.6

0.4

0.2

0

(c)

0.2 0.4 0.6 0.8 1
u

CAR2(u)

1

0.8

0.6

0.4

0.2

0

F I G U R E 1 5
The cardinal-spline blending functions for t = 0 (s = 0.5).
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Examples of curves produced with the cardinal-spline blending functions
are given in Figures 16, 17, and 18. In Figure 16, four cardinal-spline
sections are plotted to form a closed curve. The first curve section is generated
using the control-point set {p0, p1, p2, p3}, the second curve is produced with
the control-point set {p1, p2, p3, p0}, the third curve section has control points
{p2, p3, p0, p1}, and the final curve section has control points {p3, p0, p1, p2}. In
Figure 17, a closed curve is obtained with a single cardinal-spline section by
setting the position of the third control point to the coordinate position of the

F I G U R E 1 6
A closed curve with four cardinal-
spline sections, obtained with a cyclic
permutation of the control points and
with tension parameter t = 0.

2

1

4

p1
p2

p0
p3

6 8 10

�1

2

3

4

5

6

7

F I G U R E 1 7
A cardinal- spline loop produced with
curve endpoints at the same
coordinate position. The tension
parameter is set to the value 0. 10

10
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2

0 8642

p0 p3

p1 � p2

F I G U R E 1 8
A self-intersecting cardinal-spline
curve section produced with closely
spaced curve endpoint positions. The
tension parameter is set to the value 0.
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p0

p2

p1 p3
p4

b � 0 b � 0

p0 p1 p3
p4

p2

F I G U R E 1 9
Effect of the bias parameter on the
shape of a Kochanek-Bartels spline
section.

second control point. In Figure 18, a self-intersecting cardinal-spline section is
produced by setting the position of the third control point very near the coordinate
position of the second control point. The resulting self-intersection is due to the
constraints on the curve slope at the endpoints p1 and p2.

Kochanek-Bartels Splines
These interpolating cubic polynomials are extensions of the cardinal splines.
Two additional parameters are introduced into the constraint equations defining
Kochanek-Bartels splines to provide further flexibility in adjusting the shapes of
curve sections.

Given four consecutive control points, labeled pk−1, pk , pk+1, and pk+2, we
define the boundary conditions for a Kochanek-Bartels curve section between pk

and pk+1 as

P(0) = pk

P(1) = pk+1

P′(0)in = 1
2
(1 − t)[(1 + b)(1 − c)(pk − pk−1)

+ (1 − b)(1 + c)(pk+1 − pk)]

P′(1)out = 1
2
(1 − t)[(1 + b)(1 + c)(pk+1 − pk)

+ (1 − b)(1 − c)(pk+2 − pk+1)]

(21)

where t is the tension parameter, b is the bias parameter, and c is the continuity
parameter. In the Kochanek-Bartels formulation, parametric derivatives might
not be continuous across section boundaries.

Tension parameter t has the same interpretation as in the cardinal spline
formulation; that is, it controls the looseness or tightness of the curve sections.
Bias, b, is used to adjust the curvature at each end of a section so that curve
sections can be skewed toward one end or the other (Figure 19). Parameter c
controls the continuity of the tangent vector across the boundaries of sections. If
c is assigned a nonzero value, there is a discontinuity in the slope of the curve
across section boundaries.

Kochanek-Bartels splines were designed to model animation paths. In par-
ticular, abrupt changes in the motion of an object can be simulated with nonzero
values for parameter c. These motion changes are used in cartoon animations, for
example, when a cartoon character stops quickly, changes direction, or collides
with some other object.

8 Bézier Spline Curves
This spline approximation method was developed by the French engineer Pierre
Bézier for use in the design of Renault automobile bodies. Bézier splines have a
number of properties that make them highly useful and convenient for curve and
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surface design. They are also easy to implement. For these reasons, Bézier splines
are widely available in various CAD systems, in general graphics packages, and
in assorted drawing and painting packages.

In general, a Bézier curve section can be fitted to any number of control points,
although some graphic packages limit the number of control points to four. The
degree of the Bézier polynomial is determined by the number of control points
to be approximated and their relative position. As with the interpolation splines,
we can specify the Bézier curve path in the vicinity of the control points using
blending functions, a characterizing matrix, or boundary conditions. For general
Bézier curves, with no restrictions on the number of control points, the blending-
function specification is the most convenient representation.

Bézier Curve Equations
We first consider the general case of n + 1 control-point positions, denoted as
pk = (xk , yk , zk), with k varying from 0 to n. These coordinate points are blended
to produce the following position vector P(u), which describes the path of an
approximating Bézier polynomial function between p0 and pn:

P(u) =
n∑

k=0

pk BEZk,n(u), 0 ≤ u ≤ 1 (22)

The Bézier blending functions BEZk,n(u) are the Bernstein polynomials

BEZk,n(u) = C(n, k)uk(1 − u)n−k (23)

where parameters C(n, k) are the binomial coefficients

C(n, k) = n!
k!(n − k)!

(24)

Equation 22 represents a set of three parametric equations for the individual
curve coordinates:

x(u) =
n∑

k=0

xk BEZk,n(u)

y(u) =
n∑

k=0

yk BEZk,n(u) (25)

z(u) =
n∑

k=0

zk BEZk,n(u)

In most cases, a Bézier curve is a polynomial of a degree that is one less than
the designated number of control points: Three points generate a parabola, four
points a cubic curve, and so forth. Figure 20 demonstrates the appearance
of some Bézier curves for various selections of control points in the xy plane
(z = 0). With certain control-point placements, however, we obtain degenerate
Bézier polynomials. For example, a Bézier curve generated with three collinear
control points is a straight-line segment; and a set of control points that are all at
the same coordinate position produce a Bézier “curve” that is a single point.

Recursive calculations can be used to obtain successive binomial-coefficient
values as

C(n, k) = n − k + 1
k

C(n, k − 1) (26)

for n ≥ k. Also, the Bézier blending functions satisfy the recursive relationship

BEZk,n(u) = (1 − u)BEZk,n−1(u) + u BEZk−1,n−1(u), n > k ≥ 1 (27)

with BEZk,k = uk and BEZ0,k = (1 − u)k .
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F I G U R E 2 0
Examples of two-dimensional Bézier
curves generated with three, four, and
five control points. Dashed lines
connect the control-point positions.

Example Bézier Curve-Generating Program
An implementation for calculating the Bézier blending functions and generating
a two-dimensional, cubic Bézier-spline curve is given in the following program.
Four control points are defined in the xy plane, and 1000 pixel positions are plotted
along the curve path using a pixel width of 4. Values for the binomial coefficients
are calculated in procedure binomialCoeffs, and coordinate positions along
the curve path are calculated in procedure computeBezPt. These values are
passed to procedure bezier, and pixel positions are plotted using the OpenGL
point-plotting routines. Alternatively, we could have approximated the curve
path with straight-line sections, using fewer points. More efficient methods for
generating coordinate positions along the path of a spline curve are explored in
Section 15. For this example, the world-coordinate limits are set so that only the
curve points are displayed within the viewport (Figure 21). If we also wanted
to plot the control-point positions, the control graph, or the convex hull, we would
need to extend the limits of the world-coordinate clipping window.

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

/* Set initial size of the display window. */
GLsizei winWidth = 600, winHeight = 600;

/* Set size of world-coordinate clipping window. */
GLfloat xwcMin = -50.0, xwcMax = 50.0;
GLfloat ywcMin = -50.0, ywcMax = 50.0;
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F I G U R E 2 1
A Bézier curve displayed by the
example program.

class wcPt3D {
public:

GLfloat x, y, z;
};

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

}

void plotPoint (wcPt3D bezCurvePt)
{

glBegin (GL_POINTS);
glVertex2f (bezCurvePt.x, bezCurvePt.y);

glEnd ( );
}

/* Compute binomial coefficients C for given value of n. */
void binomialCoeffs (GLint n, GLint * C)
{

GLint k, j;

for (k = 0; k <= n; k++) {
/* Compute n!/(k!(n - k)!). */
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C [k] = 1;
for (j = n; j >= k + 1; j--)
C [k] *= j;

for (j = n - k; j >= 2; j--)
C [k] /= j;

}
}

void computeBezPt (GLfloat u, wcPt3D * bezPt, GLint nCtrlPts,
wcPt3D * ctrlPts, GLint * C)

{
GLint k, n = nCtrlPts - 1;
GLfloat bezBlendFcn;

bezPt->x = bezPt->y = bezPt->z = 0.0;

/* Compute blending functions and blend control points. */
for (k = 0; k < nCtrlPts; k++) {

bezBlendFcn = C [k] * pow (u, k) * pow (1 - u, n - k);
bezPt->x += ctrlPts [k].x * bezBlendFcn;
bezPt->y += ctrlPts [k].y * bezBlendFcn;
bezPt->z += ctrlPts [k].z * bezBlendFcn;

}
}

void bezier (wcPt3D * ctrlPts, GLint nCtrlPts, GLint nBezCurvePts)
{

wcPt3D bezCurvePt;
GLfloat u;
GLint *C, k;

/* Allocate space for binomial coefficients */
C = new GLint [nCtrlPts];

binomialCoeffs (nCtrlPts - 1, C);
for (k = 0; k <= nBezCurvePts; k++) {

u = GLfloat (k) / GLfloat (nBezCurvePts);
computeBezPt (u, &bezCurvePt, nCtrlPts, ctrlPts, C);
plotPoint (bezCurvePt);

}
delete [ ] C;

}

void displayFcn (void)
{

/* Set example number of control points and number of
* curve positions to be plotted along the Bezier curve.
*/
GLint nCtrlPts = 4, nBezCurvePts = 1000;

wcPt3D ctrlPts [4] = { {-40.0, -40.0, 0.0}, {-10.0, 200.0, 0.0},
{10.0, -200.0, 0.0}, {40.0, 40.0, 0.0} };

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.
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glPointSize (4);
glColor3f (1.0, 0.0, 0.0); // Set point color to red.

bezier (ctrlPts, nCtrlPts, nBezCurvePts);
glFlush ( );

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Maintain an aspect ratio of 1.0. */
glViewport (0, 0, newHeight, newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );

gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Bezier Curve");

init ( );
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ( );
}

Properties of Bézier Curves
A very useful property of a Bézier curve is that the curve connects the first and
last control points. Thus, a basic characteristic of any Bézier curve is that

P(0) = p0

P(1) = pn
(28)

Values for the parametric first derivatives of a Bézier curve at the endpoints
can be calculated from control-point coordinates as

P′(0) = −np0 + np1

P′(1) = −npn−1 + npn
(29)

From these expressions, we see that the slope at the beginning of the curve is
along the line joining the first two control points, and the slope at the end of the
curve is along the line joining the last two endpoints. Similarly, the parametric
second derivatives of a Bézier curve at the endpoints are calculated as

P′′(0) = n(n − 1)[(p2 − p1) − (p1 − p0)]
P′′(1) = n(n − 1)[(pn−2 − pn−1) − (pn−1 − pn)]

(30)
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Another important property of any Bézier curve is that it lies within the convex
hull (convex polygon boundary) of the control points. This follows from the fact
that the Bézier blending functions are all positive and their sum is always 1:

n∑

k=0

BEZk,n(u) = 1 (31)

so that any curve position is simply the weighted sum of the control-point
positions. The convex-hull property for a Bézier curve ensures that the polynomial
smoothly follows the control points without erratic oscillations.

Design Techniques Using Bézier Curves

p2

p1 p4

p3

p0 � p5 

F I G U R E 2 2
A closed Bézier curve generated by
specifying the first and last control
points at the same location.

A closed Bézier curve is generated when we set the last control-point position to
the coordinate position of the first control point, as in the example shown in Fig-
ure 22. Also, specifying multiple control points at a single coordinate position
gives more weight to that position. In Figure 23, a single coordinate position is
input as two control points, and the resulting curve is pulled nearer to this position.

We can fit a Bézier curve to any number of control points, but this requires the
calculation of polynomial functions of higher degree. When complicated curves
are to be generated, they can be formed by piecing together several Bézier sections
of lower degree. Generating smaller Bézier-curve sections also gives us better local
control over the shape of the curve. Because Bézier curves connect the first and
last control points, it is easy to match curve sections (zero-order continuity). Also,
Bézier curves have the important property that the tangent to the curve at an
endpoint is along the line joining that endpoint to the adjacent control point.
Therefore, to obtain first-order continuity between curve sections, we can pick
control points p0′ and p1′ for the next curve section to be along the same straight
line as control points pn−1 and pn of the preceding section (Figure 24). If the
first curve section has n control points and the next curve section has n′ control
points, then we match curve tangents by placing control point p1′ at the position

p1′ = pn + n
n′ (pn − pn−1) (32)

p1 � p2

p0 p4

p3

F I G U R E 2 3
A Bézier curve can be made to pass
closer to a given coordinate position
by assigning multiple control points to
that position.

To simplify the placement of p1′ , we can require only geometric continuity and
place p1′ anywhere along the line of pn−1 and pn.

We obtain C2 continuity by using the expressions in Equations 30 to match
parametric second derivatives for two adjacent Bézier sections. This establishes
a coordinate position for control point p2′ , in addition to the fixed positions for

p2

p0

p1

p0�

p1� p2�

p3�

F I G U R E 2 4
Piecewise approximation curve formed
with two Bézier sections. Zero-order
and first-order continuity is attained
between the two curve sections by
setting p0′ = p2 and by setting p1′

along the line formed with points p1
and p2.
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p0′ and p1′ that we need for C0 and C1 continuity. However, requiring second-
order continuity for Bézier curve sections can be unnecessarily restrictive. This
is particularly true with cubic curves, which have only four control points per
section. In this case, second-order continuity fixes the position of the first three
control points and leaves us only one point that we can use to adjust the shape of
the curve segment.

Cubic Bézier Curves
Many graphics packages provide functions for displaying only cubic splines.
This allows reasonable design flexibility while avoiding the increased calculations
needed with higher-order polynomials. Cubic Bézier curves are generated with
four control points. The four blending functions for cubic Bézier curves, obtained
by substituting n = 3 into Equation 23, are

BEZ0,3 = (1 − u)3

BEZ1,3 = 3u(1 − u)2

BEZ2,3 = 3u2(1 − u)

BEZ3,3 = u3

(33)

Plots of the four cubic Bézier blending functions are given in Figure 25.
The form of the blending functions determine how the control points influence the
shape of the curve for values of parameter u over the range from 0 to 1. At u = 0,

(a)

0.2 0.4 0.6 0.8 1
u u

0.2

0

0.4

0.6

0.8

1

BEZ0,3(u)

BEZ2,3(u) BEZ3,3(u)

BEZ1,3(u)

(d)

0.2 0.4 0.6 0.8 1

0.2
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0.4

0.6

0.8

1

(b)

0.2 0.4 0.6 0.8 1

0.2

0

0.4

0.6

0.8

1

(c)

0.2 0.4 0.6 0.8 1

0.2

0

0.4

0.6

0.8

1

u u

F I G U R E 2 5
The four Bézier blending functions for cubic curves (n = 3).
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the only nonzero blending function is BEZ0,3, which has the value 1. At u = 1, the
only nonzero function is BEZ3,3(1) = 1. Thus, a cubic Bézier curve always begins
at control point p0 and ends at the position of control point p3. The other functions,
BEZ1,3 and BEZ2,3, influence the shape of the curve at intermediate values of the
parameter u so that the resulting curve tends toward the points p1 and p2. Blend-
ing function BEZ1,3 is maximized at u = 1/3, and BEZ2,3 is maximized at u = 2/3.

We note in Figure 25 that each of the four blending functions is nonzero
over the entire range of parameter u between the endpoint positions. Thus, Bézier
curves do not allow for local control of the curve shape. If we reposition any one
of the control points, the entire curve is affected.

At the end positions of the cubic Bézier curve, the parametric first derivatives
(slopes) are

P′(0) = 3(p1 − p0), P′(1) = 3(p3 − p2)

and the parametric second derivatives are

P′′(0) = 6(p0 − 2p1 + p2), P′′(1) = 6(p1 − 2p2 + p3)

We can construct complex spline curves using a series of cubic-Bézier sections.
Using expressions for the parametric derivatives, we can equate curve tangents
to attain C1 continuity between the curve sections. In addition, we could use the
expressions for the second derivatives to obtain C2 continuity, although this leaves
us with no options for the placement of the first three control points.

A matrix formulation for the cubic-Bézier curve function is obtained by
expanding the polynomial expressions for the blending functions and restruc-
turing the equations as

P(u) = [u3 u2 u 1] · MBez ·

⎡

⎢
⎢
⎣

p0
p1
p2
p3

⎤

⎥
⎥
⎦

(34)

where the Bézier matrix is

MBez =

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥
⎥
⎦

(35)

We could also introduce additional parameters to allow adjustment of curve
“tension” and “bias,” as we did with the interpolating splines. But more ver-
satile types of splines (such as B-splines and beta-splines, discussed later in this
chapter) are often provided with this capability.

9 Bézier Surfaces
Two sets of orthogonal Bézier curves can be used to design an object surface. The
parametric vector function for the Bézier surface is formed as the tensor product
of Bézier blending functions:

P(u, v) =
m∑

j=0

n∑

k=0

p j,k BEZ j,m(v) BEZk,n(u) (36)

with p j,k specifying the location of the (m + 1) by (n + 1) control points.
Figure 26 illustrates two Bézier surface plots. The control points are con-

nected by dashed lines, and the solid lines show curves of constant u and
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F I G U R E 2 6
Wire-frame Bézier surfaces constructed
with (a) 9 control points arranged in a
3 × 3 mesh and (b) 16 control points
arranged in a 4 × 4 mesh. Dashed
lines connect the control points. (a) (b)

constant v. Each curve of constant u is plotted by varying v over the interval
from 0 to 1, with u fixed at one of the values in this unit interval. Curves of
constant v are plotted similarly.

Bézier surfaces have the same properties as Bézier curves, and they provide
a convenient method for interactive design applications. To specify the three-
dimensional coordinate positions for the control points, we could first construct
a rectangular grid in the xy “ground” plane. We then choose elevations above the
ground plane at the grid intersections as the z-coordinate values for the control
points.

Figure 27 illustrates a surface formed with two Bézier sections. As with
curves, a smooth transition from one section to the other is assured by establish-
ing both zero-order and first-order continuity at the boundary line. Zero-order
continuity is obtained by matching control points at the boundary. First-order
continuity is obtained by choosing control points along a straight line across the
boundary and by maintaining a constant ratio of collinear line segments for each
set of specified control points across section boundaries.

F I G U R E 2 7
A composite Bézier surface
constructed with two Bézier sections,
joined at the indicated boundary line.
The dashed lines connect the control
points. First-order continuity is
established by making the ratio of
length L 1 to length L 2 constant for
each collinear line of control points
across the boundary between the
surface sections.

Boundary Line

L1 L2
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10 B-Spline Curves
This spline category is the most widely used, and B-spline functions are com-
monly available in CAD systems and many graphics-programming packages.
Like Bézier splines, B-splines are generated by approximating a set of control
points. But B-splines have two advantages over Bézier splines: (1) the degree
of a B-spline polynomial can be set independently of the number of control
points (with certain limitations), and (2) B-splines allow local control over the
shape of a spline. The tradeoff is that B-splines are more complex than Bézier
splines.

B-Spline Curve Equations
We can write a general expression for the calculation of coordinate positions along
a B-spline curve using a blending-function formulation as

P(u) =
n∑

k=0

pk Bk,d(u), umin ≤ u ≤ umax, 2 ≤ d ≤ n + 1 (37)

where pk is an input set of n + 1 control points. There are several differences
between this B-spline formulation and the expression for a Bézier spline curve.
The range of parameter u now depends on how we choose the other B-spline
parameters. And the B-spline blending functions Bk,d are polynomials of degree
d − 1, where d is the degree parameter. (Sometimes parameter d is alluded to
as the “order” of the polynomial, but this can be misleading because the term
order is also often used to mean simply the degree of the polynomial.) The degree
parameter d can be assigned any integer value in the range from 2 up to the
number of control points (n + 1). Actually, we could also set the value of the
degree parameter at 1, but then our “curve” is just a point plot of the control
points. Local control for B-splines is achieved by defining the blending functions
over subintervals of the total range of u.

Blending functions for B-spline curves are defined by the Cox-deBoor recur-
sion formulas:

Bk,1(u) =
{

1 if uk ≤ u ≤ uk+1

0 otherwise

Bk,d(u) = u − uk

uk+d−1 − uk
Bk,d−1(u) + uk+d − u

uk+d − uk+1
Bk+1,d−1(u)

(38)

where each blending function is defined over d subintervals of the total range
of u. Each subinterval endpoint u j is referred to as a knot, and the entire set of
selected subinterval endpoints is called a knot vector. We can choose any values
for the subinterval endpoints, subject to the condition u j ≤ u j+1. Values for umin
and umax then depend on the number of control points we select, the value we
choose for the degree parameter d, and how we set up the subintervals (knot
vector). Because it is possible to choose the elements of the knot vector so that
some denominators in the Cox-deBoor calculations evaluate to 0, this formulation
assumes that any terms evaluated as 0/0 are to be assigned the value 0.

Figure 28 demonstrates the local-control characteristics of B-splines. In
addition to local control, B-splines allow us to vary the number of control points
used to design a curve without changing the degree of the polynomial. Also, we
can increase the number of values in the knot vector to aid in curve design. When
we do this, however, we must add control points because the size of the knot
vector depends on parameter n.
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F I G U R E 2 8
Local modification of a B-spline curve.
Changing one of the control points in
(a) produces curve (b), which is
modified only in the neighborhood of
the altered control point. (a) (b)

B-spline curves have the following properties:

• The polynomial curve has degree d −1 and Cd−2 continuity over the range
of u.

• For n+1 control points, the curve is described with n+1 blending functions.
• Each blending function Bk,d is defined over d subintervals of the total range

of u, starting at knot value uk .
• The range of parameter u is divided into n+d subintervals by the n+d +1

values specified in the knot vector.
• With knot values labeled as {u0, u1, . . . , un+d}, the resulting B-spline curve

is defined only in the interval from knot value ud−1 up to knot value un+1.
(Some blending functions are undefined outside this interval.)

• Each section of the spline curve (between two successive knot values) is
influenced by d control points.

• Any one control point can affect the shape of at most d curve sections.

In addition, a B-spline curve lies within the convex hull of at most d + 1 control
points, so that B-splines are tightly bound to the input positions. For any value
of u in the interval from knot value ud−1 to un+1, the sum over all basis functions
is 1, as follows:

n∑

k=0

Bk,d(u) = 1 (39)

Given the control-point positions and the value of the degree parameter d,
we then need to specify the knot values to obtain the blending functions using
the recurrence relations 38. There are three general classifications for knot vec-
tors: uniform, open uniform, and nonuniform. B-splines are commonly described
according to the selected knot vector class.

Uniform Periodic B-Spline Curves
When the spacing between knot values is constant, the resulting curve is called a
uniform B-spline. For example, we can set up a uniform knot vector as

{−1.5, −1.0, −0.5, 0.0, 0.5, 1.0, 1.5, 2.0}
Often knot values are normalized to the range between 0 and 1, as in

{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
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F I G U R E 2 9
Periodic B-spline blending functions for n = d = 3 and a uniform, integer knot vector.

It is convenient in many applications to set up uniform knot values with a sepa-
ration of 1 and a starting value of 0. The following knot vector is an example of
this specification scheme:

{0, 1, 2, 3, 4, 5, 6, 7}
Uniform B-splines have periodic blending functions. That is, for given values

of n and d, all blending functions have the same shape. Each successive blending
function is simply a shifted version of the previous function:

Bk,d(u) = Bk+1,d(u + �u) = Bk+2,d(u + 2�u) (40)

where �u is the interval between adjacent knot values. Figure 29 shows the
quadratic, uniform B-spline blending functions generated in the following exam-
ple for a curve with four control points.

E X A M P L E 1 Uniform, Quadratic B-Splines

To illustrate the formulation of B-spline blending functions for a uniform,
integer knot vector, we select parameter values d = n = 3. The knot vector
must then contain n + d + 1 = 7 knot values:

{0, 1, 2, 3, 4, 5, 6}
and the range for parameter u is from 0 to 6, with n + d = 6 subintervals.
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Each of the four blending functions spans d = 3 subintervals of the total
range for u. Using the recurrence relations 38, we obtain the first blending
function as

B0,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2

u2, for 0 ≤ u < 1

1
2

u(2 − u) + 1
2
(u − 1)(3 − u), for 1 ≤ u < 2

1
2
(3 − u)2, for 2 ≤ u < 3

We obtain the next periodic blending function using Equation 40, substitut-
ing u − 1 for u in B0,3, and shifting the starting positions up by 1:

B1,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(u − 1)2, for 1 ≤ u < 2

1
2
(u − 1)(3 − u) + 1

2
(u − 2)(4 − u), for 2 ≤ u < 3

1
2
(4 − u)2, for 3 ≤ u < 4

Similarly, the remaining two periodic functions are obtained by successively
shifting B1,3 to the right:

B2,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(u − 2)2, for 2 ≤ u < 3

1
2
(u − 2)(4 − u) + 1

2
(u − 3)(5 − u), for 3 ≤ u < 4

1
2
(5 − u)2, for 4 ≤ u < 5

B3,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(u − 3)2, for 3 ≤ u < 4

1
2
(u − 3)(5 − u) + 1

2
(u − 4)(6 − u), for 4 ≤ u < 5

1
2
(6 − u)2, for 5 ≤ u < 6

A plot of the four periodic, quadratic blending functions is given in
Figure 29, which demonstrates the local feature of B-splines. The first con-
trol point is multiplied by blending function B0,3(u). Therefore, changing the
position of the first control point affects the shape of the curve only up to u = 3.
Similarly, the last control point influences the shape of the spline curve in the
interval where B3,3 is defined.

Figure 29 also illustrates the limits of the B-spline curve for this example.
All blending functions are present in the interval from ud−1 = 2 to un+1 = 4.
Below 2 and above 4, not all blending functions are present. This interval,
from 2 to 4, is the range of the polynomial curve, and the interval in which
Equation 39 is valid. Thus, the sum of all blending functions is 1 within this
interval. Outside this interval, we cannot sum all blending functions, since they
are not all defined below 2 and above 4.
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Because the range of the resulting polynomial curve is from 2 to 4, we can deter-
mine the starting and ending position of the curve by evaluating theblending
functions at these points to obtain

Pstart = 1
2
(p0 + p1), Pend = 1

2
(p2 + p3)

Thus, the curve starts at the midposition between the first two control points
and ends at the midposition between the last two control points.

We can also determine the parametric derivatives at the starting and ending
positions of the curve. Taking the derivatives of the blending functions and
substituting the endpoint values for parameter u, we find that

P′
start = p1 − p0, P′

end = p3 − p2

The parametric slope of the curve at the start position is parallel to the line
joining the first two control points, and the parametric slope at the end of the
curve is parallel to the line joining the last two control points.

An example plot of the quadratic periodic B-spline curve is given in Fig-
ure 30 for four control points selected in the xy plane.

p0 p3

p2p1

F I G U R E 3 0
A quadratic, periodic B-spline fitted to
four control points in the x y plane.

In the preceeding example, we noted that the quadratic curve starts between
the first two control points and ends at a position between the last two control
points. This result is valid for a quadratic periodic B-spline fitted to any number of
distinct control points. In general, for higher-order polynomials, the start and end
positions are each weighted averages of d − 1 control points. We can pull a spline
curve closer to any control-point position by specifying that position multiple
times.

General expressions for the boundary conditions for periodic B-splines can
be obtained by reparameterizing the blending functions so that parameter u is
mapped onto the unit interval from 0 to 1. Beginning and ending conditions are
then obtained at u = 0 and u = 1.

Cubic Periodic B-Spline Curves

p0 p3

p2p1

p4p5

F I G U R E 3 1
A closed, periodic, piecewise, cubic
B-spline constructed using a cyclic
specification of four control points for
each curve section.

Because cubic periodic B-splines are commonly used in graphics packages, we
consider the formulation for this class of splines. Periodic splines are particu-
larly useful for generating certain closed curves. For example, the closed curve in
Figure 31 can be generated in sections by cyclically specifying four of the six
control points for each section. Also, if the coordinate positions for three consec-
utive control points are identical, the curve passes through that point.

For cubic B-spline curves, d = 4 and each blending function spans four sub-
intervals of the total range of u. If we are to fit the cubic to four control points,
then we could use the integer knot vector

{0, 1, 2, 3, 4, 5, 6, 7}

and recurrence relations 38 to obtain the periodic blending functions, as we
did in the last section for quadratic periodic B-splines.

To derive the curve equations for a periodic, cubic B-spline, we consider an
alternate formulation by starting with the boundary conditions and obtaining the
blending functions normalized to the interval 0 ≤ u ≤ 1. Using this formulation,
we can also obtain the characteristic matrix easily. The boundary conditions for
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periodic cubic B-splines with four control points, labeled p0, p1, p2, and p3, are

P(0) = 1
6
(p0 + 4p1 + p2)

P(1) = 1
6
(p1 + 4p2 + p3)

P′(0) = 1
2
(p2 − p0)

P′(1) = 1
2
(p3 − p1)

(41)

These boundary conditions are similar to those for cardinal splines: Curve sections
are defined with four control points, and parametric derivatives (slopes) at the
beginning and end of each curve section are parallel to the chords joining adjacent
control points. The B-spline curve section starts at a position near p1 and ends at
a position near p2.

A matrix formulation for a cubic periodic B-spline with four control points
can then be written as

P(u) = [u3 u2 u 1] · MB ·

⎡

⎢
⎢
⎣

p0
p1
p2
p3

⎤

⎥
⎥
⎦

(42)

where the B-spline matrix for periodic cubic polynomials is

MB = 1
6

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥
⎥
⎦

(43)

This matrix can be obtained by solving for the coefficients in a general cubic
polynomial expression, using the specified four boundary conditions.

We can also modify the B-spline equations to include a tension parameter t
(as in cardinal splines). The matrix for the periodic cubic B-spline, with tension
parameter t, is

MBt = 1
6

⎡

⎢
⎢
⎣

−t 12 − 9t 9t − 12 t
3t 12t − 18 18 − 15t 0

−3t 0 3t 0
t 6 − 2t t 0

⎤

⎥
⎥
⎦

(44)

which reduces to MB when t = 1.
We obtain the periodic cubic B-spline blending functions over the parameter

range from 0 to 1 by expanding the matrix representation into polynomial form.
For example, using the tension value t = 1, we have

B0,3(u) = 1
6
(1 − u)3, 0 ≤ u ≤ 1

B1,3(u) = 1
6
(3u3 − 6u2 + 4)

B2,3(u) = 1
6
(−3u3 + 3u2 + 3u + 1)

B3,3(u) = 1
6

u3

(45)
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Open Uniform B-Spline Curves
This class of B-splines is a cross between uniform B-splines and nonuniform
B-splines. Sometimes it is treated as a special type of uniform B-spline, and some-
times it is considered to be in the nonuniform B-spline classification. For the open
uniform B-splines, or simply open B-splines, the knot spacing is uniform except
at the ends, where knot values are repeated d times.

Here are two examples of open, uniform, integer knot vectors, each with a
starting value of 0:

{0, 0, 1, 2, 3, 3} for d = 2 and n = 3
{0, 0, 0, 0, 1, 2, 2, 2, 2} for d = 4 and n = 4

(46)

We can normalize these knot vectors to the unit interval from 0 to 1 as

{0, 0, 0.33, 0.67, 1, 1} for d = 2 and n = 3
{0, 0, 0, 0, 0.5, 1, 1, 1, 1} for d = 4 and n = 4

(47)

For any values of parameters d and n, we can generate an open uniform knot
vector with integer values using the calculations

u j =

⎧

⎪⎨

⎪⎩

0 for 0 ≤ j < d
j − d + 1 for d ≤ j ≤ n
n − d + 2 for j > n

(48)

for values of j ranging from 0 to n + d . With this assignment, the first d knots are
assigned the value 0, and the last d knots have the value n − d + 2.

Open uniform B-splines have characteristics that are very similar to Bézier
splines. In fact, when d = n + 1 (degree of the polynomial is n), open B-splines
reduce to Bézier splines, and all knot values are either 0 or 1. For example, with
a cubic open B-spline (d = 4) and four control points, the knot vector is

{0, 0, 0, 0, 1, 1, 1, 1}
The polynomial curve for an open B-spline connects the first and last control
points. Also, the parametric slope of the curve at the first control point is parallel
to the straight line formed by the first two control points, and the parametric slope
at the last control point is parallel to the line defined by the last two control points.
Thus, the geometric constraints for matching curve sections are the same as for
Bézier curves.

As with Bézier curves, specifying multiple control points at the same coordi-
nate position pulls any B-spline curve closer to that position. Since open B-splines
start at the first control point and end at the last control point, a closed curve can
be generated by setting the first and last control points at the same coordinate
position.

E X A M P L E 2 Open Uniform, Quadratic B-Splines

From conditions 48 with d = 3 and n = 4 (five control points), we obtain
the following eight values for the knot vector:

{u0, u1, u2, u3, u4, u5, u6, u7} = {0, 0, 0, 1, 2, 3, 3, 3}
The total range of u is divided into seven subintervals, and each of the five
blending functions Bk,3 is defined over three subintervals, starting at knot
position uk . Thus B0,3 is defined from u0 = 0 to u3 = 1, B1,3 is defined
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from u1 = 0 to u4 = 2, and B4,3 is defined from u4 = 2 to u7 = 3. Explicit poly-
nomial expressions are obtained for the blending functions from recurrence
relations 38 as

B0,3(u) = (1 − u)2 0 ≤ u < 1

B1,3(u) =

⎧

⎪⎪⎨

⎪⎪⎩

1
2

u(4 − 3u) 0 ≤ u < 1

1
2
(2 − u)2 1 ≤ u < 2

B2,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2

u2 0 ≤ u < 1

1
2

u(2 − u) + 1
2
(u − 1)(3 − u) 1 ≤ u < 2

1
2
(3 − u)2 2 ≤ u < 3

B3,3(u) =

⎧

⎪⎪⎨

⎪⎪⎩

1
2
(u − 1)2 1 ≤ u < 2

1
2
(3 − u)(3u − 5) 2 ≤ u < 3

B4,3(u) = (u − 2)2 2 ≤ u < 3

Figure 32 shows the shape of the these five blending functions. The local
features of B-splines are again demonstrated. Blending function B0,3 is nonzero
only in the subinterval from 0 to 1, so the first control point influences the curve
only in this interval. Similarly, function B4,3 is 0 outside the interval from 2 to
3, and the position of the last control point does not affect the shape of the
beginning and middle parts of the curve.

Matrix formulations for open B-splines are not generated as conveniently as
they are for periodic uniform B-splines. This is due to the multiplicity of knot
values at the beginning and end of the knot vector.

Nonuniform B-Spline Curves
For this class of splines, we can specify any values and intervals for the knot
vector. With nonuniform B-splines, we can choose multiple internal knot values
and unequal spacing between the knot values. Some examples are

{0, 1, 2, 3, 3, 4}
{0, 2, 2, 3, 3, 6}

{0, 0, 0, 1, 1, 3, 3, 3}
{0, 0.2, 0.6, 0.9, 1.0}

Nonuniform B-splines provide increased flexibility in controlling a curve
shape. With unequally spaced intervals in the knot vector, we obtain different
shapes for the blending functions in different intervals, which can be used in
designing the spline features. By increasing knot multiplicity, we can produce
subtle variations in the curve path and introduce discontinuities. Multiple knot
values also reduce the continuity by 1 for each repeat of a particular value.
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F I G U R E 3 2
Open, uniform B-spline blending functions for n = 4 and d = 3.

We obtain the blending functions for a nonuniform B-spline using methods
similar to those discussed for uniform and open B-splines. Given a set of n + 1
control points, we set the degree of the polynomial and select the knot values.
Then, using the recurrence relations, we could either obtain the set of blending
functions or evaluate curve positions directly for the display of the curve. Graphics
packages often restrict the knot intervals to be either 0 or 1 to reduce computations.
A set of characteristic matrices can then be stored and used to compute values
along the spline curve without evaluating the recurrence relations for each curve
point to be plotted.
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11 B-Spline Surfaces
Formulation of a B-spline surface is similar to that for Bézier splines. We can
obtain a vector point function over a B-spline surface using the tensor product of
B-spline blending functions in the form

P(u, v) =
nu∑

ku=0

nv∑

kv=0

pku,kv
Bku,du(u)Bkv ,dv

(v) (49)

where the vector values for pku,kv
specify the positions of the (nu + 1) by (nv + 1)

control points.

uj � 1

uj � 1

uj
Pj � 1(u) Pj(u)

F I G U R E 3 3
Position vectors along curve sections
to the left and right of knot u j .

B-spline surfaces exhibit the same properties as those of their component
B-spline curves. A surface can be constructed from selected values for degree
parameters du and dv , which set the degrees for the orthogonal surface polynomi-
als at du − 1 and dv − 1. For each surface parameter u and v, we also select values
for the knot vectors, which determines the parameter range for the blending
functions.

12 Beta-Splines
A generalization of B-splines are the beta-splines, also referred to as β-splines,
that are formulated by imposing geometric continuity conditions on the first and
second parametric derivatives. The continuity parameters for beta-splines are
called β parameters.

Beta-Spline Continuity Conditions
For a specified knot vector, we designate the spline sections to the left and right
of a particular knot u j with the position vectors P j−1(u) and P j (u) (Figure 33).
Zero-order continuity (positional continuity), G0, at u j is obtained by requiring that

P j−1(u j ) = P j (u j ) (50)

First-order continuity (unit tangent continuity), G1, is obtained by requiring
tangent vectors to be proportional:

β1P′
j−1(u j ) = P′

j (u j ), β1 > 0 (51)

Here, parametric first derivatives are proportional, and the unit tangent vectors
are continuous across the knot.

Second-order continuity (curvature vector continuity), G2, is imposed with the
condition

β2
1 P′′

j−1(u j ) + β2P′
j−1(u j ) = P′′

j (u j ) (52)

where β2 can be assigned any real number and β1 > 0. The curvature vector pro-
vides a measure of the amount of bending for the curve at position u j . When
β1 = 1 and β2 = 0, beta-splines reduce to B-splines.

Parameter β1 is called the bias parameter since it controls the skewness of the
curve. For β1 > 1, the curve tends to flatten to the right in the direction of the unit
tangent vector at the knots. For 0 < β1 < 1, the curve tends to flatten to the left.
The effect of β1 on the shape of the spline curve is shown in Figure 34.

Parameter β2 is called the tension parameter since it controls how tightly or
loosely the spline fits the control graph. As β2 increases, the curve approaches the
shape of the control graph, as shown in Figure 35.
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b1 � 1 b1 �� 1

F I G U R E 3 4
Effect of parameter β1 on the shape of
a beta-spline curve.

b2 � 0 b2 �� 1

F I G U R E 3 5
Effect of parameter β2 on the shape of
a beta-spline curve.

Cubic Periodic Beta-Spline Matrix Representation
Applying the beta-spline boundary conditions to a cubic polynomial with a
uniform knot vector, we obtain the matrix representation for a periodic beta-
spline as

Mβ = 1
δ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2β3
1 2

(

β2 + β3
1 + β2

1 + β1
) −2

(

β2 + β2
1 + β1 + 1

)

2

6β3
1 −3

(

β2 + 2β3
1 + 2β2

1

)

3
(

β2 + 2β2
1

)

0

−6β3
1 6

(

β3
1 − β1

)

6β1 0

2β3
1 β2 + 4

(

β2
1 + β1

)

2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(53)

where δ = β2 + 2β3
1 + 4β2

1 + 4β1 + 2.
We obtain the B-spline matrix MB when β1 = 1 and β2 = 0. And we have the

B-spline tension matrix MBt (Eq. 44) when

β1 = 1, β2 = 12
t

(1 − t)

13 Rational Splines
A rational function is simply the ratio of two polynomials. Thus, a rational spline
is the ratio of two spline functions. For example, a rational B-spline curve can be
described with the position vector

P(u) =
∑n

k=0 ωkpk Bk,d(u)
∑n

k=0 ωk Bk,d(u)
(54)

where the pk are the n+1 control-point positions. Parameters ωk are weight factors
for the control points. The greater the value of a particular ωk , the closer the curve
is pulled toward the control point pk weighted by that parameter. When all weight
factors are set to the value 1, we have the standard B-spline curve, because the
denominator in Equation 54 is then just the sum of the blending functions,
which has the value 1 (Equation 39).

Rational splines have two important advantages, compared to nonrational
splines. First, they provide an exact representation for quadric curves (conics),
such as circles and ellipses. Nonrational splines, which are polynomials, can only
approximate conics. This allows graphics packages to model all curve shapes
with one representation—rational splines—without needing a library of curve
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functions to handle different design shapes. The second advantage of rational
splines is that they are invariant with respect to a perspective viewing trans-

Homogeneous coordinate representations are used for rational splines
because the denominator can be treated as the homogeneous factor h in a four-
dimensional representation of the control points. Thus, a rational spline can be
thought of as the projection of a four-dimensional nonrational spline into three-
dimensional space.

In general, constructing a rational B-spline representation is carried out using
the same procedures that we employed to obtain a nonrational representation.
Given the set of control points, the degree of the polynomial, the weighting factors,
and the knot vector, we apply the recurrence relations to obtain the blending
functions. With some CAD systems, we construct a conic section by specifying
three points on an arc. A rational homogeneous-coordinate spline representation
is then determined by computing control-point positions that would generate the
selected conic type.

As an example of describing conic sections with rational splines, we can use a
quadratic B-spline function (d = 3), three control points, and the open knot vector

{0, 0, 0, 1, 1, 1}
which is the same as a quadratic Bézier spline. We then set the weighting functions
to the values

ω0 = ω2 = 1

ω1 = r
1 − r

, 0 ≤ r < 1
(55)

and the rational B-spline representation is

P(u) = p0 B0,3(u) + [r/(1 − r)]p1 B1,3(u) + p2 B2,3(u)

B0,3(u) + [r/(1 − r)]B1,3(u) + B2,3(u)
(56)

We then obtain the various conics (Figure 36) with the following values for
parameter r :

r > 1/2, ω1 > 1 Hyperbola section
r = 1/2, ω1 = 1 Parabola section
r < 1/2, ω1 < 1 Ellipse section
r = 0, ω1 = 0 Straight-line segment

We can generate a one-quarter arc of a unit circle in the first quadrant of
the xy plane (Figure 37) by setting ω1 = cos φ and by choosing the control
points as

p0 = (0, 1), p1 = (1, 1), p2 = (1, 0)

A complete circle can be obtained by generating sections in the other three quad-
rants using similar control-point placements. Or we could produce a complete
circle from the first-quadrant section using geometric transformations in the
xy plane. For example, we can reflect the one-quarter circular arc about the x
and y axes to produce the circular arcs in the other three quadrants.

Spline Representations

formation. This means that we can apply a perspective viewing transformation
to the control points of the rational curve, and we will obtain the correct view of
the curve. Nonrational splines, on the other hand, are not invariant with respect
to a perspective viewing transformation. Typically, graphics design packages use
nonuniform knot vector representations for constructing rational B-splines.
These splines are referred to as nonuniform rational B-splines (NURBs).
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p1

p0

p2

hyperbola
   (r � 1/2, v1 � 1)

parabola
   (r � 1/2, v1 � 1)

straight line
(r � 0, v1 � 0)

ellipse
   (r � 1/2, v1 � 1)

F I G U R E 3 6
Conic sections generated using various values for
the rational-spline weighting factor ω1.

y

x

p0 � (0, 1) p1 � (1, 1)

p2 � (1, 0)

f

F I G U R E 3 7
A circular arc in the first quadrant of
the x y plane.

A homogeneous representation for a unit circular arc in the first quadrant of
the xy plane is

⎡

⎢
⎢
⎢
⎣

xh(u)

yh(u)

zh(u)

h(u)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 − u2

2u
0

1 + u2

⎤

⎥
⎥
⎥
⎦

(57)

This homogeneous representation yields the parametric circle equations for the
first quadrant as

x = xh(u)

h(u)
= 1 − u2

1 + u2

y = yh(u)

h(u)
= 2u

1 + u2

(58)

14 Conversion Between Spline
Representations

Sometimes it is desirable to be able to switch from one spline representation to
another. For instance, a Bézier representation is most convenient for subdividing
a spline curve, while a B-spline representation offers greater design flexibility.
Therefore, we might design a curve using B-spline sections, then convert to an
equivalent Bézier representation to display the object using a recursive subdivi-
sion procedure to locate coordinate positions along the curve.

Suppose that we have a spline description of an object that can be expressed
with the following matrix product:

P(u) = U · Mspline1 · Mgeom1 (59)

where Mspline1 is the matrix characterizing the spline representation and Mgeom1
is the column matrix of geometric constraints (for example, control-point coor-
dinates). To transform to a second representation with spline matrix Mspline2, we
must determine the geometric constraint matrix Mgeom2 that produces the same
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vector point function for the object. That is,

P(u) = U · Mspline2 · Mgeom2 (60)

or

U · Mspline2 · Mgeom2 = U · Mspline1 · Mgeom1 (61)

Solving for Mgeom2, we have

Mgeom2 = M−1
spline2 · Mspline1 · Mgeom1

= Ms1,s2 · Mgeom1 (62)

Thus, the required transformation matrix that converts from the first spline rep-
resentation to the second is

Ms1,s2 = M−1
spline2 · Mspline1 (63)

A nonuniform B-spline cannot be characterized with a general spline matrix.
But we can rearrange the knot sequence to change the nonuniform B-spline to
a Bézier representation. Then the Bézier matrix could be converted to any other
form.

The following example calculates the transformation matrix for conver-
sion from a periodic, cubic B-spline representation to a cubic Bézier spline
representation:

MB,Bez =

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥
⎥
⎦

−1

· 1
6

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 4 1 0
0 4 2 0
0 2 4 0
0 1 4 1

⎤

⎥
⎥
⎦

(64)

The transformation matrix for converting from a cubic Bézier representation to a
periodic, cubic B-spline representation is

MBez, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
6

1
2

−1
2

1
6

1
2

−1
1
2

0

−1
2

0
1
2

0

1
6

2
3

1
6

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

·

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

6 −7 2 0
0 2 −1 0
0 −1 2 0
0 2 −7 6

⎤

⎥
⎥
⎦

(65)

15 Displaying Spline Curves and Surfaces
To display a spline curve or surface, we must determine coordinate positions
on the curve or surface that project to pixel positions on the display device.
This means that we must evaluate the parametric polynomial spline functions
in certain increments over the range of the functions, and several methods have
been developed for accomplishing this evaluation efficiently.
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Horner’s Rule
The simplest method for evaluating a polynomial, other than direct calculation
of each term in succession, is Horner’s rule, which performs the calculations by
successive factoring. This requires one multiplication and one addition at each
step. For a polynomial of degree n, there are n steps.

For example, suppose that we have a cubic-spline representation where the
x coordinate is expressed as

x(u) = axu3 + bxu2 + cxu + dx (66)

with similar expressions for the y and z coordinates. For a particular value of
parameter u, we evaluate this polynomial in the following factored order:

x(u) = [(ax u + bx)u + cx]u + dx (67)

The calculation of each x value requires three multiplications and three additions,
so that the determination of each coordinate position (x, y, z) along a cubic-spline
curve requires nine multiplications and nine additions.

Additional factoring manipulations could be applied to reduce the number of
computations required by Horner’s method, especially for higher-order polyno-
mials (degree greater than 3). But repeated determination of coordinate positions
over the range of a spline function can be computed much faster using forward-
difference calculations or spline-subdivision methods.

Forward-Difference Calculations
A fast method for evaluating polynomial functions is to generate successive values
recursively by incrementing previously calculated values as, for example,

xk+1 = xk + �xk (68)

Thus, once we know the increment and the value of xk at any step, we get the
next value simply by adding the increment to xk . The increment �xk at each step
is called the forward difference. For the parametric curve representation, we obtain
the forward differences from the intervals we select for parameter u. If we divide
the total range of u into subintervals of fixed size δ, then two successive x positions
occur at xk = x(uk) and xk+1 = x(uk+1), where

uk+1 = uk + δ, k = 0, 1, 2, . . . (69)

and u0 = 0.
As an illustration of this method, we first consider the polynomial represen-

tation x(u) = ax u + bx for the x-coordinate position along a linear-spline curve.
Two successive x-coordinate positions are represented as

xk = ax uk + bx

xk+1 = ax(uk + δ) + bx

(70)

Subtracting the two equations, we obtain the forward difference:
�xk = xk+1 − xk = axδ (71)

In this case, the forward difference is a constant. With higher-order polynomials,
the forward difference is itself a polynomial function of parameter u. This forward-
difference polynomial has degree one less than the original polynomial.

For the cubic-spline representation in Equation 66, two successive x-
coordinate positions have the polynomial representations

xk = ax u3
k + bx u2

k + cx uk + dx

xk+1 = ax(uk + δ)3 + bx(uk + δ)2 + cx(uk + δ) + dx
(72)

The forward difference now evaluates to

�xk = 3axδ u2
k + (3ax δ2 + 2bx δ)uk + (ax δ3 + bx δ2 + cx δ) (73)
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which is a quadratic function of parameter uk . Because �xk is a polynomial func-
tion of u, we can use the same incremental procedure to obtain successive values
of �xk . That is,

�xk+1 = �xk + �2xk (74)

where the second forward difference is the linear function

�2xk = 6axδ
2uk + 6axδ

3 + 2bxδ
2 (75)

Repeating this process once more, we can write

�2xk+1 = �2xk + �3xk (76)

with the third forward difference as the constant expression

�3xk = 6axδ
3 (77)

x0 = dx

�x0 = axδ
3 + bxδ

2 + cxδ

�2x0 = 6axδ
3 + 2bxδ

2

(78)

Once these initial values have been computed, the calculation for each successive
x-coordinate position requires only three additions.

We can apply forward-difference methods to determine positions along spline
curves of any degree n. Each successive coordinate position (x, y, z) is evaluated
with a series of 3n additions. For surfaces, the incremental calculations are applied
to both parameter u and parameter v.

Subdivision Methods
Recursive spline-subdivision procedures are used to repeatedly divide a given curve
section in half, increasing the number of control points at each step. Subdivision
methods are useful for displaying approximation spline curves since we can con-
tinue the subdivision process until the control graph approximates the curve path.
Control-point coordinates can then be plotted as curve positions. Another appli-
cation of subdivision is to generate more control points for shaping a curve. Thus,
we could design a general curve shape with a few control points, then apply a
subdivision procedure to obtain additional control points. With the added control
points, we can then make fine adjustments to small sections of the curve.

Spline subdivision is applied to a Bézier curve section most easily because
the curve begins at the first control point and ends at the last control point, the
range of parameter u is always between 0 and 1, and it is easy to determine when
the control points are “near enough” to the curve path. Bézier subdivision can be
applied to other spline representations with the following sequence of actions:

1. Convert the current spline representation to a Bézier representation.
2. Apply the Bézier subdivision algorithm.
3. Convert the Bézier representation to the original spline representation.

Figure 38 shows the first step in a recursive subdivision of a cubic Bézier
curve section. Positions along the Bézier curve are described with the parametric
point function P(u) for 0 ≤ u ≤ 1. At the first subdivision step, we use the halfway
point P(0.5) to divide the original curve into two segments. The first segment is
then described with the point function P1(s), and the second segment is described

Spline Representations
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values for the x coordinate and its first two forward differences are
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p2p1
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p11
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Subdivision

p23p10

F I G U R E 3 8
Subdividing a cubic Bézier curve section
into two segments, each with four control
points.

with P2(t), where

s = 2u, for 0.0 ≤ u ≤ 0.5
t = 2u − 1, for 0.5 ≤ u ≤ 1.0

(79)

Each of the two curve segments has the same number of control points as the
original curve. Also, the boundary conditions (position and parametric slope) at
the ends of each of the two curve segments must match the position and slope
values for the original curve function P(u). This gives us four conditions for each
curve segment that we can use to determine the control-point positions. For the
first segment, the four control points are

p1,0 = p0

p1,1 = 1
2
(p0 + p1)

p1,2 = 1
4
(p0 + 2p1 + p2)

p1,3 = 1
8
(p0 + 3p1 + 3p2 + p3)

(80)

For the second segment, we obtain the four control points

p2,0 = 1
8
(p0 + 3p1 + 3p2 + p3)

p2,1 = 1
4
(p1 + 2p2 + p3)

p2,2 = 1
2
(p2 + p3)

p2,3 = p3

(81)

An efficient order for computing the new set of control points can be set up using
only add and shift (division by 2) operations as

p1,0 = p0

p1,1 = 1
2
(p0 + p1)

T = 1
2
(p1 + p2)

p1,2 = 1
2
(p1,1 + T)

p2,3 = p3

p2,2 = 1
2
(p2 + p3)

p2,1 = 1
2
(T + p2,2)

p2,0 = 1
2
(p1,2 + p2,1)

p1,3 = p2,0

(82)
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The preceding steps can be repeated any number of times, depending on
whether we are subdividing the curve to gain more control points or trying to
locate approximate curve positions. When we are subdividing to obtain a set of
display points, we can terminate the subdivision procedure when the curve seg-
ments are small enough. One way to determine this is to check the distance from
the first control point to the last control point for each segment. If this distance is
“sufficiently” small, we can stop subdividing. Another test is to check the distances
between adjacent pairs of control points. Alternatively, we could stop subdividing
when the set of control points for each segment is nearly along a straight-line path.

Subdivision methods can be applied to Bézier curves of any degree. For a
Bézier polynomial of degree n − 1, the 2n control points for each of the initial two
curve segments are

p1,k = 1
2k

k∑

j=0

C(k, j)p j , k = 0, 1, 2, . . . , n

p2,k = 1
2n−k

n∑

j=k

C(n − k, n − j)p j

(83)

where C(k, j) and C(n − k, n − j) are the binomial coefficients.
Subdivision methods can be applied directly to nonuniform B-splines

by adding values to the knot vector. In general, however, these methods are not
as efficient as Bézier subdivision.

16 OpenGL Approximation-Spline
Functions

Both Bézier splines and B-splines can be displayed using OpenGL functions, as
well as trimming curves for spline surfaces. The core library contains the Bézier
functions, and the OpenGL Utility (GLU) has the B-spline and trimming-curve
functions. Bézier functions are often hardware implemented, and the GLU func-
tions provide a B-spline interface that accesses OpenGL point-plotting and line-
drawing routines.

OpenGL Bézier-Spline Curve Functions
We specify parameters and activate the routines for Bézier-curve display with the
OpenGL functions

glMap1* (GL_MAP1_VERTEX_3, uMin, uMax, stride, nPts, *ctrlPts);
glEnable (GL_MAP1_VERTEX_3);

We deactivate the routines with

glDisable (GL_MAP1_VERTEX_3);

A suffix code of f or d is used with glMap1 to indicate either floating-point or
double precision for the data values. Minimum and maximum values for the
curve parameter u are specified in uMin and uMax, although these values for a
Bézier curve are typically set to 0 and 1.0, respectively. The three-dimensional,
floating-point, Cartesian-coordinate values for the Bézier control points are listed
in array ctrlPts, and the number of elements in this array is given as a positive
integer using parameter nPts. Parameter stride is assigned an integer offset
that indicates the number of data values between the beginning of one coordi-
nate position in array ctrlPts and the beginning of the next coordinate posi-
tion. For a list of three-dimensional control-point positions, we set stride= 3. A
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higher value for stride would be used if we specified the control points using
four-dimensional homogeneous coordinates or intertwined the coordinate val-
ues with other data, such as color values. To express control-point positions in
four-dimensional homogeneous coordinates (x, y, z, h), we need only change the
value of stride and change the symbolic constant in glMap1 and in glEnable
to GL MAP1 VERTEX 4.

After we have set up the Bézier parameters and activated the curve-generation
routines, we need to evaluate positions along the spline path and display the
resulting curve. A coordinate position along the curve path is calculated with

glEvalCoord1* (uValue);

where parameter uValue is assigned some value in the interval from uMin to
uMax. The suffix code for this function can be either f or d, and we can also use
the suffix code v to indicate that the value for the argument is given in an array.
Function glEvalCoord1 calculates a coordinate position using Equation 22
with the parameter value

u = uvalue − umin

umax − umin
(84)

which maps the uValue to the interval from 0 to 1.0.
When glEvalCoord1 processes a value for the curve parameter u, it gener-

ates a glVertex3 function. To obtain a Bézier curve, we thus repeatedly invoke
the glEvalCoord1 function to produce a set of points along the curve path,
using selected values in the range from uMin to uMax. Joining these points with
straight-line segments, we can approximate the spline curve as a polyline.

As an example of the OpenGL Bézier-curve routines, the following code uses
the four control-point positions from the program in Section 8 to generate a
two-dimensional cubic Bézier curve. In this instance, 50 points are plotted along
the curve path, and the curve points are connected with straight-line segments.
The curve path is then displayed as a blue polyline, and the control points are
plotted as red points of size 5 (Figure 39).

F I G U R E 3 9
A set of four control points and the
associated Bézier curve, displayed with
OpenGL routines as an approximating
polyline.
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GLfloat ctrlPts [4][3] = { {-40.0, 40.0, 0.0}, {-10.0, 200.0, 0.0},
{10.0, -200.0, 0.0}, {40.0, 40.0, 0.0} };

glMap1f (GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, *ctrlPts);
glEnable (GL_MAP1_VERTEX_3);

GLint k;

glColor3f (0.0, 0.0, 1.0); // Set line color to blue.
glBegin (GL_LINE_STRIP); // Generate Bezier "curve".

for (k = 0; k <= 50; k++)
glEvalCoord1f (GLfloat (k) / 50.0);

glEnd ( );

glColor (1.0, 0.0, 0.0); // Set point color to red.
glPointSize (5.0); // Set point size to 5.0.
glBegin (GL_POINTS); // Plot control points.

for (k = 0; k < 4; k++);
glVertex3fv (&ctrlPts [k][0]);

glEnd ( );

Although the previous example generated a spline curve with evenly spaced
parameter values, we can use theglEvalCoord1f function to obtain any spacing
for parameter u. Usually, however, a spline curve is generated with evenly spaced
parameter values, and OpenGL provides the following functions, which we can
use to produce a set of uniformly spaced parameter values:

glMapGrid1* (n, u1, u2);
glEvalMesh1 (mode, n1, n2);

The suffix code for glMapGrid1 can be either f or d. Parameter n specifies the
integer number of equal subdivisions over the range from u1 to u2, and param-
eters n1 and n2 specify an integer range corresponding to u1 and u2. Parameter
mode is assigned either GL POINT or GL LINE, depending on whether we want
to display the curve using discrete points (a dotted curve) or using straight-line
segments. For a curve that is to be displayed as a polyline, the output of these two
functions is the same as the output from the following code, except that the argu-
ment of glEvalCoord1 is set either to u1 or to u2 if k = 0 or k = n, respectively,
to avoid round-off error. In other words, with mode = GL LINE, the preceding
OpenGL commands are equivalent to

glBegin (GL_LINE_STRIP);
for (k = n1; k <= n2; k++)

glEvalCoord1f (u1 + k * (u2 - u1) / n);
glEnd ( );

Thus, in the previous programming example, we could replace the block of code
containing the loop for generating the Bézier curve with the following statements.

glColor3f (0.0, 0.0, 1.0);
glMapGrid1f (50, 0.0, 1.0);
glEvalMesh1 (GL_LINE, 0, 50);
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Using theglMapGrid1andglEvalMesh1 functions, we can divide a curve into a
number of segments and select the parameter spacing for each segment according
to its curvature. Therefore, a segment with more oscillations could be assigned
more intervals, and a flatter section of the curve could be assigned fewer intervals.

Instead of displaying Bézier curves, we can use the glMap1 function to desig-
nate values for other kinds of data, and seven other OpenGL symbolic constants
are available for this purpose. With the symbolic constant GL MAP1 COLOR 4,
we use the array ctrlPts to specify a list of four-element (red, green, blue,
alpha) colors. Then a linearly interpolated set of colors can be generated for use
in an application, and these generated color values do not change the current
setting for the color state. Similarly, we can designate a list of values from a
color-index table with GL MAP1 INDEX, and a list of three-dimensional, surface-
normal vectors is specified in array ctrlPtswhen we use the symbolic constant
GL MAP1 NORMAL. The remaining four symbolic constants are used with lists of
surface-texture information.

Multiple glMap1 functions can be activated simultaneously, and calls to
glEvalCoord1 or to glMapGrid1 and glEvalMesh1 then produce data
points for each data type that is enabled. This allows us to generate combina-
tions of coordinate positions, color values, surface-normal vectors, and surface-
texture data. Note, however, we cannot activate GL MAP1 VERTEX 3 and
GL MAP1 VERTEX 4 simultaneously, and we can activate only one of the
surface-texture generators at any one time.

OpenGL Bézier-Spline Surface Functions
Activation and parameter specification for the OpenGL Bézier-surface routines
are accomplished with

glMap2* (GL_MAP2_VERTEX_3, uMin, uMax, uStride, nuPts,
vMin, vMax, vStride, nvPts, *ctrlPts);

glEnable (GL_MAP2_VERTEX_3);

A suffix code of f or d is used with glMap2 to indicate either floating-point or
double precision for the data values. For a surface, we specify minimum and
maximum values for both parameter u and parameter v. The three-dimensional
Cartesian coordinates for the Bézier control points are listed in the double-
subscripted arrayctrlPts, and the integer size of the array is given with parame-
tersnuPts andnvPts. If control points are to be specified using four-dimensional
homogeneous coordinates, we use the symbolic constant GL MAP2 VERTEX 4
instead of GL MAP2 VERTEX 3. The integer offset between the beginning of
coordinate values for control point p j,k and the beginning of coordinate values
for p j+1,k is given in uStride; and the integer offset between the beginning of
coordinate values for control point p j,k and the beginning of coordinate values
for p j,k+1 is given in vStride. This allows the coordinate data to be intertwined
with other data, so that we need to specify only the offsets to locate coordinate
values. We deactivate the Bézier-surface routines with

glDisable {GL_MAP2_VERTEX_3}

Coordinate positions on the Bézier surface can be calculated with

glEvalCoord2* (uValue, vValue);

or

glEvalCoord2*v (uvArray);
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Parameter uValue is assigned some value in the interval from uMin to uMax,
and parameter vValue is assigned some value in the interval from vMin to vMax.
With the vector version, uvArray = (uValue, vValue). The suffix code for either
function can be f or d. Function glEvalCoord2 calculates a coordinate position
using Equation 36 with the parameter values

u = uValue − uMin
uMax − uMin

, v = vValue − vMin
vMax − vMin

(85)

which maps each of uValue and vValue to the interval from 0 to 1.0.
To display a Bézier surface, we repeatedly invoke glEvalCoord2, which

generates a series of glVertex3 functions. This is similar to generating a spline
curve, except that we now have two parameters, u and v. For example, a surface
defined with 16 control points, arranged in a 4 × 4 grid, can be displayed as a set
of surface lines with the following code. The offset for the coordinate values in the
u direction is 3, and the offset in the v direction is 12. Each coordinate position is
specified with three values, and the y coordinate for each group of four positions
is constant.

GLfloat ctrlPts [4][4][3] = {
{ {-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0},
{-0.5, -1.5, -1.0}, { 1.5, -1.5, 2.0} },

{ {-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},
{ 0.5, -0.5, 0.0}, { 1.5, -0.5, -1.0} },

{ {-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0},
{ 0.5, 0.5, 3.0}, { 1.5, 0.5, 4.0} },

{ {-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
{ 0.5, 1.5, 0.0}, { 1.5, 1.5, -1.0} }

};

glMap2f (GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
0.0, 1.0, 12, 4, &ctrlPts[0][0][0]);

glEnable (GL_MAP2_VERTEX_3);

GLint k, j;

glColor3f (0.0, 0.0, 1.0);
for (k = 0; k <= 8; k++)
{

glBegin (GL_LINE_STRIP); // Generate Bezier surface lines.
for (j = 0; j <= 40; j++)

glEvalCoord2f (GLfloat (j) / 40.0, GLfloat (k) / 8.0);
glEnd ( );
glBegin (GL_LINE_STRIP);
for (j = 0; j <= 40; j++)

glEvalCoord2f (GLfloat (k) / 8.0, GLfloat (j) / 40.0);
glEnd ( );

}

Instead of using the glEvalCoord2 function, we can generate evenly spaced
parameter values over the surface with

glMapGrid2* (nu, u1, u2, nv, v1, v2);
glEvalMesh2 (mode, nu1, nu2, nv1, nv2);
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The suffix code forglMapGrid2 is again eitherf ord, and parametermode can be
assigned the value GL POINT, GL LINE, or GL FILL. A two-dimensional grid
of points is produced, with nu equally spaced intervals between u1 and u2, and
with nv equally spaced intervals between v1 and v2. The corresponding integer
range for parameter u is nu1 to nu2, and the corresponding integer range for
parameter v is nv1 to nv2.

For a surface that is to be displayed as a grid of polylines, the output of
glMapGrid2 and glEvalMesh2 is the same as the following program sequence
except for the conditions that avoid round-off error at the beginning and end-
ing values of the loop variables. At the beginning of the loops, the argument of
glEvalCoord1 is set to (u1, v1), and at the end of the loops, the argument of
glEvalCoord1 is set to (u2, v2).

for (k = nu1; k <= nu2; k++) {
glBegin (GL_LINES);

for (j = nv1; j <= nv2; j++)
glEvalCoord2f (u1 + k * (u2 - u1) / nu,

v1 + j * (v2 - v1) / nv);
glEnd ( );

}
for (j = nv1; j <= nv2; j++) {

glBegin (GL_LINES);
for (k = nu1; k <= nu2; k++)

glEvalCoord2f (u1 + k * (u2 - u1) / nu,
v1 + j * (v2 - v1) / nv);

glEnd ( );
}

Similarly, for a surface displayed as a set of filled-polygon facets (mode =
GL FILL), the output of glMapGrid2 and glEvalMesh2 is the same as the
following program sequence, except for the round-off avoiding conditions for the
beginning and ending values of the loop variables:

for (k = nu1; k < nu2; k++) {
glBegin (GL_QUAD_STRIP);

for (j = nv1; j <= nv2; j ++) {
glEvalCoord2f (u1 + k * (u2 - u1) / nu,

v1 + j * (v2 - v1) / nv);
glEvalCoord2f (u1 + (k + 1) * (u2 - u1) / nu,

v1 + j * (v2 - v1) / nv);

We can use the glMap2 function to designate values for other kinds
of data, just as we did with glMap1. Similar symbolic constants, such as
GL MAP2 COLOR 4 and GL MAP2 NORMAL, are available for this purpose. And
we can activate multipleglMap2 functions to generate various data combinations.

GLU B-Spline Curve Functions
Although the GLU B-spline routines are referred to as NURBs functions, they can
be used to generate B-splines that are neither nonuniform nor rational. Thus, we
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can use these GLU routines to display a polynomial B-spline that has uniform
knot spacing. And the GLU routines can also be used to produce Bézier splines,
rational or nonrational. To generate a B-spline (or Bézier spline), we need to define
a name for the spline, activate the GLU B-spline renderer, and then define the
spline parameters.

The following statements illustrate the basic sequence of calls for displaying
a B-spline curve:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ( );
gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotVector, stride, *ctrlPts,
degParam, GL_MAP1_VERTEX_3);

gluEndCurve (curveName);

In the first statement, we assign a name to the curve, then we invoke the GLU
B-spline rendering routines for that curve using the gluNewNurbsRenderer
command. A value of 0 is assigned tocurveNamewhen there is not enough mem-
ory available to create a B-spline curve. Inside agluBeginCurve/gluEndCurve
pair, we next state the attributes for the curve using a gluNurbsCurve function.
This allows us to set up multiple curve sections, and each section is referenced with
a distinct curve name. ParameterknotVectordesignates the set of floating-point
knot values, and integer parameter nknots specifies the number of elements in
the knot vector. The degree of the polynomial is degParam − 1. We list the values
for the three-dimensional, control-point coordinates in array parameterctrlPts,
which contains nknots− degParam elements. And the integer offset between the
start of successive coordinate positions in array ctrlPts is specified by integer
parameterstride. If the control-point positions are contiguous (not interspersed
between other data types), the value of stride is set to 3. We eliminate a defined
B-spline with

gluDeleteNurbsRenderer (curveName);

As an example of the use of GLU routines to display a spline curve, the
following code generates a cubic, Bézier polynomial. To obtain this cubic curve,
we set the degree parameter to the value 4. We use four control points, and we
select an eight-element, open-uniform knot sequence with four repeated values
at each end.

GLfloat knotVector [8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
GLfloat ctrlPts [4][3] = { {-4.0, 0.0, 0.0}, {-2.0, 8.0, 0.0},

{2.0, -8.0, 0.0}, {4.0, 0.0, 0.0} };
GLUnurbsObj *cubicBezCurve;

cubicBezCurve = gluNewNurbsRenderer ( );
gluBeginCurve (cubicBezCurve);

gluNurbsCurve (cubicBezCurve, 8, knotVector, 3, &ctrlPts [0][0],
4, GL_MAP1_VERTEX_3);

gluEndCurve(cubicBezCurve);
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To create a rational B-spline curve, we replace the symbolic con-
stant GL MAP1 VERTEX 3 with GL MAP1 VERTEX 4. Four-dimensional,
homogeneous coordinates (xh , yh , zh , h) are then used to specify the control points,
and the resulting homogeneous division produces the desired rational polyno-
mial form.

We can also use the gluNurbsCurve function to specify lists of color values,
normal vectors, or surface-texture properties, just as we did with the glMap1 and
glMap2 functions. Any of the symbolic constants, such as GL MAP1 COLOR 4
or GL MAP1 NORMAL, can be used as the last argument in the gluNurbsCurve
function. Each call is then listed inside the gluBeginCurve/gluEndCurve pair,
with two restrictions: We cannot list more than one function for each data type,
and we must include exactly one function to generate the B-spline curve.

A B-spline curve is divided automatically into a number of sections and dis-
played as a polyline by the GLU routines. However, a variety of B-spline rendering
options can also be selected with repeated calls to the following GLU function:

gluNurbsProperty (splineName, property, value);

Parameter splineName is assigned the name of a B-spline, parameter
hboxproperty is assigned a GLU symbolic constant that identifies the ren-
dering property that we want to set, and parameter value is assigned either
a floating-point numerical value or a GLU symbolic constant that sets the value
for the selected property. Several gluNurbsProperty functions can be specified
following the gluNewNurbsRenderer statement. Many of the properties that
can be set using the gluNurbsProperty function are surface parameters, as
described in the next section.

GLU B-Spline Surface Functions
The following statements illustrate a basic sequence of calls for generating a
B-spline surface:

GLUnurbsObj *surfName

surfName = gluNewNurbsRenderer ( );
gluNurbsProperty (surfName, property1, value1);
gluNurbsProperty (surfName, property2, value2);
gluNurbsProperty (surfName, property3, value3);

.

.

.
gluBeginSurface (surfName);

gluNurbsSurface (surfName, nuKnots, uKnotVector, nvKnots,
vKnotVector, uStride, vStride, &ctrlPts [0][0][0],
uDegParam, vDegParam, GL_MAP2_VERTEX_3);

gluEndSurface (surfName);

In general, the GLU statements and parameters for defining a B-spline surface are
similar to those for a B-spline curve. After invoking the B-spline rendering routines
with gluNewNurbsRenderer, we could specify a number of optional surface-
property values. Attributes for the surface are then set with a gluNurbsSurface
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call. Multiple surfaces, each with a distinct identifying name, can be defined in
this way. A value of 0 is returned to variable surfName by the system when
there is not enough memory available to store a B-spline object. Parameters
uKnotVector and vKnotVector designate the arrays of floating-point knot
values in the parametric u and v directions. We specify the number of elements
in each knot vector with parameters nuKnots and nvKnots. The degree of the
polynomial in parameter u is given by the value of uDegParam−1, and the degree
of the polynomial in parameter v is the value of vDegParam−1. We list the floating-
point values for the three-dimensional, control-point coordinates in array param-
eter ctrlPts, which contains (nuKnots− uDegParam) × (nvKnots− vDegParam)
elements. The integer offset between the start of successive control points in the
parametric u direction is specified with integer parameter uStride, and the off-
set in the parametric v direction is specified with integer parameter vStride.
We erase a spline surface to free its allocated memory with the same function
(gluDeleteNurbsRenderer) we used for a B-spline curve.

A B-spline surface, by default, is displayed automatically as a set of poly-
gon fill areas by the GLU routines, but we can choose other display options and
parameters. Nine properties, with two or more possible values for each property,
can be set for a B-spline surface. As an example of property setting, the following
statements specify a wire-frame, triangularly tessellated display for a surface:

gluNurbsProperty (surfName, GLU_NURBS_MODE,
GLU_NURBS_TESSELLATOR);

gluNurbsProperty (surfName, GLU_DISPLAY_MODE,
GLU_OUTLINE_POLYGON};

The GLU tessellating routines divide the surface into a set of triangles and
display each triangle as a polygon outline. In addition, these triangle primi-
tives can be retrieved using the gluNurbsCallback function. Other values for
property GLU DISPLAY MODE are GLU OUTLINE PATCH and GLU FILL (the
default value). With the value GLU OUTLINE PATCH, we also obtain a wire-
frame display, but the surface is not divided into triangular sections. Instead, the
original surface is outlined, along with any trimming curves that have been spec-
ified. The only other value that can be set for the property GLU NURBS MODE is
GLU NURBS RENDERER (the default value), which renders objects without mak-
ing tessellated data available for callback.

We set the number of sampling points per unit length with the properties
GLU U STEP and GLU V STEP. The default value for each is 100. To set the u
or v sampling values, we also must set the property GLU SAMPLING METHOD
to the value GLU DOMAIN DISTANCE. Several other values can be used
with the property GLU SAMPLING METHOD to specify how surface tessel-
lation is to be carried out. Properties GLU SAMPLING TOLERANCE and
GLU PARAMETRIC TOLERANCE are used to set maximum sampling lengths.
By setting property GLU CULLING to the value GL TRUE, we can improve
rendering performance by not tessellating objects that are outside the view-
ing volume. The default value for GLU culling is GL FALSE, and the property
GLU AUTO LOAD MATRIX allows the matrices for the viewing, projection, and
viewport transformations to be downloaded from the OpenGL server when its
value isGL TRUE (the default value). Otherwise, if we set the value toGL FALSE,
an application must supply these matrices using the gluLoadSamplingMatri-
ces function.
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To determine the current value of a B-spline property, we use the following
query function:

gluGetNurbsProperty (splineName, property, value);

For a specified splineName and property, the corresponding value is returned
to parameter value.

When the property GLU AUTO LOAD MATRIX is set to the value GL FALSE,
we invoke

gluLoadSamplingMatrices (splineName, modelviewMat, projMat,
viewport);

This function specifies the modelview matrix, projection matrix, and viewport
that are to be used in the sampling and culling routines for a spline object. The
current modelview and projection matrices can be obtained with calls to the
glGetFloatv function, and the current viewport can be obtained with a call
to glGetIntegerv.

Various events associated with spline objects are processed using

gluNurbsCallback (splineName, event, fcn);

Parameter event is assigned a GLU symbolic constant, and parameter fcn
specifies a function that is to be invoked when the event corresponding to
the GLU constant is encountered. For example, if we set parameter event to
GLU NURBS ERROR, then fcn is called when an error occurs. Other events
are used by the GLU spline routines to return the OpenGL polygons generated
by the tessellation process. The symbolic constant GL NURBS BEGIN indicates
the start of a primitive such as line segments, triangles, or quadrilaterals, and
GL NURBS END indicates the end of the primitive. The function argument for the
beginning of a primitive is then a symbolic constant such as GL LINE STRIP,
GL TRIANGLES, or GL QUAD STRIP. Symbolic constant GL NURBS VERTEX
indicates that three-dimensional coordinate data are to be supplied, and a vertex
function is called. Additional constants are available for indicating other data,
such as color values.

Data values for the gluNurbsCallback function are supplied by

gluNurbsCallbackData (splineName, dataValues);

Parameter splineName is assigned the name of the spline object that is to be
tessellated, and parameter dataValues is assigned a list of data values.

GLU Surface-Trimming Functions
A set of one or more two-dimensional trimming curves is specified for a B-spline
surface with the following statements:

gluBeginTrim (surfName);
gluPwlCurve (surfName, nPts, *curvePts, stride, GLU_MAP1_TRIM_2);
.
.
.

gluEndTrim (surfName);
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F I G U R E 4 0
An outer trimming curve around the
perimeter of the unit square is specified in a
counterclockwise direction, and the inner
trimming curve sections are defined in a
clockwise direction. 0.2
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Parameter surfName is the name of the B-spline surface to be trimmed. A set of
floating-point coordinates for the trimming curve is specified in array parameter
curvePts, which contains nPts coordinate positions. An integer offset between
successive coordinate positions is given in parameterstride. The specified curve
coordinates are used to generate a piecewise linear trimming function for the
B-spline surface. In other words, the generated trimming “curve” is a polyline.
If the curve points are to be given in three-dimensional, homogeneous (u, v, h)
parameter space, then the final argument in gluPwlCurve is set to the GLU
symbolic constant GLU MAP1 TRIM 3.

We can also use one or more gluNurbsCurve functions as a trimming
curve. In addition, we can construct trimming curves that are combinations of
gluPwlCurve functions and gluNurbsCurve functions. Any specified GLU
trimming “curve” must be nonintersecting, and it must be a closed curve.

The following code illustrates the GLU trimming functions for a cubic Bézier
surface. We first set the coordinate points for an outermost trimming curve. These
positions are specified in a counterclockwise direction completely around the unit
square. Next, we set the coordinate points for an innermost trimming curve in
two sections, and these positions are specified in a clockwise direction. And the
knot vectors for both the surface and the first inner trim-curve section are set up
to produce cubic Bézier curves. A plot of the inner and outer trimming curves on
the unit square is shown in Figure 40.

GLUnurbsObj *bezSurface;

GLfloat outerTrimPts [5][2] = { {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0),
{0.0, 1.0}, {0.0, 0.0} };

GLfloat innerTrimPts1 [3][2] = { {0.25, 0.5}, {0.5, 0.75},
{0.75, 0.5) };

GLfloat innerTrimPts2 [4][2] = { {0.75, 0.5}, {0.75, 0.25},
{0.25, 0.25), {0.25, 0.5} };

GLfloat surfKnots [8] = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0);
GLfloat trimCurveKnots [8] = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0);
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bezSurface = gluNewNurbsRenderer ( );

gluBeginSurface (bezSurface);
gluNurbsSurface (bezSurface, 8, surfKnots, 8, surfKnots, 4 * 3, 3,

&ctrlPts [0][0][0], 4, 4, GL_MAP2_VERTEX_3);
gluBeginTrim (bezSurface);

/* Counterclockwise outer trim curve. */
gluPwlCurve (bezSurface, 5, &outerTrimPts [0][0], 2,

GLU_MAP1_TRIM_2);
gluEndTrim (bezSurface);
gluBeginTrim (bezSurface);

/* Clockwise inner trim-curve sections. */
gluPwlCurve (bezSurface, 3, &innerTrimPts1 [0][0], 2,

GLU_MAP1_TRIM_2);
gluNurbsCurve (bezSurface, 8, trimCurveKnots, 2,

&innerTrimPts2 [0][0], 4, GLU_MAP1_TRIM_2):
gluEndTrim (bezSurface);

gluEndSurface (bezSurface);

17 Summary
The most widely used methods for representing objects in CAD applications
are the spline representations, which are piecewise continuous polynomial func-
tions. A spline curve or surface is defined with a set of control points and
the boundary conditions on the spline sections. Lines connecting the sequence
of control points form the control graph, and all control points are within
the convex hull of a spline object. The boundary conditions can be specified
using parametric or geometric derivatives, and most spline representations use
parametric boundary conditions. Interpolation splines connect all control points;
approximation splines do not connect all control points. A spline surface can be
described with the tensor product of two polynomials. Cubic polynomials are
commonly used for the interpolation representations, which include the Hermite,
cardinal, and Kochanek-Bartels splines. Bézier splines provide a simple and pow-
erful approximation method for describing curved lines and surfaces, however
the polynomial degree is determined by the number of control points and local
control over curve shapes is difficult to attain. B-splines, which include Bézier
splines as a special case, are a more versatile approximation representation, but
they require the specification of a knot vector. Beta splines are generalizations of
B-splines that are specified with geometric boundary conditions. Rational splines
are formulated as the ratio of two spline representations. Rational splines can be
used to describe quadrics, and they are invariant with respect to a perspective
viewing transformation. A rational B-spline with a nonuniform knot vector is
commonly referred to as a NURB. To determine the coordinate positions along a
spline curve or surface, we can use forward-difference calculations or subdivision
methods.

The core library of OpenGL contains functions for producing Bézier splines,
and GLU functions are furnished for specifying B-splines and spline-surface trim-
ming curves. Tables 1 and 2 summarize the OpenGL spline functions dis-
cussed in this chapter.
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T A B L E 1

Summary of OpenGL Bezier Functions

Function Description

glMap1 Specifies parameters for Bézier-curve display,
color values, etc., and activate these
routines using glEnable.

glEvalCoord1 Calculates a coordinate position for
a Bézier curve.

glMapGrid1 Specifies the number of equally spaced subdivisions
between two Bézier-curve parameters.

glEvalMesh1 Specifies the display mode and integer range
for a Bézier-curve display.

glMap2 Specifies parameters for a Bézier-surface display,
color values, etc., and activate these
routines using glEnable.

glEvalCoord2 Calculates a coordinate position for
a Bézier surface.

glMapGrid2 Specifies a two-dimensional grid of equally
spaced subdivisions over a Bézier surface.

glEvalMesh2 Specifies the display mode and integer
range for the two-dimensional
Bézier-surface grid.

T A B L E 2

Summary of OpenGL B-Spline Functions

Function Description

gluNewNurbsRenderer Activates the GLU B-spline renderer for an
object name that has been defined with the
declaration GLUnurbsObj *bsplineName.

gluBeginCurve Begins the assignment of parameter values for a
specified B-spline curve with one or more sections.

gluEndCurve Signals the end of the B-spline curve parameter
specifications.

gluNurbsCurve Specifies the parameter values for a named
B-spline curve section.

gluDeleteNurbsRenderer Eliminates a specified B-spline.

gluNurbsProperty Specifies rendering options for a designated B-spline.

gluGetNurbsProperty Determines the current value of a designated
property for a particular B-spline.
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T A B L E 2

Summary of OpenGL B-Spline Functions (Continued)

Function Description

gluBeginSurface Begins the assignment of parameter values for a
specified B-spline surface with one or more sections.

gluEndSurface Signals the end of the B-spline surface parameter
specifications.

gluNurbsSurface Specifies the parameter values for a named
B-spline surface section.

gluLoadSamplingMatrices Specifies viewing and geometric transformation
matrices to be used in sampling and
culling routines for a B-spline.

gluNurbsCallback Specifies a callback function for a designated
B-spline and associated event.

gluNurbsCallbackData Specifies data values that are to be passed
to the event callback function.

gluBeginTrim Begins the assignment of trimming-curve
parameter values for a B-spline surface.

gluEndTrim Signals the end of the trimming curve
parameter specifications.

gluPwlCurve Specifies trimming-curve parameter values for a
B-spline surface.

REFERENCES
Sources of information on parametric curve and surface
representations include Bézier (1972), Barsky and Beatty
(1983), Barsky (1984), Kochanek and Bartels (1984),
Huitric and Nahas (1985), Mortenson (1985), Farin (1988),
Rogers and Adams (1990), and Piegl and Tiller (1997).

Programming techniques for various representa-
tions can be found in Glassner (1990), Arvo (1991), Kirk
(1992), Heckbert (1994), and Paeth (1995). Additional
programming examples for the OpenGL Bézier-spline,
B-spline, and trimming-curve functions can be found in
Woo, et al. (1999). And a complete listing of the OpenGL
functions in the core library and in GLU is presented in
Shreiner (2000).

EXERCISES
1 Write a routine to display a two-dimensional

cardinal-spline curve, given an input set of con-
trol points in the xy plane.

2 Write a program using the routine developed
in the previous exercise to display a two-

dimensional cardinal spline curve in the xy plane
along with the control points used to generate
the curve. The curve should be drawn in black
(on a white background) and the control points
should be drawn in blue. Additionally, allow the
user to modify the control points via keyboard
input. The user should be able to cycle through
the control points and move each one around in
the xy plane. The currently selected control point
should be drawn in red. The curve should be
redrawn each time a control point is moved.

3 Write a routine to display a two-dimensional
Kochanek-Bartels curve, given an input set of con-
trol points in the xy plane.

4 Write a program using the routine developed in
the previous exercise similar to the program in
Exercise 2. Control points should be drawn
in addition to the curve on a white background
and the user should be able to edit the control
points in the same manner. The curve should be
redrawn each time a control point is moved.
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5 What are the Bézier-curve blending functions for
three control points specified in the xy plane?
Plot each function and identify the minimum and
maximum blending-function values.

6 What are the Bézier-curve blending functions for
five control points specified in the xy plane? Plot
each function and identify the minimum and
maximum blending-function values.

7 Modify the program example in Section 8
play any cubic Bézier curve, given a set of four
input control points in the xy plane.

8 Modify the program example in Section 8
play a Bézier curve of degree n − 1, given a set of
n input control points in the xy plane.

9 Complete the OpenGL programming example in
Section
a set of four input control points in the xy plane.

10 Modify the program in the previous exercise to
allow the user to edit the control points using
keyboard input as in Exercise 2. The currently
selected control point should be drawn in red, and
the others in blue. The curve should be drawn in
black and redrawn each time a control point is
moved.

11 Modify the OpenGL program example in Sec-
tion
given a set of four input control points in xyz
space. Use an orthogonal projection to display the
curve, with the viewing parameters specified as
input.

12 Write a routine that can be used to design
two-dimensional Bézier curve shapes that have
first-order piecewise continuity. The number and
position of the control points for each section of
the curve are to be specified as input.

13 Use the routine developed in the previous exer-
cise to allow the user to edit the control points us-
ing keyboard input as in Exercise 2. Controls
points should be displayed in the same manner.

14 Write a routine that can be used to design
two-dimensional Bézier curve shapes that have
second-order piecewise continuity. The number
and position of the control points for each section
of the curve are to be specified as input.

15 Use the routine developed in the previous exer-
cise to allow the user to edit the control points
using keyboard input as in Exercise 2. Controls
points should be displayed in the same manner.

16 Modify the program example in Section 8
play any cubic Bézier curve, given a set of four
input control points in the xy plane, using the sub-
division method to calculate curve points.

17 Modify the program example in Sectio dis-
play any cubic Bézier curve, given a set of four

input control points in the xy plane, using for-
ward differences to calculate curve points.

18 What are the blending functions for a two-
dimensional, uniform, periodic B-spline curve
with d = 5?

19 What are the blending functions for a two-
dimensional, uniform, periodic B-spline curve
with d = 6?

20 Modify the programming example in Section
to display a two-dimensional, uniform, periodic
B-spline curve, given an input set of control
points, using forward differences to calculate
positions along the curve path.

21 Modify the program in the previous example to
display the B-spline curve using OpenGL func-
tions.

22 Modify the program in the previous exercise to
allow the user to edit the control points using key-
board input as in Exercise 2. Controls points
should be displayed in the same manner.

23 Write a routine to display any specified conic in
the xy plane using a rational Bézier-spline repre-
sentation.

24 Write a routine to display any specified conic in
the xy plane using a rational B-spline representa-
tion.

25 Develop an algorithm for calculating the normal
vector to a Bézier surface at a given point P(u, v).

26 Derive expressions for calculating the forward
differences for a given quadratic curve.

27 Derive expressions for calculating the forward
differences for a given cubic curve.

IN MORE DEPTH
1 In this chapter’s exercises, you will experiment

with creating and displaying three-dimensional
spline surfaces to represent some of the more com-
plex curved objects in your application. Choose
some objects that fit this category in your scene
and sketch out either a Bézier spline or B-spline
representation of their surfaces using the methods
discussed in the chapter. Once you have chosen
a representation, use the OpenGL functions for
displaying spline surfaces to render the objects
in the scene using the default resolution of eval-
uation points (or a reasonable one, in the case of
Bézier surfaces). Then, use the visual rendering of
the objects to adjust the spline model to improve
the visual accuracy of the objects. Use trimming
curves where appropriate to produce the right
object shapes.

2
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8 to display any cubic Bézier curve, given

8  to display any spatial cubic Bézier curve,

 to dis-

n 8 to  
Experiment with varying the resolution of
the polygon meshes that  serve as  the
approximations to the spline surfaces that
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you defined in the previous exercise. For Bézier
surfaces, choose a minimum number of evalua-
tion points in each dimension at which the rep-
resentation of the objects is minimally acceptable
as far as visual appearance goes. Do the same for
any B-spline representations, varying the number
of sampling points instead. Using this as a base-
line, render the scene from the previous exercise
several times, each time increasing the number
of evaluation or sampling points that define the

mesh approximations of the objects by some fixed
amount. For each setting of resolution, record the
amount of time that it takes to render the scene
using shaded fill areas to render the objects. Con-
tinue doing this until the resolution produces lit-
tle or no noticeable difference in approximation
quality. Then, make a plot of rendering time as a
function of resolution and discuss the properties
of the plot. Is there an ideal setting for each object
that balances visual quality with performance?
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