

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io

Contents ix

2.8.5 Combining the Parts 80
2.8.6 The initShaders Function 81
2.8.7 The init Function 82
2.8.8 Reading the Shaders from the Application 83

2.9 Polygons and Recursion 83

2.10 The Three-Dimensional Gasket 86
2.10.1 Use of Three-Dimensional Points 86
2.10.2 Naming Conventions 88
2.10.3 Use of Polygons in Three Dimensions 88
2.10.4 Hidden-Surface Removal 91

Summary and Notes 93

Suggested Readings 94

Exercises 95

CHAPTER 3 INTERACTION AND ANIMATION 99

3.1 Animation 99
3.1.1 The Rotating Square 100
3.1.2 The Display Process 102
3.1.3 Double Buffering 103
3.1.4 Using a Timer 104
3.1.5 Using requestAnimFrame 105

3.2 Interaction 106

3.3 Input Devices 107

3.4 Physical Input Devices 108
3.4.1 Keyboard Codes 108
3.4.2 The Light Pen 109
3.4.3 The Mouse and the Trackball 109
3.4.4 Data Tablets,Touch Pads, and Touch Screens 110
3.4.5 The Joystick 111
3.4.6 Multidimensional Input Devices 111
3.4.7 Logical Devices 112
3.4.8 Input Modes 113

3.5 Clients and Servers 115

3.6 Programming Event-Driven Input 116
3.6.1 Events and Event Listeners 117
3.6.2 Adding a Button 117
3.6.3 Menus 119
3.6.4 Using Keycodes 120
3.6.5 Sliders 121

3.7 Position Input 122

https://hemanthrajhemu.github.io

x Contents

3.8 Window Events 123

3.9 Picking 125

3.10 Building Models Interactively 126

3.11 Design of Interactive Programs 130

Summary and Notes 130

Suggested Readings 131

Exercises 132

CHAPTER 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS 135

4.1 Scalars, Points, and Vectors 136
4.1.1 Geometric Objects 136
4.1.2 Coordinate-Free Geometry 138
4.1.3 The Mathematical View: Vector and Affine Spaces 138
4.1.4 The Computer Science View 139
4.1.5 Geometric ADTs 140
4.1.6 Lines 141
4.1.7 Affine Sums 141
4.1.8 Convexity 142
4.1.9 Dot and Cross Products 142
4.1.10 Planes 143

4.2 Three-Dimensional Primitives 145

4.3 Coordinate Systems and Frames 146
4.3.1 Representations and N-Tuples 148
4.3.2 Change of Coordinate Systems 149
4.3.3 Example: Change of Representation 151
4.3.4 Homogeneous Coordinates 153
4.3.5 Example: Change in Frames 155
4.3.6 Working with Representations 157

4.4 Frames in WebGL 159

4.5 Matrix and Vector Types 163
4.5.1 Row versus Column Major Matrix Representations 165

4.6 Modeling a Colored Cube 165
4.6.1 Modeling the Faces 166
4.6.2 Inward- and Outward-Pointing Faces 167
4.6.3 Data Structures for Object Representation 167
4.6.4 The Colored Cube 168
4.6.5 Color Interpolation 170
4.6.6 Displaying the Cube 170
4.6.7 Drawing with Elements 171

4.7 Affine Transformations 172

https://hemanthrajhemu.github.io

CHAPTER3
INTERACTION AND
ANIMATION

We now turn to the development of interactive graphics programs. Interactive
computer graphics opens up a myriad of applications, ranging from interac-

tive design of buildings, to control of large systems through graphical interfaces, to
virtual reality systems, to computer games.

Our examples in Chapter 2 were all static. We described a scene, sent data to
the GPU, and then rendered these data. However, in most real applications we need
a dynamic display because the objects we want to display change their positions,
colors, or shapes. Our first task will be to introduce a simple method for creating
animated applications; that is, applications in which the display changes with time,
even without input from the user.

Next, we turn our focus to adding interactivity to WebGL, a task that requires
us to look in more detail at how the graphics interact with the browser environment.
As part of the development, we will have a preliminary discussion of buffers, a topic
we will return to in Chapter 7. We then introduce the variety of devices available
for interaction. We consider input devices from two different perspectives: the way
that the physical devices can be described by their physical properties, and the way
that these devices appear to the application program. We then consider client–server
networks and client–server graphics. Finally, we use these ideas to develop event-
driven input for our graphics programs.

3.1 ANIMATION

Our examples in Chapter 2 were all static; we rendered the scene once and did nothing
else. Now suppose that we want to change what we see. For example, suppose that
we display a simple object such as a square and we want to rotate this square at
a constant rate. A simple but slow and inelegant approach would be to have our
application generate new vertex data periodically, send these data to the GPU, and do
another render each time that we send new data. This approach would negate many
of the advances using shaders, because it would have a potential bottleneck due to
the repetitive sending of data from the CPU to the GPU. We can do much better if we
start thinking in terms of a recursive rendering process where the render function can

99https://hemanthrajhemu.github.io

100 Chapter 3 Interaction and Animation

(cos θ, sin θ)

(sin θ, –cos θ)

(–cos θ, –sin θ)

(–sin θ, cos θ)

FIGURE 3.1 Square constructed from four points on a circle.

call itself. We will illustrate various options using a simple program that produces a
rotating square.

3.1.1 The Rotating Square
Consider the two-dimensional point

x = cos θ y = sin θ .

This point lies on a unit circle regardless of the value of θ . The three points (− sin θ ,
cos θ), (− cos θ , − sin θ), and (sin θ , − cos θ) also lie on the unit circle. These four
points are equidistant along the circumference of the circle, as shown in Figure 3.1.
Thus, if we connect the points to form a polygon, we will have a square centered at
the origin whose sides are of length

√
2.

We can start with θ = 0, which gives us the four vertices (0, 1), (1, 0), (−1, 0)
and (0, −1). We can send these vertices to the GPU by first setting up an array

var vertices = [

vec2(0, 1),

vec2(1, 0),

vec2(-1, 0),

vec2(0, -1)

];

and then sending the array

var bufferId = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);

gl.bufferData(gl.ARRAY_BUFFER, flatten(vertices), gl.STATIC_DRAW);

We can render these data using a render function as in Chapter 2

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}

and the simple pass-through shaders we used in Chapter 2.

https://hemanthrajhemu.github.io

3.1 Animation 101

Now suppose that we want to display the square with a different value of θ .
We could compute new vertices with positions determined by the two equations we
started with for a general θ and then send these vertices to the GPU, followed by
another rendering. If we want to see the square rotating, we could put the code in a
loop that increments θ by a fixed amount each time. But such a strategy would be
extremely inefficient. Not only would we be sending vertices to the GPU repeatedly,
something that would be far more problematic if we were to replace the square by
an object with hundreds or thousands of vertices, but we would also be doing the
trigonometric calculations in the CPU rather than the GPU where these calculations
could be done much faster.

A better solution is to send the original data to the GPU as we did initially and
then alter θ in the render function and send the new θ to the GPU. In order to transfer
data from the CPU to variables in the shader, we must introduce a new type of shader
variable. In a given application, a variable may change in a variety of ways. When we
send vertex attributes to a shader, these attributes can be different for each vertex in
a primitive. We may also want parameters that will remain the same for all vertices
in a primitive or equivalently for all the vertices that are displayed when we execute
a function such as gl.drawArrays. Such variables are called uniform qualified
variables.

Consider the vertex shader

attribute vec4 vPosition;

uniform float theta;

void main()

{

gl_Position.x = -sin(theta) * vPosition.x + cos(theta) * vPosition.y;

gl_Position.y = sin(theta) * vPosition.y + cos(theta) * vPosition.x;

gl_Position.z = 0.0;

gl_Position.w = 1.0;

}

The variable theta has the qualifier uniform so the shader expects its value to be
provided by the application. With this value, the shader outputs a vertex position that
is rotated by θ .

In order to get a value of θ to the shader, we must perform two steps. First, we
must provide a link between theta in the shader and a variable in the application.
Second, we must send the value from the application to the shader.

Suppose that we use a variable also named theta in the application1

var theta = 0.0;

1. We could use any valid name, but we will use the same name in our examples to make it easier to
recognize the tie between a particular shader variable and the corresponding application variable.

https://hemanthrajhemu.github.io

102 Chapter 3 Interaction and Animation

When the shaders and application are compiled and linked by initShaders, ta-
bles are created that we can query to make the necessary correspondence using the
function gl.getUniformLocation, as in the code

var thetaLoc = gl.getUniformLocation(program, "theta");

Note that this function is analogous to the way we linked attributes in the vertex
shader with variables in the application. We can then send the value of theta from
the application to the shader by

gl.uniform1f(thetaLoc, theta);

There are multiple forms of gl.uniform corresponding to the types of values we
are sending—scalars, vectors, or matrices—and to whether we are sending the values
or pointers to the values. Here, the 1f indicates that we are sending the value of a
floating-point variable. We will see other forms starting in Chapter 4, where we will
be sending vectors and matrices to shaders. Although our example sends data to a
vertex shader, we can also use uniforms to send data to fragment shaders.

Returning to our example, we send new values of theta to the vertex shader in
the render function

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

render();

}

which increases θ , renders, and calls itself. Unfortunately, this approach will not quite
work. In fact, we will see only the initial display of the square. To fix the problem, we
need to examine how and when the display is changed.

3.1.2 The Display Process
Before proceeding, it would be helpful to overview how the browser and the window
system interact with a physical display device. Consider a typical flat-panel display
and a static image that comprises multiple windows. This image is stored as pixels
in a buffer maintained by the window system and is periodically and automatically
redrawn on the display. The refresh or repaint operation draws a new image (or
frame), at a rate of approximately 60 frames per second (fps) (or 60 hertz or 60 Hz).
The actual rate is set by the window system, and you may be able to adjust it.

Historically, the frame rate was tied to the alternating current (AC) power trans-
mission frequency of 60 Hz in North America and 50 Hz in Europe. The refresh was
required by the short persistence of the phosphors in CRTs. Although now CRT mon-
itors are no longer the dominant technology and the electronics are no longer coupled
to the line frequency, there is still a minimum rate for each display technology that

https://hemanthrajhemu.github.io

3.1 Animation 103

must be high enough to avoid visual artifacts (most noticeably flicker, if the rate is
too low). From our perspective, this process is not synchronized with the execution
of our program and usually we do not need to worry about it. As we noted in Chap-
ter 1, the redraw can be progressive and redraw the entire display each time, or it can
be interlaced, redrawing odd and even lines on alternate frames.

Consider a browser window on the display. Although this window is being re-
drawn by the display process, its contents are unchanged unless some action takes
place that changes pixels in the display buffer. The action (or event) can be caused
by some action on the part of the user, such as clicking a mouse button or pressing a
key, or the action can be caused by an event such as a new frame in a video needing to
be displayed. We will discuss events and event processing in detail later in this chap-
ter, but for now we should note that the browser runs asynchronously, executing one
piece of code until some event interrupts the flow or the code runs to completion, in
which case the browser waits for another event.

Now suppose that the browser window is a WebGL window. As we saw from our
examples, we input a series of JavaScript files including the file with the application.
The onload event starts the execution of our application with the init function. In
our applications so far, the execution ended in the render function. That invokes the
gl.drawArrays function. At this point, execution of our code is complete and the
results are displayed. However, the code for rendering the square,

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

render();

}

has a fundamental difference; namely, that it calls itself, and this recursion puts the
drawing inside an infinite loop. Thus, we cannot reach the end of our code and we
never see changes to the display. Nevertheless, the executions of gl.drawArrays
cause changes in another buffer.

3.1.3 Double Buffering
Suppose that the color buffer in the framebuffer is a single buffer that holds the
colored pixels produced by our application. Then each time the browser repaints the
display, we would see its present contents. If the objects we are rendering are not
changing, then, other than possibly seeing a little flicker if the redraw rate is slow
or noticing the slight shifting of the image in an interlaced display, we would see an
unchanging image in the window.

However, if we change the contents of the framebuffer during a refresh, we
may see undesirable artifacts of how we generate the display. In addition, if we are
rendering more geometry than can be rendered in a single refresh cycle, we will see

https://hemanthrajhemu.github.io

104 Chapter 3 Interaction and Animation

different parts of objects on successive refreshes. If an object is moving, its image may
be distorted on the display.

Consider what might happen with the repetitive clearing and redrawing of an
area of the screen, as we are attempting in our rotating-square program. Even though
the square is a simple object and is easily rendered in a single refresh cycle, there is
no coupling between when new squares are drawn into the framebuffer and when
the framebuffer is redisplayed by the hardware. Thus, depending on exactly when the
framebuffer is displayed, only part of the square may be in the buffer. This model is
known as single buffering because there is only one buffer—the color buffer in the
framebuffer—for rendering and display.

Double buffering provides a solution to these problems. Suppose that we have
two color buffers at our disposal, conventionally called the front and back buffers.
The front buffer is always the one displayed, whereas the back buffer is the one
into which we draw. WebGL requires double buffering. A typical rendering starts
with a clearing of the back buffer, rendering into the back buffer, and finishing with
a buffer swap. The remaining issue is how and when the buffer swap is triggered.
In the example we started with, in which we tried to use a recursive call to the
render function, we failed to provide a buffer swap so we would not see a change
in the display. We will examine two approaches: using timers and using the function
requestAnimFrame.

Note that double buffering does not solve all the problems that we encounter
with animated displays. If the display is complex, we still may need multiple frames
to draw the image into the framebuffer. Double buffering does not speed up this
process; it only ensures that we never see a partial display. However, we are often able
to have visibly acceptable displays at rates as low as 10 to 20 frames per second if we
use double buffering.

3.1.4 Using a Timer
One way to generate a buffer swap and to control the rate at which the display is
repainted is to use the setInterval method to call the render function repeatedly
after a specified number of milliseconds. Thus, if we replace the execution of render
at the end of init with

setInterval(render, 16);

render will be called after 16 milliseconds (when the timer interval has elapsed), or
about 60 times per second. An interval of 0 milliseconds will cause the render func-
tion to be executed as fast as possible. Each time the time-out function completes, it
forces the buffers to be swapped, and thus we get an updated display.

Suppose that you want to check if indeed the interval between renderings is the
interval specified in setInterval, or perhaps to check how long it takes to execute
some code. We can measure times in milliseconds by adding a timer to our code
using the Date object. The getTime method returns the number of milliseconds
since midnight GMT on January 1, 1970. Here is a simple use of a timer to output
the time between renderings. Before we render, we save an initial time

https://hemanthrajhemu.github.io

3.1 Animation 105

var t1, t2;

var date = new Date;

t1 = date.getTime();

and then in render

t2 = date.getTime();

console.log(t2 - t1);

t1 = t2;

3.1.5 Using requestAnimFrame
Because setInterval and related JavaScript functions, such as setTimeout, are
independent of the browser, it can be difficult to get a smooth animation. One solu-
tion to this problem is to use the function requestAnimFrame, which is supported
by most browsers. Consider the simple rendering function

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

requestAnimFrame(render);

}

The function requestAnimFrame requests the browser to display the rendering the
next time it wants to refresh the display and then call the render function recursively.
For a simple display, such as our square, we will get a smooth display at about 60 fps.

Finally, we can use requestAnimFrame within setInterval to get a different
frame rate, as in the render function, of about 10 fps:

function render()

{

setTimeout(function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, 100);

}

Although this solution should work pretty well for most simple animations, let’s
take a somewhat different look at the problem by focusing on the framebuffer and, at
least initially, not worrying about the browser, the window system, or anything else
going on.

https://hemanthrajhemu.github.io

106 Chapter 3 Interaction and Animation

3.2 INTERACTION

One of the most important advances in computer technology was enabling users
to interact with computer displays. More than any other event, Ivan Sutherland’s
Sketchpad project launched the present era of interactive computer graphics. The
basic paradigm that he introduced is deceptively simple. The user sees an image on
the display. She reacts to this image by means of an interactive device, such as a
mouse. The image changes in response to her input. She reacts to this change, and so
on. Whether we are writing programs using the tools available in a modern window
system or using the human–computer interface in an interactive museum exhibit, we
are making use of this paradigm.

In the 50 years since Sutherland’s work, there have been many advances in both
hardware and software, but the viewpoint and ideas that he introduced still dominate
interactive computer graphics. These influences range from how we conceptualize
the human–computer interface to how we can employ graphical data structures that
allow for efficient implementations.

In this chapter, we take an approach slightly different from that in the rest of
the book. Although rendering is the prime concern of most modern APIs, interactiv-
ity is an important component of most applications. OpenGL, and thus WebGL, do
not support interaction directly. The major reason for this omission is that the sys-
tem architects who designed OpenGL wanted to increase its portability by allowing
the system to work in a variety of environments. Consequently, window and input
functions were left out of the API. Although this decision makes renderers portable,
it makes discussions of interaction that do not include specifics of the window sys-
tem more difficult. In addition, because any application program must have at least a
minimal interface to the window environment, we cannot entirely avoid such issues
if we want to write complete, nontrivial programs. If interaction is omitted from the
API, the application programmer is forced to worry about the often arcane details of
her particular environment.

Nevertheless, it is hard to imagine any application that does not involve some
sort of interaction, whether it is as simple as entering data or something more com-
plex that uses gestures with multiple fingers on a touch screen. For desktop OpenGL,
there are some toolkits that provide an API that supports operations common to all
window systems, such as opening windows and getting data from a mouse or key-
board. Such toolkits require recompilation of an application to run with a different
window system, but the application source code need not be changed.

There is much greater compatibility across platforms with WebGL. Because
WebGL is contained within HTML5, we can employ a variety of tools and make use
of a variety of packages, all of which will run on any system that supports WebGL.
We will follow the same approach as in Chapter 2 and focus on creating interactive
applications with JavaScript rather than using a higher-level package. We believe that
this approach will make it clearer how interactivity works and will be more robust
because it will not make use of software packages that are under continual change.

Before proceeding, we want to lessen some of the confusion with regard to mul-
tiple ways the terms window and window system are used. We use the term window
system, as we did in Chapter 2, to include the total environment provided by systems

https://hemanthrajhemu.github.io

3.3 Input Devices 107

such as Linux using the X Window System, all the versions of Microsoft Windows,
and Mac OS X. When you open a window in your browser, this window is also a
window within the larger operating system, although one with special properties
that allow it to display information specified, for example, by files written in HTML.
When we run a WebGL program through our browser, the window it runs in is under
control of the browser, which itself is under control of the local windowing system.
Matters can get more complex since our interaction with the browser window might
cause more windows to appear, such as pop-ups, or windows might be destroyed.
All these actions require complex interactions among operating systems, browsers,
application programs, and various buffers. Any detailed discussion will take us away
from our desire to stay close to graphics.

Without getting into detail about the interaction among the various entities, we
can work with the following high-level model: The WebGL application programs that
we develop will render into a window opened by a browser that supports WebGL.

We start by describing several interactive devices and the variety of ways that we
can interact with them. Then we put these devices in the setting of a client–server
network and introduce an API for minimal interaction. Finally, we generate sample
programs.

3.3 INPUT DEVICES

We can think about input devices in two distinct ways. The obvious one is to look
at them as physical devices, such as a keyboard or a mouse, and to discuss how they
work. Certainly, we need to know something about the physical properties of our in-
put devices, so such a discussion is necessary if we are to obtain a full understanding
of input. However, from the perspective of an application programmer, we should
not need to know the details of a particular physical device to write an application
program. Rather, we prefer to treat input devices as logical devices whose properties
are specified in terms of what they do from the perspective of the application pro-
gram. A logical device is characterized by its high-level interface with the application
program rather than by its physical characteristics. Logical devices are familiar to all
writers of high-level programs.

Consider this fragment of C++ code,

int x;

cin >> x;

cout << x;

in which we read and then write an integer. Obviously, we could have just as easily
written this fragment in C or Java. Although we would typically run the program
on a workstation, entering the data from a keyboard and seeing the output on the
display, we could also use mechanisms such as redirection to have the input come
from the output from another program or have the output placed in a disk file. Even
if we use the keyboard and display, the use of the default input and output streams
cin and cout requires no knowledge of the properties of the physical devices, such as
the keyboard codes or the resolution of the display. Rather, cin and cout are logical

https://hemanthrajhemu.github.io

108 Chapter 3 Interaction and Animation

functions that are defined by how they handle input or output character strings
from the perspective of the C++ program. More generally, data input and output
in C are done through functions such as printf, scanf, getchar, and putchar,
whose arguments use the standard C data types, and through input (cin) and output
(cout) streams in C++.

When we output a string of characters using printf or cout, the physical device
on which the output appears could be a printer, a terminal, or a disk file. The output
could even be the input to another program. The details of the format required by
the destination device are of minor concern to the writer of the application program.

In computer graphics, the use of logical devices is somewhat more complex be-
cause the forms that input can take are more varied than the strings of bits or char-
acters to which we are usually restricted in nongraphical applications. For example,
we can use the mouse—a physical device—to select a location on the screen or to
indicate which item in a menu we wish to select. These are two different logical func-
tions. In the first case, an (x , y) pair (in some coordinate system) is returned to the
user program; in the second, the application program may receive an integer identi-
fier that corresponds to an entry in the menu. The separation of physical from logical
devices not only allows us to use the same physical device in multiple, markedly dif-
ferent, logical ways but also allows the same program to work without modification
if the mouse is replaced by another physical device, such as a data tablet or trackball.

There is a second issue that arises from our code fragment; namely, how and
when does the input data get to a program variable and, likewise, how does the data
from a program variable get to a display device. These issues relate to interaction
between the physical devices and the operating system and will also be examined later.

3.4 PHYSICAL INPUT DEVICES

From the physical perspective, each input device has properties that make it more
suitable for certain tasks than for others. We take the view used in most of the
workstation literature that there are two primary types of physical devices: pointing
devices and keyboard devices. The pointing device allows the user to indicate a
position on a display and almost always incorporates one or more buttons to allow
the user to send signals or interrupts to the computer. The keyboard device is almost
always a physical keyboard but can be generalized to include any device that returns
character codes. For example, a tablet computer uses recognition software to decode
the user’s writing with a stylus but in the end produces character codes identical to
those of the standard keyboard.

3.4.1 Keyboard Codes
For many years, the standard code for representing characters was the American
Standard Code for Information Interchange (ASCII), which assigns a single byte to
each character. ASCII used only the first 127 codes and was later expanded to a larger
8-bit character set known as Latin 1 that can represent most European languages.
However, 8 bits is insufficient to support other languages that are needed for a true
worldwide Internet. Consequently, Unicode was developed as 16-bit (2-byte) code

https://hemanthrajhemu.github.io

3.4 Physical Input Devices 109

Threshold
detector Computer

Photodetector

FIGURE 3.2 Light pen.

FIGURE 3.3 Mouse.

FIGURE 3.4 Trackball.

that is rich enough to support virtually all languages and is the standard for all
modern browsers. Because Latin 1 is a superset of ASCII and Unicode is a superset of
Latin 1, code developed based on earlier byte-oriented character sets should work in
any browser.

3.4.2 The Light Pen
The light pen has a long history in computer graphics. It was the device used in
Sutherland’s original Sketchpad. The light pen contains a light-sensing device, such
as a photocell (Figure 3.2). If the light pen is positioned on the face of the CRT at
a location opposite where the electron beam strikes the phosphor, the light emitted
exceeds a threshold in the photodetector and a signal is sent to the computer. Because
each redisplay of the framebuffer starts at a precise time, we can use the time at which
this signal occurs to determine a position on the CRT screen (see Exercise 3.14). The
light pen was originally used on random scan devices so the time of the interrupt
could easily be matched to a piece of code in the display list, thus making the light pen
ideal for selecting application-defined objects. With raster scan devices, the position
on the display can be determined by the time the scan begins and the time it takes to
scan each line. Hence, we have a direct-positioning device.

The light pen has some deficiencies, including its cost and the difficulty of ob-
taining a position that corresponds to a dark area of the screen. For all practical
purposes, the light pen has been superseded by the mouse and track pad. However,
tablet PCs are used in a manner that mimics how the light pen was used originally:
The user has a stylus with which she can move randomly about the tablet (display)
surface.

3.4.3 The Mouse and the Trackball
The mouse (Figure 3.3) and trackball (Figure 3.4) are similar in use and often in
construction as well. When turned over, a typical mechanical mouse looks like a
trackball. In both devices, the motion of the ball is converted to signals sent back
to the computer by pairs of encoders inside the device that are turned by the motion
of the ball. The encoders measure motion in two orthogonal directions. Note that the
wheel found on many recent mice acts as an independent one-dimensional mouse-
like device.

There are many variants of these devices. Some use optical detectors rather than
mechanical detectors to measure motion. Small trackballs are popular with portable
computers because they can be incorporated directly into the keyboard. There are
also various pressure-sensitive devices used in keyboards that perform similar func-
tions to the mouse and trackball but that do not move; their encoders measure the
pressure exerted on a small knob that often is located between two keys in the middle
of the keyboard.

We can view the output of the mouse or trackball as two independent values
provided by the device. These values can be considered as positions and converted—
either within the graphics system or by the user program—to a two-dimensional
location in either screen or world coordinates. If it is configured in this manner,

https://hemanthrajhemu.github.io

110 Chapter 3 Interaction and Animation

�
vx

vy
�

x

y

FIGURE 3.5 Cursor positioning.

FIGURE 3.6 Data tablet.

we can use the device to position a marker (cursor) automatically on the display;
however, we rarely use these devices in this direct manner.

It is not necessary that the outputs of the mouse or trackball encoders be inter-
preted as positions. Instead, either the device driver or a user program can interpret
the information from the encoder as two independent velocities (see Exercise 3.4).
The computer can then integrate these values to obtain a two-dimensional position.
Thus, as a mouse moves across a surface, the integrals of the velocities yield x , y val-
ues that can be converted to indicate the position for a cursor on the screen, as shown
in Figure 3.5. By interpreting the distance traveled by the ball as a velocity, we can use
the device as a variable-sensitivity input device. Small deviations from rest cause slow
or small changes; large deviations cause rapid or large changes. With either device, if
the ball does not rotate, then there is no change in the integrals and a cursor tracking
the position of the mouse will not move. In this mode, these devices are relative-
positioning devices because changes in the position of the ball yield a position in
the user program; the absolute location of the ball (or the mouse) is not used by the
application program.

Relative positioning, as provided by a mouse or trackball, is not always desirable.
In particular, these devices are not suitable for an operation such as tracing a diagram.
If, while the user is attempting to follow a curve on the screen with a mouse, she lifts
and moves the mouse, the absolute position on the curve being traced is lost.

3.4.4 Data Tablets,Touch Pads, and Touch Screens
Data tablets (or just tablets) provide absolute positioning. A typical data tablet (Fig-
ure 3.6) has rows and columns of wires embedded under its surface. The position of
the stylus is determined through electromagnetic interactions between signals trav-
eling through the wires and sensors in the stylus. Touch-sensitive transparent screens
that can be placed over the face of a CRT have many of the same properties as the
data tablet. Small, rectangular, pressure-sensitive touch pads are embedded in the
keyboards of most portable computers. These touch pads can be configured as either
relative- or absolute-positioning devices. Some are capable of detecting simultaneous
motion input from multiple fingers touching different spots on the pad and can use
this information to enable more complex behaviors.

Tablet devices and smart phones are characterized by touch screens. A touch
screen is both a display and an input device. Positions are detected by changes in
pressure on the display’s surface, which might be initiated by a single or multiple
pressure points, engaged by fingers or perhaps a stylus. Since the input device is
overlaid on the displayed image, the user can interact directly with the displayed

https://hemanthrajhemu.github.io

3.4 Physical Input Devices 111

FIGURE 3.7 Joystick.

FIGURE 3.8 Spaceball.

image. Thus, if we display a button, the user can push it. If we display the image of
an object, the user can move it around the screen by touching the object and then
moving her finger or stylus.

Additionally, most touch devices are capable of tracking multiple pressure points
that allows gestural input. For example, a common gesture is a “pinch,” using two
fingers to initially make contact with the touch device at two separate locations and
drawing the two fingers together to the same point on the touch device.

3.4.5 The Joystick
One other device, the joystick (Figure 3.7), is particularly worthy of mention. The
motion of the stick in two orthogonal directions is encoded, interpreted as two ve-
locities, and integrated to identify a screen location. The integration implies that if
the stick is left in its resting position, there is no change in the cursor position, and
that the farther the stick is moved from its resting position, the faster the screen loca-
tion changes. Thus, the joystick is a variable-sensitivity device. The other advantage
of the joystick is that the device can be constructed with mechanical elements, such
as springs and dampers, that give resistance to a user who is pushing the stick. Such a
mechanical feel, which is not possible with the other devices, makes the joystick well
suited for applications such as flight simulators and game controllers.

3.4.6 Multidimensional Input Devices
For three-dimensional graphics, we might prefer to use three-dimensional input de-
vices. Although various such devices are available, none have yet won the widespread
acceptance of the popular two-dimensional input devices. A spaceball looks like a
joystick with a ball on the end of the stick (Figure 3.8); however, the stick does not
move. Rather, pressure sensors in the ball measure the forces applied by the user. The
spaceball can measure not only the three direct forces (up–down, front–back, left–
right) but also three independent twists. The device measures six independent values
and thus has six degrees of freedom. Such an input device could be used, for example,
both to position and to orient a camera.

Other three-dimensional devices, such as laser scanners, measure three-
dimensional positions directly. Numerous tracking systems used in virtual reality
applications sense the position of the user. Virtual reality and robotics applications
often need more degrees of freedom than the two to six provided by the devices that
we have described. Devices such as data gloves can sense motion of various parts of
the human body, thus providing many additional input signals. Recently, in addi-
tion to being wireless, input devices such as Nintendo’s Wii incorporate gyroscopic
sensing of position and orientation.

Many of the devices becoming available can take advantage of the enormous
amount of computing power that can be used to drive them. For example, motion-
capture (mocap) systems use arrays of standard digital cameras placed around an
environment to capture reflected lights from small spherical dots that can be placed
on humans at crucial locations, such as the arm and leg joints. In a typical system,
eight cameras will see the environment and capture the location of the dots at high
frame rates, producing large volumes of data. The computer, often just a standard PC,

https://hemanthrajhemu.github.io

112 Chapter 3 Interaction and Animation

can process the two-dimensional pictures of the dots to determine, in each frame,
where in three-dimensional space each dot must be located to have produced the
captured data.

3.4.7 Logical Devices
We can now return to looking at input from inside the application program; that is,
from the logical point of view. Two major characteristics describe the logical behavior
of an input device: (1) the measurements that the device returns to the user program,
and (2) the time when the device returns those measurements.

Some earlier APIs defined six classes of logical input devices. Because input
in a modern window system cannot always be disassociated completely from the
properties of the physical devices, modern systems no longer take this approach.
Nevertheless, we describe the six classes briefly because they illustrate the variety
of input forms available to a developer of graphical applications. We will see how
WebGL can provide the functionality of each of these classes.

1. String A string device is a logical device that provides ASCII strings to
the user program. This logical device is usually implemented by means of a
physical keyboard. In this case, the terminology is consistent with that used
in most window systems, which usually do not distinguish between the logical
string device and a physical keyboard.

2. Locator A locator device provides a position in world coordinates to the
user program. It is usually implemented by means of a pointing device, such
as a mouse or a trackball. In WebGL, we usually use the pointing device in
this manner, although we have to do the conversion from screen coordinates
to world coordinates within our own programs.

3. Pick A pick device returns the identifier of an object on the display to the
user program. It is usually implemented with the same physical device as a
locator, but has a separate software interface to the user program. We will
examine a few alternatives for implementing picking in WebGL through the
use of a pointing device.

4. Choice Choice devices allow the user to select one of a discrete number
of options. In WebGL, we can use various widgets provided by the window
system. A widget is a graphical interactive device, provided by either the
window system or a toolkit. Typical widgets include menus, slide bars, and
graphical buttons. Most widgets are implemented as special types of windows.
For example, a menu with n selections acts as a choice device, allowing us
to select one of n alternatives. Widget sets are the key element defining a
graphical user interface, or GUI. We will be able to use simple buttons,
menus, and scroll bars in our examples without using a separate GUI package.

5. Valuator Valuators provide analog input to the user program. On older
graphics systems, there were boxes or dials to provide valuator input. Here
again, widgets within various toolkits usually provide this facility through
graphical devices such as slide bars and radio boxes.

https://hemanthrajhemu.github.io

3.4 Physical Input Devices 113

6. Stroke A stroke device returns an array of locations. Although we can think
of a stroke device as similar to multiple uses of a locator, it is often imple-
mented such that an action—say, pushing down a mouse button—starts the
transfer of data into the specified array, and a second action, such as releasing
the button, ends this transfer.

We can augment this list to include types of input from modern devices like
touch pads and panels that accept multiple, simultaneous physical interactions and
aggregate those actions into logical inputs representing gestures. Considering a “two-
finger pinch” gesture, the device would register two initial “touches” at distinct loca-
tions. As the user completes the pinch gesture, the device would need to aggregrate
the motion of the user’s fingers moving toward the same location on the touch device.
If an application were provided this “raw” input, it would be challenging to intrepret
the input data to determine the actual user gesture. Fortunately, most windowing sys-
tems for these types of devices do the processing either in the touch device’s hardware
or the device driver.

3.4.8 Input Modes
The manner by which input devices provide input to an application program can
be described in terms of two entities: a measure process and a device trigger. The
measure of a device is what the device returns to the user program. The trigger
of a device is a physical input on the device with which the user can signal the
computer. For example, the measure of a keyboard should include a single character
or a string of characters, and the trigger can be the Return or Enter key. For a locator,
the measure includes the position of the locator, and the associated trigger can be
a button on the physical device. The measure processes are initiated by the browser
when the application code has been loaded.

The application program can obtain the measure of a device in three distinct
modes. Each mode is defined by the relationship between the measure process and the
trigger. Once a measure process is started, the measure is taken and placed in a buffer,
even though the contents of the buffer may not yet be available to the program. For
example, the position of a mouse is tracked continuously by the underlying window
system and a cursor is displayed regardless of whether the application program needs
mouse input.

In request mode, the measure of the device is not returned to the program until
the device is triggered. This input mode is standard in nongraphical applications. For
example, if a typical C program requires character input, we use a function such as
scanf in C or cin in C++. When the program needs the input, it halts when it
encounters the scanf or cin statement and waits while we type characters at our
terminal. We can backspace to correct our typing, and we can take as long as we like.
The data are placed in a keyboard buffer whose contents are returned to our program
only after a particular key, such as the Enter key (the trigger), is pressed. For a logical
device, such as a locator, we can move our pointing device to the desired location
and then trigger the device with its button; the trigger will cause the location to be
returned to the application program. The relationship between measure and trigger
for request mode is shown in Figure 3.9.

https://hemanthrajhemu.github.io

114 Chapter 3 Interaction and Animation

Measure
process ProgramTrigger

process Trigger Measure

Request

FIGURE 3.9 Request mode.

Measure
process Program

Measure

Sample

FIGURE 3.10 Sample mode.

Sample-mode input is immediate. As soon as the function call in the user pro-
gram is encountered, the measure is returned. Hence, no trigger is needed (Fig-
ure 3.10). In sample mode, the user must have positioned the pointing device or
entered data using the keyboard before the function call, because the measure is ex-
tracted immediately from the buffer.

One characteristic of both request- and sample-mode input in APIs that support
them is that the user must identify which device is to provide the input. Consequently,
we ignore any other information that becomes available from any input device other
than the one specified. Both request and sample modes are useful for situations where
the program guides the user, but are not useful in applications where the user controls
the flow of the program. For example, a flight simulator or computer game might
have multiple input devices—such as a joystick, dials, buttons, and switches—most
of which can be used at any time. Writing programs to control the simulator with only
sample- and request-mode input is nearly impossible because we do not know what
devices the pilot will use at any point in the simulation. More generally, sample- and
request-mode input are not sufficient for handling the variety of possible human–
computer interactions that arise in a modern computing environment.

Our third mode, event mode, can handle these other interactions. We introduce
it in three steps. First, we show how event mode can be described as another mode
within our measure–trigger paradigm. Second, we discuss the basics of clients and
servers where event mode is the preferred interaction mode. Third, we show the
event-mode interface to WebGL through event handlers.

Suppose that we are in an environment with multiple input devices, each with its
own trigger and each running a measure process. Each time that a device is triggered,
an event is generated. The device measure, including the identifier for the device,
is placed in an event queue. This process of placing events in the event queue is
completely independent of what the application program does with these events. One
way that the application program can work with events is shown in Figure 3.11. The
application program can examine the front event in the queue or, if the queue is
empty, can wait for an event to occur. If there is an event in the queue, the program
can look at the first event’s type and then decide what to do. If, for example, the first
event is from the keyboard but the application program is not interested in keyboard
input, the event can be discarded and the next event in the queue can be examined.

https://hemanthrajhemu.github.io

3.5 Clients and Servers 115

Event
queue ProgramMeasure

process Measure Event

Await
Trigger
process Trigger

FIGURE 3.11 Event–mode model.

Another approach is to associate a function called a callback with a specific type
of event. Event types can be subdivided into a few categories. Mouse events include
moving the mouse (or other pointing device) and depressing or releasing one or more
mouse buttons. Window events include opening or closing a window, replacing a
window with an icon, and resizing a window with the pointing device. Keyboard
events include pressing or releasing a key. Other event types are associated with the
operating system and the browser, such as idle time-outs and indicators as to when a
page has been loaded.

From the perspective of the window system, the operating system queries or polls
the event queue regularly and executes the callbacks corresponding to events in the
queue. We take this approach because it is the one currently used with the major
window systems and has proved effective in client–server environments.

3.5 CLIENTS AND SERVERS

So far, our approach to input has been isolated from all other activities that might
be happening in our computing environment. We have looked at our graphics sys-
tem as a monolithic box with limited connections to the outside world, rather than
through our carefully controlled input devices and a display. Networks and multiuser
computing have changed this picture dramatically and to such an extent that, even if
we had a single-user isolated system, its software probably would be configured as a
simple client–server network.

If computer graphics is to be useful for a variety of real applications, it must
function well in a world of distributed computing and networks. In this world, our
building blocks are entities called servers that can perform tasks for clients. Clients
and servers can be distributed over a network (Figure 3.12) or contained entirely
within a single computational unit. Familiar examples of servers include print servers,
which can allow sharing of a high-speed printer among users; compute servers, such
as remotely located high-performance computers, accessible from user programs; file
servers that allow users to share files and programs, regardless of the machine they are
logged into; and terminal servers that handle dial-in access. Users and user programs
that make use of these services are clients or client programs. Servers can also exist at a
lower level of granularity within a single operating system. For example, the operating
system might provide a clock service that multiple client programs can use.

It is less obvious what we should call a workstation connected to the network: It
can be both a client and a server, or, perhaps more to the point, a workstation may
run client programs and server programs concurrently.

The model that we use here was popularized by the X Window System. We
use much of that system’s terminology, which is now common to most window

https://hemanthrajhemu.github.io

116 Chapter 3 Interaction and Animation

Graphics server Workstation WorkstationPrint server

Compute server File server Graphics server

FIGURE 3.12 Network.

systems and fits well with graphical applications. A workstation with a raster display,
a keyboard, and a pointing device, such as a mouse, is a graphics server. The server
can provide output services on its display and input services through the keyboard
and pointing device. These services are potentially available to clients anywhere on
the network.

Application programs written in C or C++ that use desktop OpenGL for graph-
ics applications are clients that use the graphics server. Within an isolated system,
this distinction may not be apparent as we write, compile, and run the software on a
single machine. However, we also can run the same application program using other
graphics servers on the network. Note that in a modern system, the GPU acts as the
graphics server for display, whereas the CPU is the client for those services.

As we saw in Chapter 2, WebGL works within a browser. The browser accesses
applications on web servers and the browser is a web client. We can regard the World
Wide Web as a vast storehouse of information stored as web pages in web servers
using standard encodings, such as HTML for documents or JPEG for images.

3.6 PROGRAMMING EVENT-DRIVEN INPUT

In this section, we develop event-driven input through a set of simple examples that
use the callback mechanism that we introduced in Section 3.4. We examine various
events that are recognized by WebGL through HTML5 and, for those of interest to
our application, we write callback functions that govern how the application program
responds to the events. Note that because input is not part of WebGL, we will obtain

https://hemanthrajhemu.github.io

3.6 Programming Event-Driven Input 117

input through callbacks that are supported by the browser and thus are not restricted
to use by graphics applications.

3.6.1 Events and Event Listeners
Because WebGL is concerned with rendering and not input, we use JavaScript and
HTML for the interactive part of our application. An event is classified by its type
and target. The target is an object, such as a button, that we create through the HTML
part of our code and appears on the display. A target can also be a physical object such
as a mouse. Thus, a “click” is an event type whose target could be a button object or
a mouse object. The measure of the device is associated with the particular object.

The notion of event types works well not only with WebGL but also within the
HTML environment. Event types can be thought of as members of a higher-level
classification of events onto event categories. Our primary concern will be with the
category of device-dependent input events, which includes all the types associated
with devices such as a mouse and a keyboard. Within this category, event types
include mousedown, keydown, and mouse click. Each event has a name that is
recognized by JavaScript and usually begins with the prefix on, such as onload and
onclick. For a device-independent type such as onclick, the target might be a
physical mouse or a button on the display that was created as part of our HTML
document. The target of the onload event that we have seen in our examples is our
canvas.

We can respond to events in a number of ways. In our examples, we invoked our
initialization function by

window.onload = init;

Here the event type is load with a target of our window. The callback function is
init.2 Callbacks that we associate with events are called event listeners or event
handlers.

3.6.2 Adding a Button
Suppose we want to alter our rotating cube so we can rotate it either clockwise or
counterclockwise and switch between these modes through a graphical button that
can be clicked using the mouse. We can add a button element in the HTML file with
the single line of code

<button id="DirectionButton">Change Rotation Direction</button>

which gives an identifier to the new element and puts a label (“Change Rotation
Direction") on the display inside the button. In the JavaScript file, we define a boolean
variable for the direction that gets used in the render function to select a positive or
negative rotation:

2. Note that one reason for using an event here is the asynchronous nature of code running in the
browser. By forcing our program to wait for the entire program to be loaded by the browser, we gain
control over when our application can proceed.

https://hemanthrajhemu.github.io

118 Chapter 3 Interaction and Animation

var direction = true;

theta += (direction ? 0.1 : -0.1);

Finally, we need to couple the button element with a variable in our program and add
an event listener:

var myButton = document.getElementById("DirectionButton");

myButton.addEventListener("click", function() { direction = !direction;

});

We can also use the alternate form

document.getElementById("DirectionButton").onclick =

function() { direction = !direction; };

The click event is not the only one that can be coupled to our button. We could
also use the mousedown event

myButton.addEventListener("mousedown",

function() { direction = !direction; });

assuming that during initialization we define

var direction = true;

Although in this example we can use either event, in a more complex application
we might prefer to use the mousedown event to be specific as to which device can
cause the event. We can achieve even more specificity using additional information
in the measure returned by the event. For example, if we are using a multibutton
mouse, we can restrict the change to a particular button, as in

myButton.addEventListener("click", function() {

if (event.button == 0) { direction = !direction; }

});

where on a three-button mouse button 0 is the left mouse button, button 1 is the
middle button, and button 2 is the right button.

If we have a single-button mouse, we can use the meta keys on the keyboard to
give us more flexibility. For example, if we want to use the Shift key with our click
event, our code might look like

myButton.addEventListener("click", function() {

if (event.shiftKey == 0) { direction = !direction; }

});

We can also put all the button code in the HTML file instead of dividing it between
the HTML file and the JavaScript file. For our button, we could simply have the code

<button onclick="direction = !direction"></button>

https://hemanthrajhemu.github.io

3.6 Programming Event-Driven Input 119

in the HTML file. However, we prefer to separate the description of the object on the
page from the action associated with the object, with the latter being in the JavaScript
file.

3.6.3 Menus
Menus are specified by select elements in HTML that we can define in our HTML
file. A menu can have an arbitrary number of entries, each of which has two parts: the
text that is visible on the display and a number that we can use on our application to
couple that entry to a callback. We can demonstrate menus with our rotating square
by adding a menu with three entries to our HTML file:

<select id="mymenu" size="3">

<option value="0">Toggle Rotation Direction X</option>

<option value="1">Spin Faster</option>

<option value="2">Spin Slower</option>

</select>

As with a button, we create an identifier that we can refer to in our application.
Each line in the menu has a value that is returned when that row is clicked with
the mouse. Let’s first modify our render function slightly so we can alter the speed of
rotation by having a variable delay that we use with a timer to control the rate of
animation:

var delay = 100;

function render()

{

setTimeout(function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += (direction ? 0.1 : -0.1);

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, delay);

}

The click event returns the line of the menu that was pointed to through the
selectedIndexmember of m:

var m = document.getElementById("mymenu");

m.addEventListener("click", function() {

switch (m.selectedIndex) {

case 0:

direction = !direction;

break;

case 1:

delay /= 2.0;

break;

https://hemanthrajhemu.github.io

120 Chapter 3 Interaction and Animation

case 2:

delay *= 2.0;

break;

}

});

3.6.4 Using Keycodes
We can also use key press events to control our rotating square. Suppose that we want
to use the numeric keys 1, 2, and 3 rather than the menu. These keys have codes 49,
50, and 51 in Unicode (and ASCII). Now we can use the keydown event and a simple
listener.

In the following code, you will see that we are responding to a window event
that occurs on the page, not in the WebGL window. Hence, we use the global objects
window and event, which are defined by the browser and available to all JavaScript
programs.

window.addEventListener("keydown", function() {

switch (event.keyCode) {

case 49: // ’1’ key

direction = !direction;

break;

case 50: // ’2’ key

delay /= 2.0;

break;

case 51: // ’3’ key

delay *= 2.0;

break;

}

});

This listener requires us to know the Unicode mapping of keycodes to characters.
Instead, we could do this mapping with a listener of the form

window.onkeydown = function(event) {

var key = String.fromCharCode(event.keyCode);

switch (key) {

case ’1’:

direction = !direction;

break;

case ’2’:

delay /= 2.0;

break;

case ’3’:

delay *= 2.0;

break;

}

};

https://hemanthrajhemu.github.io

3.6 Programming Event-Driven Input 121

FIGURE 3.13 Slide bar.

3.6.5 Sliders
Rather than incrementing or decrementing a value in our program through repetitive
uses of a button or key, we can add a slider element to our display, as in Figure 3.13.
We move the slider with our mouse, and the movements generate events whose
measure includes a value dependent on the position of the slider. Thus, when the
slider is at the left end, the value will be at its minimum and when the slider is on the
right, the value will be at its maximum.

In a similar manner to buttons and menus, we can create a visual element on our
web page in the HTML file and handle the input from the events in the JavaScript
file. For sliders, we specify the minimum and maximum values corresponding to the
left and right extents of the slider and the initial value of the slider. We also specify
the minimum change necessary to generate an event. We usually also want to display
some text on either side of the slider that specifies the minimum and maximum
values.

Suppose that we want to create a slider to set the delay between 0 and 100
milliseconds. A basic slider can be created in the HTML file by using the HTML range
element, as shown below:

<input id="slide" type="range"

min="0" max="100" step="10" value="50" />

We use id to identify this element to the application. The type parameter identifies
which HTML input element we are creating. The min, max, and value parameters
give the minimum, maximum, and initial values associated with the slider. Finally,
step gives the amount of change needed to generate an event. We can display the
minimum and maximum values on the sides and put the slider below the element
that precedes it on the page by

<div>

speed 0 <input id="slide" type="range"

min="0" max="100" step="10" value="50" />

100 </div>

In the application, we can get the value of speed from the slider with the two lines

document.getElementById("slide").onchange =

function() { delay = event.srcElement.value; };

As with buttons and menus, we use getElementById to couple the slider with
the application. The value of the slider is returned in event.srcElement.value
each time an event is generated. All the input elements we have described so far—
menus, buttons, and sliders—are displayed using defaults for the visual appearance.
We can beautify the visual display in many ways, ranging from using HTML and CSS
to using various packages.

https://hemanthrajhemu.github.io

122 Chapter 3 Interaction and Animation

3.7 POSITION INPUT

In our examples so far when we used the mouse, all we made use of was the fact
that the event occurred and perhaps which button generated the event. There is
more information available when we create a click event or mousedown event. In
particular, we can access the location of the mouse when the event occurred.

When a click or mouse event occurs, the returned event object includes the val-
ues event.ClientX and event.ClientY, which give the position of the mouse
in window coordinates. Recall that positions in the window have dimensions
canvas.width × canvas.height. Positions are measured in pixels with the ori-
gin at the upper-left corner so that positive y values are down. For this position to
be useful in our application, we must transform these values to the same units as the
application.

In this chapter, we are using clip coordinates for our applications, which range
from (−1, 1) in both directions and the positive y direction is up. If (xw , yw) is
the position in the window with width w and height h, then the position in clip
coordinates is obtained by flipping the y value and rescaling, yielding the equations

x = −1 + 2 ∗ xw

w
, y = −1 + 2 ∗ (w − yw)

w
.

We can use the mouse position in many ways. Let’s start by simply converting each
position to clip coordinates and placing it on the GPU. We use a variable index to
keep track of how many points we have placed on the GPU and initialize our arrays
as in previous examples. Consider the event listener

canvas.addEventListener("click", function() {

gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);

var t = vec2(-1 + 2*event.clientX/canvas.width,

-1 + 2*(canvas.height-event.clientY)/canvas.height);

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec2’]*index, t);

index++;

});

The click event returns the object event that has members event.clientX and
event.clientY, which is the position in the WebGL window with the y value
measured from the top of the window.

If all we want to do is display the locations, we can use the render function

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

gl.drawArrays(gl.POINTS, 0, index);

window.requestAnimFrame(render, canvas);

}

https://hemanthrajhemu.github.io

3.8 Window Events 123

Note that our listener can use the mousedown event instead of the click event, and
the display will be the same.3

We can also demonstrate many of the elements of painting applications by mak-
ing a few minor changes. For example, if we use

gl.drawArrays(gl.TRIANGLE_STRIP, 0, index);

in our render function, the first three points define the first triangle and each suc-
cessive mouse click will add another triangle. We can also add color. For example,
suppose that we specify the seven colors

var colors = [

vec4(0.0, 0.0, 0.0, 1.0), // black

vec4(1.0, 0.0, 0.0, 1.0), // red

vec4(1.0, 1.0, 0.0, 1.0), // yellow

vec4(0.0, 1.0, 0.0, 1.0), // green

vec4(0.0, 0.0, 1.0, 1.0), // blue

vec4(1.0, 0.0, 1.0, 1.0), // magenta

vec4(0.0, 1.0, 1.0, 1.0) // cyan

];

Then each time we add a point, we also add a color, chosen either randomly or by
cycling through the seven colors, as in the code

gl.bindBuffer(gl.ARRAY_BUFFER, cBufferId);

var t = vec4(colors[index%7]);

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec4’]*index, t);

The website contains a number of sample programs that illustrate interac-
tion. There are three versions of the rotating square application. The first, rotat-
ingSquare1, only displays the square without interaction. The second, rotat-
ingSquare2, adds buttons and menus. The third, rotatingSquare3, adds a slider.
The application square places a colored square at each location where the mouse is
clicked. The application triangle draws a triangle strip using the first three mouse
clicks to specify the first triangle; then successive mouse clicks each add another tri-
angle.

3.8 WINDOW EVENTS

Most window systems allow the user to resize the window interactively, usually by
using the mouse to drag a corner of the window to a new location. This event is an
example of a window event. Other examples include exposing an element that was
hidden under another element and minimizing or restoring a window. In each case,
we can use an event listener to alter the display.

3. If we want to display points at a larger size, we can set the value of gl_PointSize in the vertex
shader.

https://hemanthrajhemu.github.io

124 Chapter 3 Interaction and Animation

Let’s consider the resize or reshape event. If such an event occurs, the application
program can decide what to do. If the window size changes, we have to consider three
questions:

1. Do we redraw all the objects that were on the canvas before it was resized?

2. What do we do if the aspect ratio of the new window is different from that of
the old window?

3. Do we change the sizes or attributes of new primitives if the size of the new
window is different from that of the old?

There is no single answer to any of these questions. If we are displaying the image
of a real-world scene, our resize function probably should make sure that no shape
distortions occur. But this choice may mean that part of the resized window is unused
or that part of the scene cannot be displayed in the window. If we want to redraw
the objects that were in the window before it was resized, we need a mechanism for
storing and recalling them.

Suppose that when we resize the window, we want to display the same contents
as before and also maintain proportions on the canvas. Resizing refers to the entire
browser window, which includes the canvas to which we are rendering and other ele-
ments, such as menus or buttons specified in our HTML file. The resize event returns
the height and width of the resized window (innerHeight and innerWidth). The
original canvas was specified with height and width given by canvas.height and
canvas.width. As long as the smaller of the new window height and width is greater
than the larger of the original canvas height and width, we need not modify our ren-
dering. Once this condition is violated, we change the viewport to be small enough
to fit in the resized window but maintain proportions. The following code assumes a
square canvas must be maintained:

window.onresize = function() {

var min = innerWidth;

if (innerHeight < min) {

min = innerHeight;

}

if (min < canvas.width || min < canvas.height) {

gl.viewport(0, canvas.height-min, min, min);

}

};

We could use our graphics primitives and our mouse callbacks to construct various
graphical input devices. For example, we could construct a more visually pleasing
slide bar using filled rectangles for the device, text for any labels, and the mouse to
get the position. However, much of the code would be tedious to develop. There are
many JavaScript packages that provide sets of widgets, but because our philosophy
is not to restrict our discussion to any particular package, we will not discuss the
specifics of such widget sets.

https://hemanthrajhemu.github.io

3.9 Picking 125

3.9 PICKING

Picking is the logical input operation that allows the user to identify an object on the
display. Although the action of picking uses the pointing device, the information that
the user wants returned to the application program is not a position. A pick device is
considerably more difficult to implement on a modern system than is a locator.

Such was not always the case. Old display processors could accomplish picking
easily by means of a light pen. Each redisplay of the screen would start at a precise
time. The light pen would generate an interrupt when the redisplay passed its sensor.
By comparing the time of the interrupt with the time that the redisplay began, the
processor could identify an exact place in the display list and subsequently could
determine which object was being displayed.

One reason for the difficulty of picking in modern systems is the forward nature
of the rendering pipeline. Primitives are defined in an application program and move
forward through a sequence of geometric operations, rasterization, and fragment op-
erations on their way to the framebuffer. Although much of this process is reversible
in a mathematical sense, the hardware is not reversible. Hence, converting from a lo-
cation on the display to the corresponding primitive is not a direct calculation. There
are also potential uniqueness problems (see Exercises 3.7 and 3.8).

There are at least four ways to deal with this difficulty. One process, known as
selection, involves adjusting the clipping region and viewport such that we can keep
track of which primitives in a small clipping region are rendered into a region near the
cursor. The names assigned to these primitives go into a hit list that can be examined
later by the user program. Older versions of OpenGL supported this approach, but
it has been deprecated in shader-based versions, and most application programmers
prefer one of the other approaches.

If we start with our synthetic-camera model, we can build an approach based on
the idea that if we generate a ray from the center of projection through the location
of the mouse on the projection plane, we can, at least in principle, check for which
objects this ray intersects. The closest object we intersect is the one selected. This
approach is best suited to a ray-tracing renderer but can be implemented with a
pipeline architecture, although with a performance penalty.

A simple approach is to use (axis-aligned) bounding boxes, or extents, for
objects of interest. The extent of an object is the smallest rectangle, aligned with
the coordinates axes, that contains the object. For two-dimensional applications, it
is relatively easy to determine the rectangle in screen coordinates that corresponds to
a rectangle point in object or world coordinates. For three-dimensional applications,
the bounding box is a right parallelepiped. If the application program maintains a
simple data structure to relate objects and bounding boxes, approximate picking can
be done within the application program.

Another simple approach involves using an extra color buffer, which is not dis-
played, and an extra rendering. Suppose that we render our objects into this second
color buffer, each in a distinct color. The application programmer is free to deter-
mine an object’s contents by simply changing colors wherever a new object definition
appears in the program.

https://hemanthrajhemu.github.io

126 Chapter 3 Interaction and Animation

We can perform picking in four steps that are initiated by a user-defined pick
function in the application. First, we draw the objects into the second buffer with the
pick colors. Second, we get the position of the mouse using the mouse callback. Third,
we use the function gl.readPixels to find the color at the position in the second
buffer corresponding to the mouse position. Finally, we search a table of colors to find
which object corresponds to the color read. We must follow this process by a normal
rendering into the framebuffer. We will develop this approach in Chapter 7.

3.10 BUILDING MODELS INTERACTIVELY

One example of computer-aided design (CAD) is building geometric structures inter-
actively. In Chapter 4, we will look at ways in which we can model geometric objects
comprised of polygons. Here, we want to examine the interactive part.

Let’s start by writing an application that will let the user specify a series of axis-
aligned rectangles interactively. Each rectangle can be defined by two mouse positions
at diagonally opposite corners. Consider the event listener

canvas.addEventListener("mousedown", function() {

gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);

if (first) {

first = false;

var t1 = vec2(-1 + 2*event.clientX/canvas.width,

-1 + 2*(canvas.height-event.clientY)/canvas.height);

}

else {

first = true;

var t2 = vec2(-1 + 2*event.clientX/canvas.width-1,

-1 + 2*(canvas.height-event.clientY)/canvas.height);

var t3 = vec2(t1[0], t2[1]);

var t4 = vec2(t2[0], t1[1]);

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec2’]*(index+0),

flatten(t1));

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec2’]*(index+1),

flatten(t3));

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec2’]*(index+2),

flatten(t2));

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec2’]*(index+3),

flatten(t4));

index += 4;

}

});

and the render function

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

for (var i = 0; i < index; i += 4) {

https://hemanthrajhemu.github.io

3.10 Building Models Interactively 127

gl.drawArrays(gl.TRIANGLE_FAN, i, 4);

}

window.requestAnimFrame(render);

}

We use the boolean variable first to keep track of whether the mouse click is
generating a new rectangle or generating the diagonally opposite corner of a rectangle
from the previous mouse click. The position of the mouse from the first click is stored.
When the second click occurs, the two positions are used to compute the positions of
the two other vertices of the rectangle, and then all four positions are put on the GPU.
The order in which they are put on the GPU is determined by the render function’s
use of a triangle fan, rather than the triangle strip we used in previous examples. We
will see the advantage of this form when we extend our example to polygons with
more than four vertices. The rest of the program is similar to our previous examples.

We add a color selection menu to the HTML files:

<select id="mymenu" size="7">

<option value="0">Black</option>

<option value="1">Red</option>

<option value="2">Yellow</option>

<option value="3">Green</option>

<option value="4">Blue</option>

<option value="5">Magenta</option>

<option value="6">Cyan</option>

</select>

The event listener for this menu simply stores the index of the color, thus making it
the current color that will be used until another color is selected. Here is the code for
color selection:

var cIndex = 0;

var colors = [

vec4(0.0, 0.0, 0.0, 1.0), // black

vec4(1.0, 0.0, 0.0, 1.0), // red

vec4(1.0, 1.0, 0.0, 1.0), // yellow

vec4(0.0, 1.0, 0.0, 1.0), // green

vec4(0.0, 0.0, 1.0, 1.0), // blue

vec4(1.0, 0.0, 1.0, 1.0), // magenta

vec4(0.0, 1.0, 1.0, 1.0) // cyan

];

var m = document.getElementById("mymenu");

m.addEventListener("click", function() { cIndex = m.selectedIndex; });

The color index can be used in multiple ways. If we want each rectangle to be a solid
color, we can set up a vertex array for the colors and then augment the event listener
for the vertex positions by adding the code

gl.bindBuffer(gl.ARRAY_BUFFER, cBufferId);

var t = vec4(colors[cIndex]);

https://hemanthrajhemu.github.io

128 Chapter 3 Interaction and Animation

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec4’]*(index-4), flatten(t));

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec4’]*(index-3), flatten(t));

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec4’]*(index-2), flatten(t));

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec4’]*(index-1), flatten(t));

Note that this code is coming after we have already incremented index when we
put the four vertex positions on the GPU. If we want each rectangle to be displayed in
a solid color, we could store these colors in an array; then in the render function we
could send each polygon’s color to the shaders as a uniform variable. Using a vertex
array does, however, let us assign a different color to each vertex and then have the
rasterizer interpolate these colors over the rectangle.

Now let’s consider what changes are needed to allow the user to work with a
richer set of objects. Suppose that we want to be able to design a polygon with an
arbitrary number of vertices. Although we can easily store as many vertices as we like
in our event listener, there are some issues. For example,

1. How do we indicate the beginning and end of a polygon when the number of
vertices is arbitrary?

2. How do we render when each polygon can have a different number of vertices?

We can solve the first problem by adding a button that will end the present
polygon and start a new one. Solving the second problem involves adding some
additional structure to our code. The difficulty is that, while it is easy to keep adding
vertices to our vertex array, the shaders do not have the information as to where one
polygon ends and the next begins. We can, however, store such information in an
array in our program.

We will make use of gl.TRIANGLE_FAN in the render function because it will
render a list of successive vertices into a polygon without having to reorder the ver-
tices as we did with gl.TRIANGLE_STRIP. However, having all the triangles that
comprise a polygon share the first vertex does not lead to a particularly good trian-
gulation of the set of vertices. In Chapter 12, we will consider better triangulation
algorithms.

First, we consider a single polygon with an arbitrary number of vertices. The
event listener for the mouse can add colors and positions to vertex arrays each time
the mouse is clicked in the canvas.

canvas.addEventListener("mousedown", function() {

var t = vec2(2*event.clientX/canvas.width-1,

2*(canvas.height-event.clientY)/canvas.height-1);

gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec2’]*index, flatten(t));

t = vec4(colors[cIndex]);

gl.bindBuffer(gl.ARRAY_BUFFER, cBuffer);

gl.bufferSubData(gl.ARRAY_BUFFER, sizeof[’vec4’]*index, flatten(t));

index++;

});

https://hemanthrajhemu.github.io

3.10 Building Models Interactively 129

We add a button

<button id="Button1">End Polygon</button>

in the HTML file and the corresponding event listener

getElementById("Button1").onclick = function() {

render();

index = 0;

});

and the render function

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

gl.drawArrays(gl.TRIANGLE_FAN, 0, index);

}

to the application file.
As simple as this code is, there are a couple of interesting points. Note that

the render function is called from the button listener, which then resets the index
that counts vertices. We can change the color from the color menu between adding
vertices. The rasterizer will blend the colors for the next couple of vertices when a
color is changed.

To get multiple polygons, we need to keep track of the beginning of each polygon
and how many vertices are in each one. We add the three variables

var numPolygons = 0;

var numIndices = [0];

var start = [0];

The variable numPolygons stores the number of polygons we have entered so far.
The array numIndices stores the number of vertices for each polygon, and the array
start stores the index of the first vertex in each polygon. The only change we have
to make to the mouse listener is to increase the number of vertices in the present
polygon

numIndices[numPolygons]++;

The button callback

getElementById("Button1") = function() {

numPolygons++;

numIndices[numPolygons] = 0;

start[numPolygons] = index;

render();

});

starts a new polygon before rendering. Finally, the rendering function is

https://hemanthrajhemu.github.io

130 Chapter 3 Interaction and Animation

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

for (var i = 0; i < numPolygons; ++i) {

gl.drawArrays(gl.TRIANGLE_FAN, start[i], numIndices[i]);

}

}

The programs cad1 and cad2 on the website show some of the elements that go
into a simple painting program; cad1 draws a new rectangle specified by each pair of
mouse clicks, and cad2 allows the user to draw polygons with an arbitrary number
of vertices.

3.11 DESIGN OF INTERACTIVE PROGRAMS

Defining what characterizes a good interactive program is difficult, but recognizing
and appreciating a good interactive program is easy. A good program includes fea-
tures such as these:

A smooth display, showing neither flicker nor any artifacts of the refresh
process

A variety of interactive devices on the display

A variety of methods for entering and displaying information

An easy-to-use interface that does not require substantial effort to learn

Feedback to the user

Tolerance for user errors

A design that incorporates consideration of both the visual and motor prop-
erties of the human

The importance of these features and the difficulty of designing a good interactive
program should never be underestimated. The field of human–computer interaction
(HCI) is an active one and we will not shortchange you by condensing it into a few
pages. Our concern in this book is computer graphics; within this topic, our primary
interest is rendering. However, there are a few topics common to computer graphics
and HCI that we can pursue to improve our interactive programs.

SUMMARY AND NOTES

In this chapter, we have touched on a number of topics related to interactive computer
graphics. These interactive aspects make the field of computer graphics exciting and
fun.

Our discussion of animation showed both the ease with which we can animate a
scene with WebGL and some of the limitations on how we can control the animation
in a web environment.

https://hemanthrajhemu.github.io

Suggested Readings 131

We have been heavily influenced by the client–server perspective. Not only does
it allow us to develop programs within a networked environment but it also makes
it possible to design programs that are portable yet can still take advantage of special
features that might be available in the hardware. These concepts are crucial for object-
oriented graphics and graphics for the Internet.

From the application programmer’s perspective, various characteristics of inter-
active graphics are shared by most systems. We see the graphics part of the system as
a server, consisting of a raster display, a keyboard, and a pointing device. In almost
all workstations, we have to work within a multiprocessing, windowed environment.
Most likely, many other processes are executing concurrently with the execution of
your graphics program. However, the window system allows us to write programs
for a specific window that act as though that window were the display device of a
single-user system.

The overhead of setting up a program to run in this environment is small. Each
application program contains a set of function calls that is virtually the same in
every program. The use of logical devices within the application program frees the
programmer from worrying about the details of particular hardware.

Within the environment that we have described, event-mode input is the norm.
Although the other forms are available—request mode is the normal method used
for keyboard input—event-mode input gives us far more flexibility in the design of
interactive programs.

The speed of the latest generation of graphics processors not only allows us to
carry out interactive applications that were not possible even a few years ago but also
makes us rethink (as we should periodically) whether the techniques we are using are
still the best ones. For example, whereas hardware features such as logical operations
and overlay planes made possible many interactive techniques, now with a fast GPU
we can often simply draw the entire display fast enough that these features are no
longer necessary.

Because our API, WebGL, is independent of any operating or window system, we
were able to use the simple event-handling capabilities in JavaScript to get input from
a mouse and the keyboard. Because we want to keep our focus on computer graphics,
this approach was justified but nevertheless led to applications with a limited and
inelegant interface. To get a better graphical user interface (GUI), the best approach
would be to use some combination of HTML, CSS, and available GUI packages. Some
references are in the Suggested Readings section that follows.

Interactive computer graphics is a powerful tool with unlimited applications.
At this point, you should be able to write fairly sophisticated interactive programs.
Probably the most helpful exercise that you can do now is to write one. The exercises
at the end of the chapter provide suggestions.

SUGGESTED READINGS

Many of the conceptual foundations for the windows-icons-menus-pointing inter-
faces that we now consider routine were developed at the Xerox Palo Alto Research
Center (PARC) during the 1970s (see [Sch97]). The mouse also was developed there

https://hemanthrajhemu.github.io

132 Chapter 3 Interaction and Animation

[Eng68]. The familiar interfaces of today—such as the Macintosh Operating System,
the X Window System, and Microsoft Windows—all have their basis in this work.

The volume by Foley and associates [Fol94] contains a thorough description of
the development of user interfaces with an emphasis on the graphical aspects. The
books by Schneiderman [Sch97] and Nielson [Nie94] provide an introduction to
HCI.

The X Window System [Sch88] was developed at the Massachusetts Institute of
Technology and is the de facto standard in the UNIX workstation community. The
development of the Linux version for PCs has allowed the X Window System to run
on these platforms too.

The input and interaction modes that we discussed in this chapter grew out of
the standards that led to GKS [ANSI85] and PHIGS [ANSI88]. These standards were
developed for both calligraphic and raster displays; thus, they do not take advantage
of the possibilities available on raster-only systems (see [Pik84] and [Gol83]).

Using desktop OpenGL requires the application developer to choose between a
platform-dependent interfacing method that gives access to the full capabilities of
the local system or a simplified toolkit that supports the functionality common to
all systems. Previous editions of this text [Ang10] used the GLUT toolkit [Kil94b]
exclusively. Additional details on GLUT are found in OpenGL: A Primer [Ang08]. See
[Kil94a, OSF89] for details on interfacing directly with the X Window System and
various X Window toolkits. Tookits including freeglut and GLEW are available for
extending GLUT to recent versions of OpenGL; see [Shr13] and the OpenGL website,
www.opengl.org .

The approach we have taken here is to use the event-handling functionality
built into JavaScript [Fla11]. We avoid use of HTML, CSS, or any of the many GUI
packages available. Consequently, our code is simple, portable, and limited. The most
popular package for interfacing is jQuery [McF12], which provides more widgets and
a better interface to the capabilities of HTML and CSS. For an introduction to HTML
and CSS, see [Duk11].

To end where we began, Sutherland’s Sketchpad is described in [Sut63].

EXERCISES

3.1 Rewrite the Sierpinski gasket program from Chapter 2 such that the left mouse
button will start the generation of points on the screen, the right mouse button
will halt the generation of new points, and the middle mouse button will
terminate the program. Include a resize callback.

3.2 Construct slide bars to allow users to define colors in the CAD program. Your
interface should let the user see a color before that color is used.

3.3 Add an elapsed-time indicator in the CAD program (Section 3.10) using a
clock of your own design.

3.4 Creating simple games is a good way to become familiar with interactive
graphics programming. Program the game of checkers. You can look at each

https://hemanthrajhemu.github.io

Exercises 133

x

y

z

x

y

Roll

z

y
Pitch

FIGURE 3.14 Airplane coordi-
nate system.

l2
l1

�

�

FIGURE 3.15 Two-dimensional
sensing arm.

square as an object that can be picked by the user. You can start with a program
in which the user plays both sides.

3.5 Write a program that allows a user to play a simple version of solitaire. First,
design a simple set of cards using only our basic primitives. Your program can
be written in terms of picking rectangular objects.

3.6 Simulating a pool or billiards game presents interesting problems. As in Exer-
cise 2.17, you must compute trajectories and detect collisions. The interactive
aspects include initiating movement of the balls via a graphical cue stick, en-
suring that the display is smooth, and creating a two-person game.

3.7 The mapping from a point in object or world coordinates to one in screen
coordinates is well defined. It is not invertible because we go from three di-
mensions to two dimensions. Suppose, however, that we are working with a
two-dimensional application. Is the mapping invertible? What problem can
arise if you use a two-dimensional mapping to return to a position in object
or world coordinates by a locator device?

3.8 How do the results of Exercise 3.7 apply to picking?

3.9 In a typical application program, the programmer must decide whether or not
to use display lists. Consider at least two applications. For each, list at least two
factors in favor of display lists and two against.

3.10 Write an interactive program that will allow you to guide a graphical rat
through the maze you generated in Exercise 2.7. You can use the left and right
buttons to turn the rat and the middle button to move him forward.

3.11 Inexpensive joysticks, such as those used in toys and games, often lack encoders
and contain only a pair of three-position switches. How might such devices
function?

3.12 The orientation of an airplane is described by a coordinate system as shown
in Figure 3.14. The forward–backward motion of the joystick controls the up–
down rotation with respect to the axis running along the length of the airplane,
called the pitch. The right–left motion of the joystick controls the rotation
about this axis, called the roll. Write a program that uses the mouse to control
pitch and roll for the view seen by a pilot. You can do this exercise in two
dimensions by considering a set of objects to be located far from the airplane,
then having the mouse control the two-dimensional viewing of these objects.

3.13 Consider a table with a two-dimensional sensing device located at the end of
two linked arms, as shown in Figure 3.15. Suppose that the lengths of the two
arms are fixed and the arms are connected by simple (one degree of freedom)
pivot joints. Determine the relationship between the joint angles θ and φ and
the position of the sensor.

3.14 Suppose that a CRT has a square face of 40 × 40 centimeters and is refreshed
in a noninterlaced manner at a rate of 60 Hz. Ten percent of the time that
the system takes to draw each scan line is used to return the CRT beam from
the right edge to the left edge of the screen (the horizontal retrace time), and
10 percent of the total drawing time is allocated for the beam to return from

https://hemanthrajhemu.github.io

134 Chapter 3 Interaction and Animation

NOTANDOR

a a'a · b·a
b

a + b+a
b

FIGURE 3.16 Symbols for logical circuits.

the lower-right corner of the screen to the upper-left corner after each refresh is
complete (the vertical retrace time). Assume that the resolution of the display
is 1024 × 1024 pixels. Find a relationship between the time at which a light
pen detects the beam and the light pen’s position. Give the result using both
centimeters and screen coordinates for the location on the screen.

3.15 Circuit-layout programs are variants of paint programs. Consider the design
of logical circuits using the boolean and, or, and not functions. Each of these
functions is provided by one of the three types of integrated circuits (gates), the
symbols for which are shown in Figure 3.16. Write a program that allows the
user to design a logical circuit by selecting gates from a menu and positioning
them on the screen. Consider methods for connecting the outputs of one gate
to the inputs of others.

3.16 Extend Exercise 3.15 to allow the user to specify a sequence of input signals.
Have the program display the resulting values at selected points in the circuit.

3.17 Extend Exercise 3.15 to have the user enter a logical expression. Have the
program generate a logical diagram from that expression.

3.18 Use the methods of Exercise 3.15 to form flowcharts for programs or images of
graphs that you have studied in a data structures class.

3.19 Plotting packages offer a variety of methods for displaying data. Write an
interactive plotting application for two-dimensional curves. Your application
should allow the user to choose the mode (polyline display of the data, bar
chart, or pie chart), colors, and line styles.

3.20 The required refresh rate for CRT displays of 50 to 85 Hz is based on the use of
short-persistence phosphors that emit light for extremely short intervals when
excited. Long-persistence phosphors are available. Why are long-persistence
phosphors not used in most workstation displays? In what types of applica-
tions might such phosphors be useful?

3.21 Modify the polygon program in Section 3.10 using a linked list rather than an
array to store the objects. Your program should allow the user to both add and
delete objects interactively.

3.22 Another CAD application that can be developed in WebGL is a paint program.
You can display the various objects that can be painted—lines, rectangles,
circles, and triangles, for example—and use picking to select which to draw.
The mouse can then enter vertex data and select attributes such as colors from
a menu. Write such an application.

https://hemanthrajhemu.github.io

