

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Table of Contents

1 Introduction 1
. 1.1 Language Processors 1

1.1.1 Exercises for Section 1.1 3
1.2 The Structure of a Compiler . 4

1.2.1 Lexical Analysis . 5
1.2.2 Syntax Analysis . 8
1.2.3 Semantic Analysis . 8

. 1.2.4 Intermediate Code Generation 9
. 1.2.5 Code Optimization 10

. 1.2.6 Code Generation 10
. 1.2.7 Symbol-Table Management 11

. 1.2.8 The Grouping of Phases into Passes 11
. 1.2.9 Compiler-Construction Tools 12

. 1.3 The Evolution of Programming Languages 12
1.3.1 The Move to Higher-level Languages 13
1.3.2 Impacts on Compilers . 14
1.3.3 Exercises for Section 1.3 14

1.4 The Science of Building a Compiler 15
1.4.1 Modeling in Compiler Design and Implementation 15
1.4.2 The Science of Code Optimization 15

1.5 Applications of Compiler Technology 17
1.5.1 Implement at ion of High-Level Programming Languages . 17
1.5.2 Optimizations for Computer Architectures 19
1.5.3 Design of New Computer Architectures 21
1.5.4 Program Translations . 22
1.5.5 Software Productivity Tools 23

1.6 Programming Language Basics 25
1.6.1 The Static/Dynamic Distinction 25
1.6.2 Environments and States 26
1.6.3 Static Scope and Block Structure 28
1.6.4 Explicit Access Control 31
1.6.5 Dynamic Scope . 31
1.6.6 Parameter Passing Mechanisms 33

https://hemanthrajhemu.github.io

TABLE OF CONTENTS

1.6.7 Aliasing . 35
1.6.8 Exercises for Section 1.6 35

1.7 Summary of Chapter 1 . 36
. 1.8 References for Chapter 1 38

2 A Simple Synt ax-Direct ed Translator 39
. 2.1 Introduction 40

. 2.2 Syntax Definition 42
. 2.2.1 Definition of Grammars 42

. 2.2.2 Derivations 44
2.2.3 Parse Trees . 45

. 2.2.4 Ambiguity 47
2.2.5 Associativity of Operators 48
2.2.6 Precedence of Operators 48

. 2.2.7 Exercises for Section 2.2 51
. 2.3 Syntax-Directed Translation 52

. 2.3.1 Postfix Notation 53
. 2.3.2 Synthesized Attributes 54

. 2.3.3 Simple Syntax-Directed Definitions 56
. 2.3.4 Tree Traversals 56

. 2.3.5 Translation Schemes 57
. 2.3.6 Exercises for Section 2.3 60

. 2.4 Parsing 60
. 2.4.1 Top-Down Parsing 61
. 2.4.2 Predictive Parsing 64

. 2.4.3 When to Use 6-Productions 65
. 2.4.4 Designing a Predictive Parser 66

. 2.4.5 Left Recursion 67
. 2.4.6 Exercises for Section 2.4 68

. 2.5 A Translator for Simple Expressions 68
. 2.5.1 Abstract and Concrete Syntax 69

. 2.5.2 Adapting the Translation Scheme 70

. 2.5.3 Procedures for the Nonterminals 72
. 2.5.4 Simplifying the Translator 73

. 2.5.5 The Complete Program 74
. 2.6 Lexical Analysis 76

. 2.6.1 Removal of White Space and Comments 77
. 2.6.2 Reading Ahead 78

. 2.6.3 Constants 78
. 2.6.4 Recognizing Keywords and Identifiers 79

. 2.6.5 A Lexical Analyzer 81
. 2.6.6 Exercises for Section 2.6 84

. 2.7 Symbol Tables 85
. 2.7.1 Symbol Table Per Scope 86

. 2.7.2 The Use of Symbol Tables 89

https://hemanthrajhemu.github.io

TABLE OF CONTENTS xi

. 2.8 Intermediate Code Generation 91
. 2.8.1 Two Kinds of Intermediate Representations 91

. 2.8.2 Construction of Syntax Trees 92
. 2.8.3 Static Checking 97

. 2.8.4 Three-Address Code 99
. 2.8.5 Exercises for Section 2.8 105

. 2.9 Summary of Chapter 2 105

3 Lexical Analysis 109
. 3.1 The Role of the Lexical Analyzer 109

. 3.1.1 Lexical Analysis Versus Parsing 110

. 3.1.2 Tokens, Patterns, and Lexemes 111
. 3.1.3 Attributes for Tokens 112

. 3.1.4 Lexical Errors 113
. 3.1.5 Exercises for Section 3.1 114

. 3.2 Input Buffering 115
. 3.2.1 Buffer Pairs 115

. 3.2.2 Sentinels 116
. 3.3 Specification of Tokens 116

. 3.3.1 Strings and Languages 117
. 3.3.2 Operations on Languages 119

. 3.3.3 Regular Expressions 120
. 3.3.4 Regular Definitions 123

3.3.5 Extensions of Regular Expressions 124
. 3.3.6 Exercises for Section 3.3 125

3.4 Recognition of Tokens . 128
3.4.1 Transition Diagrams . 130
3.4.2 Recognition of Reserved Words and Identifiers 132
3.4.3 Completion of the Running Example 133
3.4.4 Architecture of a Transition-Diagram-Based Lexical An-

alyzer . 134
3.4.5 Exercises for Section 3.4 136

3.5 The Lexical-Analyzer Generator Lex 140
3.5.1 Use of Lex . 140
3.5.2 Structure of Lex Programs 141
3.5.3 Conflict Resolution in Lex 144
3.5.4 The Lookahead Operator 144
3.5.5 Exercises for Section 3.5 146

3.6 Finite Automata . 147
3.6.1 Nondeterministic Finite Automata 147
3.6.2 Transition Tables . 148
3.6.3 Acceptance of Input Strings by Automata 149
3.6.4 Deterministic Finite Automata 149
3.6.5 Exercises for Section 3.6 151

3.7 From Regular Expressions to Automata 152

https://hemanthrajhemu.github.io

TABLE OF CONTENTS

3.7.1 Conversion of an NFA to a DFA 152
3.7.2 Simulation of an NFA . 156
3.7.3 Efficiency of NFA Simulation 157
3.7.4 Construction of an NFA from a Regular Expression . . . 159
3.7.5 Efficiency of String-Processing Algorithms 163
3.7.6 Exercises for Section 3.7 166

3.8 Design of a Lexical-Analyzer Generator 166
3.8.1 The Structure of the Generated Analyzer 167
3.8.2 Pattern Matching Based on NFA's 168
3.8.3 DFA's for Lexical Analyzers 170
3.8.4 Implementing the Lookahead Operator 171
3.8.5 Exercises for Section 3.8 172

3.9 Optimization of DFA-Based Pattern Matchers 173
3.9.1 Important States of an NFA 173
3.9.2 Functions Computed From the Syntax Tree 175
3.9.3 Computing nullable, firstpos, and lastpos 176

. 3.9.4 Computing followpos 177
. . . 3.9.5 Converting a Regular Expression Directly to a DFA 179

3.9.6 Minimizing the Number of States of a DFA 180
. 3.9.7 State Minimization in Lexical Analyzers 184

. 3.9.8 Trading Time for Space in DFA Simulation 185
. 3.9.9 Exercises for Section 3.9 186

. 3.10 Summary of Chapter 3 187
. 3.11 References for Chapter 3 189

4 Syntax Analysis 191
. 4.1 Introduction 192

. 4.1.1 The Role of the Parser 192
. 4.1.2 Representative Grammars 193

. 4.1.3 Syntax Error Handling 194
. 4.1.4 Error-Recovery Strategies 195

. 4.2 Context-Free Grammars 197
4.2.1 The Formal Definition of a Context-Free Grammar 197

. 4.2.2 Notational Conventions 198
. 4.2.3 Derivations 199

. 4.2.4 Parse Trees and Derivations 201
. 4.2.5 Ambiguity 203

. . . . 4.2.6 Verifying the Language Generated by a Grammar 204
. . . 4.2.7 Context-Free Grammars Versus Regular Expressions 205

. 4.2.8 Exercises for Section 4.2 206
. 4.3 Writing a Grammar 209

. 4.3.1 Lexical Versus Syntactic Analysis 209
. 4.3.2 Eliminating Ambiguity 210

. 4.3.3 Elimination of Left Recursion 212
. 4.3.4 Left Factoring 214

https://hemanthrajhemu.github.io

Chapter 1

Introduction

Programming languages are notations for describing computations to people
and to machines. The world as we know it depends on programming languages,
because all the software running on all the computers was written in some
programming language. But, before a program can be run, it first must be
translated into a form in which it can be executed by a computer.

The software systems that do this translation are called compilers.
This book is about how to design and implement compilers. We shall dis-

cover that a few basic ideas can be used to construct translators for a wide
variety of languages and machines. Besides compilers, the principles and tech-
niques for compiler design are applicable to so many other domains that they
are likely to be reused many times in the career of a computer scientist. The
study of compiler writing touches upon programming languages, machine ar-
chitecture, language theory, algorithms, and software engineering.

In this preliminary chapter, we introduce the different forms of language
translators, give a high level overview of the structure of a typical compiler,
and discuss the trends in programming languages and machine architecture
that are shaping compilers. We include some observations on the relationship
between compiler design and computer-science theory and an outline of the
applications of compiler technology that go beyond compilation. We end with
a brief outline of key programming-language concepts that will be needed for
our study of compilers.

1.1 Language Processors

Simply stated, a compiler is a program that can read a program in one lan-
guage - the source language - and translate it into an equivalent program in
another language - the target language; see Fig. 1.1. An important role of the
compiler is to report any errors in the source program that it detects during
the translation process.

https://hemanthrajhemu.github.io

CHAPTER 2. INTRODUCTION

source program

Compiles h +
target program

Figure 1.1 : A compiler

If the target program is an executable machine-language program, it can
then be called by the user to process inputs and produce outputs; see Fig. 1.2.

Target Program output t-
Figure 1.2: Running the target program

An in terpreter is another common kind of language processor. Instead of
producing a target program as a translation, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by
the user, as shown in Fig. 1.3.

source program 1 Interpreter t- output
input

Figure 1.3: An interpreter

The machine-language target program produced by a compiler is usually
much faster than an interpreter at mapping inputs to outputs . An interpreter,
however, can usually give better error diagnostics than a compiler, because it
executes the source program statement by statement.

Example 1.1 : Java language processors combine compilation and interpreta-
tion, as shown in Fig. 1.4. A Java source program may first be compiled into
an intermediate form called bytecodes. The bytecodes are then interpreted by a
virtual machine. A benefit of this arrangement is that bytecodes compiled on
one machine can be interpreted on another machine, perhaps across a network.

In order to achieve faster processing of inputs to outputs, some Java compil-
ers, called jus t - in- t ime compilers, translate the bytecodes into machine language
immediately before they run the intermediate program to process the input.

https://hemanthrajhemu.github.io

1.1. LANGUAGE PROCESSORS

source program

Translator

intermediate program

input

Figure 1.4: A hybrid compiler

In addition to a compiler, several other programs may be required to create
an executable target program, as shown in Fig. 1.5. A source program may be
divided into modules stored in separate files. The task of collecting the source
program is sometimes entrusted to a separate program, called a preprocessor.
The preprocessor may also expand shorthands, called macros, into source lan-
guage st at ements.

The modified source program is then fed to a compiler. The compiler may
produce an assembly-language program as its output, because assembly lan-
guage is easier to produce as output and is easier to debug. The assembly
language is then processed by a program called an assembler that produces
relocatable machine code as its output.

Large programs are often compiled in pieces, so the relocatable machine
code may have to be linked together with other relocatable object files and
library files into the code that actually runs on the machine. The l inker resolves
external memory addresses, where the code in one file may refer to a location
in another file. The loader then puts together all of the executable object files
into memory for execution.

1 .11 Exercises for Section 1.1

Exercise 1.1.1 : What is the difference between a compiler and an interpreter?

Exercise 1.1.2 : What are the advantages of (a) a compiler over an interpreter
(b) an interpreter over a compiler?

Exercise 1.1.3 : What advantages are there to a language-processing system in
which the compiler produces assembly language rather than machine language?

Exercise 1.1.4 : A compiler that translates a high-level language into another
high-level language is called a source-to-source translator. What advantages are
there to using C as a target language for a compiler?

Exercise 1.1.5 : Describe some of the tasks that an assembler needs to per-
form.

https://hemanthrajhemu.github.io

CHAPTER 1 . INTRODUCTION

source program

i
Preprocessor J

t
modified source program

I

Compiler fi
t

target assembly program

i / Assembler 1
i

relocatable machine code

library files
relocatable obiect files

t
target machine code

Figure 1.5: A language-processing system

1.2 The Structure of a Compiler

Up to this point we have treated a compiler as a single box that maps a source
program into a semantically equivalent target program. If we open up this box
a little, we see that there are two parts to this mapping: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces and
imposes a grammatical structure on them. It then uses this structure to cre-
ate an intermediate representation of the source program. If the analysis part
detects that the source program is either syntactically ill formed or semanti-
cally unsound, then it must provide informative messages, so the user can take
corrective action. The analysis part also collects information about the source
program and stores it in a data structure called a symbol table, which is passed
along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired target program from the interme-
diate representation and the information in the symbol table. The analysis part
is often called the front end of the compiler; the synthesis part is the back end.

If we examine the compilation process in more detail, we see that it operates
as a sequence of phases, each of which transforms one representation of the
source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,
and the intermediate representations between the grouped phases need not be
constructed explicitly. The symbol table, which stores information about the

https://hemanthrajhemu.github.io

1.2. THE STRUCTURE O F A COMPILER

Symbol Table E l

, characte; stream ,
/ Lexical Analyzer 1

token Atream
f

Syntax Analyzer

syntax tree +
1 Semantic Analyzer

I Intermediate Code Generator I
I I

I

intermediate represent ation
i

Machine-Independent

intermediate representation

i 1 Code Generator I
I I

I

target-machine code
C

Machine-Dependent I Code Optimizer
I ,

I

t arget-machine code
t

Figure 1.6: Phases of a compiler

entire source program, is used by all phases of the compiler.
Some compilers have a machine-independent optimization phase between

the front end and the back end. The purpose of this optimization phase is to
perform transformations on the intermediate representation, so that the back
end can produce a better target program than it would have otherwise pro-
duced from an unoptimized intermediate representation. Since optimization is
optional, one or the other of the two optimization phases shown in Fig. 1.6 may
be missing.

1.2.1 Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. The lex-
ical analyzer reads the stream of characters making up the source program

https://hemanthrajhemu.github.io

6 CHAPTER 1. INTRODUCTION

and groups the characters into meaningful sequences called lexemes. For each
lexeme, the lexical analyzer produces as output a token of the form

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis. In the token, the
first component token-name is an abstract symbol that is used during syntax
analysis, and the second component attribute-value points to an entry in the
symbol table for this token. Information from the symbol-table entry 'is needed
for semantic analysis and code generation.

For example, suppose a source program contains the assignment statement

p o s i t i o n = i n i t i a l + r a t e * 60 (1.1)

The characters in this assignment could be grouped into the following lexemes
and mapped into the following tokens passed on to the syntax analyzer:

1. p o s i t ion is a lexeme that would be mapped into a token (id, I) , where i d
is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for pos i t i on . The symbol-table entry for an identifier holds
information about the identifier, such as its name and type.

2. The assignment symbol = is a lexeme that is mapped into the token (=).
Since this token needs no attribute-value, we have omitted the second
component. We could have used any abstract symbol such as assign for
the token-name, but for notational convenience we have chosen to use the
lexeme itself as the name of the abstract symbol.

3. i n i t i a l is a lexeme that is mapped into the token (id, 2), where 2 points
to the symbol-table entry for i n i t i a l .

4. + is a lexeme that is mapped into the token (+).

5 . r a t e is a lexeme that is mapped into the token (id, 3), where 3 points to
the symbol-table entry for r a t e .

6. * is a lexeme that is mapped into the token (*) .

7. 60 is a lexeme that is mapped into the token (60) .'
Blanks separating the lexemes would be discarded by the lexical analyzer.

Figure 1.7 shows the representation of the assignment statement (1.1) after
lexical analysis as the sequence of tokens

In this representation, the token names =, +, and * are abstract symbols for
the assignment, addition, and multiplication operators, respectively.

'Technically speaking, for the lexeme 60 we should make up a token like (number,4),
where 4 points to the symbol table for the internal representation of integer 60 but we shall
defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques
for building lexical analyzers.

https://hemanthrajhemu.github.io

1.2. THE STRUCTURE OF A COMPILER

;m
3 r a t e

p o s i t i o n = i n i t i a l + r a t e * 60

t
Lexical Analyzer

t
(id, 1) (=) (id, 2) (+) (id, 3) (*) (60)

t
Syntax Analyzer

(id, 2)/ JF

(id, 3)/
\

60

Semantic Analyzer s
\+,

(id, 2)' *
\

(id, 3)' int t ofloat

t
I
60

I Intermediate Code Generator I
t

t l = i n t t o f l o a t (6 0)
t 2 = i d 3 * ti
t 3 = i d 2 + t 2
i d 1 = t 3

t l = i d 3 * 60.0
i d 1 = i d 2 + t1

LDF R2, i d 3
MULF R2, R2, #60.0
LDF R1, i d 2
ADDF R 1 , R 1 , R2
STF i d l y R l

Figure 1.7: Translation of an assignment statement

https://hemanthrajhemu.github.io

8 CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysis

The second phase of the compiler is syntax analysis or parsing. The parser uses
the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure
of the token stream. A typical representation is a syntax tree in which each
interior node represents an operation and the children of the node represent the
arguments of the operation. A syntax tree for the token stream (1.2) is shown
as the output of the syntactic analyzer in Fig. 1.7.

This tree shows the order in which the operations in the assignment

p o s i t i o n = i n i t i a l + r a t e * 60

are to be performed. The tree has an interior node labeled * with (id, 3) as
its left child and the integer 60 as its right child. The node (id, 3) represents
the identifier r a t e . The node labeled * makes it explicit that we must first
multiply the value of r a t e by 60. The node labeled + indicates that we must
add the result of this multiplication to the value of i n i t i a l . The root of the
tree, labeled =, indicates that we must store the result of this addition into the
location for the identifier p o s i t ion. This ordering of operations is consistent
with the usual conventions of arithmetic which tell us that multiplication has
higher precedence than addition, and hence that the multiplication is to be
performed before the addition.

The subsequent phases of the compiler use the grammatical structure to help
analyze the source program and generate the target program. In Chapter 4
we shall use context-free grammars to specify the grammatical structure of
programming languages and discuss algorithms for constructing efficient syntax
analyzers automatically from certain classes of grammars. In Chapters 2 and 5
we shall see that syntax-directed definitions can help specify the translation of
programming language constructs.

1.2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol
table to check the source program for semantic consistency with the language
definition. It also gathers type information and saves it in either the syntax tree
or the symbol table, for subsequent use during intermediate-code generation.

An important part of semantic analysis is type checking, where the compiler
checks that each operator has matching operands. For example, many program-
ming language definitions require an array index to be an integer; the compiler
must report an error if a floating-point number is used to index an array.

The language specification may permit some type conversions called coer-
cions. For example, a binary arithmetic operator may be applied to either a
pair of integers or to a pair of floating-point numbers. If the operator is applied
to a floating-point number and an integer, the compiler may convert or coerce
the integer into a floating-point number.

https://hemanthrajhemu.github.io

1.2. THE STRUCTURE OF A COMPILER 9

Such a coercion appears in Fig. 1.7. Suppose that pos i t i on , i n i t i a l , and
r a t e have been declared to be floating-point numbers, and that the lexeme 60
by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7
discovers that the operator * is applied to a floating-point number r a t e and
an integer 60. In this case, the integer may be converted into a floating-point
number. In Fig. 1.7, notice that the output of the semantic analyzer has an
extra node for the operator inttofloat, which explicitly converts its integer
argument into a floating-point number. Type checking and semantic analysis
are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program into target code, a compiler may
construct one or more intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate representation; they are
commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compil-
ers generate an explicit low-level or machine-like intermediate representation,
which we can think of as a program for an abstract machine. This intermedi-
ate representation should have two important properties: it should be easy to
produce and it should be easy to translate into the target machine.

In Chapter 6, we consider an intermediate form called three-address code,
which consists of a sequence of assembly-like instructions with three operands
per instruction. Each operand can act like a register. The output of the inter-
mediate code generator in Fig. 1.7 consists of the three-address code sequence

t l = i n t t o f l o a t (60)
t 2 = i d3 * t l
t 3 = i d2 + t 2
i d 1 = t 3

There are several points worth noting about three-address instructions.
First, each three-address assignment instruction has at most one operator on the
right side. Thus, these instructions fix the order in which operations are to be
done; the multiplication precedes the addition in the source program (1.1). Sec-
ond, the compiler must generate a temporary name to hold the value computed
by a three-address instruction. Third, some "three-address instructions" like
the first and last in the sequence (1.3), above, have fewer than three operands.

In Chapter 6, we cover the principal intermediate representations used in
compilers. Chapters 5 introduces techniques for syntax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code generation
for typical programming language constructs such as expressions, flow-of-control
constructs, and procedure calls.

https://hemanthrajhemu.github.io

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means
faster, but other objectives may be desired, such as shorter code, or target code
that consumes less power. For example, a straightforward algorithm generates
the intermediate code (1.3), using an instruction for each operator in the tree
representation that comes from the semantic analyzer.

A simple intermediate code generation algorithm followed by code optimiza-
tion is a reasonable way to generate good target code. The optimizer can deduce
that the conversion of 60 from integer to floating point can be done once and for
all at compile time, so the inttofloat operation can be eliminated by replacing
the integer 60 by the floating-point number 60.0. Moreover, t3 is used only
once to transmit its value to id1 so the optimizer can transform (1.3) into the
shorter sequence

There is a great variation in the amount of code optimization different com-
pilers perform. In those that do the most, the so-called "optimizing compilers,"
a significant amount of time is spent on this phase. There are simple opti-
mizations that significantly improve the running time of the target program
without slowing down compilation too much. The chapters from 8 on discuss
machine-independent and machine-dependent optimizations in detail.

1.2.6 Code Generation

The code generator takes as input an intermediate representation of the source
program and maps it into the target language. If the target language is machine
code, registers or memory locations are selected for each of the variables used by
the program. Then, the intermediate instructions are translated into sequences
of machine instructions that perform the same task. A crucial aspect of code
generation is the judicious assignment of registers to hold variables.

For example, using registers R 1 and R2, the intermediate code in (1.4) might
get translated into the machine code

LDF R 2 , i d3
MULF R 2 , R 2 , #60.0
LDF R l , id2
ADDF R l , R l , R2
S T F i d l , R l

The first operand of each instruction specifies a destination. The F in each
instruction tells us that it deals with floating-point numbers. The code in

https://hemanthrajhemu.github.io

1.2. THE STRUCTURE OF A COMPILER 11

(1.5) loads the contents of address id3 into register R2, then multiplies it with
floating-point constant 60.0. The # signifies that 60.0 is to be treated as an
immediate constant. The third instruction moves id2 into register R 1 and the
fourth adds to it the value previously computed in register R2. Finally, the value
in register R1 is stored into the address of i d l , so the code correctly implements
the assignment statement (1.1). Chapter 8 covers code generation.

This discussion of code generation has ignored the important issue of stor-
age allocation for the identifiers in the source program. As we shall see in
Chapter 7, the organization of storage at run-time depends on the language be-
ing compiled. Storage-allocation decisions are made either during intermediate
code generation or during code generation.

1.2.7 Symbol-Table Management

An essential function of a compiler is to record the variable names used in the
source program and collect information about various attributes of each name.
These attributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the ca,se of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, by value or by
reference), and the type returned.

The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name. The data structure should be
designed to allow the compiler to find the record for each name quickly and to
store or retrieve data from that record quickly. Symbol tables are discussed in
Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of a compiler. In
an implementation, activities from several phases may be grouped together
into a pass that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and
intermediate code generation might be grouped together into one pass. Code
optimization might be an optional pass. Then there could be a back-end pass
consisting of code generation for a particular target machine.

Some compiler collections have been created around carefully designed in-
termediate representations that allow the front end for a particular language to
interface with the back end for a certain target machine. With these collections,
we can produce compilers for different source languages for one target machine
by combining different front ends with the back end for that target machine.
Similarly, we can produce compilers for different target machines, by combining
a front end with back ends for different target machines.

https://hemanthrajhemu.github.io

12 CHAPTER 1. INTRODUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any software developer, can profitably use modern
software development environments containing tools such as language editors,
debuggers, version managers, profilers, test harnesses, and so on. In addition
to these general software-development tools, other more specialized tools have
been created to help implement various phases of a compiler.

These tools use specialized languages for specifying and implementing spe-
cific components, and many use quite sophisticated algorithms. The most suc-
cessful tools are those that hide the details of the generation algorithm and
produce components that can be easily integrated into the remainder of the
compiler. Some commonly used compiler-construction tools include

1. Parser generators that automatically produce syntax analyzers from a
grammatical description of a programming language.

2. Scanner generators that produce lexical analyzers from a regular-expres-
sion description of the tokens of a language.

3. Syntax-directed translat ion engines that produce collections of routines
for walking a parse tree and generating intermediate code.

4. Code-generator generators that produce a code generator from a collection
of rules for translating each operation of the intermediate language into
the machine language for a target machine.

5. Data-flow analysis engines that facilitate the gathering of information
about how values are transmitted from one part of a program to each
other part. Data-flow analysis is a key part of code optimization.

6. Compiler-construct ion toolk2ts that provide an integrated set of routines
for constructing various phases of a compiler.

We shall describe many of these tools throughout this book.

1.3 The Evolution of Programming Languages

The first electronic computers appeared in the 1940's and were programmed in
machine language by sequences of 0's and 1's that explicitly told the computer
what operations to execute and in what order. The operations themselves
were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind
of programming was slow, tedious, and error prone. And once written, the
programs were hard to understand and modify.

https://hemanthrajhemu.github.io

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of mnemonic assembly languages in the early 1950's. Initially,
the instructions in an assembly language were just mnemonic representations
of machine instructions. Later, macro instructions were added to assembly
languages so that a programmer could define parameterized shorthands for
frequently used sequences of machine instructions.

A major step towards higher-level languages was made in the latter half of
the 1950's with the development of Fortran for scientific computation, Cobol
for business data processing, and Lisp for symbolic computation. The philos-
ophy behind these languages was to create higher-level notations with which
programmers could more easily write numerical computations, business appli-
cations, and symbolic programs. These languages were so successful that they
are still in use today.

In the following decades, many more languages were created with innovative
features to help make programming easier, more natural, and more robust.
Later in this chapter, we shall discuss some key features that are common to
many modern programming languages.

Today, there are thousands of programming languages. They can be classi-
fied in a variety of ways. One classification is by generation. First-generation
languages are the machine languages, second-generation the assembly languages,
and third-generation the higher-level languages like Fortran, Cobol, Lisp, C,
C++, C#, and Java. Fourth-generation languages are languages designed
for specific applications like NOMAD for report generation, SQL for database
queries, and Postscript for text formatting. The term fifth-generation language
has been applied to logic- and constraint-based languages like Prolog and OPS5.

Another classification of languages uses the term imperative for languages
in which a program specifies how a computation is to be done and declarative
for languages in which a program specifies what computation is to be done.
Languages such as C, C++, C#, and Java are imperative languages. In imper-
ative languages there is a notion of program state and statements that change
the state. Functional languages such as ML and Haskell and constraint logic
languages such as Prolog are often considered to be declarative languages.

The term von Neumann language is applied to programming languages
whose computational model is based on the von Neumann computer archi-
tecture. Many of today's languages, such as Fortran and C are von Neumann
languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists of a collection of objects
that interact with one another. Simula 67 and Smalltalk are the earliest major
object-oriented languages. Languages such as C++, C#, Java, and Ruby are
more recent ob ject-oriented languages.

Scripting languages are interpreted languages with high-level operators de-
signed for "gluing toget her" computations. These computations were originally

https://hemanthrajhemu.github.io

14 CHAPTER 1. INTRODUCTION

called "scripts." Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop-
ular examples of scripting languages. Programs written in scripting languages
are often much shorter than equivalent programs written in languages like C.

1.3.2 Impacts on Compilers

Since the design of programming languages and compilers are intimately related,
the advances in programming languages placed new demands on compiler writ-
ers. They had to devise algorithms and representations to translate and support
the new language features. Since the 1940's, computer architecture has evolved
as well. Not only did the compiler writers have to track new language fea-
tures, they also had to devise translation algorithms that would take maximal
advantage of the new hardware capabilities.

Compilers can help promote the use of high-level languages by minimizing
the execution overhead of the programs written in these languages. Compilers
are also critical in making high-performance computer architectures effective
on users' applications. In fact, the performance of a computer system is so
dependent on compiler technology that compilers are used as a tool in evaluating
architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.
Moreover, many modern language-processing systems handle several source lan-
guages and target machines within the same framework; that is, they serve as
collections of compilers, possibly consisting of millions of lines of code. Con-
sequently, good software-engineering techniques are essential for creating and
evolving modern language processors.

A compiler must translate correctly the potentially infinite set of programs
that could be written in the source language. The problem of generating the
optimal target code from a source program is undecidable in general; thus,
compiler writers must evaluate tradeoffs about what problems to tackle and
what heuristics to use to approach the problem of generating efficient code.

A study of compilers is also a study of how theory meets practice, as we
shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas
used in compiler design. It is not the intention of this text to teach all the
algorithms and techniques that could be used for building a st ate-of-the-art
language-processing system. However, readers of this text will acquire the basic
knowledge and understanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3

Exercise 1.3.1 : Indicate which of the following terms:

a) imperative b) declarative c) von Neumann
d) object-oriented e) functional f) third-generation
g) fourth-generation h) scripting

https://hemanthrajhemu.github.io

1.4. THE SCIENCE OF BUILDING A COMPILER

apply to which of the following languages:

1) C 2) C++ 3) Cobol 4) Fortran 5) Java
6) Lisp 7) ML 8) Per1 9) Python 10) VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-
lems are solved by abstracting the essence of the problem mathematically. These
serve as excellent illustrations of how abstractions can be used to solve prob-
lems: take a problem, formulate a mathematical abstraction that captures the
key characteristics, and solve it using mathematical techniques. The problem
formulation must be grounded in a solid understanding of the characteristics of
computer programs, and the solution must be validated and refined empirically.

A compiler must accept all source programs that conform to the specification
of the language; the set of source programs is infinite and any program can be
very large, consisting of possibly millions of lines of code. Any transformation
performed by the compiler while translating a source program must preserve the
meaning of the program being compiled. Compiler writers thus have influence
over not just the compilers they create, but all the programs that their com-
pilers compile. This leverage makes writing compilers particularly rewarding;
however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly a study of how we design the right mathe-
matical models and choose the right algorithms, while balancing the need for
generality and power against simplicity and efficiency.

Some of most fundamental models are finite-state machines and regular
expressions, which we shall meet in Chapter 3. These models are useful for de-
scribing the lexical units of programs (keywords, identifiers, and such) and for
describing the algorithms used by the compiler to recognize those units. Also
among the most fundamental models are context-free grammars, used to de-
scribe the syntactic structure of programming languages such as the nesting of
parentheses or control constructs. We shall study grammars in Chapter 4. Sim-
ilarly, trees are an important model for representing the structure of programs
and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term "optimization" in compiler design refers to the attempts that a com-
piler makes to produce code that is more efficient than the obvious code. "Op-
timization" is thus a misnomer, since there is no way that the code produced
by a compiler can be guaranteed to be as fast or faster than any other code
that performs the same task.

https://hemanthrajhemu.github.io

CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has
become both more important and more complex. It is more complex because
processor architectures have become more complex, yielding more opportunities
to improve the way code executes. It is more important because massively par-
allel computers require substantial optimization, or their performance suffers by
orders of magnitude. With the likely prevalence of multicore machines (com-
puters with chips that have large numbers of processors on them), all compilers
will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if not impossible, to build a robust compiler out of "hacks."
Thus, an extensive and useful theory has been built up around the problem of
optimizing code. The use of a rigorous mathematical foundation allows us to
show that an optimization is correct and that it produces the desirable effect
for all possible inputs. We shall see, starting in Chapter 9, how models such
as graphs, matrices, and linear programs are necessary if the compiler is to
produce well optimized code.

On the other hand, pure theory alone is insufficient. Like many real-world
problems, there are no perfect answers. In fact, most of the questions that
we ask in compiler optimization are undecidable. One of the most important
skills in compiler design is the ability to formulate the right problem to solve.
We need a good understanding of the behavior of programs to start with and
thorough experimentation and evaluation to validate our intuitions.

Compiler optimizations must meet the following design objectives:

The optimization must be correct, that is, preserve the meaning of the
compiled program,

The optimization must improve the performance of many programs,

The compilation time must be kept reasonable, and

The engineering effort required must be manageable.

It is impossible to overemphasize the importance of correctness. It is trivial
to write a compiler that generates fast code if the generated code need not
be correct! Optimizing compilers are so difficult to get right that we dare say
that no optimizing compiler is completely error-free! Thus, the most important
objective in writing a compiler is that it is correct.

The second goal is that the compiler must be effective in improving the per-
formance of many input programs. Normally, performance means the speed of
the program execution. Especially in embedded applications, we may also wish
to minimize the size of the generated code. And in the case of mobile devices,
it is also desirable that the code minimizes power consumption. Typically, the
same optimizations that speed up execution time also conserve power. Besides
performance, usability aspects such as error reporting and debugging are also
import ant.

Third, we need to keep the compilation time short to support a rapid devel-
opment and debugging cycle. This requirement has become easier to meet as

https://hemanthrajhemu.github.io

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines get faster. Often, a program is first developed and debugged without
program optimizations. Not only is the compilation time reduced, but more
importantly, unoptimized programs are easier to debug, because the optimiza-
tions introduced by a compiler often obscure the relationship between the source
code and the object code. Turning on optimizations in the compiler sometimes
exposes new problems in the source program; thus testing must again be per-
formed on the optimized code. The need for additional testing sometimes deters
the use of optimizations in applications, especially if their performance is not
critical.

Finally, a compiler is a complex system; we must keep the system sim-
ple to assure that the engineering and maintenance costs of the compiler are
manageable. There is an infinite number of program optimizations that we
could implement, and it takes a nontrivial amount of effort to create a correct
and effective optimization. We must prioritize the optimizations, implementing
only those that lead to the greatest benefits on source programs encountered in
practice.

Thus, in studying compilers, we learn not only how to build a compiler, but
also the general methodology of solving complex and open-ended problems. The
approach used in compiler development involves both theory and experimenta-
tion. We normally start by formulating the problem based on our intuitions on
what the important issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the technol-
ogy learned by studying compilers in school, yet have never, strictly speaking,
written (even part of) a compiler for a major programming language. Compiler
technology has other important uses as well. Additionally, compiler design im-
pacts several other areas of computer science. In this section, we review the
most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming
Languages

A high-level programming language defines a programming abstraction: the
programmer expresses an algorithm using the language, and the compiler must
translate that program to the target language. Generally, higher-level program-
ming languages are easier to program in, but are less efficient, that is, the target
programs run more slowly. Programmers using a low-level language have more
control over a computation and can, in principle, produce more efficient code.
Unfortunately, lower-level programs are harder to write and - worse still -
less portable, more prone to errors, and harder to maintain. Optimizing com-
pilers include techniques to improve the performance of generated code, thus
offsetting the inefficiency introduced by high-level abstractions.

https://hemanthrajhemu.github.io

18 CHAPTER 1. INTRODUCTION

Example 1.2 : The register keyword in the C programming language is an
early example of the interaction between compiler technology and language evo-
lution. When the C language was created in the mid 1970s, it was considered
necessary to let a programmer control which program variables reside in regis-
ters. This control became unnecessary as effective register-allocation techniques
were developed, and most modern programs no longer use this language feature.

In fact, programs that use the register keyword may lose efficiency, because
programmers often are not the best judge of very low-level matters like register
allocation. The optimal choice of register allocation depends greatly on the
specifics of a machine architecture. Hardwiring low-level resource-management
decisions like register allocation may in fact hurt performance, especially if the
program is run on machines other than the one for which it was written.

The many shifts in the popular choice of programming languages have been
in the direction of increased levels of abstraction. C was the predominant
systems programming language of the 80's; many of the new projects started
in the 90's chose C++; Java, introduced in 1995, gained popularity quickly
in the late 90's. The new programming-language features introduced in each
round spurred new research in compiler optimization. In the following, we give
an overview on the main language features that have stimulated significant
advances in compiler technology.

Practically all common programming languages, including C, Fortran and
Cobol, support user-defined aggregate data types, such as arrays and structures,
and high-level control flow, such as loops and procedure invocations. If we just
take each high-level construct or data-access operation and translate it directly
to machine code, the result would be very inefficient. A body of compiler
optimizations, known as data-flow optimizations, has been developed to analyze
the flow of data through the program and removes redundancies across these
constructs. They are effective in generating code that resembles code written
by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++, C#, and Java. The key
ideas behind object orientation are

1. Data abstraction and

2. Inheritance of properties,

both of which have been found to make programs more modular and easier to
maintain. Object-oriented programs are different from those written in many
other languages, in that they consist of many more, but smaller, procedures
(called methods in object-oriented terms). Thus, compiler optimizations must
be able to perform well across the procedural boundaries of the source program.
Procedure inlining, which is the replacement of a procedure call by the body
of the procedure, is particularly useful here. Optimizations to speed up virtual
met hod dispatches have also been developed.

https://hemanthrajhemu.github.io

APPLICATIONS OF COMPILER TECHNOLOGY

Java has many features that make programming easier, many of which have
been introduced previously in other languages. The Java language is type-safe;
that is, an object cannot be used as an object of an unrelated type. All array
accesses are checked to ensure that they lie within the bounds of the array.
Java has no pointers and does not allow pointer arithmetic. It has a built-in
garbage-collection facility that automatically frees the memory of variables that
are no longer in use. While all these features make programming easier, they
incur a run-time overhead. Compiler optimizations have been developed to
reduce the overhead, for example, by eliminating unnecessary range checks and
by allocating objects that are not accessible beyond a procedure on the stack
instead of the heap. Effective algorithms also have been developed to minimize
the overhead of garbage collection.

In addition, Java is designed to support portable and mobile code. Programs
are distributed as Java bytecode, which must either be interpreted or compiled
into native code dynamically, that is, at run time. Dynamic compilation has also
been studied in other contexts, where information is extracted dynamically at
run time and used to produce better-optimized code. In dynamic optimization,
it is important to minimize the compilation time as it is part of the execution
overhead. A common technique used is to only compile and optimize those
parts of the program that will be frequently executed.

1.5.2 Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable
demand for new compiler technology. Almost all high-performance systems
take advantage of the same two basic techniques: parallelism and memory hi-
erarchies. Parallelism can be found at several levels: at the instruction level,
where multiple operations are executed simultaneously and at the processor
level, where different threads of the same application are run on different pro-
cessors. Memory hierarchies are a response to the basic limitation that we can
build very fast storage or very large storage, but not storage that is both fast
and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this
parallelism can be hidden from the programmer. Programs are written as if all
instructions were executed in sequence; the hardware dynamically checks for
dependencies in the sequential instruction stream and issues them in parallel
when possible. In some cases, the machine includes a hardware scheduler that
can change the instruction ordering to increase the parallelism in the program.
Whether the hardware reorders the instructions or not, compilers can rearrange
the instructions to make instruction-level parallelism more effective.

Instruction-level parallelism can also appear explicitly in the instruction set.
VLIW (Very Long Instruction Word) machines have instructions that can issue

https://hemanthrajhemu.github.io

CHAPTER 2. INTRODUCTION

multiple operations in parallel. The Intel IA64 is a well-known example of such
an architecture. All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same time.
Compiler techniques have been developed to generate code automatically for
such machines from sequential programs.

Multiprocessors have also become prevalent ; even personal computers of-
ten have multiple processors. Programmers can write multithreaded code for
multiprocessors, or parallel code can be automatically generated by a com-
piler from conventional sequential programs. Such a compiler hides from the
programmers the details of finding parallelism in a program, distributing the
computation across the machine, and minimizing synchronization and com-
munication among the processors. Many scientific-computing and engineering
applications are computation-intensive and can benefit greatly from parallel
processing. Parallelization techniques have been developed to translate auto-
matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different speeds
and sizes, with the level closest to the processor being the fastest but small-
est. The average memory-access time of a program is reduced if most of its
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and
the existence of a memory hierarchy improve the potential performance of a
machine, but they must be harnessed effectively by the compiler to deliver real
performance on an application.

Memory hierarchies are found in all machines. A processor usually has
a small number of registers consisting of hundreds of bytes, several levels of
caches containing kilobytes to megabytes, physical memory containing mega-
bytes to gigabytes, and finally secondary storage that contains gigabytes and
beyond. Correspondingly, the speed of accesses between adjacent levels of the
hierarchy can differ by two or three orders of magnitude. The performance of a
system is often limited not by the speed of the processor but by the performance
of the memory subsystem. While compilers traditionally focus on optimizing
the processor execution, more emphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problem in
optimizing a program. Unlike registers that have to be managed explicitly in
software, caches and physical memories are hidden from the instruction set and
are managed by hardware. It has been found that cache-management policies
implemented by hardware are not effective in some cases, especially in scientific
code that has large data structures (arrays, typically). It is possible to improve
the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change
the layout of code to improve the effectiveness of instruction caches.

https://hemanthrajhemu.github.io

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

1.5.3 Design of New Computer Architectures

In the early days of computer architecture design, compilers were developed
after the machines were built. That has changed. Since programming in high-
level languages is the norm, the performance of a computer system is determined
not by its raw speed but also by how well compilers can exploit its features.
Thus, in modern computer architecture development, compilers are developed
in the processor-design stage, and compiled code, running on simulators, is used
to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced Instruction-Set
Computer) architecture. Prior to this invention, the trend was to develop pro-
gressively complex instruction sets intended to make assembly programming
easier; these architectures were known as CISC (Complex Instruction-Set Com-
puter). For example, CISC instruction sets include complex memory-addressing
modes to support data-structure accesses and procedure-invocation instructions
that save registers and pass parameters on the stack.

Compiler optimizations often can reduce these instructions to a small num-
ber of simpler operations by eliminating the redundancies across complex in-
structions. Thus, it is desirable to build simple instruction sets; compilers can
use them effectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the
x86 architecture-the most popular microprocessor-has a CISC instruction
set, many of the ideas developed for RISC machines are used in the imple-
mentation of the processor itself. Moreover, the most effective way to use a
high-performance x86 machine is to use just its simple instructions.

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.
They include data flow machines, vector machines, VLIW (Very Long Instruc-
tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro-
cessors, systolic arrays, multiprocessors with shared memory, and multiproces-
sors with distributed memory. The development of each of these architectural
concepts was accompanied by the research and development of corresponding
compiler technology.

Some of these ideas have made their way into the designs of embedded
machines. Since entire systems can fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achieve better
cost-effectiveness for a particular application. Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures

https://hemanthrajhemu.github.io

22 CHAPTER 1. INTRODUCTION

to converge, application-specific processors exhibit a diversity of computer ar-
chitectures. Compiler technology is needed not only to support programming
for these architectures, but also to evaluate proposed architectural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-
guage to the machine level, the same technology can be applied to translate
between different kinds of languages. The following are some of the important
applications of program-translation techniques.

Binary Translation

Compiler technology can be used to translate the binary code for one machine
to that of another, allowing a machine to run programs originally compiled for
another instruction set. Binary translation technology has been used by various
computer companies to increase the availability of software for their machines.
In particular, because of the domination of the x86 personal-computer mar-
ket, most software titles are available as x86 code. Binary translators have
been developed to convert x86 code into both Alpha and Sparc code. Binary
translation was also used by Transmeta Inc. in their implementation of the x86
instruction set. Instead of executing the complex x86 instruction set directly in
hardware, the Transmeta Crusoe processor is a VLIW processor that relies on
binary translation to convert x86 code into native VLIW code.

Binary translation can also be used to provide backward compatibility.
When the processor in the Apple Macintosh was changed from the Motorola MC
68040 to the PowerPC in 1994, binary translation was used to allow PowerPC
processors run legacy MC 68040 code.

Hardware Synthesis

Not only is most software written in high-level languages; even hardware de-
signs are mostly described in high-level hardware description languages like
Verilog and VHDL (Very high-speed integrated circuit Hardware Description
Language). Hardware designs are typically described at the register trans-
fer level (RTL), where variables represent registers and expressions represent
combinational logic. Hardware-synthesis tools translate RTL descriptions auto-
matically into gates, which are then mapped to transistors and eventually to a
physical layout. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit. Techniques to translate designs at higher
levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying software and hardware, languages are useful in many other
applications. For example, query languages, especially SQL (Structured Query

https://hemanthrajhemu.github.io

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

Language), are used to search databases. Database queries consist of predicates
containing relational and boolean operators. They can be interpreted or com-
piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation is a general technique used in many scientific and engineering disci-
plines to understand a phenomenon or to validate a design. Inputs to a simula-
tor usually include the description of the design and specific input parameters
for that particular simulation run. Simulations can be very expensive. We typi-
cally need to simulate many possible design alternatives on many different input
sets, and each experiment may take days to complete on a high-performance
machine. Instead of writing a simulator that interprets the design, it is faster
to compile the design to produce machine code that simulates that particular
design natively. Compiled simulation can run orders of magnitude faster than
an interpreter-based approach. Compiled simulation is used in many state-of-
the-art tools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-
duced; they consist of many many details, every one of which must be correct
before the program will work completely. As a result, errors are rampant in
programs; errors may crash a system, produce wrong results, render a system
vulnerable to security attacks, or even lead to catastrophic failures in critical
systems. Testing is the primary technique for locating errors in programs.

An interesting and promising complementary approach is to use data-flow
analysis to locate errors statically (that is, before the program is run). Data-
flow analysis can find errors along all the possible execution paths, and not
just those exercised by the input data sets, as in the case of program testing.
Many of the data-flow-analysis techniques, originally developed for compiler
optimizations, can be used to create tools that assist programmers in their
software engineering tasks.

The problem of finding all program errors is undecidable. A data-flow analy-
sis may be designed to warn the programmers of all possible statements violating
a particular category of errors. But if most of these warnings are false alarms,
users will not use the tool. Thus, practical error detectors are often neither
sound nor complete. That is, they may not find all the errors in the program,
and not all errors reported are guaranteed to be real errors. Nonetheless, var-
ious static analyses have been developed and shown to be effective in finding
errors, such as dereferencing null or freed pointers, in real programs. The fact
that error detectors may be unsound makes them significantly different from
compiler optimizations. Optimizers must be conservative and cannot alter the
semantics of the program under any circumstances.

https://hemanthrajhemu.github.io

24 CHAPTER 1. INTRODUCTION

In the balance of this section, we shall mention several ways in which pro-
gram analysis, building upon techniques originally developed to optimize code
in compilers, have improved software productivity. Of special importance are
techniques that detect statically when a program might have a security vulner-
ability.

Type Checking

Type checking is an effective and well-established technique to catch inconsis-
tencies in programs. It can be used to catch errors, for example, where an
operation is applied to the wrong type of object, or if parameters passed to a
procedure do not match the signature of the procedure. Program analysis can
go beyond finding type errors by analyzing the flow of data through a program.
For example, if a pointer is assigned n u l l and then immediately dereferenced,
the program is clearly in error.

The same technology can be used to catch a variety of security holes, in
which an attacker supplies a string or other data that is used carelessly by the
program. A user-supplied string can be labeled with a type "dangerous." If
this string is not checked for proper format, then it remains "dangerous," and
if a string of this type is able to influence the control-flow of the code at some
point in the program, then there is a potential security flaw.

Bounds Checking

It is easier to make mistakes when programming in a lower-level language than
a higher-level one. For example, many security breaches in systems are caused
by buffer overflows in programs written in C. Because C does not have array-
bounds checks, it is up to the user to ensure that the arrays are not accessed
out of bounds. Failing to check that the data supplied by the user can overflow
a buffer, the program may be tricked into storing user data outside of the
buffer. An attacker can manipulate the input data that causes the program to
misbehave and compromise the security of the system. Techniques have been
developed to find buffer overflows in programs, but with limited success.

Had the program been written in a safe language that includes automatic
range checking, this problem would not have occurred. The same data-flow
analysis that is used to eliminate redundant range checks can also be used to
locate buffer overflows. The major difference, however, is that failing to elimi-
nate a range check would only result in a small run-time cost, while failing to
identify a potential buffer overflow may compromise the security of the system.
Thus, while it is adequate to use simple techniques to optimize range checks, so-
phisticated analyses, such as tracking the values of pointers across procedures,
are needed to get high-quality results in error detection tools.

https://hemanthrajhemu.github.io

1.6. PROGRAMMING LANGUAGE BASICS

Memory-Management Tools

Garbage collection is another excellent example of the tradeoff between effi-
ciency and a combination of ease of programming and software reliability. Au-
tomatic memory management obliterates all memory-management errors (e.g.,
"memory leaks"), which are a major source of problems in C and C++ pro-
grams. Various tools have been developed to help programmers find memory
management errors. For example, Purify is a widely used tool that dynamically
catches memory management errors as they occur. Tools that help identify
some of these problems statically have also been developed.

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions
that appear in the study of programming languages. It is not our purpose to
cover all concepts or all the popular programming languages. We assume that
the reader is familiar with at least one of C, C++, C#, or Java, and may have
encountered other languages as well.

1.6.1 The Static/Dynarnic Distinction

Among the most important issues that we face when designing a compiler for
a language is what decisions can the compiler make about a program. If a
language uses a policy that allows the compiler to decide an issue, then we say
that the language uses a static policy or that the issue can be decided a t compile
t ime. On the other hand, a policy that only allows a decision to be made when
we execute the program is said to be a dynamic policy or to require a decision
at r u n t ime.

One issue on which we shall concentrate is the scope of declarations. The
scope of a declaration of x is the region of the program in which uses of x refer t o
this declaration. A language uses static scope or lexical scope if it is possible to
determine the scope of a declaration by looking only a t the program. Otherwise,
the language uses dynamic scope. With dynamic scope, as the program runs,
the same use of x could refer to any of several different declarations of x.

Most languages, such as C and Java, use static scope. We shall discuss static
scoping in Section 1.6.3.

Example 1.3 : As another example of the staticldynamic distinction, consider
the use of the term "static" as it applies to data in a Java class declaration. In
Java, a variable is a name for a location in memory used to hold a data value.
Here, "static" refers not to the scope of the variable, but rather to the ability of
the compiler to determine the location in memory where the declared variable
can be found. A declaration like

public s t a t i c i n t x ;

https://hemanthrajhemu.github.io

CHAPTER 1. INTRODUCTION

makes x a class variable and says that there is only one copy of x, no matter how
many objects of this class are created. Moreover, the compiler can determine a
location in memory where this integer x will be held. In contrast, had "static"
been omitted from this declaration, then each object of the class would have its
own location where x would be held, and the compiler could not determine all
these places in advance of running the program.

1.6.2 Environments and States

Another important distinction we must make when discussing programming
languages is whether changes occurring as the program runs affect the values of
data elements or affect the interpretation of names for that data. For example,
the execution of an assignment such as x = y + 1 changes the value denoted by
the name x. More specifically, the assignment changes the value in whatever
location is denoted by x.

It may be less clear that the location denoted by x can change at run time.
For instance, as we discussed in Example 1.3, if x is not a static (or "class")
variable, then every object of the class has its own location for an instance
of variable x. In that case, the assignment to x can change any of those "in-
stance" variables, depending on the object to which a method containing that
assignment is applied.

environment state

names
n n

locations values
(variables)

Figure 1.8: Two-stage mapping from names to values

The association of names with locations in memory (the store) and then
with values can be described by two mappings that change as the program runs
(see Fig. 1.8):

1. The environment is a mapping from names to locations in the store. Since
variables refer to locations ('L1-values" in the terminology of C), we could
alternatively define an environment as a mapping from names to variables.

2. The state is a mapping from locations in store to their values. That is, the
state maps 1-values to their corresponding r-values, in the terminology of
C.

Environments change according to the scope rules of a language.

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer i is
declared a global variable, and also declared as a variable local to function f .
When f is executing, the environment adjusts so that name i refers to the

https://hemanthrajhemu.github.io

1.6. PROGRAMMING LANGUAGE BASICS

i n t i ;
...
void f(.--) {

i n t i ;

/* global i */

/* local i */

/* use of local i */

x = i + I ; /* use of global i */

Figure 1.9: Two declarations of the name i

location reserved for the i that is local to f , and any use of i , such as the
assignment i = 3 shown explicitly, refers to that location. Typically, the local
i is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of i cannot refer to
the i that is local to f . Uses of name i in g must be within the scope of some
other declaration of i. An example is the explicitly shown statement x = i+l,
which is inside some procedure whose definition is not shown. The i in i + 1
presumably refers to the global i . As in most languages, declarations in C must
precede their use, so a function that comes before the global i cannot refer to
it.

The environment and state mappings in Fig. 1.8 are dynamic, but there are
a few exceptions:

1. Static versus dynamic binding of names to locations. Most binding of
names to locations is dynamic, and we discuss several approaches to this
binding throughout the section. Some declarations, such as the global i
in Fig. 1.9, can be given a location in the store once and for all, as the
compiler generates object code.2

2. Static versus dynamic binding of locations to values. The binding of lo-
cations to values (the second stage in Fig. 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.
Declared constants are an exception. For instance, the C definition

#define ARRAYSIZE 1000
-- --

2~echnically, the C compiler will assign a location in virtual memory for the global i,
leaving it to the loader and the operating system to determine where in the physical memory
of the machine i will be located. However, we shall not worry about "relocation" issues such
as these, which have no impact on compiling. Instead, we treat the address space that the
compiler uses for its output code as if it gave physical memory locations.

https://hemanthrajhemu.github.io

28 CHAPTER I . INTRODUCTION

Names, Identifiers, and Variables

Although the terms "name" and "variable," often refer to the same thing,
we use them carefully to distinguish between compile-time names and the
run-time locations denoted by names.

An identifier is a string of characters, typically letters or digits, that
refers to (identifies) an entity, such as a data object, a procedure, a class,
or a type. All identifiers are names, but not all names are identifiers.
Names can also be expressions. For example, the name x.y might denote
the field y of a structure denoted by x. Here, x and y are identifiers, while
x.y is a name, but not an identifier. Composite names like x.y are called
qualified names.

A variable refers to a particular location of the store. It is common for
the same identifier to be declared more than once; each such declaration
introduces a new variable. Even if each identifier is declared just once, an
identifier local to a recursive procedure will refer to different locations of
the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can determine
this binding by looking at the statement, and we know that it is impossible
for this binding to change when the program executes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope rules
for C are based on program structure; the scope of a declaration is determined
implicitly by where the declaration appears in the program. Later languages,
such as C++, Java, and C#, also provide explicit control over scopes through
the use of keywords like public, private, and protected.

In this section we consider static-scope rules for a language with blocks,
where a block is a grouping of declarations and statements. C uses braces I and
) to delimit a block; the alternative use of begin and end for the same purpose
dates back to Algol.

Example 1.5 : To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables
and functions.

2. Functions may have variable declarations within them, where variables
include local variables and parameters. The scope of each such declaration
is restricted to the function in which it appears.

https://hemanthrajhemu.github.io

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avoid saying "procedures, functions, or methods," each time we want
to talk about a subprogram that may be called, we shall usually refer to
all of them as "procedures." The exception is that when talking explicitly
of programs in languages like C that have only functions, we shall refer
to them as "functions." Or, if we are discussing a language like Java that
has only methods, we shall use that term instead.

A function generally returns a value of some type (the "return type"),
while a procedure does not return any value. C and similar languages,
which have only functions, treat procedures as functions that have a special
return type "void," to signify no return value. Object-oriented languages
like Java and C++ use the term "methods." These can behave like either
functions or procedures, but are associated with a particular class.

3. The scope of a top-level declaration of a name x consists of the entire
program that follows, with the exception of those statements that lie
within a function that also has a declaration of x.

The additional detail regarding the C static-scope policy deals with variable
declarations within statements. We examine such declarations next and in
Example 1.6.

In C, the syntax of blocks is given by

1. One type of statement is a block. Blocks can appear anywhere that other
types of statements, such as assignment statements, can appear.

2. A block is a sequence of declarations followed by a sequence of statements,
all surrounded by braces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block structure. The C family of languages
has block structure, except that a function may not be defined inside another
function.

We say that a declaration D "belongs" to a block B if B is the most closely
nested block containing D; that is, D is located within B , but not within any
block that is nested within B.

The static-scope rule for variable declarations in a block-structured lan-
guages is as follows. If declaration D of name x belongs to block B, then the
scope of D is all of B , except for any blocks B' nested to any depth within B ,
in which x is redeclared. Here, x is redeclared in B' if some other declaration
D' of the same name x belongs to B'.

https://hemanthrajhemu.github.io

30 CHAPTER 1. INTRODUCTION

An equivalent way to express this rule is to focus on a use of a name x.
Let B1, B2, . . . , Bk be all the blocks that surround this use of x, with Bk the
smallest, nested within Bk-1, which is nested within Bk-2, and so on. Search
for the largest i such that there is a declaration of x belonging to Bi. This use
of x refers to the declaration in Bi. Alternatively, this use of x is within the
scope of the declaration in Bi.

'int b = 2; \

.€
B2

int a = 3;
cout << a << b;

3

int b = 4;
cout << a << b;

3
,cout << a << b;

J

cout << a << b;
1

Figure 1.10: Blocks in a C++ program

Example 1.6 : The C++ program in Fig. 1.10 has four blocks, with several
definitions of variables a and b. As a memory aid, each declaration initializes
its variable to the number of the block to which it belongs.

For instance, consider the declaration int a = I in block B1. Its scope
is all of B1, except for those blocks nested (perhaps deeply) within B1 that
have their own declaration of a. B2, nested immediately within B1, does not
have a declaration of a , but B3 does. B4 does not have a declaration of a , so
block B3 is the only place in the entire program that is outside the scope of the
declaration of the name a that belongs to B1. That is, this scope includes f i
and all of B2 except for the part of B2 that is within B3. The scopes of all five
declarations are summarized in Fig. 1.11.

From another point of view, let us consider the output statement in block
B4 and bind the variables a and b used there to the proper declarations. The
list of surrounding blocks, in order of increasing size, is Bq , B2, B1. Note that
B3 does not surround the point in question. B4 has a declaration of b, so it
is to this declaration that this use of b refers, and the value of b printed is 4.
However, B4 does not have a declaration of a , so we next look at B2. That
block does not have a declaration of a either, so we proceed to B1. Fortunately,

https://hemanthrajhemu.github.io

1.6. PROGRAMMING LANGUAGE BASICS

DECLARATION
int a = 1;
int b = 1;
int b = 2;
int a = 3;
int b = 4;

Figure 1.11: Scopes of declarations in Example 1.6

there is a declaration int a = 1 belonging to that block, so the value of a
printed is I. Had there been no such declaration, the program would have been
erroneous. C1

1.6.4 Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an
object of a class with a field (member) x, then the use of x in p.x refers to
field x in the class definition. In analogy with block structure, the scope of a
member declaration x in a class C extends to any subclass C', except if C' has
a local declaration of the same name x.

Through the use of keywords like public, private, and protected, object-
oriented languages such as C++ or Java provide explicit control over access
to member names in a superclass. These keywords support encapsulation by
restricting access. Thus, private names are purposely given a scope that includes
only the method declarations and definitions associated with that class and any
"friend" classes (the C++ term). Protected names are accessible to subclasses.
Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some
or all of its methods. Therefore, a name x associated with the class C may
have a region of the code that is outside its scope, followed by another region (a
method definition) that is within its scope. In fact, regions inside and outside
the scope may alternate, until all the methods have been defined.

1.6.5 Dynamic Scope

Technically, any scoping policy is dynamic if it is based on factor(s) that can
be known only when the program executes. The term dynamic scope, however,
usually refers to the following policy: a use of a name x refers to the declaration
of x in the most recently called procedure with such a declaration. Dynamic
scoping of this type appears only in special situations. We shall consider two ex-
amples of dynamic policies: macro expansion in the C preprocessor and method
resolution in ob ject-oriented programming.

https://hemanthrajhemu.github.io

32 CHAPTER 1. INTRODUCTION

Declarations and Definitions

The apparently similar terms "declaration" and "definition" for program-
ming-language concepts are actually quite different. Declarations tell us
about the types of things, while definitions tell us about their values. Thus,
int i is a declaration of i, while i = I is a definition of i .

The difference is more significant when we deal with methods or other
procedures. In C++, a method is declared in a class definition, by giving
the types of the arguments and result of the method (often called the
signature for the method. The method is then defined, i.e., the code for
executing the method is given, in another place. Similarly, it is common
to define a C function in one file and declare it in other files where the
function is used.

Example 1.7 : In the C program of Fig. 1.12, identifier a is a macro that
stands for expression (x + I). But what is x? We cannot resolve x statically,
that is, in terms of the program text.

int x = 2;

void b() (int x = I ; printf (ll%d\nll, a) ; 3

void c () (printf("%d\nI1, a);

void main() (b(); c () ; 3

Figure 1.12: A macro whose names must be scoped dynamically

In fact, in order to interpret x, we must use the usual dynamic-scope rule.
We examine all the function calls that are currently active, and we take the most
recently called function that has a declaration of x. It is to this declaration that
the use of x refers.

In the example of Fig. 1.12, the function main first calls function b. As b
executes, it prints the value of the macro a. Since (x + 1) must be substituted
for a , we resolve this use of x to the declaration int x=l in function b. The
reason is that b has a declaration of x, so the (x + 1) in the printf in b refers
to this x. Thus, the value printed is 1.

After b finishes, and c is called, we again need to print the value of macro
a. However, the only x accessible to c is the global x. The printf statement
in c thus refers to this declaration of x, and value 2 is printed.

Dynamic scope resolution is also essential for polymorphic procedures, those
that have two or more definitions for the same name, depending only on the

https://hemanthrajhemu.github.io

1.6. PROGRAMMING LANGUAGE BASICS

Analogy Between Static and Dynamic Scoping

While there could be any number of static or dynamic policies for scoping,
there is an interesting relationship between the normal (block-structured)
static scoping rule and the normal dynamic policy. In a sense, the dynamic
rule is to time as the static rule is to space. While the static rule asks us to
find the declaration whose unit (block) most closely surrounds the physical
location of the use, the dynamic rule asks us to find the declaration whose
unit (procedure invocation) most closely surrounds the time of the use.

types of the arguments. In some languages, such as ML (see Section 7.3.3), it
is possible to determine statically types for all uses of names, in which case the
compiler can replace each use of a procedure name p by a reference to the code
for the proper procedure. However, in other languages, such as Java and C++,
there are times when the compiler cannot make that determination.

Example 1.8 : A distinguishing feature of object-oriented programming is the
ability of each object to invoke the appropriate method in response to a message.
In other words, the procedure called when x.m() is executed depends on the
class of the object denoted by x at that time. A typical example is as follows:

1. There is a class iC with a method named m().

2. D is a subclass of C, and D has its own method named m().

3. There is a use of m of the form x.m(), where x is an object of class C.

Normally, it is impossible to tell at compile time whether x will be of class
C or of the subclass D. If the method application occurs several times, it is
highly likely that some will be on objects denoted by x that are in class C but
not D, while others will be in class D. It is not until run-time that it can be
decided which definition of rn is the right one. Thus, the code generated by the
compiler must determine the class of the object x, and call one or the other
method named m.

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ
in how these procedures get their arguments. In this section, we shall consider
how the actual parameters (the parameters used in the call of a procedure)
are associated with the formal parameters (those used in the procedure defi-
nition). Which mechanism is used determines how the calling-sequence code
treats parameters. The great majority of languages use either "call-by-value,"
or "call-by-reference," or both. We shall explain these terms, and another
method known as "call-by-name," that is primarily of historical interest.

https://hemanthrajhemu.github.io

CHAPTER 1. INTRODUCTION

In call-by-value, the actual parameter is evaluated (if it is an expression) or
copied (if it is a variable). The value is placed in the location belonging to
the corresponding formal parameter of the called procedure. This method is
used in C and Java, and is a common option in C++, as well as in most
other languages. Call-by-value has the effect that all computation involving the
formal parameters done by the called procedure is local to that procedure, and
the actual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that
variable to be changed by the callee. Likewise, array names passed as param-
eters in C, C++, or Java give the called procedure what is in effect a pointer
or reference to the array itself. Thus, if a is the name of an array of the calling
procedure, and it is passed by value to corresponding formal parameter x, then
an assignment such as x[i] = 2 really changes the array element a[2]. The
reason is that, although x gets a copy of the value of a , that value is really a
pointer to the beginning of the area of the store where the array named a is
located.

Similarly, in Java, many variables are really references, or pointers, to the
things they stand for. This observation applies to arrays, strings, and objects
of all classes. Even though Java uses call-by-value exclusively, whenever we
pass the name of an object to a called procedure, the value received by that
procedure is in effect a pointer to the object. Thus, the called procedure is able
to affect the value of the object itself.

Call- by-Reference

In call- b y-reference, the address of the actual parameter is passed to the callee as
the value of the corresponding formal parameter. Uses of the formal parameter
in the code of the callee are implemented by following this pointer to the location
indicated by the caller. Changes to the formal parameter thus appear as changes
to the actual parameter.

If the actual parameter is an expression, however, then the expression is
evaluated before the call, and its value stored in a location of its own. Changes
to the formal parameter change this location, but can have no effect on the
data of the caller.

Call-by-reference is used for "ref" parameters in C++ and is an option in
many other languages. It is almost essential when the formal parameter is a
large object, array, or structure. The reason is that strict call-by-value requires
that the caller copy the entire actual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the
parameter is large. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other objects by copying
only a reference to those objects. The effect is that Java behaves as if it used
call-by-reference for anything other than a basic type such as an integer or real.

https://hemanthrajhemu.github.io

1.6. PROGRAMMING LANGUAGE BASICS

Call- by-Name

A third mechanism - call-by-name - was used in the early programming
language Algol 60. It requires that the callee execute as if the actual parameter
were substituted literally for the formal parameter in the code of the callee, as
if the formal parameter were a macro standing for the actual parameter (with
renaming of local names in the called procedure, to keep them distinct). When
the actual parameter is an expression rather than a variable, some unintuitive
behaviors occur, which is one reason this mechanism is not favored today.

1.6.7 Aliasing

There is an interesting consequence of call-by-reference parameter passing or
its simulation, as in Java, where references to objects are passed by value. It
is possible that two formal parameters can refer to the same location; such
variables are said to be aliases of one another. As a result, any two variables,
which may appear to take their values from two distinct formal parameters, can
become aliases of each other, as well.

Example 1.9 : Suppose a is an array belonging to a procedure p, and p calls
another procedure q(x, y) with a call q(a, a) . Suppose also that parameters
are passed by value, but that array names are really references to the location
where the array is stored, as in C or similar languages. Now, x and y have
become aliases of each other. The important point is that if within q there is
an assignment x [lo] = 2, then the value of y[10] also becomes 2.

It turns out that understanding aliasing and the mechanisms that create it
is essential if a compiler is to optimize a program. As we shall see starting in
Chapter 9, there are many situations where we can only optimize code if we
can be sure certain variables are not aliased. For instance, we might determine
that x = 2 is the only place that variable x is ever assigned. If so, then we can
replace a use of x by a use of 2; for example, replace a = x+3 by the simpler
a = 5. But suppose there were another variable y that was aliased to x. Then
an assignment y = 4 might have the unexpected effect of changing x. It might
also mean that replacing a = x+3 by a = 5 was a mistake; the proper value of
a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1 : For the block-structured C code of Fig. 1.13(a), indicate the
values assigned to w, x, y, and x.

Exercise 1.6.2 : Repeat Exercise 1.6.1 for the code of Fig. 1.13(b).

Exercise 1.6.3 : For the block-structured code of Fig. 1.14, assuming the usual
static scoping of declarations, give the scope for each of the twelve declarations.

https://hemanthrajhemu.github.io

CHAPTER 1. INTRODUCTION

i n t w , x , y , z ;
i n t i = 4 ; i n t j = 5 ;
(i n t j = 7 ;

i = 6 ;
w = i + j ;

3
x = i + j ;
{ i n t i = 8 ;

y = i + j ;

i n t w , x , y , z ;
i n t i = 3 ; i n t j = 4;
(i n t i = 5 ;

w = i + j ;
3
x = i + j ;
(i n t j = 6 ;

i = 7 ;
y = i + j ;

(a) Code for Exercise 1.6.1 (b) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

C i n t w, x , y , z ; /* Block B 1 */
C i n t x , z ; /* Block B2 */

(i n t w , x ; /* Block B3 */ 3
3
{ i n t w , x ; /* Block B4 */

{ i n t y , z ; /* Block B5 */ 3
3

3

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4 : What is printed by the following C code?

#define a (x+l)
i n t x = 2;
void b() (x = a ; p r i n t f (l l%d\nlf , x) ; 3
void c () (i n t x = 1 ; p r i n t f ("%d\n"), a ;)
void main() (b(); c () ; 3

1.7 Summary of Chapter 1

+ Language Processors. An integrated software development environment
includes many different kinds of language processors such as compilers,
interpreters, assemblers, linkers, loaders, debuggers, profilers.

+ Compiler Phases. A compiler operates as a sequence of phases, each of
which transforms the source program from one intermediate representa-
tion to another.

https://hemanthrajhemu.github.io

1.7. SUMMARY OF CHAPTER 1

+ Machine and Assembly Languages. Machine languages were the first-
generation programming languages, followed by assembly languages. Pro-
gramming in these languages was time consuming and error prone.

+ Modeling in Compiler Design. Compiler design is one of the places where
theory has had the most impact on practice. Models that have been found
useful include automata, grammars, regular expressions, trees, and many
others.

+ Code Optimization. Although code cannot truly be "optimized," the sci-
ence of improving the efficiency of code is both complex and very impor-
tant. It is a major portion of the study of compilation.

+ Higher-Level Languages. As time goes on, programming languages take
on progressively more of the tasks that formerly were left to the program-
mer, such as memory management, type-consistency checking, or parallel
execution of code.

+ Compilers and Computer Architecture. Compiler technology influences
computer architecture, as well as being influenced by the advances in ar-
chitecture. Many modern innovations in architecture depend on compilers
being able to extract from source programs the opportunities to use the
hardware capabilities effectively.

+ Software Productivity and Software Security. The same technology that
allows compilers to optimize code can be used for a variety of program-
analysis tasks, ranging from detecting common program bugs to discov-
ering that a program is vulnerable to one of the many kinds of intrusions
that "hackers" have discovered.

+ Scope Rules. The scope of a declaration of x is the context in which uses
of x refer to this declaration. A language uses static scope or lexical scope
if it is possible to determine the scope of a declaration by looking only at
the program. Otherwise, the language uses dynamic scope.

+ Environments. The association of names with locations in memory and
then with values can be described in terms of environments, which map
names to locations in store, and states, which map locations to their
values.

+ Block Structure. Languages that allow blocks to be nested are said to
have block structure. A name x in a nested block B is in the scope of a
declaration D of x in an enclosing block if there is no other declaration
of x in an intervening block.

+ Parameter Passing. Parameters are passed from a calling procedure to
the callee either by value or by reference. When large objects are passed
by value, the values passed are really references to the objects themselves,
resulting in an effective call-by-reference.

https://hemanthrajhemu.github.io

38 CHAPTER 1. INTRODUCTION

+ Aliasing. When parameters are (effectively) passed by reference, two for-
mal parameters can refer to the same object. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use
by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that
were created by 1982, including C, C++, Pascal, and Smalltalk, see [I].

The GNU Compiler Collection, gcc, is a popular source of open-source
compilers for C, C-t- +, Fortran, Java, and other languages [2]. Phoenix is a
compiler-construction toolkit that provides an integrated framework for build-
ing the program analysis, code generation, and code optimization phases of
compilers discussed in this book [3].

For more information about programming language concepts, we recom-
mend [5,6]. For more on computer architecture and how it impacts compiling,
we suggest [4].

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM
Press, New York, 1996.

2. http: //gcc .gnu.org/ .

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De-
sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran-
cisco, CA, 2004.

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 2006.

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley, 1996.

7. Wexelblat, R. L., History of Programming Languages, Academic Press,
New York, 1981.

https://hemanthrajhemu.github.io

Chapter 3

Lexical Analysis

In this chapter we show how to construct a lexical analyzer. To implement a
lexical analyzer by hand, it helps to start with a diagram or other description for
the lexemes of each token. We can then write code to identify each occurrence of
each lexeme on the input and to return information about the token identified.

We can also produce a lexical analyzer automatically by specifying the lex-
eme patterns to a lexical-analyzer generator and compiling those patterns into
code that functions as a lexical analyzer. This approach makes it easier to mod-
ify a lexical analyzer, since we have only to rewrite the affected patterns, not
the entire program. It also speeds up the process of implementing the lexical
analyzer, since the programmer specifies the software at the very high level of
patterns and relies on the generator to produce the detailed code. We shall
introduce in Section 3.5 a lexical-analyzer generator called Lex (or Flex in a
more recent embodiment).

We begin the study of lexical-analyzer generators by introducing regular
expressions, a convenient notation for specifying lexeme patterns. We show
how this notation can be transformed, first into nondeterministic automata
and then into deterministic automata. The latter two notations can be used as
input to a "driver," that is, code which simulates these automata and uses them
as a guide to determining the next token. This driver and the specification of
the automaton form the nucleus of the lexical analyzer.

3.1 The Role of the Lexical Analyzer
As the first phase of a compiler, the main task of the lexical analyzer is to
read the input characters of the source program, group them into lexemes, and
produce as output a sequence of tokens for each lexeme in the source program.
The stream of tokens is sent to the parser for syntax analysis. It is common
for the lexical analyzer to interact with the symbol table as well. When the
lexical analyzer discovers a lexeme constituting an identifier, it needs to enter
that lexeme into the symbol table. In some cases, information regarding the

https://hemanthrajhemu.github.io

110 CHAPTER 3. LEXICAL ANALYSIS

kind of identifier may be read from the symbol table by the lexical analyzer to
assist it in determining the proper token it must pass to the parser.

These interactions are suggested in Fig. 3.1. Commonly, the interaction is
implemented by having the parser call the lexical analyzer. The call, suggested
by the getNextToken command, causes the lexical analyzer to read characters
from its input until it can identify the next lexeme and produce for it the next
token, which it returns to the parser.

Symbol
Table

source
program -t

Figure 3.1: Interactions between the lexical analyzer and the parser

Since the lexical analyzer is the part of the compiler that reads the source
text, it may perform certain other tasks besides identification of lexemes. One
such task is stripping out comments and whitespace (blank, newline, tab, and
perhaps other characters that are used to separate tokens in the input). Another
task is correlating error messages generated by the compiler with the source
program. For instance, the lexical analyzer may keep track of the number
of newline characters seen, so it can associate a line number with each error
message. In some compilers, the lexical analyzer makes a copy of the source
program with the error messages inserted at the appropriate positions. If the
source program uses a macro-preprocessor, the expansion of macros may also
be performed by the lexical analyzer.

Sometimes, lexical analyzers are divided into a cascade of two processes:

Lexical
Analyzer

a) Scanning consists of the simple processes that do not require tokenization
of the input, such as deletion of comments and compaction of consecutive
whitespace characters into one.

b) Lexical analysis proper is the more complex portion, where the scanner
produces the sequence of tokens as output.

token
b

+

getNextToken

3.1.1 Lexical Analysis Versus Parsing

There are a number of reasons why the analysis portion of a compiler is normally
separated into lexical analysis and parsing (syntax analysis) phases.

Parser
to semantic

-t analysis

https://hemanthrajhemu.github.io

3.1. THE ROLE OF THE LEXICAL ANALYZER

1. Simplicity of design is the most important consideration. The separation
of lexical and syntactic analysis often allows us to simplify at least one
of these tasks. For example, a parser that had to deal with comments
and whitespace as syntactic units would be considerably more complex
than one that can assume comments and whitespace have already been
removed by the lexical analyzer. If we are designing a new language,
separating lexical and syntactic concerns can lead to a cleaner overall
language design.

2. Compiler efficiency is improved. A separate lexical analyzer allows us to
apply specialized techniques that serve only the lexical task, not the job
of parsing. In addition, specialized buffering techniques for reading input
characters can speed up the compiler significantly.

3. Compiler portability is enhanced. Input-device-specific peculiarities can
be restricted to the lexical analyzer.

3.1.2 Tokens, Patterns, and Lexemes

When discussing lexical analysis, we use three related but distinct terms:

A token is a pair consisting of a token name and an optional attribute
value. The token name is an abstract symbol representing a kind of
lexical unit, e.g., a particular keyword, or a sequence of input characters
denoting an identifier. The token names are the input symbols that the
parser processes. In what follows, we shall generally write the name of a
token in boldface. We will often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take.
In the case of a keyword as a token, the pattern is just the sequence of
characters that form the keyword. For identifiers and some other tokens,
the pattern is a more complex structure that is matched by many strings.

A lexeme is a sequence of characters in the source program that matches
the pattern for a token and is identified by the lexical analyzer as an
ihstance of that token.

Example 3.1 : Figure 3.2 gives some typical tokens, their informally described
patterns, and some sample lexemes. To see how these concepts are used in
practice, in the C statement

p r in t f ("Total = %d\nI1, score) ;

both p r in t f and score are lexemes matching the pattern for token id, and
"Total = %d\nI1 is a lexeme matching literal.

In many programming languages, the following classes cover most or all of
the tokens:

https://hemanthrajhemu.github.io

112 CHAPTER 3. LEXICAL ANALYSIS

else 1 characters e, 1, s, e I e l s e

TOKEN
if

lit era1 1 anything but ", surrounded by If's 1 "core dumped"

INFORMAL DESCRIPTION
characters i, f

comparison

id

number

Figure 3.2: Examples of tokens

SAMPLE LEXEMES
i f

1. One token for each keyword. The pattern for a keyword is the same as
the keyword itself.

< or > or <= or >= or == or ! =

letter followed by letters and digits

any numeric constant

2. Tokens for thd operators, either individually or in classes such as the token
comparison rhentioned in Fig. 3.2.

<=, !=

p i , score, D2

3.14159, 0, 6.02e23

3. One token representing all identifiers.

4. One or more tokens representing constants, such as numbers and literal
strings.

5. Tokens for each punctuation symbol, such as left and right parentheses,
comma, and semicolon.

3.1.3 Attributes for Tokens

When more than one lexeme can match a pattern, the lexical analyzer must
provide the subsequent compiler phases additional information about the par-
ticular lexeme that matched. For example, the pattern for token number
matches both 0 and 1, but it is extremely important for the code generator to
know which lexeme was found in the source program. Thus, in many cases the
lexical analyzer returns to the parser not only a token name, but an attribute
value that describes the lexeme represented by the token; the token name in-
fluences parsing decisions, while the attribute value influences translation of
tokens after the parse.

We shall assume that tokens have at most one associated attribute, although
this attribute may have a structure that combines several pieces of information.
The most important example is the token id, where we need to associate with
the token a great deal of information. Normally, information about an identi-
fier - e.g., its lexeme, its type, and the location at which it is first found (in
case an error message about that identifier must be issued) - is kept in the
symbol table. Thus, the appropriate attribute value for an identifier is a pointer
to the symbol-table entry for that identifier.

https://hemanthrajhemu.github.io

3.1. THE ROLE OF THE LEXICAL ANALYZER 113

Tricky Problems When Recognizing Tokens

Usually, given the pattern describing the lexemes of a token, it is relatively
simple to recognize matching lexemes when they occur on the input. How-
ever, in some languages it is not immediately apparent when we have seen
an instance of a lexeme corresponding to a token. The following example
is taken from Fortran, in the fixed-format still allowed in Fortran 90. In
the statement

DO 5 I = 1.25

it is not apparent that the first lexeme is D051, an instance of the identifier
token, until we see the dot following the 1. Note that blanks in fixed-format
Fortran are ignored (an archaic convention). Had we seen a comma instead
of the dot, we would have had a do-statement

DO 5 I = 1,25

in which the first lexeme is the keyword DO.

Example 3.2 : The token names and associated attribute values for the For-
tran statement

are written below as a sequence of pairs.

<id, pointer to symbol-table entry for E>
< assign-op >
<id, pointer to symbol-table entry for M>
<mul t -op>
<id, pointer to symbol-table entry for C>
<exp-op>
<number , integer value 2 >

Note that in certain pairs, especially operators, punctuation, and keywords,
there is no need for an attribute value. In this example, the token number has
been given an integer-valued attribute. In practice, a typical compiler would
instead store a character string representing the constant and use as an attribute
value for n u m b e r a pointer to that string. I3

3.1.4 Lexical Errors
It is hard for a lexical analyzer to tell, without the aid of other components,
that there is a source-code error. For instance, if the string f i is encountered
for the first time in a C program in the context:

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

a lexical analyzer cannot tell whether f i is a misspelling of the keyword i f or
an undeclared function identifier. Since f i is a valid lexeme for the token id,
the lexical analyzer must return the token id to the parser and let some other
phase of the compiler - probably the parser in this case - handle an error
due to transposition of the letters.

However, suppose a situation arises in which the lexical analyzer is unable
to proceed because none of the patterns for tokens matches any prefix of the
remaining input. The simplest recovery strategy is "panic mode" recovery. We
delete successive characters from the remaining input, until the lexical analyzer
can find a well-formed token at the beginning of what input is left. This recovery
technique may confuse the parser, but in an interactive computing environment
it may be quite adequate.

Other possible error-recovery actions are:

1. Delete one character from the remaining input.

2. Insert a missing character into the remaining input.

3. Replace a character by another character.

4. Transpose two adjacent characters.

Transformations like these may be tried in an attempt to repair the input. The
simplest such strategy is to see whether a prefix of the remaining input can
be transformed into a valid lexeme by a single transformation. This strategy
makes sense, since in practice most lexical errors involve a single character. A
more general correction strategy is to find the smallest number of transforma-
tions needed to convert the source program into one that consists only of valid
lexemes, but this approach is considered too expensive in practice to be worth
the effort.

3.1.5 Exercises for Section 3.1

Exercise 3.1.1 : Divide the following C + + program:

f l o a t lirnitedSquare(x) f l o a t x (
/* r e tu rns x-squared, but never more than 100 */
r e t u r n (x<=-10.01 ~x>=lO.O)?iOO:x*x;

>
into appropriate lexemes, using the discussion of Section 3.1.2 as a guide. Which
lexemes should get associated lexical values? What should those values be?

! Exercise 3.1.2 : Tagged languages like HTML or XML are different from con-
ventional programming languages in that the punctuation (tags) are either very
numerous (as in HTML) or a user-definable set (as in XML). Further, tags can
often have parameters. Suggest how to divide the following HTML document:

https://hemanthrajhemu.github.io

3.2. INPUT BUFFERING

Here is a photo of my house:
<P>

See More Pictures if you
liked that one. <P>

into appropriate lexemes. Which lexemes should get associated lexical values,
and what should those values be?

3.2 Input Buffering

Before discussing the problem of recognizing lexemes in the input, let us examine
some ways that the simple but important task of reading the source program
can be speeded. This task is made difficult by the fact that we often have
to look one or more characters beyond the next lexeme before we can be sure
we have the right lexeme. The box on "Tricky Problems When Recognizing
Tokens" in Section 3.1 gave an extreme example, but there are many situations
where we need to look at least one additional character ahead. For instance,
we cannot be sure we've seen the end of an identifier until we see a character
that is not a letter or digit, and therefore is not part of the lexeme for id. In
C, single-character operators like -, =, or < could also be the beginning of a
two-character operator like ->, ==, or <=. Thus, we shall introduce a two-buffer
scheme that handles large lookaheads safely. We then consider an improvement
involving "sentinels" that saves time checking for the ends of buffers.

3.2.1 Buffer Pairs

Because of the amount of time taken to process characters and the large number
of characters that must be processed during the compilation of a large source
program, specialized buffering techniques have been developed to reduce the
amount of overhead required to process a single input character. An impor-
tant scheme involves two buffers that are alternately reloaded, as suggested in
Fig. 3.3.

I forward

Figure 3.3: Using a pair of input buffers

Each buffer is of the same size N , and N is usually the size of a disk block,
e.g., 4096 bytes. Using one system read command we can read N characters
inio a buffer, rather than using one system call per character. If fewer than N
characters remain in the input file, then a special character, represented by eof,

https://hemanthrajhemu.github.io

116 CHAPTER 3. LEXICAL ANALYSIS

marks the end of the source file and is different from any possible character of
the source program.

Two pointers to the input are maintained:

I. Pointer lexemeBegin, marks the beginning of the current lexeme, whose
extent we are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact
strategy whereby this determination is made will be covered in the balance
of this chapter.

Once the next lexeme is determined, forward is set to the character at its right
end. Then, after the lexeme is recorded as an attribute value of a token returned
to the parser, 1exemeBegin is set to the character immediately after the lexeme
just found. In Fig. 3.3, we see forward has passed the end of the next lexeme,
** (the Fortran exponentiation operator), and must be retracted one position
to its left.

Advancing forward requires that we first test whether we have reached the
end of one of the buffers, and if so, we must reload the other buffer from the
input, and move forward to the beginning of the newly loaded buffer. As long
as we never need to look so far ahead of the actual lexeme that the sum of the
lexeme's length plus the distance we look ahead is greater than N, we shall
never overwrite the lexeme in its buffer before determining it.

3.2.2 Sentinels

If we use the scheme of Section 3.2.1 as described, we must check, each time we
advance forward, that we have not moved off one of the buffers; if we do, then
we must also reload the other buffer. Thus, for each character read, we make
two tests: one for the end of the buffer, and one to determine what character
is read (the latter may be a multiway branch). We can combine the buffer-end
test with the test for the current character if we extend each buffer to hold a
sentinel character at the end. The sentinel is a special character that cannot
be part of the source program, and a natural choice is the character eof.

Figure 3.4 shows the same arrangement as Fig. 3.3, but with the sentinels
added. Note that eof retains its use as a marker for the end of the entire input.
Any eof that appears other than at the end of a buffer means that the input
is at an end. Figure 3.5 summarizes the algorithm for advancing forward.
Notice how the first test, which can be part of a multiway branch based on the
character pointed to by forward, is the only test we make, except in the case
where we actually are at the end of a buffer or the end of the input.

3.3 Specification of Tokens

Regular expressions are an important notation for specifying lexeme patterns.
While they cannot express all possible patterns, they are very effective in spec-

https://hemanthrajhemu.github.io

3.3. SPECIFICATION OF TOKENS 117

Can We Run Out of Buffer Space?

In most modern languages, lexemes are short, and one or two characters
of lookahead is sufficient. Thus a buffer size N in the thousands is ample,
and the double-buffer scheme of Section 3.2.1 works without problem.
However, there are some risks. For example, if character strings can be
very long, extending over many lines, then we could face the possibility
that a lexeme is longer than N. To avoid problems with long character
strings, we can treat them as a concatenation of components, one from
each line over which the string is written. For instance, in Java it is
conventional to represent long strings by writing a piece on each line and
concatenating pieces with a + operator at the end of each piece.

A more difficult problem occurs when arbitrarily long lookahead may
be needed. For example, some languages like PL/I do not treat key-
words as reserved; that is, you can use identifiers with the same name as
a keyword like DECLARE. If the lexical analyzer is presented with text of a
PL/I program that begins DECLARE (ARGI, ARG2,. . . it cannot be sure
whether DECLARE is a keyword, and ARGI and so on are variables being de-
clared, or whether DECLARE is a procedure name with its arguments. For
this reason, modern languages tend to reserve their keywords. However, if
not, one can treat a keyword like DECLARE as an ambiguous identifier, and
let the parser resolve the issue, perhaps in conjunction with symbol-table
lookup.

ifying those types of patterns that we actually need for tokens. In this section
we shall study the formal notation for regular expressions, and in Section 3.5
we shall see how these expressions are used in a lexical-analyzer generator.
Then, Section 3.7 shows how to build the lexical analyzer by converting regular
expressions to automata that perform the recognition of the specified tokens.

3.3.1 Strings and Languages

An alphabet is any finite set of symbols. Typical examples of symbols are let-
ters, digits, and punctuation. The set {0,1) is the binary alphabet. ASCII is an
important example of an alphabet; it is used in many software systems. Uni-

Figure 3.4: Sentinels at the end of each buffer

' ' . ' . a ' ' . .
' " . ' ' ' - : : : : E : - :
" . " a ' . "

' . ' . ' . ' . I '

. . # . . ,

: ~ ~ * ~ e o f ~ ~ * ! * ~ 2 ! e o f : : : : : :eof
" " ' * " ' .

forward
lexemeBegin

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

switch (*forward++) {
case eof:

if (forward is at end of first buffer) {
reload second buffer;
forward = beginning of second buffer;

1
else if (forward is at end of second buffer) {

reload first buffer;
forward = beginning of first buffer;

1
else /* eof within a buffer marks the end of input */

terminate lexical analysis;
break;

Cases for the other characters
1

Figure 3.5: Lookahead code with sentinels

Implementing Multiway Branches

We might imagine that the switch in Fig. 3.5 requires many steps to exe-
cute, and that placing the case eof first is not a wise choice. Actually, it
doesn't matter in what order we list the cases for each character. In prac-
tice, a multiway branch depending on the input character is be made in
one step by jumping to an address found in an array of addresses, indexed
by characters.

code, which includes approximately 100,000 characters from alphabets around
the world, is another important example of an alphabet.

A string over an alphabet is a finite sequence of symbols drawn from that
alphabet. In language theory, the terms "sentence" and "word" are often used
as synonyms for "string." The length of a string s , usually written Isl, is the
number of occurrences of symbols in s. For example, banana is a string of
length six. The empty string, denoted 6, is the string of length zero.

A language is any countable set of strings over some fixed alphabet. This
definition is very broad. Abstract languages like 0, the empty set, or (€1, the
set containing only the empty string, are languages under this definition. So
too are the set of all syntactically well-formed C programs and the set of all
grammatically correct English sentences, although the latter two languages are
difficult to specify exactly. Note that the definition of "language" does not
require that any meaning be ascribed to the strings in the language. Methods
for defining the "meaning" of strings are discussed in Chapter 5.

https://hemanthrajhemu.github.io

3.3. SPECIFICATION OF TOKENS 119

Terms for Parts of Strings

The following string-related terms are commonly used:

1. A prefix of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and E are
prefixes of banana.

2. A sufix of string s is any string obtained by removing zero or more
symbols from the beginning of s. For example, nana, banana, and E

are suffixes of banana.

3. A substring of s is obtained by deleting any prefix and any suffix
from s. For instance, banana, nan, and E are substrings of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not E or
not equal to s itself.

5 . A subsequence of s is any string formed by deleting zero or more
not necessarily consecutive positions of s. For example, baan is a
subsequence of banana.

If x and y are strings, then the concatenation of x and y , denoted xy, is the
string formed by appending y to x. For example, if x = dog and y = house,
then xy = doghouse. The empty string is the identity under concatenation;
that is, for any string s , ES = SE = s.

If we think of concatenation as a product, we can define the 'kxponentiation"
of strings as follows. Define so to be E, and for all i > 0, define si to be si-ls.
Since ES = S, it follows that s1 = s. Then s2 = ss, s3 = sss, and so on.

3.3.2 Operations on Languages

In lexical analysis, the most important operations on languages are union, con-
catenation, and closure, which are defined formally in Fig. 3.6. Union is the
familiar operation on sets. The concatenation of languages is all strings formed
by taking a string from the first language and a string from the second lan-
guage, in all possible ways, and concatenating them. The (Kleene) closure of a
language L, denoted L*, is the set of strings you get by concatenating L zero
or more times. Note that Lo, the "concatenation of L zero times," is defined to
be {E), and inductively, L~ is Li-'L. Finally, the positive closure, denoted L+,
is the same as the Kleene closure, but without the term Lo. That is, E will not
be in L+ unless it is in L itself.

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

OPERATION ,

Union of L and M

Figure 3.6: Definitions of operations on languages

DEFINITION AND NOTATION

L U M = {s (s is in L or s is in M)

Concatenation of L and M

Kleene closure of L

Positive closure of L

Example 3.3 ': Let L be the set of letters {A, B, . . . , Z, a, b, . . . , z) and let D
be the set of digits {0,1,. . .9). We may think of L and D in two, essentially
equivalent, ways. One way is that L and D are, respectively, the alphabets of
uppercase and lowercase letters and of digits. The second way is that L and D
are languages, all of whose strings happen to be of length one. Here are some
other languages that can be constructed from languages L and D, using the
operators of Fig. 3.6:

LM = {st I s is in L and t is in M)

L* = U F O Li

L f =U& L~

1. L U D is the set of letters and digits - strictly speaking the language
with 62 strings of length one, each of which strings is either one letter or
one digit.

2. LD is the set df 520 strings of length two, each consisting of one letter
followed by one digit.

3. L4 is the set of all 4-letter strings.

4. L* is the set of ail strings of letters, including e, the empty string.

5. L (L U D)* is the set of all strings of letters and digits beginning with a
letter.

6. D+ is the set of all strings of one or more digits.

3.3.3 Regular Expressions

Suppose we wanted to describe the set of valid C identifiers. It is almost ex-
actly the language described in item (5) above; the only difference is that the
underscore is included among the letters.

In Example 3.3, we were able to describe identifiers by giving names to sets
of letters and digits and using the language operators union, concatenation,
and closure. This process is so useful that a notation called regular expressions
has come into common use for describing all the languages that can be built
from these operators applied to the symbols of some alphabet. In this notation,
if letter- is established to stand for any letter or the underscore, and digit- is

https://hemanthrajhemu.github.io

3.3. SPECIFICATION OF TOKENS 121

established to stand for any digit, then we could describe the language of C
identifiers by:

letter- (letter- I digit)*

The vertical bar above means union, the parentheses are used to group subex-
pressions, the star means "zero or more occurrences of," and the juxtaposition
of letter- with the remainder of the expression signifies concatenation.

The regular expressions are built recursively out of smaller regular expres-
sions, using the rules described below. Each regular expression r denotes a
language L(r), which is also defined recursively from the languages denoted by
r's subexpressions. Here are the rules that define the regular expressions over
some alphabet C and the languages that those expressions denote.

BASIS: There are two rules that form the basis:

1. E is a regular expression, and L (E) is {E) , that is, the language whose sole
member is the empty string.

2. If a is a symbol in C, then a is a regular expression, and L(a) = {a), that
is, the language with one string, of length one, with a in its one position.
Note that by convention, we use italics for symbols, and boldface for their
corresponding regular expression.'

INDUCTION: There are four parts to the induction whereby larger regular
expressions are built from smaller ones. Suppose r and s are regular expressions
denoting languages L(r) and L(s), respectively.

1. (r) 1 (9) is a regular expression denoting the language L(r) U L(s).

2. (r) (s) is a regular expression denoting the language L(r) L(s) .

3. (r) * is a regular expression denoting (L (r)) * .

4. (r) is a regular expression denoting L(r). This last rule says that we can
add additional pairs of parentheses around expressions without changing
the language they denote.

As defined, regular expressions often contain unnecessary pairs of paren-
theses. We may drop certain pairs of parentheses if we adopt the conventions
that:

a) The unary operator * has highest precedence and is left associative.

b) Concatenation has second highest precedence and is left associative.

 o ow ever, when talking about specific characters from the ASCII character set, we shall
generally use teletype font for both the character and its regular expression.

https://hemanthrajhemu.github.io

122 CHAPTER 3. LEXICAL ANALYSIS

c) I has lowest precedence and is left associative.

Under these conventions, for example, we may replace the regular expression
(a) I ((b) * (c)) by a / b*c. Both expressions denote the set of strings that are either
a single a or are zero or more b's followed by one c.

Example 3.4: Let C = {a, b}.

1. The regular expression a1 b denotes the language {a, b}.

2. (a1 b) (alb) denotes {aa, ab, ba, bb), the language of all strings of length two
over the alphabet C. Another regular expression for the same language is
aalablbal bb.

3. a* denotes the language consisting of all strings of zero or more a's, that
is, {E, a, aa, aaa, . . . }.

4. (alb)* denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a's and b's: { e , a, b, aa, ab, ba, bb, aaa, . . .}.
Another regular expression for the same language is (a*b*)*.

5. ala*b denotes the language {a, b, ab, aab,aaab,. . .), that is, the string a
and all strings consisting of zero or more a's and ending in b.

A language that can be defined by a regular expression is called a regular
set. If two regular expressions r and s denote the same regular set, we say they
are equivalent and write r = s. For instance, (alb) = (bla). There are a number
of algebraic laws for regular expressions; each law asserts that expressions of
two different forms are equivalent. Figure 3.7 shows some of the algebraic laws
that hold for arbitrary regular expressions r, s, and t.

Figure 3.7: Algebraic laws for regular expressions

rIs = slr

rI(sIt) = (rIs>It
r(st) = (rs)t

r(slt) = rslrt; (slt)r = srltr

Er = re = r

r* = (T I E) *
r** = r*

I is commutative

I is associative

Concatenation is associative

Concatenation distributes over I
E is the identity for concatenation

r: is guaranteed in a closure

* is idempotent

https://hemanthrajhemu.github.io

3.3. SPECIFICATION OF TOKENS 123

3.3.4 Regular Definitions

For notational convenience, we may wish to give names to certain regular ex-
pressions and use those names in subsequent expressions, as if the names were
themselves symbols. If C is an alphabet of basic symbols, then a regular defi-
ni t ion is a sequence of definitions of the form:

where:

1. Each di is a new symbol, not in C and not the same as any other of the
d's, and

2. Each ri is a regular expression over the alphabet C U {dl, d2 , . . . , di-l).

By restricting r i to C and the previously defined d's, we avoid recursive defini-
tions, and we can construct a regular expression over C alone, for each ri. We
do so by first replacing uses of dl in r2 (which cannot use any of the d's except
for dl), then replacing uses of dl and d2 in r3 by rl and (the substituted) 7-2,

and so on. Finally, in rn we replace each di, for i = 1,2 , . . . ,n - 1, by the
substituted version of ri, each of which has only symbols of C.

Example 3.5 : C identifiers are strings of letters, digits, and underscores. Here
is a regular definition for the language of C identifiers. We shall conventionally
use italics for the symbols defined in regular definitions.

letter- + A (B I . - . [Z 1 a 1 b l . - - l z 1 -
digit -+ 0 1 1 1 - - . 1 9

id + letter- (letter- I digit) *

Example 3.6 : Unsigned numbers (integer or floating point) are strings such
as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition

digit + 0 I 1 (. - . (9
digits -+ digit digit*

optionalFraction + . digits 1 c
optionalExponent -+ (E (+ (- [c) digits) 1 c

number + digits optionalFraction optionalExponent

is a precise specification for this set of strings. That is, an optionalFraction is
either a decimal point (dot) followed by one or more digits, or it is missing (the
empty string). An optionalExponent, if not missing, is the letter E followed by
an optional + or - sign, followed by one or more digits. Note that at least one
digit must follow the dot, so number does not match I . , but does match 1.0.

https://hemanthrajhemu.github.io

124 CHAPTER 3. LEXICAL ANALYSIS

3.3.5 Extensions of Regular Expressions

Since Kleene introduced regular expressions with the basic operators for union,
concatenation, and Kleene closure in the 1950s, many extensions have been
added to regular expressions to enhance their ability to specify string patterns.
Here we mention a few notational extensions that were first incorporated into
Unix utilities such as Lex that are particularly useful in the specification lexical
analyzers. The references to this chapter contain a discussion of some regular-
expression variants in use today.

1. One or more instances. The unary, postfix operator + represents the
positive closure of a regular expression and its language. That is, if r is a
regular expression, then (r)+ denotes the language (~ (r)) ' . The operator

has the same precedence and associativity as the operator *. Two useful
algebraic laws, r* = r+Jc and r f = rr* = r*r relate the Kleene closure
and positive closure.

2. Zero or one instance. The unary postfix operator ? means "zero or one
occurrence." That is, r? is equivalent to rlc, or put another way, L(r?) =
L(r) U (€1. The ? operator has the same precedence and associativity as
* and +.

3. Character classes. A regular expression allazl. .. lan, where the ai's
are each symbols of the alphabet, can be replaced by the shorthand
[ala2 . . . a,]. More importantly, when a1 , a2, . . . , a, form a logical se-
quence, e.g., consecutive uppercase letters, lowercase letters, or digits, we
can replace them by al-a,, that is, just the first and last separated by
a hyphen. Thus, [abc] is shorthand for alblc, and [a-z] is shorthand for
a J b J . . . Jz.

Example 3.7 : Using these shorthands, we can rewrite the regular definition
of Example 3.5 as:

letter- + [A-Za-z-]
digit + [O-91

id -+ letter- (letter 1 digit)*

The regular definition of Example 3.6 can also be simplified:

digit + [o-91
digits += digit+

number + digits (. digits)? (E [+-I? digits)?

https://hemanthrajhemu.github.io

3.3. SPECIFICATION OF TOKENS

3.3.6 Exercises for Section 3.3

Exercise 3.3.1 : Consult the language reference manuals to determine (i) the
sets of characters that form the input alphabet (excluding those that may only
appear in character strings or comments), (ii) the lexical form of numerical
constants, and (iii) the lexical form of identifiers, for each of the following
languages: (a) C (b) C++ (c) C# (d) Fortran (e) Java (f) Lisp (g) SQL.

! Exercise 3.3.2 : Describe the languages denoted by the following regular ex-
pressions:

d) a* ba* ba* ba* .

Exercise 3.3.3 : In a string of length n, how many of the following are there?

a) Prefixes.

b) Suffixes.

c) Proper prefixes.

! d) Substrings.

! e) Subsequences.

Exercise 3.3.4 : Most languages are case sensitive, so keywords can be written
only one way, and the regular expressions describing their lexeme is very simple.
However, some languages, like SQL, are case insensitive, so a keyword can be
written either in lowercase or in uppercase, or in any mixture of cases. Thus,
the SQL keyword SELECT can also be written se l ec t , Select , or sElEcT, for
instance. Show how to write a regular expression for a keyword in a case-
insensitive language. Illustrate the idea by writing the expression for "select"
in SQL.

! Exercise 3.3.5 : Write regular definitions for the following languages:

a) All strings of lowercase letters that contain the five vowels in order.

b) All strings of lowercase letters in which the letters are in ascending lexi-
cographic order.

c) Comments, consisting of a string surrounded by /* and */, without an
intervening */, unless it is inside double-quotes (").

https://hemanthrajhemu.github.io

126 CHAPTER 3. LEXICAL ANALYSIS

!! d) All strings of digits with no repeated digits. Hint: Try this problem first
with a few digits, such as {O,1,2).

!! e) All strings of digits with at most one repeated digit.

!! f) All strings of a's and b's with an even number of a's and an odd number
of b's.

g) The set of Chess moves, in the informal notation, such as p-k4 or kbp x qn.

!! h) All strings of a's and b's that do not contain the substring abb.

i) All strings of a's and b's that do not contain the subsequence abb.

Exercise 3.3.6 : Write character classes for the following sets of characters:

a) The first ten letters (up to "j") in either upper or lower case.

b) The lowercase consonants.

c) The "digits" in a hexadecimal number (choose either upper or lower case
for the "digits" above 9).

d) The characters that can appear at the end of a legitimate English sentence
(e.g., exclamation point).

The following exercises, up to and including Exercise 3.3.10, discuss the
extended regular-expression notation from Lex (the lexical-analyzer generator
that we shall discuss extensively in Section 3.5). The extended notation is listed
in Fig. 3.8.

Exercise 3.3.7 : Note that these regular expressions give all of the following
symbols (operator characters) a special meaning:

Their special meaning must be turned off if they are needed to represent them-
selves in a character string. We can do so by quoting the character within a
string of length one or more; e.g., the regular expression It ** I t matches the string
**. We can also get the literal meaning of an operator character by preceding
it by a backslash. Thus, the regular expression ** also matches the string
**. Write a regular expression that matches the string "\.

Exercise 3.3.8 : In Lex, a complemented character class represents any char-
acter except the ones listed in the character class. We denote a complemented
class by using * as the first character; this symbol (caret) is not itself part of
the class being complemented, unless it is listed within the class itself. Thus,
[^ A-Za-z] matches any character that is not an uppercase or lowercase letter,
and [^\^I represents any character but the caret (or newline, since newline
cannot be in any character class). Show that for every regular expression with
complemented character classes, there is an equivalent regular expression with-
out complemented character classes.

https://hemanthrajhemu.github.io

3.3. SPECIFICATION OF TOKENS

the one non-operator character c

character c literally

string s literally

any character but newline

beginning of a line

end of a line

any one of the characters in string s

any one character not in string s

zero or more strings matching r

one or more strings matching r

zero or one r

between m and n occurrences of r

an r l followed by an r2

an r1 or an r2

same as r

r l when followed by 7-2

Figure 3.8: Lex regular expressions

! Exercise 3.3.9 : The regular expression r{m, n } matches from m to n occur-
rences of the pattern r . For example, a [I , 51 matches a string of one to five a's.
Show that for every regular expression containing repetition operators of this
form, there is an equivalent regular expression without repetition operators.

! Exercise 3.3.10 : The operator A matches the left end of a line, and $ matches
the right end of a line. The operator A is also used to introduce complemented
character classes, but the context always makes it clear which meaning is in-
tended. For example, ^ CAaeioul *$ matches any complete line that does not
contain a lowercase vowel.

a) How do you tell which meaning of A is intended?

b) Can you always replace a regular expression using the A and $ operators
by an equivalent expression that does not use either of these operators?

! Exercise 3.3.1 1 : The UNIX shell command sh uses the operators in Fig. 3.9
in filename expressions to describe sets of file names. For example, the filename
expression * . o matches all file names ending in . o; sort 1. ? matches all file-
names of the form sort . c, where c is any character. Show how sh filename

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.9: Filename expressions used by the shell command sh

EXPRESSION
I I s

\
*
?

[s]

expressions can be replaced by equivalent regular expressions using only the
basic union, concatenation, and closure operators.

! Exercise 3.3.12 : SQL allows a rudimentary form of patterns in which two
characters have special meaning: underscore (-) stands for any one character
and percent-sign (%) stands for any string of 0 or more characters. In addition,
the programmer may define any character, say e, to be the escape character, so
e preceding an e preceding -, %, or another e gives the character that follows its
literal meaning. Show how to express any SQL pattern as a regular expression,
given that we know which character is the escape character.

MATCHES
string s literally

character c literally

any string

any character

any character in s

3.4 Recognition of Tokens

EXAMPLE

J\J
\
*.o

sort 1. ?

sort 1. [cso]

In the previous section we learned how to express patterns using regular expres-
sions. Now, we must study how to take the patterns for all the needed tokens
and build a piece of code that examines the input string and finds a prefix that
is a lexeme matching one of the patterns. Our discussion will make use of the
following running example.

stmt + if expr then stmt
I if expr then stmt else stmt
I E.

expr + term relop term
I term

term + id
I number

Figure 3.10: A grammar for branching statements

Example 3.8 : The grammar fragment of Fig. 3.10 describes a simple form
of branching statements and conditional expressions. This syntax is similar to
that of the language Pascal, in that then appears explicitly after conditions.

https://hemanthrajhemu.github.io

3.4. RECOGNITION OF TOKENS 129

For relop, we use the comparison operators of languages like Pascal or SQL,
where = is "equals" and <> is "not equals," because it presents an interesting
structure of lexemes.

The terminals of the grammar, which are if, then , else, relop, id, and
number, are the names of tokens as far as the lexical analyzer is concerned. The
patterns for these tokens are described using regular definitions, as in Fig. 3.11.
The patterns for id and n u m b e r are similar to what we saw in Example 3.7.

digit
digits

n u m b e r
le t ter

id
if

t h e n
else

relop

Lo-91
digit+
digits (. digits)? (E [+-I? digits)?
[A-~a-z]
le t ter (le t ter I digit)*
i f
then
e l s e
< I > I < = I > = I =) < >

Figure 3.11: Patterns for tokens of Example 3.8

For this language, the lexical analyzer will recognize the keywords i f , then,
and e l se , as well as lexemes that match the patterns for relop, id , and number.
To simplify matters, we make the common assumption that keywords are also
reserved words: that is, they are not identifiers, even though their lexemes
match the pattern for identifiers.

In addition, we assign the lexical analyzer the job of stripping out white-
space, by recognizing the "token" w s defined by:

w s -+ (blank I t a b (newline)+

Here, blank, tab , and newline are abstract symbols that we use to express
the ASCII characters of the same names. Token w s is different from the other
tokens in that, when we recognize it, we do not return it to the parser, but rather
restart the lexical analysis from the character that follows the whitespace. It is
the following token that gets returned to the parser.

Our goal for the lexical analyzer is summarized in Fig. 3.12. That table
shows, for each lexeme or family of lexemes, which token name is returned to
the parser and what attribute value, as discussed in Section 3.1.3, is returned.
Note that for the six relational operators, symbolic constants LT, LE, and so
on are used as the attribute value, in order to indicate which instance of the
token relop we have found. The particular operator found will influence the
code that is output from the compiler.

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.12: Tokens, their patterns, and attribute values

LEXEMES
Any ws

i f
then
else

Any id
Any number

<
<=
- -

<>
>

>=

3.4.1 Transition Diagrams

As an intermediate step in the construction of a lexical analyzer, we first convert
patterns into stylized flowcharts, called "transition diagrams." In this section,
we perform the conversion from regular-expression patterns to transition dia-
grams by hand, but in Section 3.6, we shall see that there is a mechanical way
to construct these diagrams from collections of regular expressions.

Transition diagrams have a collection of nodes or circles, called states. Each
state represents a condition that could occur during the process of scanning
the input looking for a lexeme that matches one of several patterns. We may
think of a state as summarizing all we need to know about what characters we
have seen between the lexemeBegin pointer and the forward pointer (as in the
situation of Fig. 3.3).

Edges are directed from one state of the transition diagram to another.
Each edge is labeled by a symbol or set of symbols. If we are in some state
s , and the next input symbol is a , we look for an edge out of state s labeled
by a (and perhaps by other symbols, as well). If we find such an edge, we
advance the forward pointer arid enter the state of the transition diagram to
which that edge leads. We shall assume that all our transition diagrams are
deterministic, meaning that there is never more than one edge out of a given
state with a given symbol among its labels. Starting in Section 3.5, we shall
relax the condition of determinism, making life much easier for the designer
of a lexical analyzer, although trickier for the implementer. Some important
conventions about transition diagrams are:

TOKEN NAME
-

if
then
else
id

number
relop
relop
relop
relop
relop
relop

1. Certain states are said to be accepting, or final. These states indicate that
a lexeme has been found, although the actual lexeme may not consist of
all positions between the ZexemeBegin and forward pointers. We always

ATTRIBUTE VALUE
-

-

-

-

Pointer to table entry
Pointer to table entry

LT
LE
EQ
NE
GT
GE

https://hemanthrajhemu.github.io

3.4. RECOGNITION OF TOKENS 131

indicate an accepting state by a double circle, and if there is an action
to be taken - typically returning a token and an attribute value to the
parser - we shall attach that action to the accepting state.

2. In addition, if it is necessary to retract the forward pointer one position
(i.e., the lexeme does not include the symbol that got us to the accepting
state), then we shall additionally place a * near that accepting state. In
our example, it is never necessary to retract forward by more than one
position, but if it were, we could attach any number of *'s to the accepting
state.

3. One state is designated the start state, or initial state; it is indicated by
an edge, labeled "start ," entering from nowhere. The transition diagram
always begins in the start state before any input symbols have been read.

Example 3.9 : Figure 3.13 is a transition diagram that recognizes the lexemes
matching the token relop. We begin in state 0, the start state. If we see < as the
first input symbol, then among the lexemes that match the pattern for relop
we can only be looking at <, <>, or <=. We therefore go to state 1, and look at
the next character. If it is =, then we recognize lexeme <=, enter state 2, and
return the token relop with attribute LE, the symbolic constant representing
this particular comparison operator. If in state 1 the next character is >, then
instead we have lexeme <>, and enter state 3 to return an indication that the
not-equals operator has been found. On any other character, the lexeme is <,
and we enter state 4 to return that information. Note, however, that state 4
has a * to indicate that we must retract the input one position.

return(relop, LE)

return(relop, NE)

return(relop, LT)

' return relop, GE)

o* return (relop, GT)

Figure 3.13: Transition diagram for relop

On the other hand, if in state 0 the first character we see is =, then this one
character must be the lexeme. We immediately return that fact from state 5.

https://hemanthrajhemu.github.io

132 CHAPTER 3. LEXICAL ANALYSIS

The remaining possibility is that the first character is >. Then, we must enter
state 6 and decide, on the basis of the next character, whether the lexeme is >=
(if we next see the = sign), or just > (on any other character). Note that if, in
state 0, we see any character besides C, =, or >, we can not possibly be seeing
a re lop lexeme, so this transition diagram will not be used.

3.4.2 Recognition of Reserved Words and Identifiers

Recognizing keywords and identifiers presents a problem. Usually, keywords like
i f or then are reserved (as they are in our running example), so they are not
identifiers even though they look like identifiers. Thus, although we typically
use a transition diagram like that of Fig. 3.14 to search for identifier lexemes,
this diagram will also recognize the keywords i f , then, and e l s e of our running
example.

letter or digit

*
@) return (getToken(), installZD ())

Figure 3.14: A transition diagram for id's and keywords

There are two ways that we can handle reserved words that look like iden-
tifiers:

1. Install the reserved words in the symbol table initially. A field of the
symbol-table entry indicates that these strings are never ordinary identi-
fiers, and tells which token they represent. We have supposed that this
method is in use in Fig. 3.14. When we find an identifier, a call to installID
places it in the symbol table if it is not already there and returns a pointer
to the symbol-table entry for the lexeme found. Of course, any identifier
not in the symbol table during lexical analysis cannot be a reserved word,
so its token is id. The function getToken examines the symbol table entry
for the lexeme found, and returns whatever token name the symbol table
says this lexeme represents - either id or one of the keyword tokens that
was initially installed in the table.

2. Create separate transition diagrams for each keyword; an example for
the keyword then is shown in Fig. 3.15. Note that such a transition
diagram consists of states representing the situation after each successive
letter of the keyword is seen, followed by a test for a "nonletter-or-digit,"
i.e., any character that cannot be the continuation of an identifier. It is
necessary to check that the identifier has ended, or else we would return
token then in situations where the correct token was id, with a lexeme
like thenextvalue that has then as a proper prefix. If we adopt this
approach, then we must prioritize the tokens so that the reserved-word

https://hemanthrajhemu.github.io

3.4. RECOGNITION OF TOKENS 133

tokens are recognized in preference to id, when the lexeme matches both
patterns. We do not use this approach in our example, which is why the
states in Fig. 3.15 are unnumbered.

Figure 3.15: Hypothetical transition diagram for the keyword then

3.4.3 Completion of the Running Example

The transition diagram for id's that we saw in Fig. 3.14 has a simple structure.
Starting in state 9, it checks that the lexeme begins with a letter and goes to
state 10 if so. We stay in state 10 as long as the input contains letters and digits.
When we first encounter anything but a letter or digit, we go to state 11 and
accept the lexeme found. Since the last character is not part of the identifier,
we must retract the input one position, and as discussed in Section 3.4.2, we
enter what we have found in the symbol table and determine whether we have
a keyword or a true identifier.

The transition diagram for token number is shown in Fig. 3.16, and is so
far the most complex diagram we have seen. Beginning in state 12, if we see a
digit, we go to state 13. In that state, we can read any number of additional
digits. However, if we see anything but a digit or a dot, we have seen a number
in the form of an integer; 123 is an example. That case is handled by entering
state 20, where we return token number and a pointer to a table of constants
where the found lexeme is entered. These mechanics are not shown on the
diagram but are analogous to the way we handled identifiers.

digit digit

digit

Figure 3.16: A transition diagram for unsigned numbers

If we instead see a dot in state 13, then we have an "optional fraction."
State 14 is entered, and we look for one or more additional digits; state 15 is
used for that purpose. If we see an E, then we have an "optional exponent,"
whose recognition is the job of states 16 through 19. Should we, in state 15,
instead see anything but E or a digit, then we have come to the end of the
fraction, there is no exponent, and we return the lexeme found, via state 21.

https://hemanthrajhemu.github.io

134 CHAPTER 3. LEXICAL ANALYSIS

The final transition diagram, shown in Fig. 3.17, is for whitespace. In that
diagram, we look for one or more "whitespace" characters, represented by delim
in that diagram - typically these characters would be blank, tab, newline, and
perhaps other characters that are not considered by the language design to be
part of any token.

delim

start
22

-:, delim 8 23 other @ *

Figure 3.17: A transition diagram for whitespace

Note that in state 24, we have found a block of consecutive whitespace
characters, followed by a nonwhitespace character. We retract the input to
begin at the nonwhitespace, but we do not return to the parser. Rather, we
must restart the process of lexical analysis after the whitespace.

3.4.4 Architecture of a Transition-Diagram-Based Lexical
Analyzer

There are several ways that a collection of transition diagrams can be used
to build a lexical analyzer. Regardless of the overall strategy, each state is
represented by a piece of code. We may imagine a variable s t a t e holding the
number of the current state for a transition diagram. A switch based on the
value of s t a t e takes us to code for each of the possible states, where we find
the action of that state. Often, the code for a state is itself a switch statement
or multiway branch that determines the next state by reading and examining
the next input character.

Example 3.10: In Fig. 3.18 we see a sketch of getRelop(), a C++ function
whose job is to simulate the transition diagram of Fig. 3.13 and return an object
of type TOKEN, that is, a pair consisting of the token name (which must be relop
in this case) and an attribute value (the code for one of the six comparison
operators in this case). getRelop() first creates a new object retToken and
initializes its first component to RELOP, the symbolic code for token relop.

We see the typical behavior of a state in case 0, the case where the current
state is 0. A function nextchar() obtains the next character from the input
and assigns it to local variable c. We then check c for the three characters we
expect to find, making the state transition dictated by the transition diagram
of Fig. 3.13 in each case. For example, if the next input character is =, we go
to state 5.

If the next input character is not one that can begin a comparison operator,
then a function f a i l () is called. What fail () does depends on the global error-
recovery strategy of the lexical analyzer. It should reset the forward pointer
to lexemeBegin, in order to allow another transition diagram to be applied to

https://hemanthrajhemu.github.io

3.4. RECOGNITION OF TOKENS

TOKEN getRelop()

TOKEN retToken = new(REL0P);
while(1) (/* r epea t cha r ac t e r p rocess ing u n t i l a r e t u r n

o r f a i l u r e occurs */
swi t ch (s t a t e) (

case 0: c = nex t cha r () ;
i f (c == ' 0) s t a t e = 1 ;
e l s e i f (c ==)=)) s t a t e = 5;
e l s e i f (c ==) >)) s t a t e = 6;
e l s e f a i l () ; /* lexeme i s no t a r e l o p */
break;

case 1: . . .
. . .
case 8: r e t r a c t () ;

r e tToken . a t t r i bu t e = GT;
return(retToken) ;

1

Figure 3.18: Sketch of implementation of relop transition diagram

the true beginning of the unprocessed input. It might then change the value
of s t a t e to be the start state for another transition diagram, which will search
for another token. Alternatively, if there is no other transition diagram that
remains unused, f a i l () could initiate an error-correction phase that will try
to repair the input and find a lexeme, as discussed in Section 3.1.4.

We also show the action for state 8 in Fig. 3.18. Because state 8 bears a *,
we must retract the input pointer one position (i.e., put c back on the input
stream). That task is accomplished by the function r e t r a c t () . Since state 8
represents the recognition of lexeme >=, we set the second component of the
returned object, which we suppose is named a t t r i b u t e , to GT, the code for this
operator. CI

To place the simulation of one transition diagram in perspective, let us
consider the ways code like Fig. 3.18 could fit into the entire lexical analyzer.

I . We could arrange for the transition diagrams for each token to be tried se-
quentially. Then, the function f a i l () of Example 3.10 resets the pointer
forward and starts the next transition diagram, each time it is called.
This method allows us to use transition diagrams for the individual key-
words, like the one suggested in Fig. 3.15. We have only to use these
before we use the diagram for id, in order for the keywords to be reserved
words.

https://hemanthrajhemu.github.io

136 CHAPTER 3. LEXICAL ANALYSIS

2. We could run the various transition diagrams "in parallel," feeding the
next input character to all of them and allowing each one to make what-
ever transitions it required. If we use this strategy, we must be careful
to resolve the case where one diagram finds a lexeme that matches its
pattern, while one or more other diagrams are still able to process input.
The normal strategy is to take the longest prefix of the input that matches
any pattern. That rule allows us to prefer identifier thenext to keyword
then, or the operator -> to -, for example.

3. The preferred approach, and the one we shall take up in the following
sections, is to combine all the transition diagrams into one. We allow the
transition diagram to read input until there is no possible next state, and
then take the longest lexeme that matched any pattern, as we discussed
in item (2) above. In our running example, this combination is easy,
because no two tokens can start with the same character; i.e., the first
character immediately tells us which token we are looking for. Thus, we
could simply combine states 0, 9, 12, and 22 into one start state, leaving
other transitions intact. However, in general, the problem of combining
transition diagrams for several tokens is more complex, as we shall see
shortly.

3.4.5 Exercises for Section 3.4

Exercise 3.4.1 : Provide transition diagrams to recognize the same languages
as each of the regular expressions-in Exercise 3.3.2.

Exercise 3.4.2 : Provide transition diagrams to recognize the same languages
as each of the regular expressions in Exercise 3.3.5.

The following exercises, up to Exercise 3.4.12, introduce the Aho-Corasick
algorithm for recognizing a collection of keywords in a text string in time pro-
portional to the length of the text and the sum of the length of the keywords.
This algorithm uses a special form of transition diagram called a trie. A trie is
a tree-structured transition diagram with distinct labels on the edges leading
from a node to its children. Leaves of the trie represent recognized keywords.

Knuth, Morris, and Pratt presented an algorithm for recognizing a single
keyword b lb2 . . b, in a text string. Here the trie is a transition diagram with
n states, 0 through n. State 0 is the initial state, and state n represents ac-
ceptance, that is, discovery of the keyword. From each state s from 0 through
n - 1, there is a transition to state s + 1, labeled by symbol b,+~. For example,
the trie for the keyword ababaa is:

In order to process text strings rapidly and search those strings for a key-
word, it is useful to define, for keyword blb2 - . . b, and position s in that keyword
(corresponding to state s of its trie), a failure function, f (s), computed as in

https://hemanthrajhemu.github.io

3.4. RECOGNITION OF TOKENS 137

Fig. 3.19. The objective is that blbz . . - bf(,) is the longest proper prefix of
bl b2 . - . b, that is also a suffix of bl bz . . . b,. The reason f (s) is important is that
if we are trying to match a text string for bl b2 - - . b,, and we have matched the
first s positions, but we then fail (i.e., the next position of the text string does
not hold b,+l), then f (s) is the longest prefix of bl b2 . . bn that could possibly
match the text string up to the point we are at. Of course, the next character of
the text string must be bf or else we still have problems and must consider
a yet shorter prefix, which will be bf (

1) t = 0;

2) f (1) = 0;
3) for (s = 1; s < n ; s + +) {
4) while (t > 0 && b,+l ! = bt+l) t = f (t) ;
5) if (b,+l == bt+l) {
6) t = t + l ;
7) f (s + 1) = t ;

1
8) else f (s + 1) = 0;

I

Figure 3.19: Algorithm to compute the failure function for keyword blb2 . . . bn

As an example, the failure function for the trie constructed above for ababaa
is:

For instance, states 3 and 1 represent prefixes aba and a, respectively. f (3) = 1
because a is the longest proper prefix of aba that is also a suffix of aba. Also,
f (2) = 0 , because the longest proper prefix of ab that is also a suffix is the
empty string.

Exercise 3.4.3 : Construct the failure function for the strings:

a) abababaab.

b) aaaaaa.

c) abbaabb.

! Exercise 3.4.4 : Prove, by induction on s, that the algorithm of Fig. 3.19
correctly computes the failure function.

!! Exercise 3.4.5 : Show that the assignment t = f (t) in line (4) of Fig. 3.19 is
executed at most n times. Show that therefore, the entire algorithm takes only
0 (n) time on a keyword of length n.

https://hemanthrajhemu.github.io

138 CHAPTER 3. LEXICAL ANALYSIS

Having computed the failure function for a keyword blb2 . . . b,, we can scan
a string ala2 .. -a, in time O(m) to tell whether the keyword occurs in the
string. The algorithm, shown in Fig. 3.20, slides the keyword along the string,
trying to make progress by matching the next character of the keyword with the
next character of the string. If it cannot do so after matching s characters, then
it "slides" the keyword right s - f (s) positions, so only the first f (s) characters
of the keyword are considered matched with the string.

1) s = 0;
2) for (i = I; i 5 m; i++) {
3 while (S > 0 && ai ! = bs+l) s = f (s);
4) if (ai == bs+l) s = s + 1;
5 if (9 == n) return "yes" ;

I
6) return "no";

Figure 3.20: The KMP algorithm tests whether string ala2 . . a, contains a
single keyword bl b2 . . . bn as a substring in O(m + n) time

Exercise 3.4.6: Apply Algorithm KMP to test whether keyword ababaa is a
substring of:

a) abababaab.

b) abababbaa.

!! Exercise 3.4.7 : Show that the algorithm of Fig. 3.20 correctly tells whether
the keyword is a substring of the given string. Hint: proceed by induction on
i. Show that for all i , the value of s after line (4) is the length of the longest
prefix of the keyword that is a suffix of a1 a2 . ai.

!! Exercise 3.4.8 : Show that the algorithm of Fig. 3.20 runs in time O(m + n) ,
assuming that function f is already computed and its values stored in an array
indexed by s.

Exercise 3.4.9 : The Fibonacci strings are defined as follows:

For example, sy = ab, s4 = aba, and ss = abaab.

a) What is the length of s,?

https://hemanthrajhemu.github.io

3.4. RECOGNITION OF TOKENS

b) Construct the failure function for se.

c) Construct the failure function for 37.

!! d) Show that the failure function for any s, can be expressed by f (I) =
f (2) = 0, and for 2 < j 5 Is,[, f (j) is j - IS^-^^, where k is the largest
integer such that IsIc 1 5 j + 1.

!! e) In the KMP algorithm, what is the largest number of consecutive applica-
tions of the failure function, when we try to determine whether keyword
sk appears in text string sk+1?

Aho and Corasick generalized the KMP algorithm to recognize any of a
set of keywords in a text string. In this case, the trie is a true tree, with
branching from the root. There is one state for every string that is a prefix
(not necessarily proper) of any keyword. The parent of a state corresponding
to string bl b2 . bh is the state that corresponds to bl b2 . . - bk-1. A state is
accepting if it corresponds to a complete keyword. For example, Fig. 3.21
shows the trie for the keywords he, she, h i s , and hers.

Figure 3.21: Trie for keywords he, she, h i s , hers

The failure function for the general trie is defined as follows. Suppose s
is the state that corresponds to string blb2 . bn. Then f (s) is the state that
corresponds to the longest proper suffix of blb2 - . . b, that is also a prefix of
some keyword. For example, the failure function for the trie of Fig. 3.21 is:

! Exercise 3.4.10 : Modify the algorithm of Fig. 3.19 to compute the failure
function for general tries. Hint: The major difference is that we cannot simply
test for equality or inequality of b,+l and bt+1 in lines (4) and (5) of Fig. 3.19.
Rather, from any state there may be several transitions out on several charac-
ters, as there are transitions on both e and i from state 1 in Fig. 3.21. Any of

https://hemanthrajhemu.github.io

140 CHAPTER 3. LEXICAL ANALYSIS

those transitions could lead to a state that represents the longest suffix that is
also a prefix.

Exercise 3.4.11 : Construct the tries and compute the failure function for the
following sets of keywords:

a) aaa, abaaa, and ababaaa.

b) a l l , f a l l , f a t a l , llama, and lame.

c) pipe, pet , item, temper, and perpetual.

! Exercise 3.4.12 : Show that your algorithm from Exercise 3.4.10 still runs in
time that is linear in the sum of the lengths of the keywords.

3.5 The Lexical- Analyzer Generator Lex

In this section, we introduce a tool called Lex, or in a more recent implemen-
tation Flex, that allows one to specify a lexical analyzer by specifying regular
expressions to describe patterns for tokens. The input notation for the Lex tool
is referred to as the Lex language and the tool itself is the Lex compiler. Behind
the scenes, the Lex compiler transforms the input patterns into a transition
diagram and generates code, in a file called l ex . yy . c, that simulates this tran-
sition diagram. The mechanics of how this translation from regular expressions
to transition diagrams occurs is the subject of the next sections; here we only
learn the Lex language.

3.5.1 Use of Lex

Figure 3.22 suggests how Lex is used. An input file, which we call lex.1, is
written in the Lex language and describes the lexical analyzer to be generated.
The Lex compiler transforms l ex . 1 to a C program, in a file that is always
named lex . yy . c. The latter file is compiled by the C compiler into a file called
a . out, as always. The C-compiler output is a working lexical analyzer that can
take a stream of input characters and produce a stream of tokens.

The normal use of the compiled C program, referred to as a . out in Fig. 3.22,
is as a subroutine of the parser. It is a C function that returns an integer, which
is a code for one of the possible token names. The attribute value, whether it
be another numeric code, a pointer to the symbol table, or nothing, is placed
in a global variable yylval,2 which is shared between the lexical analyzer and
parser, thereby making it simple to return both the name and an attribute value
of a token.

2~ncidentally, the yy that appears in y y l v a l and l e x . yy . c refers to the Yacc parser-
generator, which we shall describe in Section 4.9, and which is commonly used in conjunction
with Lex.

https://hemanthrajhemu.github.io

3.5. THE LEXICAL-ANALYZER GENERATOR LEX

Lex source program

compiler

Input stream a. out - I t -
* a. out

Sequence of tokens

C
compiler

Figure 3.22: Creating a lexical analyzer with Lex

*

3.5.2 Structure of Lex Programs

A Lex program has the following form:

declarations
%%
translation rules
%%
auxiliary functions

The declarations section includes declarations of variables, manifest constants
(identifiers declared to stand for a constant, e.g., the name of a token), and
regular definitions, in the style of Section 3.3.4.

The translation rules each have the form

Pattern { Action)

Each pattern is a regular expression, which may use the regular definitions of
the declaration section. The actions are fragments of code, typically written in
C, although many variants of Lex using other languages have been created.

The third section holds whatever additional functions are used in the actions.
Alternatively, these functions can be compiled separately and loaded with the
lexical analyzer.

The lexical analyzer created by Lex behaves in concert with the parser as
follows. When called by the parser, the lexical analyzer begins reading its
remaining input, one character at a time, until it finds the longest prefix of the
input that matches one of the patterns Pi. It then executes the associated action
Ai. Typically, Ai will return to the parser, but if it does not (e.g., because Pi
describes whitespace or comments), then the lexical analyzer proceeds to find
additional lexemes, until one of the corresponding actions causes a return to
the parser. The lexical analyzer returns a single value, the token name, to
the parser, but uses the shared, integer variable yy lva l to pass additional
information about the lexeme found, if needed.

https://hemanthrajhemu.github.io

142 CHAPTER 3. LEXICAL ANALYSIS

Example 3.1 1 : Figure 3.23 is a Lex program that recognizes the tokens of
Fig. 3.12 and returns the token found. A few observations about this code will
introduce us to many of the important features of Lex.

In the declarations section we see a pair of special brackets, %(and %).
Anything within these brackets is copied directly to the file l ex . yy . c, and is
not treated as a regular definition. It is common to place there the definitions of
the manifest constants, using C #define statements to associate unique integer
codes with each of the manifest constants. In our example, we have listed in a
comment the names of the manifest constants, LT, IF, and so on, but have not
shown them defined to be particular integer^.^

Also in the declarations section is a sequence of regular definitions. These
use the extended notation for regular expressions described in Section 3.3.5.
Regular definitions that are used in later definitions or in the patterns of the
translation rules are surrounded by curly braces. Thus, for instance, delim is
defined to be a shorthand for the character class consisting of the blank, the
tab, and the newline; the latter two are represented, as in all UNIX commands,
by backslash followed by t or n, respectively. Then, ws is defined to be one or
more delimiters, by the regular expression (del im)+.

Notice that in the definition of id and number, parentheses are used as
grouping metasymbols and do not stand for themselves. In contrast, E in the
definition of number stands for itself. If we wish to use one of the Lex meta-
symbols, such as any of the parentheses, +, *, or ?, to stand for themselves, we
may precede them with a backslash. For instance, we see \ . in the definition of
number, to represent the dot, since that character is a metasymbol representing
"any character," as usual in UNIX regular expressions.

In the auxiliary-function section, we see two such functions, i n s t a l l I D 0
and installNum() . Like the portion of the declaration section that appears
between %(. . .%I, everything in the auxiliary section is copied directly to file
lex . yy . c, but may be used in the actions.

Finally, let us examine some of the patterns and rules in the middle section of
Fig. 3.23. First, ws, an identifier declared in the first section, has an associated
empty action. If we find whitespace, we do not return to the parser, but look
for another lexeme. The second token has the simple regular expression pattern
i f . Should we see the two letters i f on the input, and they are not followed
by another letter or digit (which would cause the lexical analyzer to find a
longer prefix of the input matching the pattern for id), then the lexical analyzer
consumes these two letters from the input and returns the token name IF, that
is, the integer for which the manifest constant IF stands. Keywords then and
e l s e are treated similarly.

The fifth token has the pattern defined by id. Note that, although keywords
like i f match this pattern as well as an earlier pattern, Lex chooses whichever

31f Lex is used along with Yacc, then it would be normal to define the manifest constants
in the Yacc program and use them without definition in the Lex program. Since lex .yy. c is
compiled with the Yacc output, the constants thus will be available to the actions in the Lex
program.

https://hemanthrajhemu.github.io

3.5. THE LEXICAL-ANALYZER GENERATOR LEX

%(
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%3

/* regular definitions */
delim [\t\nl
ws (delim)+
letter [A-Za-z]
digit [o-91
id (letter) ((letter) 1 (digit)) *
number (digit)+ (\ . (digit)+)? (E [+-I ?(digit)+)?

(ws3
if
then
else
(id)
(number)
11 < 11

11 < = I 1

11=11

(/* no action and no return */)
(return(1F) ;)
(return(THEN) ;)
(return(ELSE) ;)
(yylval = (int) installID(); return(1D);)
(yylval = (int) installNum() ; return(NUMBER) ;)
(yylval = LT; return(REL0P) ;)
(yylval = LE; return(REL0P) ;)
(yylval = EQ ; return(REL0P) ;)
(yylval = NE; return(REL0P);)
(yylval = GT; return(REL0P);)
Cyylval = GE; return(REL0P);)

int installID0 (/* function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto */

3

int installNum() (/* similar to installID, but puts numer-
ical constants into a separate table */

3

Figure 3.23: Lex program for the tokens of Fig. 3.12

https://hemanthrajhemu.github.io

144 CHAPTER 3. LEXICAL ANALYSIS

pattern is listed first in situations where the longest matching prefix matches
two or more patterns. The action taken when id is matched is threefold:

I. Function installID0 is called to place the lexeme found in the symbol
table.

2. This function returns a pointer to the symbol table, which is placed in
global variable yylval, where it can be used by the parser or a later
component of the compiler. Note that installID () has available to it
two variables that are set automatically by the lexical analyzer that Lex
generates:

(a) yytext is a pointer to the beginning of the lexeme, analogous to
1exemeBegin in Fig. 3.3.

(b) yyleng is the length of the lexeme found.

3. The token name I D is returned to the parser.

The action taken when a lexeme matching the pattern number is similar, using
the auxiliary function ins t allNum () . 17

3.5.3 Conflict Resolution in Lex

We have alluded to the two rules that Lex uses to decide on the proper lexeme
to select, when several prefixes of the input match one or more patterns:

1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more patterns, prefer the
pattern listed first in the Lex program.

Example 3.12 : The first rule tells us to continue reading letters and digits to
find the longest prefix of these characters to group as an identifier. It also tells
us to treat <= as a single lexeme, rather than selecting < as one lexeme and =
as the next lexeme. The second rule makes keywords reserved, if we list the
keywords before id in the program. For instance, if then is determined to be
the longest prefix of the input that matches any pattern, and the pattern then
precedes {id), as it does in Fig. 3.23, then the token THEN is returned, rather
than ID.

3.5.4 The Lookahead Operator

Lex automatically reads one character ahead of the last character that forms
the selected lexeme, and then retracts the input so only the lexeme itself is
consumed from the input. However, sometimes, we want a certain pattern to
be matched to the input only when it is followed by a certain other characters.
If so, we may use the slash in a pattern to indicate the end of the part of the

https://hemanthrajhemu.github.io

3.5. THE LEXICAL-ANALYZER GENERATOR LEX 145

pattern that matches the lexeme. What follows / is additional pattern that
must be matched before we can decide that the token in question was seen, but
what matches this second pattern is not part of the lexeme.

Example 3.13 : In Fortran and some other languages, keywords are not re-
served. That situation creates problems, such as a statement

where IF is the name of an array, not a keyword. This statement contrasts with
statements of the form

IF (condition) THEN . . .

where IF is a keyword. Fortunately, we can be sure that the keyword IF is
always followed by a left parenthesis, some text - the condition - that may
contain parentheses, a right parenthesis and a letter. Thus, we could write a
Lex rule for the keyword IF like:

This rule says that the pattern the lexeme matches is just the two letters IF.
The slash says that additional pattern follows but does not match the lexeme.
In this pattern, the first character is the left parentheses. Since that character is
a Lex metas~mbol, it must be preceded by a backslash to indicate that it has its
literal meaning. The dot and star match "any string without a newline." Note
that the dot is a Lex metasymbol meaning "any character except newline." It
is followed by a right parenthesis, again with a backslash to give that character
its literal meaning. The additional pattern is followed by the symbol letter,
which is a regular definition representing the character class of all letters.

Note that in order for this pattern to be foolproof, we must preprocess
the input to delete whitespace. We have in the pattern neither provision for
whitespace, nor can we deal with the possibility that the condition extends over
lines, since the dot will not match a newline character.

For instance, suppose this pattern is asked to match a prefix of input:

the first two characters match IF, the next character matches \ (, the next nine
characters match . *, and the next two match \) and letter. Note the fact that
the first right parenthesis (after C) is not followed by a letter is irrelevant; we
only need to find some way of matching the input to the pattern. We conclude
that the letters IF constitute the lexeme, and they are an instance of token if.

https://hemanthrajhemu.github.io

146 CHAPTER 3. LEXICAL ANALYSIS

3.5.5 Exercises for Section 3.5

Exercise 3.5.1 : Describe how to make the following modifications to the Lex
program of Fig. 3.23:

a) Add the keyword while.

b) Change the comparison operators to be the C operators of that kind.

c) Allow the underscore (-) as an additional letter.

! d) Add a new pattern with token STRING. The pattern consists of a double-
quote ("), any string of characters and a final double-quote. However,
if a double-quote appears in the string, it must be escaped by preceding
it with a backslash (\), and therefore a backslash in the string must be
represented by two backslashes. The lexical value, which is the string
without the surrounding double-quotes, and with backslashes used to es-
cape a character removed. Strings are to be installed in a table of strings.

Exercise 3.5.2 : Write a Lex program that copies a file, replacing each non-
empty sequence of white space by a single blank.

Exercise 3.5.3 : Write a Lex program that copies a C program, replacing each
instance of the keyword f l o a t by double.

! Exercise 3.5.4: Write a Lex program that converts a file to "Pig latin."
Specifically, assume the file is a sequence of words (groups of letters) separated
by whitespace. Every time you encounter a word:

1. If the first letter is a consonant, move it to the end of the word and then
add ay.

2. If the first letter is a vowel, just add ay to the end of the word.

All nonletters are copied intact to the output.

! Exercise 3.5.5 : In SQL, keywords and identifiers are case-insensitive. Write
a Lex program that recognizes the keywords SELECT, FROM, and WHERE (in any
combination of capital and lower-case letters), and token I D , which for the
purposes of this exercise you may take to be any sequence of letters and digits,
beginning with a letter. You need not install identifiers in a symbol table, but
tell how the "install" function would differ from that described for case-sensitive
identifiers as in Fig. 3.23.

https://hemanthrajhemu.github.io

3.6. FINITE AUTOMATA

3.6 Finite Automata

We shall now discover how Lex turns its input program into a lexical analyzer.
At the heart of the transition is the formalism known as f inite automata. These
are essentially graphs, like transition diagrams, with a few differences:

1. Finite automata are recognizers; they simply say "yes" or "no" about each
possible input string.

2. Finite automata come in two flavors:

(a) Nondeterministic finite automata (NFA) have no restrictions on the
labels of their edges. A symbol can label several edges out of the
same state, and E, the empty string, is a possible label.

(b) Deterministic finite automata (DFA) have, for each state, and for
each symbol of its input alphabet exactly one edge with that symbol
leaving that state.

Both deterministic and nondeterministic finite automata are capable of rec-
ognizing the same languages. In fact these languages are exactly the same
languages, called the regular languages, that regular expressions can de~cr ibe .~

3.6. I Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states S.

2. A set of input symbols C, the input alphabet. We assume that E, which
stands for the empty string, is never a member of C.

3. A transition function that gives, for each state, and for each symbol in
C U (E) a set of next states.

4. A state so from S that is distinguished as the start state (or init ial state).

5 . A set of states F, a subset of S, that is distinguished as the accepting
states (or final states).

We can represent either an NFA or DFA by a transition graph, where the
nodes are states and the labeled edges represent the transition function. There
is an edge labeled a from state s to state t if and only if t is one of the next
states for state s and input a. This graph is very much like a transition diagram,
except:

-- -

4 ~ h e r e is a small lacuna: as we defined them, regular expressions cannot describe the
empty language, since we would never want to use this pattern in practice. However, finite
automata can define the empty language. In the theory, 0 is treated as an additional regular
expression for the sole purpose of defining the empty language.

https://hemanthrajhemu.github.io

148 CHAPTER 3. LEXICAL ANALYSIS

a) The same symbol can label edges from one state to several different states,
and

b) An edge may be labeled by c, the empty string, instead of, or in addition
to, symbols from the input alphabet.

Example 3.14: The transition graph for an NFA recognizing the language
of regular expression (aJb)*abb is shown in Fig. 3.24. This abstract example,
describing all strings of a's and b's ending in the particular string abb, will be
used throughout this section. It is similar to regular expressions that describe
languages of real interest, however. For instance, an expression describing all
files whose name ends in .o is any* .o, where any stands for any printable
character .

Figure 3.24: A nondeterministic finite automaton

Following our convention for transition diagrams, the double circle around
state 3 indicates that this state is accepting. Notice that the only ways to get
from the start state 0 to the accepting state is to follow some path that stays
in state 0 for a while, then goes to states 1, 2, and 3 by reading abb from the
input. Thus, the only strings getting to the accepting state are those that end
in abb.

3.6.2 Transition Tables

We can also represent an NFA by a transition table, whose rows correspond to
states, and whose columns correspond to the input symbols and c. The entry for
a given state and input is the value of the transition function applied to those
arguments. If the transition function has no information about that state-input
pair, we put Q) in the table for the pair.

Example 3.15: The transition table for the NFA of Fig. 3.24 is shown in
Fig. 3.25.

The transition table has the advantage that we can easily find the transitions
on a given state and input. Its disadvantage is that it takes a lot of space, when
the input alphabet is large, yet most states do not have any moves on most of
the input symbols.

https://hemanthrajhemu.github.io

3.6. FINITE AUTOMATA

Figure 3.25: Transition table for the NFA of Fig. 3.24

3.6.3 Acceptance of Input Strings by Automata

An NFA accepts input string x if and only if there is some path in the transition
graph from the start state to one of the accepting states, such that the symbols
along the path spell out x. Note that c labels along the path are effectively
ignored, since the empty string does not contribute to the string constructed
along the path.

Example 3.16: The string aabb is accepted by the NFA of Fig. 3.24. The
path labeled by aabb from state 0 to state 3 demonstrating this fact is:

a a b b
0-0-1-2-3

Note that several paths labeled by the same string may lead to different states.
For instance, path

a a b b
0-0-0-0-0

is another path from state 0 labeled by the string aabb. This path leads to
state 0, which is not accepting. However, remember that an NFA accepts a
string as long as some path labeled by that string leads from the start state
to an accepting state. The existence of other paths leading to a nonaccepting
state is irrelevant.

The language defined (or accepted) by an NFA is the set of strings labeling
some path from the start to an accepting state. As was mentioned, the NFA of
Fig. 3.24 defines the same language as does the regular expression (aJb)* abb,
that is, all strings from the alphabet { a , b} that end in abb. We may use L(A)
to stand for the language accepted by automaton A.

Example 3.17 : Figure 3.26 is an NFA accepting L(aa* lbb*). String aaa is
accepted because of the path

E a a a
0 -- 1 -------- 2 -------- 2 - 2

Note that E'S "disappear" in a concatenation, so the label of the path is aaa.

3.6.4 Deterministic Finite Automata

A determinist ic f in i te automaton (DFA) is a special case of an NFA where:

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.26: NFA accepting aa* 1 bb*

1. There are no moves on input E , and

2. For each state s and input symbol a, there is exactly one edge out of s
labeled a.

If we are using a transition table to represent a DFA, then each entry is a single
state. we may therefore represent this state without the curly braces that we
use to form sets.

While the NFA is an abstract representation of an algorithm to recognize
the strings of a certain language, the DFA is a simple, concrete algorithm for
recognizing strings. It is fortunate indeed that every regular expression and
every NFA can be converted to a DFA accepting the same language, because it
is the DFA that we really implement or simulate when building lexical analyzers.
The following algorithm shows how to apply a DFA to a string.

Algorithm 3.18 : Simulating a DFA.

INPUT: An input string x terminated by an end-of-file character eof. A DFA
D with start state so, accepting states F, and transition function moue.

OUTPUT: Answer ''yes" if D accepts x; "no" otherwise.

METHOD: Apply the algorithm in Fig. 3.27 to the input string x. The function
moue(s, c) gives the state to which there is an edge from state s on input c.
The function next Char returns the next character of the input string x.

Example 3.19 : In Fig. 3.28 we see the transition graph of a DFA accepting
the language (alb)*abb, the same as that accepted by the NFA of Fig. 3.24.
Given the input string ababb, this DFA enters the sequence of states 0,1,2,1,2,3
and returns "yes."

https://hemanthrajhemu.github.io

3.6. FINITE AUTOMATA

S = so;
c = nextchar();
while (c != eof) {

s = move(s, c);
c = nextchar();

1
if (s is in F) return "yes";
else return "no";

Figure 3.27: Simulating a DFA

Figure 3.28: DFA accepting (aJb)*abb

3.6.5 Exercises for Section 3.6

! Exercise 3.6.1 : Figure 3.19 in the exercises of Section 3.4 computes the failure
function for the KMP algorithm. Show how, given that failure function, we
can construct, from a keyword blb2 . bn an n + I-state DFA that recognizes
.* bl b2 . bn, where the dot stands for "any character." Moreover, this DFA can
be constructed in O(n) time.

Exercise 3.6.2 : Design finite automata (deterministic or nondeterministic)
for each of the languages of Exercise 3.3.5.

Exercise 3.6.3 : For the NFA of Fig. 3.29, indicate all the paths labeled aabb.
Does the NFA accept aabb?

start 8-83 a a

Figure 3.29: NFA for Exercise 3.6.3

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.30: NFA for Exercise 3.6.4

Exercise 3.6.4 : Repeat Exercise 3.6.3 for the NFA of Fig. 3.30.

Exercise 3.6.5 : Give the transition tables for the NFA of:

a) Exercise 3.6.3.

b) Exercise 3.6.4.

c) Figure 3.26.

3.7 From Regular Expressions to Automata

The regular expression is the notation of choice for describing lexical analyzers
and other pattern-processing software, as was reflected in Section 3.5. How-
ever, implementation of that software requires the simulation of a DFA, as in
Algorithm 3.18, or perhaps simulation of an NFA. Because an NFA often has a
choice of move on an input symbol (as Fig. 3.24 does on input a from state 0)
or on e (as Fig. 3.26 does from state 0), or even a choice of making a transition
on E: or on a real input symbol, its simulation is less straightforward than for a
DFA. Thus often it is important to convert an NFA to a DFA that accepts the
same language.

In this section we shall first show how to convert NFA's to DFA's. Then, we
use this technique, known as "the subset construction," to give a useful algo-
rit hm for simulating NFA's directly, in situations (other than lexical analysis)
where the NFA-to-DFA conversion takes more time than the direct simulation.
Next, we show how to convert regular expressions to NFA's, from which a DFA
can be constructed if desired. We conclude with a discussion of the time-space
tradeoffs inherent in the various methods for implementing regular expressions,
and see how to choose the appropriate method for your application.

3.7.1 Conversion of an NFA to a DFA

The general idea behind the subset construction is that each state of the
constructed DFA corresponds to a set of NFA states. After reading input

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS T O AUTOMATA

ala2 - - . a,, the DFA is in that state which corresponds to the set of states that
the NFA can reach, from its start state, following paths labeled ala2 . . an.

It is possible that the number of DFA states is exponential in the number
of NFA states, which could lead to difficulties when we try to implement this
DFA. However, part of the power of the automaton-based approach to lexical
analysis is that for real languages, the NFA and DFA have approximately the
same number of states, and the exponential behavior is not seen.

Algorithm 3.20 : The subset construction of a DFA from an NFA.

OUTPUT: A DFA D accepting the same language as N.

METHOD: Our algorithm constructs a transition table Dtran for D. Each
state of D is a set of NFA states, and we construct Dtran so D will simulate
"in parallel" all possible moves N can make on a given input string. Our first
problem is to deal with e-transitions of N properly. In Fig. 3.31 we see the
definitions of several functions that describe basic computations on the states
of N that are needed in the algorithm. Note that s is a single state of N , while
T is a set of states of N .

t-closure(s) I Set of NFA states reachable from NFA state s

I in set T on €-transitions alone; = Us in T e-closure(s).

e-closure(T)

move(T,a) (Set of NFA states to which there is a transition on

on e-transitions alone.

Set of NFA states reachable from some NFA state s

I input symbol a from some state s in T.

Figure 3.31: Operations on NFA states

We must explore those sets of states that N can be in after seeing some input
string. As a basis, before reading the first input symbol, N can be in any of the
states of E-closure(so), where so is its start state. For the induction, suppose
that N can be in set of states T after reading input string x. If it next reads
input a , then N can immediately go to any of the states in move(T, a). However,
after reading a, it may also make several €-transitions; thus N could be in any
state of e-closure(move(T, a)) after reading input xu. Following these ideas, the
construction of the set of D's states, Dstates, and its transition function Dtran,
is shown in Fig. 3.32.

The start state of D is c-closure(so), and the accepting states of D are all
those sets of N's states that include at least one accepting state of N . To
complete our description of the subset construction, we need only to show how

https://hemanthrajhemu.github.io

CHAPTER 3.- LEXICAL ANALYSIS

initially, e-closure(so) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T ;
for (each input symbol a) {

U = E- closure(moue(~, a)) ;
if (U is not in Dstates)

add U as an unmarked state to Dstates;
Dtran[T, a] = U;

3

Figure 3.32: The subset construction

E-closure(T) is computed for any set of NFA states T. This process, shown in
Fig. 3.33, is a straightforward search in a graph from a set of states. In this
case, imagine that only the €-labeled edges are available in the graph.

push all states of T onto stack;
initialize E- closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled e)

if (u is not in e-closure(T)) {
add u to e-closure(T);
push u onto stack

1

Figure 3.33: Computing E- closure(T)

Example 3.21 : Figure 3.34 shows another NFA accepting (a1 b) *abb; it hap-
pens to be the one we shall construct directly from this regular expression in
Section 3.7. Let us apply Algorithm 3.20 to Fig. 3.29.

The start state A of the equivalent DFA is E-closure(O), or A = {0,1,2,4,7),
since these are exactly the states reachable from state 0 via a path all of whose
edges have label e. Note that a path can have zero edges, so state 0 is reachable
from itself by an €-labeled path.

The input alphabet is {a, b). Thus, our first step is to mark A and compute
Dtran[A, a] = E-closure(moue(A, a)) and Dtran[A, b] = t- closure(moue(A, b)) .
Among the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to
3 and 8, respectively. Thus, move(A, a) = {3,8). Also, t-closure({3,8) =
{1,2,3,4,6,7,8), so we conclude

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS T O AUTOMATA

Figure 3.34: NFA N for (alb)*abb

Dtran[A, a] = e-closure(rnoue(A, a)) = e-closure({3, 8)) = {I, 2,3,4,6,7,8)

Let us call this set B, so Dtran[A, a] = B.
Now, we must compute Dtran[A, b]. Among the states in A, only 4 has a

transition on b, and it goes to 5. Thus,

Let us call the above set C, so Dtran[A, b] = C.

Figure 3.35: Transition table Dtran for DFA D

If we continue this process with the unmarked sets B and C, we eventually
reach a point where all the states of the DFA are marked. This conclusion is
guaranteed, since there are "only" 2'' different subsets of a set of eleven NFA
states. The five different DFA states we actually construct, their correspond-
ing sets of NFA states, and the transition table for the DFA D are shown in
Fig. 3.35, and the transition graph for D is in Fig. 3.36. State A is the start
state, and state E, which contains state 10 of the NFA, is the only accepting
state.

Note that D has one more state than the DFA of Fig. 3.28 for the same lan-
guage. States A and C have the same move function, and so can be merged. We
discuss the matter of minimizing the number of states of a DFA in Section 3.9.6.

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.36: Result of applying the subset construction to Fig. 3.34

3.7.2 Simulationofan NFA

A strategy that has been used in a number of text-editing programs is to con-
struct an NF'A from a regular expression and then simulate the NFA using
something like an on-the-fly subset construction. The simulation is outlined
below.

Algorit hrn 3.22 : Simulating an NFA.

INPUT: An input string x terminated by an end-of-file character eof. An NFA
N with start state so, accepting states F, and transition function moue.

OUTPUT: Answer "yes7' if M accepts x; "no" otherwise.

METHOD: The algorithm keeps a set of current states S, those that are reached
from so following a path labeled by the inputs read so far. If c is the next input
character, read by the function nextchar(), then we first compute move(S, c)
and then close that set using E-closure(). The algorithm is sketched in Fig. 3.37.

S = E-closure(so);
c = nextchar();
while (c != eof) {

S = E- closure (move(S, c)) ;
c = nextchar();

1
if (S n F != 0) return Ityesll;
else return "no";

Figure 3.37: Simulating an NFA

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA

3.7.3 Efficiency of NFA Simulation

If carefully implemented, Algorithm 3.22 can be quite efficient. As the ideas
involved are useful in a number of similar algorithms involving search of graphs,
we shall look at this implementation in additional detail. The data structures
we need are:

I . Two stacks, each of which holds a set of NFA states. One of these stacks,
oldstates, holds the "current" set of states, i.e., the value of S on the right
side of line (4) in Fig. 3.37. The second, newstates, holds the "next" set
of states - S on the left side of line (4). Unseen is a step where, as we
go around the loop of lines (3) through (6), newstates is transferred to
oldstates.

2. A boolean array alreadyon, indexed by the NFA states, to indicate which
states are in newstates. While the array and stack hold the same infor-
mation, it is much faster to interrogate alreadyOn[s] than to search for
state s on the stack newstates. It is for this efficiency that we maintain
both representations.

3. A two-dimensional array move[s, a] holding the transition table of the
NFA. The entries in this table, which are sets of states, are represented
by linked lists.

To implement line (1) of Fig. 3.37, we need to set each entry in array al-
readyon to FALSE, then for each state s in c-closure(so), push s onto oldstates
and set alreadyOn[s] to TRUE. This operation on state s , and the implementation
of line (4) as well, are facilitated by a function we shall call addState(s). This
function pushes state s onto newstates, sets alreadyOn[s] to TRUE, and calls
itself recursively on the states in move[s, €1 in order to further the computation
of c-closure(s). However, to avoid duplicating work, we must be careful never
to call addstate on a state that is already on the stack newstates. Figure 3.38
sketches this function.

9) addState(s) {
10) push s onto newstates;
l1> alreadyOn[s] = TRUE;
12) for (t on move[s, €1)
13) if (!alreadyOn(t))
14) addState(t) ;
15) >

Figure 3.38: Adding a new state s , which is known not to be on newstates

We implement line (4) of Fig. 3.37 by looking at each state s on oldstates.
We first find the set of states move[s, c], where c is the next input, and for each

https://hemanthrajhemu.github.io

158 CHAPTER 3. LEXICAL ANALYSIS

of those states that is not already on newstates, we apply addstate to it. Note
that addstate has the effect of computing the E-closure and adding all those
states to newstates as well, if they were not already on. This sequence of steps
is summarized in Fig. 3.39.

16) for (s on oldstates) {
17) for (t on move[s, c])
18) if (!alreadyOn[t])
19) addState(t) ;
20) pop s from oldstates;
21) >
22) for (s on newstates) {
23) pop s from newstates;
24) push s onto oldstates;
25) alreadyOn[s] = FALSE;
26) }

Figure 3.39: Implementation of step (4) of Fig. 3.37

Now, suppose that the NFA N has n states and m transitions; i.e., m is the
sum over all states of the number of symbols (or E) on which the state has a
transition out. Not counting the call to addstate at line (19) of Fig. 3.39, the
time spent in the loop of lines (16) through (21) is O(n). That is, we can go
around the loop at most n times, and each step of the loop requires constant
work, except for the time spent in addstate. The same is true of the loop of
lines (22) through (26).

During one execution of Fig. 3.39, i.e., of step (4) of Fig. 3.37, it is only
possible to call addstate on a given state once. The reason is that whenever
we call addState(s), we set alreadyOn[s] to TRUE at line (11) of Fig. 3.39. Once
alreadyOn[s] is TRUE, the tests at line (13) of Fig. 3.38 and line (18) of Fig. 3.39
prevent another call.

The time spent in one call to addstate, exclusive of the time spent in recur-
sive calls at line (14), is O(1) for lines (10) and (11). For lines (12) and (13),
the time depends on how many €-transitions there are out of state s. We do
not know this number for a given state, but we know that there are at most m
transitions in total, out of all states. As a result, the aggregate time spent in
lines (11) over all calls to addstate during one execution of the code of Fig. 3.39
is O(m). The aggregate for the rest of the steps of addstate is O(n), since it is
a constant per call, and there are at most n calls.

We conclude that, implemented properly, the time to execute line (4) of
Fig. 3.37 is O(n + m). The rest of the while-loop of lines (3) through (6) takes
O(1) time per iteration. If the input x is of length I F , then the total work in
that loop is O((k(n + m)). Line (1) of Fig. 3.37 can be executed in O(n + m)
time, since it is essentially the steps of Fig. 3.39 with oldstates containing only

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 159

Big-Oh Notation

An expression like O(n) is a shorthand for "at most some constant times
n." Technically, we say a function f (n), perhaps the running time of some
step of an algorithm, is 0 (g(n)) if there are constants c and no, such that
whenever n 2 no, it is true that f (n) < cg(n). A useful idiom is "0(1),"
which means "some constant." The use of this big-oh notation enables
us to avoid getting too far into the details of what we count as a unit of
execution time, yet lets us express the rate at which the running time of
an algorithm grows.

the state so. Lines (2)) (7), and (8) each take O(1) time. Thus, the running
time of Algorithm 3.22, properly implemented, is O((lc(n + m)). That is, the
time taken is proportional to the length of the input times the size (nodes plus
edges) of the transition graph.

3.7.4 Construction of an NFA from a Regular Expression

We now give an algorithm for converting any regular expression to an NFA
that defines the same language. The algorithm is syntax-directed, in the sense
that it works recursively up the parse tree for the regular expression. For each
subexpression the algorithm constructs an NFA with a single accepting state.

Algorithm 3.23 : The McNaughton-Yamada-Thompson algorithm to convert
a regular expression to an NFA.

INPUT: A regular expression r over alphabet C.

OUTPUT: An NFA N accepting L(r).

METHOD: Begin by parsing r into its constituent subexpressions. The rules
for constructing an NFA consist of basis rules for handling subexpressions with
no operators, and inductive rules for constructing larger NFA's from the NFA's
for the immediate subexpressions of a given expression.

BASIS: For expression e construct the NFA

st a-

Here, i is a new state, the start state of this NFA, and f is another new state,
the accepting state for the NFA.

For any subexpressiop a in C, construct the NFA

https://hemanthrajhemu.github.io

160 CHAPTER 3. LEXICAL ANALYSIS

where again i and f are new states, the start and accepting states, respectively.
Note that in both of the basis constructions, we construct a distinct NFA, with
new states, for every occurrence of e or some a as a subexpression of r .

INDUCTION: Suppose N(s) and N(t) are NFA's for regular expressions s and
t, respectively.

a) Suppose r = slt. Then N (r), the NFA for r , is constructed as in Fig. 3.40.
Here, i and f are new states, the start and accepting states of N(r),
respectively. There are €-transitions from i to the start states of N(s)
and N(t), and each of their accepting states have €-transitions to the
accepting state f . Note that the accepting states of N(s) and N(t) are
not accepting in N(r) . Since any path from i to f must pass through
either N (s) or N (t) exclusively, and since the label of that path is not
changed by the e's leaving i or entering f , we conclude that N (r) accepts
L(s) U L(t), which is the same as L(r). That is, Fig. 3.40 is a correct
construction for the union operator.

Figure 3.40: NFA for the union of two regular expressions

b) Suppose r = st. Then construct N(r) as in Fig. 3.41. The start state of
N (s) becomes the start state of N (r), and the accepting state of N(t) is
the only accepting state of N(r). The accepting state of N (s) and the
start state of N (t) are merged into a single state, with all the transitions
in or out of either state. A path from i to f in Fig. 3.41 must go first
through N(s), and therefore its label will begin with some string in L(s).
The path then continues through N(t), so the path's label finishes with a
string in L(t). As we shall soon argue, accepting states never have edges
out and start states never have edges in, so it is not possible for a path to
re-enter N(s) after leaving it. Thus, N(r) accepts exactly L(s)L(t), and
is a correct NFA for r = st.

Figure 3.41: NFA for the concatenation of two regular expressions

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 161

c) Suppose r = s*. Then for r we construct the NFA N (r) shown in Fig. 3.42.
Here, i and f are new states, the start state and lone accepting state of
N (r) . To get from i to f , we cail either follow the introduced path labeled
E , which takes care of the one string in ~ (s) ' , or we can go to the start
state of N(s), through that NFA, then from its accepting state back to
its start state zero or more times. These options allow N (r) to accept all
the strings in L(s)' , L (s) ~ , and so on, so the entire set of strings accepted
by N(r) is L(s*).

Figure 3.42: NFA for the closure of a regular expression

d) Finally, suppose r = (s). Then L(r) = L(s), and we can use the NFA
N(s) as N(r) .

The method description in Algorithm 3.23 contains hints as to why the
inductive construction works as it should. We shall not give a formal correctness
proof, but we shall list several properties of the constructed NFA's, in addition
to the all-important fact that N (r) accepts language L(r). These properties
are interesting in their own right, and helpful in making a formal proof.

1. N(r) has at most twice as many states as there are operators and operands
in r . This bound follows from the fact that each step of the algorithm
creates at most two new states.

2. N(r) has one start state and one accepting state. The accepting state has
no outgoing transitions, and the start state has no incoming transitions.

3. Each state of N (r) other than the accepting state has either one outgoing
transition on a symbol in C or two outgoing transitions, both on E .

Example 3.24: Let us use Algorithm 3.23 to construct an NFA for r =
(a(b)*abb. Figure 3.43 shows a parse tree for r that is analogous to the parse
trees constructed for arithmetic expressions in Section 2.2.3. For subexpression
r l , the first a , we construct the NFA:

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.43: Parse tree for (alb)*abb

State numbers have been chosen for consistency with what follows. For r2 we

We can now combine N (r l) and N(rz) , using the construction of Fig. 3.40 to
obtain the NFA for r3 = r l J r 2 ; this NFA is shown in Fig. 3.44.

Figure 3.44: NFA for r3

The NFA for r4 = (r3) is the same as that for r3. The NFA for r~ = (r3)* is
then as shown in ~ i ~ . 3.45. We have used the construction in ~ i ~ . 3.42 to build
this NFA from the NFA in Fig. 3.44.

Now, consider subexpression ra, which is another a. We use the basis con-
struction for a again, but we must use new states. It is not permissible to reuse

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA

Figure 3.45: NFA for r5

the NFA we constructed for r l , even though r l and 7-6 are the same expression.
The NFA for r6 is:

To obtain the NFA for r y = rgr6, we apply the construction of Fig. 3.41. We
merge states 7 and 7', yielding the NFA of Fig. 3.46. Continuing in this fashion
with new NFA's for the two subexpressions b called rs and rlo, we eventually
construct the NFA for (alb)*abb that we first met in Fig. 3.34.

E

Figure 3.46: NFA for r~

3.7.5 Efficiency of String-Processing Algorithms

We observed that Algorithm 3.18 processes a string x in time O(lxl), while in
Section 3.7.3 we concluded that we could simulate an NFA in time proportional
to the product of 1x1 and the size of the NFA's transition graph. Obviously, it

https://hemanthrajhemu.github.io

164 CHAPTER 3. LEXICAL ANALYSIS

is faster to have a DFA to simulate than an NFA, so we might wonder whether
it ever makes sense to simulate an NFA.

One issue that may favor an NFA is that the subset construction can, in the
worst case, exponentiate the number of states. While in principle, the number
of DFA states does not influence the running time of Algorithm 3.18, should
the number of states become so large that the transition table does not fit in
main memory, then the true running time would have to include disk 1/0 and
therefore rise noticeably.

Example 3.25 : Consider the family of languages described by regular expres-
sions of the form L, = (a/ b)*a(a/ b)"-', that is, each language L, consists of
strings of a's and b's such that the nth character to the left of the right end
holds a. An n + I-state NFA is easy to construct. It stays in its initial state
under any input, but also has the option, on input a , of going to state 1. From
state 1, it goes to state 2 on any input, and so on, until in state n it accepts.
Figure 3.47 suggests this NFA.

Figure 3.47: An NFA that has many fewer states than the smallest equivalent
DFA

However, any DFA for the language L, must have at least 2n states. We
shall not prove this fact, but the idea is that if two strings of length n can
get the DFA to the same state, then we can exploit the last position where
the strings differ (and therefore one must have a, the other b) to continue the
strings identically, until they are the same in the last n - 1 positions. The DFA
will then be in a state where it must both accept and not accept. Fortunately,
as we mentioned, it is rare for lexical analysis to involve patterns of this type,
and we do not expect to encounter DFA's with outlandish numbers of states in
practice.

However, lexical-analyzer generators and other string-processing systems
often start with a regular expression. We are faced with a choice of converting
the regular expression to an NFA or DFA. The additional cost of going to a DFA
is thus the cost of executing Algorithm 3.23 on the NFA (one could go directly
from a regular expression to a DFA, but the work is essentially the same). If
the string-processor is one that will be executed many times, as is the case for
lexical analysis, then any cost of converting to a DFA is worthwhile. However,
in other string-processing applications, such as grep, where the user specifies
one regular expression and one or several files to be searched for the pattern

https://hemanthrajhemu.github.io

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 165

of that expression, it may be more efficient to skip the step of constructing a
DFA, and simulate the NFA directly.

Let us consider the cost of converting a regular expression r to an NFA by
Algorithm 3.23. A key step is constructing the parse tree for r . In Chapter 4
we shall see several methods that are capable of constructing this parse tree in
linear time, that is, in time O(lrl), where JrJ stands for the size of r - the sum
of the number of operators and operands in r . It is also easy to check that each
of the basis and inductive constructions of Algorithm 3.23 takes constant time,
so the entire time spent by the conversion to an NFA is O(lr().

Moreover, as we observed in Section 3.7.4, the NFA we construct has at
most Irl states and at most 21r(transitions. That is, in terms of the analysis
in Section 3.7.3, we have n 5 Irl and rn 2 21rJ. Thus, simulating this NFA on
an input string x takes time O((r (x 1x1). This time dominates the time taken
by the NFA construction, which is O(lrl), and therefore, we conclude that it is
possible to take a regular expression r and string x, and tell whether x is in
L(r) in time O(lrl x 1x1).

The time taken by the subset construction is highly dependent on the num-
ber of states the resulting DFA has. To begin, notice that in the subset con-
struction of Fig. 3.32, the key step, the construction of a set of states U from
a set of states T and an input symbol a , is very much like the construction of
a new set of states from the old set of states in the NFA simulation of Algo-
rithm 3.22. We already concluded that, properly implemented, this step takes
time at most proportional to the number of states and transitions of the NFA.

Suppose we start with a regular expression r and convert it to an NFA. This
NFA has at most lrl states and at most 217-1 transitions. Moreover, there are
at most lr(input symbols. Thus, for every DFA state constructed, we must
construct at most lr 1 new states, and each one takes at most O(lrl + 2(r 1) time.
The time to construct a DFA of s states is thus O(lrI2s).

In the common case where s is about lr(, the subset construction takes time
O(lrI3). However, in the worst case, as in Example 3.25, this time is 0((rl22Irl).
Figure 3.48 summarizes the options when one is given a regular expression r
and wants to produce a recognizer that will tell whether one or more strings x
are in L(r).

DFA typical case I O(JrI3) I O(lx()

AUTOMATON

NFA

DFA worst case (0(lr1~21'l) I O(lx1)

Figure 3.48: Initial cost and per-string-cost of various methods of recognizing
the language of a regular expression

INITIAL

O(H)

If the per-string cost dominates, as it does when we build a lexical analyzer,

PER STRING

O(b-1 1x1)

https://hemanthrajhemu.github.io

166 CHAPTER 3. LEXICAL ANALYSIS

we clearly prefer the DFA. However, in commands like grep, where we run the
automaton on only one string, we generally prefer the NFA. It is not until 1x1
approaches JrJ3 that we would even think about converting to a DFA.

There is, however, a mixed strategy that is about as good as the better of
the NFA and the DFA strategy for each expression r and string x. Start off
simulating the NFA, but remember the sets of NFA states (i.e., the DFA states)
and their transitions, as we compute them. Before processing the current set of
NFA states and the current input symbol, check to see whether we have already
computed this transition, and use the information if so.

3.7.6 Exercises for Section 3.7

Exercise 3.7.1 : Convert to DFA7s the NFA's of:

a) Fig. 3.26.

b) Fig. 3.29.

c) Fig. 3.30.

Exercise 3.7.2 : use Algorithm 3.22 to simulate the NFA7s:

a) Fig. 3.29.

b) Fig. 3.30.

on input aabb.

Exercise 3.7.3 : Convert the following regular expressions to deterministic
finite automata, using algorithms 3.23 and 3.20:

3.8 Design of a Lexical- Analyzer Generator

In this section we shall apply the techniques presented in Section 3.7 to see
how a lexical-analyzer generator such as Lex is architected. We discuss two
approaches, based on NFA's and DFA7s; the latter is essentially the implemen-
tation of Lex.

https://hemanthrajhemu.github.io

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR

3.8.1 The Structure of the Generated Analyzer

Figure 3.49 overviews the architecture of a lexical analyzer generated by Lex.
The program that serves as the lexical analyzer includes a fixed program that
simulates an automaton; at this point we leave open whether that automaton
is deterministic or nondeterministic. The rest of the lexical analyzer consists of
components that are created from the Lex program by Lex itself.

Input buffer

lexemeBegin forward

Automaton
simulator

Figure 3.49: A Lex program is turned into a transition table and actions, which
are used by a finite-automaton simulator

I 1

A

These components are:

Lex
program

1. A transition table for the automaton.

2. Those functions that are passed directly through Lex to the output (see
Section 3.5.2).

Actions

Lex
compiler

3. The actions from the input program, which appear as fragments of code
to be invoked at the appropriate time by the automaton simulator.

To construct the automaton, we begin by taking each regular-expression
pattern in the Lex program and converting it, using Algorithm 3.23, to an NFA.
We need a single automaton that will recognize lexemes matching any of the
patterns in the program, so we combine all the NFA's into one by introducing
a new start state with €-transitions to each of the start states of the NFA's Ni
for pattern pi. This construction is shown in Fig. 3.50.

w

Example 3.26 : We shall illustrate the ideas of this section with the following
simple, abstract example:

Transition
table

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.50: An NFA constructed from a Lex program

a { action Al for pattern pl)
abb { action A2 for pattern p2 }
a*b+ { action A3 for pattern pg }

Note that these three patterns present some conflicts of the type discussed
in Section 3.5.3. In particular, string abb matches both the second and third
patterns, but we shall consider it a lexeme for pattern pa, since that pattern
is listed first in the above Lex program. Then, input strings such as aabbb . . .
have many prefixes that match the third pattern. The Lex rule is to take the
longest, so we continue reading b's, until another a is met, whereupon we report
the lexeme to be the initial a's followed by as many b's as there are.

Figure 3.51 shows three NFA's that recognize the three patterns. The third
is a simplification of what would come out of Algorithm 3.23. Then, Fig. 3.52
shows these three NFA's combined into a single NFA by the addition of start
state 0 and three €-transitions.

3.8.2 Pattern Matching Based on NFA's

If the lexical analyzer simulates an NFA such as that of Fig. 3.52, then it must
read input beginning at the point on its input which we have referred to as
ZexerneBegin. As it moves the pointer called forward ahead in the input, it
calculates the set of states it is in at each point, following Algorithm 3.22.

Eventually, the NFA simulation reaches a point on the input where there
are no next states. At that point, there is no hope that any longer prefix of the
input would ever get the NFA to an accepting state; rather, the set of states
will always be empty. Thus, we are ready to decide on the longest prefix that
is a lexeme matching some pattern.

https://hemanthrajhemu.github.io

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR

Figure 3.51: NFA's for a, abb, and a*b+

Figure 3.52: Combined NFA

none

Figure 3.53: Sequence of sets of states entered when processing input aaba

https://hemanthrajhemu.github.io

170 CHAPTER 3. LEXICAL ANALYSIS

We look backwards in the sequence of sets of states, until we find a set that
includes one or more accepting states. If there are several accepting states in
that set, pick the one associated with the earliest pattern pi in the list from
the Lex program. Move the forward pointer back to the end of the lexeme, and
perform the action Ai associated with pattern pi.

Example 3.27 : Suppose we have the patterns of Example 3.26 and the input
begins aaba. Figure 3.53 shows the sets of states of the NFA of Fig. 3.52 that
we enter, starting with 6-closure of the initial state 0, which is (O , l , 3,7}, and
proceeding ftom there. After reading the fourth input symbol, we are in an
empty set of states, since in Fig. 3.52, there are no transitions out of state 8 on
input a.

Thus, we need to back up, looking for a set of states that includes an ac-
cepting state. Notice that, as indicated in Fig. 3.53, after reading a we are
in a set that includes state 2 and therefore indicates that the pattern a has
been matched. However, after reading aab, we are in state 8, which indicates
that a*b+ has been matched; prefix aab is the longest prefix that gets us to an
accepting state. We therefore select aab as the lexeme, and execute action A3,
which should include a return to the parser indicating that the token whose
pattern is ps = a*b+ has been found.

3.8.3 DFA's for Lexical Analyzers

Another architecture, resembling the output of Lex, is to convert the NFA
for all the patterns into an equivalent DFA, using the subset construction of
Algorithm 3.20. Within each DFA state, if there are one or more accepting
NFA states, determine the first pattern whose accepting state is represented,
and make that pattern the output of the DFA state.

Example 3.28: Figure 3.54 shows a transition diagram based on the DFA
that is constructed by the subset construction from the NFA in Fig. 3.52. The
accepting states are labeled by the pattern that is identified by that state. For
instance, the state {6,8} has two accepting states, corresponding to patterns
abb and a*b+. Since the former is listed first, that is the pattern associated
with state {6,8).

We use the DFA in a lexical analyzer much as we did the NFA. We simulate
the DFA until at some point there is no next state (or strictly speaking, the
next state is 0, the dead state corresponding to the empty set of NFA states).
At that point, we back up through the sequence of states we entered and, as
soon as we meet an accepting DFA state, we perform the action associated with
the pattern for that state.

Example 3.29: Suppose the DFA of Fig. 3.54 is given input abba. The se-
quence of states entered is 0137,247,58,68, and at the final a there is no tran-
sition out of state 68. Thus, we consider the sequence from the end, and in this
case, 68 itself is an accepting state that reports pattern pa = abb.

https://hemanthrajhemu.github.io

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR

a
start a

b

a*b+ abb a*b+

Figure 3.54: Transition graph for DFA handling the patterns a , abb, and a*b+

3.8.4 Implementing the Lookahead Operator

Recall from Section 3.5.4 that the Lex lookahead operator / in a Lex pattern
rl/r2 is sometimes necessary, because the pattern r l for a particular token may
need to describe some trailing context r 2 in order to correctly identify the actual
lexeme. When converting the pattern rl /rz to an NFA, we treat the / as if it
were e, so we do not actually look for a / on the input. However, if the NFA
recognizes a prefix xy of the input buffer as matching this regular expression,
the end of the lexeme is not where the NFA entered its accepting state. Rather
the end occurs when the NFA enters a state s such that

1. s has an €-transition on the (imaginary) /,

2. There is a path from the start state of the NFA to state s that spells out
x.

3. There is a path from state s to the accepting state that spells out y.

4. x is as long as possible for any xy satisfying conditions 1-3.

If there is only one c-transition state on the imaginary / in the NFA, then
the end of the lexeme occurs when this state is entered for the last time as the
following example illustrates. If the NFA has more than one c-transition state
on the imaginary /, then the general problem of finding the correct state s is
much more difficult.

Example 3.30 : An NFA for the pattern for the Fortran I F with lookahead,
from Example 3.13, is shown in Fig. 3.55. Notice that the c-transition from
state 2 to state 3 represents the lookahead operator. State 6 indicates the pres-
ence of the keyword IF. However, we find the lexeme IF by scanning backwards
to the last occurrence of state 2, whenever state 6 is entered.

https://hemanthrajhemu.github.io

172 CHAPTER 3. LEXICAL ANALYSIS

Dead States in DFA's

Technically, the automaton in Fig. 3.54 is'not quite a DFA. The reason
is that a DFA has a transition from every state on every input symbol in
its input alphabet. Here, we have omitted transitions to the dead state
0, and we have therefore omitted the transitions from the dead state to
itself on every input. Previous NFA-to-DFA examples did not have a way
to get from the start state to 0, but the NFA of Fig. 3.52 does.

However, when we construct a DFA for use in a lexical analyzer, it
is important that we treat the dead state differently, since we must know
when there is no longer any possibility of recognizing a longer lexeme.
Thus, we suggest always omitting transitions to the dead state and elimi-
nating the dead state itself. In fact, the problem is harder than it appears,
since an NFA-to-DFA construction may yield several states that cannot
reach any accepting state, and we must know when any of these states
have been reached. Section 3.9.6 discusses how to combine all these states
into one dead state, so their identification becomes easy. It is also inter-
esting to note that if we construct a DFA from a regular expression using
Algorithms 3.20 and 3.23, then the DFA will not have any states besides
0 that cannot lead to an accepting state.

Figure 3.55: NFA recognizing the keyword I F

3.8.5 Exercises for Section 3.8

Exercise 3.8.1 : Suppose we have two tokens: (1) the keyword i f , and (2) id-
entifiers, which are strings of letters other than i f . Show:

a) The NFA for these tokens, and

b) The DFA for these tokens.

Exercise 3.8.2 : Repeat Exercise 3.8.1 for tokens consisting of (1) the keyword
while, (2) the keyword when, and (3) identifiers consisting of strings of letters
and digits, beginning with a letter.

! Exercise 3.8.3: Suppose we were to revise the definition of a DFA to allow
zero or one transition out of each state on each input symbol (rather than
exactly one such transition, as in the standard DFA definition). Some regular

https://hemanthrajhemu.github.io

3.9. OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 173

expressions would then have smaller "DFA's" than they do under the standard
definition of a DFA. Give an example of one such regular expression.

!! Exercise 3.8.4 : Design an algorithm to recognize Lex-lookahead patterns of
the form r l / r2 , where r1 and r2 are regular expressions. Show how your algo-
rithm works on the following inputs:

3.9 Optimization of DFA-Based Pattern
Matchers

In this section we present three algorithms that have been used to implement
and optimize pattern matchers constructed from regular expressions.

1. The first algorithm is useful in a Lex compiler, because it constructs a
DFA directly from a regular expression, without constructing an interme-
diate NFA. The resulting DFA also may have fewer states than the DFA
constructed via an NFA.

2. The second algorithm minimizes the number of states of any DFA, by
combining states that have the same future behavior. The algorithm
itself is quite efficient, running in time O(n log n), where n is the number
of states of the DFA.

3. The third algorithm produces more compact representations of transition
tables than the standard, two-dimensional table.

3.9.1 Important States of an NFA
To begin our discussion of how to go directly from a regular expression to a
DFA, we must first dissect the NFA construction of Algorithm 3.23 and consider
the roles played by various states. We call a state of an NFA important if it has a
non-e out-transition. Notice that the subset construction (Algorithm 3.20) uses
only the important states in a set T when it computes 6-closure(move(~, a)), the
set of states reachable from T on input a. That is, the set of states move(s, a)
is nonempty only if state s is important. During the subset construction, two
sets of NFA states can be identified (treated as if they were the same set) if
they:

1. Have the same important states, and

2. Either both have accepting states or neither does.

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

When the NFA is constructed from a regular expression by Algorithm 3.23,
we can say more about the important states. The only important states are
those introduced as initial states in the basis part for a particular symbol posi-
tion in the regular expression. That is, each important state corresponds to a
particular operand in the regular expression.

The constructed NFA has only one accepting state, but this state, having
no out-transitions, is not an important state. By concatenating a unique right
endmarker # to a regular expression r, we give the accepting state for r a
transition on #, making it an important state of the NFA for (r)#. In other
words, by using the augmented regular expression (r)#, we can forget about
accepting states as the subset construction proceeds; when the construction is
complete, any state with a transition on # must be an accepting state.

The important states of the NFA correspond directly to the positions in
the regular expression that hold symbols of the alphabet. It is useful, as we
shall see, to present the regular expression by its syntax tree, where the leaves
correspond to operands and the interior nodes correspond to operators. An
interior node is called a cat-node, or-node, or star-node if it is labeled by the
concatenation operator (dot), union operator 1, or star operator *, respectively.
We can construct a syntax tree for a regular expression just as we did for
arithmetic expressions in Section 2.5.1.

Example 3.31 : Figure 3.56 shows the syntax tree for the regular expression
of our running example. Cat-nodes are represented by circles.

Figure 3.56: Syntax tree for (aJb)*abb#

Leaves in a syntax tree are labeled by e or by an alphabet symbol. To each
leaf not labeled e, we attach a unique integer. We refer to this integer as the

https://hemanthrajhemu.github.io

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 175

position of the leaf and also as a position of its symbol. Note that a symbol
can have several positions; for instance, a has positions 1 and 3 in Fig. 3.56.
The positions in the syntax tree correspond to the important states of the
constructed NFA.

Example 3.32 : Figure 3.57 shows the NFA for the same regular expression as
Fig. 3.56, with the important states numbered and other states represented by
letters. The numbered states in the NFA and the positions in the syntax tree
correspond in a way we shall soon see.

Figure 3.57: NFA constructed by Algorithm 3.23 for (a (b)*abb#

3.9.2 Functions Computed From the Syntax Tree

To construct a DFA directly from a regular expression, we construct its syntax
tree and then compute four functions: nullable, firstpos, lastpos, and followpas,
defined as follows. Each definition refers to the syntax tree for a particular
augmented regular expression (r) # .

1. nullable(n) is true for a syntax-tree node n if and only if the subexpression
represented by n has E in its language. That is, the subexpression can be
"made null" or the empty string, even though there may be other strings
it can represent as well.

2. firstpos(n) is the set of positions in the subtree rooted at n that corre-
spond to the first symbol of at least one string in the language of the
subexpression rooted at n.

3. lastpos(n) is the set of positions in the subtree rooted at n that corre-
spond to the last symbol of at least one string in the language of the
subexpression rooted at n.

https://hemanthrajhemu.github.io

176 CHAPTER 3. LEXICAL ANALYSIS

4. followpos(p), for a position p, is the set of positions q in the entire syntax
tree such that there is some string x = alaz - . a, in L ((r)#) such that
for some i, there is a way to explain the membership of x in ~ ((r) #) by
matching ai to position p of the syntax tree and ai+l to position q.

Example 3.33 : Consider the cat-node n in Fig. 3.56 that corresponds to the
expression (alb)*a. We claim nullable(n) is false, since this node generates all
strings of a's and b's ending in an a; it does not generate E . On the other hand,
the star-node below it is nullable; it generates c along with all other strings of
a's and b's.

firstpos(n) = {1,2,3). In a typical generated string like aa, the first position
of the string corresponds to position 1 of the tree, and in a string like ba, the
first position of the string comes from position 2 of the tree. However, when
the string generated by the expression of node n is just a , then this a comes
from position 3.

lastpos(n) = (3). That is, no matter what string is generated from the
expression of node n, the last position is the a from position 3 of the tree.

followpos is trickier to compute, but we shall see the rules for doing so
shortly. Here is an example of the reasoning: followpos(1) = {1,2,3). Consider
a string . . ac . . . , where the c is either a or b, and the a comes from position 1.
That is, this a is one of those generated by the a in expression (a1 b) * . This
a could be followed by another a or b coming from the same subexpression, in
which case c comes from position 1 or 2. It is also possible that this a is the
last in the string generated by (alb)*, in which case the symbol c must be the
a that comes from position 3. Thus, 1, 2, and 3 are exactly the positions that
can follow position 1.

3.9.3 Computing nullable, firstpos, and lastpos

We can compute nullable, firstpos, and lastpos by a straightforward recursion
on the height of the tree. The basis and inductive rules for nullable and firstpos
are summarized in Fig. 3.58. The rules for lastpos are essentially the same as
for firstpos, but the roles of children cl and cz must be swapped in the rule for
a cat-node.

Example 3.34 : Of all the nodes in Fig. 3.56 only the star-node is nullable.
We note from the table of Fig. 3.58 that none of the leaves are nullable, because
they each correspond to non-E operands. The or-node is not nullable, because
neither of its children is. The star-node is nullable, because every star-node is
nullable. Finally, each of the cat-nodes, having at least one nonnullable child,
is not nullable.

The computation of firstpos and lastpos for each of the nodes is shown in
Fig. 3.59, with firstpos(n) to the left of node n, and lastpos(n) to its right. Each
of the leaves has only itself for firstpos and lastpos, as required by the rule for
non-c leaves in Fig. 3.58. For the or-node, we take the union of firstpos at the

https://hemanthrajhemu.github.io

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 177

Figure 3.58: Rules for computing nullable and firstpos

children and do the same for lastpos. The rule for the star-node says that we
take the value of firstpos or lastpos at the one child of that node.

Yaw, consider the lowest cat-node, which we shall call n. To compute
firstpos(n), we first consider whether the left operand is nullable, which it is
in this case. Therefore, firstpos for n is the union of firstpos for each of its
children, that is {I, 2) U (3) = {1,2,3). The rule for lastpos does not ap-
pear explicitly in Fig. 3.58, but as we mentioned, the rules are the same as
for firstpos, with the children interchanged. That is, to compute lastpos(n) we
must ask whether its right child (the leaf with position 3) is nullable, which it
is not. Therefore, lastpos(n) is the same as lastpos of the right child, or {3).
17

firstpos(n)

8
{i>

firstpos(cl) U firstpos(c2)

if (nullable(cl))
firstpos(cl) U firstpos(c2)

else firstpos(cl)

firstpos(c1)

NODE n

A leaf labeled 6

A leaf with position i

An or-node n = cl /c2

A cat-node n = ~ 1 ~ 2

A star-node n = cl*

3.9.4 Computing followpos

nullable(n)

true

false

nullable(cl) or
nu1 1 able (c2)

nullable(cl) and
nu1 1 able (c2)

true

Finally, we need to see how to compute followpos. There are only two ways
that a position of a regular expression can be made to follow another.

1. If n is a cat-node with left child cl and right child c2, then for every
position i in lastpos(cl), all positions in firstpos(c2) are in followpos(i).

2. If n is a star-node, and i is a position in lastpos(n), then all positions in
firstpos(n) are in followpos(i) .

Example 3.35 : Let us continue with our running example; recall that firstpos
and lastpos were computed in Fig. 3.59. Rule 1 for followpos requires that we
look at each cat-node, and put each position in firstpos of its right child in
followpos for each position in lastpos of its left child. For the lowest cat-node in
Fig. 3.59, that rule says position 3 is in followpos(l) and followpos(2). The next
cat-node above says that 4 is in followpos(3), and the remaining two cat-nodes
give us 5 in followpos(4) and 6 in followpos(5).

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.59: firstpos and lastpos for nodes in the syntax tree for (alb)*abb#

We must also apply rule 2 to the star-node. That rule tells us positions 1 and
2 are in both followpos(1) and followpos(2), since both firstpas and lastpos for
this node are {1,2). The complete sets followpos are summarized in Fig. 3.60.

Figure 3.60: The function followpos

We can represent the function followpos by creating a directed graph with
a node for each position and an arc from position i to position j if and only if
j is in followpos(i). Figure 3.61 shows this graph for the function of Fig. 3.60.

It should come as no surprise that the graph for followpos is almost an NFA
without €-transitions for the underlying regular expression, and would become
one if we:

1. Make all positions in firstpos of the root be initial states,

2. Label each arc from i to j by the symbol at position i, and

https://hemanthrajhemu.github.io

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS

Figure 3.61: Directed graph for the function followpos

3. Make the position associated with endmarker # be the only accepting
state.

3.9.5 Converting a Regular Expression Directly to a DFA

Algorithm 3.36 : Construction of a DFA from a regular expression r .

INPUT: A regular expression r .

OUTPUT: A DFA D that recognizes L(r) .

METHOD:

1. Construct a syntax tree T from the augmented regular expression (r)# .

2. Compute nullable, firstpos, lastpos, and followpos for T , using the methods
of Sections 3.9.3 and 3.9.4.

3. Construct Dstates, the set of states of DFA D, and Dtran, the transition
function for D, by the procedure of Fig. 3.62. The states of D are sets of
positions in T. Initially, each state is "unmarked," and a state becomes
"marked" just before we consider its out-transitions. The start state of
D is firstpos(no), where node no is the root of T. The accepting states
are those containing the position for the endmarker symbol #.

Example 3.37: We can now put together the steps of our running example
to construct a DFA for the regular expression r = (aJb)*abb. The syntax tree
for (r)# appeared in Fig. 3.56. We observed that for this tree, nullable is true
only for the star-node, and we exhibited firstpos and lastpos in Fig. 3.59. The
values of followpos appear in Fig. 3.60.

The value of firstpos for the root of the tree is (1,2,3), so this set is the
start state of D. Call this set of states A. We must compute Dtran[A, a]
and Dtran[A, b]. Among the positions of A, 1 and 3 correspond to a, while 2
corresponds to b. Thus, Dtran[A, a] = followpos(l) U followpos(3) = {I, 2,3,4),

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

initialize Dstates to contain only the unmarked state firstpos(no),
where no is the root of syntax tree T for (r)#;

while (there is an unmarked state S in Dstates) {
mark S;
for (each input symbol a) {

let U be the union of followpos(p) for all p
in S that correspond to a;

if (U is not in Dstates)
add U as an unmarked state to Dstates;

Figure 3.62: Construction of a DFA directly from a regular expression

and Dtran[A, b] = followpos(2) = {1,2,3). The latter is state A, and so does
not have to be added to Dstates, but the former, B = {1,2,3,4}, is new, so we
add it to Dstates and proceed to compute its transitions. The complete DFA is
shown in Fig. 3.63.

start

Figure 3.63: DFA constructed from Fig. 3.57

3.9.6 Minimizing the Number of States of a DFA

There can be many DFA's that recognize the same language. For instance, note
that the DFA's of Figs. 3.36 and 3.63 both recognize language ~ ((a l b) * a b b) .
Not only do these automata have states with different names, but they don't
even have the same number of states. If we implement a lexical analyzer as
a DFA, we would generally prefer a DFA with as few states as possible, since
each state requires entries in the table that describes the lexical analyzer.

The matter of the names of states is minor. We shall say that two automata
are the same up to state names if one can be transformed into the other by doing
nothing more than changing the names of states. Figures 3.36 and 3.63 are not
the same up to state names. However, there is a close relationship between the

https://hemanthrajhemu.github.io

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 181

states of each. States A and C of Fig. 3.36 are actually equivalent, in the sense
that neither is an accepting state, and on any input they transfer to the same
state - to B on input a and to C on input b. Moreover, both states A and C
behave like state 123 of Fig. 3.63. Likewise, state B of Fig. 3.36 behaves like
state 1234 of Fig. 3.63, state D behaves like state 1235, and state E behaves
like state 1236.

It turns out that there is always a unique (up to state names) minimum
state DFA for any regular language. Moreover, this minimum-state DFA can be
constructed from any DFA for the same language by grouping sets of equivalent
states. In the case of L ((a1 b)*abb) , Fig. 3.63 is the minimum-state DFA, and it
can be constructed by partitioning the states of Fig. 3.36 as {A, C){B){D){E).

In order to understand the algorithm for creating the partition of states
that converts any DFA into its minimum-state equivalent DFA, we need to
see how input strings distinguish states from one another. We say that string
x distinguishes state s from state t if exactly one of the states reached from
s and t by following the path with label x is an accepting state. State s is
distinguishable from state t if there is some string that distinguishes them.

Example 3.38 : The empty string distinguishes any accepting state from any
nonaccepting state. In Fig. 3.36, the string bb distinguishes state A from state
B, since bb takes A to a nonaccepting state C, but takes B to accepting state
E.

The state-minimization algorithm works by partitioning the states of a DFA
into groups of states that cannot be distinguished. Each group of states is then
merged into a single state of the minimum-state DFA. The algorithm works
by maintaining a partition, whose groups are sets of states that have not yet
been distinguished, while any two states from different groups are known to be
distinguishable. When the partition cannot be refined further by breaking any
group into smaller groups, we have the minimum-state DFA.

Initially, the partition consists of two groups: the accepting states and the
nonaccepting states. The fundamental step is to take some group of the current
partition, say A = {sl , s2, . . . , sk), and some input symbol a, and see whether
a can be used to distinguish between any states in group A. We examine the
transitions from each of sl , s2, . . . , sk on input a , and if the states reached fall
into two or more groups of the current partition, we split A into a collection of
groups, so that si and s j are in the same group if and only if they go to the
same group on input a. We repeat this process of splitting groups, until for
no group, and for no input symbol, can the group be split further. The idea is
formalized in the next algorithm.

Algorithm 3.39 : Minimizing the number of states of a DFA.

INPUT: A DFA D with set of states S, input alphabet C, state state so, and
set of accepting states F.

OUTPUT: A DFA D' accepting the same language as D and having as few
states as possible.

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Why the State-Minimization Algorithm Works

We need to prove two things: that states remaining in the same group in
IIfinal are indistinguishable by any string, and that states winding up in
different groups are distinguishable. The first is an induction on i that
if after the ith iteration of step (2) of Algorithm 3.39, s and t are in the
same group, then there is no string of length i or less that distinguishes
them. We shall leave the details of the induction to you.

The second is an induction on i that if states s and t are placed in
different groups at the ith iteration of step (2), then there is a string that
distinguishes them. The basis, when s and t are placed in different groups
of the initial partition, is easy: one must be accepting and the other not,
so c distinguishes them. For the induction, there must be an input a and
states p and q such that s and t go to states p and q, respectively, on input
a. Moreover, p and q must already have been placed in different groups.
Then by the inductive hypothesis, there is some string x that distinguishes
p from q. Therefore, ax distinguishes s from t.

METHOD:

1. Start with an initial partition II with two groups, F and S - F, the
accepting and nonaccepting states of D.

2. Apply the procedure of Fig. 3.64 to construct a new partition anew.

initially, let IInew = II;
for (each group G of II) {

partition G into subgroups such that two states s and t
are in the same subgroup if and only if for all
input symbols a , states s and t have transitions on a
to states in the same group of 11;

/* at worst, a state will be in a subgroup by itself */
replace G in IInew by the set of all subgroups formed;

1

Figure 3.64: Construction of IInew

3. If IIne, = II, let IIfinal = ll and continue with step (4). Otherwise, repeat
step (2) with IInew in place of II.

4. Choose one state in each group of IIfinal as the representative for that
group. The representatives will be the states of the minimum-state DFA
D'. The other components of D' are constructed as follows:

https://hemanthrajhemu.github.io

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 183

Eliminating the Dead State

The minimization algorithm sometimes produces a DFA with one dead
state - one that is not accepting and transfers to itself on each input
symbol. This state is technically needed, because a DFA must have a
transition from every state on every symbol. However, as discussed in
Section 3.8.3, we often want to know when there is no longer any possibility
of acceptance, so we can establish that the proper lexeme has already been
seen. Thus, we may wish to eliminate the dead state and use an automaton
that is missing some transitions. This automaton has one fewer state than
the minimum-state DFA, but is strictly speaking not a DFA, because of
the missing transitions to the dead state.

(a) The state state of Dl is the representative of the group containing
the start state of D.

(b) The accepting states of D' are the representatives of those groups
that contain an accepting state of D. Note that each group contains
either only accepting states, or only nonaccepting states, because we
started by separating those two classes of states, and the procedure
of Fig. 3.64 always forms new groups that are subgroups of previously
constructed groups.

(c) Let s be the representative of some group G of IIfinal, and let the
transition of D from s on input a be to state t. Let r be the rep-
resentative of t's group H. Then in Dl, there is a transition from s
to r on input a. Note that in D , every state in group G must go to
some state of group H on input a, or else, group G would have been
split according to Fig. 3.64.

Example 3.40 : Let us reconsider the DFA of Fig. 3.36. The initial partition
consists of the two groups {A, B, C, D}{E}, which are respectively the nonac-
cepting states and the accepting states. To construct II,,,, the procedure of
Fig. 3.64 considers both groups and inputs a and b. The group {E} cannot be
split, because it has only one state, so (E} will remain intact in IT,,,.

The other group {A, B , C, D} can be split, so we must consider the effect of
each input symbol. On input a , each of these states goes to state B , so there
is no way to distinguish these states using strings that begin with a. On input
b, states A, B , and C go to members of group {A, B , C, D}, while state D goes
to E, a member of another group. Thus, in IInew, group {A, B , C, D} is split
into {A, B, C}{D}, and IInew for this round is {A, B, C){D){E}.

https://hemanthrajhemu.github.io

184 CHAPTER 3. LEXICAL ANALYSIS

In the next round, we can split {A, B, C} into {A, C}{B}, since A and
C each go to a member of {A, B, C) on input b, while B goes to a member of
another group, {D}. Thus, after the second round, It,,, = {A, C} {B} {D} {E).
For the third round, we cannot split the one remaining group with more than
one state, since A and C each go to the same state (and therefore to the same
group) on each input. We conclude that ITfinal = {A, C}{B){D){E).

Now, we shall construct the minimum-state DFA. It has four states, corre-
sponding to the four groups of ITfinal, and let us pick A, B, D, and E as the
representatives of these groups. The initial state is A, and the only accepting
state is 23. Figure 3.65 shows the transition function for the DFA. For instance,
the transition from state E on input b is to A, since in the original DFA, E goes
to C on input b, and A is the representative of C7s group. For the same reason,
the transition on b from state A is to A itself, while all other transitions are as
in Fig. 3.36.

Figure 3.65: Transition table of minimum-state DFA

3.9.7 State Minimization in Lexical Analyzers

To apply the state minimization procedure to the DFA7s generated in Sec-
tion 3.8.3, we must begin Algorithm 3.39 with the partition that groups to-
gether all states that recognize a particular token, and also places in one group
all those states that do not indicate any token. An example should make the
extension clear.

Example 3.41 : For the DFA of Fig. 3.54, the initial partition is

That is, states 0137 and 7 belong together because neither announces any token.
States 8 and 58 belong together because they both announce token a*b+. Note
that we have added a dead state 8, which we suppose has transitions to itself
on inputs a and b. The dead state is also the target of missing transitions on a
from states 8, 58, and 68.

We must split 0137 from 7, because they go to different groups on input a.
We also split 8 from 58, because they go to different groups on b. Thus, all
states are in groups by themselves, and Fig. 3.54 is the minimum-state DFA

https://hemanthrajhemu.github.io

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 185

recognizing its three tokens. Recall that a DFA serving as a lexical analyzer
will normally drop the dead state, while we treat missing transitions as a signal
to end token recognition.

3.9.8 Trading Time for Space in DFA Simulation

The simplest and fastest way to represent the transition function of a DFA is
a two-dimensional table indexed by states and characters. Given a state and
next input character, we access the array to find the next state and any special
action we must take, e.g., returning a token to the parser. Since a typical lexical
analyzer has several hundred states in its DFA and involves the ASCII alphabet
of 128 input characters, the array consumes less than a megabyte.

However, compilers are also appearing in very small devices, where even
a megabyte of storage may be too much. For such situations, there are many
methods that can be used to compact the transition table. For instance, we can
represent each state by a list of transitions - that is, character-state pairs -
ended by a default state that is to be chosen for any input character not on the
list. If we choose as the default the most frequently occurring next state, we
can often reduce the amount of storage needed by a large factor.

There is a more subtle data structure that allows us to combine the speed
of array access with the compression of lists with defaults. We may think of
this structure as four arrays, as suggested in Fig. 3.66.5 The base array is used
to determine the base location of the entries for state s , which are located in
the next and check arrays. The default array is used to determine an alternative
base location if the check array tells us the one given by base[s] is invalid.

default base next check

Figure 3.66: Data structure for representing transition tables

To compute nextState(s, a), the transition for state s on input a, we examine
the next and check entries in location 1 = base[s] +a, where character a is treated
as an integer, presumably in the range 0 to 127. If check[l] = s , then this entry

-

5 ~ n practice, there would be another array indexed by states to give the action associated
with that state, if any.

https://hemanthrajhemu.github.io

186 CHAPTER 3. LEXICAL ANALYSIS

is valid, and the next state for state s on input a is next[l]. If check[l] # s, then
we determine another state t = default[s] and repeat the process as if t were
the current state. More formally, the function nextstate is defined as follows:

int nextState(s, a) {
if (check[base[s] + a] = s) return next[base[s] + a];
else return nextState(default[s], a);

1
The intended use of the structure of Fig. 3.66 is to make the next-check

arrays short by taking advantage of the similarities among states. For instance,
state t , the default for state s , might be the state that says "we are working on
an identifier," like state 10 in Fig. 3.14. Perhaps state s is entered after seeing
the letters t h , which are a prefix of keyword then as well as potentially being
the prefix of some lexeme for an identifier. On input character e, we must go
from state s to a special state that remembers we have seen the, but otherwise,
state s behaves as t does. Thus, we set check[base[s] + el to s (to confirm that
this entry is valid for s) and we set next[base[s] + el to the state that remembers
the. Also, default[s] is set to t.

While we may not be able to choose base values so that no next-check entries
remain unused, experience has shown that the simple strategy of assigning base
values to states in turn, and assigning each base[s] value the lowest integer so
that the special entries for state s are not previously occupied utilizes little
more space than the minimum possible.

3.9.9 Exercises for Section 3.9

Exercise 3.9.1 : Extend the table of Fig. 3.58 to include the operators (a) ?
and (b) +.

Exercise 3.9.2 : Use Algorithm 3.36 to convert the regular expressions of Ex-
ercise 3.7.3 directly to deterministic finite automata.

! Exercise 3.9.3 : We can prove that two regular expressions are equivalent by
showing that their minimum-state DFA's are the same up to renaming of states.
Show in this way that the following regular expressions: (a[b)*, (a* /b*)*, and
((cla)b*)* are all equivalent. Note: You may have constructed the DFA7s for
these expressions in response to Exercise 3.7.3.

! Exercise 3.9.4 : Construct the minimum-state DFA7s for the following regular
expressions:

https://hemanthrajhemu.github.io

3.20. SUMMARY OF CHAPTER 3

Do you see a pattern?

!! Exercise 3.9.5 : To make formal the informal claim of Example 3.25, show
that any deterministic finite automaton for the regular expression

where (alb) appears n - 1 times at the end, must have at least 2" states. Hint:
Observe the pattern in Exercise 3.9.4. What condition regarding the history of
inputs does each state represent?

3.10 Summary of Chapter 3

+ Tokens. The lexical analyzer scans the source program and produces as
output a sequence of tokens, which are normally passed, one at a time to
the parser. Some tokens may consist only of a token name while others
may also have an associated lexical value that gives information about
the particular instance of the token that has been found on the input.

+ Lexernes. Each time the lexical analyzer returns a token to the parser,
it has an associated lexeme - the sequence of input characters that the
token represents.

+ Buffering. Because it is often necessary to scan ahead on the input in
order to see where the next lexeme ends, it is usually necessary for the
lexical analyzer to buffer its input. Using a pair of buffers cyclicly and
ending each buffer's contents with a sentinel that warns of its end are two
techniques that accelerate the process of scanning the input.

+ Patterns. Each token has a pattern that describes which sequences of
characters can form the lexemes corresponding to that token. The set
of words, or strings of characters, that match a given pattern is called a
language.

+ Regular Expressions. These expressions are commonly used to describe
patterns. Regular expressions are built from single characters, using
union, concatenation, and the Kleene closure, or any-number-of, oper-
ator.

+ Regular Definitions. Complex collections of languages, such as the pat-
terns that describe the tokens of a programming language, are often de-
fined by a regular definition, which is a sequence of statements that each
define one variable to stand for some regular expression. The regular ex-
pression for one variable can use previously defined variables in its regular
expression.

https://hemanthrajhemu.github.io

188 CHAPTER 3. LEXICAL ANALYSIS

+ Extended Regular-Expression Notation. A number of additional opera-
tors may appear as shorthands in regular expressions, to make it easier
to express patterns. Examples include the + operator (one-or-more-of),
? (zero-or-one-of), and character classes (the union of the strings each
consisting of one of the characters).

+ Transition Diagrams. The behavior of a lexical analyzer can often be
described by a transition diagram. These diagrams have states, each
of which represents something about the history of the characters seen
during the current search for a lexeme that matches one of the possible
patterns. There are arrows, or transitions, from one state to another,
each of which indicates the possible next input characters that cause the
lexical analyzer to make that change of state.

+ Finite Automata. These are a formalization of transition diagrams that
include a designation of a start state and one or more accepting states,
as well as the set of states, input characters, and transitions among
states. Accepting states indicate that the lexeme for some token has been
found. Unlike transition diagrams, finite automata can make transitions
on empty input as well as on input characters.

+ Deterministic Finite Automata. A DFA is a special kind of finite au-
tomaton that has exactly one transition out of each state for each input
symbol. Also, transitions on empty input are disallowed. The DFA is
easily simulated and makes a good implementation of a lexical analyzer,
similar to a transition diagram.

+ Nondeterministic Finite Automata. Automata that are not DFA7s are
called nondeterministic. NFA's often are easier to design than are DFA's.
Another possible architecture for a lexical analyzer is to tabulate all the
states that NFA7s for each of the possible patterns can be in, as we scan
the input characters.

+ Conversion Among Pattern Representations. It is possible to convert any
regular expression into an NFA of about the same size, recognizing the
same language as the regular expression defines. Further, any NFA can
be converted to a DFA for the same pattern, although in the worst case
(never encountered in common programming languages) the size of the
automaton can grow exponentially. It is also possible to convert any non-
deterministic or deterministic finite automaton into a regular expression
that defines the same language recognized by the finite automaton.

+ Lex. There is a family of software systems, including Lex and Flex,
that are lexical-analyzer generators. The user specifies the patterns for
tokens using an extended regular-expression notation. Lex converts these
expressions into a lexical analyzer that is essentially a deterministic finite
automaton that recognizes any of the patterns.

https://hemanthrajhemu.github.io

3.11. REFERENCES FOR CHAPTER 3 189

+ Mnimixat ion of Finite Automata. For every DFA there is a minimum-
st ate D M accepting the same language. Moreover, the minimum-state
DFA for a given language is unique except for the names given to the
various states.

3.11 References for Chapter 3

Regular expressions were first developed by Kleene in the 1950's [9]. Kleene was
interested in describing the events that could be represented by McCullough and
Pitts' [I 21 finite-automaton model of neural activity. Since that time regular
expressions and finite automata have become widely used in computer science.

Regular expressions in various forms were used from the outset in many
popular Unix utilities such as awk, ed, egrep, grep, lex , sed, sh, and v i . The
IEEE 1003 and ISO/IEC 9945 standards documents for the Portable Operating
System Interface (POSIX) define the POSIX extended regular expressions which
are similar to the original Unix regular expressions with a few exceptions such
as mnemonic representations for character classes. Many scripting languages
such as Perl, Python, and Tcl have adopted regular expressions but often with
incompatible extensions.

The familiar finite-automaton model and the minimization of finite au-
tomata, as in Algorithm 3.39, come from Huffman [6] and Moore [14]. Non-
deterministic finite automata were first proposed by Rabin and Scott [15]; the
subset construction of Algorithm 3.20, showing the equivalence of deterministic
and nondeterministic finite automata, is from there.

McNaughton and Yamada [13] first gave an algorithm to convert regular
expressions directly to deterministic finite automat a. Algorithm 3.36 described
in Section 3.9 was first used by Aho in creating the Unix regular-expression
matching tool egrep. This algorithm was also used in the regular-expression
pattern matching routines in awk [3]. The approach of using nondeterministic
automata as an intermediary is due Thompson [17]. The latter paper also con-
tains the algorithm for the direct simulation of nondeterministic finite automata
(Algorithm 3.22), which was used by Thompson in the text editor QED.

Lesk developed the first version of Lex and then Lesk and Schmidt created
a second version using Algorithm 3.36 [lo]. Many variants of Lex have been
subsequently implemented. The GNU version, Flex, can be downloaded, along
with documentation at [4]. Popular Java versions of Lex include JFlex (71 and
JLex [8].

The KMP algorithm, discussed in the exercises to Section 3.4 just prior to
Exercise 3.4.3, is from [l l] . Its generalization to many keywords appears in [2]
and was used by Aho in the first implementation of the Unix utility f grep.

The theory of finite automata and regular expressions is covered in [5]. A
survey of string-matching techniques is in [I].

1. Aho, A. V., "Algorithms for finding patterns in strings," in Handbook of
Theoretical Computer Science (J. van Leeuwen, ed.), Vol. A, Ch. 5, MIT

https://hemanthrajhemu.github.io

CHAPTER 3. LEXICAL ANALYSIS

Press, Cambridge, 1990.

2. Aho, A. V. and M. J . Corasick, "Efficient string matching: an aid to
bibliographic search," Comm. AC1M18:6 (1975), pp. 333-340.

3. Aho, A. V., B. W. Kernighan, and P. J . Weinberger, The AWK Program-
ming Language, Addison-Wesley, Boston, MA, 1988.

4. Flex home page h t t p : //www .gnu. org/sof tware/f lex / , Free Software
Foundation.

5. Hopcroft, J . E., R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, Boston MA, 2006.

6. Huffman, D. A., "The synthesis of sequential machines," J. Franklin Inst.
257 (1954), pp. 3-4, 161, 190, 275-303.

7. JFlex home page h t t p : // j f l ex . de/ .

8. h t t p : //www. c s .princeton. edu/"appel/modern/java/J~ex .

9. Kleene, S. C., "Representation of events in nerve nets," in [16], pp. 3-40.

10. Lesk, M. E., "Lex - a lexical analyzer generator," Computing Science
Tech. Report 39, Bell Laboratories, Murray Hill, NJ, 1975. A similar
document with the same title but with E. Schmidt as a coauthor, appears
in Vol. 2 of the Unix Programmer's Manual, Bell laboratories, Murray Hill
NJ,1975; see http://dinosaur.compilertools.net/lex/index.html.

11. Knuth, D. E., J . H. Morris, and V. R. Pratt, "Fast pattern matching in
strings," SIAM J. Computing 6:2 (1977), pp. 323-350.

12. McCullough, W. S. and W. Pitts, "A logical calculus of the ideas imma-
nent in nervous activity," Bull. Math. Biophysics 5 (1943), pp. 115-133.

13. McNaughton, R. and H. Yamada, "Regular expressions and state graphs
for automata," IRE Trans. on Electronic Computers EC-9:l (1960), pp.
38-47.

14. Moore, E. F., "Gedanken experiments on sequential machines," in [16],
pp. 129-153.

15. Rabin, M. 0. and D. Scott, "Finite automata and their decision prob-
lems," IBM J. Res. and Devel. 3:2 (1959), pp. 114-125.

16. Shannon, C. and J . McCarthy (eds.), Automata Studies, Princeton Univ.
Press, 1956.

17. Thompson, K., "Regular expression search algorithm," Comm. A CM 11:6
(1968), pp. 419-422.

https://hemanthrajhemu.github.io

