

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

TABLE OF CONTENTS

3.7.1 Conversion of an NFA to a DFA 152
3.7.2 Simulation of an NFA . 156
3.7.3 Efficiency of NFA Simulation 157
3.7.4 Construction of an NFA from a Regular Expression . . . 159
3.7.5 Efficiency of String-Processing Algorithms 163
3.7.6 Exercises for Section 3.7 166

3.8 Design of a Lexical-Analyzer Generator 166
3.8.1 The Structure of the Generated Analyzer 167
3.8.2 Pattern Matching Based on NFA's 168
3.8.3 DFA's for Lexical Analyzers 170
3.8.4 Implementing the Lookahead Operator 171
3.8.5 Exercises for Section 3.8 172

3.9 Optimization of DFA-Based Pattern Matchers 173
3.9.1 Important States of an NFA 173
3.9.2 Functions Computed From the Syntax Tree 175
3.9.3 Computing nullable, firstpos, and lastpos 176

. 3.9.4 Computing followpos 177
. . . 3.9.5 Converting a Regular Expression Directly to a DFA 179

3.9.6 Minimizing the Number of States of a DFA 180
. 3.9.7 State Minimization in Lexical Analyzers 184

. 3.9.8 Trading Time for Space in DFA Simulation 185
. 3.9.9 Exercises for Section 3.9 186

. 3.10 Summary of Chapter 3 187
. 3.11 References for Chapter 3 189

4 Syntax Analysis 191
. 4.1 Introduction 192

. 4.1.1 The Role of the Parser 192
. 4.1.2 Representative Grammars 193

. 4.1.3 Syntax Error Handling 194
. 4.1.4 Error-Recovery Strategies 195

. 4.2 Context-Free Grammars 197
4.2.1 The Formal Definition of a Context-Free Grammar 197

. 4.2.2 Notational Conventions 198
. 4.2.3 Derivations 199

. 4.2.4 Parse Trees and Derivations 201
. 4.2.5 Ambiguity 203

. . . . 4.2.6 Verifying the Language Generated by a Grammar 204
. . . 4.2.7 Context-Free Grammars Versus Regular Expressions 205

. 4.2.8 Exercises for Section 4.2 206
. 4.3 Writing a Grammar 209

. 4.3.1 Lexical Versus Syntactic Analysis 209
. 4.3.2 Eliminating Ambiguity 210

. 4.3.3 Elimination of Left Recursion 212
. 4.3.4 Left Factoring 214

https://hemanthrajhemu.github.io

...
TABLE OF CONTENTS xlll

4.3.5 Non-Context-Free Language Constructs 215
. 4.3.6 Exercises for Section 4.3 216

. 4.4 Top-Down Parsing 217
. 4.4.1 Recursive-Descent Parsing 219

. 4.4.2 FIRST and FOLLOW 220
. 4.4.3 LL(1) Grammars 222

. 4.4.4 Nonrecursive Predictive Parsing 226
. 4.4.5 Error Recovery in Predictive Parsing 228

. 4.4.6 Exercises for Section 4.4 231
. 4.5 Bottom-Up Parsing 233
. 4.5.1 Reductions 234

. 4.5.2 Handle Pruning 235
. 4.5.3 Shift-Reduce Parsing 236

. 4.5.4 Conflicts During Shift-Reduce Parsing 238
. 4.5.5 Exercises for Section 4.5 240

. 4.6 Introduction to LR Parsing: Simple LR 241
. 4.6.1 Why LR Parsers? 241

. 4.6.2 Items and the LR(0) Automaton 242
. 4.6.3 The LR-Parsing Algorithm 248

. 4.6.4 Constructing SLR-Parsing Tables 252
4.6.5 Viable Prefixes . 256
4.6.6 Exercisesfor Section 4.6 257

4.7 More Powerful LR Parsers . 259
4.7.1 Canonical LR(1) Items . 260
4.7.2 Constructing LR(1) Sets of Items 261
4.7.3 Canonical LR(1) Parsing Tables 265
4.7.4 Constructing LALR Parsing Tables 266
4.7.5 Efficient Construction of LALR Parsing Tables 270
4.7.6 Compaction of LR Parsing Tables 275
4.7.7 Exercises for Section 4.7 277

4.8 Using Ambiguous Grammars . 278
4.8.1 Precedence and Associativity to Resolve Conflicts 279
4.8.2 The "Dangling-Else" Ambiguity 281
4.8.3 Error Recovery in LR Parsing 283
4.8.4 Exercises for Section 4.8 285

4.9 Parser Generators . 287
4.9.1 The Parser Generator Yacc 287
4.9.2 Using Yacc with Ambiguous Grammars 291
4.9.3 Creating Yacc Lexical Analyzers with Lex 294
4.9.4 Error Recovery in Yacc 295
4.9.5 Exercises for Section 4.9 297

4.10 Summary of Chapter 4 . 297
4.11 References for Chapter 4 . 300

https://hemanthrajhemu.github.io

Chapter 4

Syntax Analysis

This chapter is devoted to parsing methods that are typically used in compilers.
We first present the basic concepts, then techniques suitable for hand implemen-
tation, and finally algorithms that have been used in automated tools. Since
programs may contain syntactic errors, we discuss extensions of the parsing
methods for recovery from common errors.

By design, every programming language has precise rules that prescribe the
syntactic structure of well-formed programs. In C, for example, a program is
made up of functions, a function out of declarations and statements, a statement
out of expressions, and so on. The syntax of programming language constructs
can be specified by context-free grammars or BNF (Backus-Naur Form) nota-
tion, introduced in Section 2.2. Grammars offer significant benefits for both
language designers and compiler writers.

A grammar gives a precise, yet easy-to-understand, syntactic specification
of a programming language.

From certain classes of grammars, we can construct automatically an effi-
cient parser that determines the syntactic structure of a source program.
As a side benefit, the parser-construction process can reveal syntactic
ambiguities and trouble spots that might have slipped through the initial
design phase of a language.

The structure imparted to a language by a properly designed grammar
is useful for translating source programs into correct object code and for
detecting errors.

A grammar allows a language to be evolved or developed iteratively, by
adding new constructs to perform new tasks. These new constructs can
be integrated more easily into an implementation that follows the gram-
matical structure of the language.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

4.1 Introduction

In this section, we examine the way the parser fits into a typical compiler. We
then look at typical grammars for arithmetic expressions. Grammars for ex-
pressions suffice for illustrating the essence of parsing, since parsing techniques
for expressions carry over to most programming constructs. This section ends
with a discussion of error handling, since the parser must respond gracefully to
finding that its input cannot be generated by its grammar.

4.1.1 The Role of the Parser

In our compiler model, the parser obtains a string of tokens from the lexical
analyzer, as shown in Fig. 4.1, and verifies that the string of token names
can be generated by the grammar for the source language. We expect the
parser to report any syntax errors in an intelligible fashion and to recover from
commonly occurring errors to continue processing the remainder of the program.
Conceptually, for well-formed programs, the parser constructs a parse tree and
passes it to the rest of the compiler for further processing. In fact, the parse
tree need not be constructed explicitly, since checking and translation actions
can be interspersed with parsing, as we shall see. Thus, the parser and the rest
of the front end could well be implemented by a single module.

Symbol
Table

Figure 4.1: Position of parser in compiler model

intermediate -
representatio6

SOurce

progra$

There are three general types of parsers for grammars: universal, top-down,
and bottom-up. Universal parsing methods such as the Cocke-Younger-Kasami
algorithm and Earley's algorithm can parse any grammar (see the bibliographic
notes). These general methods are, however, too inefficient to use in production
compilers.

The methods commonly used in compilers can be classified as being either
top-down or bottom-up. As implied by their names, top-down methods build
parse trees from the top (root) to the bottom (leaves), while bottom-up methods
start from the leaves and work their way up to the root. In either case, the
input to the parser is scanned from left to right, one symbol at a time.

token
Lexical / parse ~~~t of

-1

Analyzer I Front End

https://hemanthrajhemu.github.io

4.1. INTRODUCTION 193

The most efficient top-down and bottom-up methods work only for sub-
classes of grammars, but several of these classes, particularly, LL and LR gram-
mars, are expressive enough to describe most of the syntactic constructs in
modern programming languages. Parsers implemented by hand often use LL
grammars; for example, the predictive-parsing approach of Section 2.4.2 works
for LL grammars. Parsers for the larger class of LR grammars are usually
constructed using automated tools.

In this chapter, we assume that the output of the parser is some represent-
ation of the parse tree for the stream of tokens that comes from the lexical
analyzer. In practice, there are a number of tasks that might be conducted
during parsing, such as collecting information about various tokens into the
symbol table, performing type checking and other kinds of semantic analysis,
and generating intermediate code. We have lumped all of these activities into
the "rest of the front end" box in Fig. 4.1. These activities will be covered in
detail in subsequent chapters.

4.1.2 Representative Grammars

Some of the grammars that will be examined in this chapter are presented here
for ease of reference. Constructs that begin with keywords like while or int , are
relatively easy to parse, because the keyword guides the choice of the grammar
production that must be applied to match the input. We therefore concentrate
on expressions, which present more of challenge, because of the associativity
and precedence of operators.

Associativity and precedence are captured in the following grammar, which
is similar to ones used in Chapter 2 for describing expressions, terms, and
factors. E represents expressions consisting of terms separated by + signs, T
represents terms consisting of factors separated by * signs, and F represents
factors that can be either parenthesized expressions or identifiers:

E + E + T I T
T + T * F I F
F + (E) 1 id

Expression grammar (4.1) belongs to the class of LR grammars that are suitable
for bottom-up parsing. This grammar can be adapted to handle additional
operators and additional levels of precedence. However, it cannot be used for
top-down parsing because it is left recursive.

The following non-left-recursive variant of the expression grammar (4.1) will
be used for top-down parsing:

E + TE'
E' + +TE'I e
T + FT'
T' + * F T ' I e
F + (E) I id

https://hemanthrajhemu.github.io

194 CHAPTER 4. SYNTAX ANALYSIS

The following grammar treats + and * alike, so it is useful for illustrating
techniques for handling ambiguities during parsing:

Here, E represents expressions of all types. Grammar (4.3) permits more than
one parse tree for expressions like a + b * c.

4.1.3 Syntax Error Handling

The remainder of this section considers the nature of syntactic errors and gen-
eral strategies for error recovery. Two of these strategies, called panic-mode and
phrase-level recovery, are discussed in more detail in connection with specific
parsing methods.

If a compiler had to process only correct programs, its design and implemen-
tation would be simplified greatly. However, a compiler is expected to assist
the programmer in locating and tracking down errors that inevitably creep into
programs, despite the programmer's best efforts. Strikingly, few languages have
been designed with error handling in mind, even though errors are so common-
place. Our civilization would be radically different if spoken languages had
the same requirements for syntactic accuracy as computer languages. Most
programming language specifications do not describe how a compiler should
respond to errors; error handling is left to the compiler designer. Planning the
error handling right from the start can both simplify the structure of a compiler
and improve its handling of errors.

Common programming errors can occur at many different levels.

Lexical errors include misspellings of identifiers, keywords, or operators -
e.g., the use of an identifier e l i p ses i ze instead of e l l i p s e s i z e - and
missing quotes around text intended as a string.

Syntactic errors include misplaced semicolons or extra or missing braces;
that is, '((" or ")." As another example, in C or Java, the appearance
of a case statement without an enclosing switch is a syntactic error
(however, this situation is usually allowed by the parser and caught later
in the processing, as the compiler attempts to generate code).

Semantic errors include type mismatches between operators and operands.
An example is a r e tu rn statement in a Java method with result type void.

Logical errors can be anything from incorrect reasoning on the part of
the programmer to the use in a C program of the assignment operator =
instead of the comparison operator ==. The program containing = may
be well formed; however, it may not reflect the programmer's intent.

The precision of parsing methods allows syntactic errors to be detected very
efficiently. Several parsing methods, such as the LL and LR methods, detect

https://hemanthrajhemu.github.io

4.1. INTRODUCTION

an error as soon as possible; that is, when the stream of tokens from the lexical
analyzer cannot be parsed further according to the grammar for the language.
More precisely, they have the viable-prefix property, meaning that they detect
that an error has occurred as soon as they see a prefix of the input that cannot
be completed to form a string in the language.

Another reason for emphasizing error recovery during parsing is that many
errors appear syntactic, whatever their cause, and are exposed when parsing
cannot continue. A few semantic errors, such as type mismatches, can also be
detected efficiently; however, accurate detection of semantic and logical errors
at compile time is in general a difficult task.

The error handler in a parser has goals that are simple to state but chal-
lenging to realize:

Report the presence of errors clearly and accurately.

Recover from each error quickly enough to detect subsequent errors.

Add minimal overhead to the processing of correct programs.

Fortunately, common errors are simple ones, and a relatively straightforward
error-handling mechanism often suffices.

How should an error handler report the presence of an error? At the very
least, it must report the place in the source prograr.1 where an error is detected,
because there is a good chance that the actual error occurred within the previous
few tokens. A common strategy is to print the offending line with a pointer to
the position at which an error is detected.

4.1.4 Error-Recovery Strategies

Once an error is detected, how should the parser recover? Although no strategy
has proven itself universally acceptable, a few methods have broad applicabil-
ity. The simplest approach is for the parser to quit with an informative error
message when it detects the first error. Additional errors are often uncovered
if the parser can restore itself to a state where processing of the input can con-
tinue with reasonable hopes that the further processing will provide meaningful
diagnostic information. If errors pile up, it is better for the compiler to give
up after exceeding some error limit than to produce an annoying avalanche of
"spurious" errors.

The balance of this section is devoted to the following recovery strategies:
panic-mode, phrase-level, error-productions, and global-correction.

Panic-Mode Recovery

With this method, on discovering an error, the parser discards input symbols
one at a time until one of a designated set of synchronizing tokens is found.
The synchronizing tokens are usually delimiters, such as semicolon or 3, whose
role in the source program is clear and unambiguous. The compiler designer

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

must select the synchronizing tokens appropriate for the source language. While
panic-mode correction often skips a considerable amount of input without check-
ing it for additional errors, it has the advantage of simplicity, and, unlike some
methods to be considered later, is guaranteed not to go into an infinite loop.

Phrase-Level Recovery

On discovering an error, a parser may perform local correction on the remaining
input; that is, it may replace a prefix of the remaining input by some string that
allows the parser to continue. A typical local correction is to replace a comma
by a semicolon, delete an extraneous semicolon, or insert a missing semicolon.
The choice of the local correction is left to the compiler designer. Of course,
we must be careful to choose replacements that do not lead to infinite loops, as
would be the case, for example, if we always inserted something on the input
ahead of the current input symbol.

Phrase-level replacement has been used in several error-repairing compilers,
as it can correct any input string. Its major drawback is the difficulty it has in
coping with situations in which the actual error has occurred before the point
of detection.

Error Product ions

By anticipating common errors that might be encountered, we can augment the
grammar for the language at hand with productions that generate the erroneous
constructs. A parser constructed from a grammar augmented by these error
productions detects the anticipated errors when an error production is used
during parsing. The parser can then generate appropriate error diagnostics
about the erroneous construct that has been recognized in the input.

Global Correction

Ideally, we would like a compiler to make as few changes as possible in processing
an incorrect input string. There are algorithms for choosing a minimal sequence
of changes to obtain a globally least-cost correction. Given an incorrect input
string x and grammar G, these algorithms will find a parse tree for a related
string y, such that the number of insertions, deletions, and changes of tokens
required to transform x into y is as small as possible. Unfortunately, these
methods are in general too costly to implement in terms of time and space, so
these techniques are currently only of theoretical interest.

Do note that a closest correct program may not be what the programmer had
in mind. Nevertheless, the notion of least-cost correction provides a yardstick
for evaluating error-recovery techniques, and has been used for finding optimal
replacement strings for phrase-level recovery.

https://hemanthrajhemu.github.io

4.2. CONTEXT-FREE GRAMMARS

4.2 Context-Free Grammars

Grammars were introduced in Section 2.2 to systematically describe the syntax
of programming language constructs like expressions and statements. Using
a syntactic variable stmt to denote statements and variable expr to denote
expressions, the production

stmt -+ if (expr) stmt else stmt (4.4)

specifies the structure of this form of conditional statement. Other productions
then define precisely what an expr is and what else a stmt can be.

This section reviews the definition of a context-free grammar and introduces
terminology for talking about parsing. In particular, the notion of derivations
is very helpful for discussing the order in which productions are applied during
parsing.

4.2.1 The Formal Definition of a Context-Free Grammar

From Section 2.2, a context-free grammar (grammar for short) consists of ter-
minals, nonterminals, a start symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. The term
"token name" is a synonym for '"erminal" and frequently we will use the
word "token" for terminal when it is clear that we are talking about just
the token name. We assume that the terminals are the first components
of the tokens output by the lexical analyzer. In (4.4), the terminals are
the keywords if and else and the symbols "(" and ") ."

2. Nonterminals are syntactic variables that denote sets of strings. In (4.4),
stmt and expr are nonterminals. The sets of strings denoted by nontermi-
nals help define the language generated by the grammar. Nonterminals
impose a hierarchical structure on the language that is key to syntax
analysis and translation.

3. In a grammar, one nonterminal is distinguished as the start symbol, and
the set of strings it denotes is the language generated by the grammar.
Conventionally, the productions for the start symbol are listed first.

4. The productions of a grammar specify the manner in which the termi-
nals and nonterminals can be combined to form strings. Each production
consists of:

(a) A nonterminal called the head or left side of the production; this
production defines some of the strings denoted by the head.

(b) The symbol +. Sometimes : : = has been used in place of the arrow.

(c) A body or right side consisting of zero or more terminals and non-
terminals. The components of the body describe one way in which
strings of the nonterminal at the head can be constructed.

https://hemanthrajhemu.github.io

198 CHAPTER 4. SYNTAX ANALYSIS

Example 4.5 : The grammar in Fig. 4.2 defines simple arithmetic expressions.
In this grammar, the terminal symbols are

The nonterminal symbols are expression, term and factor, and expression is the
start symbol

expression
expression
expression

term
term
term

factor
factor

expression + term
expression - term
term
term * factor
term / factor
factor
(expression 1
id

Figure 4.2: Grammar for simple arithmetic expressions

4.2.2 Notational Convent ions

To avoid always having to state that "these are the terminals," "these are the
nontermiaals ," and so on, the following notational conventions for grammars
will be used throughout the remainder of this book.

1. These symbols are terminals:

(a) Lowercase letters early in the alphabet, such as a, b, e.

(b) Operator symbols such as +, r, and so on.

(c) Punctuation symbols such as parentheses, comma, and so on.

(d) The digits 0,1,. . . ,9.

(e) Boldface strings such as id or if, each of which represents a single
terminal symbol.

2. These symbols are nonterminals:

(a) Uppercase letters early in the alphabet, such as A, B, C.

(b) The letter S, which, when it appears, is usually the start symbol.

(c) Lowercase, italic names such as expr or stmt.

(d) When discussing programming constructs, uppercase letters may be
used to represent nonterminals for the constructs. For example, non-
terminals for expressions, terms, and factors are often represented by
E, T, and F, respectively.

https://hemanthrajhemu.github.io

4.2. CONTEXT-FREE GRAMMARS 199

3. Uppercase letters late in the alphabet, such as X, Y, 2, represent grammar
symbols; that is, either nonterminals or terminals.

4. Lowercase letters late in the alphabet, chiefly u, v, . . . , x , represent (pos-
sibly empty) strings of terminals.

5. Lowercase Greek letters, a, ,O, y for example, represent (possibly empty)
strings of grammar symbols. Thus, a generic production can be written
as A + a, where A is the head and a the body.

6. A set of productions A -+ al, A + a2, . . . , A -+ a k with a common head
A (call them A-productions), may be written A + a1 / a s I . . I ak. Call
a l , a2 , . . . , a k the alternatives for A.

7. Unless stated otherwise, the head of the first production is the start sym-
bol.

Example 4.6 : Using these conventions, the grammar of Example 4.5 can be
rewritten concisely as

E + E + T (E - T I T
T + T * F I T / F I F
F -+ (E) 1 id

The notational conventions tell us that E, T, and F are nonterminals, with E
the start symbol. The remaining symbols are terminals.

4.2.3 Derivations

The construction of a parse tree can be made precise by taking a derivational
view, in which productions are treated as rewriting rules. Beginning with the
start symbol, each rewriting step replaces a nonterminal by the body of one of its
productions. This derivational view corresponds to the top-down construction
of a parse tree, but the precision afforded by derivations will be especially helpful
when bottom-up parsing is discussed. As we shall see, bottom-up parsing is
related to a class of derivations known as "rightmost" derivations, in which the
rightmost nonterminal is rewritten at each step.

For example, consider the following grammar, with a single nonterminal E,
which adds a production E -+ - E to the grammar (4.3):

The production E -+ - E signifies that if E denotes an expression, then - E
must also denote an expression. The replacement of a single E by - E will be
described by writing

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

which is read, "E derives -E." The production E --+ (E) can be applied
to replace any instance of E in any string of grammar symbols by (E), e.g.,
E * E + (E) * E or E * E + E * (E). We can take a single E and repeatedly
apply productions in any order to get a sequence of replacements. For example,

We call such a sequence of replacements a derivation of -(id) from E. This
derivation provides a proof that the string -(id) is one particular instance of
an expression.

For a general definition of derivation, consider a nonterminal A in the middle
of a sequence of grammar symbols, as in aAP, where a and ,O are arbitrary
strings of grammar symbols. Suppose A -+ y is a production. Then, we write
aAP =+- ayp. The symbol +- means, "derives in one step." When a sequence
of derivation steps a1 + a2 + . + a, rewrites a1 to a,, we say a1 derives
a,. Often, we wish to say, "derives in zero or more steps." For this purpose,
we can use the symbol &- . Thus,

1. a % a, for any string a, and

2. If a & p and p + y , then a % y.

+ Likewise, + means, "derives in one or more steps."
If S % a, where S is the start symbol of a grammar G, we say that a is a

sentential form of G. Note that a sentential form may contain both terminals
and nonterminals, and may be empty. A sentence of G is a sentential form with
no nonterminals. The language generated by a grammar is its set of sentences.
Thus, a string of terminals w is in L(G), the language generated by G, if and
only if w is a sentence of G (or S % w). A language that can be generated by
a grammar is said to be a context-free language. If two grammars generate the
same language, the grammars are said to be equivalent.

The string -(id + id) is a sentence of grammar (4.7) because there is a
derivation

E S- -E S- - (E) + -(E + E) 3 -(id + E) + -(id + id) (4.8)

The strings E, - E, - (E) , . . . , - (id + id) are all sentential forms of this gram-
mar. We write & % - (id + id) to indicate that - (id + id) can be derived
from E.

At each step in a derivation, there are two choices to be made. We need
to choose which nonterminal to replace, and having made this choice, we must
pick a production with that nonterminal as head. For example, the following
alternative derivation of -(id + id) differs from derivation (4.8) in the last two
steps:

https://hemanthrajhemu.github.io

4.2. CONTEXT-FREE GRAMMARS 20 1

Each nonterminal is replaced by the same body in the two derivations, but the
order of replacements is different.

To understand how parsers work, we shall consider derivations in which the
nonterminal to be replaced at each step is chosen as follows:

1. In lefimost derivations, the leftmost nonterminal in each sentential is al-
ways chosen. If a + p is a step in which the leftmost nonterminal in a is
replaced, we write a P.

lm

2. In rightmost derivations, the rightmost nonterminal is always chosen; we
write a + p in this case.

rm

Derivation (4.8) is leftmost, so it can be rewritten as

Note that (4.9) is a rightmost derivation.
Using our notational conventions, every leftmost step can be written as

wAy + wSy, where w consists of terminals only, A -+ 6 is the production
lm

applied, and y is a string of grammar symbols. To emphasize that a derives ,8
by a leftrnost derivation, we write a % p. If S % a, then we say that a is a

lm lm
left-sentential form of the grammar at hand.

Analogous definitions hold for rightmost derivations. Rightmost derivations
are sometimes called canonical derivations.

4.2.4 Parse Trees and Derivations

A parse tree is a graphical representation of a derivation that filters out the
order in which productions are applied to replace nonterminals. Each interior
node of a parse tree represents the application of a production. The interior
node is labeled with the ont terminal A in the head of the production; the
children of the node are labeled, from left to right, by the symbols in the body
of the production by which this A was replaced during the derivation.

For example, the parse tree for -(id + id) in Fig. 4.3, results from the
derivation (4.8) as well as derivation (4.9).

The leaves of a parse tree are labeled by nonterminals or terminals and, read
from left to right, constitute a sentential form, called the yield or frontier of the
tree.

To see the relationship between derivations and parse trees, consider any
derivation a1 .j a 2 + . - . + a,, where a1 is a single nonterminal A. For each
sentential form ai in the derivation, we can construct a parse tree whose yield
is ai. The process is an induction on i.

BASIS: The tree for a1 = A is a single node labeled A.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.3: Parse tree for -(id + id)

INDUCTION: Suppose we already have constructed a parse tree with yield
ai-1 = XI X2 . . Xk (note that according to our notational conventions, each
grammar symbol Xi is either a nonterminal or a terminal). Suppose ai is
derived from ai-1 by replacing Xj, a nonterminal, by ,8 = Y1Y2 . Ym. That
is, at the ith step of the derivation, production X j -+ ,8 is applied to ai-1 to
derive ai = XIXz - . -Xj-1,8Xj+l . exIE'

To model this step of the derivation, find the j th leaf from the left in the
current parse tree. This leaf is labeled Xj. Give this leaf m children, labeled
Yl, Y2,. . . , Ym, from the left. As a special case, if m = 0, then ,8 = e, and we
give the j th leaf one child labeled E .

Example 4.10 : The sequence of parse trees constructed from the derivation
(4.8) is shown in Fig. 4.4. In the first step of the derivation, E + -E. To
model this step, add two children, labeled - and E, to the root E of the initial
tree. The result is the second tree.

In the second step of the derivation, - E + - (E). Consequently, add three
children, labeled (, E , and), to the leaf labeled E of the second tree, to
obtain the third tree with yield -(E). Continuing in this fashion we obtain the
complete parse tree as the sixth tree.

Since a parse tree ignores variations in the order in which symbols in senten-
tial forms are replaced, there is a many-to-one relationship between derivations
and parse trees. For example, both derivations (4.8) and (4.9), are associated
with the same final parse tree of Fig. 4.4.

In what follows, we shall frequently parse by producing a leftmost or a
rightmost derivation, since there is a one-to-one relationship between parse
trees and either leftmost or rightmost derivations. Both leftmost and rightmost
derivations pick a particular order for replacing symbols in sentential forms, so
they too filter out variations in the order. It is not hard to show that every parse
tree has associated with it a unique leftmost and a unique rightmost derivation.

https://hemanthrajhemu.github.io

4.2. CONTEXT-FREE GRAMMARS

Figure 4.4: Sequence of parse trees for derivation (4.8)

4.2.5 Ambiguity

From Section 2.2.4, a grammar that produces more than one parse tree for some
sentence is said to be ambiguous. Put another way, an ambiguous grammar is
one that produces more than one leftmost derivation or more than one rightmost
derivation for the same sentence.

Example 4.11 : The arithmetic expression grammar (4.3) permits two distinct
leftmost derivations for the sentence id + id * id:

The corresponding parse trees appear in Fig. 4.5.
Note that the parse tree of Fig. 4.5(a) reflects the commonly assumed prece-

dence of + and *, while the tree of Fig. 4.5(b) does not. That is, it is customary
to treat operator * as having higher precedence than +, corresponding to the
fact that we would normally evaluate an expression like a + b * c as a + (b * c) ,
rather than as (a + b) * c.

For most parsers, it is desirable that the grammar be made unambiguous,
for if it is not, we cannot uniquely determine which parse tree to select for a
sentence. In other cases, it is convenient to use carefully chosen ambiguous
grammars, together with disambiguating rules that "throw away" undesirable
parse trees, leaving only one tree for each sentence.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.5: Two parse trees for id+id*id

4.2.6 Verifying the Language Generated by a Grammar

Although compiler designers rarely do so for a complete programming-language
grammar, it is useful to be able to reason that a given set of productions gener-
ates a particular language. Troublesome constructs can be studied by writing
a concise, abstract grammar and studying the language that it generates. We
shall construct such a grammar for conditional statements below.

A proof that a grammar G generates a language L has two parts: show that
every string generated by G is in L, and conversely that every string in L can
indeed be generated by G.

Example 4.12 : Consider the following grammar:

It may not be initially apparent, but this simple grammar generates all
strings of balanced parentheses, and only such strings. To see why, we shall
show first that every sentence derivable from S is balanced, and then that every
balanced string is derivable from S. To show that every sentence derivable from
S is balanced, we use an inductive proof on the number of steps n in a derivation.

BASIS: The basis is n = 1. The only string of terminals derivable from S in
one step is the empty string, which surely is balanced.

INDUCTION: Now assume that all derivations of fewer than n steps produce
balanced sentences, and consider a leftmost derivation of exactly n steps. Such
a derivation must be of the form

The derivations of x and y from S take fewer than n steps, so by the inductive
hypothesis x and y are balanced. Therefore, the string (x)y must be balanced.
That is, it has an equal number of left and right parentheses, and every prefix
has at least as many left parentheses as right.

https://hemanthrajhemu.github.io

4.2. CONTEXT-FREE GRAMMARS 205

Having thus shown that any string derivable from S is balanced, we must
next show that every balanced string is derivable from S. To do so, use induction
on the length of a string.

BASIS: If the string is of length 0, it must be E, which is balanced.

INDUCTION: First, observe that every balanced string has even length. As-
sume that every balanced string of length less than 2n is derivable from S,
and consider a balanced string w of length 2n, n 2 1. Surely w begins with a
left parenthesis. Let (x) be the shortest nonempty prefix of w having an equal
number of left and right parentheses. Then w can be written as w = (x) y where
both x and y are balanced. Since x and y are of length less than 2n, they are
derivable from S by the inductive hypothesis. Thus, we can find a derivation
of the form

proving that w = (x)y is also derivable from S.

4.2.7 Context-Free Grammars Versus Regular
Expressions

Before leaving this section on grammars and their properties, we establish that
grammars are a more powerful notation than regular expressions. Every con-
struct that can be described by a regular expression can be described by a gram-
mar, but not vice-versa. Alternatively, every regular language is a context-free
language, but not vice-versa.

For example, the regular expression (alb)*abb and the grammar

describe the same language, the set of strings of a's and b's ending in abb.
We can construct mechanically a grammar to recognize the same language

as a nondeterministic finite automaton (NFA). The grammar above was con-
structed from the NFA in Fig. 3.24 using the following construction:

1. For each state i of the NFA, create a nonterminal Ai.

2. If state i has a transition to state j on input a , add the production Ai -+
aAj. If state i goes to state j on input E , add the production Ai --+ A,.

3. If i is an accepting state, add Ai -+ e.

4. If i is the start state, make Ai be the start symbol of the grammar.

https://hemanthrajhemu.github.io

206 CHAPTER 4. SYNTAX ANALYSIS

On the other hand, the language L = {anbn I n > 1) with an equal number
of a's and b's is a prototypical example of a language that can be described
by a grammar but not by a regular expression. To see why, suppose L were
the language defined by some regular expression. We could construct a DFA D
with a finite number of states, say k , to accept L. Since D has only k states, for
an input beginning with more than k a's, D must enter some state twice, say
si, as in Fig. 4.6. Suppose that the path from si back to itself is labeled with
a sequence ajdi. Since aib<s in the language, there must be a path labeled bi
from si to an accepting state f . But, then there is also a path from the initial
state so through si to f labeled ajbi, as shown in Fig. 4.6. Thus, D also accepts
ajbi, which is not in the language, contradicting the assumption that L is the
language accepted by D.

path labeled aj-i
. . .

a ~ t h labeled a' path labeled b"
.

Figure 4.6: DFA D accepting both ai bi and a j bi.

Colloquially, we say that "finite automata cannot count ," meaning that
a finite automaton cannot accept a language like {anbn I n > 1) that would
require it to keep count of the number of a's before it sees the b's. Likewise, "a
grammar can count two items but not three," as we shall see when we consider
non-context-free language constructs in Section 4.3.5.

4.2.8 Exercises for Section 4.2

Exercise 4.2.1 : Consider the context-free grammar:

and the string aa + a*.

a) Give a leftmost derivation for the string.

b) Give a rightmost derivation for the string.

c) Give a parse tree for the string.

! d) Is the grammar ambiguous or unambiguous? Justify your answer.

! e) Describe the language generated by this grammar.

Exercise 4.2.2 : Repeat Exercise 4.2.1 for each of the following grammas and
strings:

https://hemanthrajhemu.github.io

4.2. CONTEXT-FREE GRAMMARS

b) S -+ + S S (* S S I a with string + * aaa.

! C) S -+ S (S) S (E with string (00).

! e) S -+ (L) I a and L - + L , S I S with string ((a,a),a,(a)).

!! f) S -+ a S b S I b S a S I E with string aabbab.

! g) The following grammar for boolean expressions:

bexpr -+ bexpr or bterm 1 bterm
bterm -+ bterm and bfactor 1 bfactor
bfactor --+ not bfactor 1 (bexpr) 1 true 1 false

Exercise 4.2.3 : Design grammars for the following languages:

a) The set of all strings of 0s and 1s such that every 0 is immediately followed
by at least one 1.

! b) The set of all strings of 0s and 1s that are palindromes; that is, the string
reads the same backward as forward.

! c) The set of all strings of 0s and 1s with an equal number of 0s and 1s.

!! d) The set of all strings of 0s and 1s with an unequal number of 0s and 1s.

! e) The set of all strings of 0s and 1s in which 011 does not appear as a
substring.

!! f) The set of all strings of 0s and 1s of the form xy, where x # y and x and
y are of the same length.

! Exercise 4.2.4 : There is an extended grammar notation in common use. In
this notation, square and curly braces in production bodies are metasymbols
(like -+ or 1) with the following meanings:

i) Square braces around a grammar symbol or symbols denotes that these
constructs are optional. Thus, production A -+ X [Y] Z has the same
effect as the two productions A -+ X Y Z and A -+ X 2.

ii) Curly braces around a grammar symbol or symbols says that these sym-
bols may be repeated any number of times, including zero times. Thus,
A -+ X {Y Z) has the same effect as the infinite sequence of productions
A - + X , A - + X Y Z , A - + X Y Z Y Z ,andsoon .

https://hemanthrajhemu.github.io

208 CHAPTER 4. SYNTAX ANALYSIS

Show that these two extensions do not add power to grammars; that is, any
language that can be generated by a grammar with these extensions can be
generated by a grammar without the extensioms.

Exercise 4.2.5 : Use the braces described in Exercise 4.2.4 to simplify the
following grammar for statement blocks and conditional statements:

stmt -i if expr then stmt else stmt
I if stmt then stmt
I begin stmtList end

stmtList -i stmt ; stmtLdst (stmt

! Exercise 4.2.6 : Extend the idea of Exercise 4.2.4 to allow any regular expres-
sion of grammar symbols in the body of a production. Show that this extension
does not allow grammars to define any new languages.

! Exercise 4.2.7 : A grammar symbol X (terminal or nonterminal) is useless if
there is no derivation of the form S $- wXy % wzy. That is, X can never
appear in the derivation of any sentence.

a) Give an algorithm to eliminate from a grammar all productions containing
useless symbols.

b) Apply your algorithm to the grammar:

Exercise 4.2.8: The grammar in Fig. 4.7 generates declarations for a sin-
gle numerical identifier; these declarations involve four different, independent
properties of numbers.

stmt -+ declare id optionList
optionList -+ optionList option I E

option -+ mode I scale 1 precision I base
mode -+ real 1 complex
scale + fixed I floating
precision + single I double
base + binary (decimal

Figure 4.7: A grammar for multi-attribute declarations

a) Generalize the grammar of Fig. 4.7 by allowing n options Ai, for some
fixed n and for i = 1 , 2 . . . , n, where Ai can be either ai or bi. Your
grammar should use only O(n) grammar symbols and have a total length
of productions that is O(n) .

https://hemanthrajhemu.github.io

4.3. WRITING A GRAMMAR 209

! b) The grammar of Fig. 4.7 and its generalization in part (a) allow declara-
tions that are contradictory and/or redundant, such as:

dec l a r e foo r e a l f i x e d r e a l f l o a t i n g

We could insist that the syntax of the language forbid such declarations;
that is, every declaration generated by the grammar has exactly one value
for each of the n options. If we do, then for any fixed n there is only a finite
number of legal declarations. The language of legal declarations thus has
a grammar (and also a regular expression), as any finite language does.
The obvious grammar, in which the start symbol has a production for
every legal declaration has n! productions and a total production length
of O(n x n!). You must do better: a total production length that is
0 (nzn) .

!! c) Show that any grammar for part (b) must have a total production length
of at least 2".

d) What does part (c) say about the feasibility of enforcing nonredundancy
and noncontradiction among options in declarations via the syntax of the
programming language?

4.3 Writing a Grammar

Grammars are capable of describing most, but not all, of the syntax of pro-
gramming languages. For instance, the requirement that identifiers be declared
before they are used, cannot be described by a context-free grammar. Therefore,
the sequences of tokens accepted by a parser form a superset of the program-
ming language; subsequent phases of the compiler must analyze the output of
the parser to ensure compliance with rules that are not checked by the parser.

This section begins with a discussion of how to divide work between a lexical
analyzer and a parser. We then consider several transformations that could be
applied to get a grammar more suitable for parsing. One technique can elim-
inate ambiguity in the grammar, and other techniques - left-recursion elimi-
nation and left factoring - are useful for rewriting grammars so they become
suitable for top-down parsing. We conclude this section by considering some
programming language constructs that cannot be described by any grammar.

4.3.1 Lexical Versus Syntactic Analysis

As we observed in Section 4.2.7, everything that can be described by a regular
expression can also be described by a grammar. We may therefore reasonably
ask: "Why use regular expressions to define the lexical syntax of a language?"
There are several reasons.

https://hemanthrajhemu.github.io

210 CHAPTER 4. SYNTAX ANALYSIS

1. Separating the syntactic structure of a language into lexical and non-
lexical parts provides a convenient way of modularizing the front end of
a compiler into two manageable-sized components.

2. The lexical rules of a language are frequently quite simple, and to describe
them we do not need a notation as powerful as grammars.

3. Regular expressions generally provide a more concise and easier-to-under-
stand notation for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from
regular expressions than from arbitrary grammars.

There are no firm guidelines as to what to put into the lexical rules, as op-
posed to the syntactic rules. Regular expressions are most useful for describing
the structure of constructs such as identifiers, constants, keywords, and white
space. Grammars, on the other hand, are most useful for describing nested
structures such as balanced parentheses, matching begin-end's, corresponding
if-then-else's, and so on. These nested structures cannot be described by regular
expressions.

4.3.2 Eliminating Ambiguity

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
As an example, we shall eliminate the ambiguity from the following "dangling-
else" grammar:

stmt + if expr then stmt
(if expr then stmt else stmt (4.14)
I other

Here "other" stands for any other statement. According to this grammar, the
compound conditional statement

if El then S1 else if E2 then S2 else S3

/Ti\\
El ,L.Ll epT(\\\ 2% then stmt

S1

if n then stmt else stmt
LLL

E2 5'2 S3

Figure 4.8: Parse tree for a conditional statement

https://hemanthrajhemu.github.io

4.3. WRITING A GRAMMAR 211

has the parse tree shown in Fig. 4.8.' Grammar (4.14) is ambiguous since the
string

if El then if E2 then S1 else S2 (4.15)

has the two parse trees shown in Fig. 4.9.

if ,expr\ t~itmj~ll

El

if A then ,stmt\ else /stmt\

E2 S1 s2

if ,expr, then ,stmt,

Figure 4.9: Two parse trees for an ambiguous sentence

In all programming languages with conditional statements of this form, the
first parse tree is preferred. The general rule is, "Match each else with the
closest unmatched then." This disambiguating rule can theoretically be in-
corporated directly into a grammar, but in practice it is rarely built into the
productions.

Example 4.16 : We can rewrite the dangling-else grammar (4.14) as the fol-
lowing unambiguous grammar. The idea is that a statement appearing between
a then and an else must be "matched" ; that is, the interior statement must
not end with an unmatched or open then. A matched statement is either an
if-then-else statement containing no open statements or it is any other kind
of unconditional statement. Thus, we may use the grammar in Fig. 4.10. This
grammar generates the same strings as the dangling-else grammar (4.14), but
it allows only one parsing for string (4.15); namely, the one that associates each
else with the closest previous unmatched then. [7

 he subscripts on E and S are just to distinguish different occurrences of the same
nonterminal, and do not imply distinct nonterminals.

2 ~ e should note that C and its derivatives are included in this class. Even though the C
family of languages do not use the keyword then, its role is played by the closing parenthesis
for the condition that follows if.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

stmt + matched-stmt
(open-stmt

matched-stmt + if expr then matched-stmt else matched-stmt
1 other

open-stmt + if expr then stmt
1 if expr then matched-stmt else open-stmt

Figure 4.10: Unambiguous grammar for if-then-else statements

4.3.3 Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such that there is a + derivation A * Aa for some string a . Top-down parsing methods cannot
handle left-recursive grammars, so a transformation is needed to eliminate left
recursion. In Section 2.4.5, we discussed immediate left recursion, where there
is a production of the form A --+ Aa. Here, we study the general case. In
Section 2.4.5, we showed how the left-recursive pair of productions A -+ Aa 1 ,fl
could be replaced by the non-left-recursive productions:

without changing the strings derivable from A. This rule by itself suffices for
many grammars.

Example 4.17 : The non-left-recursive expression grammar (4.2), repeated
here,

is obtained by eliminating immediate left recursion from the expression gram-
mar (4.1). The left-recursive pair of productions E -+ E + T I T are replaced
by E -+ T E' and E' -+ + T E' I c . The new productions for T and T' are
obtained similarly by eliminating immediate left recursion.

Immediate left recursion can be eliminated by the following technique, which
works for any number of A-productions. First, group the productions as

where no pi begins with an A. Then, replace the A-productions by

https://hemanthrajhemu.github.io

4.3. WRITING A GRAMMAR

The nonterminal A generates the same strings as before but is no longer left
recursive. This procedure eliminates all left recursion from the A and A' pro-
ductions (provided no ai is E), but it does not eliminate left recursion involving
derivations of two or more steps. For example, consider the grammar

The nonterminal S is left recursive because S Aa + Sda, but it is not
immediately left recursive.

Algorithm 4.19, below, systematically eliminates left recursion from a gram-
mar. It is guaranteed to work if the grammar has no cycles (derivations of the + form A + A) or 6-productions (productions of the form A -+ E). Cycles can be
eliminated systematically from a grammar, as can E-productions (see Exercises
4.4.6 and 4.4.7).

Algorithm 4.19 : Eliminating left recursion.

INPUT: Grammar G with no cycles or e-productions.

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting
non-left-recursive grammar may have E-productions.

1) arrange the nonterminals in some order A1, A2, . . . , A,.

2) for (each i from 1 to n) {
3) for (each j from 1 to i - 1) {
4) replace each production of the form Ai -+ Aj7 by the

productions Ai -+ 617 I 627 1 - . I dk7, where
Aj -+ dl 1 d2 1 . . . 1 dk are all current Aj-productions

5 > }
6) eliminate the immediate left recursion among the Ai-productions
7) 1

Figure 4.11: Algorithm to eliminate left recursion from a grammar

The procedure in Fig. 4.11 works as follows. In the first iteration for i =
1, the outer for-loop of lines (2) through (7) eliminates any immediate left
recursion among A1-productions. Any remaining A1 productions of the form
Al -+ Ala must therefore have 1 > 1. After the i - 1st iteration of the outer for-
loop, all nonterminals Ale, where k < i , are "cleaned"; that is, any production
Ak -+ Ala, must have 1 > k. As a result, on the ith iteration, the inner loop

https://hemanthrajhemu.github.io

214 CHAPTER 4. SYNTAX ANALYSIS

of lines (3) through (5) progressively raises the lower limit in any production
Ai -+ A,a, until we have m _> i. Then, eliminating immediate left recursion
for the Ai productions at line (6) forces m to be greater than i.

Example 4.20 : Let us apply Algorithm 4.19 to the grammar (4.18). Techni-
cally, the algorithm is not guaranteed to work, because of the €-production, but
in this case, the production A -+ c turns out to be harmless.

We order the nonterminals S, A. There is no immediate left recursion
among the S-productions, so nothing happens during the outer loop for i = 1.
For i = 2, we substitute for S in A -+ S d to obtain the following A-productions.

A - + A c I A a d 1 b d 1 E

Eliminating the immediate left recursion among these A-productions yields the
following grammar.

4.3.4 Left Factoring
a,

Left factoring is a grammar transformation that is useful for producing a gram-
mar suitable for predictive, or top-down, parsing. When the choice between
two alternative A-productions is not clear, we may be able to rewrite the pro-
ductions to defer the decision until enough of the input has been seen that we
can make the right choice.

For example, if we have the two productions

stmt -+ if expr then stmt else strnt
I if expr then stmt

on seeing the input if, we cannot immediately tell which production to choose
to expand stmt. In general, if A + apl I aP2 are two A-productions, and the
input begins with a nonempty string derived from a, we do not know whether
to expand A to aPl or a h . However, we may defer the decision by expanding
A to aA'. Then, after seeing the input derived from a, we expand A' to PI or
to P2. That is, left-factored, the original productions become

Algorithm 4.2 1 : Left factoring a grammar.

INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

https://hemanthrajhemu.github.io

4.3. WRITING A GRAMMAR 215

METHOD: For each nonterminal A, find the longest prefix a! common to two
or more of its alternatives. If a! # E - i.e., there is a nontrivial common
prefix - replace all of the A-productions A + up1 1 cupz 1 - - . / a!/?, I y, where
y represents all alternatives that do not begin with a, by

Here A' is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix.

Example 4.22 : The following grammar abstracts the "dangling-else" prob-
lem:

Here, i, t , and e stand for if, then , and else; E and S stand for "conditional
expression" and "statement ." Left-factored, this grammar becomes:

Thus, we may expand S to iEtSS1 on input i , and wait until iE tS has been
seen to decide whether to expand St to eS or to e. Of course, these grammars
are both ambiguous, and on input e, it will not be clear which alternative for
St should be chosen. Example 4.33 discusses a way out of this dilemma.

4.3.5 Non-Context-Free Language Constructs

A few syntactic constructs found in typical programming languages cannot be
specified using grammars alone. Here, we consider two of these constructs,
using simple abstract languages to illustrate the difficulties.

Example 4.25 : The language in this example abstracts the problem of check-
ing that identifiers are declared before they are used in a program. The language
consists of strings of the form wcw, where the first w represents the declaration
of an identifier w, c represents an intervening program fragment, and the second
w represents the use of the identifier.

The abstract language is L1 = {wcw I w is in (alb)*). L1 consists of
all words composed of a repeated string of a's and b's separated by c, such
as aabcaab. While it is beyond the scope of this book to prove it, the non-
context-freedom of L1 directly implies the non-context-freedom of programming
languages like C and Java, which require declaration of identifiers before their
use and which allow identifiers of arbitrary length.

For this reason, a grammar for C or Java does not distinguish among identi-
fiers that are different character strings. Instead, all identifiers are represented

https://hemanthrajhemu.github.io

216 C H A P T E R 4. S Y N T A X ANALYSIS

by a token such as id in the grammar. In a compiler for such a language,
the semantic-analysis phase checks that identifiers are declared before they are
used.

Example 4.26 : The non-context-free language in this example abstracts the
problem of checking that the number of formal parameters in the declaration of a
function agrees with the number of actual parameters in a use of the function.
The language consists of strings of the form anbmcndm. (Recall an means a
written n times.) Here an and bm could represent the formal-parameter lists of
two functions declared to have n and rn arguments, respectively, while cn and
dm represent the actual-parameter lists in calls to these two functions.

The abstract language is Lz = {anbmcndm I n > 1 and m > I). That is, La
consists of strings in the language generated by the regular expression a*b*c*d"
such that the number of a's and c's are equal and the number of b's and d's are
equal. This language is not context free.

Again, the typical syntax of function declarations and uses does not concern
itself with counting the number of parameters. For example, a function call in
C-like language might be specified by

stmt + id (expr-list)
expr-list + expr-list , expr

I expr

with suitable productions for expr. Checking that the number of parameters in
a call is correct is usually done during the semantic-analysis phase.

4.3.6 Exercises for Section 4.3

Exercise 4.3.1 : The following is a grammar for regular expressions over sym-
bols a and b only, using + in place of 1 for union, to avoid conflict with the use
of vertical bar as a metasymbol in grammars:

rexpr -+ rexpr + rterm (rterm
rterm -+ rterm rfactor I rfactor
rfactor + rfactor * 1 rprirnary
rprimary + a 1 b

a) Left factor this grammar.

b) Does left factoring make the grammar suitable for top-down parsing?

c) In addition to left factoring, eliminate left recursion from the original
grammar.

d) Is the resulting grammar suitable for top-down parsing?

Exercise 4.3.2 : Repeat Exercise 4.3.1 on the following grammars:

https://hemanthrajhemu.github.io

4.4. TOP-DO WN PARSING

a) The grammar of Exercise 4.2.1.

b) The grammar of Exercise 4.2.2(a).

c) The grammar of Exercise 4.2.2(c).

d) The grammar of Exercise 4.2.2(e).

e) The grammar of Exercise 4.2.2(g).

! Exercise 4.3.3 : The following grammar is proposed to remove the "dangling-
else ambiguity" discussed in Section 4.3.2:

stmt + if expr then stmt
I matchedstmt

matchedstmt + if expr then matchedstmt else stmt
1 other

Show that this grammar is still ambiguous.

4.4 Top-Down Parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for
the input string, starting from the root and creating the nodes of the parse tree
in preorder (depth-first, as discussed in Section 2.3.4). Equivalently, top-down
parsing can be viewed as finding a leftmost derivation for an input string.

Example 4.27 : The sequence of parse trees in Fig. 4.12 for the input id+id*id
is a top-down parse according to grammar (4.2), repeated here:

E + T E '
E' -+ + T E 1 (€

T + F T '
T' -+ * F T I I €
F + (E) (id

This sequence of trees corresponds to a leftmost derivation of the input.

At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A. Once an A-production
is chosen, the rest of the parsing process consists of "matching7' the terminal
symbols in the production body with the input string.

The section begins with a general form of top-down parsing, called recursive-
descent parsing, which may require backtracking to find the correct A-produc-
tion to be applied. Section 2.4.2 introduced predictive parsing, a special case of
recursive-descent parsing, where no backtracking is required. Predictive parsing
chooses the correct A-production by looking ahead at the input a fixed number
of symbols, typically we may look only at one (that is, the next input symbol).

https://hemanthrajhemu.github.io

218 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.12: Top-down parse for id + id * id

For example, consider the top-down parse in Fig. 4.12, which constructs
a tree with two nodes labeled El. At the first E' node (in preorder), the
production E' -+ +TE' is chosen; at the second E' node, the production E' -+ t

is chosen. A predictive parser can choose between El-productions by looking
at the next input symbol.

The class of grammars for which we can construct predictive parsers looking
k symbols ahead in the input is sometimes called the LL(k) class. We discuss the
LL(1) class in Section 4.4.3, but introduce certain computations, called FIRST

and FOLLOW, in a preliminary Section 4.4.2. From the FIRST and FOLLOW
sets for a grammar, we shall construct "predictive parsing tables," which make
explicit the choice of production during top-down parsing. These sets are also
useful during bottom-up parsing,

In Section 4.4.4 we give a nonrecursive parsing algorithm that maintains
a stack explicitly, rather than implicitly via recursive calls. Finally, in Sec-
tion 4.4.5 we discuss error recovery during top-down parsing.

https://hemanthrajhemu.github.io

4.4. TOP-DOWN PARSING

4.4.1 Recursive-Descent Parsing

void A() {
1) Choose an A-production, A + XI X 2 . . . X k ;

2) for (i = l t o k) {
3 if (Xi is a nonterminal)
4) call procedure Xi () ;
5 else if (Xi equals the current input symbol a)
6) advance the input to the next symbol;

7) else /* an error has occurred */;
1

I

Figure 4.13: A typical procedure for a nonterminal in a top-down parser

A recursive-descent parsing program consists of a set of procedures, one for each
nonterminal. Execution begins with the procedure for the start symbol, which
halts and announces success if its procedure body scans the entire input string.
Pseudocode for a typical nonterminal appears in Fig. 4.13. Note that this
pseudocode is nondeterministic, since it begins by choosing the A-production
to apply in a manner that is not specified.

General recursive-descent may require backtracking; that is, it may require
repeated scans over the input. However, backtracking is rarely needed to parse
programming language constructs, so backtracking parsers are not seen fre-
quently. Even for situations like natural language parsing, backtracking is not
very efficient, and tabular methods such as the dynamic programming algo-
rithm of Exercise 4.4.9 or the method of Earley (see the bibliographic notes)
are preferred.

To allow backtracking, the code of Fig. 4.13 needs to be modified. First, we
cannot choose a unique A-production at line (I), so we must try each of several
productions in some order. Then, failure at line (7) is not ultimate failure, but
suggests only that we need to return to line (1) and try another A-production.
Only if there are no more A-productions to try do we declare that an input
error has been found. In order to try another A-production, we need to be able
to reset the input pointer to where it was when we first reached line (1). Thus,
a local variable is needed to store this input pointer for future use.

Example 4.29 : Consider the grammar

To construct a parse tree top-down for the input string w = cad, begin with a
tree consisting of a single node labeled S, and the input pointer pointing to c,
the first symbol of w. S has only one production, so we use it to expand S and

https://hemanthrajhemu.github.io

220 CHAPTER 4. SYNTAX ANALYSIS

obtain the tree of Fig. 4.14(a). The leftmost leaf, labeled c, matches the first
symbol of input w, so we advance the input pointer to a , the second symbol of
w, and consider the next leaf, labeled A.

Figure 4.14: Steps in a top-down parse

Now, we expand A using the first alternative A -+ a b to obtain the tree of
Fig. 4.14(b). We have a match for the second input symbol, a , so we advance
the input pointer to d, the third input symbol, and compare d against the next
leaf, labeled b. Since b does not match d, we report failure and go back to A to
see whether there is another alternative for A that has not been tried, but that
might produce a match.

In going back to A, we must reset the input pointer to position 2, the
position it had when we first came to A, which means that the procedure for A
must store the input pointer in a local variable.

The second alternative for A produces the tree of Fig. 4.14(c). The leaf
a matches the second symbol of w and the leaf d matches the third symbol.
Since we have produced a parse tree for w, we halt and announce successful
completion of parsing. El

A left-recursive grammar can cause a recursive-descent parser, even one
with backtracking, to go into an infinite loop. That is, when we try to expand
a nonterminal A, we may eventually find ourselves again trying to expand A
without having consumed any input.

4.4.2 FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by two
functions, FIRST and FOLLOW, associated with a grammar G. During top-
down parsing, FIRST and FOLLOW allow us to choose which production to
apply, based on the next input symbol. During panic-mode error recovery, sets
of tokens produced by FOLLOW can be used as synchronizing tokens.

Define FIRST(&), where a is any string of grammar symbols, to be the set
of terminals that begin strings derivedPom a. If a % 6 , then E is also in
FIRST@). For example, in Fig. 4.15, A + cy, so c is in FIRST(A).

For a preview of how FIRST can be used during predictive parsing, consider
two A-productions A + a / P, where FIRST(&) and FIRST@) are disjoint sets.
We can then choose between these A-productions by looking at the next input

https://hemanthrajhemu.github.io

4.4. TOP-DO WN PARSING

Figure 4.15: Terminal c is in FIRST(A) and a is in FOLLOW(A)

symbol a, since a can be in at most one of FIRST(~U) and FIRST(^), not both.
For instance, if a is in FIRST@) choose the production A -+ P. This idea will
be explored when LL(1) grammars are defined in Section 4.4.3.

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can
appear immediately to the right of A in some sentential form; t$t is, the set
of terminals a such that there exists a derivation of the form S + aAap, for
some a! and p, as in Fig. 4.15. Note that there may have been symbols between
A and a, at some time during the derivation, but if so, they derived r and
disappeared. In addition, if A can be the rightmost symbol in some sentential
form, then $ is in FOLLOW(A); recall that $ is a special "endmarker" symbol
that is assumed not to be a symbol of any grammar.

To compute FIRST(X) for all grammar symbols X, apply the following rules
until no more terminals or E: can be added to any FIRST set.

1. If X is a terminal, then FIRST(X) = {XI.

2. If X is a nonterminal and X + YlY2 . . - Yk is a production for some k 2 1,
then place a in FIRST(X) if for some i, a is in FIRST(Y,), and r is in all of
FIRST(Y~), . . . , FIRST(Y,-I); that is, Yl . - . x-1 &- r. If E is in FIRST(Y,)
for all j = 1,2, . . . , k , then add E: to FIRST(X). For example, everything
in FIRST(YI) is surely in FIRST(X). If does not derive 6, then we add
nothing more to FIRST(X), but if Yl &- r, then we add F1RST(Y2), and
SO on.

3. If X -+ r is a production, then add r to FIRST(X).

Now, we can compute FIRST for any string XlX2 , . . Xn as follows. Add to
FIRST(X~ X2 . . . Xn) all non-r symbols of FIRST(X~). Also add the non-r sym-
bols of FIRST(^^), if 6 is in FIRST(X~); the non-E symbols of FIRST(&), if r is
in FIRST(XI) and FIRST(^^); and so on. Finally, add r to F1RST(X1X2 . . Xn)
if, for all i, E is in FIRST(X~).

To compute FOLLOW(A) for all nonterminals A, apply the following rules
until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input
right endmarker.

https://hemanthrajhemu.github.io

222 CHAPTER 4. SYNTAX ANALYSIS

2. If there is a production A -+ aBP, then everything in FIRST@) except E

is in FOLLOW(B).

3. If there is a production A -+ a B , or a production A -+ aBP, where
FIRST(@) contains E, then everything in FOLLOW (A) is in FOLLOW (B) .

Example 4.30 : Consider again the non-left-recursive grammar (4.28). Then:

1. FIRST(F) = FIRST(T) = FIRST(E) = {(, id). To see why, note that the
two productions for F have bodies that start with these two terminal
symbols, id and the left parenthesis. T has only one production, and its
body starts with F. Since F does not derive E, FIRST(T) must be the
same as FIRST(F). The same argument covers FIRST(E).

2. FIRST(E') = {+, E). The reason is that one of the two productions for E'
has a body that begins with terminal +, and the other's body is E. When-
ever a nonterminal derives E, we place E in FIRST for that nonterminal.

3. FIRST(T') = {*, 6). The reasoning is analogous to that for FIRST(E').

4. FOLLOW@) = FOLLOW(E') = {), $1. Since E is the start symbol,
FOLLOW(E) must contain $. The production body (E) explains why the
right parenthesis is in FOLLOW(E). For El, note that this nonterminal
appears only at the ends of bodies of E-productions. Thus, FOLLOW(E')
must be the same as FOLLOW(E).

5. FOLLOW(T) = FOLLOW(T') = {+,), $1. Notice that T appears in bodies
only followed by E'. Thus, everything except E that is in FIRST(E') must
be in FOLLOW (T) ; that explains the symbol +. However, since FIRST(E')
contains E (i.e., E' & E), and E' is the entire string following T in the
bodies of the E-productions, everything in FOLLOW(E) must also be in
FOLLOW(T). That explains the symbols $ and the right parenthesis. As
for T', since it appears only at the ends of the T-productions, it must be
that FOLLOW(T') = FOLLOW(T).

6. FOLLOW(F) = {+, *,), $1. The reasoning is analogous to that for T in
point (5).

4.4.3 LL(1) Grammars

Predictive parsers, that is, recursive-descent parsers needing no backtracking,
can be constructed for a class of grammars called LL(1). The first "L" in LL(1)
stands for scanning the input from left to right, the second "L" for producing
a leftmost derivation, and the "1" for using one input symbol of lookahead at
each step to make parsing action decisions.

https://hemanthrajhemu.github.io

4.4. TOP-DOWN PARSING 223

Transition Diagrams for Predictive Parsers

Transition diagrams are useful for visualizing predictive parsers. For exam-
ple, the transition diagrams for nonterminals E and E' of grammar (4.28)
appear in Fig. 4.16(a). To construct the transition diagram from a gram-
mar, first eliminate left recursion and then left factor the grammar. Then,
for each nonterminal A,

1. Create an initial and final (return) state.

2. For each production A + XIXz - . Xk, create a path from the initial
to the final state, with edges labeled XI , X 2 , . . . , Xk. If A -+ t, the
path is an edge labeled t .

Transition diagrams for predictive parsers differ from those for lexical
analyzers. Parsers have one diagram for each nouterminal. The labels of
edges can be tokens or nonterminals. A transition on a token (terminal)
means that we take that transition if that token is the next input symbol.
A transition on a nonterminal A is a call of the procedure for A.

With an LL(1) grammar, the ambiguity of whether or not to take an
€-edge can be resolved by making €-transitions the default choice.

Transition diagrams can be simplified, provided the sequence of gram-
mar symbols along paths is preserved. We may also substitute the dia-
gram for a nonterminal A in place of an edge labeled A. The diagrams in
Fig. 4.16(a) and (b) are equivalent: if we trace paths from E to an accept-
ing state and substitute for E', then, in both sets of diagrams, the grammar
symbols along the paths make up strings of the form T + T + . . . + T. The
diagram in (b) can be obtained from (a) by transformations akin to those
in Section 2.5.4, where we used tail-recursion removal and substitution of
procedure bodies to optimize the procedure for a nonterminal.

The class of LL(1) grammars is rich enough to cover most programming
constructs, although care is needed in writing a suitable grammar for the source
language. For example, no left-recursive or ambiguous grammar can be LL(1).

A grammar G is LL(1) if and only if whenever A --+ cu I ,D are two distinct
productions of G, the following conditions hold:

1. For no terminal a do both a and ,O derive strings beginning with a.

2. At most one of cu and ,D can derive the empty string.

3. If ,O 3 t, then cu does not derive any string beginning with a terminal
in FOLLOW(A). Likewise, if & t, then P does not derive any string
beginning with a terminal in FOLLOW(A).

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

4.4. TOP-DOWNPARSING 225

If, after performing the above, there is no production at all in M[A, a], then
set M[A, a] to er ror (which we normally represent by an empty entry in the
table).

Example 4.32 : For the expression grammar (4.28), Algorithm 4.31 produces
the parsing table in Fig. 4.17. Blanks are error entries; nonblanks indicate a
production with which to expand a nonterminal.

Figure 4.17: Parsing table M for Example 4.32

NON -
TERMINAL

E

E'

T

T'

F

Consider production E -+ TE'. Since

this production is added to M[E, (1 and M[E, id]. Production El -+ +TE1 is
added to M[E', +] since FIRST(+T El) = {+}. Since FOLLOW (El) = {), $1,
production E' + E is added to MIE1,)] and MIE1, $1.

INPUT SYMBOL

Algorithm 4.31 can be applied to any grammar G to produce a parsing table
M. For every LL(1) grammar, each parsing-table entry uniquely identifies a
production or signals an error. For some grammars, however, M may have
some entries that are multiply defined. For example, if G is left-recursive or
ambiguous, then Ad will have at least one multiply defined entry. Although left-
recursion elimination and left factoring are easy to do, there are some grammars
for which no amount of alteration will produce an LL(1) grammar.

The language in the following example has no LL(1) grammar at all.

Example 4.33 : The following grammar, which abstracts the dangling-else
problem, is repeated here from Example 4.22:

The parsing table for this grammar appears in Fig. 4.18. The entry for MIS1, el
contains both S' --+ eS and S' -+ 6 .

The grammar is ambiguous and the ambiguity is manifested by a choice in
what production to use when an e (else) is seen. We can resolve this ambiguity

)

E l + €

T I + &

id
E +TE'

T + FTI

F -+ id

$

E1+e

TI-+€

*

T1-+*FT'

+

El -+ +TE1

T

(
E -+ TE'

T -+ FT'

F -+ (E)

https://hemanthrajhemu.github.io

226 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.18: Parsing table M for Example 4.33

NON -
TERMINAL

S

S1

E

by choosing S' -+ eS. This choice corresponds to associating an else with the
closest previous then. Note that the choice S' -+ c would prevent e from ever
being put on the stack or removed from the input, and is surely wrong. 0

4.4.4 Nonrecursive Predictive Parsing

INPUT SYMBOL

A nonrecursive predictive parser can be built by maintaining a stack explicitly,
rather than implicitly via recursive calls. The parser mimics a leftmost deriva-
tion. If w is the input that has been matched so far, then the stack holds a
sequence of grammar symbols a such that

a

S + a

The table-driven parser in Fig. 4.19 has an input buffer, a stack containing a
sequence of grammar symbols, a parsing table constructed by Algorithm 4.31,
and an output stream. The input buffer contains the string to be parsed,
followed by the endmarker $. We reuse the symbol $ to mark the bottom of the
stack, which initially contains the start symbol of the grammar on top of $.

The parser is controlled by a program that considers X , the symbol on top
of the stack, and a, the current input symbol. If X is a nonterminal, the parser
chooses an X-production by consulting entry M[X, a] of the parsing table IM.
(Additional code could be executed here, for example, code to construct a node
in a parse tree.) Otherwise, it checks for a match between the terminal X and
current input symbol a.

The behavior of the parser can be described in terms of its configurations,
which give the stack contents and the remaining input. The next algorithm
describes how configurations are manipulated.

Algorithm 4.34 : Table-driven predictive parsing.

b

E+b

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error
indication.

e

S' + €

S1 -+ eS

i
S --+ iEtSS1

t $

S' -+ €

https://hemanthrajhemu.github.io

4.4. TOP-DOWN PARSING

Stack

Input l a l + l b l $ l

Output
-
X + -
Y -

Figure 4.19: Model of a table-driven predictive parser

METHOD: Initially, the parser is in a configuration with w$ in the input buffer
and the start symbol S of G on top of the stack, above $. The program in
Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for
the input.

Predictive
Parsing

Program

set zp to point to the first symbol of w;
set X to the top stack symbol;
while (X # $) { /* stack is not empty */

if (X is a) pop the stack and advance zp;
else if (X is a terminal) error();
else if (M [X , a] is an error entry) error();
else if (M[X,a] = X -+ Y1Y2 Yk) {

output the production X -+ YlY2 - . Yk;
pop the stack;
push Yk, Yk-1,. . . , Yl onto the stack, with Yl on top;

1
set X to the top stack symbol;

1

t

z -
$

Figure 4.20: Predictive parsing algorithm

-

Example 4.35 : Consider grammar (4.28); we have already seen its the parsing
table in Fig. 4.17. On input id + id * id, the nonrecursive predictive parser
of Algorithm 4.34 makes the sequence of moves in Fig. 4.21. These moves
correspond to a leftmost derivation (see Fig. 4.12 for the full derivation):

Parsing
Table

M

https://hemanthrajhemu.github.io

228 CHAPTER 4. SYNTAX ANALYSIS

output E -+ TE'
output T -+ FT'
output F -+ id
match id
output T' -+ E.

output E' + + TE'
match +
output T -+ FT'
output F -+ id
match id
output T' -+ * FT'
match *
output F + id
match id
output T' -+ E

output E' -+ E.

Figure 4.21: Moves made by a predictive parser on input id + id * id

Note that the sentential forms in this derivation correspond to the input that
has already been matched (in column MATCHED) followed by the stack contents.
The matched input is shown only to highlight the correspondence. For the same
reason, the top of the stack is to the left; when we consider bottom-up parsing,
it will be more natural to show the top of the stack to the right. The input
pointer points to the leftmost symbol of the string in the INPUT column.

4.4.5 Error Recovery in Predictive Parsing

This discussion of error recovery refers to the stack of a table-driven predictive
parser, since it makes explicit the terminals and nonterminals that the parser
hopes to match with the remainder of the input; the techniques can also be
used with recursive-descent parsing.

An error is detected during predictive parsing when the terminal on top of
the stack does not match the next input symbol or when nonterminal A is on
top of the stack, a is the next input symbol, and M [A , a] is error (i.e., the
parsing-table entry is empty).

Panic Mode

Panic-mode error recovery is based on the idea of skipping symbols on the
the input until a token in a selected set of synchronizing tokens appears. Its

https://hemanthrajhemu.github.io

4.4. TOP-DO W N PARSING 229

effectiveness depends on the choice of synchronizing set. The sets should be
chosen so that the parser recovers quickly from errors that are likely to occur
in practice. Some heuristics are as follows:

1. As a starting point, place all symbols in FOLLOW(A) into the synchro-
nizing set for nonterminal A. If we skip tokens until an element of
FOLLOW(A) is seen and pop A from the stack, it is likely that parsing
can continue.

It is not enough to use FOLLOW(A) as the synchronizing set for A. For
example, if semicolons terminate statements, as in C, then keywords that
begin statements may not appear in the FOLLOW set of the nontermi-
nal representing expressions. A missing semicolon after an assignment
may therefore result in the keyword beginning the next statement be-
ing skipped. Often, there is a hierarchical structure on constructs in a
language; for example, expressions appear within statements, which ap-
pear within blocks, and so on. We can add to the synchronizing set of a
lower-level construct the symbols that begin higher-level constructs. For
example, we might add keywords that begin statements to the synchro-
nizing sets for the nonterminals generating expressions.

3. If we add symbols in FIRST(A) to the synchronizing set for nonterminal
A, then it may be possible to resume parsing according to A if a symbol
in FIRST(A) appears in the input.

4. If a nonterminal can generate the empty string, then the production de-
riving E can be used as a default. Doing so may postpone some error
detection, but cannot cause an error to be missed. This approach reduces
the number of nonterminals that have to be considered during error re-
covery.

5. If a terminal on top of the stack cannot be matched, a simple idea is to
pop the terminal, issue a message saying that the terminal was inserted,
and continue parsing. In effect, this approach takes the synchronizing set
of a token to consist of all other tokens.

Example 4.36 : Using FIRST and FOLLOW symbols as synchronizing tokens
works reasonably well when expressions are parsed according to the usual gram-
mar (4.28). The parsing table for this grammar in Fig. 4.17 is repeated in
Fig. 4.22, with "synch" indicating synchronizing tokens obtained from the
FOLLOW set of the nonterminal in question. The FOLLOW sets for the non-
terminals are obtained from Example 4.30.

The table in Fig. 4.22 is to be used as follows. If the parser looks up entry
&![A, a] and finds that it is blank, then the input symbol a is skipped. If the
entry is "synch," then the nonterminal on top of the stack is popped in an
attempt to resume parsing. If a token on top of the stack does not match the
input symbol, then we pop the token from the stack, as mentioned above.

https://hemanthrajhemu.github.io

230 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.22: Synchronizing tokens added to the parsing table of Fig. 4.17

NON -
TERMINAL

E

E'

T

T'

F

On the erroneous input) id * +id, the parser and error recovery mechanism
of Fig. 4.22 behave as in Fig. 4.23.

STACK INPUT REMARK
E $) id * + id $ error, skip)
E $ id * + id $ id is in FIRST(E)

T E ' $ id * +id $
FT'E' $ id * + id $

id TIE'$ id * + id $
TIE' $ * + i d $

* FT'E' $ * + i d $
FT'E' $ + id $ error, M [F, +] = synch

TIE' $ + id $ F has been popped
E' $ + id $

+ TE' $ + id $
TE' $ id $

FT'E' $ id $
id TIE' $ id $

TIE' $ $
E' $ $

$ $

INPUT SYMBOL

Figure 4.23: Parsing and error recovery moves made by a predictive parser

id

E -+ TE'

T + FT'

F + id

The above discussion of panic-mode recovery does not address the important
issue of error messages. The compiler designer must supply informative error
messages that not only describe the error, they must draw attention to where
the error was discovered.

+

E + +TE1

synch

T' + E

synch

*

T' --+ *FT'

synch

(
E + TE'

T + FT'

F + (E)

)
synch

E-+c

synch

T ' + e

synch

$

synch

E + c

synch

TI-+€

synch

https://hemanthrajhemu.github.io

4.4. TOP-DO WN PARSING

Phrase-level Recovery

Phrase-level error recovery is implemented by filling in the blank entries in
the predictive parsing table with pointers to error routines. These routines
may change, insert, or delete symbols on the input and issue appropriate error
messages. They may also pop from the stack. Alteration of stack symbols or the
pushing of new symbols onto the stack is questionable for several reasons. First,
the steps carried out by the parser might then not correspond to the derivation
of any word in the language at all. Second, we must ensure that there is no
possibility of an infinite loop. Checking that any recovery action eventually
results in an input symbol being consumed (or the stack being shortened if the
end of the input has been reached) is a good way to protect against such loops.

4.4.6 Exercises for Section 4.4

Exercise 4.4.1 : For each of the following grammars, devise predictive parsers
and show the parsing tables. You may left-factor and/or eliminate left-recursion
from your grammars first.

a) The grammar of Exercise 4.2.2(a).

b) The grammar of Exercise 4.2.2(b).

c) The grammar of Exercise 4.2.2(c).

d) The grammar of Exercise 4.2.2 (d) .

e) The grammar of Exercise 4.2.2(e).

f) The grammar of Exercise 4.2.2(g).

! ! Exercise 4.4.2 : Is it possible, by modifying the grammar in any way, to con-
struct a predictive parser for the language of Exercise 4.2.1 (postfix expressions
with operand a)?

Exercise 4.4.3 : Compute FIRST and FOLLOW for the grammar of Exercise
4.2.1.

Exercise 4.4.4: Compute FIRST and FOLLOW for each of the grammars of
Exercise 4.2.2.

Exercise 4.4.5 : The grammar S -+ a S a I a a generates all even-length
strings of a's. We can devise a recursive-descent parser with backtrack for this
grammar. If we choose to expand by production S -+ a a first, then we shall
only recognize the string aa. Thus, any reasonable recursive-descent parser will
try S -+ a S a first.

a) Show that this recursive-descent parser recognizes inputs aa, aaaa, and
aaaaaaaa, but not aaaaaa.

https://hemanthrajhemu.github.io

232 CHAPTER 4. SYNTAX ANALYSIS

!! b) What language does this recursive-descent parser recognize?

The following exercises are useful steps in the construction of a "Chomsky
Normal Form" grammar from arbitrary grammars, as defined in Exercise 4.4.8.

! Exercise 4.4.6: A grammar is €-free if no production body is E (called an
E-production).

a) Give an algorithm to convert any grammar into an €-free grammar that
generates the same language (with the possible exception of the empty
string - no E-free grammar can generate c) .

b) Apply your algorithm to the grammar S + aSbS I bSaS I E. Hint: First
find all the nonterminals that are nullable, meaning that they generate E,

perhaps by a long derivation.

! Exercise 4.4.7: A single production is a production whose body is a single
nonterminal, i.e., a production of the form A -+ A.

a) Give an algorithm to convert any grammar into an €-free grammar, with
no single productions, that generates the same language (with the possible
exception of the empty string) Hint: First eliminate E-productions, and
then find for which pairs of nonterminals A and B does A % B by a
sequence of single productions.

b) Apply your algorithm to the grammar (4.1) in Section 4.1.2.

c) Show that, as a consequence of part (a), we can convert a grammar into
an equivalent grammar that has no cycles (derivations of one or more
steps in which A % A for some nonterminal A).

!! Exercise 4.4.8 : A grammar is said to be in Chomsky Normal Form (CNF) if
every production is either of the form A -+ BC or of the form A -+ a, where
A, B, and C are nonterminals, and a is a terminal. Show how to convert
any grammar into a CNF grammar for the same language (with the possible
exception of the empty string - no CNF grammar can generate E).

! Exercise 4.4.9 : Every language that has a context-free grammar can be rec-
ognized in at most O(n3) time for strings of length n. A simple way to do so,
called the Cocke- Younger-Kasami (or CYK) algorithm is based on dynamic pro-
gramming. That is, given a string ala2 . - . a,, we construct an n-by-n table T

i+l " ' a j . such that Tij is the set of nonterminals that generate the substring a -a
If the underlying grammar is in CNF (see Exercise 4.4.8), then one table entry
can be filled in in O(n) time, provided we fill the entries in the proper order:
lowest value of j - i first. Write an algorithm that correctly fills in the entries
of the table, and show that your algorithm takes O(n3) time. Having filled in
the table, how do you determine whether ala2 . . . a, is in the language?

https://hemanthrajhemu.github.io

4.5. BOTTOM-UP PARSING 233

! Exercise 4.4.10: Show how, having filled in the table as in Exercise 4.4.9,
we can in O(n) time recover a parse tree for alaz - - - a,. Hint: modify the
table so it records, for each nonterminal A in each table entry Tij, some pair of
nonterminals in other table entries that justified putting A in Tij.

! Exercise 4.4.11 : Modify your algorithm of Exercise 4.4.9 so that it will find,
for any string, the smallest number of insert, delete, and mutate errors (each
error a single character) needed to turn the string into a string in the language
of the underlying grammar.

stmt +
I

I
stmt Tail --+

I
list +
list Tail +

--+

if e then stmt stmt Tail
while e do stmt
begin list end
S

else stmt
€

stmt list Tail
; list
€

Figure 4.24: A grammar for certain kinds of statements

! Exercise 4.4.12 : In Fig. 4.24 is a grammar for certain statements. You may
take e and s to be terminals standing for conditional expressions and "other
statements," respectively. If we resolve the conflict regarding expansion of
the optional "else" (nonterminal stmtTail) by preferring to consume an else
from the input whenever we see one, we can build a predictive parser for this
grammar. Using the idea of synchronizing symbols described in Section 4.4.5:

a) Build an error-correcting predictive parsing table for the grammar.

b) Show the behavior of your parser on the following inputs:

(i) if e then s ; if e then s end
(ii) while e do begin s ; if e then s ; end

4.5 Bottom-Up Parsing

A bottom-up parse corresponds to the construction of a parse tree for an input
string beginning at the leaves (the bottom) and working up towards the root
(the top). It is convenient to describe parsing as the process of building parse
trees, although a front end may in fact carry out a translation directly without
building an explicit tree. The sequence of tree snapshots in Fig. 4.25 illustrates

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.25: A bottom-up parse for id * id

a bottom-up parse of the token stream id * id, with respect to the expression
grammar (4.1).

This section introduces a general style of bottom-up parsing known as shift-
reduce parsing. The largest class of grammars for which shift-reduce parsers can
be built, the LR grammars, will be discussed in Sections 4.6 and 4.7. Although
it is too much work to build an LR parser by hand, tools called automatic parser
generators make it easy to construct efficient LR parsers from suitable gram-
mars. The concepts in this section are helpful for writing suitable grammars
to make effective use of an LR parser generator. Algorithms for implementing
parser generators appear in Section 4.7.

4.5.1 Reductions

We can think of bottom-up parsing as the process of "reducing" a string w to
the start symbol of the grammar. At each reduction step, a specific substring
matching the body of a production is replaced by the nonterminal at the head
of that production.

The key decisions during bottom-up parsing are about when to reduce and
about what production to apply, as the parse proceeds.

Example 4.37 : The snapshots in Fig. 4.25 illustrate a sequence of reductions;
the grammar is the expression grammar (4.1). The reductions will be discussed
in terms of the sequence of strings

id * id, F * id, T * id, T * F, T, E

The strings in this sequence are formed from the roots of all the subtrees in the
snapshots. The sequence starts with the input string id*id. The first reduction
produces F * id by reducing the leftmost id to F , using the production F -+ id.
The second reduction produces T * id by reducing F to T.

Now, we have a choice between reducing the string T, which is the body
of E -+ T, and the string consisting of the second id, which is the body of
F -+ id. Rather than reduce T to E, the second id is reduced to T , resulting
in the string T * F . This string then reduces to T. The parse completes with
the reduction of T to the start symbol E.

https://hemanthrajhemu.github.io

4.5. BOTTOM- UP PARSING 235

By definition, a reduction is the reverse of a step in a derivation (recall that
in a derivation, a nonterminal in a sentential form is replaced by the body of
one of its productions). The goal of bottom-up parsing is therefore to construct
a derivation in reverse. The following derivation corresponds to the parse in
Fig. 4.25:

This derivation is in fact a rightmost derivation.

4.5.2 Handle Pruning

Bottom-up parsing during a left-to-right scan of the input constructs a right-
most derivation in reverse. Informally, a "handle" is a substring that matches
the body of a production, and whose reduction represents one step along the
reverse of a rightmost derivation.

For example, adding subscripts to the tokens id for clarity, the handles
during the parse of idl * id2 according to the expression grammar (4.1) are as
in Fig. 4.26. Although T is the body of the production E --+ T, the symbol T is
not a handle in the sentential form T * id2. If T were indeed replaced by E, we
would get the string E * id2, which cannot be derived from the start symbol E.
Thus, the leftmost substring that matches the body of some production need
not be a handle.

Figure 4.26: Handles during a parse of idl * id2

Formally, if S %- aAw * apw, as in Fig. 4.27, then production A --+ ,6
r m rm

in the position following a is a handle of apw. Alternatively, a handle of a
right-sentential form y is a production A -+ ,6 and a position of y where the
string p may be found, such that replacing ,6 at that position by A produces
the previous right-sentential form in a rightmost derivation of y.

Notice that the string w to the right of the handle must contain only terminal
symbols. For convenience, we refer to the body ,6 rather than A --+ ,6 as a handle.
Note we say "a handle" rather than "the handle," because the grammar could
be ambiguous, with more than one rightmost derivation of apw. If a grammar
is unambiguous, then every right-sentential form of the grammar has exactly
one handle.

A rightmost derivation in reverse can be obtained by "handle pruning."
That is, we start with a string of terminals w to be parsed. If w is a sentence

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.27: A handle A -+ P in the parse tree for apw

of the grammar at hand, then let w = yn, where y, is the nth right-sentential
form of some as yet unknown rightmost derivation

To reconstruct this derivation in reverse order, we locate the handle Pn in
yn and replace Pn by the head of the relevant production A, -+ ,On to obtain
the previous right-sentential form ?,-I. Note that we do not yet know how
handles are to be found, but we shall see methods of doing so shortly.

We then repeat this process. That is, we locate the handle Pn-l in 7,-1 and
reduce this handle to obtain the right-sentential form ~ ~ - 2 . If by continuing this
process we produce a right-sentential form consisting only of the start symbol
S, then we halt and announce successful completion of parsing. The reverse of
the sequence of productions used in the reductions is a rightmost derivation for
the input string.

4.5.3 Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed.
As we shall see, the handle always appears at the top of the stack just before
it is identified as the handle.

We use $ to mark the bottom of the stack and also the right end of the
input. Conventionally, when discussing bottom-up parsing, we show the top of
the stack on the right, rather than on the left as we did for top-down parsing.
Initially, the stack is empty, and the string w is on the input, as follows:

During a left-to-right scan of the input string, the parser shifts zero or more
input symbols onto the stack, until it is ready to reduce a string P of grammar
symbols on top of the stack. It then reduces ,O to the head of the appropriate
production. The parser repeats this cycle until it has detected an error or until
the stack contains the start symbol and the input is empty:

https://hemanthrajhemu.github.io

4,5. BOTTOM-UP PARSING

Upon entering this configuration, the parser halts and announces successful
completion of parsing. Figure 4.28 steps through the actions a shift-reduce
parser might take in parsing the input string idl *id2 according to the expression
grammar (4.1).

shift
reduce by F -+ id
reduce by T -+ F
shift
shift
reduce by F -+ id
reduce by T -+ T * F
reduce by E -+ T
accept

Figure 4.28: Configurations of a shift-reduce parser on input idl*id2

While the primary operations are shift and reduce, there are actually four
possible actions a shift-reduce parser can make: (1) shift, (2) reduce, (3) accept,
and (4) error.

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. Locate the left end of the string within the stack and decide
with what nonterminal to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.

The use of a stack in shift-reduce parsing is justified by an important fact:
the handle will always eventually appear on top of the stack, never inside. This
fact can be shown by considering the possible forms of two successive steps
in any rightmost derivation. Figure 4.29 illustrates the two possible cases. In
case (I) , A is replaced by PBg, and then the rightmost nonterminal B in the
body PBy is replaced by y. In case (2), A is again expanded first, but this time
the body is a string y of terminals only. The next rightmost nonterminal B will
be somewhere to the left of y.

In other words:

(1) S % a A z + aPByz =+ aPyyz
r*m r m r m

(2) S + a B x A z + aBxyz +- ayxyz
r m r m rm

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

a P Y Y z
Case (1)

a y x y z
Case (2)

Figure 4.29: Cases for two successive steps of a rightmost derivation

Consider case (1) in reverse, where a shift-reduce parser has just reached the
configuration

The parser reduces the handle y to B to reach the configuration

The parser can now shift the string y onto the stack by a sequence of zero or
more shift moves to reach the configuration

with the handle PBy on top of the stack, and it gets reduced to A.
Now consider case (2). In configuration

the handle y is on top of the stack. After reducing the handle y to B, the parser
can shift the string xy to get the next handle y on top of the stack, ready to be
reduced to A:

In both cases, after making a reduction the parser had to shift zero or more
symbols to get the next handle onto the stack. It never had to go into the stack
to find the handle.

4.5.4 Conflicts During Shift-Reduce Parsing
There are context-free grammars for which shift-reduce parsing cannot be used.
Every shift-reduce parser for such a grammar can reach a configuration in which
the parser, knowing the entire stack contents and the next input symbol, cannot
decide whether to shift or to reduce (a shift/reduce conflict), or cannot decide

https://hemanthrajhemu.github.io

4.5. BOTTOM-UP PARSING 239

which of several reductions to make (a reduce/reduce conflict). We now give
some examples of syntactic constructs that give rise to such grammars. Techni-
cally, these grammars are not in the LR(k) class of grammars defined in Section
4.7; we refer to them as non-LR grammars. The k in LR(k) refers to the number
of symbols of lookahead on the input. Grammars used in compiling usually fall
in the LR(1) class, with one symbol of lookahead at most.

Example 4.38 : An ambiguous grammar can never be LR. For example, con-
sider the dangling-else grammar (4.14) of Section 4.3:

stmt + if expr then stmt

I if expr then stmt else stmt
I other

If we have a shift-reduce parser in configuration

STACK
. . if expr then stmt

INPUT
else . . . $

we cannot tell whether if expr then stmt is the handle, no matter what appears
below it on the stack. Here there is a shiftlreduce conflict. Depending on what
follows the else on the input, it might be correct to reduce if expr then stint
to stmt, or it might be correct to shift else and then to look for another stmt
to complete the alternative if expr then stmt else stmt.

Note that shift-reduce parsing can be adapted to parse certain ambigu-
ous grammars, such as the if-then-else grammar above. If we resolve the
shiftlreduce conflict on else in favor of shifting, the parser will behave as we
expect, associating each else with the previous unmatched then. We discuss
parsers for such ambiguous grammars in Section 4.8.

Another common setting for conflicts occurs when we know we have a han-
dle, but the stack contents and the next input symbol are insufficient to de-
termine which production should be used in a reduction. The next example
illustrates this situation.

Example 4.39: Suppose we have a lexical analyzer that returns the token
name id for all names, regardless of their type. Suppose also that our lan-
guage invokes procedures by giving their names, with parameters surrounded
by parentheses, and that arrays are referenced by the same syntax. Since the
translation of indices in array references and parameters in procedure calls
are different, we want to use different productions to generate lists of actual
parameters and indices. Our grammar might therefore have (among others)
productions such as those in Fig. 4.30.

A statement beginning with p (i , j) would appear as the token stream
id(id, id) to the parser. After shifting the first three tokens onto the stack,
a shift-reduce parser would be in configuration

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

s t m t
s t m t

parameter-list
parameter-list

parameter
expr
expr

expr-list
expr-list

id (parameter-list)
expr := expr
parameter-list , parameter
parameter
id
id (expr-list)
id
expr-list , expr
expr

Figure 4.30: Productions involving procedure calls and array references

It is evident that the id on top of the stack must be reduced, but by which
production? The correct choice is production (5) if p is a procedure, but pro-
duction (7) if p is an array. The stack does not tell which; information in the
symbol table obtained from the declaration of p must be used.

One solution is to change the token id in production (1) to procid and to
use a more sophisticated lexical analyzer that returns the token name procid
when it recognizes a lexeme that is the name of a procedure. Doing so would
require the lexical analyzer to consult the symbol table before returning a token.

If we made this modification, then on processing p (i , j) the parser would
be either in the configuration

STACK
. . procid (id

or in the configuration above. In the former case, we choose reduction by
production (5) ; in the latter case by production (7). Notice how the symbol
third from the top of the stack determines the reduction to be made, even
though it is not involved in the reduction. Shift-reduce parsing can utilize
information far down in the stack to guide the parse.

4.5.5 Exercises for Section 4.5

Exercise 4.5.1: For the grammar S -+ 0 S 1 I 0 1 of Exercise 4.2.2(a),
indicate the handle in each of the folhwing right-sentential forms:

Exercise 4.5.2 : Repeat Exercise 4.5.1 for the grammar S -+ S S + I S S * I a
of Exercise 4.2.1 and the following right-sentential forms:

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R

Exercise 4.5.3 : Give bottom-up parses for the following input strings and
grammars:

a) The input 000111 according to the grammar of Exercise 4.5.1.

b) The input aaa * a + + according to the grammar of Exercise 4.5.2.

4.6 Introduction to LR Parsing: Simple LR

The most prevalent type of bottom-up parser today is based on a concept called
LR(k) parsing; the "L" is for left-to-right scanning of the input, the "R" for
constructing a rightmost derivation in reverse, and the k for the number of
input symbols of lookahead that are used in making parsing decisions. The
cases k = 0 or k = 1 are of practical interest, and we shall only consider LR
parsers with k 5 1 here. When (k) is omitted, k is assumed to be 1.

This section introduces the basic concepts of LR parsing and the easiest
method for constructing shift-reduce parsers, called "simple LR" (or SLR, for
short). Some familiarity with the basic concepts is helpful even if the LR
parser itself is constructed using an automatic parser generator. We begin with
"items" and "parser states;" the diagnostic output from an LR parser generator
typically includes parser states, which can be used to isolate the sources of
parsing conflicts.

Section 4.7 introduces two, more complex methods - canonical-LR and
LALR - that are used in the majority of LR parsers.

4.6.1 Why LR Parsers?

LR parsers are table-driven, much like the nonrecursive LL parsers of Sec-
tion 4.4.4. A grammar for which we can construct a parsing table using one of
the methods in this section and the next is said to be an LR grammar. Intu-
itively, for a grammar to be LR it is sufficient that a left-to-right shift-reduce
parser be able to recognize handles of right-sentential forms when they appear
on top of the stack.

LR parsing is attractive for a variety of reasons:

LR parsers can be constructed to recognize virtually all programming-
language constructs for which context-free grammars can be written. Non-
LR context-free grammars exist, but these can generally be avoided for
typical programming-language constructs.

https://hemanthrajhemu.github.io

242 CHAPTER 4. SYNTAX ANALYSIS

The LR-parsing method is the most general nonbacktracking shift-reduce
parsing method known, yet it can be implemented as efficiently as other,
more primitive shift-reduce methods (see the bibliographic notes).

An LR parser can detect a syntactic error as soon as it is possible to do
so on a left-to-right scan of the input.

The class of grammars that can be parsed using LR methods is a proper
superset of the class of grammars that can be parsed with predictive or
LL methods. For a grammar to be LR(k), we must be able to recognize
the occurrence of the right side of a production in a right-sentential form,
with k input symbols of lookahead. This requirement is far less stringent
than that for LL(k) grammars where we must be able to recognize the
use of a production seeing only the first k symbols of what its right side
derives. Thus, it should not be surprising that LR grammars can describe
more languages than LL grammars.

The principal drawback of the LR method is that it is too much work to
construct an LR parser by hand for a typical programming-language grammar.
A specialized tool, an LR parser generator, is needed. Fortunately, many such
generators are available, and we shall discuss one of the most commonly used
ones, Yacc, in Section 4.9. Such a generator takes a context-free grammar and
automatically produces a parser for that grammar. If the grammar contains
ambiguities or other constructs that are difficult to parse in a left-to-right scan
of the input, then the parser generator locates these constructs and provides
detailed diagnostic messages.

4.6.2 Items and the LR(0) Automaton

How does a shift-reduce parser know when to shift and when to reduce? For
example, with stack contents $ T and next input symbol * in Fig. 4.28, how
does the parser know that T on the top of the stack is not a handle, so the
appropriate action is to shift and not to reduce T to E?

An LR parser makes shift-reduce decisions by maintaining states to keep
track of where we are in a parse. States represent sets of "items." An LR(0)
item (item for short) of a grammar G is a production of G with a dot at some
position of the body. Thus, production A -+ XYZ yields the four items

The production A -+ E. generates only one item, A -+ - .
Intuitively, an item indicates how much of a production we have seen at a

given point in the parsing process. For example, the item A -+ .XYZ indicates
that we hope to see a string derivable from X Y Z next on the input. Item

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 243

Representing Item Sets

A parser generator that produces a bottom-up parser may need to rep-
resent items and sets of items conveniently. Note that an item can be
represented by a pair of integers, the first of which is the number of one
of the productions of the underlying grammar, and the second of which is
the position of the dot. Sets of items can be represented by a list of these
pairs. However, as we shall see, the necessary sets of items often include
"closure" items, where the dot is at the beginning of the body. These can
always be reconstructed from the other items in the set, and we do not
have to include them in the list.

A -+ X-YZ indicates that we have just seen on the input a string derivable from
X and that we hope next to see a string derivable from Y 2. Item A -+ X Y Z.
indicates that we have seen the body XYZ and that it may be time to reduce
X Y Z to A.

One collection of sets of LR(0) items, called the canonical LR(0) collection,
provides the basis for constructing a deterministic finite automaton that is used '
to make parsing decisions. Such an automaton is called an LR(0) aut~maton.~
In particular, each state of the LR(0) automaton represents a set of items in
the canonical LR(0) collection. The automaton for the expression grammar
(4.1), shown in Fig. 4.31, will serve as the running example for discussing the
canonical LR(0) collection for a grammar.

To construct the canonical LR(0) collection for a grammar, we define an
augmented grammar and two functions, CLOSURE and GOTO. If G is a grammar
with start symbol S, then G', the augmented grammar for G, is G with a new
start symbol St and production S' -+ S. The purpose of this new starting
production is to indicate to the parser when it should stop parsing and announce
acceptance of the input. That is, acceptance occurs when and only when the
parser is about to reduce by St -+ S.

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE(I) is the set of items
constructed from I by the two rules:

1. Initially, add every item in I to CLOSURE(I).

2. If A -+ a-BP is in CLOSURE(I) and B -+ y is a production, then add the
item B -+ .y to CLOSURE(I), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(I).

3~echnically, the automaton misses being deterministic according to the definition of Sec-
tion 3.6.4, because we do not have a dead state, corresponding to the empty set of items. As
a result, there are some state-input pairs for which no next state exists.

https://hemanthrajhemu.github.io

244 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.31: LR(0) automaton for the expression grammar (4.1)

Intuitively, A + cr-BP in CLOSURE(I) indicates that, at some point in the
parsing process, we think we might next see a substring derivable from B P
as input. The substring derivable from BP will have a prefix derivable from
B by applying one of the B-productions. We therefore add items for all the
B-productions; that is, if B + y is a production, we also include B -+ .y in
CLOSURE(I).

Example 4.40 : Consider the augmented expression grammar:

E' + E
E -+ E + T (T
T + T * F 1 F
E -+ (E) I id

If I is the set of one item {[E' -+ .El}, then CLOSURE(I) contains the set
of items I. in Fig. 4.31.

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 245

To see how the closure is computed, E' -+ -E is put in CLOSURE(I) by
rule (1) . Since there is an E immediately to the right of a dot, we add the
E-productions with dots at the left ends: E -+ .E + T and E -+ ST. Now there
is a T immediately to the right of a dot in the latter item, so we add T -+ ST * F
and T -+ .F. Next, the F to the right of a dot forces us to add F + . (E) and
F -+ -id, but no other items need to be added. 0

The closure can be computed as in Fig. 4.32. A convenient way to imple-
ment the function closure is to keep a boolean array added, indexed by the
nonterminals of G, such that added[B] is set to true if and when we add the
item B -+ .y for each B-production B -+ y.

SetOfItems CLOSURE(I) {
J = I ;
repeat

for (each item A -+ a .BP in J)
for (each production B -+ y of G)

if (B -+ .y is not in J)
add B -+ .y to J;

until no more items are added to J on one round;
return J;

Figure 4.32: Computation of CLOSURE

Note that if one B-production is added to the closure of I with the dot at the
left end, then all B-productions will be similarly added to the closure. Hence,
it is not necessary in some circumstances actually to list the items B -+ - y
added to I by CLOSURE. A list of the nonterminals B whose productions were
so added will suffice. We divide all the sets of items of interest into two classes:

1. Kernel items: the initial item, S' -+ .S, and all items whose dots are not
at the left end.

2. Nonkernel items: all items with their dots at the left end, except for
S' -+ .S.

Moreover, each set of items of interest is formed by taking the closure of a set
of kernel items; the items added in the closure can never be kernel items, of
course. Thus, we can represent the sets of items we are really interested in
with very little storage if we throw away all nonkernel items, knowing that they
could be regenerated by the closure process. In Fig. 4.31, nonkernel items are
in the shaded part of the box for a state.

https://hemanthrajhemu.github.io

246 CHAPTER 4. SYNTAX ANALYSIS

The Function G O T 0

The second useful function is GOTO(I, X) where I is a set of items and X is a
grammar symbol. GOTO(I, X) is defined to be the closure of the set of all items
[A -+ ax.,8] such that [A --+ a . xP] is in I. Intuitively, the GOT0 function
is used to define the transitions in the LR(0) automaton for a grammar. The
states of the automaton correspond to sets of items, and GOTO(& X) specifies
the transition from the state for I under input X .

Example 4.41 : If I is the set of two items {[El + E.], [E -+ E. + TI), then
GOTO(I, +) contains the items

We computed GOTO(I, +) by examining I for items with + immediately to
the right of the dot. El -+ E- is not such an item, but E -+ E- + T is. We
moved the dot over the + to get E -+ E + S T and then took the closure of this
singleton set.

We are now ready for the algorithm to construct C, the canonical collection
of sets of LR(0) items for an augmented grammar GI - the algorithm is shown
in Fig. 4.33.

void iterns(G1) {
C = CLOSURE({[S' -+ .S]));
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(& X) is not empty and not in C)
add GOTO(I, X) to C;

until no new sets of items are added to C on a round;
1

Figure 4.33: Computation of the canonical collection of sets of LR(0) items

Example 4.42 : The canonical collection of sets of LR(0) items for grammar
(4.1) and the GOTO function are shown in Fig. 4.31. GOTO is encoded by the
transitions in the figure.

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 247

Use of the LR(0) Automaton

The central idea behind "Simple LR," or SLR, parsing is the construction from
the grammar of the LR(0) automaton. The states of this automaton are the
sets of items from the canonical LR(0) collection, and the transitions are given
by the GOTO function. The LR(0) automaton for the expression grammar (4.1)
appeared earlier in Fig. 4.31.

The start state of the LR(0) automaton is CLOSURE({[S' -+ .S]}), where S'
is the start symbol of the augmented grammar. All states are accepting states.
We say "state j" to refer to the state corresponding to the set of items I j .

How can LR(0) automata help with shift-reduce decisions? Shift-reduce
decisions can be made as follows. Suppose that the string y of grammar symbols
takes the LR(0) automaton from the start state 0 to some state j. Then, shift
on next input symbol a if state j has a transition on a. Otherwise, we choose
to reduce; the items in state j will tell us which production to use.

The LR-parsing algorithm to be introduced in Section 4.6.3 uses its stack to
keep track of states as well as grammar symbols; in fact, the grammar symbol
can be recovered from the state, so the stack holds states. The next example
gives a preview of how an LR(0) automaton and a stack of states can be used
to make shift-reduce parsing decisions.

Example 4.43 : Figure 4.34 illustrates the actions of a shift-reduce parser on
input id * id , using the LR(0) automaton in Fig. 4.31. We use a stack to hold
states; for clarity, the grammar symbols corresponding to the states on the
stack appear in column SYMBOLS. At line (I) , the stack holds the start state 0
of the automaton; the corresponding symbol is the bottom-of-stack marker $.

Figure 4.34: The parse of id * id

LINE

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

The next input symbol is id and state 0 has a transition on id to state 5.
We therefore shift. At line (2), state 5 (symbol id) has been pushed onto the
stack. There is no transition from state 5 on input *, so we reduce. From item
[F --+ id-] in state 5, the reduction is by production F -+ id.

STACK

0
0 5
0 3
0 2
0 2 7
0 2 7 5
0 2 7 1 0
0 2
0 1

SYMBOLS

$
$ id
$ F
$ T
$ T *
$ T * i d
$ T * F
$ T
$ E

INPUT

i d * i d $
* id $
* id $
* i d $

id $
$
$
$
$

ACTION

shift to 5
reduce by F -+ id
reduce by T -+ F
shift to 7
shift to 5
reduce by F --+ id
reduce by T --+ T * F
reduce by E -+ T
accept

https://hemanthrajhemu.github.io

CHAP?IER 4. SYNTAX ANALYSIS

With symbols, a reduction is implemented by popping the body of the pro-
duction from the stack (on line (2), the body is id) and pushing the head of
the production (in this case, F) . With states, we pop state 5 for symbol id,
which brings state 0 to the top and look for a transition on F, the head of the
production. In Fig. 4.31, state 0 has a transition on F to state 3, so we push
state 3, with corresponding symbol F; see line (3).

As another example, consider line (5), with state 7 (symbol *) on top of the
stack. This state has a transition to state 5 on input id, so we push state 5
(symbol id). State 5 has no transitions, so we reduce by F -+ id. When we
pop state 5 for the body id, state 7 comes to the top of the stack. Since state 7
has a transition on F to state 10, we push state 10 (symbol F).

4.6.3 The LR-Parsing Algorithm

A schematic of an LR parser is shown in Fig. 4.35. It consists of an input,
an output, a stack, a driver program, and a parsing table that has two pasts
(ACTION and GOTO). The driver program is the same for all LR parsers; only
the parsing table changes from one parser to another. The parsing program
reads characters from an input buffer one at a time. Where a shift-reduce parser
would shift a symbol, an LR parser shifts a state. Each state summarizes the
information contained in the stack below it.

Input t l

Stack Output sm

S m - 1

Figure 4.35: Model of an LR parser

The stack holds a sequence of states, sosl . . . s,, where s, is on top. In the
SLR method, the stack holds states from the LR(0) automaton; the canonical-
LR and LALR methods are similar. By construction, each state has a corre-
sponding grammar symbol. Recall that states correspond to sets of items, and
that there is a transition from state i to state j if GOTO(I~, X) = Ij. All tran-
sitions to state j must be for the same grammar symbol X . Thus, each state,
except the start state 0, has a unique grammar symbol associated with it.4

LR
Parsing
Program

4 ~ h e converse need not hold; that is, more than one state may have the same grammar

+

...

$

ACTION GOT0

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O LR PARSING: SIMPLE LR

Structure of the LR Parsing Table

The parsing table consists of two parts: a parsing-action function ACTION and
a goto function GOTO.

1. The ACTION function takes as arguments a state i and a terminal a (or
$, the input endmarker). The value of ACTION[^, a] can have one of four
forms:

(a) Shift j, where j is a state. The action taken by the parser effectively
shifts input a to the stack, but uses state j to represent a.

(b) Reduce A -+ P. The action of the parser effectively reduces P on the
top of the stack to head A.

(c) Accept. The parser accepts the input and finishes parsing.

(d) Error. The parser discovers an error in its input and takes some
corrective action. We shall have more to say about how such error-
recovery routines work in Sections 4.8.3 and 4.9.4.

2. We extend the GOTO function, defined on sets of items, to states: if
GOTO[I~, A] = Ij, then GOT0 also maps a state i and a nonterminal A to
state j .

LR-Parser Configurations

To describe the behavior of an LR parser, it helps to have a notation repre-
senting the complete state of the parser: its stack and the remaining input. A
configuration of an LR parser is a pair:

where the first component is the stack contents (top on the right), and the
second component is the remaining input. This configuration represents the
right-sentential form

in essentially the same way as a shift-reduce parser would; the only difference is
that instead of grammar symbols, the stack holds states from which grammar
symbols can be recovered. That is, Xi is the grammar symbol represented
by state si. Note that so, the start state of the parser, does not represent a
grammar symbol, and serves as a bottom-of-stack marker, as well as playing an
important role in the parse.

symbol. See for example states 1 and 8 in the LR(0) automaton in Fig. 4.31, which are both
entered by transitions on E, or states 2 and 9, which are both entered by transitions on T.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Behavior of the LR Parser

The next move of the parser from the configuration above is determined by
reading ai, the current input symbol, and s,, the state on top of the stack,
and then consulting the entry ACTION[S, , ail in the parsing action table. The
configurations resulting after each of the four types of move are as follows

1. If ACTION[S,, ail = shift s , the parser executes a shift move; it shifts the
next state s onto the stack, entering the configuration

The symbol ai need not be held on the stack, since it can be recovered
from s, if needed (which in practice it never is). The current input symbol
is now Ui+l.

2. If ACTION[S,, ail = reduce A -+ P, then the parser executes a reduce
move, entering the configuration

where r is the length of P, and s = GOTO[S,-,, A]. Here the parser
first popped r state symbols off the stack, exposing state s,-,. The
parser then pushed s, the entry for GOTO[S,-,, A], onto the stack. The
current input symbol is not changed in a reduce move. For the LR parsers
we shall construct, Xm-T+l . . X,, the sequence of grammar symbols
corresponding to the states popped off the stack, will always match P,
the right side of the reducing production.

The output of an LR parser is generated after a reduce move by executing
the semantic action associated with the reducing production. For the time
being, we shall assume the output consists of just printing the reducing
production.

3. If ACTION[S,, ail = accept, parsing is completed.

4. If ACTION[S,, ail = error, the parser has discovered an error and calls an
error recovery routine.

The LR-parsing algorithm is summarized below. All LR parsers behave
in this fashion; the only difference between one LR parser and another is the
information in the ACTION and GOT0 fields of the parsing table.

Algorithm 4.44 : LR-parsing algorithm.

INPUT: An input string w and an LR-parsing table with functions ACTION and
GOT0 for a grammar G.

https://hemanthrajhemu.github.io

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 251

OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w;
otherwise, an error indication.

METHOD: Initially, the parser has so on its stack, where so is the initial state,
and w$ in the input buffer. The parser then executes the program in Fig. 4.36.

let a be the first symbol of w$;
while(1) { /* repeat forever */

let s be the state on top of the stack;
if (ACTION[S, a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[S, a] = reduce A -+ ,O) {
pop I,OI symbols off the stack;
let state t now be on top of the stack;
push GO TO[^, A] onto the stack;
output the production A -+ p;

) else if (ACTION[S, a] = accept) break; /* parsing is done */
else call error-recovery routine;

}

Figure 4.36: LR-parsing program

Example 4.45: Figure 4.37 shows the ACTION and GOT0 functions of an
LR-parsing table for the expression grammar (4.1), repeated here with the
productions numbered:

The codes for the actions are:

1. si means shift and stack state i ,

2. r j means reduce by the production numbered j,

3. acc means accept,

4. blank means error.

Note that the value of GOTO[S, a] for terminal a is found in the ACTION
field connected with the shift action on input a for state s. The GOTO field
gives GOTO[S, A] for nonterminals A. Although we have not yet explained how
the entries for Fig. 4.37 were selected, we shall deal with this issue shortly.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.37: Parsing table for expression grammar

STATE

0
1
2
3
4
5
6
7
8
9
10
11

On input id * id + id, the sequence of stack and input contents is shown
in Fig. 4.38. Also shown for clarity, are the sequences of grammar symbols
corresponding to the states held on the stack. For example, at line (1) the LR
parser Is in state 0, the initial state with no grammar symbol, and with id the
first input symbol. The action in row 0 and column id of the action field of
Fig. 4.37 is s5, meaning shift by pushing state 5. That is what has happened at
line (2): the state symbol 5 has been pushed onto the stack, and id has been
removed from the input.

Then, * becomes the current input symbol, and the action of state 5 on input
* is to reduce by F -+ id. One state symbol is popped off the stack. State 0
is then exposed. Since the goto of state 0 on F is 3, state 3 is pushed onto the
stack. We now have the configuration in line (3). Each of the remaining moves
is determined similarly.

4.6.4 Constructing SLR-Parsing Tables

ACTION

i d + * () $

s5 s4
s6 acc
r2 s7 r2 r2
r4 r4 r4 r4

s5 s4
r6 r6 r6 r6

s5 s4
s5 s4

s 6 s l l
r l s7 r l r l
r3 r3 r3 r3
r5 r5 r5 r5

The SLR method for constructing parsing tables is a good starting point for
studying LR parsing. We shall refer to the parsing table constructed by this
method as an SLR table, and to an LR parser using an SLR-parsing table as an
SLR parser. The other two methods augment the SLR method with lookahead
information.

The SLR method begins with LR(0) items and LR(0) automata, introduced
in Section 4.5. That is, given a grammar, G, we augment G to produce GI,
with a new start symbol St . From G', we construct C, the canonical collection
of sets of items for Gt together with the GOT0 function.

GOT0

E T F

1 2 3

8 2 3

9 3
10

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O LR PARSING: SIMPLE L R 253

--

shift
reduce by F -+ id
reduce by T -+ F
shift
shift
reduce by F -+ id
reduce by T -+ T * F
reduce by E --+ T
shift
shift
reduce by F -+ id
reduce by T -+ F
reduce by E -+ E + T
accept

Figure 4.38: Moves of an LR parser on id * id + id

The ACTION and GOT0 entries in the parsing table are then constructed
using the following algorithm. It requires us to know FOLLOW(A) for each
nonterminal A of a grammar (see Section 4.4).

Algorithm 4.46 : Constructing an SLR-parsing table.

INPUT: An augmented grammar GI.

OUTPUT: The SLR-parsing table functions ACTION and GOT0 for GI.

METHOD:

1. Construct C = {Io, 11, . . . ,I,), the collection of sets of LR(0) items for
GI.

2. State i is constructed from I, . The parsing actions for state i are deter-
mined as follows:

(a) If [A -+ a.a/3] is in I, and GOTO(&, a) = I j , then set ACTION[& a] to
"shift j." Here a must be a terminal.

(b) If [A -+ a*] is in I,, then set ACTION[^, a] to "reduce A --+ a" for all
a in FOLLOW(A); here A may not be Sf.

(c) If [Sf -+ S.] is in I,, then set ACTION[^, $1 to "accept ."

If any conflicting actions result from the above rules, we say the grammar
is not SLR(1). The algorithm fails to produce a parser in this case.

https://hemanthrajhemu.github.io

254 CHAPTER 4. SYNTAX ANALYSIS

3. The goto transitions for state i are constructed for all nonterminals A
using the rule: If GOTO(I,, A) = I,, then GO TO[^, A] = j .

4. All entries not defined by rules (2) and (3) are made "error."

5 . The initial state of the parser is the one constructed from the set of items
containing [St -+ as].

The parsing table consisting of the ACTION and GOTO functions determined
by Algorithm 4.46 is called the SLR(1) table for G. An LR parser using the
SLR(1) table for G is called the SLR(1) parser for G, and a grammar having an
SLR(1) parsing table is said to be SLR(1). We usually omit the "(I)" after the
"SLR," since we shall not deal here with parsers having more than one symbol
of lookahead.

Example 4.47 : Let us construct the SLR table for the augmented expression
grammar. The canonical collection of sets of LR(0) items for the grammar was
shown in Fig. 4.31. First consider the set of items Io:

The item F -+ .(E) gives rise to the entry ACTION[O, (1 = shift 4, and the
item F -+ -id to the entry ACTION[O, id] = shift 5. Other items in I. yield no
actions. Now consider Il :

The first item yields ACTION[^, $1 = accept, and the second yields ACTION[^, +]
= shift 6. Next consider 12:

Since FOLLOW(E) = {$, +,) 3, the first item makes

 ACTION[^, $1 = ACTION[^, +] = ACTION[^,)] = reduce E -t T

The second item makes ACTION[^, *] = shift 7. Continuing in this fashion we
obtain the ACTION and GOTO tables that were shown in Fig. 4.31. In that
figure, the numbers of productions in reduce actions are the same as the order
in which they appear in the original grammar (4.1). That is, E +- E + T is
number 1, E -+ T is 2, and so on.

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 255

Example 4.48 : Every SLR(1) grammar is unambiguous, but there are many
unambiguous grammars that are not SLR(1). Consider the grammar with pro-
ductions

Think of L and R as standing for 1-value and r-value, respectively, and * as an
operator indicating "contents of." The canonical collection of sets of LR(0)
items for grammar (4.49) is shown in Fig. 4.39.

Figure 4.39: Canonical LR(0) collection for grammar (4.49)

Consider the set of items I z . The first item in this set makes ACTION[& =]
be "shift 6." Since FOLLOW(R) contains = (to see why, consider the derivation
S + L = R =+ *R = R), the second item sets ACTION[^, =] to ?educe R -+ L."
Since there is both a shift and a reduce entry in ACTION[^, =], state 2 has a
shiftlreduce conflict on input symbol =.

Grammar (4.49) is not ambiguous. This shiftlreduce conflict arises from
the fact that the SLR parser construction method is not powerful enough to
remember enough left context to decide what action the parser should take on
input =, having seen a string reducible to L. The canonical and LALR methods,
to be discussed next, will succeed on a larger collection of grammars, including

5As in Section 2.8.3, an kvalue designates a location and an r-value is a value that can be
stored in a location.

https://hemanthrajhemu.github.io

256 CHAPTER 4. SYNTAX ANALYSIS

grammar (4.49). Note, however, that there are unambiguous grammars for
which every LR parser construction method will produce a parsing action table
with parsing action conflicts. Fortunately, such grammars can generally be
avoided in programming language applications.

4.6.5 Viable Prefixes

Why can LR(0) automata be used to make shift-reduce decisions? The LR(0)
automaton for a grammar characterizes the strings of grammar symbols that
can appear on the stack of a shift-reduce parser for the grammar. The stack
contents must be a prefix of a right-sentential form. If the stack holds a and
the rest of the input is f, then a sequence of reductions will take a x to S. In
terms of derivations, S + ax .

rm
Not all prefixes of right-sentential forms can appear on the stack, however,

since the parser must not shift past the handle. For example, suppose

Then, at various times during the parse, the stack will hold (, (E, and (E), but
it must not hold (E)*, since (E) is a handle, which the parser must reduce to
F before shifting *.

The prefixes of right sentential forms that can appear on the stack of a shift-
reduce parser are called viable prefixes. They are defined as follows: a viable
prefix is a prefix of a right-sentential form that does not continue past the right
end of the rightmost handle of that sentential form. By this definition, it is
always possible to add terminal symbols to the end of a viable prefix to obtain
a right-sentential form.

SLR parsing is based on the fact that LR(0) automata recognize viable
prefixes. We s ~ y item A -t is valid for a viable prefix aPl if there is a
derivation St + aAw + aP1P2w. In general, an item will be valid for many

rm rm
viable prefixes.

The fact that A -+ P1.P2 is valid for aP1 tells us a lot about whether to
shift or reduce when we find apl on the parsing stack. In particular, if ,& # E ,

then it suggests that we have not yet shifted the handle onto the stack, so shift
is our move. If ,& = e, then it looks as if A -+ P1 is the handle, and we should
reduce by this production. Of course, two valid items may tell us to do different
things for the same viable prefix. Some of these conflicts can be resolved by
looking at the next input symbol, and others can be resolved by the methods
of Section 4.8, but we should not suppose that all parsing action conflicts can
be resolved if the LR method is applied to an arbitrary grammar.

We can easily compute the set of valid items for each viable prefix that
can appear on the stack of an LR parser. In fact, it is a central theorem of
LR-parsing theory that the set of valid items for a viable prefix y is exactly
the set of items reached from the initial state along the path labeled y in the
LR(0) automaton for the grammar. In essence, the set of valid items embodies

https://hemanthrajhemu.github.io

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 257

Items as States of an NFA

A nondeterministic finite automaton N for recognizing viable prefixes can
be constructed by treating the items themselves as states. There is a
transition from A -+ a.XP to A -+ aX .P labeled X , and there is a
transition from A -+ a.BP to B -+ .y labeled c. Then CLOSURE(^) for
set of items (states of N) I is exactly the E-closure of a set of NFA states
defined in Section 3.7.1. Thus, GOTO(& X) gives the transition from I
on symbol X in the DFA constructed from N by the subset construction.
Viewed in this way, the procedure items(G1) in Fig. 4.33 is just the subset
construction itself applied to the NFA N with items as states.

all the useful information that can be gleaned from the stack. While we shall
not prove this theorem here, we shall give an example.

Example 4.50 : Let us consider the augmented expression grammar again,
whose sets of items and GOTO function are exhibited in Fig. 4.31. Clearly, the
string E + T* is a viable prefix of the grammar. The automaton of Fig. 4.31
will be in state 7 after having read E + T*. State 7 contains the items

which are precisely the items valid for E+T*. To see why, consider the following
three rightmost derivations

The first derivation shows the validity of T -+ T * -F, the second the validity
of F --+ .(E), and the third the validity of F -+ .id. It can be shown that there
are no other valid items for E + T*, although we shall not prove that fact here.

4.6.6 Exercises for Section 4.6

Exercise 4.6.1 : Describe all the viable prefixes for the following grammars:

a) The grammar S + 0 S 1 I 0 1 of Exercise 4.2.2(a).

https://hemanthrajhemu.github.io

258 CHAPTER 4. SYNTAX ANALYSIS

! b) The grammar S + S S + (S S * I a of Exercise 4.2.1.

! c) The grammar S -+ S (S) (6 of Exercise 4.2.2(c).

Exercise 4.6.2 : Construct the SLR sets of items for the (augmented) grammar
of Exercise 4.2.1. Compute the G O T 0 function for these sets of items. Show
the parsing table for this grammar. Is the grammar SLR?

Exercise 4.6.3 : Show the actions of your parsing table from Exercise 4.6.2 on
the input aa * a+.

Exercise 4.6.4 : For each of the (augmented) grammars of Exercise 4.2.2(a)-
(g) :

a) Construct the SLR sets of items and their GOTO function.

b) Indicate any action conflicts in your sets of items.

c) Construct the SLR-parsing table, if one exists.

Exercise 4.6.5 : Show that the following grammar:

is LL(1) but not SLR(1).

Exercise 4.6.6 : Show that the following grammar:

is SLR(1) but not LL(1).

! ! Exercise 4.6.7 : Consider the family of grammars G, defined by:

S += Ai bi f o r 1 L i F n
Ai -+ aj Ai I aj for 1 < i , j < n and i # j

Show that:

a) G, has 2n2 - n productions.

b) G, has 2, + n2 + n sets of LR(0) items.

What does this analysis say about how large LR parsers can get?

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL L R PARSERS 259

! Exercise 4.6.8 : We suggested that individual items could be regarded as
states of a nondeterministic finite automaton, while sets of valid items are the
states of a deterministic finite automaton (see the box on "Items as States of
an NFA" in Section 4.6.5). For the grammar S + S S + I S S * I a of
Exercise 4.2.1:

a) Draw the transition diagram (NFA) for the valid items of this grammar
according to the rule given in the box cited above.

b) Apply the subset construction (Algorithm 3.20) to your NFA from part
(a). How does the resulting DFA compare to the set of LR(0) items for
the grammar?

!! c) Show that in all cases, the subset construction applied to the NFA that
comes from the valid items for a grammar produces the LR(0) sets of
it ems.

! Exercise 4.6.9 : The following is an ambiguous grammar:

Construct for this grammar its collection of sets of LR(0) items. If we try to
build an LR-parsing table for the grammar, there are certain conflicting actions.
What are they? Suppose we tried to use the parsing table by nondeterminis-
tically choosing a possible action whenever there is a conflict. Show all the
possible sequences of actions on input abab.

4.7 More Powerful LR Parsers

In this section, we shall extend the previous LR parsing techniques to use one
symbol of lookahead on the input. There are two different methods:

1. The "canonical-LR" or just "LR" method, which makes full use of the
lookahead symbol(s). This method uses a large set of items, called the
LR(1) items.

2. The "lookahead-LR" or "LALR" method, which is based on the LR(0)
sets of items, and has many fewer states than typical parsers based on the
LR(1) items. By carefully introducing lookaheads into the LR(0) items,
we can handle many more grammars with the LALR method than with
the SLR method, and build parsing tables that are no bigger than the
SLR tables. LALR is the method of choice in most situations.

After introducing both these methods, we conclude with a discussion of how to
compact LR parsing tables for environments with limited memory.

https://hemanthrajhemu.github.io

260 CHAPTER 4. SYNTAX ANALYSIS

4.7.1 Canonical LR(1) Items

We shall now present the most general technique for constructing an LR parsing
table from a grammar. Recall that in the SLR method, state i calls for reduction
by A -+ a if the set of items Ii contains item [A --+ as] and a is in FOLLOW(A).
In some situations, however, when state i appears on top of the stack, the
viable prefix pa on the stack is such that PA cannot be followed by a in any
right-sentential form. Thus, the reduction by A -+ a should be invalid on input
a.

Example 4.51 : Let us reconsider Example 4.48, where in state 2 we had item
R -+ L., which could correspond to A -+ a above, and a could be the = sign,
which is in FOLLOW(R). Thus, the SLR parser calls for reduction by R -+ L
in state 2 with = as the next input (the shift action is also called for, because
of item S -+ L.=R in state 2). However, there is no right-sentential form of the
grammar in Example 4.48 that begins R = Thus state 2, which is the
state corresponding to viable prefix L only, should not really call for reduction
of that L to R.

It is possible to carry more information in the state that will allow us to
rule out some of these invalid reductions by A -+ a . By splitting states when
necessary, we can arrange to have each state of an LR parser indicate exactly
which input symbols can follow a handle a for which there is a possible reduction
to A.

The extra information is incorporated into the state by redefining items to
include a terminal symbol as a second component. The general form of an item
becomes [A -+ a p, a], where A -+ a/? is a production and a is a terminal or
the right endmarker $. We call such an object an LR(1) i tem. The 1 refers
to the length of the second component, called the lookahead of the item.6 The
lookahead has no effect in an item of the form [A -+ a$, a], where ,8 is not c ,
but an item of the form [A -+ a*, a] calls for a reduction by A -+ a only if the
next input symbol is a. Thus, we are compelled to reduce by A -+ a only on
those input symbols a for which [A -+ as, a] is an LR(1) item in the state on
top of the stack. The set of such a's will always be a subset of FOLLOW(A),
but it could be a proper subset, as in Example 4.51.

Formally, we say LR(1) item [A -+ an@, a] is valid for a viable prefix y if
there is a derivation S 3 SAW =+ Gapw, where

r m r m

1. y = Sa, and

2. Either a is the first symbol of w, or w is E and a is $.

Example 4.52 : Let us consider the grammar

'Lookaheads that are strings of length greater than one are possible, of course, but we
shall not consider such lookaheads here.

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL L R PARSERS

There is a rightmost derivation S 2 aaBab + aaaBab. We see that item [B -+
r m r m

a.B, a] is valid for a viable prefix y = aaa by letting S = aa, A = B , w = ab,
a = a, and p = B in the above definition. There is also a rightmost derivation
S 3 B a B j BaaB. From this derivation we see that item [B -+ a - B , $1 is

r m r m
valid for viable prefix Baa.

4.7.2 Constructing LR(1) Sets of Items

The method for building the collection of sets of valid LR(1) items is essentially
the same as the one for building the canonical collection of sets of LR(0) items.
We need only to modify the two procedures CLOSURE and GOTO.

SetOfftems CLOSURE(I) {
repeat

for (each item [A -+ a.BP, a] in I)
for (each production B -+ y in G')

for (each terminal b in FIRST(,&))
add [B -+ .y, b] to set I ;

until no more items are added to I;
return I;

1

SetOfftems GOTO(& X) {
initialize J to be the empty set;
for (each item [A -t a.X,O, a] in I)

add item [A -+ ax./?, a] to set J ;
return CLOSURE(J);

}

void items(Gt) {
initialize C to CLOSURE({[S' -+ .S, $11);
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(I, X) is not empty and not in C)
add GOTO(& X) to C ;

until no new sets of items are added to C;
1

Figure 4.40: Sets-of-LR(1)-items construction for grammar G'

https://hemanthrajhemu.github.io

262 CHAPTER 4. SYNTAX ANALYSIS

To appreciate the new definition of the CLOSURE operation, in particular,
why b must be in FIRST(^^), consider an item of the form [A -+ a-BP, a] in the
set of items valid for some viable prefix y . Then there is a rightmost derivation
S % bAax + GcrBpax, where y = da. Suppose pax derives terminal string

r m r m
by. Then for each production of the form B -+ 11 for some v, we have derivation
S $ y B b y + yqby. Thus, [B -+ .q, b] is valid for y . Note that b can be the

rm rm
first terminal derived from P, or it is possible that P derives c in the derivation
pax %- by, and b can therefore be a. To summarize both possibilities we say

rrn
that b can be any terminal in F I R S T (~ ~ X) , where FIRST is the function from
Section 4.4. Note that x cannot contain the first terminal of by, so FIRST(PUX)
= FIRST(/?U). We now give the LR(1) sets of items construction.

Figure 4.41: The GOT0 graph for grammar (4.55)

Algorithm 4.53 : Construction of the sets of LR(1) items.

INPUT: An augmented grammar G'.

OUTPUT: The sets of LR(1) items that are the set of items valid for one or
more viable prefixes of G'.

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL LR PARSERS 263

METHOD: The procedures CLOSURE and GOT0 and the main routine items
for constructing the sets of items were shown in Fig. 4.40.

Example 4.54 : Consider the following augmented grammar.

We begin by computing the closure of {[St -+ -S, $1). To close, we match
the item [St -+ -S, $1 with the item [A -+ a-BP, a] in the procedure CLOSURE.
That is, A = St, a = e, B = S, P = e, and a = $. Function CLOSURE tells us
to add [B -+ .y, b] for each production B -+ y and terminal b in FIRST(P~). In
terms of the present grammar, B -+ y must be S -+ CC, and since ,8 is c and
a is $, b may only be $. Thus we add [S -+ .CC, $1.

We continue to compute the closure by adding all items [C -+ .y, b] for b
in FIRST(C$). That is, matching [S -+ .CC, $1 against [A -+ a.B,O, a], we have
A = S, a = 6 , B = C, p = C, and a = $. Since C does not derive the empty
string, FIRST(C$) = FIRST(C). Since FIRST@) contains terminals c and d, we
add items [C -+ -cC, c], [C -+ .cC, dl, [C -t -d, c] and [C -+ -d, dl. None of the
new items has a nonterminal immediately to the right of the dot, so we have
completed our first set of LR(1) items. The initial set of items is

I,: S + . S , $
S -+ .CC, $
C -+ .cC, c/d
C -+ .d, c/d

The brackets have been omitted for notational convenience, and we use the
notation [C -+ .cC, c /d as a shorthand for the two items [C -+ .cC, c] and
[C -+ .cC, 4 .

Now we compute GOTO(I,, X) for the various values of X . For X = S we
must close the item [St -+ S., $1. No additional closure is possible, since the
dot is at the right end. Thus we have the next set of items

For X = C we close [S -+ C.C, $1. We add the C-productions with second
component $ and then can add no more, yielding

Next, let X = c. We must close {[C -+ c.C, c/d}. We add the C-productions
with second component cld, yielding

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Finally, let X = d, and we wind up with the set of items

We have finished considering GOTO on Io. We get no new sets from 11, but I2
has goto's on C, c, and d. For GOTO(I~, C) we get

15 : S - i CC',$

no closure being needed. To compute GO TO(^^, c) we take the closure of
{[C + c-C, $11, to obtain

I, : c-i c-C, $
c -+ .cC, $
C + .d, $

Note that I6 differs from I3 only in second components. We shall see that it
is common for several sets of LR(1) items for a grammar to have the same
first components and differ in their second components. When we construct
the collection of sets of LR(0) items for the same grammar, each set of LR(0)
items will coincide with the set of first components of one or more sets of LR(1)
items. We shall have more to say about this phenomenon when we discuss
LALR parsing.

Continuing with the GOT0 function for 12, GO TO(^^, d) is seen to be

Turning now to 13, the GOTO'S of I3 on c and d are I3 and 14, respectively, and
GOTO (I3, C) is

I4 and I5 have no GOTO'S, since all items have their dots at the right end. The
GOTO'S of I6 on c and d are I6 and IT, respectively, and G O T O (~ , C) is

The remaining sets of items yield no GOTO'S, so we are done. Figure 4.41
shows the ten sets of items with their goto's.

https://hemanthrajhemu.github.io

4.7, MORE POWERFUL LR PARSERS 265

4.7.3 Canonical LR(1) Parsing Tables
We now give the rules for constructing the LR(1) ACTION and GOT0 functions
from the sets of LR(1) items. These functions are represented by a table, as
before. The only difference is in the values of the entries.

Algorithm 4.56 : Construction of canonical-LR parsing tables.

INPUT: An augmented grammar GI.

OUTPUT: The canonical-LR parsing table functions ACTION and GOT0 for G'.

METHOD:

1. Construct C' = {Io, Il , . . , I,), the collection of sets of LR(1) items for
G'.

2. State i of the parser is constructed from Ti. The parsing action for state
i is determined as follows.

(a) If [A -+ a-a@, b] is in I, and GOTO(I,,U) = I,, then set ACTION[^, a]
to "shift j ." Here a must be a terminal.

(b) If [A -+ a*, a] is in Ii, A # S', then set ACTION[^, a] to "reduce
A -+ a."

(c) If [St -+ S-, $1 is in I,, then set ACTION[^, $1 to "accept."

If any conflicting actions result from the above rules, we say the grammar
is not LR(1). The algorithm fails to produce a parser in this case.

3. The goto transitions for state i are constructed for all nonterminals A
using the rule: If GOTO(&, A) = Ij, then GO TO[^, A] = j .

4. All entries not defined by rules (2) and (3) are made "error."

5. The initial state of the parser is the one constructed from the set of items
containing [S' -+ .S, $1.

The table formed from the parsing action and goto functions produced by
Algorithm 4.44 is called the canonical LR(1) parsing table. An LR parser using
this table is called a canonical-LR(1) parser. If the parsing action function
has no multiply defined entries, then the given grammar is called an LR(1)
grammar. As before, we omit the "(1)" if it is understood.

Example 4.57 : The canonical parsing table for grammar (4.55) is shown in
Fig. 4.42. Productions 1, 2, and 3 are S + CC, C -+ cC, and C -+ d,
respectively.

Every SLR(1) grammar is an LR(1) grammar, but for an SLR(1) grammar
the canonical LR parser may have more states than the SLR parser for the
same grammar. The grammar of the previous examples is SLR and has an SLR
parser with seven states, compared with the ten of Fig. 4.42.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.42: Canonical parsing table for grammar (4.55)

STATE

0
1
2
3
4
5
6
7
8
9

4.7.4 Constructing LALR Parsing Tables

We now introduce our last parser construction method, the LALR (Eoolcahead-
LR) technique. This method is often used in practice, because the tables ob-
tained by it are considerably smaller than the canonical LR tables, yet most
common syntactic constructs of programming languages can be expressed con-
veniently by an LALR grammar. The same is almost true for SLR grammars,
but there are a few constructs that cannot be conveniently handled by SLR
techniques (see Example 4.48, for example).

For a comparison of parser size, the SLR and LALR tables for a grammar
always have the same number of states, and this number is typically several
hundred states for a language like C. The canonical LR table would typically
have several thousand states for the same-size language. Thus, it is much easier
and more economical to construct SLR and LALR tables than the canonical
LR tables.

By way of introduction, let us again consider grammar (4.55), whose sets of
LR(1) items were shown in Fig. 4.41. Take a pair of similar looking states, such
as I4 and 17. Each of these states has only items with first component C -+ d..
In 14, the lookaheads are c or d; in 17, $ is the only lookahead.

To see the difference between the roles of I4 and I7 in the parser, note that
the grammar generates the regular language c*dc*d. When reading an input
cc . . cdcc . cd, the parser shifts the first group of c's and their following d
onto the stack, entering state 4 after reading the d. The parser then calls for a
reduction by C -+ d, provided the next input symbol is c or d. The requirement
that c or d follow makes sense, since these are the symbols that could begin
strings in c*d. If $ follows the first d, we have an input like ccd, which is not
in the language, and state 4 correctly declares an error if $ is the next input.

The parser enters state 7 after reading the second d. Then, the parser must

ACTION

c d $

s3 s4
acc

s6 s7
s3 s4
r3 r3

r l
s6 s7

r3
r2 r2

r2

GOT0

S C
1 2

5
8

9

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL LR PARSERS 267

see $ on the input, or it started with a string not of the form c*dc*d. It thus
makes sense that state 7 should reduce by C -+ d on input $ and declare error
on inputs c or d.

Let us now replace I4 and I7 by 147, the union of I4 and 17, consisting of
the set of three items represented by [C -+ d., c/d/$]. The goto's on d to I4 or
I7 from lo , 12, 13, and I6 now enter 147. The action of state 47 is to reduce on
any input. The revised parser behaves essentially like the original, although it
might reduce d to C in circumstances where the original would declare error,
for example, on input like ccd or cdcdc. The error will eventually be caught; in
fact, it will be caught before any more input symbols are shifted.

More generally, we can look for sets of LR(1) items having the same core,
that is, set of first components, and we may merge these sets with common
cores into one set of items. For example, in Fig. 4.41, I4 and I7 form such a
pair, with core {C -+ d.). Similarly, I3 and I6 form another pair, with core
{C -+ c.C, C -+ .cC, C -+ .d). There is one more pair, Is and 19, with common
core {C -+ cC-). Note that, in general, a core is a set of LR(0) items for the
grammar at hand, and that an LR(1) grammar may produce more than two
sets of items with the same core.

Since the core of GOTO(& X) depends only on the core of I, the goto's of
merged sets can themselves be merged. Thus, there is no problem revising the
goto function as we merge sets of items. The action functions are modified to
reflect the non-error actions of all sets of items in the merger.

Suppose we have an LR(1) grammar, that is, one whose sets of LR(1) items
produce no parsing-action conflicts. If we replace all states having the same core
with their union, it is possible that the resulting union will have a conflict, but
it is unlikely for the following reason: Suppose in the union there is a conflict
on lookahead a because there is an item [A -+ a-, a] calling for a reduction by
A -+ a, and there is another item [B -+ P.ay, b] calling for a shift. Then some
set of items from which the union was formed has item [A -+ a*, a], and since
the cores of all these states are the same, it must have an item [B -+ @say, c]
for some c. But then this state has the same shiftjreduce conflict on a, and
the grammar was not LR(1) as we assumed. Thus, the merging of states with
common cores can never produce a shiftjreduce conflict that was not present
in one of the original states, because shift actions depend only on the core, not
the lookahead.

It is possible, however, that a merger will produce a reducejreduce conflict,
as the following example shows.

Example 4.58 : Consider the grammar

which generates the four strings acd, ace, bed, and bee. The reader can check
that the grammar is LR(1) by constructing the sets of items. Upon doing so,

https://hemanthrajhemu.github.io

268 CHAPTER 4. SYNTAX ANALYSIS

we find the set of items { [A -+ c., 4, [B -+ c., el} valid for viable prefix ac and
{ [A -+ c-, el, [B -+ cq, 4) valid for bc. Neither of these sets has a conflict, and
their cores are the same. However, their union, which is

generates a reducelreduce conflict, since reductions by both A -+ c and B -+ c
are called for on inputs d and e.

We are now prepared to give the first of two LALR table-construction al-
gorithms. The general idea is to construct the sets of LR(1) items, and if no
conflicts arise, merge sets with common cores. We then construct the parsing
table from the collection of merged sets of items. The method we are about to
describe serves primarily as a definition of LALR(1) grammars. Constructing
the entire collection of LR(1) sets of items requires too much space and time to
be useful in practice.

Algorithm 4.59 : An easy, but space-consuming LALR table construction.

INPUT: An augmented grammar G'.

OUTPUT: The LALR parsing-table functions ACTION and GOT0 for G'.

METHOD:

1. Construct C = (Io, 11, . . . , I,), the collection of sets of LR(1) items.

2. For each core present among the set of LR(1) items, find all sets having
that core, and replace these sets by their union.

3. Let C' = {Jo, J1,. . . , J,) be the resulting sets of LR(1) items. The
parsing actions for state i are constructed from Ji in the same manner as
in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails
to produce a parser, and the grammar is said not to be LALR(1).

4. The GOTO table is constructed as follows. If J is the union of one or
more sets of LR(1) items, that is, J = Il n I2 n n Ik , then the
cores of GOTO(I~, X) , GOTO(I~ , X) , . . . , GOTO(&, X) are the same, since
11, 12, . . . , Ik all have the same core. Let K be the union of all sets of
items having the same core as GOTO(I~, X). Then GOTO(J, X) = K.

The table produced by Algorithm 4.59 is called the LALR parsing table for
G. If there are no parsing action conflicts, then the given grammar is said to
be an LALR(1) grammar. The collection of sets of items constructed in step
(3) is called the LALR(1) collection.

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL LR PARSERS 269

Example 4.60 : Again consider grammar (4.55) whose GOTO graph was shown
in Fig. 4.41. As we mentioned, there are three pairs of sets of items that can
be merged. I3 and I6 are replaced by their union:

I4 and I7 are replaced by their union:

and I8 and I9 are replaced by their union:

The LALR action and goto functions for the condensed sets of items are shown
in Fig. 4.43.

STATE

Figure 4.43: LALR parsing table for the grammar of Example 4.54

0
1
2

36
47
5

89

To see how the GOTO'S are computed, consider G O T O (I ~ ~ , C). In the original
set of LR(1) items, G0T0(13, C) = 18, and I8 is now part of Isg, so we make
G O T O (I ~ ~ , C) be 189. We could have arrived at the same conclusion if we
considered Is, the other part of 13,. That is, G0T0(16, C) = Ig , and I9 is
now part of 189. For another example, consider GOTO(I~, c), an entry that is
exercised after the shift action of I2 on input c. In the original sets of LR(1)
items, G O T O (~ ~ , c) = 16. Since I6 is now part of 136, G0T0(12, C) becomes 13s.
Thus, the entry in Fig. 4.43 for state 2 and input c is made s36, meaning shift
and push state 36 onto the stack.

ACTION

c d

When presented with a string from the language c* dc* d , both the LR parser
of Fig. 4.42 and the LALR parser of Fig. 4.43 make exactly the same sequence
of shifts and reductions, although the names of the states on the stack may
differ. For instance, if the LR parser puts I3 or I6 on the stack, the LALR

GOT0

$ S C

s36 s47
acc

s36 s47
s36 s47
r3 r3 r3

r l
r2 r2 r2

1 2

5
89

https://hemanthrajhemu.github.io

270 CHAPTER 4. SYNTAX ANALYSIS

parser will put IS6 on the stack. This relationship holds in general for an LALR
grammar. The LR and LALR parsers will mimic one another on correct inputs.

When presented with erroneous input, the LALR parser may proceed to do
some reductions after the LR parser has declared an error. However, the LALR
parser will never shift another symbol after the LR parser declares an error.
Far example, on input ccd followed by $, the LR parser of Fig. 4.42 will put

on the stack, and in state 4 will discover an error, because $ is the next input
symbol and state 4 has action error on $. In contrast, the LALR parser of Fig.
4.43 will make the corresponding moves, putting

on the stack. But state 47 on input $ has action reduce C -+ d. The LALR
parser will thus change its stack to

Now the action of state 89 on input $ is reduce C -+ cC. The stack becomes

whereupon a similar reduction is called for, obtaining stack

Finally, state 2 has action error on input $, so the error is now discovered.

4.7.5 Efficient Construction of LALR Parsing Tables

There are several modifications we can make to Algorithm 4.59 to avoid con-
structing the full collection of sets of LR(1) items in the process of creating an
LALR(1) parsing table.

First, we can represent any set of LR(0) or LR(1) items I by its kernel,
that is, by those items that are' either the initial item - [Sf -+ .S] or
[St -+ -S, $1 - or that have the dot somewhere other than at the beginning
of the production body.

We can construct the LALR(1)-item kernels from the LR(0)-item kernels
by a process of propagation and spontaneous generation of lookaheads,
that we shall describe shortly.

If we have the LALR(1) kernels, we can generate the LALR(1) parsing
table by closing each kernel, using the function CLOSURE of Fig. 4.40, and
then computing table entries by Algorithm 4.56, as if the LALR(1) sets
of items were canonical LR(1) sets of items.

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL LR PARSERS 271

Example 4.61 : We shall use as an example of the efficient LALR(1) table-
construction method the non-SLR grammar from Example 4.48, which we re-
produce below in its augmented form:

The complete sets of LR(0) items for this grammar were shown in Fig. 4.39.
The kernels of these items are shown in Fig. 4.44.

Figure 4.44: Kernels of the sets of LR(0) items for grammar (4.49)

Now we must attach the proper lookaheads ta the LR(0) items in the kernels,
to create the kernels of the sets of LALR(1) items. There are two ways a
lookahead b can get attached to an LR(0) item B -+ 7.6 in some set of LALR(1)
items J:

1. There is a set of items I, with a kernel item A -+ a.P,a, and J =
GOTO(& X) , and the construction of

GOTO (CLOSURE({[A -+ asp, a])), X)

as given in Fig. 4.40, contains [B -+ 74, b], regardless of a. Such a looka-
head b is said to be generated spontaneously for B -+ 7.6.

2. As a special case, lookahead $ is generated spontaneously for the item
S' -+ .S in the initial set of items.

3. All is as in (I) , but a = b, and GOTO (CLOSURE({[A -+ asp, b])), X) , as
given in Fig. 4.40, contains [B -+ 7.6, b] only because A -+ Q.P has b as
one of its associated lookaheads. In such a case, we say that lookaheads
propagate from A -+ a.P in the kernel of I to B -+ 7.6 in the kernel of
J . Note that propagation does not depend on the particular lookahead
symbol; either all lookaheads propagate from one item to another, or none
do.

https://hemanthrajhemu.github.io

272 CHAPTER 4. SYNTAX ANALYSIS

We need to determine the spontaneously generated lookaheads for each set
of LR(0) items, and also to determine which items propagate lookaheads from
which. The test is actually quite simple. Let # be a symbol not in the grammar
at hand. Let A -+ amp be a kernel LR(0) item in set I . Compute, for each X ,
J = GOTO (CLOSURE({[A -+ a*@, #I}), X) . For each kernel item in J, we
examine its set of lookaheads. If # is a lookahead, then lookaheads propagate
to that item from A -+ amp. Any other lookahead is spontaneously generated.
These ideas are made precise in the following algorithm, which also makes use
of the fact that the only kernel items in J must have X immediately to the left
of the dot; that is, they must be of the form B -+ yX.6.

Algorithm 4.62 : Determining lookaheads.

INPUT: The kernel K of a set of LR(0) items I and a grammar symbol X .

OUTPUT: The lookaheads spontaneously generated by items in I for kernel
items in GOTO(& X) and the items in I from which lookaheads are propagated
to kernel items in GOTO(I, X).

METHOD: The algorithm is given in Fig. 4.45.

for (each item A -+ a-p in K) {
J := CLOSURE({[A --+ asp,#]));
if ([B -+ ySX6, a] is in J, and a is not #)

conclude that lookahead a is generated spontaneously for item
B --+ yX.6 in GOTO(I, X) ;

if ([B -+ ymX6, #] is in J)
conclude that lookaheads propagate from A -+ amp in I to

B -+ yX.6 in GOTO(& X);

1

Figure 4.45: Discovering propagated and spontaneous lookaheads

We are now ready to attach lookaheads to the kernels of the sets of LR(0)
items to form the sets of LALR(1) items. First, we know that $ is a looka-
head for S' --+ .S in the initial set of LR(0) items. Algorithm 4.62 gives us all
the lookaheads generated spontaneously. After listing all those lookaheads, we
must allow them to propagate until no further propagation is possible. There
are many different approaches, all of which in some sense keep track of "new"
lookaheads that have propagated into an item but which have not yet propa-
gated out. The next algorithm describes one technique to propagate lookaheads
to all items.

Algorithm 4.63 : Efficient computation of the kernels of the LALR(1) collec-
tion of sets of items.

INPUT: An augmented grammar G'.

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL LR PARSERS

OUTPUT: The kernels of the LALR(1) collection of sets of items for GI.

METHOD:

1. Construct the kernels of the sets of LR(0) items for G. If space is not at
a premium, the simplest way is to construct the LR(0) sets of items, as in
Section 4.6.2, and then remove the nonkernel items. If space is severely
constrained, we may wish instead to store only the kernel items for each
set, and compute GOT0 for a set of items I by first computing the closure
of I.

2. Apply Algorithm 4.62 to the kernel of each set of LR(0) items and gram-
mar symbol X to determine which lookaheads are spontaneously gener-
ated for kernel items in GOTO(& X) , and from which items in I lookaheads
are propagated to kernel items in GOTO(I, X).

3. Initialize a table that gives, for each kernel item in each set of items, the
associated lookaheads. Initially, each item has associated with it only
those lookaheads that we determined in step (2) were generated sponta-
neously.

4. Make repeated passes over the kernel items in all sets. When we visit an
item i , we look up the kernel items to which i propagates its lookaheads,
using information tabulated in step (2). The current set of lookaheads
for i is added to those already associated with each of the items to which
i propagates its lookaheads. We continue making passes over the kernel
items until no more new lookaheads are propagated.

Example 4.64: Let us construct the kernels of the LALR(1) items for the
grammar of Example 4.61. The kernels of the LR(0) items were shown in
Fig. 4.44. When we apply Algorithm 4.62 to the kernel of set of items Io, we
first compute CLOSURE({[S' -+ .S, #I)) , which is

Among the items in the closure, we see two where the lookahead = has been
generated spontaneously. The first of these is L + . * R. This item, with * to
the right of the dot, gives rise to [L --+ *.R, =]. That is, = is a spontaneously
generated lookahead for L -+ *.R, which is in set of items Iq. Similarly, [L -+
-id, =] tells us that = is a spontaneously generated lookahead for L -+ id. in
1 5 .

As # is a lookahead for all six items in the closure, we determine that the
item St -+ .S in I. propagates lookaheads to the following six items:

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

St -+ S . in Il L -+ *-R in I4
S -+ L. = R in I2 L -+ id- in I5
S -+ R. in I3 R -i L. in I2

L -+ id.
R -+ L.

19: S - + L = R .

FROM
Io: S ' -+ 'S

12: S - + L . = R

Figure 4.46: Propagation of lookaheads

T o
I : S t + S .
12: S + L - = R
1 2 : R + L .
13: S + R .
14: L -+ * -R
15: L -+ id.
16: S - + L = . R

In Fig. 4.47, we show steps (3) and (4) of Algorithm 4.63. The column
labeled INIT shows the spontaneously generated lookaheads for each kernel item.
These are only the two occurrences of = discussed earlier, and the spontaneous
lookahead $ for the initial item S' -+ .S.

On the first pass, the lookahead $ propagates from St -+ S in I. to the
six items listed in Fig. 4.46. The lookahead = propagates from L -+ *.R in I4
to items L -+ * R. in I7 and R -+ L. in Is. It also propagates to itself and to
L -+ id in 15, but these lookaheads are already present. In the second and third
passes, the only new lookahead propagated is $, discovered for the successors of
I2 and I4 on pass 2 and for the successor of I6 on pass 3. No new lookaheads are
propagated on pass 4 , so the final set of lookaheads is shown in the rightmost
column of Fig. 4.47.

Note that the shiftlreduce conflict found in Example 4.48 using the SLR
method has disappeared with the LALR technique. The reason is that only
lookahead $ is associated with R -+ L. in 12, so there is no conflict with the
parsing action of shift on = generated by item S -+ L.=R in 12.

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL LR PARSERS

Figure 4.47: Computation of lookaheads

SET ITEM

Io: S ' + . S

I : S ' + S .

I,: S + L . = R
R + L.

13: S + R .

14: L + *.R

15: L + id.

I : S + L = . R

17: L + *R.

I*: R + L.

19: S + L = Re

4.7.6 Compaction of LR Parsing Tables

A typical programming language grammar with 50 to 100 terminals and 100
productions may have an LALR parsing table with several hundred states. The
action function may easily have 20,000 entries, each requiring at least 8 bits
to encode. On small devices, a more efficient encoding than a two-dimensional
array may be important. We shall mention briefly a few techniques that have
been used to compress the ACTION and GOT0 fields of an LR parsing table.

One useful technique for compacting the action field is to recognize that
usually many rows of the action table are identical. For example, in Fig. 4.42,
states 0 and 3 have identical action entries, and so do 2 and 6. We can therefore
save considerable space, at little cost in time, if we create a pointer for each
state into a one-dimensional array. Pointers for states with the same actions
point to the same location. To access information from this array, we assign
each terminal a number from zero to one less than the number of terminals,
and we use this integer as an offset from the pointer value for each state. In
a given state, the parsing action for the ith terminal will be found i locations
past the pointer value for that state.

Further space efficiency can be achieved at the expense of a somewhat slower
parser by creating a list for the actions of each state. The list consists of
(terminal-symbol, action) pairs. The most frequent action for a state can be

LOOKAHEADS
PASS 3

$

$

$
$

$

=/$

=/$

$

=/$

=/$

$

PASS 2

$

$

$
$

$

=/$

=/$

$

=/$

=/$

INIT

$

- -

- -

PASS 1

$

$

$
$

$

=/$

=/$

- -

- -

https://hemanthrajhemu.github.io

276 CHAPTER 4. SYNTAX ANALYSIS

placed at the end of the list, and in place of a terminal we may use the notation
"any," meaning that if the current input symbol has not been found so far on
the list, we should do that action no matter what the input is. Moreover, error
entries can safely be replaced by reduce actions, for further uniformity along a
row. The errors will be detected later, before a shift move.

Example 4.65 : Consider the parsing table of Fig. 4.37. First, note that the
actions for states 0, 4, 6, and 7 agree. We can represent them all by the list

SYMBOL ACTION
id s5
(s4
any error

State 1 has a similar list:

+ s6
$ acc
any error

In state 2, we can replace the error entries by r2, so reduction by production 2
will occur on any input but *. Thus the list for state 2 is

State 3 has only error and r4 entries. We can replace the former by the
latter, so the list for state 3 consists of only the pair (any, r4). States 5, 10,
and 11 can be treated similarly. The list for state 8 is

+ s6
1 s l l
any error

and for state 9

* s7
) s l l
any r l

We can also encode the GOTO table by a list, but here it appears more
efficient to make a list of pairs for each nonterminal A. Each pair on the list
for A is of the form (currentstate, nextstate), indicating

https://hemanthrajhemu.github.io

4.7. MORE POWERFUL L R PARSERS 277

This technique is useful because there tend to be rather few states in any one
column of the GOTO table. The reason is that the G O T 0 on nonterminal A
can only be a state derivable from a set of items in which some items have A
immediately to the left of a dot. No set has items with X and Y immediately
to the left of a dot if X # Y . Thus, each state appears in at most one G O T 0
column.

For more space reduction, we note that the error entries in the goto table are
never consulted. We can therefore replace each error entry by the most common
non-error entry in its column. This entry becomes the default; it is represented
in the list for each column by one pair with any in place of currentstate.

Example 4.66 : Consider Fig. 4.37 again. The column for F has entry 10 for
state 7, and all other entries are either 3 or error. We may replace error by 3
and create for column F the list

Similarly, a suitable list for column T is

For column E we may choose either 1 or 8 to be the default; two entries are
necessary in either case. For example, we might create for column E the list

This space savings in these small examples may be misleading, because the
total number of entries in the lists created in this example and the previous one
together with the pointers from states to action lists and from nonterminals
to next-state lists, result in unimpressive space savings over the matrix imple-
mentation of Fig. 4.37. For practical grammars, the space needed for the list
representation is typically less than ten percent of that needed for the matrix
representation. The table-compression methods for finite automata that were
discussed in Section 3.9.8 can also be used to represent LR parsing tables.

4.7.7 Exercises for Section 4.7

Exercise 4.7.1 : Construct the

a) canonical LR, and

b) LALR

https://hemanthrajhemu.github.io

278 CHAPTER 4. SYNTAX ANALYSIS

sets of items for the grammar S -+ S S + I S S * I a of Exercise 4.2.1.

Exercise 4.7.2 : Repeat Exercise 4.7.1 for each of the (augmented) grammars
of Exercise 4.2.2(a)-(g).

! Exercise 4.7.3 : For the grammar of Exercise 4.7.1, use Algorithm 4.63 to
compute the collection of LALR sets of items from the kernels of the LR(0) sets
of items.

! Exercise 4.7.4 : Show that the following grammar

is LALR(1) but not SLR(1).

! Exercise 4.7.5 : Show that the following grammar

is LR(1) but not LALR(1).

4.8 Using Ambiguous Grammars

It is a fact that every ambiguous grammar fails to be LR and thus is not in
any of the classes of grammars discussed in the previous two sections. How-
ever, certain types of ambiguous grammars are quite useful in the specification
and implementation of languages. For language constructs like expressions, an
ambiguous grammar provides a shorter, more natural specification than any
equivalent unambiguous grammar. Another use of ambiguous grammars is in
isolating commonly occurring syntactic constructs for special-case optimiza-
tion. With an ambiguous grammar, we can specify the special-case constructs
by carefully adding new productions to the grammar.

Although the grammars we use are ambiguous, in all cases we specify dis-
ambiguating rules that allow only one parse tree for each sentence. In this way,
the overall language specification becomes unambiguous, and sometimes it be-
comes possible to design an LR parser that follows the same ambiguity-resolving
choices. We stress that ambiguous constructs should be used sparingly and in
a strictly controlled fashion; otherwise, there can be no guarantee as to what
language is recognized by a parser.

https://hemanthrajhemu.github.io

4.8. USING AMBIGUOUS GRAMMARS

4.8.1 Precedence and Associativity to Resolve Conflicts

Consider the ambiguous grammar (4.3) for expressions with operators + and
*, repeated here for convenience:

E - + E + E I E * E I (E) l i d

This grammar is ambiguous because it does not specify the associativity or
precedence of the operators + and *. The unambiguous grammar (4.1), which
includes productions E -+ E + T and T -+ T * F, generates the same language,
but gives + lower precedence than *, and makes both operators left associative.
There are two reasons why we might prefer to use the ambiguous grammar.
First, as we shall see, we can easily change the associativity and precedence
of the operators + and * without disturbing the productions of (4.3) or the
number of states in the resulting parser. Second, the parser for the unam-
biguous grammar will spend a substantial fraction of its time reducing by the
productions E -+ T and T -+ F, whose sole function is to enforce associativity
and precedence. The parser for the ambiguous grammar (4.3) will not waste
time reducing by these single productions (productions whose body consists of
a single nonterminal) .

The sets of LR(0) items for the ambiguous expression grammar (4.3) aug-
mented by E' -+ E are shown in Fig. 4.48. Since grammar (4.3) is ambiguous,
there will be parsing-action conflicts when we try to produce an LR parsing
table from the sets of items. The states corresponding to sets of items I7 and
I8 generate these conflicts. Suppose we use the SLR approach to constructing
the parsing action table. The conflict generated by I7 between reduction by
E -+ E + E and shift on + or * cannot be resolved, because + and * are each
in FOLLOW(E). Thus both actions would be called for on inputs + and *. A
similar conflict is generated by Is, between reduction by E -+ E * E and shift
on inputs + and *. In fact, each of our LR parsing table-construction methods
will generate these conflicts.

However, these problems can be resolved using the precedence and associa-
tivity information for + and *. Consider the input id + id * id, which causes a
parser based on Fig. 4.48 to enter state 7 after processing id + id; in particular
the parser reaches a configuration

For convenience, the symbols corresponding to the states 1, 4, and 7 are also
shown under PREFIX.

If * takes precedence over +, we know the parser should shift * onto the
stack, preparing to reduce the * and its surrounding id symbols to an expression.
This choice was made by the SLR parser of Fig. 4.37, based on an unambiguous
grammar for the same language. On the other hand, if + takes precedence over
*, we know the parser should reduce E + E to E. Thus the relative precedence

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

I,,: E' -+ .E
E - + . E + E
E + - E * E
E + . (E)
E -+ .id

13: E -+ id.

I,: E -+ (E.)
E + E . + E
E + E . * E

Figure 4.48: Sets of LR(0) items for an augmented expression grammar

of + followed by * uniquely determines how the parsing action conflict between
reducing E -+ E + E and shifting on * in state 7 should be resolved.

If the input had been id + id + id instead, the parser would still reach a
configuration in which it had stack 0 1 4 7 after processing input id + id. On
input + there is again a shift/reduce conflict in state 7. Now, however, the
associativity of the + operator determines how this conflict should be resolved.
If + is left associative, the correct action is to reduce by E -+ E + E. That is,
the id symbols sbrrounding the first + must be grouped first. Again this choice
coincides with what the SLR parser for the unambiguous grammar would do.

In summary, assuming + is left associative, the action of state 7 on input
+ should be to reduce by E -+ E + E , and assuming that * takes precedence
over +, the action of state 7 on input * should be to shift. Similarly, assuming
that * is left associative and takes precedence over +, we can argue that state
8, which can appear on top of the stack only when E * E are the top three
grammar symbols, should have the action reduce E + E * E on both + and *
inputs. In the case of input +, the reason is that * takes precedence over +,
while in the case of input *, the rationale is that * is left associative.

https://hemanthrajhemu.github.io

4.8. USING AMBIGUOUS GRAMMARS 28 1

Proceeding in this way, we obtain the LR parsing table shown in Fig. 4.49.
Productions 1 through 4 are E -+ E + E, E --+ E * E, -+ (E) , and E -+
id, respectively. It is interesting that a similar parsing action table would be
produced by eliminating the reductions by the single productions E -+ T and
T -+ F from the SLR table for the unambiguous expression grammar (4.1)
shown in Fig. 4.37. Ambiguous grammars like the one for expressions can be
handled in a similar way in the context of LALR and canonical LR parsing.

Figure 4.49: Parsing table for grammar (4.3)

4.8.2 The "Dangling-Else" Ambiguity

GOT0

E
1

6

7
8

STATE

0
1
2
3
4
5
6
7
8
9

Consider again the following grammar for conditional statements:

ACTION
- .

i d + * () $
s3 s2

s4 s5 acc
s3 s2

r4 r4 r4 r4
s3 s 2
s3 s 2

s4 s5 s9
r l s5 r l r l
r2 r2 r2 r2
r3 r3 r3 r3

stmt -+ if expr t h e n stmt else stmt
I if expr t h e n strnt
I other

As we noted in Section 4.3.2, this grammar is ambiguous because it does not
resolve the dangling-else ambiguity. To simplify the discussion, let us consider
an abstraction of this grammar, where i stands for if expr then , e stands for
else, and a stands for "all other productions.'' We can then write the grammar,
with augmenting production S' -+ S, as

The sets of LR(0) items for grammar (4.67) are shown in Fig. 4.50. The ambi-
guity in (4.67) gives rise to a shiftjreduce conflict in la. There, S -+ iS.eS calls
for a shift of e and, since FOLLOW(S) = {e, $1, item S --+ i s . calls for reduction
by S -+ is on input e.

Translating back to the if-then-else terminology, given

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.50: LR(0) states for augmented grammar (4.67)

if expr t h e n stmt

on the stack and else as the first input symbol, should we shift else onto the
stack (i.e., shift e) or reduce if expr t h e n stmt (i.e, reduce by S --+ i s) ? The
answer is that we should shift else, because it is "associated" with the previous
then. In the terminology of grammar (4.67), the e on the input, standing for
else, can only form part of the body beginning with the i S now on the top of
the stack. If what follows e on the input cannot be parsed as an S, completing
body iSeS, then it can be shown that there is no other parse possible.

We conclude that the shiftlreduce conflict in I4 should be resolved in favor
of shift on input e. The SLR parsing table constructed from the sets of items
of Fig. 4.48, using this resolution of the parsing-action conflict in I4 on input
e, is shown in Fig. 4.51. Productions 1 through 3 are S -+ iSeS, S -+ i s , and
S -+ a , respectively.

Figure 4.51: LR parsing table for the "dangling-else" grammar

GOT0

S
1

4

6

STATE

0
1
2
3
4
5
6

ACTION

i e a $
s 2 s3

acc
s 2 s3

r3 r3
s 5 r2

s2 s3
r l r l

https://hemanthrajhemu.github.io

4.8. USING AMBIGUOUS GRAMMARS 283

For example, on input iiaea, the parser makes the moves shown in Fig. 4.52,
corresponding to the correct resolution of the "dangling-else." At line (5), state
4 selects the shift action on input e, whereas at line (9), state 4 calls for reduction
by S -+ iS on input $.

2

i i
i i a
i i S
i i S e
i i S e a
i i S e S
i S
S

ACTION
shift
shift
shift
shift
reduce by S -+ a
shift
reduce by S -+ a
reduce by S -+ iSeS
reduce by S -+ iS
accept

Figure 4.52: Parsing actions on input iiaea

By way of comparison, if we are unable to use an ambiguous grammar to
specify conditional statements, then we would have to use a bulkier grammar
along the lines of Example 4.16.

4.8.3 Error Recovery in LR Parsing

An LR parser will detect an error when it consults the parsing action table and
finds an error entry. Errors are never detected by consulting the goto table. An
LR parser will announce an error as soon as there is no valid continuation for
the portion of the input thus far scanned. A canonical LR parser will not make
even a single reduction before announcing an error. SLR and LALR parsers
may make several reductions before announcing an error, but they will never
shift an erroneous input symbol onto the stack.

In LR parsing, we can implement panic-mode error recovery as follows. We
scan down the stack until a state s with a goto on a particular nonterminal
A is found. Zero or more input symbols are then discarded until a symbol
a is found that can legitimately follow A. The parser then stacks the state
GOTO(S, A) and resumes normal parsing. There might be more than one choice
for the nonterminal A. Normally these would be nonterminals representing
major program pieces, such as an expression, statement, or block. For example,
if A is the nonterminal stmt, a might be semicolon or), which marks the end
of a statement sequence.

This method of recovery attempts to eliminate the phrase containing the
syntactic error. The parser determines that a string derivable from A contains
an error. Part of that string has already been processed, and the result of this

https://hemanthrajhemu.github.io

284 CHAPTER 4. SYNTAX ANALYSIS

processing is a sequence of states on top of the stack. The remainder of the
string is still in the input, and the parser attempts to skip over the remainder
of this string by looking for a symbol on the input that can legitimately follow
A. By removing states from the stack, skipping over the input, and pushing
GOTO(S, A) on the stack, the parser pretends that it has found an instance of
A and resumes normal parsing.

Phrase-level recovery is implemented by examining each error entry in the
LR parsing table and deciding on the basis of language usage the most likely
programmer error that would give rise to that error. An appropriate recovery
procedure can then be constructed; presumably the top of the stack and/or first
input symbols would be modified in a way deemed appropriate for each error
entry.

In designing specific error-handling routines for an LR parser, we can fill in
each blank entry in the action field with a pointer to an error routine that will
take the appropriate action selected by the compiler designer. The actions may
include insertion or deletion of symbols from the stack or the input or both,
or alteration and transposition of input symbols. We must make our choices
so that the LR parser will not get into an infinite loop. A safe strategy will
assure that at least one input symbol will be removed or shifted eventually, or
that the stack will eventually shrink if the end of the input has been reached.
Popping a stack state that covers a nonterminal should be avoided, because
this modification eliminates from the stack a construct that has already been
successfully parsed.

Example 4.68 : Consider again the expression grammar

Figure 4.53 shows the LR parsing table from Fig. 4.49 for this grammar,
modified for error detection and recovery. We have changed each state that
calls for a particular reduction on some input symbols by replacing error entries
in that state by the reduction. This change has the effect of postponing the
error detection until one or more reductions are made, but the error will still
be caught before any shift move takes place. The remaining blank entries from
Fig. 4.49 have been replaced by calls to error routines.

The error routines are as follows.

el: This routine is called from states 0, 2, 4 and 5, all of which expect the
beginning of an operand, either an id or a left parenthesis. Instead, +, *,
or the end of the input was found.

push state 3 (the goto of states 0, 2, 4 and 5 on id);
issue diagnostic "missing operand."

e2: Called from states 0, 1, 2, 4 and 5 on finding a right parenthesis.

remove the right parenthesis from the input;
issue diagnostic "unbalanced right parenthesis."

https://hemanthrajhemu.github.io

4.8. USING AMBIGUOUS GRAMMARS

Figure 4.53: LR parsing table with error routines

e3: Called from states 1 or 6 when expecting an operator, and an id or right
parenthesis is found.

G O T 0

E
1

6

7
8

STATE

0
1
2
3
4
5
6
7
8
9

push state 4 (corresponding to symbol +) onto the stack;
issue diagnostic "missing operator."

ACTION

i d + * $

s3 e l e l s2 e2 e l
e3 s4 s5 e3 e2 acc
s3 e l e l s2 e2 e l
r4 r4 r4 r4 r4 r4
s3 e l e l s2 e2 e l
s3 e l e l s2 e2 e l
e3 s4 s5 e3 s9 e4
r l r l s5 r l r l r l
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3

e4: Called from state 6 when the end of the input is found.

push state 9 (for a right parenthesis) onto the stack;
issue diagnostic "missing right parenthesis."

On the erroneous input id +), the sequence of configurations entered by the
parser is shown in Fig. 4.54.

4.8.4 Exercises for Section 4.8

! Exercise 4.8.1 : The following is an ambiguous grammar for expressions with
n binary, infix operators, at n different levels of precedence:

a) As a function of n, what are the SLR sets of items?

b) How would you resolve the conflicts in the SLR items so that all oper-
ators are left associative, and el takes precedence over 62, which takes
precedence over 03, and so on?

c) Show the SLR parsing table that results from your decisions in part (b).

https://hemanthrajhemu.github.io

286 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.54: Parsing and error recovery moves made by an LR parser

STACK
0
0 3
0 1
0 1 4

0 1 4

0 1 4 3
0 1 4 7
0 1

d) Repeat parts (a) and (c) for the unambiguous grammar, which defines
the same set of expressions, shown in Fig. 4.55.

e) How do the counts of the number of sets of items and the sizes of the tables
for the two (ambiguous and unambiguous) grammars compare? What
does that comparison tell you about the use of ambiguous expression
grammars?

SYMBOLS

id
E
E +

E +

E + i d
E +
E +

Figure 4.55: Unambiguous grammar for n operators

! Exercise 4.8.2 : In Fig. 4.56 is a grammar for certain statements, similar to
that discussed in Exercise 4.4.12. Again, e and s are terminals standing for
conditional expressions and "other statements," respectively.

INPUT
i d +) $

+ I $
+I$

) $

$

$
$
$

a) Build an LR parsing table for this grammar, resolving conflicts in the
usual way for the dangling-else problem.

ACTION

"unbalanced right parenthesis"
e2 removes right parenthesis
"missing operand"
e l pushes state 3 onto stack

b) Implement error correction by filling in the blank entries in the parsing
table with extra reduce-actions or suitable error-recovery routines.

c) Show the behavior of your parser on the following inputs:

(i) if e t hen s ; if e t h e n s end
(ii) while e d o begin s ; if e t h e n s ; end

https://hemanthrajhemu.github.io

4.9. PARSER GENERATORS

stmt + if e then stmt

I if e then stmt else stmt
(while e do stmt
(begin list end
I

list + list ; stmt
I stmt

Figure 4.56: A grammar for certain kinds of statements

4.9 Parser Generators

This section shows how a parser generator can be used to facilitate the construc-
tion of the front end of a compiler. We shall use the LALR parser generator
Yacc as the basis of our discussion, since it implements many of the concepts
discussed in the previous two sections and it is widely available. Yacc stands for
"yet another compiler-compiler," reflecting the popularity of parser generators
in the early 1970s when the first version of Yacc was created by S. C. Johnson.
Yacc is available as a command on the UNIX system, and has been used to help
implement many production compilers.

4.9.1 The Parser Generator Yacc

A translator can be constructed using Yacc in the manner illustrated in Fig.
4.57. First, a file, say t rans la te . y, containing a Yacc specification of the
translator is prepared. The UNIX system command

yacc t ransla te . y

transforms the file t r ans la te . y into a C program called y . tab. c using the
LALR method outlined in Algorithm 4.63. The program y.tab. c is a repre-
sentation of an LALR parser written in C, along with other C routines that the
user may have prepared. The LALR parsing table is compacted as described
in Section 4.7. By compiling y . tab. c along with the l y library that contains
the LR parsing program using the command

we obtain the desired object program a . out that performs the translation spec-
ified by the original Yacc program.7 If other procedures are needed, they can
be compiled or loaded with y . tab . c, just as with any C program.

A Yacc source program has three parts:

7 ~ h e name ly is system dependent.

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

n - ~ Y a c c ~ t y.tab.c specificatio
compiler translate. y

input a. out output

y.tab.c

Figure 4.57: Creating an input/output translator with Yacc

declarations
%%

u

compiler

translation rules

a. out

supporting C routines

Example 4.69 : To: illustrate how to prepare a Yacc source program, let us
construct a simple desk calculator that reads an arithmetic expression, evaluates
it, and then prints its numeric value. We shall build the desk calculator starting
with the with the following grammar for arithmetic expressions:

E + E + T I T
T -, T * F I F
F + (E) I digit

The token digit is a single digit between 0 and 9. A Yacc desk calculator
program derived from this grammar is shown in Fig. 4.58.

The Declarations Part

There are two sections in the declarations part of a Yacc program; both are
optional. In the first section, we put ordinary C declarations, delimited by %C
and %). Here we piace declarations of any temporaries used by the translation
rules or procedures of the second and third sections. In Fig. 4.58, this section
contains only the include-st at ement

that causes the C preprocessor to include the standard header file cctype . h>
that contains the predicate isdigit.

Also in the declarations part are declarations of grammar tokens. In Fig.
4.58, the statement

%token DIGIT

https://hemanthrajhemu.github.io

4.9. PARSER GENERATORS

%token DIGIT

%%
l i n e : expr) \ n) (p r i n t f ("%d\ntt , $1) ;)

9

expr : expr) +) term ($$ = $1 + $3; 3
1 term
9

term : term) *) f a c t o r { $$ = $1 * $3;)
I f a c t o r
9

f a c t o r : ' 0 expr))) ($$ = $2; 3
I DIGIT

%%
y y l e x 0 (

i n t c ;
c = g e t char () ;
i f (i s d i g i t (c)) (

yylva l = c - ' 0) ;
r e t u r n DIGIT;

J
r e t u r n c ;

3

Figure 4.58: Yacc specification of a simple desk calculator

declares DIGIT to be a token. Tokens declared in this section can then be
used in the second and third parts of the Yacc specification. If Lex is used
to create the lexical analyzer that passes token to the Yacc parser, then these
token declarations are also made available to the analyzer generated by Lex, as
discussed in Section 3.5.2.

The Translation Rules Part

In the part of the Yacc specification after the first %% pair, we put the translation
rules. Each rule consists of a grammar production and the associated semantic
action. A set of productions that we have been writing:

(head) -+ (body), I (body)z I . - . I (body),

would be written in Yacc as

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

(head) : body)^ C (semantic a c t i ~ n) ~)

I (body)z C (semantic a ~ t i o n) ~)

I (body), C (semanticaction), 3

In a Yacc production, unquoted strings of letters and digits hot declared to
be tokens are taken to be nonterminals. A quoted single character, e.g. ' c ' ,
is taken to be the terminal symbol c, as wkll as the integer code for the token
represented by that character (i.e., Lex would return the character code for) c '
to the parser, as an integer). Alternative bodies can be separated by a vertical
bar, and a semicolon follows each head with its alternatives and their semantic
actions. The first head is taken to be the start symbol.

A Yacc semantic action is a sequence of C statements. In a semantic action,
the symbol $$ refers to the attribute value associated with the nonterminal of
the head, while $i refers to the value associated with the ith grammar symbol
(terminal or nonterminal) of the body. The semantic action is performed when-
ever we reduce by the associated production, so normally the semantic action
computes a value for $$ in terms of the $i's. In the Yacc specification, we have
written the two E-productions

and their associated semantic actions as:

expr : expr '+) term I $$ = $1 + $3; 3
1 term
s

Note that the nonterminal term in the first production is the third grammar
symbol of the body, while + is the second. The semantic action associated with
the first production adds the value of the expr and the term of the body and
assigns the result as the value for the nonterminal expr of the head. We have
omitted the semantic action for the second production altogether, since copying
the value is the default action for productions with a single grammar symbol
in the body. In general, ($$ = $1;) is the default semantic action.

Notice that we have added a new starting production

line : expr '\n' (printf ("%d\nfl, $1) ; 3

to the Yacc specification. This production says that an input to the desk
calculator is to be an expression followed by a newline character. The semantic
action associated with this production prints the decimal value of the expression
followed by a newline character.

https://hemanthrajhemu.github.io

4.9. PARSER GENERATORS

The Supporting C-Routines Part

The third part of a Yacc specification consists of supporting C-routines. A
lexical analyzer by the name yylex () must be provided. Using Lex to produce
yylex() is a common choice; see Section 4.9.3. Other procedures such as error
recovery routines may be added as necessary.

The lexical analyzer yylex() produces tokens consisting of a token name
and its associated attribute value. If a token name such as DIGIT is returned,
the token name must be declared in the first section of the Yacc specification.
The attribute value associated with a token is communicated to the parser
through a Y acc-defined variable yylval.

The lexical analyzer in Fig. 4.58 is very crude. It reads input characters
one at a time using the C-function get char () . If the character is a digit, the
value of the digit is stored in the variable yylval, and the token name DIGIT
is returned. Otherwise, the character itself is returned as the token name.

4.9.2 Using Yacc with Ambiguous Grammars

Let us now modify the Yacc specification so that the resulting desk calculator
becomes more useful. First, we shall allow the desk calculator to evaluate a
sequence of expressions, one to a line. We shall also allow blank lines between
expressions. We do so by changing the first rule to

l i n e s : l i n e s expr) \n) (pr in t f (I1%g\n", $2) ; 3
I l i n e s) \ n 7
I / * empty */
9

In Yacc, an empty alternative, as the third line is, denotes e.
Second, we shall enlarge the class of expressions to include numbers instead

of single digits and to include the arithmetic operators +, -, (both binary and
unary), *, and /. The easiest way to specify this class of expressions is to use
the ambiguous grammar

E + E + E I E - E I E * E I E / E 1 - E 1 number

The resulting Yacc specification is shown in Fig. 4.59.
Since the grammar in the Yacc specification in Fig. 4.59 is ambiguous, the

LALR algorithm will generate parsing-action conflicts. Yacc reports the num-
ber of parsing-action conflicts that are generated. A description of the sets of
items and the parsing-action conflicts can be obtained by invoking Yacc with a
-v option. This option generates an additional file y . output that contains the
kernels of the sets of items found for the grammar, a description of the parsing
action conflicts generated by the LALR algorithm, and a readable represen-
tation of the LR parsing table showing how the parsing action conflicts were
resolved. Whenever Yacc reports that it has found parsing-action conflicts, it

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

%<
#include <ctype.h>
#include <s td io .h>
#define YYSTYPE double /* double type f o r Yacc s tack */
%3
%token NUMBER

% l e f t)+ ' '-'
% l e f t ' * ' ' /)
%right UMINUS
%%

l i n e s : l i n e s expr ' \n) < pr in t f ("%g\n8' , $2) ; 3
I l i n e s '\n'
I /* empty */
9

expr : expr '+' expr < $$ = $1 + $3; 1
1 e x p r ' - ' e x p r < $ $ = $ I - $ 3 ;)
I e x p r ' *) e x p r < $ $ = $ 1 * $ 3 ; >
I e x p r ' /) e x p r < $ $ = $ 1 / $ 3 ;)
1) () expr '1) < $$ = $2; 3
I ' - 9 expr %prec UMINUS < $$ = - $2; 3
I NUMBER
9

%%
y y l e x 0 <

i n t c ;
while ((c = g e t c h a r 0 == ' ' 1;
if ((C ==) . P) (I (i s d i g i t (c))) <

ungetc(c, s td in) ;
scanf (" % l f N , &yylval) ;
r e tu rn NUMBER;

3
r e tu rn c ;

Figure 4.59: Yacc specification for a more advanced desk calculator.

https://hemanthrajhemu.github.io

4.9. PARSER GENERAT 293

is wise to create and consult the file y . output to see why the parsing-action
conflicts were generated and to see whether they were resolved correctly.

Unless otherwise instructed Y acc will resolve all parsing action conflicts
using the following two rules:

1. A reduce/reduce conflict is resolved by choosing the conflicting production
listed first in the Yacc specification.

2. A shift/reduce conflict is resolved in favor of shift. This rule resolves the
shift/reduce conflict arising from the dangling-else ambiguity correctly.

Since these default rules may not always be what the compiler writer wants,
Yacc provides a general mechanism for resolving shiftlreduce conflicts. In the
declarations portion, we can assign precedences and associativities to terminals.
The declaration

makes + and - be of the same precedence and be left associative. We can declare
an operator to be right associative by writing

and we can force an operator to be a nonassociative binary operator (i.e., two
occurrences of the operator cannot be combined at all) by writing

The tokens are given precedences in the order in which they appear in the
declarations part, lowest first. Tokens in the same declaration have the same
precedence. Thus, the declaration

%right UMINUS

in Fig. 4.59 gives the token UMINUS a precedence level higher than that of the
five preceding terminals.

Yacc resolves shiftlreduce conflicts by attaching a precedence and associa-
tivity to each production involved in a conflict, as well as to each terminal
involved in a conflict. If it must choose between shifting input symbol a and re-
ducing by production A -+ a, Yacc reduces if the precedence of the production
is greater than that of a, or if the precedences are the same and the associativity
of the production is l e f t . Otherwise, shift is the chosen action.

Normally, the precedence of a production is taken to be the same as that of
its rightmost terminal. This is the sensible decision in most cases. For example,
given productions

https://hemanthrajhemu.github.io

294 CHAPTER 4. SYNTAX ANALYSIS

we would prefer to reduce by E -+ E+E with lookahead +, because the + in
the body has the same precedence as the lookahead, but is left associative.
With lookahead *, we would prefer to shift, because the lookahead has higher
precedence than the + in the production.

In those situations where the rightmost terminal does not supply the proper
precedence to a production, we can force a precedence by appending to a pro-
duct ion the tag

Xprec (terminal)

The precedence and associativity of the production will then be the same as that
of the terminal, which presumably is defined in the declaration section. Yacc
does not report shiftlreduce conflicts that are resolved using this precedence
and associativity mechanism.

This "terminal" can be a placeholder, like UMINUS in Fig. 4.59; this termi-
nal is not returned by the lexical analyzer, but is declared solely to define a
precedence for a production. In Fig. 4.59, the declaration

%right UMINUS

assigns to the token UMINUS a precedence that is higher than that of * and /.
In the translation rules part, the tag:

Xprec UMINUS

at the end of the production

expr : ' - ' expr

makes the unary-minus operator in this production have a higher precedence
than any other operator.

4.9.3 Creating Yacc Lexical Analyzers with Lex

Lex was designed to produce lexical analyzers that could be used with Yacc. The
Lex library 11 will provide a driver program named yylex 0, the name required
by Yacc for its lexical analyzer. If Lex is used to produce the lexical analyzer,
we replace the routine yylex() in the third part of the Yacc specification by
the statement

and we have each Lex action return a terminal known to Yacc. By using
the #include "1ex.yy. ctl statement, the program yylex has access to Yacc's
names for tokens, since the Lex output file is compiled as part of the Yacc
output file y . tab . c.

Under the UNIX system, if the Lex specification is in the file first .l and
the Yacc specification in second. y, we can say

https://hemanthrajhemu.github.io

4.9. PARSER GENERATORS

lex first.1
yacc sec0nd.y
cc y.tab.c -1y -11

to obtain the desired translator.
The Lex specification in Fig. 4.60 can be used in place of the lexical analyzer

in Fig. 4.59. The last pattern, meaning "any character," must be written \n l .
since the dot in Lex matches any character except newline.

number [0-91 +\e. ? 1 [o-91 *\e. [o-91 +
%%
[1 (/* skip blanks */)
(number) (sscanf (yytext , "%lfl', &yylval) ;

return NUMBER;)
\n I . { return yytext C01 ;)

Figure 4.60: Lex specification for yylex() in Fig. 4.59

4.9.4 Error Recovery in Yacc

In Yacc, error recovery uses a form of error productions. First, the user de-
cides what "major" nonterminals will have error recovery associated with them.
Typical choices are some subset of the nonterminals generating expressions,
statements, blocks, and functions. The user then adds to the grammar error
productions of the form A --+ error a, where A is a major nonterminal and
a is a string of grammar symbols, perhaps the empty string; error is a Yacc
reserved word. Yacc will generate a parser from such a specification, treating
the error productions as ordinary productions.

However, wherl the parser generated by Yacc encounters an error, it treats
the states whose sets of items contain error productions in a special way. On
encountering an error, Yacc pops symbols from its stack until it finds the top-
most state on its stack whose underlying set of items includes an item of the
form A --+ . error a. The parser then "shifts" a fictitious token error onto the
stack, as though it saw the token error on its input.

When a is e, a reduction to A occurs immediately and the semantic action
associated with the production A -+ . error (which might be a user-specified
error-recovery routine) is invoked. The parser then discards input symbols until
it finds an input symbol on which normal parsing can proceed.

If a is not empty, Yacc skips ahead on the input looking for a substring
that can be reduced to a. If a consists entirely of terminals, then it looks for
this string of terminals on the input, and "reduces" them by shifting them onto
the stack. At this point, the parser will have error a on top of its stack. The
parser will then reduce error cu to A, and resume normal parsing.

For example, an error production of the form

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

%C
#include <ctype.h>
#include <s td io .h>
#define YYSTYPE double /* double type f o r Yacc s t ack */
%3
%token NUMBER

% l e f t)+)) -)

% l e f t) *) ' /)
%righ t UMINUS
%%

l i n e s : l i n e s expr) \ n) C p r i n t f ("%g\n t t , $2) ; 1
I l i n e s) \ n)
I /* empty */
1 e r r o r ' \n) { yyerror (" reen te r previous l i n e : It) ;

yyerrok; 3
9

expr : e x p r) +) e x p r C $ $ = $ 1 + $ 3 ;)
I expr '-' expr C $$ = $1 - $3; 3
I expr) *) expr I $$ = $1 * $3; I
I e x p r) /) e x p r C $ $ = $ 1 / $ 3 ;)
1) () expr C $$ = $2; 3
1 9 -) expr %prec UMINUS C $$ = - $2;

I NUMBER

Figure 4.61: Desk calculator with error recovery

stmt --+ error ;

would specify to the parser that it should skip just beyond the next semicolon
on seeing an error, and assume that a statement had been found. The semantic
routine for this error production would not need to manipulate the input, but
could generate a diagnostic message and set a flag to inhibit generation of object
code, for example.

Example 4.70 : Figure 4.61 shows the Yacc desk calculator of Fig. 4.59 with
the error production

l i n e s : e r r o r ' \n)

This error production causes the desk calculator to suspend normal parsing
when a syntax error is found on an input line. On encountering the error,

https://hemanthrajhemu.github.io

4.10. SUMMARY OF CHAPTER 4 297

the parser in the desk calculator starts popping symbols from its stack until it
encounters a state that has a shift action on the token error. State 0 is such a
state (in this example, it's the only such state), since its items include

lines += - error ' \ n J

Also, state 0 is always on the bottom of the stack. The parser shifts the token
error onto the stack, and then proceeds to skip ahead in the input until it has
found a newline character. At this point the parser shifts the newline onto the
stack, reduces error ' \ n J to lines, and emits the diagnostic message "reenter
previous line:". The special Yacc routine yyerrok resets the parser to its normal
mode of operation.

4.9.5 Exercises for Section 4.9

! Exercise 4.9.1 : Write a Yacc program that takes boolean expressions as input
[as given by the grammar of Exercise 4.2.2(g)] and produces the truth value of
the expressions.

! Exercise 4.9.2 : Write a Yacc program that takes lists (as defined by the
grammar of Exercise 4.2.2(e), but with any single character as an element, not
just a) and produces as output a linear representation of the same list; i.e., a
single list of the elements, in the same order that they appear in the input.

! Exercise 4.9.3 : Write a Yacc program that tells whether its input is a palin-
drome (sequence of characters that read the same forward and backward).

!! Exercise 4.9.4 : Write a Yacc program that takes regular expressions (as de-
fined by the grammar of Exercise 4.2.2(d), but with any single character as an
argument, not just a) and produces as output a transition table for a nonde-
terministic finite automaton recognizing the same language.

4.10 Summary of Chapter 4

+ Parsers. A parser takes as input tokens from the lexical analyzer and
treats the token names as terminal symbols of a context-free grammar.
The parser then constructs a parse tree for its input sequence of tokens;
the parse tree may be constructed figuratively (by going through the cor-
responding derivation steps) or literally.

+ Context-Free Grammars. A grammar specifies a set of terminal symbols
(inputs), another set of nonterminals (symbols representing syntactic con-
structs), and a set of productions, each of which gives a way in which
strings represented by one nonterminal can be constructed from terminal
symbols and strings represented by certain other nonterminals. A pro-
duction consists of a head (the nonterminal to be replaced) and a body
(the replacing string of grammar symbols).

https://hemanthrajhemu.github.io

CHAPTER 4. SYNTAX ANALYSIS

+ Derivations. The process of starting with the start-nonterminal of a gram-
mar and successively replacing it by the body of one of its productions is
called a derivation. If the leftmost (or rightmost) nonterminal is always
replaced, then the derivation is called leftmost (respectively, rightmost).

+ Parse Trees. A parse tree is a picture of a derivation, in which there is
a node for each nonterminal that appears in the derivation. The children
of a node are the symbols by which that nonterminal is replaced in the
derivation. There is a one-to-one correspondence between parse trees, left-
most derivations, and rightmost derivations of the same terminal string.

+ Ambiguity. A grammar for which some terminal string has two or more
different parse trees, or equivalently two or more leftmost derivations or
two or more rightmost derivations, is said to be ambiguous. In most cases
of practical interest, it is possible to redesign an ambiguous grammar so
it becomes an unambiguous grammar for the same language. However,
ambiguous grammars with certain tricks applied sometimes lead to more
efficient parsers.

+ Top-Down and Bottom- Up Parsing. Parsers are generally distinguished
by whether they work top-down (start with the grammar's start symbol
and construct the parse tree from the top) or bottom-up (start with the
terminal symbols that form the leaves of the parse tree and build the
tree from the bottom). Top-down parsers include recursive-descent and
LL parsers, while the most common forms of bottom-up parsers are LR
parsers.

+ Design of Grammars. Grammars suitable for top-down parsing often are
harder to design than those used by bottom-up parsers. It is necessary
to eliminate left-recursion, a situation where one nonterminal derives a
string that begins with the same nonterminal. We also must left-factor -
group productions for the same nonterminal that have a common prefix
in the body.

+ Recursive-Descent Parsers. These parsers use a procedure for each non-
terminal. The procedure looks at its input and decides which production
to apply for its nonterminal. Terminals in the body of the production are
matched to the input at the appropriate time, while nonterminals in the
body result in calls to their procedure. Backtracking, in the case when
the wrong production was chosen, is a possibility.

+ LL(1) Parsers. A grammar such that it is possible to choose the correct
production with which to expand a given nonterminal, looking only at
the next input symbol, is called LL(1). These grammars allow us to
construct a predictive parsing table that gives, for each nonterminal and
each lookahead symbol, the correct choice of production. Error correction
can be facilitated by placing error routines in some or all of the table
entries that have no legitimate production.

https://hemanthrajhemu.github.io

4.20. SUMMARY OF CHAPTER 4 299

+ Shift-Reduce Parsing. Bottom-up parsers generally operate by choosing,
on the basis of the next input symbol (lookahead symbol) and the contents
of the stack, whether to shift the next input onto the stack, or to reduce
some symbols at the top of the stack. A reduce step takes a production
body at the top of the stack and replaces it by the head of the production.

+ Viable Prefixes. In shift-reduce parsing, the stack contents are always a
viable prefix - that is, a prefix of some right-sentential form that ends
no further right than the end of the handle of that right-sentential form.
The handle is the substring that was introduced in the last step of the
right most derivation of that sentential form.

+ Valid Items. An item is a production with a dot somewhere in the body.
An item is valid for a viable prefix if the production of that item is used
to generate the handle, and the viable prefix includes all those symbols
to the left of the dot, but not those below.

+ LR Parsers. Each of the several kinds of LR parsers operate by first
constructing the sets of valid items (called LR states) for all possible
viable prefixes, and keeping track of the state for each prefix on the stack.
The set of valid items guide the shift-reduce parsing decision. We prefer
to reduce if there is a valid item with the dot at the right end of the body,
and we prefer to shift the lookahead symbol onto the stack if that symbol
appears immediately to the right of the dot in some valid item.

+ Simple LR Parsers. In an SLR parser, we perform a reduction implied by
a valid item with a dot at the right end, provided the lookahead symbol
can follow the head of that production in some sentential form. The
grammar is SLR, and this method can be applied, if there are no parsing-
action conflicts; that is, for no set of items, and for no lookahead symbol,
are there two productions to reduce by, nor is there the option to reduce
or to shift.

+ Canonical-LR Parsers. This more complex form of LR parser uses items
that are augmented by the set of lookahead symbols that can follow the use
of the underlying production. Reductions are only chosen when there is a
valid item with the dot at the right end, and the current lookahead symbol
is one of those allowed for this item. A canonical-LR parser can avoid some
of the parsing-action conflicts that are present in SLR parsers, but often
has many more states than the SLR parser for the same grammar.

+ Lookahead-LR Parsers. LALR parsers offer many of the advantages of
SLR and Canonical-LR parsers, by combining the states that have the
same kernels (sets of items, ignoring the associated lookahead sets). Thus,
the number of states is the same as that of the SLR parser, but some
parsing-action conflicts present in the SLR parser may be removed in
the LALR parser. LALR parsers have become the method of choice in
practice.

https://hemanthrajhemu.github.io

300 CHAPTER 4. SYNTAX ANALYSIS

+ Bottom- Up Parsing of Ambiguous Grammars. In many important situa-
tions, such as parsing arithmetic expressions, we can use an ambiguous
grammar, and exploit side information such as the precedence of operators
to resolve conflicts between shifting and reducing, or between reduction by
two different productions. Thus, LR parsing techniques extend to many
ambiguous grammars.

+ Y acc. The parser-generator Y acc takes a (possibly) ambiguous grammar
and conflict-resolution information and constructs the LALR states. It
then produces a function that uses these states to perform a bottom-up
parse and call an associated function each time a reduction is performed.

4.11 References for Chapter 4

The context-free grammar formalism originated with Chomsky [5], as part of
a study on natural language. The idea also was used in the syntax description
of two early languages: Fortran by Backus [2] and Algol 60 by Naur [26]. The
scholar Panini devised an equivalent syntactic notation to specify the rules of
Sanskrit grammar between 400 B.C. and 200 B.C. [19].

The phenomenon of ambiguity was observed first by Cantor [4] and Floyd
[13]. Chomsky Normal Form (Exercise 4.4.8) is from [6]. The theory of context-
free grammars is summarized in [17].

Recursive-descent parsing was the method of choice for early compilers,
such as [16], and compiler-writing systems, such as META [28] and TMG [25].
LL grammars were introduced by Lewis and Stearns [24]. Exercise 4.4.5, the
linear-time simulation of recursive-descent , is from [3].

One of the earliest parsing techniques, due to Floyd [14], involved the prece-
dence of operators. The idea was generalized to parts of the language that do
not involve operators by Wirth and Weber [29]. These techniques are rarely
used today, but can be seen as leading in a chain of improvements to LR parsing.

LR parsers were introduced by Knuth [22], and the canonical-LR parsing
tables originated there. This approach was not considered practical, because the
parsing tables were larger than the main memories of typical computers of the
day, until Korenjak [23] gave a method for producing reasonably sized parsing
tables for typical programming languages. DeRemer developed the LALR [8]
and SLR [9] methods that are in use today. The construction of LR parsing
tables for ambiguous grammars came from [I] and [12].

Johnson's Yacc very quickly demonstrated the practicality of generating
parsers with an LALR parser generator for production compilers. The manual
for the Yacc parser generator is found in [20]. The open-source version, Bison,
is described in [lo]. A similar LALR-based parser generator called CUP [18]
supports actions written in Java. Top-down parser generators incude Antlr
[27], a recursive-descent parser generator that accepts actions in C++, Java, or
C#, and LLGen [15], which is an LL(1)-based generator.

Dain [7] gives a bibliography on syntax-error handling.

https://hemanthrajhemu.github.io

4.11. REFERENCES FOR CHAPTER 4 301

The general-purpose dynamic-programming parsing algorithm described in
Exercise 4.4.9 was invented independently by J . Cocke (unpublished) by Young-
er [30] and Kasami [21]; hence the "CYK algorithm." There is a more complex,
general-purpose algorithm due to Earley [I I] that tabulates LR-items for each
substring of the given input; this algorithm, while also O(n3) in general, is only
O(n2) on unambiguous grammars.

1. Aho, A. V., S. C. Johnson, and J. D. Ullman, "Deterministic parsing of
ambiguous grammars," Comm. A CM 18:8 (Aug., 1975), pp. 441-452.

2. Backus, J.W, "The syntax and semantics of the proposed international
algebraic language of the Zurich-ACM-GAMM Conference," Proc. Intl.
Conf. Information Processing, UNESCO, Paris, (1959) pp. 125-132.

3. Birman, A. and J . D. Ullman, "Parsing algorithms with backtrack," In-
formation and Control 23:l (1973), pp. 1-34.

4. Cantor, D. C., "On the ambiguity problem of Backus systems," J. ACM
9:4 (1962), pp. 477-479.

5. Chomsky, N., "Three models for the description of language," IRE Trans.
on Information Theory IT-2:3 (1956), pp. 113-124.

6. Chomsky, N., "On certain formal properties of grammars," Information
and Control 2:2 (1959), pp. 137-167.

7. Dain, J., "Bibliography on Syntax Error Handling in Language Transla-
tion Systems," 1991. Available from the comp . compilers newsgroup; see
http://compilers.iecc.com/comparch/article/91-O4-O5O.

8. DeRemer, F., "Practical Translators for LR(k) Languages," Ph.D. thesis,
MIT, Cambridge, MA, 1969.

9. DeRemer, F., "Simple LR(k) grammars," Cornrn. ACM 14:7 (July, 1971),
pp. 453-460.

10. Donnelly, C. and R. Stallman, "Bison: The YACC-compatible Parser
Generator," http: //www . gnu. org/software/bison/manual/ .

11. Earley, J., "An efficient context-free parsing algorithm," Comm. A CM
13:2 (Feb., 1970), pp. 94-102.

12. Earley, J., "Ambiguity and precedence in syntax description," Acta In-
formatica 4:2 (1975), pp. 183-192.

13. Floyd, R. W., "On ambiguity in phrase-structure languages,'' Comm.
ACM 5:10 (Oct., 1962), pp. 526-534.

14. Floyd, R. W., "Syntactic analysis and operator precedence," J. ACM 10:3
(1963), pp. 316-333.

https://hemanthrajhemu.github.io

302 CHAPTER 4. SYNTAX ANALYSIS

15. Grune, D and C. J. H. Jacobs, "A programmer-friendly LL(1) parser
generator," Software Practice and Experience 18:l (Jan., 1988), pp. 29-
38. See also http : //www . cs . vu. nl/"ceriel/LLgen. html .

16. Hoare, C. A. R., "Report on the Elliott Algol translator," Computer J.
5:2 (1962), pp. 127-129.

17. Hopcroft, J. E., R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, Boston MA, 2001.

18. Hudson, S. E. et al., "CUP LALR Parser Generator in Java," Available
athttp://www2.cs.tum.edu/projects/cup/.

19. Ingerman, P. Z . , "Panini-Backus form suggested," Comm. ACM 10:3
(March 1967), p. 137.

20. Johnson, S. C., "Yacc - Yet Another Compiler Compiler," Computing
Science Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.
Available at http : //dinosaur. compilertools. net/yacc/ .

21. Kasami, T., "An efficient recognition and syntax analysis algorithm for
context-free languages," AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA, 1965.

22. Knuth, D. E., "On the translation of languages from left to right," Infor-
mation and Control 8:6 (1965), pp. 607-639.

23. Korenjak, A. J., "A practical method for constructing LR(k) processors,"
Comm. ACM 12:lI (Nov., 1969), pp. 613-623.

24. Lewis, P. M. I1 and R. E. Stearns, "syntax-directed transduction," J.
ACM 15:3 (1968), pp. 465-488.

25. McClure, R. M., "TMG - a syntax-directed compiler," proc. 20th ACM
Natl. Conf. (1965), pp. 262-274.

26. Naur, P. et al., "Report on the algorithmic language ALGOL 60," Comm.
ACM 3:5 (May, 1960), pp. 299-314. See also Comm. ACM 6:l (Jan.,
1963), pp. 1-17.

27. Parr, T., "ANTLR," http: //www . antlr . org/ .
28. Schorre, D. V., "Meta-11: a syntax-oriented compiler writing language,"

Proc. 19th ACM Natl. Conf. (1964) pp. D1.3-1-D1.3-11.

29. Wirth, N. and H. Weber, "Euler: a generalization of Algol and its formal
definition: Part I," Comm. ACM 9:l (Jan., 1966), pp. 13-23.

30. Younger, D .H., "Recognition and parsing of context-free languages in time
n3," Information and Control 10:2 (1967), pp. 189-208.

https://hemanthrajhemu.github.io

