

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

xiv TABLE OF CONTENTS

5 Syntax-Directed Translation 303
5.1 Syntax-Directed Definitions . 304

5.1.1 Inherited and Synthesized Attributes 304
5.1.2 Evaluating an SDD at the Nodes of a Parse Tree 306
5.1.3 Exercises for Section 5.1 309

5.2 Evaluation Orders for SDD's . 310
5.2.1 Dependency Graphs . 310
5.2.2 Ordering the Evaluation of Attributes 312
5.2.3 S-Attributed Definitions 312
5.2.4 L-Attributed Definitions 313
5.2.5 Semantic Rules with Controlled Side Effects 314
5.2.6 Exercises for Section 5.2 317

5.3 Applications of Synt ax-Directed Translation 318
5.3.1 Construction of Syntax Trees 318

. 5.3.2 The Structure of a Type 321

. 5.3.3 Exercises for Section 5.3 323
. 5.4 Syntax-Directed Translation Schemes 324

. 5.4.1 Postfix Translation Schemes 324
. 5.4.2 Parser-Stack Implementation of Postfix SDT's 325

. 5.4.3 SDT's With Actions Inside Productions 327

. 5.4.4 Eliminating Left Recursion From SDT's 328
. 5.4.5 SDT's for L-Attributed Definitions 331

. 5.4.6 Exercises for Section 5.4 336
. 5.5 Implementing L- Attributed SDD's 337

. 5.5.1 Translation During Recursive-Descent Parsing 338
. 5.5.2 On-The-Fly Code Generation 340

. 5.5.3 L-Attributed SDD's and LL Parsing 343
. 5.5.4 Bottom-Up Parsing of L-Attributed SDD's 348

. 5.5.5 Exercises for Section 5.5 352
. 5.6 Summary of Chapter 5 353

. 5.7 References for Chapter 5 354

6 Intermediate-Code Generation 357
. 6.1 Variants of Syntax Trees 358

. 6.1.1 Directed Acyclic Graphs for Expressions 359
6.1.2 The Value-Number Method for Constructing DAG's . . . 360

. 6.1.3 Exercises for Section 6.1 362
. 6.2 Three-Address Code 363

. 6.2.1 Addresses and Instructions 364
. 6.2.2 Quadruples 366

. 6.2.3 Triples 367
. 6.2.4 Static Single- Assignment Form 369

. 6.2.5 Exercises for Section 6.2 370
. 6.3 Types and Declarations 370
. 6.3.1 Type Expressions 371

https://hemanthrajhemu.github.io

TABLE OF CONTENTS xv

. 6.3.2 Type Equivalence 372
. 6.3.3 Declarations 373

. 6.3.4 Storage Layout for Local Names 373
. 6.3.5 Sequences of Declarations 376

. 6.3.6 Fields in Records and Classes 376
. 6.3.7 Exercises for Section 6.3 378

. 6.4 Translation of Expressions 378
. 6.4.1 Operations Within Expressions 378

. 6.4.2 Incremental Translation 380
. 6.4.3 Addressing Array Elements 381

. 6.4.4 Translation of Array References 383
. 6.4.5 Exercises for Section 6.4 384

. 6.5 Type Checking 386
. 6.5.1 Rules for Type Checking 387

. 6.5.2 Type Conversions 388
. 6.5.3 Overloading of Functions and Operators 390

. 6.5.4 Type Inference and Polymorphic Functions 391
. 6.5.5 An Algorithm for Unification 395

. 6.5.6 Exercises for Section 6.5 398
. 6.6 Control Flow 399

. 6.6.1 Boolean Expressions 399
. 6.6.2 Short-circuit Code 400

. 6.6.3 Flow-of- Control Statements 401
6.6.4 Control-Flow Translation of Boolean Expressions 403
6.6.5 Avoiding Redundant Gotos 405
6.6.6 Boolean Values and Jumping Code 408
6.6.7 Exercises for Section 6.6 408

6.7 Backpatching . 410
6.7.1 One-Pass Code Generation Using Backpatching 410
6.7.2 Backpatching for Boolean Expressions 411
6.7.3 Flow-of-Control Statements 413
6.7.4 Break-, Continue-, and Goto-Statements 416
6.7.5 Exercises for Section 6.7 417

. 6.8 Switch-Statements 418
6.8.1 Translationof Switch-Statements 419
6.8.2 Syntax-Directed Translation of Switch-Statements 420
6.8.3 Exercises for Section 6.8 421

6.9 Intermediate Code for Procedures 422
6.10 Summary of Chapter 6 . 424
6.11 References for Chapter 6 . 425

https://hemanthrajhemu.github.io

xvi TABLE OF CONTENTS

7 Run-Time Environments 427
. 7.1 Storage Organization 427

7.1.1 Static Versus Dynamic Storage Allocation 429
. 7.2 Stack Allocation of Space 430

7.2.1 Activation Trees . 430
7.2.2 Activation Records . 433
7.2.3 Calling Sequences . 436
7.2.4 Variable-Length Data on the Stack 438
7.2.5 Exercises for Section 7.2 440

. 7.3 Access to Nonlocal Data on the Stack 441
. 7.3.1 Data Access Without Nested Procedures 442

. 7.3.2 Issues With Nested Procedures 442
7.3.3 A Language With Nested Procedure Declarations 443

. 7.3.4 Nesting Depth 443
. 7.3.5 Access Links 445

. 7.3.6 Manipulating Access Links 447
7.3.7 Access Links for Procedure Parameters 448

. 7.3.8 Displays 449
. 7.3.9 Exercises for Section 7.3 451

. 7.4 Heap Management 452
. 7.4.1 The Memory Manager 453

. 7.4.2 The Memory Hierarchy of a Computer 454
. 7.4.3 Locality in Programs 455

. 7.4.4 Reducing Fragmentation 457
. 7.4.5 Manual Deallocation Requests 460

. 7.4.6 Exercises for Section 7.4 463
. 7.5 Introduction to Garbage Collection 463

. 7.5.1 Design Goals for Garbage Collectors 464
. 7.5.2 Reachability 466

. 7.5.3 Reference Counting Garbage Collectors 468
. 7.5.4 Exercises for Section 7.5 470

. 7.6 Introduction to Trace-Based Collection 470
. 7.6.1 A Basic Mark-and-Sweep Collector 471

. 7.6.2 Basic Abstraction 473
. 7.6.3 Optimizing Mark-and-Sweep 475

. 7.6.4 Mark-and-Compact Garbage Collectors 476
. 7.6.5 Copying collectors 478

. 7.6.6 Comparing Costs 482
. 7.6.7 Exercises for Section 7.6 482
. 7.7 Short-Pause Garbage Collection 483

. 7.7.1 Incremental Garbage Collection 483
. 7.7.2 Incremental Reachability Analysis 485

. 7.7.3 Partial-Collection Basics 487
. 7.7.4 Generational Garbage Collection 488

. 7.7.5 The Train Algorithm 490

https://hemanthrajhemu.github.io

TABLE OF CONTENTS xvii

. 7.7.6 Exercises for Section 7.7 493
. 7.8 Advanced Topics in Garbage Collection 494

. 7.8.1 Parallel and Concurrent Garbage Collection 495
. 7.8.2 Partial Object Relocation 497

. 7.8.3 Conservative Collection for Unsafe Languages 498
. 7.8.4 Weak References 498

. 7.8.5 Exercises for Section 7.8 499
. 7.9 Summary of Chapter 7 500

. 7.10 References for Chapter 7 502

8 Code Generation 505
. 8.1 Issues in the Design of a Code Generator 506

. 8.1.1 Input to the Code Generator 507
. 8.1.2 The Target Program 507
. 8.1.3 Instruction Selection 508

. 8.1.4 Register Allocation 510
. 8.1.5 Evaluation Order 511

. 8.2 The Target Language 512
. 8.2.1 A Simple Target Machine Model 512

. 8.2.2 Program and Instruction Costs 515
. 8.2.3 Exercises for Section 8.2 516

. 8.3 Addresses in the Target Code 518
8.3.1 Static Allocation . 518
8.3.2 Stack Allocation . 520
8.3.3 Run-Time Addresses for Names 522
8.3.4 Exercises for Section 8.3 524

8.4 Basic Blocks and Flow Graphs 525
8.4.1 Basic Blocks . 526
8.4.2 Next-Use Information . 528
8.4.3 Flow Graphs . 529
8.4.4 Representation of Flow Graphs 530
8.4.5 Loops . 531
8.4.6 Exercises for Section 8.4 531

8.5 Optimization of Basic Blocks . 533
8.5.1 The DAG Representation of Basic Blocks 533
8.5.2 Finding Local Common Subexpressions 534
8.5.3 Dead Code Elimination 535
8.5.4 The Use of Algebraic Identities 536
8.5.5 Representation of Array References 537
8.5.6 Pointer Assignments and Procedure Calls 539
8.5.7 Reassembling Basic Blocks From DAG's 539
8.5.8 Exercises for Section 8.5 541

8.6 A Simple Code Generator . 542
8.6.1 Register and Address Descriptors 543
8.6.2 The Code-Generation Algorithm 544

https://hemanthrajhemu.github.io

xviii TABLE OF CONTENTS

8.6.3 Design of the Function getReg 547
8.6.4 Exercises for Section 8.6 548

. 8.7 Peephole Optimization 549
8.7.1 Eliminating Redundant Loads and Stores 550
8.7.2 Eliminating Unreachable Code 550

. 8.7.3 Flow-of-Control Optimizations 551
8.7.4 Algebraic Simplification and Reduction in Strength 552

. 8.7.5 Use of Machine Idioms 552
8.7.6 Exercises for Section 8.7 553

. 8.8 Register Allocation and Assignment 553
. 8.8.1 Global Register Allocation 553

. 8.8.2 Usage Counts 554
. 8.8.3 Register Assignment for Outer Loops 556
. 8.8.4 Register Allocation by Graph Coloring 556

. 8.8.5 Exercises for Section 8.8 557
. 8.9 Instruction Selection by Tree Rewriting 558

. 8.9.1 Tree-Translation Schemes 558
. 8.9.2 Code Generation by Tiling an Input Tree 560

. 8.9.3 Pattern Matching by Parsing 563
. 8.9.4 Routines for Semantic Checking 565

. 8.9.5 General Tree Matching 565
. 8.9.6 Exercises for Section 8.9 567

. 8.10 Optimal Code Generation for Expressions 567
. 8.10.1 Ershov Numbers 567

. 8.10.2 Generating Code From Labeled Expression Trees 568
8.10.3 Evaluating Expressions with an Insufficient Supply of Reg-

. isters 570
. 8.10.4 Exercises for Section 8.10 572

. 8.11 Dynamic Programming Code-Generation 573
. 8.11.1 Contiguous Evaluation 574

. 8.11.2 The Dynamic Programming Algorithm 575
. 8.1 1.3 Exercises for Section 8.11 577

. 8.12 Summary of Chapter 8 578
. 8.13 References for Chapter 8 579

9 Machine-Independent Optimizations 583
. 9.1 The Principal Sources of Optimization 584

. 9.1.1 Causes of Redundancy 584
. 9.1.2 A Running Example: Quicksort 585

. 9.1.3 Semantics-Preserving Transformations 586
. 9.1.4 Global Common Subexpressions 588

. 9.1.5 Copy Propagation 590
. 9.1.6 Dead-Code Elimination 591

. 9.1.7 Code Motion 592
. 9.1.8 Induction Variables and Reduction in Strength 592

https://hemanthrajhemu.github.io

Chapter 5

Syntax-Directed
Translation

This chapter develops the theme of Section 2.3: the translation of languages
guided by context-free grammars. The translation techniques in this chapter
will be applied in Chapter 6 to type checking and intermediate-code generation.
The techniques are also useful for implementing little languages for specialized
tasks; this chapter includes an example from typesetting.

We associate information with a language construct by attaching attributes
to the grammar symbol(s) representing the construct, as discussed in Sec-
tion 2.3.2. A syntax-directed definition specifies the values of attributes by
associating semantic rules with the grammar productions. For example, an
infix-to-postfix translator might have a production and rule

This production has two nonterminals, E and T; the subscript in El distin-
guishes the occurrence of E in the production body from the occurrence of E
as the head. Both E and T have a string-valued attribute code. The semantic
rule specifies that the string E. code is formed by concatenating El . code, T. code,
and the character ' + I . While the rule makes it explicit that the translation of
E is built up from the translations of E l , T, and I + ' , it may be inefficient to
implement the translation directly by manipulating strings.

From Section 2.3.5, a syntax-directed translation scheme embeds program
fragments called semantic actions within production bodies, as in

E -+ El +T { print ' + I }

By convention, semantic actions are enclosed within curly braces. (If curly
braces occur as grammar symbols, we enclose them within single quotes, as in

https://hemanthrajhemu.github.io

304 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

I { ' and I } ' .) The position of a semantic action in a production body determines
the order in which the action is executed. In production (5.2), the action
occurs at the end, after all the grammar symbols; in general, semantic actions
may occur at any position in a production body.

Between the two notations, syntax-directed definitions can be more readable,
and hence more useful for specifications. However, translation schemes can be
more efficient, and hence more useful for implementations.

The most general approach to syntax-directed translation is to construct a
parse tree or a syntax tree, and then to compute the values of attributes at the
nodes of the tree by visiting the nodes of the tree. In many cases, translation
can be done during parsing, without building an explicit tree. We shall therefore
study a class of syntax-directed translations called "L-attributed translations"
(L for left-to-right), which encompass virtually all translations that can be
performed during parsing. We also study a smaller class, called "S-attributed
translations" (S for synthesized), which can be performed easily in connection
with a bottom-up parse.

5.1 Syntax-Directed Definitions

A s yntax-directed definition (SDD) is a context-free grammar together with,
attributes and rules. Attributes are associated with grammar symbols and rules
are associated with productions. If X is a symbol and a is one of its attributes,
then we write X.a to denote the value of a at a particular parse-tree node
labeled X. If we implement the nodes of the parse tree by records or objects,
then the attributes of X can be implemented by data fields in the records that
represent the nodes for X. Attributes may be of any kind: numbers, types, table
references, or strings, for instance. The strings may even be long sequences of
code, say code in the intermediate language used by a compiler.

5.1.1 Inherited and Synthesized Attributes

We shall deal with two kinds of attributes for nonterminals:

1. A synthesized attribute for a nonterminal A at a parse-tree node N is
defined by a semantic rule associated with the production at N. Note
that the production must have A as its head. A synthesized attribute at
node N is defined only in terms of attribute values at the children of N
and at N itself.

2. An inherited attribute for a nonterminal B at a parse-tree node N is
defined by a semantic rule associated with the production at the parent
of N. Note that the production must have B as a symbol in its body. An
inherited attribute at node N is defined only in terms of attribute values
at N's parent, N itself, and N's siblings.

https://hemanthrajhemu.github.io

5.1. SYNTAX-DIRECTED DEFINITIONS 305

An Alternative Definition of Inherited Attributes

No additional translations are enabled if we allow an inherited attribute
B.c at a node N to be defined in terms of attribute values at the children
of N , as well as at N itself, at its parent, and at its siblings. Such rules can
be "simulated" by creating additional attributes of B , say B.cl , B.c2,
These are synthesized attributes that copy the needed attributes of the
children of the node labeled B. We then compute B.c as an inherited
attribute, using the attributes B.cl, B.cz,. . . in place of attributes at the
children. Such attributes are rarely needed in practice.

While we do not allow an inherited attribute at node N to be defined in terms of
attribute values at the children of node N , we do allow a synthesized attribute
at node N to be defined in terms of inherited attribute values at node N itself.

Terminals can have synthesized attributes, but not inherited attributes. At-
tributes for terminals have lexical values that are supplied by the lexical ana-
lyzer; there are no semantic rules in the SDD itself for computing the value of
an attribute for a terminal.

Example 5.1 : The SDD in Fig. 5.1 is based on our familiar grammar for
arithmetic expressions with operators + and *. It evaluates expressions termi-
nated by an endmarker n. In the SDD, each of the nonterminals has a single
synthesized attribute, called val. We also suppose that the terminal digit has
a synthesized attribute lexval, which is an integer value returned by the lexical
analyzer.

Figure 5.1: Syntax-directed definition of a simple desk calculator

PRODUCTION

1) L + E n

2) E + E l + T

3) E + T

4) T + T l * F

5) T + F

6) F + (E)
7) F + digit

The rule for production 1, L -+ E n , sets L.val to E.va1, which we shall see
is the numerical value of the entire expression.

Production 2, E -+ El + T, also has one rule, which computes the val
attribute for the head E as the sum of the values at El and T . At any parse-

SEMANTIC RULES

L.val = E.val

E.val=E1.val+T.val

E.val = T.val

T.val=Tl.vaExF.val

T.val = F.val

F.val = E.val

F. val = digit .lexval

https://hemanthrajhemu.github.io

306 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tree node N labeled E, the value of val for E is the sum of the values of val at
the children of node N labeled E and T.

Production 3, E + T, has a single rule that defines the value of val for E
to be the same as the value of val at the child for T. Production 4 is similar to
the second production; its rule multiplies the values at the children instead of
adding them. The rules for productions 5 and 6 copy values at a child, like that
for the third production. Production 7 gives F.val the value of a digit, that is,
the numerical value of the token digit that the lexical analyzer returned.

An SDD that involves only synthesized attributes is called S-attributed; the
SDD in Fig. 5.1 has this property. In an S-attributed SDD, each rule computes
an attribute for the nonterminal at the head of a production from attributes
taken from the body of the production.

For simplicity, the examples in this section have semantic rules without
side effects. In practice, it is convenient to allow SDD's to have limited side
effects, such as printing the result computed by a desk calculator or interacting
with a symbol table. Once the order of evaluation of attributes is discussed
in Section 5.2, we shall allow semantic rules to compute arbitrary functions,
possibly involving side effects.

An S-attributed SDD can be implemented naturally in conjunction with an
LR parser. In fact, the SDD in Fig. 5.1 mirrors the Yacc program of Fig. 4.58,
which illustrates translation during LR parsing. The difference is that, in the
rule for production 1, the Yacc program prints the value E.val as a side effect,
instead of defining the attribute L.va1.

An SDD without side effects is sometimes called an attribute grammar. The
rules in an attribute grammar define the value of an attribute purely in terms
of the values of other attributes and constants.

5.1.2 Evaluating an SDD at the Nodes of a Parse Tree

To visualize the translation specified by an SDD, it helps to work with parse
trees, even though a translator need not actually build a parse tree. Imagine
therefore that the rules of an SDD are applied by first constructing a parse tree
and then using the rules to evaluate all of the attributes at each of the nodes
of the parse tree. A parse tree, showing the value(s) of its attribute(s) is called
an annotated parse tree.

How do we construct an annotated parse tree? In what order do we evaluate
attributes? Before we can evaluate an attribute at a node of a parse tree, we
must evaluate all the attributes upon which its value depends. For example,
if all attributes are synthesized, as in Example 5.1, then we must evaluate the
ual attributes at all of the children of a node before we can evaluate the val
attribute at the node itself.

With synthesized attributes, we can evaluate attributes in any bottom-up
order, such as that of a postorder traversal of the parse tree; the evaluation of
S-attributed definitions is discussed in Section 5.2.3.

https://hemanthrajhemu.github.io

5.1. SYNTAX-DIRECTED DEFINITIONS 307

For SDD's with both inherited and synthesized attributes, there is no guar-
antee that there is even one order in which to evaluate attributes at nodes.
For instance, consider nonterminals A and B, with synthesized and inherited
attributes A.s and B.i, respectively, along with the production and rules

These rules are circular; it is impossible to evaluate either A.s at a node N or B.i
at the child of N without first evaluating the other. The circular dependency
of A.s and B.i at some pair of nodes in a parse tree is suggested by Fig. 5.2.

Figure 5.2: The circular dependency of A.s and B.i on one another

It is computationally difficult to determine whether or not there exist any
circularities in any of the parse trees that a given SDD could have to translate.'
Fortunately, there are useful subclasses of SDD's that are sufficient to guarantee
that an order of evaluation exists, as we shall see in Section 5.2.

Example 5.2 : Figure 5.3 shows an annotated parse tree for the input string
3 * 5 + 4 n, constructed using the grammar and rules of Fig. 5.1. The values
of lexval are presumed supplied by the lexical analyzer. Each of the nodes for
the nonterminals has attribute val computed in a bottom-up order, and we see
the resulting values associated with each node. For instance, at the node with
a child labeled *, after computing T.val= 3 and F.val = 5 at its first and third
children, we apply the rule that says T.val is the product of these two values,
or 15.

Inherited attributes are useful when the structure of a parse tree does not
"match" the abstract syntax of the source code. The next example shows how
inherited attributes can be used to overcome such a mismatch due to a grammar
designed for parsing rat her than translation.

'without going into details, while the problem is decidable, it cannot be solved by a
polynomial-time algorithm, even if F = N'P, since it has exponential time complexity.

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

I I
2aj=\ F.val = 4

I
T.va1 = 3 F.val= 5 digit.lexval= 4

I I
F.val = 3 digi t . lexval = 5

I
digi t . lexval = 3

Figure 5.3: Annotated parse tree for 3 * 5 + 4 n

Example 5.3 : The SDD in Fig. 5.4 computes terms like 3 * 5 and 3 * 5 * 7.
The top-down parse of input 3 * 5 begins with the production T + F T'. Here,
F generates the digit 3, but the operator * is generated by TI. Thus, the left
operand 3 appears in a different subtree of the parse tree from *. An inherited
attribute will therefore be used to pass the operand to the operator.

The grammar in this example is an excerpt from a non-left-recursive version
of the familiar expression grammar; we used such a grammar as a running
example to illustrate top-down parsing in Section 4.4.

1) T + F T 1 TI. inh = F.val
T.val = T1.syn

4) F -+ digit I F.val = digit .lexval

Figure 5.4: An SDD based on a grammar suitable for top-down parsing

Each of the nonterminals T and F has a synthesized attribute val; the
terminal digit has a synthesized attribute lexval. The nonterminal T' has two
attributes: an inherited attribute inh and a synthesized attribute syn.

https://hemanthrajhemu.github.io

5.1. SYNTAX-DIRECTED DEFINITIONS 309

The semantic rules are based on the idea that the left operand of the operator
* is inherited. More precisely, the head T' of the production TI -+ * F Ti
inherits the left operand of * in the production body. Given a term x * y * z ,
the root of the subtree for * y * z inherits x. Then, the root of the subtree for
* x inherits the value of x * y, and so on, if there are more factors in the term.
Once all the factors have been accumulated, the result is passed back up the
tree using synthesized attributes.

To see how the semantic rules are used, consider the annotated parse tree
for 3 * 5 in Fig. 5.5. The leftmost leaf in the parse tree, labeled digit, has
attribute value lexval = 3, where the 3 is supplied by the lexical analyzer. Its
parent is for production 4, F -+ digit. The only semantic rule associated with
this production defines F. val = digit. lexval, which equals 3.

digit. lexval = 3 F.val = 5
Ti.syn = 15

digit. lexval = 5 E

Figure 5.5: Annotated parse tree for 3 * 5

At the second child of the root, the inherited attribute T1.inh is defined by
the semantic rule T1.inh = F.val associated with production 1. Thus, the left
operand, 3, for the * operator is passed from left to right across the children of
the root.

The production at the node for TI is TI -+ * FT;. (We retain the subscript
1 in the annotated parse tree to distinguish between the two nodes for TI.) The
inherited attribute Ti. inh is defined by the semantic rule Ti. inh = TI. inh x F. val
associated with production 2.

With T1.inh = 3 and F.val = 5, we get T;.inh = 15. At the lower node
for Ti, the production is TI -+ E . The semantic rule T1.syn = T1.inh defines
Ti .syn = 15. The syn attributes at the nodes for T' pass the value 15 up the
tree to the node for T , where T.val = 15.

5.1.3 Exercises for Section 5.1

Exercise 5.1.1 : For the SDD of Fig. 5.1, give annotated parse trees for the
following expressions:

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Exercise 5.1.2: Extend the SDD of Fig. 5.4 to handle expressions as in
Fig. 5.1.

Exercise 5.1.3 : Repeat Exercise 5.1.1, using your SDD from Exercise 5.1.2.

5.2 Evaluation Orders for SDD's

"Dependency graphs" are a useful tool for determining an evaluation order for
the attribute instances in a given parse tree. While an annotated parse tree
shows the values of attributes, a dependency graph helps us determine how
those values can be computed.

In this section, in addition to dependency graphs, we define two impor-
tant classes of SDD's: the "S-attributed" and the more general "L-attributed"
SDD's. The translations specified by these two classes fit well with the parsing
methods we have studied, and most translations encountered in practice can be
written to conform to the requirements of at least one of these classes.

5.2.1 Dependency Graphs

A dependency graph depicts the flow of information among the attribute in-
stances in a particular parse tree; an edge from one attribute instance to an-
other means that the value of the first is needed to compute the second. Edges
express constraints implied by the semantic rules. In more detail:

For each parse-tree node, say a node labeled by grammar symbol X, the
dependency graph has a node for each attribute associated with X .

Suppose that a semantic rule associated with a production p defines the
value of synthesized attribute A.b in terms of the value of X.c (the rule
may define A.b in terms of other attributes in addition to X.c) . Then,
the dependency graph has an edge from X.c to A.b. More precisely, at
every node N labeled A where production p is applied, create an edge to
attribute b at N , from the attribute c at the child of N corresponding to
this instance of the symbol X in the body of the production.2

Suppose that a semantic rule associated with a production p defines the
value of inherited attribute B.c in terms of the value of X.a. Then, the
dependency graph has an edge from X.a to B.c. For each node N labeled
B that corresponds to an occurrence of this B in the body of production
p, create an edge to attribute c at N from the attribute a at the node Ad

2 ~ i n c e a node N can have several children labeled X, we again assume that subscripts
distinguish among uses of the same symbol at different places in the production.

https://hemanthrajhemu.github.io

5.2. EVALUATION ORDERS FOR SDD'S 311

that corresponds to this occurrence of X. Note that M could be either
the parent or a sibling of N.

Example 5.4 : Consider the following production and rule:

At every node N labeled E, with children corresponding to the body of this
production, the synthesized attribute ual at N is computed using the values of
ual at the two children, labeled E and T. Thus, a portion of the dependency
graph for every parse tree in which this production is used looks like Fig. 5.6.
As a convention, we shall show the parse tree edges as dotted lines, while the
edges of the dependency graph are solid.

E val

Figure 5.6: E. val is synthesized from El. val and E2. val

Example 5.5 : An example of a complete dependency graph appears in Fig.
5.7. The nodes of the dependency graph, represented by the numbers 1 through
9, correspond to the attributes in the annotated parse tree in Fig. 5.5.

T 9 val

, , . , . .

digit 1 lexval *

digit 2 lexval (5

Figure 5.7: Dependency graph for the annotated parse tree of Fig. 5.5

Nodes 1 and 2 represent the attribute lexval associated with the two leaves
labeled digit. Nodes 3 and 4 represent the attribute ual associated with the
two nodes labeled F. The edges to node 3 from 1 and to node 4 from 2 result

https://hemanthrajhemu.github.io

312 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

from the semantic rule that defines F.ual in terms of digit.lexua1. In fact, F.ual
equals digit.lexual, but the edge represents dependence, not equality.

Nodes 5 and 6 represent the inherited attribute T1.inh associated with each
of the occurrences of nonterminal TI. The edge to 5 from 3 is due to the rule
T1.inh = F.ual, which defines T1.inh at the right child of the root from F.ua1
at the left child. We see edges to 6 from node 5 for T1.inh and from node 4
for F.val, because these values are multiplied to evaluate the attribute inh at
node 6.

Nodes 7 and 8 represent the synthesized attribute syn associated with the
occurrences of TI. The edge to node 7 from 6 is due to the semantic rule
T1.syn = T1.inh associated with production 3 in Fig. 5.4. The edge to node 8
from 7 is due to a semantic rule associated with production 2.

Finally, node 9 represents the attribute T.ual. The edge to 9 from 8 is due
to the semantic rule, T. ual = T1.syn, associated with production 1.

5.2.2 Ordering the Evaluation of Attributes

The dependency graph characterizes the possible orders in which we can evalu-
ate the attributes at the various nodes of a parse tree. If the dependency graph
has an edge from node M to node N , then the attribute corresponding to M
must be evaluated before the attribute of N. Thus, the only allowable orders
of evaluation are those sequences of nodes Nl, N2, . . . , Nk such that if there is
an edge of the dependency graph from Ni to Nj; then i < j . Such an ordering
embeds a directed graph into a linear order, and is called a topological sort of
the graph.

If there is any cycle in the graph, then there are no topological sorts; that is,
there is no way to evaluate the SDD on this parse tree. If there are no cycles,
however, then there is always at least one topological sort. To see why, since
there are no cycles, we cad surely find a node with no edge entering. For if there
were no such node, we could proceed from predecessor to predecessor until we
came back to some node we had already seen, yielding a cycle. Make this node
the first in the topological order, remove it from the dependency graph, and
repeat the process on the remaining nodes.

Example 5.6 : The dependency graph of Fig. 5.7 has no cycles. One topologi-
cal sort is the order in which the nodes have already been numbered: 1,2, . . . ,9.
Notice that every edge of the graph goes from a node to a higher-numbered node,
so this order is surely a topological sort. There are other topological sorts as
well, suchas 1,3,5,2,4,6,7,8,9.

5.2.3 S-Attributed Definitions

As mentioned earlier, given an SDD, it is very hard to tell whether there exist
any parse trees whose dependency graphs have cycles. In practice, translations
can be implemented using classes of SDD's that guarantee an evaluation order,

https://hemanthrajhemu.github.io

5.2. EVALUATION ORDERS FOR SDD'S 313

since they do not permit dependency graphs with cycles. Moreover, the two
classes introduced in this section can be implemented efficiently in connection
with top-down or bot tom-up parsing.

The first class is defined as follows:

a An SDD is S-attributed if every attribute is synthesized.

Example 5.7 : The SDD of Fig. 5.1 is an example of an S-attributed definition.
Each attribute, L.val, E.va1, T.val, and F.val is synthesized. C7

When an SDD is S-attributed, we can evaluate its attributes in ahy bottom-
up order of the nodes of the parse tree. It is often especially simple to evaluate
the attributes by performing a postorder traversal of the parse tree and evalu-
ating the attributes at a node N when the traversal leaves N for the last time.
That is, we apply the function postorder, defined below, to the root of the parse
tree (see also the box "Preorder and Postorder Traversals" in Section 2.3.4):

postorder (N) {
for (each child C of N , from the left) postorder(C);
evaluate the attributes associated with node N;

1
S-attributed definitions can be implemented during bottom-up parsing, since

a bottom-up parse corresponds to a postorder traversal. Specifically, postorder
corresponds exactly to the order in which an LR parser reduces a production
body to its head. This fact will be used in Section 5.4.2 to evaluate synthesized
attributes and store them on the stack during LR parsing, without creating the
tree nodes explicitly.

5.2.4 L-Attributed Definitions

The second class of SDD's is called L-attributed definitions. The idea behind
this class is that, between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from right to left
(hence "L-attributed"). More precisely, each attribute must be either

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production A -+ X1X2 - - Xn, and that there is an inherited attribute
Xi.a computed by a rule associated with this production. Then the rule
may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occur-
rences of symbols X1, X2 , . . . , Xipl located to the left of Xi.

https://hemanthrajhemu.github.io

314 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

(c) Inherited or synthesized attributes associated with this occurrence
of Xi itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this Xi.

Example 5.8 : The SDD in Fig. 5.4 is L-attributed. To see why, consider the
semantic rules for inherited attributes, which are repeated here for convenience:

The first of these rules defines the inherited attribute Tf.inh using only F.ual,
and F appears to the left of TI in the production body, as required. The second
rule defines Ti.inh using the inherited attribute T1.inh associated with the head,
and F.va1, where F appears to the left of T,' in the production body.

In each of these cases, the rules use information "from above or from the
left ," as required by the class. The remaining attributes are synthesized. Hence,
the SDD is L-attributed.

Example 5.9 : Any SDD containing the following production and rules cannot
be L-attributed:

The first rule, A.s = B.b, is a legitimate rule in either an S-attributed or L-
attributed SDD. It defines a synthesized attribute A.s in terms of an attribute
at a child (that is, a symbol within the production body).

The second rule defines an inherited attribute B.i, so the entire SDD cannot
be S-attributed. Further, although the rule is legal, the SDD cannot be L-
attributed, because the attribute C.c is used to help define B.i, and C is to
the right of B in the production body. While attributes at siblings in a parse
tree may be used in L-attributed SDD's, they must be to the left of the symbol
whose attribute is being defined.

5.2.5 Semantic Rules with Controlled Side Effects

In practice, translations involve side effects: a desk calculator might print a
result; a code generator might enter the type of an identifier into a symbol table.
With SDD's, we strike a balance between attribute grammars and translation
schemes. Attribute grammars have no side effects and allow any evaluation
order consistent with the dependency graph. Translation schemes impose left-
to-right evaluation and allow semantic actions to contain any program fragment;
translation schemes are discussed in Section 5.4.

We shall control side effects in SDD's in ope of the following ways:

https://hemanthrajhemu.github.io

5.2. EVALUATION ORDERS FOR SDD'S 315

Permit incidental side effects that do not constrain attribute evaluation.
In other words, permit side effects when attribute evaluation based on any
topological sort of the dependency graph produces a "correct" translation,
where "correcti7 depends on the application.

Constrain the allowable evaluation orders, so that the same translation is
produced for any allowable order. The constraints can be thought of as
implicit edges added to the dependency graph.

As an example of an incidental side effect, let us modify the desk calculator
of Example 5.1 to print a result. Instead of the rule L.val= E.val, which saves
the result in the synthesized attribute L. val, consider:

PRODUCTION SEMANTIC RULE
1) L + E n print(E. val)

Semantic rules that are executed for their side effects, such as print(E.val), will
be treated as the definitions of dummy synthesized attributes associated with
the head of the production. The modified SDD produces the same translation
under any topological sort, since the print statement is executed at the end,
after the result is computed into E.val.

Example 5.10 : The SDD in Fig. 5.8 takes a simple declaration D consisting
of a basic type T followed by a list L of identifiers. T can be int or float. For
each identifier on the list, the type is entered into the symbol-table entry for the
identifier. We assume that entering the type for one identifier does not affect
the symbol-table entry for any other identifier. Thus, entries can be updated
in any order. This SDD does not check whether an identifier is declared more
than once; it can be modified to do so.

Figure 5.8: Syntax-directed definition for simple type declarations

1) D + T L

2) T -+ int

3) T -+ float
4) L + L 1 , i d

5) L + id

Nonterminal D represents a declaration, which, from production 1, consists
of a type T followed by a list L of identifiers. T has one attribute, T.type, which
is the type in the declaration D. Nonterminal L also has one attribute, which
we call inh to emphasize that it is an inherited attribute. The purpose of L.inh

L.inh = T.type

T. type = integer

T.type = float
Ll.inh=L.inh
addType(id. entry, L.inh)

add Type(id. entry, L. inh)

https://hemanthrajhemu.github.io

316 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

is to pass the declared type down the list of identifiers, so that it can be added
to the appropriate symbol-table entries.

Productions 2 and 3 each evaluate the synthesized attribute T.type, giving
it the appropriate value, integer or float. This type is passed to the attribute
L.inh in the rule for production 1. Production 4 passes L.inh down the parse
tree. That is, the value Ll . inh is computed at a parse-tree node by copying the
value of L.inh from the parent of that node; the parent corresponds to the head
of the production.

Productions 4 and 5 also have a rule in which a function addType is called
with two arguments:

1. id.entry, a lexical value that points to a symbol-table object, and

2. L.inh, the type being assigned to every identifier on the list.

We suppose that function addType properly installs the type L.inh as the type
of the represented identifier.

A dependency graph for the input string float i d l , i d a , id3 appears in
Fig. 5.9. Numbers 1 through 10 represent the nodes of the dependency graph.
Nodes 1, 2, and 3 represent the attribute entry associated with each of the
leaves labeled id. Nodes 6, 8, and 10 are the dummy attributes that represent
the application of the function addType to a type and one of these entry values.

T 4 ' type 5 L 6 entry

real 9 id3 ' 3 entry

inh 7 ' L 8 entry

9 id2 2 entry
inh 9 L 10 entry

idl 1 entry

Figure 5.9: Dependency graph for a declaration float idl , idz , id3

Node 4 represents the attribute T. type, and is actually where attribute eval-
uation begins. This type is then passed to nodes 5, 7, and 9 representing L.inh
associated with each of the occurrences of the nonterminal L.

https://hemanthrajhemu.github.io

5.2, EVALUATION ORDERS FOR SDD'S 317

5.2.6 Exercises for Section 5.2

Exercise 5.2.1 : What are all the topological sorts for the dependency graph
of Fig. 5.7?

Exercise 5.2.2 : For the SDD of Fig. 5.8, give annotated parse trees for the
following expressions:

a) i n t a , b , c.

b) float w , x , y, z.

Exercise 5.2.3 : Suppose that we have a production A -+ BCD. Each of
the four nonterminals A, B, C , and D have two attributes: s is a synthesized
attribute, and i is an inherited attribute. For each of the sets of rules below,
tell whether (i) the rules are consistent with an S-attributed definition (ii) the
rules are consistent with an L-attributed definition, and (iii) whether the rules
are consistent with any evaluation order at all?

b) A.s = B.i + C.s and D.i = A.i + B.s.

! d) A.s = D.i, B.i = A.s + C.s, C.i = B.s, and D.i = B.i + C.i.

! Exercise 5.2.4: This grammar generates binary numbers with a "decimal"
point:

Design an L-attributed SDD to compute S.val, the decimal-number value of
an input string. For example, the translation of string I01 .lo1 should be the
decimal number 5.625. Hint: use an inherited attribute L.side that tells which
side of the decimal point a bit is on.

!! Exercise 5.2.5 : Design an S-attributed SDD for the grammar and translation
described in Exercise 5.2.4.

!! Exercise 5.2.6 : Implement Algorithm 3.23, which converts a regular expres-
sion into a nondeterministic finite automaton, by an L-attributed SDD on a
top-down parsable grammar. Assume that there is a token char representing
any character, and that char.lexva1 is the character it represents. You may also
assume the existence of a function new () that returns a new state, that is, a
state never before returned by this function. Use any convenient notation to
specify the transitions of the NFA.

https://hemanthrajhemu.github.io

318 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.3 Applications of Synt ax-Direct ed Translation

The syntax-directed translation techniques in this chapter will be applied in
Chapter 6 to type checking and intermediate-code generation. Here, we consider
selected examples to illustrate some representative SDD's.

The main application in this section is the construction of syntax trees. Since
some compilers use syntax trees as an intermediate representation, a common
form of SDD turns its input string into a tree. To complete the translation to
intermediate code, the compiler may then walk the syntax tree, using another
set of rules that are in effect an SDD on the syntax tree rather than the parse
tree. (Chapter 6 also discusses approaches to intermediate-code generation that
apply an SDD without ever constructing a tree explicitly.)

We consider two SDD's for constructing syntax trees for expressions. The
first, an S-attributed definition, is suitable for use during bottom-up parsing.
The second, L-attributed, is suitable for use during top-down parsing.

The final example of this section is an L-attributed definition that deals
with basic and array types.

5.3.1 Construction of Syntax Trees

As discussed in Section 2.8.2, each node in a syntax tree represents a construct;
the children of the node represent the meaningful components of the construct.
A syntax-tree node representing an expression El + Ez has label + and two
children representing the subexpressions El and E2.

We shall implement the nodes of a syntax tree by objects with a suitable
number of fields. Each object will have an op field that is the label of the node.
The objects will have additional fields as follows:

If the node is a leaf, an additional field holds the lexical value for the leaf.
A constructor function Leaf (op, val) creates a leaf object. Alternatively, if
nodes are viewed as records, then Leaf returns a pointer to a new record
for a leaf.

If the node is an interior node, there are as many additional fields as the
node has children in the syntax tree. A constructor function Node takes
two or more arguments: Node(op, cl, ca, . . . , ck) creates an object with
first field op and k additional fields for the k children cl, . . . , ck.

Example 5.1 1 : The S-attributed definition in Fig. 5.10 constructs syntax
trees for a simple expression grammar involving only the binary operators +
and -. As usual, these operators are at the same precedence level and are
jointly left associative. All nonterminals have one synthesized attribute node,
which represents a node of the syntax tree.

Every time the first production E -+ El + T is used, its rule creates a node
with '+I for op and two children, El.node and T.node, for the subexpressions.
The second production has a similar rule.

https://hemanthrajhemu.github.io

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 319

6) T --+ nurn I T. node = new Leaf (num, num. val)

PRODUCTION

1) E --+ El + T

2) E -+ El - T

3) E + T

4) T - + (E)
5) T + id

Figure 5.10: Constructing syntax trees for simple expressions

SEMANTIC RULES

E.node = new Node('+', El .node, T.node)

E.node = new Node('-', El .node, T.node)

E.node = T.node

T.node = E.node

T.node = new Leaf (id, id. entry)

For production 3, E -+ T , no node is created, since E.node is the same as
T.node. Similarly, no node is created for production 4, T --+ (E). The value
of T.node is the same as E.node, since parentheses are used only for grouping;
they influence the structure of the parse tree and the syntax tree, but once their
job is done, there is no further need to retain them in the syntax tree.

The last two T-productions have a single terminal on the right. We use the
constructor Leaf to create a suitable node, which becomes the value of T.node.

Figure 5.11 shows the construction of a syntax tree for the input a - 4 + c.
The nodes of the syntax tree are shown as records, with the op field first.
Syntax-tree edges are now shown as solid lines. The underlying parse tree,
which need not actually be constructed, is shown with dotted edges. The third
type of line, shown dashed, represents the values of E.node and T.node; each
line points to the appropriate synt ax-tree node.

At the bottom we see leaves for a, 4 and c, constructed by Leaf. We suppose
that the lexical value id.entry points into the symbol table, and the lexical
value num.val is the numerical value of a constant. These leaves, or pointers
to them, become the value of T.node at the three parse-tree nodes labeled T ,
according to rules 5 and 6. Note that by rule 3, the pointer to the leaf for a is
also the value of E. node for the leftmost E in the parse tree.

Rule 2 causes us to create a node with op equal to the minus sign and
pointers to the first two leaves. Then, rule 1 produces the root node of the
syntax tree by combining the node for - with the third leaf.

If the rules are evaluated during a postorder traversal of the parse tree, or
with reductions during a bottom-up parse, then the sequence of steps shown in
Fig. 5.12 ends with ps pointing to the root of the constructed syntax tree.

With a grammar designed for top-down parsing, the same syntax trees are
constructed, using the same sequence of steps, even though the structure of the
parse trees differs significantly from that of syntax trees.

Example 5.12 : The L-attributed definition in Fig. 5.13 performs the same
translation as the S-attributed definition in Fig. 5.10. The attributes for the
grammar symbols E, T, id, and nurn are as discussed in Example 5.11.

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

E. node
. \ ' . .
* \

, \

E,. nod; + \\ ' T. node
... 1 : \ ' \

:' I . \ : \
1 , \ , \

E.node ; - Tl node \
l

id \ \

/' : I 1 \ 1 .

I 1 . I \
1 . node num 1 I 1 1

1 ' : I I
1

I

I ' . I I

id
I

1 1
I I
I
1 1
1 1
I
\ \
\ \
\ \
\ \
\ '

id j I numl 4
I
t

to entry for a

Figure 5.11: Syntax tree for a - 4 + c

I) pl = new Leaf(id, entry-a);
2) pa = new Leaf (num, 4);
3) p3 = new Node('-', pl, pz);
4) p4 = new Leaf(id, entry-c);
5) pg = new Node('+', p3,p4);

Figure 5.12: Steps in the construction of the syntax tree for a - 4 + c

The rules for building syntax trees in this example are similar to the rules
for the desk calculator in Example 5.3. In the desk-calculator example, a term
x * y was evaluated by passing x as an inherited attribute, since x and * y
appeared in different portions of the parse tree. Here, the idea is to build a
syntax tree for x + y by passing x as an inherited attribute, since x and + y
appear in different subtrees. Nonterminal E' is the counterpart of nonterminal
T' in Example 5.3. Compare the dependency graph for a - 4 + c in Fig. 5.14
with that for 3 a 5 in Fig. 5.7.

Nonterminal E' has an inherited attribute inh and a synthesized attribute
s yn. Attribute El. inh represents the partial syntax tree constructed so far.
Specifically, it represents the root of the tree for the prefix of the input string
that is to the left of the subtree for El. At node 5 in the dependency graph in
Fig. 5.14, E1.inh denotes the root of the partial syntax tree for the identifier a;
that is, the leaf for a. At node 6, E1.inh denotes the root for the partial syntax

https://hemanthrajhemu.github.io

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 32 1

2) E' -+ + T El

E1.syn = E1.inh

T.node = E.node

T.node = new Leaf (id, id. entry)

El. inh = new Node('+', El. inh, T. node)
Er.syn = Ei.syn

3) E' -+ - T Ei

7) T -+ n u m I T.node = new Leaf(num, num.ual)

El .inh = new Node('-', E1.inh, T.node)
E1.syn = Ei.syn

Figure 5.13: Constructing syntax trees during top-down parsing

id 7 entry E

Figure 5.14: Dependency graph for a - 4 + c, with the SDD of Fig. 5.13

tree for the input a - 4. At node 9, E1.inh denotes the syntax tree for a - 4 + c.
Since there is no more input, at node 9, E1.inh points to the root of the

entire syntax tree. The syn attributes pass this value back up the parse tree
until it becomes the value of E.node. Specifically, the attribute value at node 10
is defined by the rule E1.syn = E'.inh associated with the production El -+ E .

The attribute value at node 11 is defined by the rule El. syn = E; . s yn associated
with production 2 in Fig. 5.13. Similar rules define the attribu!e values at
nodes 12 and 13.

5.3.2 The Structure of a Type

Inherited attributes are useful when the structure of the parse tree differs from
the abstract syntax of the input; attributes can then be used to carry informa-

https://hemanthrajhemu.github.io

322 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tion from one part of the parse tree to another. The next example shows how
a mismatch in structure can be due to the design of the language, and not due
to constraints imposed by the parsing method.

Example 5.13: In C, the type int [2][3] can be read as, "array of 2 arrays
of 3 integers." The corresponding type expression array(2, array(3, integer)) is
represented by the tree in Fig. 5.15. The operator array takes two parameters,
a number and a type. If types are represented by trees, then this operator
returns a tree node labeled array with two children for a number and a type.

Figure 5.15: Type expression for int [2] [3]

With the SDD in Fig. 5.16, nonterminal T generates either a basic type or
an array type. Nonterminal B generates one of the basic types int and float.
T generates a basic type when T derives B C and C derives E . Otherwise, C
generates array components consisting of a sequence of integers, each integer
surrounded by brackets.

Figure 5.16: T generates either a basic type or an array type

PRODUCTION

T += B C

B += int

B += float
C + [num] C1

C + E

The nonterminals B and T have a synthesized attribute t representing a
type. The nonterminal C has two attributes: an inherited attribute b and a
synthesized attribute t. The inherited b attributes pass a basic type down the
tree, and the synthesized t attributes accumulate the result.

An annotated parse tree for the input string int [2] [3] is shown in Fig. 5.17.
The corresponding type expression in Fig. 5.15 is constructed by passing the
type integer from B, down the chain of C's through the inherited attributes b.
The array type is synthesized up the chain of C's through the attributes t.

In more detail, at the root for T -+ B C, nonterminal C inherits the type
from B, using the inherited attribute C.b. At the rightmost node for C, the

SEMANTIC RULES

T.t = C.t
C.b = B.t

B.t = integer

B.t = float
C.t = array (num.val, Cl .t)

C1.b = C.b
C.t = C.b

https://hemanthrajhemu.github.io

5.3. APPLICATIONS OF SYNTAX-DIRE CTED TRANSLATION 323

production is C -+ t, so C.t equals C.b. The semantic rules for the production
C -+ [num] Cl form C.t by applying the operator array to the operands
num.va1 and Cl .t.

T.t = ar ray(2 , a r ray (3 , in teger))

/ "" C.b = in teger
B.t = in teger C.t = ar ray(2 , a r ray (3 , in teger))

int 1 1 2 1 "---C.b C.t = = ar ray(3 , in teger in teger)

\c.b = in teger
[3 I C.t = in teger

int C.t = ar ray(3 , in teger)

/// \

Figure 5.17: Syntax-directed translation of array types

5.3.3 Exercises for Section 5.3

Exercise 5.3.1 : Below is a grammar for expressions involving operator + and
integer or floating-point operands. Floating-point numbers are distinguished
by having a decimal point.

E + E + T I T
T -+ num . num 1 num

a) Give an SDD to determine the type of each term T and expression E.

b) Extend your SDD of (a) to translate expressions into postfix notation.
Use the unary operator intToFloat to turn an integer into an equivalent
float.

! Exercise 5.3.2 : Give an SDD to translate infix expressions with + and * into
equivalent expressions without redundant parentheses. For example, since both
operators associate from the left, and * takes precedence over +, ((a*(b+c))*(d))
translates into a * (b + c) * d.

! Exercise 5.3.3 : Give an SDD to differentiate expressions such as x * (3 * x +
x * x) involving the operators + and *, the variable x, and constants. Assume
that no simplification occurs, so that, for example, 3 * x will be translated into
3 * 1 + 0 * x .

https://hemanthrajhemu.github.io

324 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.4 Syntax-Directed Translation Schemes

Syntax-directed translation schemes are a complementary notation to syntax-
directed definitions. All of the applications of syntax-directed definitions in
Section 5.3 can be implemented using syntax-directed translation schemes.

From Section 2.3.5, a syntax-directed translation scheme (SDT) is a context-
free grammar with program fragments embedded within production bodies. The
program fragments are called semantic actions and can appear at any position
within a production body. By convention, we place curly braces around actions;
if braces are needed as grammar symbols, then we quote them.

Any SDT can be implemented by first building a parse tree and then per-
forming the actions in a left-to-right depth-first order; that is, during a preorder
traversal. An example appears in Section 5.4.3.

Typically, SDT's are implemented during parsing, without building a parse
tree. In this section, we focus on the use of SDT's to implement two important
classes of SDD7s:

1. The underlying grammar is LR-parsable, and the SDD is S-attributed.

2. The underlying grammar is LL-parsable, and the SDD is L-attributed.

We shall see how, in both these cases, the semantic rules in an SDD can be
converted into an SDT with actions that are executed at the right time. During
parsing, an action in a production body is executed as soon as all the grammar
symbols to the left of the action have been matched.

SDT's that can be implemented during parsing can be characterized by in-
troducing distinct marker nonterminals in place of each embedded action; each
marker M has only one production, A4 -+ c . If the grammar with marker non-
terminals can be parsed by a given method, then the SDT can be implemented
during parsing.

5.4.1 Postfix Translation Schemes

By far the simplest SDD implementation occurs when we can parse the grammar
bottom-up and the SDD is S-attributed. In that case, we can construct an SDT
in which each action is placed at the end of the production and is executed along
with the reduction of the body to the head of that production. SDT's with all
actions at the right ends of the production bodies are called postfix SDT's.

Example 5.14 : The postfix SDT in Fig. 5.18 implements the desk calculator
SDD of Fig. 5.1, with one change: the action for the first production prints
a value. The remaining actions are exact counterparts of the semantic rules.
Since the underlying grammar is LR, and the SDD is S-attributed, these actions
can be correctly performed along with the reduction steps of the parser.

https://hemanthrajhemu.github.io

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES

L -+ E n {print(E.val);)
E -+ E 1 + T {E.val= El.val+ T.vak}
E T { E.val= T.val; }
T -+ TI * F { T.val = TI .val x F.val;)
T F { T.val = F.val; }
F -+ (E) {F.val=E.val ;)
F + digit { F.val = digit.lexva1;)

Figure 5.18: Postfix SDT implementing the desk calculator

5.4.2 Parser-Stack Implementation of Postfix SDT's

Postfix SDT's can be implemented during LR parsing by executing the actions
when reductions occur. The attribute(s) of each grammar symbol can be put
on the stack in a place where they can be found during the reduction. The
best plan is to place the attributes along with the grammar symbols (or the LR
states that represent these symbols) in records on the stack itself.

In Fig. 5.19, the parser stack contains records with a field for a grammar
symbol (or parser state) and, below it, a field for an attribute. The three
grammar symbols X YZ are on top of the stack; perhaps they are about to be
reduced according to a production like A -+ X YZ. Here, we show X.x as the
one attribute of X, and so on. In general, we can allow for more attributes,
either by making the records large enough or by putting pointers to records on
the stack. With small attributes, it may be simpler to make the records large
enough, even if some fields go unused some of the time. However, if one or more
attributes are of unbounded size - say, they are character strings - then it
would be better to put a pointer to the attribute's value in the stack record
and store the actual value in some larger, shared storage area that is not part
of the stack.

Statelgrammar symbol

Synthesized attribute(s)

Figure 5.19: Parser stack with a field for synthesized attributes

If the attributes are all synthesized, and the actions occur at the ends of the
productions, then we can compute the attributes for the head when we reduce
the body to the head. If we reduce by a production such as A -+ X YZ, then
we have all the attributes of X , Y, and Z available, at known positions on the
stack, as in Fig. 5.19. After the action, A and its attributes are at the top of
the stack, in the position of the record for X .

Example 5.15 : Let us rewrite the actions of the desk-calculator SDT of Ex-

https://hemanthrajhemu.github.io

326 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

ample 5.14 so that they manipulate the parser stack explicitly. Such stack
manipulation is usually done automatically by the parser.

ACTIONS
{ print (stack [top - 11. val);

top = top - 1;)

{ stack [top - 21. val = stack [top - 21 .val + stack [top] .vat
top = top - 2;)

{ stack [top - 21. val = stack [top - 21. val x stack [top] .val;
top = top - 2; }

{ stack [top - 2].vaE = stack [top - l] .val;
top = top - 2; }

F -+ digit

Figure 5.20: Implementing the desk calculator on a bottom-up parsing stack

Suppose that the stack is kept in an array of records called stack, with top
a cursor to the top of the stack. Thus, stack[top] refers to the top record on the
stack, stack[top - I] to the record below that, and so on. Also, we assume that
each record has a field called val, which holds the attribute of whatever grammar
symbol is represented in that record. Thus, we may refer to the attribute E.va1
that appears at the third position on the stack as stack[top - 21 .Val. The entire
SDT is shown in Fig. 5.20.

For instance, in the second production, E + E l + T , we go two positions
below the top to get the value of El, and we find the value of T at the top. The
resulting sum is placed where the head E will appear after the reduction, that
is, two positions below the current top. The reason is that after the reduction,
the three topmost stack symbols are replaced by one. After computing E.val,
we pop two symbols off the top of the stack, so the record where we placed
E.val will now be at the top of the stack.

In the third production, E -+ T, no action is necessary, because the length
of the stack does not change, and the value of T.va1 at the stack top will simply
become the value of E.val. The same observation applies to the productions
T -+ F and F -+ digit. Production F + (E) is slightly different. Although
the value does not change, two positions are removed from the stack during the
reduction, so the value has to move to the position after the reduction.

Note that we have omitted the steps that manipulate the first field of the
stack records - the field that gives the LR state or otherwise represents the
grammar symbol. If we are performing an LR parse, the parsing table tells us
what the new state is every time we reduce; see Algorithm 4.44. Thus, we may

https://hemanthrajhemu.github.io

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES

simply place that state in the record for the new top of stack.

5.4.3 SDT's With Actions Inside Productions

An action may be placed at any position within the body of a production.
It is performed immediately after all symbols to its left are processed. Thus,
if we have a production B -+ X {a} Y, the action a is done after we have
recognized X (if X is a terminal) or all the terminals derived from X (if X is
a nonterminal) . More precisely,

e If the parse is bottom-up, then we perform action a as soon as this oc-
currence of X appears on the top of the parsing stack.

e If the parse is top-down, we perform a just before we attempt to expand
this occurrence of Y (if Y a nonterminal) or check for Y on the input (if
Y is a terminal).

SDT's that can be implemented during parsing include postfix SDT's and
a class of SDT's considered in Section 5.5 that implements L-attributed defini-
tions. Not all SDT's can be implemented during parsing, as we shall see in the
next example.

Example 5.16 t As an extreme example of a problematic SDT, suppose that
we turn our desk-calculator running example into an SDT that prints the prefix
form of an expression, rather than evaluating the expression. The productions
and actions are shown in Fig. 5.21.

1) L -+ E n
2) E -+ { print('+'); } El + T
3) E T
4) T -+ { print('*'); } TI * F
5) T F

6) F -+ (E l
7) F + digit { print (digit .lexval); }

Figure 5.2 1: Problematic SDT for infix-to-prefix translation during parsing

Unfortunately, it is impossible to implement this SDT during either top-
down or bottom-up parsing, because the parser would have to perform critical
actions, like printing instances of * or +, long before it knows whether these
symbols will appear in its input.

Using marker nonterminals Mz and M4 for the actions in productions 2
and 4, respectively, on input 3, a shift-reduce parser (see Section 4.5.3) has
conflicts between reducing by Mz -+ E , reducing by Ma -+ t, and shifting the
digit.

https://hemanthrajhemu.github.io

328 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Any SDT can be implemented as follows:

1. Ignoring the actions, parse the input and produce a parse tree as a result.

2. Then, examine each interior node N, say one for production A -+ a . Add
additional children to N for the actions in a, so the children of N from
left to right have exactly the symbols and actions of a.

3. Perform a preorder traversal (see Section 2.3.4) of the tree, and as soon
as a node labeled by an action is visited, perform that action.

For instance, Fig. 5.22 shows the parse tree for expression 3 * 5 + 4 with ac-
tions inserted. If we visit the nodes in preorder, we get the prefix form of the
expression: + * 3 5 4.

digit

digit { piint(3); }

Figure 5.22: Parse tree with actions embedded

5.4.4 Eliminating Left Recursion From SDT's

Since no grammar with left recursion can be parsed deterministically top-down,
we examined left-recursion elimination in Section 4.3.3. When the grammar is
part of an SDT, we also need to worry about how the actions are handled.

First, consider the simple case, in which the only thing we care about is
the order in which the actions in an SDT are performed. For example, if each
action simply prints a string, we care only about the order in which the strings
are printed. In this case, the following principle can guide us:

When transforming the grammar, treat the actions as if they were termi-
nal symbols.

https://hemanthrajhemu.github.io

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 329

This principle is based on the idea that the grammar transformation preserves
the order of the terminals in the generated string. The actions are therefore
executed in the same order in any left-to-right parse, top-down or bottom-up.

The "trick" for eliminating left recursion is to take two productions

that generate strings consisting of a ,d and any number of a's, and replace them
by productions that generate the same strings using a new nonterminal R (for
"remainder") of the first production:

If @ does not begin with A, then A no longer has a left-recursive production. In
regular-definition terms, with both sets of productions, A is defined by @(a)*.
See Section 4.3.3 for the handling of situations where A has more recursive or
nonrecursive productions.

Example 5.17 : Consider the following E-productions from an SDT for trans-
lating infix expressions into postfix notation:

E + E 1 + T { print ('+I) ;)
E T

If we apply the standard transformation to E, the remainder of the left-recursive
production is

and p, the body of the other production is T. If we introduce R for the remain-
der of E , we get the set of productions:

When the actions of an SDD compute attributes rather than merely printing
output, we must be more careful about how we eliminate left recursion from a
grammar. However, if the SDD is S-attributed, then we can always construct
an SDT by placing attribute-computing actions at appropriate positions in the
new productions.

We shall give a general schema for the case of a single recursive production,
a single nonrecursive production, and a single attribute of the left-recursive
nonterminal; the generalization to many productions of each type is not hard,
but is notationally cumbersome. Suppose that the two productions are

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRE CTED TRANSLATION

Here, A.a is the synthesized attribute of left-recursive nonterminal A, and X
and Y are single grammar symbols with synthesized attributes X.x and Y.y,
respectively. These could represent a string of several grammar symbols, each
with its own attribute(s), since the schema has an arbitrary function g comput-
ing A.a in the recursive production and an arbitrary function f computing A.a
in the second production. In each case, f and g take as arguments whatever
attributes they are allowed to access if the SDD is S-attributed.

We want to turn the underlying grammar into

Figure 5.23 suggests what the SDT on the new grammar must do. In (a)
we see the effect of the postfix SDT on the original grammar. We apply f once,
corresponding to the use of production A -+ X , and then apply g as many times
as we use the production A -+ AY. Since R generates a "remainder" of Y's,
its translation depends on the string to its left, a string of the form XYY . . Y.
Each use of the production R -+ YR results in an application of g. For R, we
use an inherited at tribute R.i to accumulate the result of successively applying
g, starting with the value of A.a.

Figure 5.23: Eliminating left recursion from a postfix SDT

In addition, R has a synthesized attribute R.s, not shown in Fig. 5.23.
This attribute is first computed when R ends its generation of Y symbols, as
signaled by the use of production R -+ E . R.s is then copied up the tree, so
it can become the value of A.a for the entire expression XYY - . Y. The case
where A generates XYY is shown in Fig. 5.23, and we see that the value of A.a
at the root of (a) has two uses of g. So does R.i at the bottom of tree (b), and
it is this value of R.s that gets copied up that tree.

To accomplish this translation, we use the following SDT:

https://hemanthrajhemu.github.io

5.4. SYNTAX-DIRECTED TRAIL'SLATION SCHEMES

Notice that the inherited attribute R.i is evaluated immediately before a use
of R in the body, while the synthesized attributes A.a and R.s are evaluated
at the ends of the productions. Thus, whatever values are needed to compute
these attributes will be available from what has been computed to the left.

5.4.5 SDT's for L-Attributed Definitions

In Section 5.4.1, we converted S-attributed SDD's into postfix SDT's, with
actions at the right ends of productions. As long as the underlying grammar is
LR, postfix SDT's can be parsed and translated bottom-up.

Now, we consider the more general case of an L-attributed SDD. We shall
assume that the underlying grammar can be parsed top-down, for if not it is
frequently impossible to perform the translation in connection with either an
LL or an LR parser. With any grammar, the technique below can be imple-
mented by attaching actions to a parse tree and executing them during preorder
traversal of the tree.

The rules for turning an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited attributes for a nonterminal
A immediately before that occurrence of A in the body of the production.
If several inherited attributes for A depend on one another in an acyclic
fashion, order the evaluation of attributes so that those needed first are
computed first.

2. Place the actions that compute a synthesized attribute for the head of a
production at the end of the body of that production.

We shall illustrate these principles with two extended examples. The first
involves typesetting. It illustrates how the techniques of compiling can be used
in language processing for applications other than what we normally think of
as programming languages. The second example is about the generation of
intermediate code for a typical programming-language construct: a form of
while-statement .

Example 5.18 : This example is motivated by languages for typesetting math-
ematical formulas. Eqn is an early example of such a language; ideas from Eqn
are still found in the TJ$K typesetting system, which was used to produce this
book.

We shall concentrate on only the capability to define subscripts, subscripts
of subscripts, and so on, ignoring superscripts, built-up fractions, and all other
mathematical features. In the Eqn language, one writes a sub i sub j to set
the expression aij. A simple grammar for boxes (elements of text bounded by
a rectangle) is

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

B -+ B1 B2 (B1 sub B2 ((B1) (text

Corresponding to these four productions, a box can be either

1. Two boxes, juxtaposed, with the first, B1, to the left of the other, B2.

2. A box and a subscript box. The second box appears in a smaller size,
lower, and to the right of the first box.

3. A parenthesized box, for grouping of boxes and subscripts. Eqn and T)$
both use curly braces for grouping, but we shall use ordinary, round paren-
theses to avoid confusion with the braces that surround actions in SDT's.

4. A text string, that is, any string of characters.

This grammar is ambiguous, but we can still use it to parse bottom-up if we
make subscripting and juxtaposition right associative, with sub taking prece-
dence over juxtaposition.

Expressions will be typeset by constructing larger boxes out of smaller ones.
In Fig. 5.24, the boxes for El and .height are about to be juxtaposed to form
the box for El .height. The left box for El is itself constructed from the box
for E and the subscript 1. The subscript 1 is handled by shrinking its box by
about 30%, lowering it, and placing it after the box for E. Although we shall
treat .height as a text string, the rectangles within its box show how it can be
constructed from boxes for the individual letters.

1- I

t height
height

de.p. th. ...*.,.-.-- - .: aePih

J
Figure 5.24: Constructing larger boxes from smaller ones

In this example, we concentrate on the vertical geometry of boxes only. The
horizontal geometry - the widths of boxes - is also interesting, especially when
different characters have different widths. It may not be readily apparent, but
each of the distinct characters in Fig. 5.24 has a different width.

The values associated with the vertical geometry of boxes are as follows:

a) The point size is used to set text within a box. We shall assume that
characters not in subscripts are set in 10 point type, the size of type in
this book. Further, we assume that if a box has point size p, then its
subscript box has the smaller point size 0 . 7 ~ . Inherited attribute B.ps
will represent the point size of block B. This attribute must be inherited,
because the context determines by how much a given box needs to be
shrunk, due to the number of levels of subscripting.

https://hemanthrajhemu.github.io

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 333

b) Each box has a baseline, which is a vertical position that corresponds to
the bottoms of lines of text, not counting any letters, like "g" that extend
below the normal baseline. In Fig. 5.24, the dotted line represents the
baseline for the boxes E, .height, and the entire expression. The baseline
for the box containing the subscript 1 is adjusted to lower the subscript.

c) A box has a height, which is the distance from the top of the box to the
baseline. Synthesized attribute B. ht gives the height of box B.

d) A box has a depth, which is the distance from the baseline to the bottom
of the box. Synthesized attribute B. dp gives the depth of box B.

The SDD in Fig. 5.25 gives rules for computing point sizes, heights, and
depths. Production 1 is used to assign B.ps the initial value 10.

Bl .ps = B.ps
B2 .ps = B.ps
B . ht = max(Bl. ht, B2. ht)
B.dp = max(Bl.dp, B2 .d~)

3) B + B1 sub B2

Figure 5.25: SDD for typesetting boxes

Bl .ps = B.ps
B2.ps = 0.7 x B.ps
B.ht = max(Bl . ht, B2. ht - 0.25 x B.ps)
B.dp = max(B1.dp, B2.dp + 0.25 x B.ps)

5) B + t e x t

Production 2 handles juxtaposition. Point sizes are copied down the parse
tree; that is, two sub-boxes of a box inherit the same point size from the larger
box. Heights and depths are computed up the tree by taking the maximum.
That is, the height of the larger box is the maximum of the heights of its two
components, and similarly for the depth.

Production 3 handles subscripting and is the most subtle. In this greatly
simplified example, we assume that the point size of a subscripted box is 70%
of the point size of its parent. Reality is much more complex, since subscripts
cannot shrink indefinitely; in practice, after a few levels, the sizes of subscripts

B.ht = getHt (B.ps, text.lexval)
B. dp = getDp (B.ps, tex t .lexval)

https://hemanthrajhemu.github.io

334 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

shrink hardly at all. Further, we assume that the baseline of a subscript box
drops by 25% of the parent's point size; again, reality is more complex.

Production 4 copies attributes appropriately when parentheses are used. Fi-
nally, production 5 handles the leaves that represent text boxes. In this matter
too, the true situation is complicated, so we merely show two unspecified func-
tions getHt and getDp that examine tables created with each font to determine
the maximum height and maximum depth of any characters in the text string.
The string itself is presumed to be provided as the attribute lexual of terminal
text.

Our last task is to turn this SDD into an SDT, following the rules for an L-
attributed SDD, which Fig. 5.25 is. The appropriate SDT is shown in Fig. 5.26.
For readability, since production bodies become long, we split them across lines
and line up the actions. Production bodies therefore consist of the contents of
all lines up to the head of the next production.

3) B +
B1 sub
B2

5) B -+ text { B. ht = getHt (B .ps, text . lexual) ;
B. dp = getDp (B.ps, text .lexual);)

Figure 5.26: SDT for typesetting boxes

Our next example concentrates on a simple while-statement and the gener-
ation of intermediate code for this type of statement. Intermediate code will
be treated as a string-valued attribute. Later, we shall explore techniques that
involve the writing of pieces of a string-valued attribute as we parse, thus avoid-
ing the copying of long strings to build even longer strings. The technique was
introduced in Example 5.17, where we generated the postfix form of an infix

https://hemanthrajhemu.github.io

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 335

expression "on-the-fly," rather than computing it as an attribute. However, in
our first formulation, we create a string-valued at tribute by concatenation.

Example 5.19 : For this example, we only need one production:

S --+ while (C) S1

Here, S is the nonterminal that generates all kinds of statements, presumably
including if-statements, assignment statements, and others. In this example, C
stands for a conditional expression - a boolean expression that evaluates to
true or false.

In this flow-of-control example, the only things we ever generate are labels.
All the other intermediate-code instructions are assumed to be generated by
parts of the SDT that are not shown. Specifically, we generate explicit instruc-
tions of the form label L, where L is an identifier, to indicate that L is the
label of the instruction that follows. We assume that the intermediate code is
like that introduced in Section 2.8.4.

The meaning of our while-statement is that the conditional C is evaluated.
If it is true, control goes to the beginning of the code for S1. If false, then control
goes to the code that follows the while-statement 's code. The code for S1 must
be designed to jump to the beginning of the code for the while-statement when
finished; the jump to the beginning of the code that evaluates C is not shown
in Fig. 5.27.

We use the following attributes to generate the proper intermediate code:

1. The inherited attribute S.next labels the beginning of the code that must
be executed after S is finished.

2. The synthesized attribute S. code is the sequehce of intermediate-code
steps that implements a statement S and ends with a jump to S.next.

3. The inherited attribute C. true labels the beginning of the code that must
be executed if C is true.

4. The inherited attribute C.false labels the beginning of the code that must
be executed if C is false.

5. The synthesized attribute C.code is the sequence of intermediate-code
steps that implements the condition C and jumps either to C.true or to
C.false, depending on whether C is true or false.

The SDD that computes these attributes for the while-statement is shown
in Fig. 5.27. A number of points merit explanation:

The function new generates new labels.

The variables L1 and L2 hold labels that we need in the code. L1 is the
beginning of the code for the while-statement, and we need to arrange

https://hemanthrajhemu.github.io

336 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

S -+ while (C) S1 L1 = new();
L2 = new();
S1.next = L1;
C.false = S.next;
C.true = L2;
S.code = label (1 L1 11 C.code (1 label 1) L2)I Sl.code

Figure 5.27: SDD for while-statements

that Sl jumps there after it finishes. That is why we set &.next to L1.
L2 is the beginning of the code for S1, and it becomes the value of C. true,
because we branch there when C is true.

Notice that C.false is set to S.next, because when the condition is false,
we execute whatever code must follow the code for S.

We use)I as the symbol for concatenation of intermediate-code fragments.
The value of S.code thus begins with the label L1, then the code for
condition C, another label L2, and the code for S1.

This SDD is L-attributed. When we convert it into an SDT, the only re-
maining issue is how to handle the labels L1 and L2, which are variables, and
not attributes. If we treat actions as dummy nonterminals, then such variables
can be treated as the synthesized attributes of dummy nonterminals. Since L1
and L2 do not depend on any other attributes, they can be assigned to the
first action in the production. The resulting SDT with embedded actions that
implements this L-attributed definition is shown in Fig. 5.28. C1

S -+ while ({ L1 = new(); L2 = new(); C.false = S.next; C.true = L2; }
c > { Sl.next = LI;)
s1 { S.code = label 1) L1 11 C.code)I label)I L2 11 Sl .code; }

Figure 5.28: SDT for while-statements

5.4.6 Exercises for Section 5.4

Exercise 5.4.1 : We mentioned in Section 5.4.2 that it is possible to deduce,
from the LR state on the parsing stack, what grammar symbol is represented
by the state. How would we discover this information?

Exercise 5.4.2 : Rewrite the following SDT:

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIB UTED SDD'S 337

so that the underlying grammar becomes non-left-recursive. Here, a , b, c, and
d are actions, and 0 and 1 are terminals.

! Exercise 5.4.3 : The following SDT computes the value of a string of 0's and
1's interpreted as a positive, binary integer.

Rewrite this SDT so the underlying grammar is not left recursive, and yet the
same value of B.ual is computed for the entire input string.

! Exercise 5.4.4 : Write L-attributed SDD's analogous to that of Example 5.19
for the following productions, each of which represents a familiar flow-of-control
construct, as in the programming language C. You may need to generate a three-
address statement to jump to a particular label L, in which case you should
generate goto L.

a) S -+ if (C) S1 else Sz

b) S + do S1 while (C)

Note that any statement in the list can have a jump from its middle to
the next statement, so it is not sufficient simply to generate code for each
statement in order.

Exercise 5.4.5 : Convert each of your SDD's from Exercise 5.4.4 to an SDT
in the manner of Example 5.19.

Exercise 5.4.6 : Modify the SDD of Fig. 5.25 to include a synthesized attribute
B.Ee, the length of a box. The length of the concatenation of two boxes is the
sum of the lengths of each. Then add your new rules to the proper positions in
the SDT of Fig. 5.26

Exercise 5.4.7 : Modify the SDD of Fig. 5.25 to include superscripts denoted
by operator sup between boxes. If box B2 is a superscript of box B1, then
position the baseline of B2 0.6 times the point size of B1 above the baseline of
B1. Add the new production and rules to the SDT of Fig. 5.26.

5.5 Implementing L-Attributed SDD's
Since many translation applications can be addressed using L-attributed defi-
nitions, we shall consider their implementation in more detail in this section.
The following methods do translation by traversing a parse tree:

https://hemanthrajhemu.github.io

338 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

1. Build the parse tree and annotate. This method works for any noncircular
SDD whatsoever. We introduced annotated parse trees in Section 5.1.2.

2. Build the parse tree, add actions, and execute the actions in preorder.
This approach works for any L-attributed definition. We discussed how
to turn an L-attributed SDD into an SDT in Section 5.4.5; in particular,
we discussed how to embed actions into productions based on the semantic
rules of such an SDD.

In this section, we discuss the following methods for translation during parsing:

3. Use a recursive-descent parser with one function for each nonterminal.
The function for nonterminal A receives the inherited attributes of A as
arguments and returns the synthesized attributes of A.

4. Generate code on the fly, using a recursive-descent parser.

5. Implement an SDT in conjunction with an LL-parser. The attributes are
kept on the parsing stack, and the rules fetch the needed attributes from
known locations on the stack.

6. Implement an SDT in conjunction with an LR-parser. This method may
be surprising, since the SDT for an L-attributed SDD typically has ac-
tions in the middle of productions, and we cannot be sure during an LR
parse that we are even in that production until its entire body has been
constructed. We shall see, however, that if the underlying grammar is LL,
we can always handle both the parsing and translation bottom-up.

5.5.1 Translation During Recursive-Descent Parsing

A recursive-descent parser has a function A for each nonterminal A, as discussed
in Section 4.4.1. We can extend the parser into a translator as follows:

a) The arguments of function A are the inherited attributes of nonterminal
A.

b) The return-value of function A is the collection of synthesized attributes
of nonterminal A.

In the body of function A, we need to both parse and handle attributes:

1. Decide upon the production used to expand A.

2. Check that each terminal appears on the input when it is required. We
shall assume that no backtracking is needed, but the extension to recur-
sive-descent parsing with backtracking can be done by restoring the input
position upon failure, as discussed in Section 4.4.1.

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S 339

3. Preserve, in local variables, the values of all attributes needed to compute
inherited attributes for nonterminals in the body or synthesized attributes
for the head nonterminal.

4. Call functions corresponding to nonterminals in the body of the selected
production, providing them with the proper arguments. Since the un-
derlying SDD is L-attributed, we have already computed these attributes
and stored them in local variables.

Example 5.20 : Let us consider the SDD and SDT of Example 5.19 for while-
statements. A pseudocode rendition of the relevant parts of the function S
appears in Fig. 5.29.

s t r ing S(labe1 next) {
s t r ing Scode, Ccode; /* local variables holding code fragments */
label L1, L2; /* the local labels */
if (current input == token while) {

advance input;
check I(' is next on the input, and advance;
L1 = new();
L2 = new();
Ccode = C(next, L2);
check ')I is next on the input, and advance;
Scode = S(L1);
return("labe1") I L l (1 Ccode I(" label" (1 L2 I(Scode);

I
else /* other statement types */

1

Figure 5.29: Implementing while-statements with a recursive-descent parser

We show S as storing and returning long strings. In practice, it would be
far more efficient for functions like S and C to return pointers to records that
represent these strings. Then, the return-statement in function S would not
physically concatenate the components shown, but rather would construct a
record, or perhaps tree of records, expressing the concatenation of the strings
represented by Scode and Ccode, the labels L l and L2, and the two occurrences
of the literal string " labe l" .

Example 5.21 : Now, let us take up the SDT of Fig. 5.26 for typesetting
boxes. First, we address parsing, since the underlying grammar in Fig. 5.26
is ambiguous. The following transformed grammar makes juxtaposition and
subscripting right associative, with s u b taking precedence over juxtaposition:

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

S B
B 4 T B 1 I T
T -+ F sub TI I F
F -+ (B) 1 tex t

The two new nonterminals, T and F, are motivated by terms and factors in
expressions. Here, a "factor," generated by F, is either a parenthesized box
or a text string. A "term," generated by T , is a "factor" with a sequence of
subscripts, and a box generated by B is a sequence of juxtaposed "terms."

The attributes of B carry over to T and F, since the new nonterminals also
denote boxes; they were introduced simply to aid parsing. Thus, both T and
F have an inherited attribute ps and synthesized attributes ht and dp, with
semantic actions that can be adapted from the SDT in Fig. 5.26.

The grammar is not yet ready for top-down parsing, since the productions
for B and T have common prefixes. Consider T, for instance. A top-down
parser cannot choose between the two productions for T by looking one symbol
ahead in the input. Fortunately, we can use a form of left-factoring, discussed
in Section 4.3.4, to make the grammar ready. With SDT's, the notion of com-
mon prefix applies to actions as well. Both productions for T begin with the
nonterminal F inheriting attribute ps from T.

The pseudocode in Fig. 5.30 for T(ps) folds in the code for F(ps). After
left-factoring is applied to T -+ F sub TI 1 F, there is only one call to F; the
pseudocode shows the result of substituting the code for F in place of this call.

The function T will be called as T(lO.O) by the function for B, which we
do not show. It returns a pair consisting of the height and depth of the box
generated by nonterminal T; in practice, it would return a record containing
the height and depth.

Function T begins by checking for a left parenthesis, in which case it must
have the production F -+ (B) to work with. It saves whatever the B inside the
parentheses returns, but if that B is not followed by a right parenthesis, then
there is a syntax error, which must be handled in a manner not shown.

Otherwise, if the current input is tex t , then the function T uses getHt and
getDp to determine the height and depth of this text.

T then decides whether the next box is a subscript and adjusts the point
size, if so. We use the actions associated with the production B -+ B sub B
in Fig. 5.26 for the height and depth of the larger box. Otherwise, we simply
return what F would have returned: (hl , dl).

5.5.2 On-The-Fly Code Generation

The construction of long strings of code that are attribute values, as in Ex-
ample 5.20, is undesirable for several reasons, including the time it could take
to copy or move long strings. In common cases such as our running code-
generation example, we can instead incrementally generate pieces of the code
into an array or output file by executing actions in an SDT. The elements we
need to make this technique work are:

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S

(float, float) T(float ps) {
float h l , h2, d l , d2; /* locals to hold heights and depths */
/* start code for F(ps) */
if (current input == '(I) {

advance input ;
(h l , d l) = B(ps) ;
if (current input != I) ') syntax error: expected I)';
advance input;

1
else if (current input == t ex t) {

let lexical value text.lexva1 be t;
advance input;
h l = getHt(ps, t);
d l = getDp(ps, t) ;

1
else syntax error: expected t ex t or ' (I ;

/* end code for F(ps) */
if (current input == s u b) {

advance input;
(h2, d2) = T(0.7 * ps);
r e tu rn (max(h1, h2 - 0.25 * ps), max(d1, d2 + 0.25 * p s)) ;

1
r e t u r n (h l , dl);

1

Figure 5.30: Recursive-descent typesetting of boxes

1. There is, for one or more nonterminals, a main attribute. For conve-
nience, we shall assume that the main attributes are all string valued. In
Example 5.20, the attributes S.code and C.code are main attributes; the
other attributes are not.

2. The main attributes are synthesized.

3. The rules that evaluate the main attribute(s) ensure that

(a) The main attribute is the concatenation of main attributes of non-
terminals appearing in the body of the production involved, perhaps
with other elements that are not main attributes, such as the string
label or the values of labels L1 and L2.

(b) The main attributes of nonterminals appear in the rule in the same
order as the nonterminals themselves appear in the production body.

As a consequence of the above conditions, the main attribute can be constructed
by emitting the non-main-attribute elements of the concatenation. We can rely

https://hemanthrajhemu.github.io

342 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

The Type of Main Attributes

Our simplifying assumption that main attributes are of string type is really
too restrictive. The true requirement is that the type of all the main
attributes must have values that can be constructed by concatenation of
elements. For instance, a list of objects of any type would be appropriate,
as long as we represent these lists in a way that allows elements to be
efficiently appended to the end of the list. Thus, if the purpose of the
main attribute is to represent a sequence of intermediate-code statements,
we could produce the intermediate code by writing statements to the end
of an array of objects. Of course the requirements stated in Section 5.5.2
still apply to lists; for example, main attributes must be assembled from
other main attributes by concatenation in order.

on the recursive calls to the functions for the nonterminals in a production body
to emit the value of their main attribute incrementally.

Example 5.22 : We can modify the function of Fig. 5.29 to emit elements of
the main translation S.code instead of saving them for concatenation into a
return value of S.code. The revised function S appears in Fig. 5.31.

void S(labe1 next) {
label L l , L2; /* the local labels */
if (current input == token while) {

advance input ;
check I(' is next on the input, and advance;
L 1 = new();
L2 = new();
prznt("label", Ll) ;
C(next, L2);
check I)' is next on the input, and advance;
print("labell', L2);
S(L1);

1
else /* other statement types */

1

Figure 5.3 1 : On-t he-fly recursive-descent code generation for while-st atements

In Fig. 5.31, S and C now have no return value, since their only synthesized
attributes are produced by printing. Further, the position of the print state-
ments is significant. The order in which output is printed is: first l abe l L1,
then the code for C (which is the same as the value of Ccode in Fig. 5.29), then

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S

l a b e l L2, and finally the code from the recursive call to S (which is the same
as Scode in Fig. 5.29). Thus, the code printed by this call to S is exactly the
same as the value of Scode that is returned in Fig. 5.29).

Incidentally, we can make the same change to the underlying SDT: turn the
construction of a main attribute into actions that emit the elements of that
attribute. In Fig. 5.32 we see the SDT of Fig. 5.28 revised to generate code on
the fly.

S + while ({ L1 = new(); L2 = new(); C.false = S.next;
C.true = L2; print("label", Ll);)

c) { &.next = L1; print("labelU, L2); }
s1

Figure 5.32: SDT for on-the-fly code generation for while statements

5.5.3 L-Attributed SDD's and LL Parsing

Suppose that an L-attributed SDD is based on an LL-grammar and that we have
converted it to an SDT with actions embedded in the productions, as described
in Section 5.4.5. We can then perform the translation during LL parsing by
extending the parser stack to hold actions and certain data items needed for
attribute evaluation. Typically, the data items are copies of attributes.

In addition to records representing terminals and nonterminals, the parser
stack will hold action-records representing actions to be executed and synth-
esize-records to hold the synthesized attributes for nonterminals. We use the
following two principles to manage attributes on the stack:

The inherited attributes of a nonterminal A are placed in the stack record
that represents that nonterminal. The code to evaluate these attributes
will usually be represented by an action-record immediately above the
stack record for A; in fact, the conversion of L-attributed SDD's to SDT's
ensures that the action-record will be immediately above A.

The synthesized attributes for a nonterminal A are placed in a separate
synthesize-record that is immediately below the record for A on the stack.

This strategy places records of several types on the parsing stack, trusting that
these variant record types can be managed properly as subclasses of a "stack-
record" class. In practice, we might combine several records into one, but the
ideas are perhaps best explained by separating data used for different purposes
into different records.

Action-records contain pointers to code to be executed. Actions may also
appear in synthesize-records; these actions typically place copies of the synthe-
sized attribute(s) in other records further down the stack, where the value of

https://hemanthrajhemu.github.io

344 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

that attribute will be needed after the synthesize-record and its attributes are
popped off the stack.

Let us take a brief look at LL parsing to see the need to make temporary
copies of attributes. From Section 4.4.4, a table-driven LL parser mimics a
leftmost derivation. If w is the input that has been matched*so far, then the
stack holds a sequence of grammar symbols a such that S + wa, where S

lm
is the start symbol. When the parser expands by a production A -+ B C, it
replaces A on top of the stack by B C.

Suppose nonterminal C has an inherited attribute C.i. With A -+ B C, the
inherited attribute C.i may depend not only on the inherited attributes of A, but
on all the attributes of B. Thus, we may need to process B completely before
C.i can be evaluated. We therefore save temporary copies of all the attributes
needed to evaluate C.i in the action-record that evaluates C.i. Otherwise, when
the parser replaces A on top of the stack by B C, the inherited attributes of A
will have disappeared, along with its stack record.

Since the underlying SDD is L-attributed, we can be sure that the values
of the inherited attributes of A are available when A rises to the top of the
stack. The values will therefore be available in time to be copied into the
action-record that evaluates the inherited attributes of C. Furthermore, space
for the synthesized attributes of A is not a problem, since the space is in the
synthesize-record for A, which remains on the stack, below B and C , when the
parser expands by A -+ B C.

As B is processed, we can perform actions (through a record just above B on
the stack) that copy its inherited attributes for use by C, as needed, and after B
is processed, the synthesize-record for B can copy its synthesized attributes for
use by C, if needed. Likewise, synthesized attributes of A may need temporaries
to help compute their value, and these can be copied to the synthesize-record
for A as B and then C are processed. The principle that makes all this copying
of attributes work is:

All copying takes place among the records that are created during one
expansion of one nonterminal. Thus, each of these records knows how far
below it on the stack each other record is, and can write values into the
records below safely.

The next example illustrates the implement ation of inherited attributes dur-
ing LL parsing by diligently copying attribute values. Shortcuts or optimiza-
tions are possible, particularly with copy rules, which simply copy the value of
one attribute into another. Shortcuts are deferred until Example 5.24,. which
also illustrates synthesize-records.

Example 5.23 : This example implements the the SDT of Fig. 5.32, which
generates code on the fly for the while-production. This SDT does not have
synthesized attributes, except for dummy attributes that represent labels.

Figure 5.33(a) shows the situation as we are about to use the while-produc-
tion to expand S , presumably because the lookahead symbol on the input is

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIBUTED SDD'S

while. The record at the top of stack is for S, and it contains only the inherited
attribute S.next, which we suppose has the value x. Since we are now parsing
top-down, we show the stack top at the left, according to our usual convention.

1*rnv,r1
snext = x false = ?

L 1 = new() ;
L2 = new();
stack[top - l].false = snext;
stack[top - l] . t rue = L2;
stack[top - 3].all = L1;
stack[top - 3].al2 = L2;
prznt (" label l ' , L l) ;

stack[top - l] .next = a l l ;
prznt (" label" , a / 2) ; 1

Figure 5.33: Expansion of S according to the while-statement production

Figure 5.33(b) shows the situation immediately after we have expanded S.
There are action-records in front of the nonterminals C and S1, corresponding
to the actions in the underlying SDT of Fig. 5.32. The record for C has room
for inherited attributes true and false, while the record for S1 has room for
attribute next, as all S-records must. We show values for these fields as ?,
because we do not yet know their values.

The parser next recognizes while and (on the input and pops their records
off the stack. Now, the first action is at the top, and it must be executed. This
action-record has a field snext, which holds a copy of the inherited attribute
S.next. When S is popped from the stack, the value of S.next is copied into
the field snext for use during the evaluation of the inherited attributes for C.
The code for the first action generates new values for L1 and 22, which we
shall suppose are y and x, respectively. The next step is to make x the value of
C.true. The assignment staclc[top - l].true = L2 is written knowing it is only
executed when this action-record is at the top of stack, so top - 1 refers to the
record below it - the record for C.

The first action-record then copies L l into field all in the second action,
where it will be used to evaluate &.next. It also copies L2 into a field called
a12 of the second action; this value is needed for that action-record to print its
output properly. Finally, the first action-record prints label y to the output.

The situation after completing the first action and popping its record off

https://hemanthrajhemu.github.io

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Figure 5.34: After the action above C is performed

the stack is shown in Fig. 5.34. The values of inherited attributes in the record
for C have been filled in properly, as have the temporaries a l l and a12 in the
second action record. At this point, C is expanded, and we presume that the
code to implement its test containing jumps to labels x and x, as appropriate,
is generated. When the C-record is popped from the stack, the record for)
becomes top and causes the parser to check for) on its input.

With the action above S1 at the top of the stack, its code sets Sl .next and
emits label x. When that is done, the record for S1 becomes the top of stack,
and as it is expanded, we presume it correctly generates code that implements
whatever kind of statement it is and then jump to label y.

Example 5.24: Now, let us consider the same while-statement, but with a
translation that produces the output S. code as a synthesized attribute, rather
than by on-the-fly generation. In order to follow the explanation, it is useful to
bear in mind the following invariant or inductive hypothesis, which we assume
is followed for every nonterminal:

Every nonterminal that has code associated with it leaves that code, as a
string, in the synthesize-record just below it on the stack.

Assuming this statement is true, we shall handle the while-production so it
maintains this statement as an invariant.

Figure 5.35(a) shows the situation just before S is expanded using the pro-
duction for while-statements. At the top of the stack we see the record for S; it
has a field for its inherited attribute S. next, as in Example 5.23. Immediately
below that record is the synthesize-record for this occurrence of S. The latter
has a field for S.code, as all synthesize-records for S must have. We also show
it with some other fields for local storage and actions, since the SDT for the
while production in Fig. 5.28 is surely part of a larger SDT.

Our expansion of S is based on the SDT of Fig. 5.28, and it is shown in
Fig. 5.35(b). As a shortcut, during the expansion, we assume that the inherited
attribute S.next is assigned directly to C.false, rather than being placed in the
first action and then copied into the record for C.

Let us examine what each record does when it becomes the top of stack.
First, the while record causes the token while to be matched with the input,

https://hemanthrajhemu.github.io

5.5. In/lPLEMENTING L-ATTRIB UTED SDD'S

next = x

S. code

I data I

actions

top

Synthesize
S. code

code = ?

Ccode = ?

I stack[top - 31. Ccode = code; 1 12 = ? actions
L2 = new() ;
stack[top - 1] .true = L2;

"label" 11 11 1) Ccode

Figure 5.35: Expansion of S with synthesized attribute constructed on the stack

which it must, or else we would not have expanded S in this way. After while
and (are popped off the stack, the code for the action-record is executed. It
generates values for L1 and L2, and we take the shortcut of copying them
directly to the inherited attributes that need them: &.next and C.true. The
last two steps of the action cause L1 and L2 to be copied into the record called
"Synthesize 5'1. code."

The synthesize-record for S1 does double duty: not only will it hold the syn-
thesized attribute Sl . code, but it will also serve as an action-record to complete
the evaluation of the attributes for the entire production S -+ while (C) S1.
In particular, when it gets to the top, it will compute the synthesized attribute
S.code and place its value in the synthesize-record for the head S .

When C becomes the top of the stack, it has both its inherited attributes
computed. By the inductive hypothesis stated above, we suppose it correctly
generates code to execute its condition and jump to the proper label. We also
assume that the actions performed during the expansion of C correctly place
this code in the record below, as the value of synthesized attribute C. code.

After C is popped, the synthesize-record for C.code becomes the top. Its
code is needed in the synthesize-record for Sl.code, because that is where we
concatenate all the code elements to form S.code. The synthesize-record for
C.code therefore has an action to copy C.code into the synthesize-record for
Sl. code. After doing so, the record for token) reaches the top of stack, and
causes a check for) on the input. Assuming that test succeeds, the record for
S1 becomes the top of stack. By our inductive hypothesis, this nonterminal is

https://hemanthrajhemu.github.io

348 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Can We Handle L-Attributed SDDSs on LR
Grammars?

In Section 5.4.1, we saw that every S-attributed SDD on an LR grammar
can be implemented during a bottom-up parse. From Section 5.5.3 every
L-attributed SDD on an LL grammar can be parsed top-down. Since LL
grammars are a proper subset of the LR grammars, and the S-attributed
SDD's are a proper subset of the L-attributed SDD's, can we handle every
LR grammar and L-attributed SDD bottom-up?

We cannot, as the following intuitive argument shows. Suppose we
have a production A -+ B C in an LR-grammar, and there is an inherited
attribute B.i that depends on inherited attributes of A. When we reduce
to B, we still have not seen the input that C generates, so we cannot
be sure that we have a body of production A -+ B C. Thus, we cannot
compute B.i yet, since we are unsure whether to use the rule associated
with this production.

Perhaps we could wait until we have reduced to C , and know that we
must reduce B C to A. However, even then, we do not know the inherited
attributes of A, because even after reduction, we may not be sure of the
production body that contains this A. We could reason that this decision,
too, should be deferred, and therefore further defer the computation of B.i.
If we keep reasoning this way, we soon realize that we cannot make any
decisions until the entire input is parsed. Essentially, we have reached the
strategy of "build the parse tree first and then perform the translation."

expanded, and the net effect is that its code is correctly constructed and placed
in the field for code in the synthesize-record for S1.

Now, all the data fields of the synthesize-record for S1 have been filled in, so
when it becomes the top of stack, the action in that record can be executed. The
action causes the labels and code from C.code and &.code to be concatenated
in the proper order. The resulting string is placed in the record below; that is,
in the synthesize-record for S . We have now correctly computed S.code, and
when the synthesize-record for S becomes the top, that code is available for
placement in another record further down the stack, where it will eventually
be assembled into a larger string of code implementing a program element of
which this S is a part.

5.5.4 Bottom-Up Parsing of L-Attributed SDDSs
We can do bottom-up every translation that we can do top-down. More pre-
cisely, given an L-attributed SDD on an LL grammar, we can adapt the gram-
mar to compute the same SDD on the new grammar during an LR parse. The
"trick" has three parts:

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S 349

1. Start with the SDT constructed as in Section 5.4.5, which places embed-
ded actions before each nonterminal to compute its inherited attributes
and an action at the end of the production to compute synthesized at-
tributes.

2. Introduce into the grammar a marker nonterminal in place of each em-
bedded action. Each such place gets a distinct marker, and there is one
production for any marker M , namely M -+ E .

3. Modify the action a if marker nonterminal M replaces it in some produc-
tion A -+ a {a) p, and associate with M + t an action a' that

(a) Copies, as inherited attributes of M , any attributes of A or symbols
of a that action a needs.

(b) Computes attributes in the same way as a , but makes those at-
tributes be synthesized attributes of M .

This change appears illegal, since typically the action associated with
production M -+ E will have to access attributes belonging to grammar
symbols that do not appear in this production. However, we shall imple-
ment the actions on the LR parsing stack, so the necessary attributes will
always be available a known number of positions down the stack.

Example 5.25 : Suppose that there is a production A -+ B C in an LL gram-
mar, and the inherited attribute B.i is computed from inherited attribute A.i
by some formula B.i = f (A.i). That is, the fragment of an SDT we care about
is

We introduce marker M with inherited attribute M.i and synthesized attribute
M.s. The former will be a copy of A.i and the latter will be B.i. The SDT will
be written

Notice that the rule for M does not have A.i available to it, but in fact we
shall arrange that every inherited attribute for a nonterminal such as A appears
on the stack immediately below where the reduction to A will later take place.
Thus, when we reduce t to M , we shall find A.i immediately below it, from
where it may be read. Also, the value of M.s, which is left on the stack along
with M , is really B.i and properly is found right below where the reduction to
B will later occur.

Example 5.26 : Let us turn the SDT of Fig. 5.28 into an SDT that can operate
with an LR parse of the revised grammar. We introduce a marker M before C
and a marker N before S1, so the underlying grammar becomes

https://hemanthrajhemu.github.io

350 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Why Markers Work

Markers are nonterminals that derive only c and that appear only once
among all the bodies of all productions. We shall not give a formal proof
that, when a grammar is LL, marker nonterminals can be added at any
position in the body, and the resulting grammar will still be LR. The
intuition, however, is as follows. If a grammar is LL, then we can determine
that a string w on the input is derived from nonterminal A, in a derivation
that starts with production A + a, by seeing only the first symbol of w
(or the following symbol if w = e). Thus, if we parse w bottom-up, then
the fact that a prefix of w must be reduced to a and then to S is known as
soon as the beginning of w appears on the input. In particular, if we insert
markers anywhere in a, the LR states will incorporate the fact that this
marker has to be there, and will reduce E: to the marker at the appropriate
point on the input.

S + while (M C) N S1
M + €
N + €

Before we discuss the actions that are associated with markers M and N , let
us outline the "inductive hypothesis" about where attributes are stored.

1. Below the entire body of the while-production - that is, below while
on the stack - will be the inherited attribute S.next. We may not know
the nonterminal or parser state associated with this stack record, but we
can be sure that it will have a field, in a fixed position of the record, that
holds S.next before we begin to recognize what is derived from this S.

2. Inherited attributes C.true and C.false will be just below the stack record
for C. Since the grammar is presumed to be LL, the appearance of while
on the input assures us that the while-production is the only one that can
be recognized, so we can be sure that M will appear immediately below
C on the stack, and M's record will hold the inherited attributes of C.

3. Similarly, the inherited attribute Sl .next must appear immediately below
S1 on the stack, so we may place that attribute in the record for N .

4. The synthesized attribute C.code will appear in the record for C. As
always when we have a long string as an attribute value, we expect that
in practice a pointer to (an object representing) the string will appear in
the record, while the string itself is outside the stack.

5 . Similarly, the synthesized attribute Sl .code will appear in the record for
s1.

https://hemanthrajhemu.github.io

5.5. IMPLEMENTING L-ATTRIBUTED SDD'S 351

Let us follow the parsing process for a while-statement. Suppose that a
record holding S.next appears on the top of the stack, and the next input is
the terminal while. We shift this terminal onto the stack. It is then certain
that the production being recognized is the while-production, so the LR parser
can shift "(" and determine that its next step must be to reduce E. to M. The
stack at this time is shown in Fig. 5.36. We also show in that figure the action
that is associated with the reduction to M. We create values for L1 and L2,
which live in fields of the M-record. Also in that record are fields for C.true and
C.faEse. These attributes must be in the second and third fields of the record,
for consistency with other stack records that might appear below C in other
contexts and also must provide these attributes for C. The action completes
by assigning values to C.true and C.false, one from the L2 just generated, and
the other by reaching down the stack to where we know S. next is found.

top
4

S. next wmm Code executed during
reduction of E to M

Ll = new() ;
L2 = new() ;

L2 C.true = L2;
C.fa1se = stack[top - 3l.next;

Figure 5.36: LR parsing stack after reduction of E: to M

We presume that the next inputs are properly reduced to C. The synthesized
attribute C.code is therefore placed in the record for C. This change to the stack
is shown in Fig. 5.37, which also incorporates the next several records that are
later placed above C on the stack.

C. true / I C. code I l ~ l . n e x t I Isl.code I
C. false zj

Figure 5.37: Stack just before reduction of the while-production body to S

Continuing with the recognition of the while-st at ement , the parser should
next find ")" on the input, which it pushes onto the stack in a record of its
own. At that point, the parser, which knows it is working on a while-statement
because the grammar is LL, will reduce E. to N. The single piece of data asso-
ciated with N is the inherited attribute Sl .next. Note that this attribute needs

https://hemanthrajhemu.github.io

352 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

to be in the record for N because that will be just below the record for S1. The
code that is executed to compute the value of S l .next is

This action reaches three records below N , which is at the top of stack when
the code is executed, and retrieves the value of L1.

Next, the parser reduces some prefix of the remaining input to S , which
we have consistently referred to as S 1 to distinguish it from the S at the head
of the production. The value of Sl.code is computed and appears in the stack
record for S1. This step takes us to the condition that is illustrated in Fig. 5.37.

At this point, the parser will reduce everything from while to Sl to S. The
code that is executed during this reduction is:

tempcode = label 11 stack[top - 4].L1 11 stack[top - 3].code (1
label 1) stack[top - 4].L2 11 stack[top].code;

top = top - 5;
stack[top] . code = tempcode;

That is, we construct the value of S.code in a variable tempcode. That code is
the usual, consisting of the two labels L1 and L2, the code for C and the code
for S1. The stack is popped, so S appears where while was. The value of the
code for S is placed in the code field of that record, where it can be interpreted
as the synthesized attribute S . code. Note that we do not show, in any of this
discussion, the manipulation of LR states, which must also appear on the stack
in the field that we have populated with grammar symbols.

5.5.5 Exercises for Section 5.5

Exercise 5.5.1 : Implement each of your SDD's of Exercise 5.4.4 as a recursive-
descent parser in the style of Section 5.5.1.

Exercise 5.5.2 : Implement each of your SDD's of Exercise 5.4.4 as a recursive-
descent parser in the style of Section 5.5.2.

Exercise 5.5.3 : Implement each of your SDD's of Exercise 5.4.4 with an LL
parser in the style of Section 5.5.3, with code generated "on the fly."

Exercise 5.5.4: Implement each of your SDD's of Exercise 5.4.4 with an LL
parser in the style of Section 5.5.3, but with code (or pointers to the code)
stored on the stack.

Exercise 5.5.5 : Implement each of your SDD's of Exercise 5.4.4 with an LR
parser in the style of Section 5.5.4.

Exercise 5.5.6 : Implement your SDD of Exercise 5.2.4 in the style of Sec-
tion 5.5.1. Would an implementation in the style of Section 5.5.2 be any differ-
ent?

https://hemanthrajhemu.github.io

5.6. SUMMARY OF CHAPTER 5

5.6 Summary of Chapter 5

+ Inherited and Synthesized Attributes: Syntax-directed definitions may use
two kinds of attributes. A synthesized attribute at a parse-tree node is
computed from attributes at its children. An inherited attribute at a node
is computed from attributes at its parent and/or siblings.

+ Dependency Graphs: Given a parse tree and an SDD, we draw edges
among the attribute instances associated with each parse-tree node to
denote that the value of the attribute at the head of $he edge is computed
in terms of the value of the attribute at the tail of the edge.

+ Cyclic Definitions: In problematic SDD's, we find that there are some
parse trees for which it is impossible to find an order in which we can
compute all the attributes at all nodes. These parse trees have cycles in
their associated dependency graphs. It is intractable to decide whether
an SDD has such circular dependency graphs.

+ S-Attributed Definitions: In an S-attributed SDD, all attributes are syn-
thesized.

+ L-Attributed Definitions: In an L-attributed SDD, attributes may be in-
herited or synthesized. However, inherited attributes at a parse-tree node
may depend only on inherited attributes of its parent and on (any) at-
tributes of siblings to its left.

+ Syntax Trees: Each node in a syntax tree represents a construct; the chil-
dren of the node represent the meaningful components of the construct.

+ Implementing S-Attributed SDD's: An S-attributed definition can be im-
plemented by an SDT in which all actions are at the end of the production
(a "postfix" SDT). The actions compute the synthesized attributes of the
production head in terms of synthesized attributes of the symbols in the
body. If the underlying grammar is LR, then this SDT can be imple-
mented on the LR parser stack.

+ Eliminating Left Recursion From SDT's: If an SDT has only side-effects
(no attributes are computed), then the standard left-recursion-elimination
algorithm for grammars allows us to carry the actions along as if they
were terminals. When attributes are computed, we can still eliminate left
recursion if the SDT is a postfix SDT.

+ Implementing L-attributed SDD's by Recursive-Descent Parsing: If we
have an L-attributed definition on a top-down parsable grammar, we can
build a recursive-descent parser with no backtracking to implement the
translation. Inherited at tributes become arguments of the functions for
their nonterminals, and synthesized attributes are returned by that func-
tion.

https://hemanthrajhemu.github.io

354 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

+ Implementing L-Attributed SDD's on an LL Grammar: Every L-attribut-
ed definition with an underlying LL grammar can be implemented along
with the parse. Records to hold the synthesized attributes for a non-
terminal are placed below that nonterminal on the stack, while inherited
attributes for a nonterminal are stored with that nonterminal on the stack.
Action records are also placed on the stack to compute attributes at the
appropriate time.

+ Implementing L-Attributed SDD's on an LL Grammar, Bottom-Up: An
L-attributed definition with an underlying LL grammar can be converted
to a translation on an LR grammar and the translation performed in con-
nection with a bottom-up parse. The grammar transformation introduces
"marker" nonterminals that appear on the bottom-up parser's stack and
hold inherited attributes of the nonterminal above it on the stack. Syn-
thesized attributes are kept with their nonterminal on the stack.

5.7 References for Chapter 5

Syntax-directed definitions are a form of inductive definition in which the induc-
tion is on the syntactic structure. As such they have long been used informally
in mathematics. Their application to programming languages came with the
use of a grammar to structure the Algol 60 report.

The idea of a parser that calls for semantic actions can be found in Samelson
and Bauer [8] and Brooker and Morris [I]. Irons [2] constructed one of the
first syntax-directed compilers, using synthesized attributes. The class of L-
attributed definitions comes from [6].

Inherited attributes, dependency graphs, and a test for circularity of SDD's
(that is, whether or not there is some parse tree with no order in which the at-
tributes can be computed) are from Knuth [5]. Jazayeri, Ogden, and Rounds [3]
showed that testing circularity requires exponential time, as a function of the
size of the SDD.

Parser generators such as Yacc [4] (see also the bibliographic notes in Chap-
ter 4) support attribute evaluation during parsing.

The survey by Paakki [7] is a starting point for accessing the extensive
literature on syntax-directed definitions and translations.

I . Brooker, R. A. and D. Morris, "A general translation program for phrase
structure languages," J. ACM 9:l (1962), pp. 1-10.

2. Irons, E. T., "A syntax directed compiler for Algol 60," Comm. ACM 4:l
(1961), pp. 51-55.

3. Jazayeri, M., W. F. Odgen, and W. C. Rounds, "The intrinsic expo-
nential complexity of the circularity problem for attribute grammars,''
Comm. ACM 18:12 (1975), pp. 697-706.

https://hemanthrajhemu.github.io

5.7. REFERENCES FOR CHAPTER 5 355

4. Johnson, S. C., "Yacc - Yet Another Compiler Compiler," Computing
Science Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.
Available at http: //dinosaur. compilertools. net/yacc/ .

5. Knuth, D.E., "Semantics of context-free languages," Mathematical Sys-
tems Theory 2:2 (1968), pp. 127-145. See also Mathematical Systems
Theory 5:l (1971), pp. 95-96.

6. Lewis, P. M. 11, D. J. Rosenkrantz, and R. E. Stearns, "Attributed trans-
lations," J. Computer and System Sciences 9:3 (1974), pp. 279-307.

7. Paakki, J., "Attribute grammar paradigms - a high-level methodology in
language implementation," Computing Surveys 27:2 (1995) pp. 196-255.

8. Samelson, K. and F. L. Bauer, "Sequential formula translation," Comm.
ACM 3:2 (1960), pp. 76-83.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

Chapter 6

Intermediate-Code
Generat ion

In the analysis-synthesis model of a compiler, the front end analyzes a source
program and creates an intermediate representation, from which the back end
generates target code. Ideally, details of the source language are confined to the
front end, and details of the target machine to the back end. With a suitably
defined intermediate representation, a compiler for language i and machine j
can then be built by combining the front end for language i with the back
end for machine j . This approach to creating suite of compilers can save a
considerable amount of effort: rn x n compilers can be built by writing just rn
front ends and n back ends.

This chapter deals with intermediate representations, static type checking,
and intermediate code generation. For simplicity, we assume that a com-
piler front end is organized as in Fig. 6.1, where parsing, static checking, and
intermediate-code generation are done sequentially; sometimes they can be com-
bined and folded into parsing. We shall use the syntax-directed formalisms of
Chapters 2 and 5 to specify checking and translation. Many of the translation
schemes can be implemented during either bottom-up or top-down parsing, us-
ing the techniques of Chapter 5. All schemes can be implemented by creating
a syntax tree and then walking the tree.

front end --+-back end ---

--,

Figure 6.1: Logical structure of a compiler front end

Static checking includes type checking, which ensures that operators are ap-
plied to compatible operands. It also includes any syntactic checks that remain

Parser
Static

Checker

Intermediate
Code

~~~~~~t~~ 

intermediate 
code 

Code 
Generator 

https://hemanthrajhemu.github.io



358 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

after parsing. For example, static checking assures that a break-statement in 
C is enclosed within a while-, for-, or switch-statement; an error is reported if 
such an enclosing statement does not exist. 

The approach in this chapter can be used for a wide range of intermediate 
representations, including syntax trees and three-address code, both of which 
were introduced in Section 2.8. The term "three-address code7' comes from 
instructions of the general form x = y op x with three addresses: two for the 
operands y and x and one for the result x. 

In the process of translating a program in a given source language into code 
for a given target machine, a compiler may construct a sequence of intermediate 
representations, as in Fig. 6.2. High-level representations are close to the source 
language and low-level representations are close to the target machine. Syntax 
trees are high level; they depict the natural hierarchical structure of the source 
program and are well suited to tasks like static type checking. 

High Level Low Level 
Source Tar get 

-+ Intermediate -+ . . - Intermediate-+ 
Program 

Represent at ion Represent ation Code 

Figure 6.2: A compiler might use a sequence of intermediate representations 

A low-level representation is suitable for machine-dependent tasks like reg- 
ister allocation and instruction selection. Three-address code can range from 
high- to low-level, depending on the choice of operators. For expressions, the 
differences between syntax trees and three-address code are superficial, as we 
shall see in Section 6.2.3. For looping statements, for example, a syntax tree 
represents the components of a statement, whereas three-address code contains 
labels and jump instructions to represent the flow of control, as in machine 
language. 

The choice or design of an intermediate representation varies from compiler 
to compiler. An intermediate representation may either be an actual language 
or it may consist of internal data structures that are shared by phases of the 
compiler. C is a programming language, yet it is often used as an intermediate 
form because it is flexible, it compiles into efficient machine code, and its com- 
pilers are widely available. The original C++ compiler consisted of a front end 
that generated C, treating a C compiler as a back end. 

6.1 Variants of Syntax Trees 

Nodes in a syntax tree represent constructs in the source program; the children 
of a node represent the meaningful components of a construct. A directed 
acyclic graph (hereafter called a DAG) for an expression identifies the common 
subexpressions (subexpressions that occur more than once) of the expression. 
As we shall see in this section, DAG7s can be constructed by using the same 
techniques that construct syntax trees. 

https://hemanthrajhemu.github.io



6.1. VARIANTS OF SYNTAX TREES 

6.1.1 Directed Acyclic Graphs for Expressions 

Like the syntax tree for an expression, a DAG has leaves corresponding to 
atomic operands and interior codes corresponding to operators. The difference 
is that a node N in a DAG has more than one parent if N represents a com- 
mon subexpression; in a syntax tree, the tree for the common subexpression 
would be replicated as many times as the subexpression appears in the original 
expression. Thus, a DAG not only represents expressions more succinctly, it 
gives the compiler important clues regarding the generation of efficient code to 
evaluate the expressions. 

Example 6.1 : Figure 6.3 shows the DAG for the expression 

The leaf for a has two parents, because a appears twice in the expression. 
More interestingly, the two occurrences of the common subexpression b-c are 
represented by one node, the node labeled -. That node has two parents, 
representing its two uses in the subexpressions a*(b-c) and (b-c)*d. Even 
though b and c appear twice in the complete expression, their nodes each have 
one parent, since both uses are in the common subexpression b-c. 

Figure 6.3: Dag for the expression a + a * (b - c)  + (b - c)  * d 

The SDD of Fig. 6.4 can construct either syntax trees or DAG's. It was 
used to construct syntax trees in Example 5.11, where functions Leaf and Node 
created a fresh node each time they were called. It will construct a DAG if, 
before creating a new node, these functions first check whether an identical node 
already exists. If a previously created identical node exists, the existing node 
is returned. For instance, before constructing a new node, Node(op, ZeJt, right) 
we check whether there is already a node with label op, and children left and 
right, in that order. If so, Node returns the existing node; otherwise, it creates 
a new node. 

Example 6.2: The sequence of steps shown in Fig. 6.5 constructs the DAG 
in Fig. 6.3, provided Node and Leaf return an existing node, if possible, as 

https://hemanthrajhemu.github.io



360 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

5) T + id  I T.node = new Leaf (id, id. entry) 

PRODUCTION 

1) E -i El + T 

2) E -i El - T 

3) E + T  

4) T - i ( E )  

6) T -+ n u m  I T. node = new Leaf (num, num. val) 

SEMANTIC RULES 

E.node = new Node('+', El .node, T.node) 

E.node = new Node('-', El .node, T.node) 

E.node = T.node 

T.node = E.node 

Figure 6.4: Syntax-directed definition to produce syntax trees or DAG's 

pl = Leaf (id, entry-a) 
p2 = Leaf (id, entry-a) = pl 
p3 = Leaf (id, entry- b) 
p4 = Leaf(id, entry-c) 
P5 = Node('-', p3, p4) 
p6 = Node('*', pl p5) 
p7 = Node(' f ' PI, ~ 6 )  

pg = Leaf (id, entry-b) = p3 
pg = Leaf (id, entry-c) = p4 
Pl0 = Node('-', p3, p4) = p5 
pll = Leaf (id, entry-d) 
P12 = Node('*', ~ 5 1 ~ 1 1 )  

P13 = Node('+',p7,pl2) 

Figure 6.5: Steps for constructing the DAG of Fig. 6.3 

discussed above. We assume that entry-a points to the symbol-table entry for 
a, and similarly for the other identifiers. 

When the call to Leaf (id, entry-a) is repeated at step 2, the node created 
by the previous call is returned, so p2 = pl. Similarly, the nodes returned at 
steps 8 and 9 are the same as those returned at  steps 3 and 4 (i.e., pg = p3 
and pg = p4). Hence the node returned at step 10 must be the same at that 
returned at step 5; i.e., plo = pg . 

6.1.2 The Value-Number Method for Constructing DAG's 

Often, the nodes of a syntax tree or DAG are stored in an array of records, as 
suggested by Fig. 6.6. Each row of the array represents one record, and therefore 
one node. In each record, the first field is an operation code, indicating the label 
of the node. In Fig. 6.6(b), leaves have one additional field, which holds the 
lexical value (either a symbol-table pointer or a constant, in this case), and 

https://hemanthrajhemu.github.io



6.1. VARIANTS OF SYNTAX TREES 361 

interior nodes have two additional fields indicating the left and right children. 

to entry 
for i 

(a) DAG (b) Array. 

Figure 6.6: Nodes of a DAG for i = i + 10 allocated in an array 

In this array, we refer to nodes by giving the integer index of the record 
for that node within the array. This integer historically has been called the 
value number for the node or for the expression represented by the node. For 
instance, in Fig. 6.6, the node labeled + has value number 3, and its left and 
right children have value numbers 1 and 2, respectively. In practice, we could 
use pointers to records or references to objects instead of integer indexes, but 
we shall still refer to the reference to a node as its "value number." If stored 
in an appropriate data structure, value numbers help us construct expression 
DAG's efficiently; the next algorithm shows how. 

Suppose that nodes are stored in an array, as in Fig. 6.6, and each node is 
referred to by its value number. Let the signature of an interior node be the 
triple (op, 1, r), where op is the label, 1 its left child's value number, and r its 
right child's value number. A unary operator may be assumed to have r = 0. 

Algorithm 6.3: The value-number method for constructing the nodes of a 
DAG. 

INPUT: Label op, node 1, and node r .  

OUTPUT: The value number of a node in the array with signature (op, 1, r ) .  

METHOD: Search the array for a node M with label op, left child I ,  and right 
child r. If there is such a node, return the value number of M .  If not, create in 
the array a new node N with label op, left child 1, and right child r, and return 
its value number. 

While Algorithm 6.3 yields the desired output, searching the entire array 
every time we are asked to locate one node is expensive, especially if the array 
holds expressions from an entire program. A more efficient approach is to use a 
hash table, in which the nodes are put into "buckets," each of which typically 
will have only a few nodes. The hash table is one of several data structures 
that support dictionaries efficiently.' A dictionary is an abstract data type that 

'see Aho, A. V., J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, 
Addison-Wesley, 1983, for a discussion of data structures supporting dictionaries. 

https://hemanthrajhemu.github.io



362 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

allows us to insert and delete elements of a set, and to determine whether a 
given element is currently in the set. A good data structure for dictionaries, 
such as a hash table, performs each of these operations in time that is constant 
or close to constant, independent of the size of the set. 

To construct a hash table for the nodes of a DAG, we need a hash function 
h that computes the index of the bucket for a signature (op, 1, r), in a way that 
distributes the signatures across buckets, so that it is unlikely that any one 
bucket will get much more than a fair share of the nodes. The bucket index 
h(op, 1, r )  is computed deterministically from op, 1, and r ,  so that we may repeat 
the calculation and always get to the same bucket index for node (op, 1, r).  

The buckets can be implemented as linked lists, as in Fig. 6.7. An array, 
indexed by hash value, holds the bucket headers, each of which points to the 
first cell of a list. Within the linked list for a bucket, each cell holds the value 
number of one of the nodes that hash to that bucket. That is, node (op, 1,r) 
can be found on the list whose header is at index h(op, I ,  r )  of the array. 

List elements 
representing nodes 

by hash value I 1 
Array of bucket 
headers indexed 

Figure 6.7: Data structure for searching buckets 

Thus, given the input node op, 1, and r, we compute the bucket index 
h( op, 1, r )  and search the list of cells in this bucket for the given input node. 
Typically, there are enough buckets so that no list has more than a few cells. 
We may need to look at all the cells within a bucket, however, and for each 
value number v found in a cell, we must check whether the signature (op, 1, r )  
of the input node matches the node with value number u in the list of cells (as 
in Fig. 6.7). If we find a match, we return v. If we find no match, we know 
no such node can exist in any other bucket, so we create a new cell, add it to 
the list of cells for bucket index h( op, 1, r )  , and return the value number in that 
new cell. 

2 5 

6.1.3 Exercises for Section 6.1 

3 

Exercise 6.1.1 : Construct the DAG for the expression 

((x + y) - ((x + y )  * (x -Y) ) )  + (("+Y) * (" -y) )  

https://hemanthrajhemu.github.io



6.2. THREE-ADDRESS CODE 363 

Exercise 6.1.2: Construct the DAG and identify the value numbers for the 
subexpressions of the following expressions, assuming + associates from the left. 

a) a +  b+ ( a +  b).  

6.2 Three-Address Code 

In three-address code, there is at most one operator on the right side of an 
instruction; that is, no built-up arithmetic expressions are permitted. Thus a 
source-language expression like x+y*z might be translated into the sequence of 
t hree-address instructions 

where tl and tz are compiler-generated temporary names. This unraveling of 
multi-operator arithmetic expressions and of nested flow-of-control statements 
makes three-address code desirable for target-code generation and optimization, 
as discussed in Chapters 8 and 9. The use of names for the intermediate values 
computed by a program allows three-address code to be rearranged easily. 

Example 6.4 : Three-address code is a linearized representation of a syntax 
tree or a DAG in which explicit names correspond to the interior nodes of the 
graph. The DAG in Fig. 6.3 is repeated in Fig. 6.8, together with a correspond- 
ing three-address code sequence. 

(a) DAG (b) Three-address code 

Figure 6.8: A DAG and its corresponding three-address code 

https://hemanthrajhemu.github.io



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.2.1 Addresses and Instructions 

Three-address code is built from two concepts: addresses and instructions. In 
object-oriented terms, these concepts correspond to classes, and the various 
kinds of addresses and instructions correspond to appropriate subclasses. Al- 
ternatively, three-address code can be implemented using records with fields 
for the addresses; records called quadruples and triples are discussed briefly in 
Section 6.2.2. 

An address can be one of the following: 

A name. For convenience, we allow source-program names to appear as 
addresses in three-address code. In an implementation, a source name 
is replaced by a pointer to its symbol-table entry, where all information 
about the name is kept. 

A constant. In practice, a compiler must deal with many different types 
of constants and variables. Type conversions within expressions are con- 
sidered in Section 6.5.2. 

A compiler-generated temporary. It is useful, especially in optimizing com- 
pilers, to create a distinct name each time a temporary is needed. These 
temporaries can be combined, if possible, when registers are allocated to 
variables. 

We now consider the common three-address instructions used in the rest of 
this book. Symbolic labels will be used by instructions that alter the flow of 
control. A symbolic label represents the index of a three-address instruction in 
the sequence of instructions. Actual indexes can be substituted for the labels, 
either by making a separate pass or by "backpatching," discussed in Section 6.7. 
Here is a list of the common three-address instruction forms: 

1. Assignment instructions of the form x = y op z, where op is a binary 
arithmetic or logical operation, and x, y, and z are addresses. 

2. Assignments of the form x = op y, where op is a unary operation. Essen- 
tial unary operations include unary minus, logical negation, shift opera- 
tors, and conversion operators that, for example, convert an integer to a 
floating-point number. 

3. Copy instructions of the form x = y, where x is assigned the value of y. 

4. An unconditional jump go to  L. The three-address instruction with label 
L is the next to be executed. 

5. Conditional jumps of the form i f  x go to  L and i fFalse  x goto  L. These 
instructions execute the instruction with label L next if x is true and 
false, respectively. Otherwise, the following t hree-address instruction in 
sequence is executed next, as usual. 

https://hemanthrajhemu.github.io



6.2. THREE-ADDRESS CODE 365 

6. Conditional jumps such as i f  x relop y goto  L, which apply a relational 
operator (<, ==, >=, etc.) to x and y, and execute the instruction with 
label L next if x stands in relation relop to y. If not, the three-address 
instruction following i f  x relop y goto  L is executed next, in sequence. 

7. Procedure calls and returns are implemented using the following instruc- 
tions: param x for parameters; c a l l p ,  n and y = c a l l p ,  n for procedure 
and function calls, respectively; and r e tu rn  y, where y, representing a 
returned value, is optional. Their typical use is as the sequence of three- 
address instructions 

param x, 
c a l l  p ,  n 

generated as part of a call of the procedure p(xl ,x2, .  . . ,x,). The in- 
teger n ,  indicating the number of actual parameters in "ca l l  p ,  n," is 
not redundant because calls can be nested. That is, some of the first 
param statements could be parameters of a call that comes after p returns 
its value; that value becomes another parameter of the later call. The 
implementation of procedure calls is outlined in Section 6.9. 

8. Indexed copy instructions of the form x = y Cil and x Cil = y. The instruc- 
tion x = y Cil sets x to the value in the location i memory units beyond 
location y . The instruction x Cil = y sets the contents of the location i 
units beyond x to the value of y. 

9. Address and pointer assignments of the form x = & y, x = * y, and * x = y. 
The instruction x = & y sets the r-value of x to be the location (I-value) 
of y.2 Presumably y is a name, perhaps a temporary, that denotes an 
expression with an bvalue such as A [il [jl , and x is a pointer name or 
temporary. In the instruction x = * y, presumably y is a pointer or a 
temporary whose r-value is a location. The r-value of x is made equal 
to the contents of that location. Finally, * x = y sets the r-value of the 
object pointed to by x to the r-value of y. 

Example 6.5 : Consider the statement 

do i = i+l; while (aci]  < v)  ; 

Two possible translations of this statement are shown in Fig. 6.9. The transla- 
tion in Fig. 6.9 uses a symbolic label L, attached to the first instruction. The 

2 ~ r o m  Section 2.8.3, 1- and r-values are appropriate on the left and right sides of assign- 
ments, respectively. 

https://hemanthrajhemu.github.io



366 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

translation in (b) shows position numbers for the instructions, starting arbitrar- 
ily at position 100. In both translations, the last instruction is a conditional 
jump to the first instruction. The multiplication i * 8 is appropriate for an 
array of elements that each take 8 units of space. 

(a) Symbolic labels. (b) Position numbers. 

Figure 6.9: Two ways of assigning labels to three-address statements 

The choice of allowable operators is an important issue in the design of an 
intermediate form. The operator set clearly must be rich enough to implement 
the operations in the source language. Operators that are close to machine 
instructions make it easier to implement the intermediate form on a target 
machine. However, if the front end must generate long sequences of instructions 
for some source-language operations, then the optimizer and code generator 
may have to work harder to rediscover the structure and generate good code 
for these operations. 

6.2.2 Quadruples 

The description of three-address instructions specifies the components of each 
type of instruction, but it does not specify the representation of these instruc- 
tions in a data structure. In a compiler, these instructions can be implemented 
as objects or as records with fields for the operator and the operands. Three 
such representations are called "quadruples," LLtriples," and "indirect triples." 

A quadruple (or just "quad') has four fields, which we call op, arg,, arg2, 
and result. The op field contains an internal code for the operator. For instance, 
the three-address instruction x = y + x  is represented by placing + in op, y in 
arg,, 2 in argz, and x in result. The following are some exceptions to this rule: 

I. Instructions with unary operators like x = minusy or x = y do not use 
arg,. Note that for a copy statement like x = y, op is =, while for most 
other operations, the assignment operator is implied. 

2. Operators like param use neither arg2 nor result. 

3. Conditional and unconditional jumps put the target label in result. 

Example 6.6 : Three-address code for the assignment a = b * - c + b * - c ; 
appears in Fig. 6.10(a). The special operator minus is used to distinguish the 

https://hemanthrajhemu.github.io



6.2. THREE-ADDRESS CODE 367 

unary minus operator, as in - c, from the binary minus operator, as in b - c. 
Note that the unary-minus "three-address" statement has only two addresses, 
as does the copy statement a = ts. 

The quadruples in Fig. 6.10(b) implement the three-address code in (a). 

tl = minus c 

t2 = b * tl 
t3 = minus c 
tq = b * t3 
t5 = t2 + t4 
a = t5 

arg, argz result 

* I 1 I t2 

minus l c I 1 t3 I 

(a) Three-address code (b) Quadruples 

Figure 6.10: Three-address code and its quadruple representation 

For readability, we use actual identifiers like a, b, and c in the fields arg,, 
arg, , and result in Fig. 6.10(b), instead of pointers to their symbol-table entries. 
Temporary names can either by entered into the symbol table like programmer- 
defined names, or they can be implemented as objects of a class Temp with its 
own methods. 

6.2.3 Triples 

A triple has only three fields, which we call op, arg,, and arg2. Note that 
the result field in Fig. 6.10(b) is used primarily for temporary names. Using 
triples, we refer to the result of an operation x op y by its position, rather 
than by an explicit temporary name. Thus, instead of the temporary tl in 
Fig. 6.10 (b) , a triple representation would refer to position (0). Parenthesized 
numbers represent pointers into the triple structure itself. In Section 6.1.2, 
positions or pointers to positions were called value numbers. 

Triples are equivalent to signatures in Algorithm 6.3. Hence, the DAG and 
triple representations of expressions are equivalent. The equivalence ends with 
expressions, since syntax-tree variants and three-address code represent control 
flow quite differently. 

Example 6.7 : The syntax tree and triples in Fig. 6.11 correspond to the 
three-address code and quadruples in Fig. 6.10. In the triple representation in 
Fig. 6.11(b), the copy statement a = ts is encoded in the triple representation 
by placing a in the arg, field and (4) in the arg, field. 

A ternary operation like x Cil = y requires two entries in the triple structure; 
for example, we can put x and i in one triple and y in the next. Similarly, 
x = y Cil can implemented by treating it as if it were the two instructions 

https://hemanthrajhemu.github.io



368 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Why Do We Need Copy Instructions? 

A simple algorithm for translating expressions generates copy instructions 
for assignments, as in Fig. 6.10(a), where we copy ts into a rather than 
assigning tz + t4 to a directly. Each subexpression typically gets its own, 
new temporary to hold its result, and only when the assignment operator = 
is processed do we learn where to put the value of the complete expression. 
A code-optimization pass, perhaps using the DAG of Section 6.1.1 as an 
intermediate form, can discover that tg can be replaced by a. 

/ 1 ' \. 
b minus b minus 

C C 

(a) Syntax tree 

I . . . I 
(b) Triples 

Figure 6.11: Representations of a + a * ( b  - c)  + ( b  - c )  * d 

t = y[i l  and x = t ,  where t is a compiler-generated temporary. Note that the 
temporary t does not actually appear in a triple, since temporary values are 
referred to by their position in the triple structure. 

A benefit of quadruples over triples can be seen in an optimizing compiler, 
where instructions are often moved around. With quadruples, if we move an 
instruction that computes a temporary t,  then the instructions that use t require 
no change. With triples, the result of an operation is referred to by its position, 
so moving an instruction may require us to change all references to that result. 
This problem does not occur with indirect triples, which we consider next. 

Indirect triples consist of a listing of pointers to triples, rather than a listing 
of triples themselves. For example, let us use an array instruction to list pointers 
to triples in the desired order. Then, the triples in Fig. 6.11(b) might be 
represented as in Fig. 6.12. 

With indirect triples, an optimizing compiler can move an instruction by 
reordering the instruction list, without affecting the triples themselves. When 
implemented in Java, an array of instruction objects is analogous to an indi- 
rect triple representation, since Java treats the array elements as references to 
objects. 

https://hemanthrajhemu.github.io



6.2. THREE-ADDRESS CODE 

instruction 
35 0 

36 1 

3 7 2 
38 3 
39 4 

40 5 

op arg1 arg2 

minus 1 c I 

Figure 6.12: Indirect triples representation of three-address code 

6.2.4 Static Single- Assignment Form 

Statjc single-assignment form (SSA) is an intermediate representation that fa- 
cilitates certain code optimizations. Two distinctive aspects distinguish SSA 
from three-address code. The first is that all assignments in SSA are to vari- 
ables with distinct names; hence the term sta t ic  single-assigrnent. Figure 6.13 
shows the same intermediate program in three-address code and in static single- 
assignment form. Note that subscripts distinguish each definition of variables 
p and q in the SSA representation. 

(a) Three-address code. (b) Static single-assignment form. 

Figure 6.13: Intermediate program in three-address code and SSA 

The same variable may be defined in two different control-flow paths in a 
program. For example, the source program 

i f  ( f l a g  ) x = -1; e lse  x = 1 ;  
y = x * a ;  

has two control-flow paths in which the variable x gets defined. If we use 
different names for x in the true part and the false part of the conditional 
statement, then which name should we use in the assignment y = x * a?  Here 
is where the second distinctive aspect of SSA comes into play. SSA uses a 
notational convention called the 4-function to combine the two definitions of x: 

i f  ( f l a g  ) xl = -1; e lse  xa = 1; 

x3 = 4(x1,x2); 

https://hemanthrajhemu.github.io



370 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Here, $(xl, x2) has the value xl if the control flow passes through the true 
part of the conditional and the value x2 if the control flow passes through the 
false part. That is to say, the $-function returns the value of its argument that 
corresponds to the control-flow path that was taken to get to the assignment- 
statement containing the $-function. 

6.2.5 Exercises for Section 6.2 

Exercise 6.2.1 : Translate the arithmetic expression a + -(b + c) into: 

a) A syntax tree. 

b) Quadruples. 

c) Triples. 

d) Indirect triples. 

Exercise 6.2.2 : Repeat Exercise 6.2.1 for the following assignment state- 
ments: 

ii. a[i] = b*c - b*d. 

iii. x = f (y+l)  + 2. 

iu. x = *p + &y. 

! Exercise 6.2.3: Show how to transform a three-address code sequence into 
one in which each defined variable gets a unique variable name. 

6.3 Types and Declarations 

The applications of types can be grouped under checking and translation: 

Type checking uses logical rules to reason about the behavior of a program 
at run time. Specifically, it ensures that the types of the operands match 
the type expected by an operator. For example, the && operator in Java 
expects its two operands to be booleans; the result is also of type boolean. 

Translation Applications. From the type of a name, a compiler can de- 
termine the storage that will be needed for that name at run time. Type 
information is also needed to calculate the address denoted by an array 
reference, to insert explicit type conversions, and to choose the right ver- 
sion of an arithmetic operator, among other things. 

https://hemanthrajhemu.github.io



6.3. TYPES AND DECLARATIONS 371 

In this section, we examine types and storage layout for names declared 
within a procedure or a class. The actual storage for a procedure call or an 
object is allocated at run time, when the procedure is called or the object is 
created. As we examine local declarations at compile time, we can, however, 
lay out relative addresses, where the relative address of a name or a component 
of a data structure is an offset from the start of a data area. 

6.3.1 Type Expressions 

Types have structure, which we shall represent using type expressions: a type 
expression is either a basic type or is formed by applying an operator called a 
type constructor to a type expression. The sets of basic types and constructors 
depend on the language to be checked. 

Example 6.8 : The array type i n t  [21 C31 can be read as "array of 2 arrays 
of 3 integers each" and written as a type expression array(2, array(3, integer)). 
This type is represented by the tree in Fig. 6.14. The operator array takes two 
parameters, a number and a type. 

array 

2 
/ \ 

array 

/ \ 
3 integer 

Figure 6.14: Type expression for i n t  [2] [3] 

We shall use the following definition of type expressions: 

A basic type is a type expression. Typical basic types for a language 
include boolean, char, integer, float, and void; the latter denotes "the 
absence of a value." 

A type name is a type expression. 

A type expression can be formed by applying the array type constructor 
to a number and a type expression. 

A record is a data structure with named fields. A type expression can 
be formed by applying the record type constructor to the field names and 
their types. Record types will be implemented in Section 6.3.6 by applying 
the constructor record to a symbol table containing entries for the fields. 

A type expression can be formed by using the type constructor 3 for func- 
tion types. We write s 3 t for "function from type s to type t." Function 
types will be useful when type checking is discussed in Section 6.5. 

https://hemanthrajhemu.github.io



372 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Type Names and Recursive Types 

Once a class is defined, its name can be used as a type name in C++ or 
Java; for example, consider Node in the program fragment 

public  c l a s s  Node ( . . . ) 
. . . 
publ ic  Node n ;  

Names can be used to define recursive types, which are needed for 
data structures such as linked lists. The pseudocode for a list element 

c l a s s  Cel l  ( int in fo ;  Cell  next; 1 

defines the recursive type Cel l  as a class that contains a field info  and 
a field next of type Cell.  Similar recursive types can be defined in C 
using records and pointers. The techniques in this chapter carry over to 
recursive types. 

If s and t are type expressions, then their Cartesian product s x t is a 
type expression. Products are introduced for completeness; they can be 
used to represent a list or tuple of types (e.g., for function parameters). 
We assume that x associates to the left and that it has higher precedence 
than -+. 
Type expressions may contain variables whose values are type expressions. 
Compiler-generated type variables will be used in Section 6.5.4. 

A convenient way to represent a type expression is to use a graph. The 
value-number method of Section 6.1.2, can be adapted to construct a dag for a 
type expression, with interior nodes for type constructors and leaves for basic 
types, type names, and type variables; for example, see the tree in Fig. 6.14.3 

6.3.2 Type Equivalence 

When are two type expressions equivalent? Many type-checking rules have the 
form, "if two type expressions are equal then return a certain type else error." 
Potential ambiguities arise when names are given to type expressions and the 
names are then used in subsequent type expressions. The key issue is whether 
a name in a type expression stands for itself or whether it is an abbreviation 
for another type expression. 

3Since type names denote type expressions, they can set up implicit cycles; see the box 
on "Type Names and Recursive Types." If edges to type names are redirected to the type 
expressions denoted by the names, then the resulting graph can have cycles due to recursive 
types. 

https://hemanthrajhemu.github.io



6.3. TYPES AND DECLARATIONS 373 

When type expressions are represented by graphs, two types are structurally 
equivalent if and only if one of the following conditions is true: 

They are the same basic type. 

They are formed by applying the same constructor to structurally equiv- 
alent types. 

One is a type name that denotes the other 

If type names are treated as standing for themselves, then the first two condi- 
tions in the above definition lead to name equivalence of type expressions. 

Name-equivalent expressions are assigned the same value number, if we use 
Algorithm 6.3. Structural equivalence can be tested using the unification algo- 
rithm in Section 6.5.5. 

6.3.3 Declarations 

We shall study types and declarations using a simplified grammar that declares 
just one name at a time; declarations with lists of names can be handled as 
discussed in Example 5.10. The grammar is 

D + T i d ; D  I c 
T -+ B C 1 record '(I D '3' 
B + int ( float 
C 3 E: ( C n u m I C  

The fragment of the above grammar that deals with basic and array types 
was used to illustrate inherited attributes in Section 5.3.2. The difference in 
this section is that we consider storage layout as well as types. 

Nonterminal D generates a sequence of declarations. Nonterminal T gen- 
erates basic, array, or record types. Nonterminal B generates one of the basic 
types int and float. Nonterminal C, for "component," generates strings of 
zero or more integers, each integer surrounded by brackets. An array type con- 
sists of a basic type specified by B, followed by array components specified by 
nonterminal C. A record type (the second production for T) is a sequence of 
declarations for the fields of the record, all surrounded by curly braces. 

6.3.4 Storage Layout for Local Names 

From the type of a name, we can determine the amount of storage that will be 
needed for the name at run time. At compile time, we can use these amounts to 
assign each name a relative address. The type and relative address are saved in 
the symbol-table entry for the name. Data of varying length, such as strings, or 
data whose size cannot be determined until run time, such as dynamic arrays, 
is handled by reserving a known fixed amount of storage for a pointer to the 
data. Run-time storage management is discussed in Chapter 7. 

https://hemanthrajhemu.github.io



374 CHAPTER 6. INTERMEDIATE- CODE GENERATION 

Address Alignment 

The storage layout for data objects is strongly influenced by the address- 
ing constraints of the target machine. For example, instructions to add 
integers may expect integers to be aligned, that is, placed at certain posi- 
tions in memory such as an address divisible by 4. Although an array of 
ten characters needs only enough bytes to hold ten characters, a compiler 
may therefore allocate 12 bytes - the next multiple of 4 - leaving 2 bytes 
unused. Space left unused due to alignment considerations is referred to as 
padding. When space is at a premium, a compiler may pack data so that 
no padding is left; additional instructions may then need to be executed 
at run time to position packed data so that it can be operated on as if it 
were properly aligned. 

Suppose that storage comes in blocks of contiguous bytes, where a byte is 
the smallest unit of addressable memory. Typically, a byte is eight bits, and 
some number of bytes form a machine word. Multibyte objects are stored in 
consecutive bytes and given the address of the first byte. 

The width of a type is the number of storage units needed for objects of that 
type. A basic type, such as a character, integer, or float, requires an integral 
number of bytes. For easy access, storage for aggregates such as arrays and 
classes is allocated in one contiguous block of bytes.4 

The translation scheme (SDT) in Fig. 6.15 computes types and their widths 
for basic and array types; record types will be discussed in Section 6.3.6. The 
SDT uses synthesized attributes type and width for each nonterminal and two 
variables t and w to pass type and width information from a B node in a parse 
tree to the node for the production C -+ 6. In a syntax-directed definition, t 
and w would be inherited attributes for C. 

The body of the T-production consists of nonterminal B, an action, and 
nonterminal C,  which appears on the next line. The action between B and C 
sets t to B.type and w to B. width. If B -+ int then B. type is set to integer and 
B. width is set to 4, the width of an integer. Similarly, if B -+ float then B. type 
is float and B. width is 8 ,  the width of a float. 

The productions for C determine whether T generates a basic type or an 
array type. If C -+ e ,  then t becomes C.type and w becomes C.width. 

Otherwise, C specifies an array component. The action for C -+ [ num 1 Cl 
forms C.type by applying the type constructor array to the operands n u m . v a l u e  
and Cl .type. For instance, the result of applying array might be a tree structure 
such as Fig. 6.14. 
- - 

4~torage  allocation for pointers in C and C++ is simpler if all pointers have the same 
width. The reason is that the storage for a pointer may need to be allocated before we learn 
the type of the objects it can point to. 

https://hemanthrajhemu.github.io



6.3. TYPES AND DECLARATIONS 

B -+ int { B. type = integer; B. width = 4; ) 

B -+ float { B. type = float; B. width = 8;  ) 

C -+ [ num 1 C1 { array(num.value,  Cl . type); 
C. width = n u m . v a l u e  x Cl .width; } 

Figure 6.15: Computing types and their widths 

The width of an array is obtained by multiplying the width of an element by 
the number of elements in the array. If addresses of consecutive integers differ by 
4, then address calculations for an array of integers will include multiplications 
by 4. Such multiplications provide opportunities for optimization, so it is helpful 
for the front end to make them explicit. In this chapter, we ignore other machine 
dependencies such as the alignment of data objects on word boundaries. 

E x a m p l e  6.9 : The parse tree for the type i n t  [21 C31 is shown by dotted lines 
in Fig. 6.16. The solid lines show how the type and width are passed from B ,  
down the chain of C's through variables t and w, and then back up the chain 
as synthesized attributes type and width. The variables t and w are assigned 
the values of B.type and B. width, respectively, before the subtree with the C 
nodes is examined. The values of t and w are used at the node for C + e to 
start the evaluation of the synthesized attributes up the chain of C nodes. 

type = array(2, array(3, integer)) 
. -  . width = 24 

-= integer' 
\ 

type = array(2, array(3, integer))  
N ' t y p e  = integer = 4 

' 

width = 24 
: width = 4 

int [ 2 1 ' .  type = array(3, integer) 
width = 12 

[ 3 I" type = integer 
width = 4 

€ 

Figure 6.16: Syntax-directed translation of array types 

https://hemanthrajhemu.github.io



376 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.3.5 Sequences of Declarations 

Languages such as C and Java allow all the declarations in a single procedure 
to be processed as a group. The declarations may be distributed within a Java 
procedure, but they can still be processed when the procedure is analyzed. 
Therefore, we can use a variable, say ofset, to keep track of the next available 
relative address. 

The translation scheme of Fig. 6.17 deals with a sequence of declarations 
of the form T id, where T generates a type as in Fig. 6.15. Before the first 
declaration is considered, o8set is set to 0. As each new name x is seen, x is 
entered into the symbol table with its relative address set to the current value 
of oflset, which is then incremented by the width of the type of x. 

P -+ { oflset = 0; ) 
D 

D -+ T id  ; { top.put(id.lexerne, T.type, oflset); 

ofset = oflset + T. width; 1 
Dl 

D + €  

Figure 6.17: Computing the relative addresses of declared names 

The semantic action within the production D -+ T id  ; Dl creates a symbol- 
table entry by executing top.put(id. lexeme, T. type, ofset). Here top denotes 
the current symbol table. The method top.put creates a symbol-table entry for 
id.lexerne, with type T.type and relative address ogset in its data area. 

The initialization of ofset in Fig. 6.17 is more evident if the first production 
appears on one line as: 

Nonterminals generating E ,  called marker nonterminals, can be used to rewrite 
productions so that all actions appear at the ends of right sides; see Sec- 
tion 5.5.4. Using a marker nonterminal M ,  (6.1) can be restated as: 

6.3.6 Fields in Records and Classes 

The translation of declarations in Fig. 6.17 carries over to fields in records and 
classes. Record types can be added to the grammar in Fig. 6.15 by adding the 
following production 

T -+ record '(I D '>I 

https://hemanthrajhemu.github.io



6.3. TYPES AND DECLARATIONS 377 

The fields in this record type are specified by the sequence of declarations 
generated by D. The approach of Fig. 6.17 can be used to  determine the types 
and relative addresses of fields, provided we are careful about two things: 

The field names within a record must be distinct; that is, a name may 
appear at most once in the declarations generated by D. 

The offset or relative address for a field name is relative t o  the data area 
for that record. 

Example 6.10: The use of a name x for a field within a record does not 
conflict with other uses of the name outside the record. Thus, the three uses of 
x  in the following declarations are distinct and do not conflict with each other: 

f l o a t  x ;  
record  ( f l o a t  x ;  f l o a t  y ;  ) p ;  
record  ( i n t  t a g ;  f l o a t  x;  f l o a t  y ;  ) q; 

A subsequent assignment x = p . x + q. x ; sets variable x to  the sum of the fields 
named x in the records p  and q. Note that the relative address of x in p differs 
from the relative address of x  in q. 

For convenience, record types will encode both the types and relative ad- 
dresses of their fields, using a symbol table for the record type. A record type 
has the form record(t), where record is the type constructor, and t is a symbol- 
table object that holds information about the fields of this record type. 

The translation scheme in Fig. 6.18 consists of a single production to  be 
added to the productions for T in Fig. 6.15. This production has two semantic 
actions. The embedded action before D saves the existing symbol table, denoted 
by top and sets top to  a fresh symbol table. It also saves the current ofset, and 
sets oflset to  0. The declarations generated by D will result in types and relative 
addresses being put in the fresh symbol table. The action after D creates a 
record type using top, before restoring the saved symbol table and offset. 

T + record 'C' { Env.push(top); top = new Env(); 
Stack.push(ofset); oflset = 0; } 

D '3' { T.type = record(top); T.width = oaset; 
top = Env.pop(); ofset = Stack.pop(); ) 

Figure 6.18: Handling of field names in records 

For concreteness, the actions in Fig. 6.18 give pseudocode for a specific im- 
plementation. Let class Env implement symbol tables. The call Env.push(top) 
pushes the current symbol table denoted by top onto a stack. Variable top is 
then set t o  a new symbol table. Similarly, o$set is pushed onto a stack called 
Stack. Variable ofset is then set to 0. 

https://hemanthrajhemu.github.io



378 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

After the declarations in D have been translated, the symbol table top holds 
the types and relative addresses of the fields in this record. Further, ogset gives 
the storage needed for all the fields. The second action sets T. type to record(top) 
and T. width to offset. Variables top and ogset are then restored to their pushed 
values to complete the translation of this record type. 

This discussion of storage for record types carries over to classes, since no 
storage is reserved for methods. See Exercise 6.3.2. 

6.3.7 Exercises for Section 6.3 

Exercise 6.3.1 : Determine the types and relative addresses for the identifiers 
in the following sequence of declarations: 

f l o a t  x; 
record  ( f l o a t  x; f l o a t  y ;  ) p;  
record  ( i n t  t a g ;  f l o a t  x ;  f l o a t  y ;  ) q; 

! Exercise 6.3.2 : Extend the handling of field names in Fig. 6.18 to classes and 
single-inheritance class hierarchies. 

a) Give an implementation of class Enu that allows linked symbol tables, so 
that a subclass can either redefine a field name or refer directly to a field 
name in a superclass. 

b) Give a translation scheme that allocates a contiguous data area for the 
fields in a class, including inherited fields. Inherited fields must maintain 
the relative addresses they were assigned in the layout for the superclass. 

6.4 Translation of Expressions 

The rest of this chapter explores issues that arise during the translation of ex- 
pressions and statements. We begin in this section with the translation of ex- 
pressions into three-address code. An expression with more than one operator, 
like a + b * c ,  will translate into instructions with at most one operator per in- 
struction. An array reference A[i] [ j ]  will expand into a sequence of three-address 
instructions that calculate an address for the reference. We shall consider type 
checking of expressions in Section 6.5 and the use of boolean expressions to 
direct the flow of control through a program in Section 6.6. 

6.4.1 Operations Within Expressions 

The syntax-directed definition in Fig. 6.19 builds up the three-address code for 
an assignment statement S using attribute code for S and attributes addr and 
code for an expression E. Attributes S.code and E.code denote the three-address 
code for S and E, respectively. Attribute E.addr denotes the address that will 

https://hemanthrajhemu.github.io



6.4. TRANSLATION OF EXPRESSIONS 379 

PRODUCTION 

S + i d = E ;  

E.addr = new Temp () 
E.code = El .code 1 )  

gen(E. addr '=' 'minus' El. addr) 

SEMANTIC RULES 

S.code=E.codeII 
gen(top.get(id. lexeme) '=' E. addr) 

E -+ El + E2 E. addr = new Temp () 
E.code = El.code 1 1  E2.code 1 1  

gen(E. addr '=I El .  addr '+I E2. addr) 

Figure 6.19: Three-address code for expressions 

1 ( El 

hold the value of E .  Recall from Section 6.2.1 that an address can be a name, 
a constant, or a compiler-generated temporary. 

Consider the last production, E -+ id, in the syntax-directed definition in 
Fig. 6.19. When an expression is a single identifier, say x, then x itself holds the 
value of the expression. The semantic rules for this production define E.addr 
to point to the symbol-table entry for this instance of id. Let top denote the 
current symbol table. Function top.get retrieves the entry when it is applied to 
the string representation id.lexeme of this instance of id. E. code is set to the 
empty string. 

When E + ( El ) , the translation of E is the same as that of the subex- 
pression El .  Hence, E .  addr equals El .  addr, and E .  code equals El .  code. 

The operators + and unary - in Fig. 6.19 are representative of the operators 
in a typical language. The semantic rules for E + El + E2, generate code to 
compute the value of E from the values of El and E2. Values are computed 
into newly generated temporary names. If El is computed into El.addr and 
Ez into Ez. addr, then El + E2 translates into t = El .  addr + E2. addr, where t is 
a new temporary name. E.addr is set to t. A sequence of distinct temporary 
names tl , t z  , . . . is created by successively executing new Temp(). 

For convenience, we use the notation gen(x ' = I  y '+' z )  to represent the 
three-address instruction x = y + z. Expressions appearing in place of variables 
like x, y, and z are evaluated when passed to gen, and quoted strings like ' = I  

are taken literally.5 Other three-address instructions will be built up similarly 

E.addr = El .  addr 
E.  code = El. code 

5 ~ n  syntax-directed definitions, gen builds an instruction and returns it. In translation 
schemes, gen builds an instruction and incrementally emits it by putting it into the stream 

https://hemanthrajhemu.github.io



380 CHAPTER 6. INTERMEDIATE- CODE GENERATION 

by applying gen to a combination of expressions and strings. 
When we translate the production E -+ El + E2, the semantic rules in 

Fig. 6.19 build up E. code by concatenating El .  code, E2. code, and an instruc- 
tion that adds the values of El and E2.  The instruction puts the result of the 
addition into a new temporary name for E, denoted by E.addr. 

The translation of E -+ -E l  is similar. The rules create a new temporary 
for E and generate an instruction to perform the unary minus operation. 

Finally, the production S -+ id  = E ;  generates instructions that assign the 
value of expression E to the identifier id. The semantic rule for this production 
uses function top.get to determine the address of the identifier represented by 
id, as in the rules for E -+ id. S.code consists of the instructions to compute 
the value of E into an address given by E.addr, followed by an assignment to 
the address top.get(id.lexeme) for this instance of id. 

Example 6.11 : The syntax-directed definition in Fig. 6.19 translates the as- 
signment statement a = b + - c ; into the three-address code sequence 

tl = minus c 
t 2  = b + tl 
a = t 2  

6.4.2 Incremental Translation 

Code attributes can be long strings, so they are usually generated incremen- 
tally, as discussed in Section 5.5.2. Thus, instead of building up E.code as in 
Fig. 6.19, we can arrange to generate only the new three-address instructions, 
as in the translation scheme of Fig. 6.20. In the incremental approach, gen not 
only constructs a three-address instruction, it appends the instruction to the 
sequence of instructions generated so far. The sequence may either be retained 
in memory for further processing, or it may be output incrementally. 

The translation scheme in Fig. 6.20 generates the same code as the syntax- 
directed definition in Fig. 6.19. With the incremental approach, the code at- 
tribute is not used, since there is a single sequence of instructions that is created 
by successive calls to gen. For example, the semantic rule for E + El + E2 in 
Fig. 6.20 simply calls gen to generate an add instruction; the instructions to 
compute El into El. addr and E2 into E2. addr have already been generated. 

The approach of Fig. 6.20 can also be used to build a syntax tree. The new 
semantic action for E -+ El + E2 creates a node by using a constructor, as in 

E -+ El + E2 { E.addr = new Node('+', El .addr, E2.addr); ) 

Here, attribute addr represents the address of a node rather than a variable or 
const ant. 

of generated instructions. 

https://hemanthrajhemu.github.io



6.4. TRANSLATION OF EXPRESSIONS 

E -t E l + E 2  { E . a d d r = n e w  Temp(); 
gen(E.addr ' = I  El .addr '+I E2. addr); } 

( -El  { E. addr = new Temp 0; 
gen(E. addr '=I 'minus' El .  addr) ; ] 

Figure 6.20: Generating three-address code for expressions incrementally 

6.4.3 Addressing Array Elements 

Array elements can be accessed quickly if they are stored in a block of consecu- 
tive locations. In C and Java, array elements are numbered O , 1 ,  . . . , n - 1, for 
an array with n elements. If the width of each array element is w, then the ith 
element of array A begins in location 

base + i x w (6.2) 

where base is the relative address of the storage allocated for the array. That 
is, base is the relative address of A[O]. 

The formula (6.2) generalizes to two or more dimensions. In two dimensions, 
we write A[iz][i2] in C and Java for element i2 in row i l .  Let wl be the width 
of a row and let w2 be the width of an element in a row. The relative address 
of A[il] [iz] can then be calculated by the formula 

base + il x wl + i2 x wa (6.3) 

In I% dimensions, the formula is 

base + i l  x wl + i2 x w2 + - + ik  x wk (6.4) 

where wj, for 1 5 j _< k ,  is the generalization of wl and wz in (6.3). 
Alternatively, the relative address of an array reference can be calculated 

in terms of the numbers of elements n j  along dimension $ of the array and the 
width w = wk of a single element of the array. In two dimensions (i.e., k = 2 
and w = w2), the location for A[il] [i2] is given by 

base + (il x n2 + iq)  x w (6.5) 

In k dimensions, the following formula calculates the same address as (6.4) : 

https://hemanthrajhemu.github.io



382 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

More generally, array elements need not be numbered starting at 0. In a 
one-dimensional array, the array elements are numbered low, low + 1, . . . , high 
and base is the relative address of A[low]. Formula (6.2) for the address of A[i] 
is replaced by: 

base + (i - low) x w (6.7) 

The expressions (6.2) and (6.7) can be both be rewritten as i x w + c, where 
the subexpression c = base - low x w can be precalculated at compile time. 
Note that c = base when low is 0. We assume that c is saved in the symbol 
table entry for A, so the relative address of A[i] is obtained by simply adding 
i x w to c. 

Compile-time precalculation can also be applied to address calculations for 
elements of multidimensional arrays; see Exercise 6.4.5. However, there is one 
situation where we cannot use compile-time precalculation: when the array's 
size is dynamic. If we do not know the values of low and high (or their gen- 
eralizations in many dimensions) at compile time, then we cannot compute 
constants such as c. Then, formulas like (6.7) must be evaluated as they are 
written, when the program executes. 

The above address calculations are based on row-major layout for arrays, 
which is used in C and Java. A two-dimensional array is normally stored in 
one of two forms, either row-major (row-by-row) or column-major (column-by- 
column). Figure 6.21 shows the layout of a 2 x 3 array A in (a) row-major form 
and (b) column-major form. Column-major form is used in the Fortran family 
of languages. 

4 1 1  11 

First ?El  row 4 1 1  21 

s eco i  row El 
C 1 First y h m n  

(a) Row Major (b) Column Major 

4 1 1  31 

Figure 6.21: Layouts for a two-dimensional array. 

Third 4 column 

We can generalize row- or column-major form to many dimensions. The 
generalization of row-major form is to store the elements in such a way that, 
as we scan down a block of storage, the rightmost subscripts appear to vary 
fastest, like the numbers on an odometer. Column-major form generalizes to 
the opposite arrangement, with the leftmost subscripts varying fastest. 

4 2 1  31 

https://hemanthrajhemu.github.io



6.4. TRANSLATION OF EXPRESSIONS 

6.4.4 Translation of Array References 

The chief problem in generating code for array references is to relate the address- 
calculation formulas in Section 6.4.3 to a grammar for array references. Let 
nonterminal L generate an array name followed by a sequence of index expres- 
sions: 

As in C and Java, assume that the lowest-numbered array element is 0. 
Let us calculate addresses based on widths, using the formula (6.4), rather 
than on numbers of elements, as in (6.6). The translation scheme in Fig. 6.22 
generates three-address code for expressions with array references. It consists of 
the productions and semantic actions from Fig. 6.20, together with productions 
involving nonterminal L . 

I L = E ; { gen(L. addr. base '[' L. addr '1' I=' E.  addr); } 

E i; E l + E 2  {E .addr=newTemp() ;  
gen(E. addr ' = I  El. addr ' + I  E2. addr) ; } 

I L  { E.addr = new Temp 0; 
gen(E.addr ' = I  L.array. base 'P L.addr I ] ' ) ;  } 

L -+ id [ E I { L.array = top.get(id.lexeme); 
L.type = L.array.type. elem; 
L. addr = new Temp 0; 
gen(L.addr ' = I  E.addr I*' L.type.width); } 

/ L1 [ E 1 { L.array = Ll .array; 
L.type = Ll .type.elem; 
t = new Temp () ; 
L. addr = new Temp (); 
gen(t I=' E.addr ' * I  L.type.width); } 
gen(L. addr '= I  Ll.  addr I+' t ) ;  } 

Figure 6.22: Semantic actions for array references 

Nonterminal L has three synthesized attributes: 

I .  L.addr denotes a temporary that is used while computing the offset for 
the array reference by summing the terms ij x wj in (6.4). 

https://hemanthrajhemu.github.io



384 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

2. L.array is a pointer to the symbol-table entry for the array name. The 
base address of the array, say, L. array. base is used to determine the actual 
1-value of an array reference after all the index expressions are analyzed. 

3. L. type is the type of the subarray generated by L. For any type t,  we 
assume that its width is given by t.width. We use types as attributes, 
rather than widths, since types are needed anyway for type checking. For 
any array type t ,  suppose that t.elem gives the element type. 

The production S -+ id = E ;  represents an assignment to a nonarray vari- 
able, which is handled as usual. The semantic action for S --+ L = E; generates 
an indexed copy instruction to assign the value denoted by expression E to the 
location denoted by the array reference L. Recall that attribute L. array gives 
the symbol-table entry for the array. The array's base address - the address 
of its 0th element - is given by L. array. base. Attribute L. addr denotes the 
temporary that holds the offset for the array reference generated by L. The 
location for the array reference is therefore L. array. base[L. addr] . The generated 
instruction copies the r-value from address E.addr into the location for L. 

Productions E -+ El +E2 and E --+ id are the same as before. The se- 
mantic action for the new production E -+ L generates code to copy the 
value from the location denoted by L into a new temporary. This location is 
L. array. base[L. addr], as discussed above for the production S -+ L = E ; . Again, 
attribute L. array gives the array name, and L. array. base gives its base address. 
Attribute L.addr denotes the temporary that holds the offset. The code for the 
array reference places the r-value at the location designated by the base and 
offset into a new temporary denoted by E.addr. 

Example 6.12 : Let a denote a 2 x 3 array of integers, and let c, i, and 
j all denote integers. Then, the type of a is array(2, array(3, integer)). Its 
width w is 24, assuming that the width of an integer is 4. The type of a[i] is 
array(3, integer), of width wl = 12. The type of a[il [jl is integer. 

An annotated parse tree for the expression c + a [il [ j I is shown in Fig. 6.23. 
The expression is translated into the sequence of three-address instructions in 
Fig. 6.24. As usual, we have used the name of each identifier to refer to its 
symbol-table entry. 

6.4.5 Exercises for Section 6.4 

Exercise 6.4.1 : Add to the translation of Fig. 6.19 rules for the following 
productions: 

b) E -+ + El (unary plus). 

Exercise 6.4.2 : Repeat Exercise 6.4.1 for the incremental translation of Fig. 
6.20. 

https://hemanthrajhemu.github.io



6.4. TRANSLATION OF EXPRESSIONS 

E. addr = t5 

E. addr = t4 

I 
L.array = a 

L.type = integer 
L.addr = ts 

L.array = a 
/ 

L.type = array(3, integer) [ E.addr = j 1 
L.addr = tl 

/ /  \ \  
I 
j 

I: E.addr = i 
a. type 

1 

= array(2, array(3, integer)) I 
i 

Figure 6.23: Annotated parse tree for c + a[i] [j] 

Figure 6.24: Three-address code for expression c + aCi] [j] 

Exercise 6.4.3 : Use the translation of Fig. 6.22 to translate the following 
assignments: 

! Exercise 6.4.4 : Revise the translation of Fig. 6.22 for array references of the 
Fortran style, that is, id[E1, E2, . . . , En] for an n-dimensional array. 

Exercise 6.4.5 : Generalize formula (6.7) to multidimensional arrays, and in- 
dicate what values can be stored in the symbol table and used to compute 
offsets. Consider the following cases: 

a) An array A of two dimensions, in row-major form. The first dimension 
has indexes running from l I  to hl ,  and the second dimension has indexes 
from 12 to ha. The width of a single array element is w. 

https://hemanthrajhemu.github.io



386 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Symbolic Type Widths 

The intermediate code should be relatively independent of the target ma- 
chine, so the optimizer does not have to change much if the code generator 
is replaced by one for a different machine. However, as we have described 
the calculation of type widths, an assumption regarding how basic types 
is built into the translation scheme. For instance, Example 6.12 assumes 
that each element of an integer array takes four bytes. Some intermediate 
codes, e.g., P-code for Pascal, leave it to the code generator to fill in the 
size of array elements, so the intermediate code is independent of the size 
of a machine word. We could have done the same in our translation scheme 
if we replaced 4 (as the width of an integer) by a symbolic constant. 

b) The same as (a), but with the array stored in column-major form. 

! c) An array A of k dimensions, stored in row-major form, with elements of 
size w. The j th dimension has indexes running from l j  to hj. 

! d) The same as (c) but with the array stored in column-major form. 

Exercise 6.4.6 : An integer array A[i, j] has index i ranging from 1 to 10 and 
index j ranging from 1 to 20. Integers take 4 bytes each. Suppose array A is 
stored starting at byte 0. Find the location of: 

Exercise 6.4.7: Repeat Exercise 6.4.6 if A is stored in column-major order. 

Exercise 6.4.8 : A real array A[i, j ,  k] has index i ranging from 1 to 4, index 
j ranging from 0 to 4, and index k ranging from 5 to 10. Reals take 8 bytes 
each. Suppose array A is stored starting at byte 0. Find the location of: 

Exercise 6.4.9 : Repeat Exercise 6.4.8 if A is stored in column-major order. 

6.5 Type Checking 

To do type checking a compiler needs to assign a type expression to each com- 
ponent of the source program. The compiler must then determine that these 
type expressions conform to a collection of logical rules that is called the type 
s y s t e m  for the source language. 

Type checking has the potential for catching errors in programs. In principle, 
any check can be done dynamically, if the target code carries the type of an 

https://hemanthrajhemu.github.io



6.5. TYPE CHECKING 387 

element along with the value of the element. A sound type system eliminates the 
need for dynamic checking for type errors, because it allows us to determine 
statically that these errors cannot occur when the target program runs. An 
implementation of a language is strongly tyfled if a compiler guarantees that the 
programs it accepts will run without type errors. 

Besides their use for compiling, ideas from type checking have been used 
to improve the security of systems that allow software modules to be imported 
and executed. Java programs compile into machine-independent bytecodes that 
include detailed type information about the operations in the bytecodes. Im- 
ported code is checked before it is allowed to execute, to guard against both 
inadvertent errors and malicious misbehavior. 

6.5.1 Rules for Type Checking 

Type checking can take on two forms: synthesis and inference. Type synthesis 
builds up the type of an expression from the types of its subexpressions. It 
requires names to be declared before they are used. The type of El + E2 is 
defined in terms of the types of El and E2. A typical rule for type synthesis 
has the form 

if f has type s -+ t and x has type s, 
then expression f (x) has type t (6.8) 

Here, f and x denote expressions, and s -+ t denotes a function from s to t. 
This rule for functions with one argument carries over to functions with several 
arguments. The rule (6.8) can be adapted for El + E2 by viewing it as a function 
application add(E1 , E2) .6 

Type inference determines the type of a language construct from the way it 
is used. Looking ahead to the examples in Section 6.5.4, let null be a function 
that tests whether a list is empty. Then, from the usage null(x), we can tell 
that x must be a list. The type of the elements of x is not known; all we know 
is that x must be a list of elements of some type that is presently unknown. 

Variables representing type expressions allow us to talk about unknown 
types. We shall use Greek letters a,  P,  . - - for type variables in type expressions. 

A typical rule for type inference has the form 

if f (x) is an expression, 
then for some a and ,B, f has type a -+ P and x has type a (6.9) 

Type inference is needed for languages like ML, which check types, but do not 
require names to be declared. 

6 ~ e  shall use the term "synthesis" even if some context information is used to determine 
types. With overloaded functions, where the same name is given to more than one function, 
the context of El $ E2 may also need to be considered in some languages. 

https://hemanthrajhemu.github.io



388 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

In this section, we consider type checking of expressions. The rules for 
checking statements are similar to those for expressions. For example, we treat 
the conditional statement "if (E) S;" as if it were the application of a function 
if to E and S. Let the special type void denote the absence of a value. Then 
function if expects to be applied to a boolean and a void; the result of the 
application is a void. 

6.5.2 Type Conversions 

Consider expressions like x + i ,  where x is of type float and i is of type inte- 
ger. Since the representation of integers and floating-point numbers is different 
within a computer and different machine instructions are used for operations 
on integers and floats, the compiler may need to convert one of the operands of 
+ to ensure that both operands are of the same type when the addition occurs. 

Suppose that integers are converted to floats when necessary, using a unary 
operator ( f l o a t ) .  For example, the integer 2 is converted to a float in the code 
for the expression 2 * 3 .14: 

tl = ( f l o a t )  2 
t 2  = t l  * 3.14 

We can extend such examples to consider integer and float versions of the 
operators; for example, i n t *  for integer operands and f l o a t *  for floats. 

Type synthesis will be illustrated by extending the scheme in Section 6.4.2 
for translating expressions. We introduce another attribute E.type, whose value 
is either integer or float. The rule associated with E ,,-+ El + E2 builds on the 
pseudocode 

if ( El.type = integer and E2.type = integer ) E.type = integer; 
else if ( El .type = float and E2. type = integer ) - . 

As the number of types subject to conversion increases, the number of cases 
increases rapidly. Therefore with large numbers of types, careful organization 
of the semantic actions becomes important. 

Type conversion rules vary from language to language. The rules for Java 
in Fig. 6.25 distinguish between widening conversions, which are intended to 
preserve information, and narrowing conversions, which can lose information. 
The widening rules are given by the hierarchy in Fig. 6.25(a): any type lower 
in the hierarchy can be widened to a higher type. Thus, a char can be widened 
to an int or to a float, but a char cannot be widened to a short. The narrowing 
rules are illustrated by the graph in Fig. 6.25(b): a type s can be narrowed to a 
type t if there is a path from s to t .  Note that char, short, and byte are pairwise 
convertible to each other. 

Conversion from one type to another is said to be implicit if it is done 
automatically by the compiler. Implicit type conversions, also called coercions, 

https://hemanthrajhemu.github.io



6.5. TYPE CHECKING 

double 

I 
float 

I 
long 

I 

iznt \ 
short char 

I 
byte 

double 

4 
float 

1 
long 

1 

char - short - byte 

u 

(a) Widening conversions (b) Narrowing conversions 

Figure 6.25: Conversions between primitive types in Java 

are limited in many languages to widening conversions. Conversion is said to  
be explicit if the programmer must write something to  cause the conversion. 
Explicit conversions are also called casts. 

The semantic action for checking E -+ El + E2 uses two functions: 

1. max(tl, t2) takes two types tl  and tz and returns the maximum (or least 
upper bound) of the two types in the widening hierarchy. It declares an 
error if either t l  or ta is not in the hierarchy; e.g., if either type is an array 
or a pointer type. 

2. widen(a, t, w) generates type conversions if needed to  widen an address 
a of type t into a value of type w. I t  returns a itself if t and w are the 
same type. Otherwise, it generates an instruction t o  do the conversion 
and place the result in a temporary t ,  which is returned as the result. 
Pseudocode for widen, assuming that the only types are .integer and float, 
appears in Fig. 6.26. 

Addr widen(Addr a ,  Type t ,  Type w) 
if ( t = w ) r e t u r n  a; 
else if ( t = integer and w = float ) { 

temp = n e w  Temp(); 
gen(ternp '=' '(float)' a) ;  
r e t u r n  temp; 

I- 
else e r ror ;  

1 

Figure 6.26: Pseudocode for function widen 

https://hemanthrajhemu.github.io



390 CHAPTER 6. INTERMEDIATE- CODE GENERATION 

The semantic action for E -+ El + E2 in Fig. 6.27 illustrates how type 
conversions can be added to the scheme in Fig. 6.20 for translating expressions. 
In the semantic action, temporary variable a1 is either El.addr, if the type of 
El does not need to be converted to the type of E, or a new temporary variable 
returned by widen if this conversion is necessary. Similarly, a2 is either E2.addr 
or a new temporary holding the type-converted value of E2.  Neither conversion 
is needed if both types are integer or both are float. In general, however, we 
could find that the only way to add values of two different types is to convert 
them both to a third type. 

E -+ E l + E 2  {E.type = max(El.type,E2.type); 
a1 = widen(El . addr, El .type, E.type); 
a2 = widen(E2. addr, E2 .type, E .  type); 
E.addr = new Temp 0; 
gen(E. addr '=I a1 '+I a2); ) 

Figure 6.27: Introducing type conversions into expression evaluation 

6.5.3 Overloading of Functions and Operators 

An overloaded symbol has different meanings depending on its context. Over- 
loading is resolved when a unique meaning is determined for each occurrence 
of a name. In this section, we restrict attention to overloading that can be 
resolved by looking only at the arguments of a function, as in Java. 

Example 6.13 : The + operator in Java denotes either string concatenation 
or addition, depending on the types of its operands. User-defined functions can 
be overloaded as well, as in 

void err() ( 3 
void err(String s )  ( - . -  3 

Note that we can choose between these two versions of a function err by looking 
at their arguments. 

The following is a type-synthesis rule for overloaded functions: 

i f f  can have type si + ti ,  for 1 5 i 5 n,  where s i  # s j  for i # j 
and x has type s k ,  for some 1 5 k 5 n (6.10) 
then expression f (x) has type tk 

The value-number method of Section 6.1.2 can be applied to type expres- 
sions to resolve overloading based on argument types, efficiently. In a DAG 
representing a type expression, we assign an integer index, called a value num- 
ber, to each node. Using Algorithm 6.3, we construct a signature for a node, 

https://hemanthrajhemu.github.io



6.5. TYPE CHECKING 391 

consisting of its label and the value numbers of its children, in order from left to 
right. The signature for a function consists of the function name and the types 
of its arguments. The assumption that we can resolve overloading based on 
the types of arguments is equivalent to saying that we can resolve overloading 
based on signatures. 

It is not always possible to resolve overloading by looking only at the argu- 
ments of a function. In Ada, instead of a single type, a subexpression standing 
alone may have a set of possible types for which the context must provide suffi- 
cient information to narrow the choice down to a single type (see Exercise 6.5.2). 

6.5.4 Type Inference and Polymorphic Functions 

Type inference is useful for a language like ML, which is strongly typed, but 
does not require names to be declared before they are used. Type inference 
ensures that names are used consistently. 

The term "polymorphic" refers to any code fragment that can be executed 
with arguments of different types. In this section, we consider parametric poly- 
morphism, where the polymorphism is characterized by parameters or type 
variables. The running example is the ML program in Fig. 6.28, which defines 
a function length. The type of length can be described as, "for any type a, 
length maps a list of elements of type a to an integer." 

fun length(x) = 
if null(x) then 0 else length(tl(x)) + 1; 

Figure 6.28: ML program for the length of a list 

Example 6.14 : In Fig. 6.28, the keyword fun introduces a function definition; 
functions can be recursive. The program fragment defines function length with 
one parameter x. The body of the function consists of a conditional expression. 
The predefined function null tests whether a list is empty, and the predefined 
function tl (short for "tail") returns the remainder of a list after the first element 
is removed. 

The function length determines the length or number of elements of a list 
x. All elements of a list must have the same type, but length can be applied to 
lists whose elements are of any one type. In the following expression, length is 
applied to two different types of lists (list elements are enclosed within "[" and 

): 

The list of strings has length 3 and the list of integers has length 4, so expres- 
sion (6.11) evaluates to 7. 

https://hemanthrajhemu.github.io



392 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Using the symbol V (read as "for any type") and the type constructor list, 
the type of length can be written as 

Va. list(a) + integer (6.12) 

The V symbol is the universal quantifier, and the type variable to which it 
is applied is said to be bound by it. Bound variables can be renamed at will, 
provided all occurrences of the variable are renamed. Thus, the type expression 

VP. list(P) -+ integer 

is equivalent to (6.12). A type expression with a V symbol in it will be referred 
to informally as a "polymorphic type." 

Each time a polymorphic function is applied, its bound type variables can 
denote a different type. During type checking, at each use of a polymorphic 
type we replace the bound variables by fresh variables and remove the universal 
quantifiers. 

The next example informally infers a type for length, implicitly using type 
inference rules like (6.9), which is repeated here: 

if f (x) is an expression, 
t hen  for some a and p, f has type a -+ P a n d  x has type a 

Example 6.15 : The abstract syntax tree in Fig. 6.29 represents the definition 
of length in Fig. 6.28. The root of the tree, labeled fun, represents the function 
definition. The remaining nonleaf nodes can be viewed as function applications. 
The node labeled + represents the application of the operator + to a pair of 
children. Similarly, the node labeled if represents the application of an operator 
if to a triple formed by its children (for type checking, it does not matter that 
either the then  or the else part will be evaluated, but not both). 

fun 

\ 
length 

" /;\ 
apply 0 + 
/ \ / \ 

nul l  x apply 1 
/ \ 

length apply 
/ \ 

Figure 6.29: Abstract syntax tree for the function definition in Fig. 6.28 

F'rom the body of function length, we can infer its type. Consider the children 
of the node labeled if, from left to right. Since null expects to be applied to 
lists, x must be a list. Let us use variable a as a placeholder for the type of the 
list elements; that is, x has type "list of a." 

https://hemanthrajhemu.github.io



6.5. TYPE CHECE(ING 393 

Substitutions, Instances, and Unification 

If t is a type expression and S is a substitution (a mapping from type vari- 
ables to  type expressions), then we write S(t)  for the result of consistently 
replacing all occurrences of each type variable a in t by S(a) .  S(t) is 
called an instance of t. For example, list(integer) is an instance of list(a), 
since it is the result of substituting integer for a in list(a) . Note, however, 
that integer -+ float is not an instance of a -+ a, since a substitution must 
replace all occurrences of a by the same type expression. 

Substitution S is a uniifier of type expressions tl and t2 if S( t l )  = 
S(t2). S is the most general unifier of t l  and t2 if for any other unifier of 
t l  and t2, say St, it is the case that for any t ,  S1(t) is an instance of S(t) .  
In words, St imposes more constraints on t than S does. 

If null(x) is true, then length(x) is 0. Thus, the type of length must be 
"function from list of a to integer." This inferred type is consistent with the 
usage of length in the else part, length(tl(x)) + 1. 

Since variables can appear in type expressions, we have to  re-examine the 
notion of equivalence of types. Suppose El of type s -+ st  is applied t o  E2 of 
type t. Instead of simply determining the equality of s and t ,  we must "unify" 
them. Informally, we determine whether s and t can be made structurally 
equivalent by replacing the type variables in s and t by type expressions. 

A substitution is a mapping from type variables to  type expressions. We 
write S(t)  for the result of applying the substitution S to the variables in type 
expression t ;  see the box on "Substitutions, Instances, and Unification." Two 
type expressions tl and t2 unify if there exists some substitution S such that 
S( t l )  = S(t2).  In practice, we are interested in the most general unifier, which 
is a substitution that imposes the fewest constraints on the variables in the 
expressions. See Section 6.5.5 for a unification algorithm. 

Algorithm 6.16 : Type inference for polymorphic functions. 

INPUT: A program consisting of a sequence of function definitions followed by 
an expression to  be evaluated. An expression is made up of function applications 
and names, where names can have predefined polymorphic types. 

OUTPUT: Inferred types for the names in the program. 

METHOD: For simplicity, we shall deal with unary functions only. The type of a 
function f (xl, x2) with two parameters can be represented by a type expression 
sl  x s 2  -+ t ,  where s l  and s2 are the types of xl and x2, respectively, and t is the 
type of the result f (xl,  22). An expression f (a, b) can be checked by matching 
the type of a with s l  and the type of b with s2. 

https://hemanthrajhemu.github.io



394 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Check the function definitions and the expression in the input sequence. Use 
the inferred type of a function if it is subsequently used in an expression. 

For a function definition fun  idl (id2) = E, create fresh type variables a 
and ,8. Associate the type a -+ ,8 with the function idl ,  and the type a 
with the parameter id2. Then, infer a type for expression E. Suppose 
a denotes type s and ,8 denotes type t after type inference for E. The 
inferred type of function idl is s -+ t. Bind any type variables that remain 
unconstrained in s -+ t by 'if quantifiers. 

For a function application El (E2), infer types for El and E2. Since El is 
used as a function, its type must have the form s -+ st.  (Technically, the 
type of El must unify with ,8 -+ y, where ,8 and y are new type variables). 
Let t be the inferred type of El. Unify s and t. If unification fails, the 
expression has a type error. Otherwise, the inferred type of El (E2) is st. 

For each occurrence of a polymorphic function, replace the bound vari- 
ables in its type by distinct fresh variables and remove the 'if quantifiers. 
The resulting type expression is the inferred type of this occurrence. 

For a name that is encountered for the first time, introduce a fresh variable 
for its type. 

Example 6.17: In Fig. 6.30, we infer a type for function length. The root of 
the syntax tree in Fig. 6.29 is for a function definition, so we introduce variables 
,8 and y, associate the type ,8 -+ y with function length, and the type ,8 with x; 
see lines 1-2 of Fig. 6.30. 

At the right child of the root, we view if as a polymorphic function that is 
applied to  a triple, consisting of a boolean and two expressions that represent 
the then and else parts. Its type is Va. boolean x a x a -+ a .  

Each application of a polymorphic function can be to  a different type, so we 
make up a fresh variable ai (where i is from "if") and remove the 'd; see line 3 
of Fig. 6.30. The type of the left child of if must unify with boolean, and the 
types of its other two children must unify with ai. 

The predefined function null has type Va. list(a) -+ boolean. We use a fresh 
type variable an (where n is for "null") in place of the bound variable a; see 
line 4. From the application of null to  x, we infer that the type ,8 of x must 
match list(a,); see line 5 .  

At the first child of if, the type boolean for null(x) matches the type expected 
by if. At the second child, the type ai unifies with integer; see line 6. 

Now, consider the subexpression length(tl(x)) + 1. We make up a fresh 
variable at (where t is for "tail") for the bound variable a in the type of tl; see 
line 8. From the application tl(x), we infer list(at) = ,O = list(an); see line 9. 

Since length(tl(x)) is an operand of +, its type y must unify with integer; 
see line 10. It follows that the type of length is list(a,) -+ integer. After the 

https://hemanthrajhemu.github.io



6.5. TYPE CHECKING 395 

x : p  
if : boolean x ai x ai -+ ai 

null : list(an) -+ boolean 
null($) : boolean 

0 : integer 
+ : integer x integer -+ integer 
tl : list(at) -+ Eist(at) 

tl(x) : list(at) 
length(tl(x)) : y 

1 : integer 

list(&,) = p 
ai = integer 

UNIFY LINE 

1) 

list(at) = list(an) 

I y = integer 

EXPRESSION : TYPE 

length : ,8 -+ y 

Figure 6.30: Inferring a type for the function length of Fig. 6.28 

12) 
13) 

function definition is checked, the type variable a,  remains in the type of length. 
Since no assumptions were made about a,, any type can be substituted for it 
when the function is used. We therefore make it a bound variable and write 

length(tl(x)) + 1 : integer 
if( - - ) : integer 

Van. list(an) -+ integer 

for the type of length. 

6.5.5 An Algorithm for Unification 

Informally, unification is the problem of determining whether two expressions 
s and t can be made identical by substituting expressions for the variables in 
s and t .  Testing equality of expressions is a special case of unification; if s 
and t have constants but no variables, then s and t unify if and only if they 
are identical. The unification algorithm in this section extends to graphs with 
cycles, so it can be used to test structural equivalence of circular types.7 

We shall implement a graph-theoretic formulation of unification, where types 
are represented by graphs. Type variables are represented by leaves and type 
constructors are represented by interior nodes. Nodes are grouped into equiv- 
alence classes; if two nodes are in the same equivalence class, then the type 
expressions they represent must unify. Thus, all interior nodes in the same 
class must be for the same type constructor, and their corresponding children 
must be equivalent. 

Example 6.18 : Consider the two type expressions 

7 ~ n  some applications, it is an error to unify a variable with an expression containing that 
variable. Algorithm 6.19 permits such substitutions. 

https://hemanthrajhemu.github.io



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

The following substitution S is the most general unifier for these expressions 

This substitution maps the two type expressions to the following expression 

The two expressions are represented by the two nodes labeled -+: 1 in Fig. 6.31. 
The integers at the nodes indicate the equivalence classes that the nodes belong 
to after the nodes numbered 1 are unified. 

+: 1 

/ \ 
x : 2  list : 8 

list : 6 
/ \ 

+: / 7 .. ,--list: 6 

/ \ 
a1 : 4 a2 : 5 a3 : 4 a4 : 5 

Figure 6.3 1 : Equivalence classes after unification 

Algorithm 6.19: Unification of a pair of nodes in a type graph. 

INPUT: A graph representing a type and a pair of nodes m and n to be unified. 

OUTPUT: Boolean value true if the expressions represented by the nodes m 
and n unify; false, otherwise. 

METHOD: A node is implemented by a record with fields for a binary operator 
and pointers to the left and right children. The sets of equivalent nodes are 
maintained using the set field. One node in each equivalence class is chosen to be 
the unique representative of the equivalence class by making its set field contain 
a null pointer. The set fields of the remaining nodes in the equivalence class will 
point (possibly indirectly through other nodes in the set) to the representative. 
Initially, each node n is in an equivalence class by itself, with n as its own 
representative node. 

The unification algorithm, shown in Fig. 6.32, uses the following two oper- 
ations on nodes: 

https://hemanthrajhemu.github.io



6.5.  TYPE CHECKING 

boolean unzfy(Node m, Node n) { 
s = find(m); t = find(n); 
if ( s = t ) return true; 
else if ( nodes s and t represent the same basic type ) return true; 
else if (s is an op-node with children sl  and sz and 

t is an op-node with children tl and t2) { 
union(s , t) ; 
return unify(sl, t l )  and unif?l(sz, t2); 

1 
else if s or t represents a variable { 

union(s, t) ; 
return true; 

1 
else return false; 

Figure 6.32: Unification algorithm. 

find(n) returns the representative node of the equivalence class currently 
containing node n. 

union(m, n) merges the equivalence classes containing nodes m and n. If 
one of the representatives for the equivalence classes of m and n is a non- 
variable node, union makes that nonvariable node be the representative 
for the merged equivalence class; otherwise, union makes one or the other 
of the original representatives be the new representative. This asymme- 
try in the specification of union is important because a variable cannot 
be used as the representative for an equivalence class for an expression 
containing a type constructor or basic type. Otherwise, two inequivalent 
expressions may be unified through that variable. 

The union operation on sets is implemented by simply changing the set field 
of the representative of one equivalence class so that it points to the represen- 
tative of the other. To find the equivalence class that a node belongs to, we 
follow the set pointers of nodes until the representative (the node with a null 
pointer in the set field) is reached. 

Note that the algorithm in Fig. 6.32 uses s = find(m) and t = find(n) rather 
than m and n ,  respectively. The representative nodes s and t are equal if m 
and n are in the same equivalence class. If s and t represent the same basic 
type, the call unzfy(m, n)  returns true. If s and t are both interior nodes for a 
binary type constructor, we merge their equivalence classes on speculation and 
recursively check that their respective children are equivalent. By merging first, 
we decrease the number of equivalence classes before recursively checking the 
children, so the algorithm terminates. 

https://hemanthrajhemu.github.io



398 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

The substitution of an expression for a variable is implemented by adding 
the leaf for the variable to the equivalence class containing the node for that 
expression. Suppose either rn or n  is a leaf for a variable. Suppose also that 
this leaf has been put into an equivalence class with a node representing an 
expression with a type constructor or a basic type. Then find will return 
a representative that reflects that type constructor or basic type, so that a 
variable cannot be unified with two different expressions. 

Example 6.20 : Suppose that the two expressions in Example 6.18 are repre- 
sented by the initial graph in Fig. 6.33, where each node is in its own equiv- 
alence class. When Algorithm 6.19 is applied to compute unify(l,9), it notes 
that nodes 1 and 9 both represent the same operator. It therefore merges 1 and 
9 into the same equivalence class and calls unify(2,lO) and unify(8,14). The 
result of computing unify(l, 9) is the graph previously shown in Fig. 6.31. 

+: 1 +: 9 

/ \ 
x : 2  list : 8 x  : 10 as : 14 

/ \ 

list : 6 
/ \ 

: , , - + - - + i s t :  13 

/ \ 
a1 : 4  a2 : 5 a3 : 7 a4 : 12 

Figure 6.33: Initial graph with each node in its own equivalence class 

If Algorithm 6.19 returns true, we can construct a substitution S that acts 
as the unifier, as follows. For each variable a, find(a) gives the node n  that 
is the representative of the equivalence class of a .  The expression represented 
by n  is S(u).  For example, in Fig. 6.31, we see that the representative for 
a s  is node 4, which represents 01. The representative for a s  is node 8, which 
represents list(az). The resulting substitution S is as in Example 6.18. 

6.5.6 Exercises for Section 6.5 

Exercise 6.5.1 : Assuming that function widen in Fig. 6.26 can handle any 
of the types in the hierarchy of Fig. 6.25(a), translate the expressions below. 
Assume that c and d are characters, s and t are short integers, i  and j are 
integers, and x is a float. 

c) x = ( S  + C) * (t + d). 

https://hemanthrajhemu.github.io



6.6. CONTROL FLOW 399 

Exercise 6.5.2 : As in Ada, suppose that each expression must have a unique 
type, but that from a subexpression, by itself, all we can deduce is a set of pos- 
sible types. That is, the application of function El to argument Ez , represented 
by E i El ( E2 ), has the associated rule 

E.type = { t / for some s in E2. type, s i t is in El .type } 

Describe an SDD that determines a unique type for each subexpression by 
using an attribute type to synthesize a set of possible types bottom-up, and, 
once the unique type of the overall expression is determined, proceeds top-down 
to determine attribute unique for the type of each subexpression. 

6.6 Control Flow 

The translation of statements such as if-else-st atements and while-statements 
is tied to the translation of boolean expressions. In programming languages, 
boolean expressions are often used to 

1. Alter the flow of control. Boolean expressions are used as conditional 
expressions in statements that alter the flow of control. The value of such 
boolean expressions is implicit in a position reached in a program. For 
example, in if (E) S ,  the expression E must be true if statement S is 
reached. 

2. Compute logical values. A boolean expression can represent true or false 
as values. Such boolean expressions can be evaluated in analogy to arith- 
metic expressions using three-address instructions with logical operators. 

The intended use of boolean expressions is determined by its syntactic con- 
text. For example, an expression following the keyword if is used to alter the 
flow of control, while an expression on the right side of an assignment is used 
to denote a logical value. Such syntactic contexts can be specified in a number 
of ways: we may use two different nonterminals, use inherited attributes, or 
set a flag during parsing. Alternatively we may build a syntax tree and invoke 
different procedures for the two different uses of boolean expressions. 

This section concentrates on the use of boolean expressions to alter the flow 
of control. For clarity, we introduce a new nonterminal B for this purpose. 
In Section 6.6.6, we consider how a compiler can allow boolean expressions to 
represent logical values. 

6.6.1 Boolean Expressions 

Boolean expressions are composed of the boolean operators (which we denote 
&&, I I ,  and !, using the C convention for the operators AND, OR, and NOT, 
respectively) applied to elements that are boolean variables or relational ex- 
pressions. Relational expressions are of the form El re1 E2, where El and 

https://hemanthrajhemu.github.io



400 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

E2 are arithmetic expressions. In this section, we consider boolean expressions 
generated by the following grammar: 

B -+ B I I B  ( B & & B  ( ! B  I ( B )  1 E r e l E  1 t r u e  1 false 

We use the attribute rel.op to indicate which of the six comparison operators 
<, <=, =, ! =, >, or >= is represented by rel. As is customary, we assume 
that I I and && are left-associative, and that I I has lowest precedence, then 
&&, then !. 

Given the expression B1 I I B2, if we determine that B1 is true, then we 
can conclude that the entire expression is true without having to evaluate B2. 
Similarly, given B1&&B2, if B1 is false, then the entire expression is false. 

The semantic definition of the programming language determines whether 
all parts of a boolean expression must be evaluated. If the language definition 
permits (or requires) portions of a boolean expression to go unevaluated, then 
the compiler can optimize the evaluation of boolean expressions by computing 
only enough of an expression to determine its value. Thus, in an expression 
such as B1 I I B2, neither B1 nor B2 is necessarily evaluated fully. If either B1 
or B2 is an expression with side effects (e.g., it contains a function that changes 
a global variable), then an unexpected answer may be obtained. 

6.6.2 Short-Circuit Code 

In short-circuit (or jumping) code, the boolean operators &&, I I ,  and ! trans- 
late into jumps. The operators themselves do not appear in the code; instead, 
the value of a boolean expression is represented by a position in the code se- 
quence. 

Example 6.2 1 : The statement 

might be translated into the code of Fig. 6.34. In this translation, the boolean 
expression is true if control reaches label L2. If the expression is false, control 
goes immediately to L1, skipping L2 and the assignment x = 0. 

Figure 6.34: Jumping code 

https://hemanthrajhemu.github.io



6.6. CONTROL FLOW 40 1 

6.6.3 Flow-of-Control Statements 

We now consider the translation of boolean expressions into three-address code 
in the context of statements such as those generated by the following grammar: 

S 4 i f ( B ) S 1  
S 4 if ( B ) S1 else S2 
S + while ( B ) S1 

In these productions, nonterminal B represents a boolean expression and non- 
terminal S represents a statement. 

This grammar generalizes the running example of while expressions that we 
introduced in Example 5.19. As in that example, both B and S have a synthe- 
sized attribute code, which gives the translation into three-address instructions. 
For simplicity, we build up the translations B. code and S. code as strings, us- 
ing syntax-directed definitions. The semantic rules defining the code attributes 
could be implemented instead by building up syntax trees and then emitting 
code during a tree traversal, or by any of the approaches outlined in Section 5.5. 

The translation of if (B) S1 consists of B. code followed by Sl. code, as illus- 
trated in Fig. 6.35(a). Within B.  code are jumps based on the value of B. If B 
is true, control flows to the first instruction of S1 .code, and if B is false, control 
flows to the instruction immediately following Sl .code. 

B. true : 
Sl . code 

B. true : 

. / I  B.false . 
B.false : 

(a) if 

begin : 

\ d B .  true 

(b) if-else 

B. true : 
Sl . code -1 

goto begin 
B. false : (c) while 

Figure 6.35: Code for if-, if-else-, and while-statements 

The labels for the jumps in B.code and S.code are managed using inherited 
attributes. With a boolean expression B, we associate two labels: B.true, the 

https://hemanthrajhemu.github.io



402 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

label to which control flows if B is true, and B.false, the label to which control 
flows if B is false. With a statement S ,  we associate an inherited attribute 
S.next denoting a label for the instruction immediately after the code for S. 
In some cases, the instruction immediately following S.code is a jump to some 
label L. A jump to a jump to L from within S.code is avoided using S.next. 

The syntax-directed definition in Fig. 6.36-6.37 produces t hree-address code 
for boolean expressions in the context of if-, if-else-, and while-st atements. 

S -+ if ( B ) S1 else S2 

S + assign 

S + while ( B ) S1 

S. code = assign. code 

B.true = newlabel() 
B.false = Sl.next = S.next 
S. code = B. code ( 1  label(B.true) / ( Sl.  code 

B.true = newlabel() 
B.false = newlabel() 
Sl .next = S2. next = S.next 
S. code = B.code 

I / label(B.true) I I Sl . code 
I  I  gen('gotol S. next) 
I I label(B. false) 1 I S2. code 

begin = newlabel() 
B.true = newlabel() 
B.false = S.next 
&.next = begin 
S.code = label(begin) ( 1  B.code 

I I / label(B.true) 1 I Sl. code 
I I I gen('got o1 begin) 

Figure 6.36: Syntax-directed definition for flow-of-control statements. 

We assume that newlabelo creates a new label each time it is called, and that 
label(L) attaches label L to the next three-address instruction to be generated.8 

'1f implemented literally, the semantic rules will generate lots of labels and may attach 
more than one labe1 to a three-address instruction. The backpatching approach of Section 6.7 

https://hemanthrajhemu.github.io



6.6. CONTROL FLOW 403 

A program consists of a statement generated by P -+ S.  The semantic rules 
associated with this production initialize S.next to a new label. P.code consists 
of S.code followed by the new label S.next. Token assign in the production 
S -+ assign is a placeholder for assignment statements. The translation of 
assignments is as discussed in Section 6.4; for this discussion of control flow, 
S. code is simply assign. code. 

In translating S -+ if (B) S1, the semantic rules in Fig. 6.36 create a new 
label B.true and attach it to the first three-address instruction generated for 
the statement S1, as illustrated in Fig. 6.35(a). Thus, jumps to B.true within 
the code for B will go to the code for S1. Further, by setting B.false to S.next, 
we ensure that control will skip the code for S1 if B evaluates to false. 

In translating the if-else-statement S -+ if (B) S1 else S2, the code for the 
boolean expression B has jumps out of it to the first instruction of the code for 
S1 if B is true, and to the first instruction of the code for S2 if B is false, as 
illustrated in Fig. 6.35(b). Further, control flows from both Sl and S2 to the 
three-address instruction immediately following the code for S - its label is 
given by the inherited attribut,e S.next. An explicit g o t  o  S.next appears after 
the code for S1 to skip over the code for S2. No goto is needed after S2, since 
S2. next is the same as S. next. 

The code for S -+ while (B) S1 is formed from B. code and Sl .code as shown 
in Fig. 6.35(c). We use a local variable begin to hold a new label attached to 
the first instruction for this while-statement, which is also the first instruction 
for B. We use a variable rather than an attribute, because begin is local to 
the semantic rules for this production. The inherited label S.next marks the 
instruction that control must flow to if B is false; hence, B.  false is set to be 
S.next. A new label B.  true is attached to the first instruction for S1; the code 
for B generates a jump to this label if B is true. After the code for S1 we place 
the instruction g o t o  begin, which causes a jump back to the beginning of the 
code for the boolean expression. Note that S1 .next is set to this label begin, so 
jumps from within Sl .  code can go directly to begin. 

The code for S + S1 S2 consists of the code for S1 followed by the code for 
S2. The semantic rules manage the labels; the first instruction after the code 
for S1 is the beginning of the code for S2 ; and the instruction after the code for 
Sz is also the instruction after the code for S .  

We discuss the translation of flow-of-control statements further in Section 
6.7. There we shall see an alternative method, called "backpatching," which 
emits code for statements in one pass. 

6.6.4 Control-Flow Translation of Boolean Expressions 

The semantic rules for boolean expressions in Fig. 6.37 complement the semantic 
rules for statements in Fig. 6.36. As in the code layout of Fig. 6.35, a boolean 
expression B is translated into three-address instructions that evaluate B using 

creates labels only when they are needed. Alternatively, unnecessary labels can be eliminated 
during a subsequent optimization phase. 

https://hemanthrajhemu.github.io



404 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

conditional and unconditional jumps to one of two labels: B.true if B is true, 
and B.fa1se if B is false. 

Bl .false = new label() 
B2. true = B. true 
B2 .false = B. false 
B.code = Bl .code I  I  label(B1 .false) ( 1  B2 .code 

Bl .true = B.false 
Bl .false = B. true 
B.code = Bl.code 

B --+ true 

B -+ El re1 E2 

B. code = gen('gotol B. true) 

B. code = El. code ( 1  E2. code 
( 1  gen('if1 El. addr rel. op &. addr 'goto' B. true) 
I  I  gen('got o' B.false) 

B --+ false I B.code = gen('gotol B.false) 

Figure 6.37: Generating three-address code for booleans 

The fourth production in Fig. 6.37, B -+ El re1 E2, is translated directly 
into a comparison three-address instruction with jumps to the appropriate 
places. For instance, B of the form a < b translates into: 

The remaining productions for B are translated as follows: 

1. Suppose B is of the form B1 I I Bz. If B1 is true, then we immediately 
know that B itself is true, so Bl.true is the same as B.true. If B1 is false, 
then B2 must be evaluated, so we make Bl.false be the label of the first 
instruction in the code for Bz. The true and false exits of B2 are the same 
as the true and false exits of B,  respectively. 

https://hemanthrajhemu.github.io



6.6. CONTROL FLOW 

2. The translation of Bl && B2 is similar. 

3. No code is needed for an expression B of the form ! B1: just interchange 
the true and false exits of B to get the true and false exits of B1. 

4. The constants true and false translate into jumps to B.true and B.false, 
respectively. 

Example 6.22 : Consider again the following statement from Example 6.21: 

Using the syntax-directed definitions in Figs. 6.36 and 6.37 we would obtain 
the code in Fig. 6.38. 

Figure 6.38: Control-flow translation of a simple if-st atement 

The statement (6.13) constitutes a program generated by P -+ S from 
Fig. 6.36. The semantic rules for the production generate a new label L1 for 
the instruction after the code for S. Statement S has the form if (B) S1, where 
S1 is x = O;, so the rules in Fig. 6.36 generate a new label L2 and attach it to 
the first (and only, in this case) instruction in Sl.code, which is x = 0. 

Since I I has lower precedence than &&, the boolean expression in (6.13) 
has the form B1 I I B2, where B1 is z < 100. Following the rules in Fig. 6.37, 
Bl .true is La, the label of the assignment x = 0 ; . Bl .false is a new label LS , 
attached to the first instruction in the code for B2. 

Note that the code generated is not optimal, in that the translation has 
three more instructions (goto's) than the code in Example 6.21. The instruction 
g o t o  L3 is redundant, since L3 is the label of the very next instruction. The 
two goto L1 instructions can be eliminated by using i f  False instead of i f  
instructions, as in Example 6.21. 

6.6.5 Avoiding Redundant Gotos 

In Example 6.22, the comparison x > 200 translates into the code fragment: 

https://hemanthrajhemu.github.io



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Instead, consider the instruction: 

This i f  F a l s e  instruction takes advantage of the natural flow from one instruc- 
tion to the next in sequence, so control simply "falls through" to label L4 if 
x > 200 is false, thereby avoiding a jump. 

In the code layouts for if- and while-statements in Fig. 6.35, the code for 
statement S1 immediately follows the code for the boolean expression B.  By 
using a special label fall (i.e., "don't generate any jump"), we can adapt the 
semantic rules in Fig. 6.36 and 6.37 to allow control to fall through from the 
code for B to the code for S1. The new rules for S -+ if (B) S1 in Fig. 6.36 set 
B.true to fall: 

B.true = fall 
B.fa1se = Sl .next = S.next 
S.code = B.code I ( Sl .code 

Similarly, the rules for if-else- and while-statements also set B. true to fall. 
We now adapt the semantic rules for boolean expressions to allow control to 

fall through whenever possible. The new rules for B -+ re1 & in Fig. 6.39 
generate two instructions, as in Fig. 6.37, if both B.true and B.false are explicit 
labels; that is, neither equals fall. Otherwise, if B.true is an explicit label, then 
B.fa1se must be fall, so they generate an i f  instruction that lets control fall 
through if the condition is false. Conversely, if B.false is an explicit label, then 
they generate an i f  F a l s e  instruction. In the remaining case, both B.  true and 
B,false are fall, so no jump in generated.' 

In the new rules for B -+ B1 I 1 B2 in Fig. 6.40, note that the meaning of 
label fall for B is different from its meaning for B1. Suppose B.true is fall; i.e, 
control falls through B ,  if B evaluates to true. Although B evaluates to true if 
B1 does, Bl.true must ensure that control jumps over the code for B2 to get to 
the next instruction after B. 

On the other hand, if B1 evaluates to false, the truth-value of B is de- 
termined by the value of B2, so the rules in Fig. 6.40 ensure that Bl.false 
corresponds to control falling through from B1 to the code for B2. 

The semantic rules are for B -+ B1 && B2 are similar to those in Fig. 6.40. 
We leave them as an exercise. 

Example 6.23 : With the new rules using the special label fall, the program 
(6.13) from Example 6.21 

' ~ n  C and Java, expressions may contain assignments within them, so code must be gen- 
erated for the subexpressions El and E2, even if both B.true and B.false are fall. If desired, 
dead code can be eliminated during an optimization phase. 

https://hemanthrajhemu.github.io



6.6. CONTROL FLOW 

test = El .addr rel. op E 2  .addr 

s = if B. true  # fall and B .  false # fall then 
g e n ( ' i f l  test  ' g o t  o' B. true)  I ( gen('got o' B.false) 

else if B. true  # fall then g e n ( ' i f 1  test 'goto '  B . t rue)  
else if B.false # fall then gen( ' i f  ~ a l s e '  test  'goto '  B.false) 
else ' ' 

B.code = El .code ( 1  E2. code I ( s 

Figure 6.39: Semantic rules for B -+ El re1 E2 

Bl . t rue  = if B. true  # fall then B.true else newlabel() 
Bl .false = fall 
B2. true = B.true 
B2.false = B.false 

B.code = if B. true  # fall then B1 .code 1 1  B 2 .  code 
else Bl . code 1  I B2. code I I label(Bl . true)  

Figure 6.40: Semantic rules for B -+ B1 I I B2 

translates into the code of Fig. 6.41. 

Figure 6.41: If-statement translated using the fall-through technique 

As in Example 6.22, the rules for P -+ S create label L1. The difference from 
Example 6.22 is that the inherited attribute B.true is fall when the semantic 
rules for B -+ B1 I I B2 are applied (B. false is L1). The rules in Fig. 6.40 
create a new label L2 to allow a jump over the code for B2 if B1 evaluates to 
true. Thus, Bl . true is Lz and Bl .false is fall, since B2 must be evaluated if B1 
is false. 

The production B -+ El re1 E2 that generates x < 100 is therefore reached 
with B. true  = L2 and B. false = fall. With these inherited labels, the rules in 
Fig. 6.39 therefore generate a single instruction i f  x < 100 g o t o  L2. 

https://hemanthrajhemu.github.io



408 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.6.6 Boolean Values and Jumping Code 

The focus in this section has been on the use of boolean expressions t? alter 
the flow of control in statements. A boolean expression may also be evaluated 
for its value, as in assignment statements such as x = true; or x = acb;. 

A clean way of handling both roles of boolean expressions is to first build a 
syntax tree for expressions, using either of the following approaches: 

1. Use two passes. Construct a complete syntax tree for the input, and then 
walk the tree in depth-first order, computing the translations specified by 
the semantic rules. 

2. Use one pass for statements, but two passes for expressions. With this 
approach, we would translate E in while (E) S1 before S1 is examined. 
The translation of E, however, would be done by building its syntax tree 
and then walking the tree. 

The following grammar has a single nonterminal E for expressions: 

S -+ id  = E ;  I i f ( E ) S  1 w h i l e ( E ) S  I S S  
E + EI IE  ( E & & E  ( E r e l E  ( E + E  ( ( E )  ( i d 1  t r u e l f a l s e  

Nonterminal E governs the flow of control in S -+ while (E) Sl. The same 
nonterminal E denotes a value in S + id  = E ; and E -+ E + E .  

We can handle these two roles of expressions by using separate code-genera- 
tion functions. Suppose that  attribute E.n denotes the syntax-tree node for an 
expression E and that nodes are objects. Let method jump generate jumping 
code at an expression node, and let method rualue generate code to compute 
the value of the node into a temporary. 

When E appears in S + while (E) S1, method jump is called at node 
E.n. The implementation of jump is based on the rules for boolean expressions 
in Fig. 6.37. Specifically, jumping code is generated by calling E.n.jump(t, f ) ,  
where t is a new label for the first instruction of Sl.code and f is the label 
S. next. 

When E appears in S -+ id = E ;, method rualue is called at node E n .  If E 
has the form El + E2, the method call E.n. rualue() generates code as discussed 
in Section 6.4. If E has the form El && E2, we first generate jumping code for 
E and then assign true or false to a new temporary t at the true and false exits, 
respectively, from the jumping code. 

For example, the assignment x = a < b && c < d can be implemented by the 
code in Fig. 6.42. 

6.6.7 Exercises for Section 6.6 

Exercise 6.6.1 : Add rules to the syntax-directed definition of Fig. 6.36 for 
the following control-flow constructs: 

a) A repeat-statment repeat  S while B 

https://hemanthrajhemu.github.io



6.6. CONTROL FLOW 

i f F a l s e  a  < b go to  L1 
i f F a l s e  c > d goto L1 
t = t r u e  
go t0  L2 

L1 : t = f a l s e  
L2: x = t  

Figure 6.42: Translating a boolean assignment by computing the value of a 
temporary 

! b) A for-loop for (S1 ; B;  S2) S3. 

Exercise 6.6.2: Modern machines try to execute many instructions at the 
same time, including branching instructions. Thus, there is a severe cost if the 
machine speculatively follows one branch, when control actually goes another 
way (all the speculative work is thrown away). It is therefore desirable to min- 
imize the number of branches. Notice that the implementation of a while-loop 
in Fig. 6.35(c) has two branches per interation: one to enter the body from 
the condition B and the other to jump back to the code for B.  As a result, 
it is usually preferable to implement while (B) S as if it were if (B) { re- 
peat S until ! (B)  ). Show what the code layout looks like for this translation, 
and revise the rule for while-loops in Fig. 6.36. 

! Exercise 6.6.3 : Suppose that there were an "exclusive-or" operator (true if 
and only if exactly one of its two arguments is true) in C. Write the rule for 
this operator in the style of Fig. 6.37. 

Exercise 6.6.4 : Translate the following expressions using the goto-avoiding 
translation scheme of Section 6.6.5: 

Exercise 6.6.5 : Give a translation scheme based on the syntax-directed defi- 
nition in Figs. 6.36 and 6.37. 

Exercise 6.6.6 : Adapt the semantic rules in Figs. 6.36 and 6.37 to allow 
control to fall through, using rules like the ones in Figs. 6.39 and 6.40. 

! Exercise 6.6.7 : The semantic rules for statements in Exercise 6.6.6 generate 
unnecessary labels. Modify the rules for statements in Fig. 6.36 to create labels 
as needed, using a special label deferred to mean that a label has not yet been 
created. Your rules must generate code similar to that in Example 6.21. 

https://hemanthrajhemu.github.io



410 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

!! Exercise 6.6.8 : Section 6.6.5 talks about using fall-through code to minimize 
the number of jumps in the generated intermediate code. However, it does not 
take advantage of the option to replace a condition by its complement, e.g., re- 
place i f  a < b go to  L1 ; go to  L2 by i f  b >= a go to  La ; go to  L1. Develop 
a SDD that does take advantage of this option when needed. 

6.7 Backpatching 

A key problem when generating code for boolean expressions and flow-of-control 
statements is that of matching a jump instruction with the target of the jump. 
For example, the translation of the boolean expression B in i f  ( B ) S contains 
a jump, for when B is false, to the instruction following the code for S. In a 
one-pass translation, B must be translated before S is examined. What then 
is the target of the goto  that jumps over the code for S? In Section 6.6 we 
addressed this problem by passing labels as inherited attributes to where the 
relevant jump instructions were generated. But a separate pass is then needed 
to bind labels to addresses. 

This section takes a complementary approach, called backpatching, in which 
lists of jumps are passed as synthesized attributes. Specifically, when a jump 
is generated, the target of the jump is temporarily left unspecified. Each such 
jump is put on a list of jumps whose labels are to be filled in when the proper 
label can be determined. All of the jumps on a list have the same target label. 

6.7.1 One-Pass Code Generation Using Backpatching 

Backpatching can be used to generate code for boolean expressions and flow- 
of-control statements in one pass. The translations we generate will be of the 
same form as those in Section 6.6, except for how we manage labels. 

In this section, synthesized attributes truelist and falselist of nonterminal B 
are used to manage labels in jumping code for boolean expressions. In particu- 
lar, B.truelist will be a list of jump or conditional jump instructions into which 
we must insert the label to which control goes if B is true. B.falselist likewise is 
the list of instructions that eventually get the label to which control goes when 
B is false. As code is generated for B ,  jumps to the true and false exits are left 
incomplete, with the label field unfilled. These incomplete jumps are placed 
on lists pointed to by B.truelist and B.falselist, as appropriate. Similarly, a 
statement S has a synthesized attribute S.nextlist, denoting a list of jumps to 
the instruction immediately following the code for S. 

For specificity, we generate instructions into an instruction array, and labels 
will be indices into this array. To manipulate lists of jumps, we use three 
functions: 

1. makelist(i) creates a new list containing only i, an index into the array of 
instructions; makelist returns a pointer to the newly created list. 

https://hemanthrajhemu.github.io



2. merge(pl , p2)  concatenates the lists pointed to by pl and p2 , and returns 
a pointer to the concatenated list. 

3. backpatch(p, i )  inserts i as the target label for each of the instructions on 
the list pointed to by p. 

6.7.2 Backpatching for Boolean Expressions 

We now construct a translation scheme suitable for generating code for boolean 
expressions during bottom-up parsing. A marker nonterminal M in the gram- 
mar causes a semantic action to pick up, at appropriate times, the index of the 
next instruction to be generated. The grammar is as follows: 

B -+ B1 I I MB2 1 B1 && M B2 1 ! B1 I ( B 1 )  ( El re1 E2 I true 1 false 
M + €  

The translation scheme is in Fig. 6.43. 

1) B -+ B1 I l M B2 { backpatch(B1.falselist, M.instr); 
B. truelist = merge(B1. truelist, B2. truelist); 
B. falselist = B2. falselist; ) 

2 )  B -+ B1 && M B2 { backpatch(B1 . truelist, M .  instr); 
B. truelist = B2 . truelist; 
B. falselist = merge(Bl. falselist, B2 . falselist); } 

3) B + ! B1 { B. truelist = Bl . falselist; 
B. falselist = Bl . truelist; ) 

4) B - + ( B 1 )  { B,  truelist = Bl . truelist; 
B. falselist = Bl .falselist; ) 

5) B -+ El re1 E2 { B. truelist = makelist(nextinstr) ; 
B. falselist = makelist(nextinstr + I ) ;  
emit('ifl El .addr rel.op E2.addr 'goto - I ) ;  

emit('goto - I ) ;  ) 

6 )  B -+ true { B . truelist = makelist(nextinstr) ; 
emit('goto -I); ) 

7 )  B -+ false { B .falselist = makelist(nextinstr) ; 
emit('goto - I ) ;  ) 

Figure 6.43: Translation scheme for boolean expressions 

Consider semantic action (1) for the production B i B1 I I M B2. If B1 is 
true, then B is also true, so the jumps on B1. truelist become part of B.truelist. 
If B1 is false, however, we must next test B2, so the target for the jumps 

https://hemanthrajhemu.github.io



412 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Bl.falselist must be the beginning of the code generated for B2. This target is 
obtained using the marker nonterminal M .  That nonterminal produces, as a 
synthesized attribute M.instr, the index of the next instruction, just before B2 
code starts being generated. 

To obtain that instruction index, we associate with the production M -+ c 
the semantic action 

{ M. instr = nextinstr; } 

The variable nextinstr holds the index of the next instruction to follow. This 
value will be backpatched onto the Bl .falselist (i.e., each instruction on the 
list Bl. falselist will receive M.instr as its target label) when we have seen the 
remainder of the production B -+ B1 I I M B2. 

Semantic action (2) for B -+ B1 && M BZ is similar to (I). Action (3) for 
B -+ ! B swaps the true and false lists. Action (4) ignores parentheses. 

For simplicity, semantic action ( 5 )  generates two instructions, a conditional 
goto and an unconditional one. Neither has its target filled in. These instruc- 
tions are put on new lists, pointed to by B.truelist and B.falselist, respectively. 

Figure 6.44: Annotated parse tree for x < 100 1 I x > 200 && x ! = y 

Example 6.24 : Consider again the expression 

An annotated parse tree is shown in Fig. 6.44; for readability, attributes tru- 
elist, falselist, and instr are represented by their initial letters. The actions are 
performed during a depth-first traversal of the tree. Since all actions appear at 
the ends of right sides, they can be performed in conjunction with reductions 
during a bottom-up parse. In response to the reduction of x < 100 to B by 
production (5), the two instructions 

https://hemanthrajhemu.github.io



are generated. (We arbitrarily start instruction numbers at 100.) The marker 
nonterminal M in the production 

records the value of nextinstr, which at this time is 102. The reduction of 
x > 200 to B by production (5) generates the instructions 

The subexpression x > 200 corresponds to B1 in the production 

The marker nonterminal M records the current value of nextinstr, which is now 
104. Reducing x ! = y into B by production (5) generates 

We now reduce by B -+ B1 && M B2. The corresponding semantic ac- 
tion calls backpatch(B1 .truelist, M.instr) to bind the true exit of Bl to the first 
instruction of B2. Since B1. truelist is (102) and M. instr is 104, this call to 
backpatch fills in 104 in instruction 102. The six instructions generated so far 
are thus as shown in Fig. 6.45(a). 

The semantic action associated with the final reduction by B -+ B1 I I M B2 
calls backpatch({101},102) which leaves the instructions as in Fig. 6.45(b). 

The entire expression is true if and only if the gotos of instructions 100 
or 104 are reached, and is false if and only if the gotos of instructions 103 or 
105 are reached. These instructions will have their targets filled in later in 
the compilation, when it is seen what must be done depending on the truth or 
falsehood of the expression. EI 

6.7.3 Flow-of-Control Statements 

We now use backpatching to translate flow-of-control statements in one pass. 
Consider statements generated by the following grammar: 

Here S denotes a statement, L a statement list, A an assignment-statement, 
and B a boolean expression. Note that there must be other productions, such as 

https://hemanthrajhemu.github.io



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

(a) After backpatching 104 into instruction 102. 

(b) After backpatching 102 into instruction 101. 

Figure 6.45: Steps in the backpatch process 

those for assignment-statements. The productions given, however, are sufficient 
to illustrate the techniques used to translate flow-of-control statements. 

The code layout for if-, if-else-, and while-statements is the same as in 
Section 6.6. We make the tacit assumption that the code sequence in the 
instruction array reflects the natural flow of control from one instruction to the 
next. If not, then explicit jumps must be inserted to implement the natural 
sequential flow of control. 

The translation scheme in Fig. 6.46 maintains lists of jumps that are filled in 
when their targets are found. As in Fig. 6.43, boolean expressions generated by 
nonterminal B have two lists of jumps, B. truelist and B.falselist, corresponding 
to the true and false exits from the code for B ,  respectively. Statements gener- 
ated by nonterminals S and L have a list of unfilled jumps, given by attribute 
nextlist, that must eventually be completed by backpatching. S.next1ist is a list 
of all conditional and unconditional jumps to the instruction following the code 
for statement S in execution order. L.nextlist is defined similarly. 

Consider the semantic action (3) in Fig. 6.46. The code layout for production 
S -+ while ( B  ) S1 is as in Fig. 6.35(c). The two occurrences of the marker 
nonterminal M in the production 

S -+ while n/l; ( B Ad2 SI 

record the instruction numbers of the beginning of the code for B and the 
beginning of the code for S1. The corresponding labels in Fig. 6.35(c) are begin 
and B. true, respectively. 

https://hemanthrajhemu.github.io



1)  S + if ( B ) M Sl { backpateh(B.truelist, M.instr); 
S. nextlist = merge(B.falselist, Sl . nextlist); ) 

2) S -+ if ( B ) Ml S1 N else M2 S2 
{ backpatch(B. truelist, Ml . instr); 

backpatch(l3 .falselist, M2. instr) ; 
temp = merge(&. nextlist, N.  nextlist) ; 
S.nextlist = merge(temp, S2. nextlist); ) 

3) S -+ while Ml ( B ) M2 S1 
{ backpatch(S1. nextlist, Ml . instr) ; 

bachpatch(B. truelist, M2. instr) ; 
S.nextlist = B.falselist; 
emit('got o' MI.  instr) ; } 

5 )  S - + A ;  { S.nextlist = null; ) 

Figure 6.46: Translation of statements 

Again, the only production for M is M -+ 6. Action (6) in Fig. 6.46 sets 
attribute M.instr to the number of the next instruction. After the body Sl 
of the while-statement is executed, control flows to the beginning. Therefore, 
when we reduce while MI ( B ) M2 Sl to S ,  we backpatch Sl.nextlist to make 
all targets on that list be MI .instr. An explicit jump to the beginning of the 
code for B is appended after the code for S1 because control may also "fall out 
the bottom." B.truelist is backpatched to go to the beginning of Sl by making 
jumps an B.  truelist go to M2 . instr. 

A more compelling argument for using S.next1ist and L.nextlist comes when 
code is generated for the conditional statement if ( B ) S1 else S2. If control 
"falls out the bottom" of Sl ,  as when Sl is an assignment, we must include 
at the end of the code for S1 a jump over the code for S2. We use another 
marker nonterminal to generate this jump after Sl . Let nonterminal N be this 

https://hemanthrajhemu.github.io



416 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

marker with production N -+ E .  N has attribute N.nextlist, which will be a list 
consisting of the instruction number of the jump goto - that is generated by 
the semantic action (7) for N.  

Semantic action (2) in Fig. 6.46 deals with if-else-statements with the syntax 

We backpatch the jumps when B is true to the instruction Ml.instr; the latter 
is the beginning of the code for S1. Similarly, we backpatch jumps when B is 
false to go to the beginning of the code for S2. The list S.nextlist includes all 
jumps out of S1 and S2, as well as the jump generated by N. (Variable temp is 
a temporary that is used only for merging lists.) 

Semantic actions (8) and (9) handle sequences of statements. In 

the instruction following the code for Ll in order of execution is the beginning 
of S. Thus the Ll .nextlist list is backpatched to the beginning of the code for 
S, which is given by M. instr. In L -+ S, L. nextlist is the same as S.nextEist. 

Note that no new instructions are generated anywhere in these semantic 
rules, except for rules (3) and (7). All other code is generated by the semantic 
actions associated with assignment-st atement s and expressions. The flow of 
control causes the proper backpatching so that the assignments and boolean 
expression evaluations will connect properly. 

6.7.4 Break-, Continue-, and Goto-Statements 

The most elementary programming language construct for changing the flow of 
control in a program is the goto-statement. In C, a statement like goto L sends 
control to the statement labeled L - there must be precisely one statement with 
label L in this scope. Goto-statements can be implemented by maintaining a 
list of unfilled jumps for each label and then backpatching the target when it 
is known. 

Java does away with goto-statements. However, Java does permit disci- 
plined jumps called break-statements, which send control out of an enclosing 
construct, and continue-statements, which trigger the next iteration of an en- 
closing loop. The following excerpt from a lexical analyzer illustrates simple 
break- and continue-st atement s: 

1) f o r  ( ; ; readch()  ) ( 

2) i f (  peek == ' ' I I peek == ' \ t '  ) cont inue;  
3) e l s e  i f(  peek == )\n) ) l i n e  = l i n e  + 1; 

4) e l s e  break;  
5 )  1 

Control jumps from the break-statement on line 4 to the next statement after 
the enclosing for loop. Control jumps from the continue-statement on line 2 to 
code to evaluate readch() and then to the if-statement on line 2. 

https://hemanthrajhemu.github.io



If S is the enclosing construct, then a break-statement is a jump to the first 
instruction after the code for S .  We can generate code for the break by (1) 
keeping track of the enclosing statement S, (2) generating an unfilled jump for 
the break-statement , and (3) putting this unfilled jump on S. nextlist, where 
nextlist is as discussed in Section 6.7.3. 

In a two-pass front end that builds syntax trees, S.next1ist can be imple- 
mented as a field in the node for S .  We can keep track of S by using the 
symbol table to map a special identifier break to  the node for the enclosing 
statement S. This approach will also handle labeled break-statements in Java, 
since the symbol table can be used to map the label to the syntax-tree node for 
the enclosing construct. 

Alternatively, instead of using the symbol table to access the node for S ,  
we can put a pointer to S.nextlist in the symbol table. Now, when a break- 
statement is reached, we generate an unfilled jump, look up nextlist through 
the symbol table, and add the jump to the list, where it will be backpatched as 
discussed in Section 6.7.3. 

Continue-statements can be handled in a manner analogous to the break- 
statement. The main difference between the two is that the target of the gen- 
erated jump is different. 

6.7.5 Exercises for Section 6.7 

Exercise 6.7.1 : Using the translation of Fig. 6.43, translate each of the fol- 
lowing expressions. Show the true and false lists for each subexpression. You 
may assume the address of the first instruction generated is 100. 

Exercise 6.7.2 : In Fig. 6.47(a) is the outline of a program, and Fig. 6.47(b) 
sketches the structure of the generated three-address code, using the backpatch- 
ing translation of Fig. 6.46. Here, il through i8 are the labels of the generated 
instructions that begin each of the "Code" sections. When we implement this 
translation, we maintain, for each boolean expression E, two lists of places in 
the code for E, which we denote by E.true and E.false. The places on list 
E.true are those places where we eventually put the label of the statement to 
which control must flow whenever E is true; E.false similarly lists the places 
where we put the label that control flows to when E is found to be false. Also, 
we maintain for each statement S ,  a list of places where we must put the label 
to which control flows when S is finished. Give the value (one of il through is) 
that eventually replaces each place on each of the following lists: 

(a) E3.false (b) S2 .next (c) E4.false (d) Sl .next (e) Ez. true 

https://hemanthrajhemu.github.io



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

while (El) { 
if (E2) 

while (E3) 
s1; 

else { 
if (E4) 

s 2  ; 
s3 

il : Code for El 
i2: Code for E2 
i3: Code for E3 
i4: Code for S1 
is: Code for E4 
i6: Code for S2 
i7: Code for S3 
is: . . .  

Figure 6.47: Control-flow structure of program for Exercise 6.7.2 

Exercise 6.7.3 : When performing the translatiofi of Fig. 6.47 using the scheme 
of Fig. 6.46, we create lists S. next for each statement, starting with the assign- 
ment-statements S1, S2, and S3, and proceeding to progressively larger if- 
statements, if-else-statements, while-statements, and statement blocks. There 
are five constructed statements of this type in Fig. 6.47: 

S4: while (E3) S1. 

$6: The block consisting of S5 and S3. 

S7: The statement if S4 else Ss. 

Sg : The entire program. 

For each of these constructed statements, there is a rule that allows us 
to construct &.next in terms of other Sj.next lists, and the lists Ek.true and 
Ek.false for the expressions in the program. Give the rules for 

(a) S4. next (b) S5. next (c) S6 .next (d) S7 .next (e) S8. next 

6.8 Switch-Statements 

The "switch" or "case" statement is available in a variety of languages. Our 
switch-statement syntax is shown in Fig. 6.48. There is a selector expression 
E, which is to be evaluated, followed by n constant values Vl , V2, . . - , Vn that 
the expression might take, perhaps including a default "value," which always 
matches the expression if no other value does. 

https://hemanthrajhemu.github.io



6.8. S WITCH-STATEMENTS 

switch ( E ) ( 
case Vl: S1 
case V2 : S2 

. . .  
case Vn-l: SnV1 
default: S, 

3 

Figure 6.48: Switch-statement syntax 

6.8.1 Translation of Switch-Statements 

The intended translation of a switch is code to: 

1. Evaluate the expression E. 

2. Find the value V, in the list of cases that is the same as the value of the 
expression. Recall that the default value matches the expression if none 
of the values explicitly mentioned in cases does. 

3. Execute the statement S j  associated with the value found. 

Step (2) is an n-way branch, which can be implemented in one of several 
ways. If the number of cases is small, say 10 at  most, then it is reasonable to 
use a sequence of conditional jumps, each of which tests for an individual value 
and transfers to the code for the corresponding statement. 

A compact way to implement this sequence of conditional jumps is to create 
a table of pairs, each pair consisting of a value and a label for the corresponding 
statement's code. The value of the expression itself, paired with the label for the 
default statement is placed at the end of the table at run time. A simple loop 
generated by the compiler compares the value of the expression with each value 
in the table, being assured that if no other match is found, the last (default) 
entry is sure to match. 

If the number of values exceeds 10 or so, it is more efficient to construct a 
hash table for the values, with the labels of the various statements as entries. 
If no entry for the value possessed by the switch expression is found, a jump to 
the default statement is generated. 

There is a common special case that can be implemented even more effi- 
ciently than by an n-way branch. If the values all lie in some small range, 
say rnin to max, and the number of different values is a reasonable fraction of 
max - min, then we can construct an array of max - min "buckets," where 
bucket j - min contains the label of the statement with value j ;  any bucket 
that would otherwise remain unfilled contains the default label. 

To perform the switch, evaluate the expression to obtain the value j ;  check 
that it is in the range min to mas and transfer indirectly to the table entry at  
offset j - min. For example, if the expression is of type character, a table of, 

https://hemanthrajhemu.github.io



420 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

say, 128 entries (depending on the character set) may be created and transferred 
through with no range testing. 

6.8.2 Syntax-Directed Translation of Switch-Statements 

The intermediate code in Fig. 6.49 is a convenient translation of the switch- 
statement in Fig. 6.48. The tests all appear at the end so that a simple code 
generator can recognize the multiway branch and generate efficient code for it, 
using the most appropriate implementation suggested at  the beginning of this 
section. 

code to evaluate E into t 
go to  t e s t  

L1: code for S1 
goto next  

: code for Sz 
goto next  
. . . 

L : code for Sn-1 
goto next  

L,: code for Sn 
goto next 

t e s t :  i f  t = Vl goto L1 
i f  t = V2 goto  L2 
. . .  
i f  t = T/,-l goto LnV1 
got0 Ln 

next : 

Figure 6.49: Translation of a switch-statement 

The more straightforward sequence shown in Fig. 6.50 would require the 
compiler to do extensive analysis to find the most efficient implementation. Note 
that it is inconvenient in a one-pass compiler to place the branching statements 
at the beginning, because the compiler could not then emit code for each of the 
statements Si as it saw them. 

To translate into the form of Fig. 6.49, when we see the keyword switch, we 
generate two new labels t e s t  and next ,  and a new temporary t .  Then, as we 
parse the expression E ,  we generate code to evaluate E into t. After processing 
E, we generate the jump goto t e s t .  

Then, as we see each case keyword, we create a new label Li and enter it into 
the symbol table. We place in a queue, used only to store cases, a value-label 
pair consisting of the value V,  of the case constant and Li (or a pointer to the 
symbol-table entry for L i )  We process each statement case V,  : Si by emitting 
the label Li attached to the code for Si7 followed by the jump goto next.  

https://hemanthrajhemu.github.io



6.8. S WITCH-STATEMENTS 

code to evaluate E into t 
i f  t != Vl goto L1 
code for S1 
goto next 

L1: i f  t ! =  V2 goto L2 
code for S2 
goto next 

L2: 

L,-2: i f  t != VnW1 goto Ln-i 
code for Sn-1 
goto next 

LnVl : code for S, 
next : 

Figure 6.50: Another translation of a switch statement 

When the end of the switch is found, we are ready to generate the code for 
the n-way branch. Reading the queue of value-label pairs, we can generate a 
sequence of three-address statements of the form shown in Fig. 6.51. There, t 
is the temporary holding the value of the selector expression E, and L, is the 
label for the default statement. 

case t Vl L1 
case t V2 L2 

case t Vn-l Ln-l 
case t t L, 
l a b e l  next 

Figure 6.51: Case three-address-code instructions used to translate a switch- 
statement 

The case t Vi Li instruction is a synonym for i f  t = Vi goto Li  in Fig. 6.49, 
but the case instruction is easier for the final code generator to detect as a 
candidate for special treatment. At the code-generation phase, these sequences 
of case statements can be translated into an n-way branch of the most efficient 
type, depending on how many there are and whether the values fall into a small 
range. 

6.8.3 Exercises for Section 6.8 

! Exercise 6.8.1 : In order to translate a switch-statement into a sequence of 
case-statements as in Fig. 6.51, the translator needs to create the list of value- 

https://hemanthrajhemu.github.io



422 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

label pairs, as it processes the source code for the switch. We can do so, using 
an additional translation that accumulates just the pairs. Sketch a syntax- 
direction definition that produces the list of pairs, while also emitting code for 
the statements Si that are the actions for each case. 

6.9 Intermediate Code for Procedures 

Procedures and their implementation will be discussed at length in Chapter 7, 
along with the run-time management of storage for names. We use the term 
function in this section for a procedure that returns a value. We briefly discuss 
function declarations and three-address code for function calls. In three-address 
code, a function call is unraveled into the evaluation of parameters in prepa- 
ration for a call, followed by the call itself. For simplicity, we assume that 
parameters are passed by value; parameter-passing methods are discussed in 
Section 1.6.6. 

Example 6.25 : Suppose that a is an array of integers, and that f is a function 
from integers to integers. Then, the assignment 

might translate into the following three-address code: 

1) t l = i * 4  
2) t 2  = a tl 1 
3) param t 2  

4) t 3  = call f, 1 
5) n = t 3  

The first two lines compute the value of the expression a[ i l  into temporary 
t2, as discussed in Section 6.4. Line 3 makes ta an actual parameter for the 
call on line 4 of f with one parameter. Line 5 assigns the value returned by the 
function call to t3. Line 6 assigns the returned value to n. 

The productions in Fig. 6.52 allow function definitions and function calls. 
(The syntax generates unwanted commas after the last parameter, but is good 
enough for illustrating translation.) Nonterminals D and T generate declara- 
tions and types, respectively, as in Section 6.3. A function definition gener- 
ated by D consists of keyword define, a return type, the function name, for- 
mal parameters in parentheses and a function body consisting of a statement. 
Nonterminal F generates zero or more formal parameters, where a formal pa- 
rameter consists of a type followed by an identifier. Nonterminals S and E 
generate statements and expressions, respectively. The production for S adds a 
statement that returns the value of an expression. The production for E adds 
function calls, with actual parameters generated by A. An actual parameter is 
an expression. 

https://hemanthrajhemu.github.io



6.9. INTERMEDIATE CODE FOR PROCEDLTRES 

D + define T id ( F ) ( S ) 

F + c 1 T i d , F  

S + return E ; 

E + i d ( A )  

A + € 1  E , A  

Figure 6.52: Adding functions to the source language 

Function definitions and function calls can be translated using concepts that 
have already been introduced in this chapter. 

Function types. The type of a function must encode the return type and 
the types of the formal parameters. Let void be a special type that repre- 
sents no parameter or no return type. The type of a function pop() that 
returns an integer is therefore "function from void to integer." Function 
types can be represented by using a constructor fun applied to the return 
type and an ordered list of types for the parameters. 

Symbol tables. Let s be the top symbol table when the function definition 
is reached. The function name is entered into s for use in the rest of the 
program. The formal parameters of a function can be handled in analogy 
with field names in a record (see Fig. 6.18. In the production for D ,  after 
seeing define and the function name, we push s and set up a new symbol 
table 

Env.push(top); top = new Env(top); 

Call the new symbol table, t .  Note that top is passed as a parameter in 
new Env(top),  so the new symbol table t can be linked to the previous 
one, s. The new table t is used to translate the function body. We revert 
to the previous symbol table s after the function body is translated. 

Type checking. Within expressions, a function is treated like any other 
operator. The discussion of type checking in Section 6.5.2 therefore carries 
over, including the rules for coercions. For example, iff is a function with 
a parameter of type real, then the integer 2 is coerced to a real in the call 

f (2). 

Function calls. When generating three-address instructions for a function 
call id(E, 6,.  . . , E), it is sufficient to generate the three-address instruc- 
tions for evaluating or reducing the parameters E to addresses, followed 
by a param instruction for each parameter. If we do not want to mix 
the parameter-evaluating instructions with the param instructions, the 
attribute E . a d d r  for each expression E can be saved in a data structure 

https://hemanthrajhemu.github.io



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

such as a queue. Once all the expressions are translated, the param in- 
structions can be generated as the queue is emptied. 

The procedure is such an important and frequently used programming con- 
struct that it is imperative for a compiler to good code for procedure calls and 
returns. The run-time routines that handle procedure parameter passing, calls, 
and returns are part of the run-time support package. Mechanisms for run-time 
support are discussed in Chapter 7. 

6.10 Summary of Chapter 6 

The techniques in this chapter can be combined to build a simple compiler front 
end, like the one in Appendix A. The front end can be built incrementally: 

+ Pick an  intermediate representation: An intermediate representation is 
typically some combination of a graphical notation and three-address 
code. As in syntax trees, a node in a graphical notation represents a 
construct; the children of a node represent its subconstructs. Three ad- 
dress code takes its name from instructions of the form x = y op z,  with 
at most one operator per instruction. There are additional instructions 
for control flow. 

+ Translate expressions: Expressions with built-up operations can be un- 
wound into a sequence of individual operations by attaching actions to 
each production of the form E -+ El op E2. The action either creates 
a node for E with the nodes for El and E2 as children, or it generates 
a three-address instruction that applies op to the addresses for El and 
E2 and puts the result into a new temporary name, which becomes the 
address for E. 

+ Check types: The type of an expression El op Ez is determined by the 
operator op and the types of El and Ez. A coercion is an implicit type 
conversion, such as from integer to float. Intermediate code contains ex- 
plicit type conversions to ensure an exact match between operand types 
and the types expected by an operator. 

+ Use a symbol table to  zmplement declarations: A declaration specifies the 
type of a name. The width of a type is the amount of storage needed for 
a name with that type. Using widths, the relative address of a name at 
run time can be computed as an offset from the start of a data area. The 
type and relative address of a name are put into the symbol table due to 
a declaration, so the translator can subsequently get them when the name 
appears in an expression. 

+ Flatten arrays: For quick access, array elements are stored in consecutive 
locations. Arrays of arrays are flattened so they can be treated as a one- 

https://hemanthrajhemu.github.io



6.11. REFERENCES FOR CHAPTER 6 425 

dimensional array of individual elements. The type of an array is used to 
calculate the address of an array element relative to the base of the array. 

4 Generate jumping code for boolean expressions: In short-circuit or jump- 
ing code, the value of a boolean expression is implicit in the position 
reached in the code. Jumping code is useful because a boolean expression 
B is typically used for control flow, as in if (B) S .  Boolean values can be 
computed by jumping to t = t r u e  or t = false, as appropriate, where t is 
a temporary name. Using labels for jumps, a boolean expression can be 
translated by inheriting labels corresponding to its true and false exits. 
The constants true and false translate into a jump to the true and false 
exits, respectively. 

4 Implement statements using control Bow: Statements can be translated 
by inheriting a label next, where next marks the first instruction after the 
code for this statement. The conditional S -+ if (B) S1 can be translated 
by attaching a new label marking the beginning of the code for S1 and 
passing the new label and S.next for the true and false exits, respectively, 
of B. 

4 Alternatively, use backpatching: Backpatching is a technique for generat- 
ing code for boolean expressions and statements in one pass. The idea 
is to maintain lists of incomplete jumps, where all the jump instructions 
on a list have the same target. When the target becomes known, all the 
instructions on its list are completed by filling in the target. 

4 Implement records: Field names in a record or class can be treated as a 
sequence of declarations. A record type encodes the types and relative 
addresses of the fields. A symbol table object can be used for this purpose. 

6.11 References for Chapter 6 

Most of the techniques in this chapter stem from the flurry of design and im- 
plementation activity around Algol 60. Syntax-directed translation into inter- 
mediate code was well established by the time Pascal [Ill  and C [6, 91 were 
created. 

UNCOL (for Universal Compiler Oriented Language) is a mythical universal 
intermediate language, sought since the mid 1950's. Given an UNCOL, com- 
pilers could be constructed by hooking a front end for a given source language 
with a back end for a given target language [lo]. The bootstrapping techniques 
given in the report [lo] are routinely used to retarget compilers. 

The UNCOL ideal of mixing and matching front ends with back ends has 
been approached in a number of ways. A retargetable compiler consists of one 
front end that can be put together with several back ends to implement a given 
language on several machines. Neliac was an early example of a language with 
a retargetable compiler [5] written in its own language. Another approach is to 

https://hemanthrajhemu.github.io



426 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

retrofit a front end for a new language onto an existing compiler. Feldman [2] 
describes the addition of a Fortran 77 front end to the C compilers [6] and 
[9]. GCC, the GNU Compiler Collection [3], supports front ends for C, C++, 
Objective-C, Fortran, Java, and Ada. 

Value numbers and their implementation by hashing are from Ershov [I]. 
The use of type information to improve the security of Java bytecodes is 

described by Gosling [4]. 
Type inference by using unification to solve sets of equations has been re- 

discovered several times; its application to ML is described by Milner [7]. See 
Pierce [8] for a comprehensive treatment of types. 

1. Ershov, A. P., "On programming of arithmetic operations," Comm. ACM 
1:8 (1958), pp. 3-6. See also Comm. ACM 1:9 (1958), p. 16. 

2. Feldman, S. I., "Implementation of a portable Fortran 77 compiler using 
modern tools," ACM SIGPLAN Notices 14:8 (1979), pp. 98-106 

3. GCC home page h t t p :  //gcc .gnu. org/, Free Software Foundation. 

4. Gosling, J., "Java intermediate bytecodes," Proc. A CM SIGPLA N Work- 
shop on Intermediate Representations (1995), pp. 11 1-1 18. 

5 .  Huskey, H. D., M. H. Halstead, and R. McArthur, "Neliac - a dialect of 
Algol," Comm. A CM 3:8 (1960), pp. 463-468. 

6. Johnson, S. C., "A tour through the portable C compiler," Bell Telephone 
Laboratories, Inc., Murray Hill, N. J., 1979. 

7. Milner, R., "A theory of type polymorphism in programming," J. Com- 
puter and System Sciences 17:3 (1978), pp. 348-375. 

8. Pierce, B. C., Types and Programming Languages, MIT Press, Cambridge, 
Mass., 2002. 

9. Ritchie, D. M., "A tour through the UNIX C compiler," Bell Telephone 
Laboratories, Inc., Murray Hill, N. J., 1979. 

10. Strong, J., J .  Wegstein, A. Tritter, J .  Olsztyn, 0 .  Mock, and T. Steel, 
"The problem of programming communication with changing machines: 
a proposed solution," Comm. ACM 1:8 (1958), pp. 12-18. Part 2: 1:9 
(1958), pp. 9-15. Report of the Share Ad-Hoc committee on Universal 
Languages. 

11. Wirth, N. "The design of a Pascal compiler," Softurare-Practice and 
Experience 1:4 (1971), pp. 309-333. 

https://hemanthrajhemu.github.io



Chapter 8 

Code Generation 

The final phase in our compiler model is the code generator. It takes as input 
the intermediate representation (IR) produced by the front end of the com- 
piler, along with relevant symbol table information, and produces as output a 
semantically equivalent target program, as shown in Fig. 8.1. 

The requirements imposed on a code generator are severe. The target pro- 
gram must preserve the semantic meaning of the source program and be of 
high quality; that is, it must make effective use of the available resources of the 
target machine. Moreover, the code generator it self must run efficiently. 

The challenge is that, mathematically, the problem of generating an optimal 
target program for a given source program is undecidable; many of the subprob- 
lems encountered in code generation such as register allocation are computa- 
tionally intractable. In practice, we must be content with heuristic techniques 
that generate good, but not necessarily optimal, code. Fortunately, heuristics 
have matured enough that a carefully designed code generator can produce code 
that is several times faster than code produced by a naive one. 

Compilers that need to produce efficient target programs, include an op- 
timization phase prior to code generation. The optimizer maps the IR into 
IR from which more efficient code can be generated. In general, the code- 
optimization and code-generation phases of a compiler, often referred to as the 
back end, may make multiple passes over the IR before generating the target 
program. Code optimization is discussed in detail in Chapter 9. The tech- 
niques presented in this chapter can be used whether or not an optimization 
phase occurs before code generation. 

A code generator has three primary tasks: instruction selection, register 

 source^ FIont 1 intermediats Code ?ntermediatq Code p a r g e t  
program End code ) Optimixer ) code Generator program 

Figure 8.1: Position of code generator 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

allocation and assignment, and instruction ordering. The importance of these 
tasks is outlined in Section 8.1. Instruction selection involves choosing appro- 
priate target-machine instructions to implement the IR statements. Register 
allocation and assignment involves deciding what values to keep in which reg- 
isters. Instruction ordering involves deciding in what order to schedule the 
execution of instructions. 

This chapter presents algorithms that code generators can use to trans- 
late the IR into a sequence of target language instructions for simple register 
machines. The algorithms will be illustrated by using the machine model in Sec- 
tion 8.2. Chapter 10 covers the problem of code generation for complex modern 
machines that support a great deal of parallelism within a single instruction. 

After discussing the broad issues in the design of a code generator, we show 
what kind of target code a compiler needs to generate to support the abstrac- 
tions embodied in a typical source language. In Section 8.3, we outline imple- 
mentations of static and stack allocation of data areas, and show how names in 
the IR can be converted into addresses in the target code. 

Many code generators partition IR instructions into "basic blocks," which 
consist of sequences of instructions that are always executed together. The 
partitioning of the IR into basic blocks is the subject of Section 8.4. The 
following section presents simple local transformations that can be used to 
transform basic blocks into modified basic blocks from which more efficient 
code can be generated. These transformations are a rudimentary form of code 
optimization, although the deeper theory of code optimization will not be taken 
up until Chapter 9. An example of a useful, local transformation is the discovery 
of common subexpressions at the level of intermediate code and the resultant 
replacement of arithmetic operations by simpler copy operations. 

Section 8.6 presents a simple code-generation algorithm that generates code 
for each statement in turn, keeping operands in registers as long as possible. 
The output of this kind of code generator can be readily improved by peephole 
optimization techniques such as those discussed in the following Section 8.7. 

The remaining sections explore instruction selection and register allocation. 

8.1 Issues in the Design of a Code Generator 

While the details are dependent on the specifics of the intermediate represen- 
tation, the target language, and the run-time system, tasks such as instruction 
selection, register allocation and assignment, and instruction ordering are en- 
countered in the design of almost all code generators. 

The most important criterion for a code generator is that it produce cor- 
rect code. Correctness takes on special significance because of the number of 
special cases that a code generator might face. Given the premium on correct- 
ness, designing a code generator so it can be easily implemented, tested, and 
maintained is an important design goal. 

https://hemanthrajhemu.github.io



8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 

8.1.1 Input to the Code Generator 

The input to  the code generator is the intermediate representation of the source 
program produced by the front end, along with information in the symbol table 
that is used to  determine the run-time addresses of the data objects denoted 
by the names in the IR. 

The many choices for the IR include three-address representations such as 
quadruples, triples, indirect triples; virtual machine representations such as 
bytecodes and stack-machine code; linear representations such as postfix no- 
tation; and graphical representations such as syntax trees and DAG's. Many 
of the algorithms in this chapter are couched in terms of the representations 
considered in Chapter 6: three-address code, trees, and DAG7s. The techniques 
we discuss can be applied, however, to the other intermediate representations 
as well. 

In this chapter, we assume that the front end has scanned, parsed, and 
translated the source program into a relatively low-level IR, so that the values 
of the names appearing in the IR can be represented by quantities that the 
target machine can directly manipulate, such as integers and floating-point 
numbers. We also assume that all syntactic and static semantic errors have 
been detected, that the necessary type checking has taken place, and that type- 
conversion operators have been inserted wherever necessary. The code generator 
can therefore proceed on the assumption that its input is free of these kinds of 
errors. 

8.1.2 The Target Program 

The instruction-set architecture of the target machine has a significant im- 
pact on the difficulty of constructing a good code generator that produces 
high-quality machine code. The most common target-machine architectures 
are RISC (reduced instruction set computer), CISC (complex instruction set 
computer), and stack based. 

A RISC machine typically has many registers, three-address instructions, 
simple addressing modes, and a relatively simple instruction-set architecture. 
In contrast, a CISC machine typically has few registers, two-address instruc- 
tions, a variety of addressing modes, several register classes, variable-length 
instructions, and instructions with side effects. 

In a stack-based machine, operations are done by pushing operands onto a 
stack and then performing the operations on the operands at the top of the 
stack. To achieve high performance the top of the stack is typically kept in 
registers. Stack-based machines almost disappeared because it was felt that 
the stack organization was too limiting and required too many swap and copy 
operations. 

However, stack-based architectures were revived with the introduction of 
the Java Virtual Machine (JVM). The JVM is a software interpreter for Java 
bytecodes, an intermediate language produced by Java compilers. The inter- 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

preter provides software compatibility across multiple platforms, a major factor 
in the success of Java. 

To overcome the high performance penalty of interpretation, which can be 
on the order of a factor of 10, just-in-time (JIT) Java compilers have been 
created. These JIT compilers translate bytecodes during run time to the native 
hardware instruction set of the target machine. Another approach to improving 
Java performance is to build a compiler that compiles directly into the machine 
instructions of the target machine, bypassing the Java bytecodes entirely. 

Producing an absolute machine-language program as output has the ad- 
vantage that it can be placed in a fixed location in memory and immediately 
executed. Programs can be compiled and executed quickly. 

Producing a relocatable machine-language program (often called an object 
module) as output allows subprograms to be compiled separately. A set of 
relocatable object modules can be linked together and loaded for execution by a 
linking loader. Although we must pay the added expense of linking and loading 
if we produce relocatable object modules, we gain a great deal of flexibility 
in being able to compile subroutines separately and to call other previously 
compiled programs from an object module. If the target machine does not 
handle relocation automatically, the compiler must provide explicit relocation 
information to the loader to link the separately compiled program modules. 

Producing an assembly-language program as output makes the process of 
code generation somewhat easier. We can generate symbolic instructions and 
use the macro facilities of the assembler to help generate code. The price paid 
is the assembly step after code generation. 

In this chapter, we shall use a very simple RISC-like computer as our target 
machine. We add to it some CISC-like addressing modes so that we can also 
discuss code-generation techniques for CISC machines. For readability, we use 
assembly code as the target language . As long as addresses can be calculated 
from offsets and other information stored in the symbol table, the code gener- 
ator can produce relocatable or absolute addresses for names just as easily as 
symbolic addresses. 

8.1.3 Instruction Selection 

The code generator must map the IR program into a code sequence that can be 
executed by the target machine. The complexity of performing this mapping is 
determined by a factors such as 

the level of the IR 

the nature of the instruction-set architecture 

the desired quality of the generated code. 

If the IR is high level, the code generator may translate each IR statement 
into a sequence of machine instructions using code templates. Such statement- 
by-statement code generation, however, often produces poor code that needs 

https://hemanthrajhemu.github.io



8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 509 

further optimization. If the IR reflects some of the low-level details of the un- 
derlying machine, then the code generator can use this information to generate 
more efficient code sequences. 

The nature of the instruction set of the target machine has a strong effect 
on the difficulty of instruction selection. For example, the uniformity and com- 
pleteness of the instruction set are important factors. If the target machine 
does not support each data type in a uniform manner, then each exception to 
the general rule requires special handling. On some machines, for example, 
floating-point operations are done using separate registers. 

Instruction speeds and machine idioms are other important factors. If we 
do not care about the efficiency of the target program, instruction selection is 
straightforward. For each type of three-address statement, we can design a code 
skeleton that defines the target code to be generated for that construct. For 
example, every three-address statement of the form x = y + z, where x, y, and z 
are statically allocated, can be translated into the code sequence 

LD ROY y // RO = y (load y into register RO) 
A D D R O ,  R O Y  z / /  RO = R O  + z ( a d d z t o ~ ~ )  
S T  x ,  RO // x = RO (store RO into x) 

This strategy often produces redundant loads and stores. For example, the 
sequence of t hree-address statements 

would be translated into 

LD R O Y  b / /  RO = b 
ADD ROY ROY c // RO = RO + c 
S T  a ,  RO / /  a = RO 
LD ROY a // RO = a 
ADD ROY ROY e // RO = RO + e 
S T  d ,  RO // d = RO 

Here, the fourth statement is redundant since it loads a value that has just been 
stored, and so is the third if a is not subsequently used. 

The quality of the generated code is usually determined by its speed and 
size. On most machines, a given IR program can be implemented by many 
different code sequences, with significant cost differences between the different 
implementations. A naive translation of the intermediate code may therefore 
lead to correct but unacceptably inefficient target code. 

For example, if the target machine has an "increment" instruction (INC), 
then the three-address statement a = a + 1 may be implemented more efficiently 
by the single instruction INC a, rather than by a more obvious sequence that 
loads a into a register, adds one to the register, and then stores the result back 
into a: 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

LD RO, a // RO = a 
ADD ROY ROY #1 // RO = RO + 1 
ST a, RO // a = RO 

We need to know instruction costs in order to design good code sequences 
but, unfortunately, accurate cost information is often difficult to obtain. De- 
ciding which machine-code sequence is best for a given three-address construct 
may also require knowledge about the context in which that construct appears. 

In Section 8.9 we shall see that instruction selection can be modeled as a 
tree-pattern matching process in which we represent the IR and the machine 
instructions as trees. We then attempt to "tile" an IR tree with a set of sub- 
trees that correspond to machine instructions. If we associate a cost with each 
machine-instruction subtree, we can use dynamic programming to generate op- 
timal code sequences. Dynamic programming is discussed in Section 8.11. 

8.1.4 Register Allocation 

A key problem in code generation is deciding what values to hold in what 
registers. Registers are the fastest computational unit on the target machine, 
but we usually do not have enough of them to hold all values. Values not held 
in registers need to reside in memory. Instructions involving register operands 
are invariably shorter and faster than those involving operands in memory, so 
efficient utilization of registers is particularly important. 

The use of registers is often subdivided into two subproblems: 

1. Register allocation, during which we select the set of variables that will 
reside in registers at each point in the program. 

2. Register assignment, during which we pick the specific register that a 
variable will reside in. 

Finding an optimal assignment of registers to variables is difficult, even 
with single-register machines. Mathematically, the problem is NP-complete. 
The problem is further complicated because the hardware and/or the operating 
system of the target machine may require that certain register-usage conventions 
be observed. 

Example 8.1 : Certain machines require register-pairs (an even and next odd- 
numbered register) for some operands and results. For example, on some ma- 
chines, integer multiplication and integer division involve register pairs. The 
multiplication instruction is of the form 

where x, the multiplicand, is the even register of an even/odd register pair and 
y, the multiplier, is the odd register. The product occupies the entire even/odd 
register pair. The division instruction is of the form 

https://hemanthrajhemu.github.io



8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 511 

where the dividend occupies an evenlodd register pair whose even register is x; 
the divisor is y. After division, the even register holds the remainder and the 
odd register the quotient. 

Now, consider the two three-address code sequences in Fig. 8.2 in which the 
only difference in (a) and (b) is the operator in the second statement. The 
shortest assembly-code sequences for (a) and (b) are given in Fig. 8.3. 

Figure 8.2: Two three-address code sequences 

L R O , a  
A R 0 , b  
A R O , c  
SRDA ROY 3 2  
D R O , d  
ST R 1 ,  t 

Figure 8.3: Optimal machine-code sequences 

Ri stands for register i. SRDA stands for Shift-Right-Double-Arithmetic and 
SRDA R 0 , 3 2  shifts the dividend into R 1  and clears RO so all bits equal its sign 
bit. L, ST, and A stand for load, store, and add, respectively. vote that the 
optimal choice for the register into which a is to be loaded depends on what 
will ultimately happen to t. 

Strategies for register allocation and assignment are discussed in Section 8.8. 
Section 8.10 shows that for certain classes of machines we can construct code 
sequences that evaluate expressions using as few registers as possible. 

8.1.5 Evaluation Order 

The order in which computations are performed can affect the efficiency of the 
target code. As we shall see, some computation orders require fewer registers 
to hold intermediate results than others. However, picking a best order in 
the general case is a difficult NP-complete problem. Initially, we shall avoid 

https://hemanthrajhemu.github.io



512 CHAPTER 8. CODE GENERATION 

the problem by generating code for the three-address statements in the order 
in which they have been produced by the intermediate code generator. In 
Chapter 10, we shall study code scheduling for pipelined machines that can 
execute several operations in a single clock cycle. 

8.2 The Target Language 

Familiarity with the target machine and its instruction set is a prerequisite 
for designing a good code generator. Unfortunately, in a general discussion of 
code generation it is not possible to describe any target machine in sufficient 
detail to generate good code for a complete language on that machine. In 
this chapter, we shall use as a target language assembly code for a simple 
computer that is representative of many register machines. However, the code- 
generation techniques presented in this chapter can be used on many other 
classes of machines as well. 

8.2.1 A Simple Target Machine Model 

Our target computer models a three-address machine with load and store oper- 
ations, computation operations, jump operations, and conditional jumps. The 
underlying computer is a byte-addressable machine with n general-purpose reg- 
isters, RO, R1,  . . . , Rn - 1. A full-fledged assembly language would have scores 
of instructions. To avoid hiding the concepts in a myriad of details, we shall 
use a very limited set of instructions and assume that all operands are integers. 
Most instructions consists of an operator, followed by a target, followed by a 
list of source operands. A label may precede an instruction. We assume the 
following kinds of instructions are available: 

Load operations: The instruction LD dst, addr loads the value in location 
addr into location dst. This instruction denotes the assignment dst = addr. 
The most common form of this instruction is LD r, x which loads the value 
in location x into register r .  An instruction of the form LD r l ,  r2 is a 
register-to-register copy in which the contents of register r 2  are copied 
into register r l .  

Store operations: The instruction ST x, r stores the value in register r into 
the location x. This instruction denotes the assignment x = r .  

Computation operations of the form OP dst, srcl, s r e ,  where OP is a op- 
erator like ADD or SUB, and dst, srcl , and src2 are locations, not necessarily 
distinct. The effect of this machine instruction is to apply the operation 
represented by OP to the values in locations srcl and src2, and place the 
result of this operation in location dst. For example, SUB r l  , r 2 ,  r~ com- 
putes rl = r2 - r s  Any value formerly stored in rl is lost, but if r l  is 
r 2  or r ~ ,  the old value is read first. Unary operators that take only one 
operand do not have a src2. 

https://hemanthrajhemu.github.io



8.2. THE TARGET LANGUAGE 

Unconditional jumps: The instruction BR L causes control to branch to 
the machine instruction with label L. (BR stands for branch.) 

Conditional jumps of the form Bcond r,  L, where r is a register, L is a label, 
and cond stands for any of the common tests on values in the register r. 
For example, BLTZ r, L causes a jump to label L if the value in register r is 
less than zero, and allows control to pass to the next machine instruction 
if not. 

We assume our target machine has a variety of addressing modes: 

In instructions, a location can be a variable name x referring to the mem- 
ory location that is reserved for x (that is, the 1-value of x). 

A location can also be an indexed address of the form a(r),  where a is 
a variable and r is a register. The memory location denoted by a(r) is 
computed by taking the 1-value of a and adding to it the value in register 
r. For example, the instruction LD R1, a(R2) has the effect of setting 
R l  = contents (a + contents ( ~ 2 ) ) ,  where contents(x) denotes the contents 
of the register or memory location represented by x. This addressing 
mode is useful for accessing arrays, where a is the base address of the 
array (that is, the address of the first element), and r holds the number 
of bytes past that address we wish to go to reach one of the elements of 
array a. 

A memory location can be an integer indexed by a register. For ex- 
ample, LD R 1 ,  lOO(R2) has the effect of setting R 1  = contents(100 + 
contents(~2)),  that is, of loading into R 1  the value in the memory loca- 
tion obtained by adding 100 to the contents of register R2. This feature 
is useful for following pointers, as we shall see in the example below. 

We also allow two indirect addressing modes: *r means the memory lo- 
cation found in the location represented by the contents of register r and 
*100(r) means the memory location found in the location obtained by 
adding 100 to the contents of r .  For example, LD R1, * 100 (R2) has the 
effect of setting R 1  = contents(contents(l00 + contents(R2))), that is, of 
loading into R 1  the value in the memory location stored in the memory 
location obtained by adding 100 to the contents of register R2. 

Finally, we allow an immediate constant addressing mode. The constant 
is prefixed by #. The instruction LD R1, #I00 loads the integer 100 into 
register R1, and ADD R1, R1, #I00 adds the integer 100 into register R1. ' 

Comments at the end of instructions are preceded by //. 

Example 8.2 : The three-address statement x = y - z can be implemented by 
the machine instructions: 

https://hemanthrajhemu.github.io



514 CHAPTER 8. CODE GENERATION 

LD R1, y / /  R1 = y 
LD R2, z // R2 = z 
SUB R1, R1, R2 // R1 = R1 - R2 
ST x, R1 / /  x = R1 

We can do better, perhaps. One of the goals of a good code-generation algorithm 
is to avoid using all four of these instructions, whenever possible. For example, 
y and/or z may have been computed in a register, and if so we can avoid the LD 
step(s). Likewise, we might be able to avoid ever storing x if its value is used 
within the register set and is not subsequently needed. 

Suppose a is an array whose elements are 8-byte values, perhaps real num- 
bers. Also assume elements of a are indexed starting at 0. We may execute the 
three-address instruction b = a [i] by the machine instructions: 

LD R1, i // R1 = i 
MUL R1, R1, 8 // R1 = Rl * 8 
LD R2, a(R1) // R2 = contents(a + contents(R1)) 
ST b, R2 // b = R2 

That is, the second step computes 8i, and the third step places in register R2 
the value in the ith element of a - the one found in the location that is 8i 
bytes past the base address of the array a. 

Similarly, the assignment into the array a represented by three-address in- 
struction a[j] = c is implemented by: 

LD R1, c // R1 = c 
LD R2, j / /  R2 = j 
MUL R2, R2, 8 // R2 = R2 * 8 
ST a(R2), R1 // contents(a + contents(R2)) = R1 

TO implement a simple pointer indirection, such as the three-address state- 
ment x = *p, we can use machine instructions like: 

The assignment through a pointer *p = y is similarly implemented in machine 
code by: 

Finally, consider a conditional-jump three-address instruction like 

https://hemanthrajhemu.github.io



8.2. THE TARGET LANGUAGE 

The machine-code equivalent would be something like: 

LD R1, x // R 1  = x 
LD R2, y / /  R2 = y 
SUB R 1 ,  R1, R2 // R 1  = R 1  - R2 
BLTZ R 1 ,  M / /  i f  R 1  < 0 jump t o  M 

Here, M is the label that represents the first machine instruction generated from 
the three-address instruction that has label L. As for any three-address instruc- 
tion, we hope that we can save some of these machine instructions because the 
needed operands are already in registers or because the result need never be 
stored. 

8.2.2 Program and Instruction Costs 

We often associate a cost with compiling and running a program. Depending 
on what aspect of a program we are interested in optimizing, some common 
cost measures are the length of compilation time and the size, running time 
and power consumption of the target program. 

Determining the actual cost of compiling and running a program is a com- 
plex problem. Finding an optimal target program for a given source program is 
an undecidable problem in general, and many of the subproblems involved are 
NP-hard. As we have indicated, in code generation we must often be content 
with heuristic techniques that produce good but not necessarily optimal target 
programs. 

For the remainder of this chapter, we shall assume each target-language 
instruction has an associated cost. For simplicity, we take the cost of an in- 
struction to be one plus the costs associated with the addressing modes of the 
operands. This cost corresponds to the length in words of the instruction. 
Addressing modes involving registers have zero additional cost, while those in- 
volving a memory location or constant in them have an additional cost of one, 
because such operands have to be stored in the words following the instruction. 
Some examples: 

The instruction LD RO, R 1  copies the contents of register R 1  into register 
RO. This instruction has a cost of one because no additional memory 
words are required. 

The instruction LD R O Y  M loads the contents of memory location M into 
register RO. The cost is two since the address of memory location M is in 
the word following the instruction. 

The instruction LD R1, *100(R2) loads into register R 1  the value given 
by contents(contents(l00 + contents(R2))). The cost is three because the 
constant 100 is stored in the word following the instruction. 

https://hemanthrajhemu.github.io



516 CHAPTER 8. CODE GENERATION 

In this chapter we assume the cost of a target-language program on a given 
input is the sum of costs of the individual instructions executed when the pro- 
gram is run on that input. Good code-generation algorithms seek to minimize 
the sum of the costs of the instructions executed by the generated target pro- 
gram on typical inputs. We shall see that in some situations we can actually 
generate optimal code for expressions on certain classes of register machines. 

8.2.3 Exercises for Section 8.2 

Exercise 8.2.1 : Generate code for the following three-address statements as- 
suming all variables are stored in memory locations. 

e) The two statements 

Exercise 8.2.2 : Generate code for the following three-address statements as- 
suming a and b are arrays whose elements are 4-byte values. 

a) The four-statement sequence 

b) The t hree-statement sequence 

c) The three-statement sequence 

https://hemanthrajhemu.github.io



8.2. THE TARGET LANGUAGE 517 

Exercise 8.2.3 : Generate code for the following three-address sequence as- 
suming that p and q are in memory locations: 

Exercise 8.2.4 : Generate code for the following sequence assuming that x, y, 
and z are in memory locations: 

i f  x < y goto  L1 
z = o  
got0  L2 

Ll: z = 1 

Exercise 8.2.5 : Generate code for the following sequence assuming hat n is 
in a memory location: 

Exercise 8.2.6 : Determine the costs of the following instruction sequences: 

a> LD ROY y 
LD R1, z 
ADD ROY RO, R1 
ST x, RO 

b LD RO, i 
MUL ROY ROY 8 
LD R1, a(R0) 
ST b, R1 

c> LD ROY c 
LD R1, i 
MUL Rl, R1, 8 
ST a(RI), RO 

d) LD ROY p 
LD Rl, O(R0) 
ST x, R1 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

LD RO, p 
LD R1, x 
ST 0 (RO) , R1 

LD ROY x 
LD R1, y 
SUB RO, RO, R1 
BLTZ *R3, RO 

8.3 Addresses in the Target Code 

In this section, we show how names in the IR can be converted into addresses 
in the target code by looking at  code generation for simple procedure calls and 
returns using static and stack allocation. In Section 7.1, we described how each 
executing program runs in its own logical address space that was partitioned 
into four code and data areas: 

1. A statically determined area Code that holds the executable target code. 
The size of the target code can be determined at compile time. 

2. A statically determined data area Static for holding global constants and 
other data generated by the compiler. The size of the global constants 
and compiler data can also be determined at compile time. 

3. A dynamically managed area Heap for holding data objects that are allo- 
cated and freed during program execution. The size of the Heap cannot 
be determined at compile time. 

4. A dynamically managed area Stack for holding activation records as they 
are created and destroyed during procedure calls and returns. Like the 
Heap, the size of the Stack cannot be determined at compile time. 

8.3.1 Static Allocation 

To illustrate code generation for simplified procedure calls and returns, we shall 
focus on the following three-address statements: 

c a l l  callee 

r e t u r n  

h a l t  

act ion, which is a placeholder for other three-address statements. 

The size and layout of activation records are determined by the code gener- 
ator via the information about names stored in the symbol table. We shall first 
illustrate how to store the return address in an activation record on a procedure 

https://hemanthrajhemu.github.io



8.3. ADDRESSES IN THE TARGET CODE 519 

call and how to return control to it after the procedure call. For convenience, 
we assume the first location in the activation holds the return address. 

Let us first consider the code needed to implement the simplest case, static 
allocation. Here, a c a l l  callee statement in the intermediate code can be im- 
plemented by a sequence of two target-machine instructions: 

ST callee.staticArea, #here + 20 
BR cal lee. codeArea 

The ST instruction saves the return address at the beginning of the activation 
record for callee, and the BR transfers control to the target code for the called 
procedure callee. The attribute before callee.staticArea is a constant that gives 
the address of the beginning of the activation record for callee, and the attribute 
callee.codeArea is a constant referring to the address of the first instructiorr of 
the called procedure callee in the Code area of the run-time memory. 

The operand #here+ 20 in the ST instruction is the literal return address; it 
is the address of the instruction following the BR instruction. We assume that 
#here is the address of the current instruction and that the three constants plus 
the two instructions in the calling sequence have a length of 5 words or 20 bytes. 

The code for a procedure ends with a return to the calling procedure, except 
that the first procedure has no caller, so its final instruction is HALT, which 
returns control to the operating system. A r e tu rn  callee statement can be 
implemented by a simple jump instruction 

which transfers control to the address saved at the beginning of the activation 
record for callee. 

Example 8.3 : Suppose we have the following three-address code: 

/ /  code for c 
a c t  ionl 
c a l l  p 
a c t  ionz 
h a l t  

// code for p 
ac t  ion3 
r e tu rn  

Figure 8.4 shows the target program for this three-address code. We use the 
pseudoinstruction ACTION to represent the sequence of machine instructions to 
execute the statement ac t ion ,  which represents three-address code that is not 
relevant for this discussion. We arbitrarily start the code for procedure c at 
address 100 and for procedure p at address 200. We that assume each ACTION 
instruction takes 20 bytes. We further assume that the activation records for 
these procedures are statically allocated starting at locations 300 and 364, re- 
spectively. 

The instructions starting at  address 100 implement the statements 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

ac t i on l ;  c a l l  p; ac t ion2;  h a l t  

of the first procedure c. Execution therefore starts with the instruction ACTIONl 
at address 100. The ST instruction at address 120 saves the return address 140 
in the machine-status field, which is the first word in the activation record of p. 
The BR instruction at address 132 transfers control the first instruction in the 
target code of the called procedure p. 

// code for c 
ACTIONl // code for a c t  ionl 
ST 364, #I40 // save return address 140 in location 364 
BR 200 // call p 
ACTION2 
HALT // return to operating system 
... 

// code for p 
ACTION3 
BR *364 // return to address saved in location 364 

// 300-363 hold activation record for c 
// return address 
// local data for c 

. . . 
// 364-451 hold activation record for p 
// return address 
// local data for p 

Figure 8.4: Target code for static allocation 

After executing ACTION3, the jump instruction at location 220 is executed. 
Since location 140 was saved at address 364 by the call sequence above, *364 
represents 140 when the BR statement at address 220 is executed. Therefore, 
when procedure p terminates, control returns to address 140 and execution of 
procedure c  resumes. 0. 

8.3.2 Stack Allocation 

Static allocation can become stack allocation by using relative addresses for 
storage in activation records. In stack allocation, however, the position of an 
activation record for a procedure is not known until run time. This position is 
usually stored in a register, so words in the activation record can be accessed as 
offsets from the value in this register. The indexed address mode of our target 
machine is convenient for this purpose. 

Relative addresses in an activation record can be taken as offsets from any 
known position in the activation record, as we saw in Chapter 7. For conve- 

https://hemanthrajhemu.github.io



8.3. ADDRESSES IN THE TARGET CODE 521 

nience, we shall use positive offsets by maintaining in a register SP a pointer t o  
the beginning of the activation record on top of the stack. When a procedure 
call occurs, the calling procedure increments SP and transfers control to  the 
called procedure. After control returns to  the caller, we decrement SP, thereby 
deallocating the activation record of the called procedure. 

The code for the first procedure initializes the stack by setting SP to the 
start of the stack area in memory: 

LD SP, #stackStart // initialize the stack 
code for the first procedure 
HALT / /  terminate execution 

A procedure call sequence increments SP, saves the return address, and transfers 
control to  the called procedure: 

ADD SP , SP , #caller. recordsize // increment stack pointer 
ST *SP , #here + 16 // save return address 
BR callee.codeArea // return to  caller 

The operand #caller.recordSize represents the size of an activation record, so 
the ADD instruction makes SP point t o  the next activation record. The operand 
#here + 16 in the ST instruction is the address of the instruction following BR; 
it is saved in the address pointed to  by SP. 

The return sequence consists of two parts. The called procedure transfers 
control to  the return address using 

BR *O(SP) // return to  caller 

The reason for using *O (SP) in the BR instruction is that we need two levels 
of indirection: O(SP) is the address of the first word in the activation record 
and *O(SP) is the return address saved there. 

The second part of the return sequence is in the caller, which decrements 
SP, thereby restoring SP to its previous value. That is, after the subtraction SP 
points to  the beginning of the activation record of the caller: 

SUB SP , SP , #caller. recordsize / /  decrement stack pointer 

Chapter 7 contains a broader discussion of calling sequences and the trade- 
offs in the division of labor between the calling and called procedures. 

Example 8.4 : The program in Fig. 8.5 is an abstraction of the quicksort 
program in the previous chapter. Procedure q is recursive, so more than one 
activation of q can be alive at the same time. 

Suppose that the sizes of the activation records for procedures m, p, and q 
have been determined to be msize, psize, and qsize, respectively. The first word 
in each activation record will hold a return address. We arbitrarily assume that 
the code for these procedures starts a t  addresses 100, 200, and 300, respectively, 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

/ /  code for m 
a c t  ionl 
c a l l  q 
a c t  ionz 
h a l t  

ac t  ions 
r e tu rn  

// code for p 

// code for q 
a c t  ion4 
c a l l  p 
a c t  ion5 
c a l l  q 
a c t  ion6 
c a l l  q 
r e tu rn  

Figure 8.5: Code for Example 8.4 

and that the stack starts at address 600. The target program is shown in 
Figure 8.6. 

We assume that ACTION4 contains a conditional jump to the address 456 of 
the return sequence from q; otherwise, the recursive procedure q is condemned 
to call itself forever. 

If msixe, psixe, and qsixe are 20, 40, and 60, respectively, the first instruction 
at address 100 initializes the SP to 600, the starting address of the stack. SP 
holds 620 just before control transfers from m to q, because msixe is 20. Sub- 
sequently, when q calls p, the instruction at address 320 increments SP to 680, 
where the activation record for p begins; SP reverts to 620 after control returns 
to q. If the next two recursive calls of q return immediately, the maximum value 
of SP during this execution 680. Note, however, that the last stack location used 
is 739, since the activation record of q starting at location 680 extends for 60 
bytes. 

8.3.3 Run-Time Addresses for Names 

The storage-allocation strategy and the layout of local data in an activation 
record for a procedure determine how the storage for names is accessed. In 
Chapter 6, we assumed that a name in a three-address statement is really a 
pointer to a symbol-table entry for that name. This approach has a significant 
advantage; it makes the compiler more portable, since the front end need not 
be changed even when the compiler is moved to a different machine where a 
different run-time organization is needed. On the other hand, generating the 
specific sequence of access steps while generating intermediate code can be of 

https://hemanthrajhemu.github.io



8.3. ADDRESSES IN THE TARGET CODE 

LD SPY #600 
ACTIONl 
ADD SPY SPY #msixe 
ST *SPY #I52 
BR 300 
SUB SP , SPY #msixe 
ACTION1 2 
HALT 

/ /  code for m 
/ /  initialize the stack 
// code for act ionl 
/ /  call sequence begins 
// push return address 
// call q 
/ /  restore SP 

// code for p 

ACTION4 
ADD SPY SPY #qsixe 
ST *SPY #344 
BR 200 
SUB SPY SP , #qszxe 
ACTION5 
ADD SPY SPY #qsixe 
BR *SP, #396 
BR 300 
SUB SPY SPY #qsixe 
ACTION6 
ADD SPY SP, #qsixe 
ST *SPY #440 
BR 300 
SUB SPY SP , #qsixe 
BR *O(SP) 

// return 

/ / code for q 
// contains a conditional jump to 456 

/ /  push return address 
// call p 

// push return address 
// call q 

// push return address 
/ /  call q 

// return 

// stack starts here 

Figure 8.6: Target code for stack allocation 

https://hemanthrajhemu.github.io



524 CHAPTER 8. CODE GENERATION 

significant advantage in an optimizing compiler, since it lets the optimizer take 
advantage of details it would not see in the simple three-address statement. 

In either case, names must eventually be replaced by code to access storage 
locations. We thus consider some elaborations of the simple three-address copy 
statement x = 0. After the declarations in a procedure are processed, suppose 
the symbol-table entry for x contains a relative address 12 for x. For consider 
the case in which x is in a statically allocated area beginning at address static. 
Then the actual run-time address of x is stat ic + 12. Although the compiler can 
eventually determine the value of stat ic + 12 at compile time, the position of 
the static area may not be known when intermediate code to access the name 
is generated. In that case, it makes sense to generate three-address code to 
"compute" stat ic + 12, with the understanding that this computation will be 
carried out during the code generation phase, or possibly by the loader, before 
the program runs. The assignment x = 0 then translates into 

If the static area starts at address 100, the target code for this statement is 

8.3.4 Exercises for Section 8.3 

Exercise 8.3.1 : Generate code for the following three-address statements as- 
suming stack allocation where register SP points to the top of the stack. 

c a l l  p 
c a l l  q 
return 
c a l l  r 
return 
return 

Exercise 8.3.2 : Generate code for the following three-address statements as- 
suming stack allocation where register SP points to the top of the stack. 

e) The two statements 

https://hemanthrajhemu.github.io



8.4. BASIC BLOCKS AND FLOW GRAPHS 525 

Exercise 8.3.3 : Generate code for the following three-address statements 
again assuming stack allocation and assuming a and b are arrays whose ele- 
ments are 4-byte values. 

a) The four-statement sequence 

b) The t hree-st atement sequence 

c) The three-statement sequence 

8.4 Basic Blocks and Flow Graphs 

This section introduces a graph representation of intermediate code that is help- 
ful for discussing code generation even if the graph is not constructed explicitly 
by a code-generation algorithm. Code generation benefits from context. We 
can do a better job of register allocation if we know how values are defined 
and used, as we shall see in Section 8.8. We can do a better job of instruction 
selection by looking at sequences of three-address statements, as we shall see in 
Section 8.9. 

The representation is constructed as follows: 

1. Partition the intermediate code into basic blocks, which are maximal se- 
quences of consecutive three-address instructions with the properties that 

(a) The flow of control can only enter the basic block through the first 
instruction in the block. That is, there are no jumps into the middle 
of the block. 

(b) Control will leave the block without halting or branching, except 
possibly at the last instruction in the block. 

2. The basic blocks become the nodes of a flow graph, whose edges indicate 
which blocks can follow which other blocks. 

https://hemanthrajhemu.github.io



526 CHAPTER 8. CODE GENERATION 

The Effect of Interrupts 

The notion that control, once it reaches the beginning of a basic block is 
certain to continue through to the end requires a bit of thought. There are 
many reasons why an interrupt, not reflected explicitly in the code, could 
cause control to leave the block, perhaps never to return. For example, an 
instruction like x = y/z appears not to affect control flow, but if x is 0 it 
could actually cause the program to abort. 

We shall not worry about such possibilities. The reason is as follows. 
The purpose of constructing basic blocks is to optimize the code. Gener- 
ally, when an interrupt occurs, either it will be handled and control will 
come back to the instruction that caused the interrupt, as if control had 
never deviated, or the program will halt with an error. In the latter case, it 
doesn't matter how we optimized the code, even if we depended on control 
reaching the end of the basic block, because the program didn't produce 
its intended result anyway. 

Starting in Chapter 9, we discuss transformations on flow graphs that turn 
the original intermediate code into "optimized" intermediate code from which 
better target code can be generated. The "optimized" intermediate code is 
turned into machine code using the code-generation techniques in this chapter. 

8.4.1 Basic Blocks 

Our first job is to partition a sequence of three-address instructions into basic 
blocks. We begin a new basic block with the first instruction and keep adding 
instructions until we meet either a jump, a conditional jump, or a label on 
the following instruction. In the absence of jumps and labels, control proceeds 
sequentially from one instruction to the next. This idea is formalized in the 
following algorithm. 

Algorithm 8.5 : Partitioning three-address instructions into basic blocks. 

INPUT: A sequence of three-address instructions. 

OUTPUT: A list of the basic blocks for that sequence in which each instruction 
is assigned to exactly one basic block. 

METHOD: First, we determine those instructions in the intermediate code that 
are leaders, that is, the first instructions in some basic block. The instruction 
just past the end of the intermediate program is not included as a leader. The 
rules for finding leaders are: 

1. The first three-address instruction in the intermediate code is a leader. 

https://hemanthrajhemu.github.io



8.4. BASIC BLOCKS AND FLOW GRAPHS 527 

2. Any instruction that is the target of a conditional or unconditional jump 
is a leader. 

3. Any instruction that immediately follows a conditional or unconditional 
jump is a leader. 

Then, for each leader, its basic block consists of itself and all instructions up to 
but not including the next leader or the end of the intermediate program. 17 

Figure 8.7: Intermediate code to set a 10 x 10 matrix to an identity matrix 

Example 8.6 : The intermediate code in Fig. 8.7 turns a 10 x 10 matrix a into 
an identity matrix. Although it is not important where this code comes from, 
it might be the translation of the pseudocode in Fig. 8.8. In generating the 
intermediate code, we have assumed that the real-valued array elements take 8 
bytes each, and that the matrix a is stored in row-major form. 

for i from 1 to 10 do 
for j from 1 to 10 do 

a[i, j ]  = 0.0; 
for i from 1 to 10 do 

a[i, i] = 1.0; 

Figure 8.8: Source code for Fig. 8.7 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

First, instruction 1 is a leader by rule (I)  of Algorithm 8.5. To find the 
other leaders, we first need to find the jumps. In this example, there are three 
jumps, all conditional, at instructions 9, 11, and 17. By rule (2), the targets of 
these jumps are leaders; they are instructions 3, 2, and 13, respectively. Then, 
by rule (3), each instruction following a jump is a leader; those are instructions 
10 and 12. Note that no instruction follows 17 in this code, but if there were 
code following, the 18th instruction would also be a leader. 

We conclude that the leaders are instructions 1, 2, 3, 10, 12, and 13. The 
basic block of each leader contains all the instructions from itself until just 
before the next leader. Thus, the basic block of 1 is just 1, for leader 2 the 
block is just 2. Leader 3, however, has a basic block consisting of instructions 3 
through 9, inclusive. Instruction 10's block is 10 and 11; instruction 12's block 
is just 12, and instruction 13's block is 13 through 17. 

8.4.2 Next-Use Information 

Knowing when the value of a variable will be used next is essential for generating 
good code. If the value of a variable that is currently in a register will never be 
referenced subsequently, then that register can be assigned to another variable. 

The use of a name in a three-address statement is defined as follows. Suppose 
three-address statement i assigns a value to x. If statement j has x as an 
operand, and control can flow from statement i to j along a path that has 
no intervening assignments to x, then we say statement j uses the value of x 
computed at statement i .  We further say that x is live at statement i. 

We wish to determine for each three-address statement x = y + z what the 
next uses of x, y, and z are. For the present, we do not concern ourselves with 
uses outside the basic block containing this three-address statement. 

Our algorithm to determine liveness and next-use information makes a back- 
ward pass over each basic block. We store the information in the symbol table. 
We can easily scan a stream of three-address statements to find the ends of ba- 
sic blocks as in Algorithm 8.5. Since procedures can have arbitrary side effects, 
we assume for convenience that each procedure call starts a new basic block. 

Algorithm 8.7: Determining the liveness and next-use information for each 
statement in a basic block. 

INPUT: A basic block B of three-address statements. We assume that the 
symbol table initially shows all nontemporary variables in B as being live on 
exit. 

OUTPUT: At each statement i :  x = y + z in B, we attach to i the liveness and 
next-use information of x, y, and z. 

METHOD: We start at the last statement in B and scan backwards to the 
beginning of B. At each statement i :  x = y + z in B, we do the following: 

1. Attach to statement i the information currently found in the symbol table 
regarding the next use and liveness of x, y, and y. 

https://hemanthrajhemu.github.io



8.4. BASIC BLOCKS AND FLOW GRAPHS 

2. In the symbol table, set x to "not live" and "no next use." 

3. In the symbol table, set y and z to "live" and the next uses of y and z to 
2. 

Here we have used + as a symbol representing any operator. If the three-address 
statement i is of the form x = + y or x = y, the steps are the same as above, 
ignoring z .  Note that the order of steps (2) and (3) may not be interchanged 
because x may be y or x. 

8.4.3 Flow Graphs 

Once an intermediate-code program is partitioned into basic blocks, we repre- 
sent the flow of control between them by a flow graph. The nodes of the flow 
graph are the basic blocks. There is an edge from block B to block C if and 
only if it is possible for the first instruction in block C to immediately follow 
the last instruction in block B. Thete are two ways that such an edge could be 
justified: 

There is a conditional or unconditional jump from the end of B to the 
beginning of C. 

C immediately follows B in the original order of the three-address instruc- 
tions, and B does not end in an unconditional jump. 

We say that B is a predecessor of C,  and C is a successor of B.  
Often we add two nodes, called the entry and exit, that do not correspond 

to executable intermediate instructions. There is an edge from the entry to the 
first executable node of the flow graph, that is, to the basic block that comes 
from the first instruction of the intermediate code. There is an edge to the 
exit from any basic block that contains an instruction that could be the last 
executed instruction of the program. If the final instruction of the program is 
not an unconditional jump, then the block containing the final instruction of 
the program is one predecessor of the exit, but so is any basic block that has a 
jump to code that is not part of the program. 

Example 8.8 : The set of basic blocks constructed in Example 8.6 yields the 
flow graph of Fig. 8.9. The entry points to basic block B1, since B1 contains 
the first instruction of the program. The only successor of B1 is B2, because 
B1 does not end in an unconditional jump, and the leader of B2 immediately 
follows the end of B1. 

Block B3 has two successors. One is itself, because the leader of B3, instruc- 
tion 3, is the target of the conditional jump a t  the end of B3, instruction 9. The 
other successor is B4, because control can fall through the conditional jump at 
the end of B3 and next enter the leader of B4. 

Only Bs points to the exit of the flow graph, since the only way to get to 
code that follows the program from which we constructed the flow graph is to 
fall through the conditional jump that ends B6. 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

ENTRY 

B1 

Figure 8.9: Flow graph from Fig. 8.7 

8.4.4 Representation of Flow Graphs 

First, note from Fig. 8.9 that in the flow graph, it is normal to replace the jumps 
to instruction numbers or labels by jumps to basic blocks. Recall that every 
conditional or unconditional jump is to the leader of some basic block, and it 
is to this block that the jump will now refer. The reason for this change is that 
after constructing the flow graph, it is common to make substantial changes 
to the instructions in the various basic blocks. If jumps were to instructions, 
we would have to fix the targets of the jumps every time one of the target 
instructions was changed. 

Flow graphs, being quite ordinary graphs, can be represented by any of the 
data structures appropriate for graphs. The content of nodes (basic blocks) 
need their own representation. We might represent the content of a node by a 

https://hemanthrajhemu.github.io



8.4. BASIC BLOCKS AND FLOW GRAPHS 531 

pointer to  the leader in the array of three-address instructions, together with a 
count of the number of instructions or a second pointer to  the last instruction. 
However, since we may be changing the number of instructions in a basic block 
frequently, it is likely to  be more efficient to  create a linked list of instructions 
for each basic block. 

8.4.5 Loops 

Programming-language constructs like while-statements, do-while-statements, 
and for-statements naturally give rise to loops in programs. Since virtually every 
program spends most of its time in executing its loops, it is especially important 
for a compiler to  generate good code for loops. Many code transformations 
depend upon the identification of "loops" in a flow graph. We say that a set of 
nodes L in a flow graph is a loop if 

1. There is a node in L called the loop entry with the property that no other 
node in L has a predecessor outside L. That is, every path from the entry 
of the entire flow graph to any node in L goes through the loop entry. 

2. Every node in L has a nonempty path, completely within L, to  the entry 
of L. 

Example 8.9 : The flow graph of Fig. 8.9 has three loops: 

1. B3 by itself. 

2. Bg by itself. 

The first two are single nodes with an edge to the node itself. For instance, 
B3 forms a loop with B3 as its entry. Note that the second requirement for a 
loop is that there be a nonempty path from B3 to itself. Thus, a single node 
like B2, which does not have an edge B2 + B2, is not a loop, since there is no 
nonempty path from B2 to itself within {B2). 

The third loop, L = {B2, B3, B4), has B2 as its loop entry. Note that among 
these three nodes, only B2 has a predecessor, B1, that is not in L. Further, each 
of the three nodes has a nonempty path to  B2 staying within L. For instance, 
B2 has the path B2 + B3 + B4 + B2. 

8.4.6 Exercises for Section 8.4 

Exercise 8.4.1 : Figure 8.10 is a simple matrix-multiplication program. 

a) Translate the program into three-address statements of the type we have 
been using in this section. Assume the matrix entries are numbers that 
require 8 bytes, and that matrices are stored in row-major order. 

https://hemanthrajhemu.github.io



532 CHAPTER 8. CODE GENERATION 

b) Construct the flow graph for your code from (a). 

c) Identify the loops in your flow graph from (b). 

f o r  (i=O; i < n ;  i++) 
f o r  (j=O; j<n;  j++) 

c [ i ]  [j]  = 0.0;  
f o r  (i=O; i < n ;  i++) 

f o r  (j=O; j<n;  j++) 
f o r  (k=O; k<n; k++) 

c [ i ]  Cjl = cCil Cjl + aCil Ckl*bCkl Cjl ; 

Figure 8.10: A matrix-multiplication algorithm 

Exercise 8.4.2 : Figure 8.11 is code to count the number of primes from 2 to 
n, using the sieve method on a suitably large array a. That is, a[i] is TRUE at 
the end only if there is no prime & or less that evenly divides i. We initialize 
all a[i] to TRUE and then set a[ j ]  to FALSE if we find a divisor of j. 

a) Translate the program into three-address statements of the type we have 
been using in this section. Assume integers require 4 bytes. 

b) Construct the flow graph for your code from (a). 

c) Identify the loops in your flow graph from (b). 

f o r  ( i=2;  i<=n;  i++) 
ac i ]  = TRUE; 

count = 0 ;  
s = s q r t  (n) ; 
f o r  ( i=2 ;  i < = s ;  i++) 

i f  (a [ i ] )  /* i has been found t o  be a  prime */ C 
count++ ; 
f o r  ( j=2*i ;  j<=n; j  = j + i )  

a [ j ]  = FALSE; /* no mul t ip le  of i is a  prime */ 

Figure 8.11: Code to sieve for primes 

https://hemanthrajhemu.github.io



8.5. OPTIMIZATION OF BASIC BLOCKS 

8.5 Optimization of Basic Blocks 

We can often obtain a substantial improvement in the running time of code 
merely by performing local optimization within each basic block by itself. More 
thorough global optimization, which looks at how information flows among the 
basic blocks of a program, is covered in later chapters, starting with Chapter 9. 
It is a complex subject, with many different techniques to consider. 

8.5.1 The DAG Representation of Basic Blocks 

Many important techniques for local optimization begin by transforming a basic 
block into a DAG (directed acyclic graph). In Section 6.1 . l ,  we introduced the 
DAG as a representation for single expressions. The idea extends naturally 
to the collection of expressions that are created within one basic block. We 
construct a DAG for a basic blockas follows: 

1. There is a node in the DAG for each of the initial values of the variables 
appearing in the basic block. 

2. There is a node N associated with each statement s within the block. 
The children of N are those nodes corresponding to statements that are 
the last definitions, prior to s ,  of the operands used by s. 

3. Node N is labeled by the operator applied at s ,  and also attached to N 
is the list of variables for which it is the last definition within the block. 

4. Certain nodes are designated output  nodes. These are the nodes whose 
variables are live o n  exit from the block; that is, their values may be 
used later, in another block of the flow graph. Calculation of these "live 
variables" is a matter for global flow analysis, discussed in Section 9.2.5. 

The DAG representation of a basic block lets us perform several code- 
improving transformations on the code represented by the block. 

a) We can eliminate local common subexpressions, that is, instructions that 
compute a value that has already been computed. 

b) We can eliminate dead code, that is, instructions that compute a value 
that is never used. 

c) We can reorder statements that do not depend on one another; such 
reordering may reduce the time a temporary value needs to be preserved 
in a register. 

d) We can apply algebraic laws to reorder operands of three-address instruc- 
tions, and sometimes t hereby simplify t he computation. 

https://hemanthrajhemu.github.io



534 CHAPTER 8. CODE GENERATION 

8.5.2 Finding Local Common Subexpressions 

Common subexpressions can be detected by noticing, as a new node M is about 
to be added, whether there is an existing node N with the same children, in 
the same order, and with the same operator. If so, N computes the same value 
as M and may be used in its place. This technique was introduced as the 
"value-number" method of detecting common subexpressions in Section 6.1.1. 

Example 8.10 : A DAG for the block 

is shown in Fig. 8.12. When we construct the node for the third statement 
c = b + c, we know that the use of b in b + c refers to the node of Fig. 8.12 
labeled -, because that is the most recent definition of b. Thus, we do not 
confuse the values computed at statements one and three. 

Figure 8.12: DAG for basic block in Example 8.10 

However, the node corresponding to the fourth statement d = a - d has the 
operator - and the nodes with attached variables a and do as children. Since 
the operator and the children are the same as those for the node corresponding 
to statement two, we do not create this node, but add d to the list of definitions 
for the node labeled -. 

It might appear that, since there are only three nonleaf nodes in the DAG of 
Fig. 8.12, the basic block in Example 8.10 can be replaced by a block with only 
three statements. In fact, if b is not live on exit from the block, then we do not 
need to compute that variable, and can use d to receive the value represented 
by the node labeled -. in Fig. 8.12. The block then becomes 

https://hemanthrajhemu.github.io



8.5. OPTIMIZATION OF BASIC BLOCKS 535 

However, if both b and d are live on exit, then a fourth statement must be 
used to copy the value from one to the other.' 

Example 8.11 : When we look for common subexpressions, we really are look- 
ing for expressions that are guaranteed to compute the same value, no matter 
how that value is computed. Thus, the DAG method will miss the fact that the 
expression computed by the first and fourth statements in the sequence 

is the same, namely bo + co. That is, even though b and c both change between 
the first and last statements, their sum remains the same, because b + c = 
( b  - d)  + (c + d) .  The DAG for this sequence is shown in Fig. 8.13, but does 
not exhibit any common subexpressions. However, algebraic identities applied 
to the DAG, as discussed in Section 8.5.4, may expose the equivalence. 

Figure 8.13: DAG for basic block in Example 8.11 

8.5.3 Dead Code Elimination 

The operation on DAG's that corresponds to dead-code elimination can be im- 
plemented as follows. We delete from a DAG any root (node with no ancestors) 
that has no live variables attached. Repeated application of this transformation 
will remove all nodes from the DAG that correspond to dead code. 

Example 8.12: If, in Fig. 8.13, a and b are live but c and e are not, we can 
immediately remove the root labeled e .  Then, the node labeled c becomes a 
root and can be removed. The roots labeled a and b remain, since they each 
have live variables attached. 

'1n general, we must be careful, when reconstructing code from DAG's, how we choose 
the names of variables. If a variable x is defined twice, or if it is assigned once and the initial 
value xo is also used, then we must make sure that we do not change the value of x until we 
have made all uses of the node whose value x previously held. 

https://hemanthrajhemu.github.io



536 CHAPTER 8. CODE GENERATION 

8.5.4 The Use of Algebraic Identities 

Algebraic identities represent another important class of optimizations on basic 
blocks. For example, we may apply arithmetic identities, such as 

to eliminate computations from a basic block. 
Another class of algebraic optimizations includes local reduction in strength, 

that is, replacing a more expensive operator by a cheaper one as in: 

x - - X X X  

2 x x = x + x  
4 2  = x x 0.5 

A third class of related optimizations is constant folding. Here we evaluate 
constant expressions at  compile time and replace the constant expressions by 
their  value^.^ Thus the expression 2 * 3.14 would be replaced by 6.28. Many 
constant expressions arise in practice because of the frequent use of symbolic 
constants in programs. 

The DAG-construction process can help us apply these and other more 
general algebraic transformations such as commutativity and associativity. For 
example, suppose the language reference manual specifies that * is commutative; 
that is, x* y = y*x. Before we create a new node labeled * with left child M and 
right child N ,  we always check whether such a node already exists. However, 
because * is commutative, we should then check for a node having operator *, 
left child N ,  and right child M .  

The relational operators such as < and = sometimes generate unexpected 
common subexpressions. For example, the condition x > y can also be tested 
by subtracting the arguments and performing a test on the condition code set 
by the s~b t r ac t ion .~  Thus, only one node of the DAG may need to be generated 
for x - y and x > y. 

Associative laws might also be applicable to expose common subexpressions. 
For example, if the source code has the assignments 

the following intermediate code might be generated: 

2~r i thmet ic  expressions should be evaluated the same way at compile time as they are at 
run time. K. Thompson has suggested an elegant solution to constant folding: compile the 
constant expression, execute the target code on the spot, and replace the expression with the 
result. Thus, the compiler does not need to contain an interpreter. 

3 ~ h e  subtraction can, however, introduce overflows and underflows while a compare in- 
struction would not. 

https://hemanthrajhemu.github.io



8.5. OPTIMIZATION OF BASIC BLOCKS 

If t is not needed outside this block, we can change this sequence to 

using both the associativity and commutativity of +. 
The compiler writer should examine the language reference manual care- 

fully to  determine what rearrangements of computations are permitted, since 
(because of possible overflows or underflows) computer arithmetic does not al- 
ways obey the algebraic identities of mathematics. For example, the Fortran 
standard states that a compiler may evaluate any mathematically equivalent 
expression, provided that the integrity of parentheses is not violated. Thus, 
a compiler may evaluate x * y - x * x as x * (y - x), but it may not evaluate 
a + (b - c) as ( a  + b) - c. A Fortran compiler must therefore keep track of where 
parentheses were present in the source language expressions if it is to  optimize 
programs in accordance with the language definition. 

8.5.5 Representation of Array References 

At first glance, it might appear that the array-indexing instructions can be 
treated like any other operator. Consider for instance the sequence of three- 
address statements: 

If we think of a [il as an operation involving a and i, similar to  a  + i ,  then 
it might appear as if the two uses of a[il  were a common subexpression. In 
that case, we might be tempted t o  "optimize" by replacing the third instruction 
z = a Cil by the simpler z = x. However, since j could equal i, the middle 
statement may in fact change the value of a [il ; thus, it is not legal to make 
this change. 

The proper way to represent array accesses in a DAG is as follows. 

1. An assignment from an array, like x = a Cil , is represented by creating a 
node with operator =[] and two children representing the initial value of 
the array, a0 in this case, and the index i. Variable x becomes a label of 
this new node. 

2. An assignment to  an array, like a [ j l  = y, is represented by a new node 
with operator [I= and three children representing ao, j and y. There is 
no variable labeling this node. What is different is that the creation of 

* 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

this node kzlls all currently constructed nodes whose value depends on ao. 
A node that has been killed cannot receive any more labels; that is, it 
cannot become a common subexpression. 

Example 8.13 : The DAG for the basic block 

is shown in Fig. 8.14. The node N for x is created first, but when the node 
labeled [ 1 = is created, N is killed. Thus, when the node for x is created, it 
cannot be identified with N, and a new node with the same operands a0 and 
io must be created instead. 

Figure 8.14: The DAG for a sequence of array assignments 

Example 8.14 : Sometimes, a node must be killed even though none of its 
children have an array like a0 in Example 8.13 as attached variable. Likewise, 
a node can kill if it has a descendant that is an array, even though none of its 
children are array nodes. For instance, consider the three-address code 

What is happening here is that, for efficiency reasons, b has been defined to 
be a position in an array a. For example, if the elements of a are four bytes long, 
then b represents the fourth element of a. If j and i represent the same value, 
then b [i] and b[j] represent the same location. Therefore it is important 
to have the third instruction, b[j] = y, kill the node with x as its attached 
variable. However, as we see in Fig. 8.15, both the killed node and the node 
that does the killing have z+o as a grandchild, not as a child. 

https://hemanthrajhemu.github.io



8.5. OPTIMIZATION OF BASIC BLOCKS 

Figure 8.15: A node that kills a use of an array need not have that array as a 
child 

8.5.6 Pointer Assignments and Procedure Calls 

When we assign indirectly through a pointer, as in the assignments 

we do not know what p or q point to. In effect, x = *p is a use of every 
variable whatsoever, and *q = y is a possible assignment to  every variable. As 
a consequence, the operator =* must take all nodes that are currently associated 
with identifiers as arguments, which is relevant for dead-code elimination. More 
importantly, the *= operator kills all other nodes so far constructed in the DAG. 

There are global pointer analyses one could perform that might limit the set 
of variables a pointer could reference at a given place in the code. Even local 
analysis could restrict the scope of a pointer. For instance, in the sequence 

we know that x, and no other variable, is given the value of y, so we don't need 
to kill any node but the node to which x was attached. 

Procedure calls behave much like assignments through pointers. In the 
absence of global data-flow information, we must assume that a procedure uses 
and changes any data to  which it has access. Thus, if variable x is in the scope 
of a procedure P, a call to P both uses the node with attached variable x and 
kills that node. 

8.5.7 Reassembling Basic Blocks From DAG's 

After we perform whatever optimizations are possible while constructing the 
DAG or by manipulating the DAG once constructed, we may reconstitute the 
three-address code for the basic block from which we built the DAG. For each 

https://hemanthrajhemu.github.io



540 CHAPTER 8. CODE GENERATION 

node that has one or more attached variables, we construct a three-address 
statement that computes the value of one of those variables. We prefer to  
compute the result into a variable that is live on exit from the block. However, if 
we do not have global live-variable information to work from, we need to assume 
that every variable of the program (but not temporaries that are generated by 
the compiler to  process expressions) is live on exit from the block. 

If the node has more than one live variable attached, then we have to  in- 
troduce copy statements to  give the correct value to  each of those variables. 
Sometimes, global optimization can eliminate those copies, if we can arrange t o  
use one of two variables in place of the other. 

Example 8.15 : Recall the DAG of Fig. 8.12. In the discussion following 
Example 8.10, we decided that if b is not live on exit from the block, then the 
three statements 

suffice to  reconstruct the basic block. The third instruction, c = d + c, must use 
d as an operand rather than b, because the optimized block never computes b. 

If both b and d are live on exit, or if we are not sure whether or not they 
are live on exit, then we need to compute b as well as d. We can do so with the 
sequence 

This basic block is still more efficient than the original. Although the number 
of instructions is the same, we have replaced a subtraction by a copy, which 
tends to  be less expensive on most machines. Further, it may be that by doing 
a global analysis, we can eliminate the use of this computation of b outside 
the block by replacing it by uses of d. In that case, we can come back to this 
basic block and eliminate b = d later. Intuitively, we can eliminate this copy if 
wherever this value of b is used, d is still holding the same value. That situation 
may or may not be true, depending on how the program recomputes d. 

When reconstructing the basic block from a DAG, we not only need to worry 
about what variables are used to  hold the values of the DAG's nodes, but we 
also need to worry about the order in which we list the instructions computing 
the values of the various nodes. The rules to  remember are 

1. The order of instructions must respect the order of nodes in the DAG. 
That is, we cannot compute a node's value until we have computed a 
value for each of its children. 

https://hemanthrajhemu.github.io



8.5. OPTIMIZATION OF BASIC BLOCKS 541 

2. Assignments to an array must follow all previous assignments to, or eval- 
uations from, the same array, according to the order of these instructions 
in the original basic block. 

3. Evaluations of array elements must follow any previous (according to the 
original block) assignments to the same array. The only permutation 
allowed is that two evaluations from the same array may be done in either 
order, as long as neither crosses over an assignment to that array. 

4. Any use of a variable must follow all previous (according to the original 
block) procedure calls or indirect assignments through a pointer. 

5. Any procedure call or indirect assignment through a pointer must follow 
all previous (according to the original block) evaluations of any variable. 

That is, when reordering code, no statement may cross a procedure call or 
assignment through a pointer, and uses of the same array may cross each other 
only if both are array accesses, but not assignments to elements of the array. 

8.5.8 Exercises for Section 8.5 

Exercise 8.5.1 : Construct the DAG for the basic block 

Exercise 8.5.2 : Simplify the three-address code of Exercise 8.5.1, assuming 

a) Only a is live on exit from the block. 

b) a ,  b, and c are live on exit from the block. 

Exercise 8.5.3 : Construct the basic block for the code in block B6 of Fig. 8.9. 
Do not forget to include the comparison i 5 10. 

Exercise 8.5.4 : Construct the basic block for the code in block B3 of Fig. 8.9. 

Exercise 8.5.5 : Extend Algorithm 8.7 to process three-statements of the form 

a) a[il = b 

b) a = b [i] 

Exercise 8.5.6 : Construct the DAG for the basic block 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

on the assumption that 

a) p can point anywhere. 

b) p can point only to b or d. 

! Exercise 8.5.7 : If a pointer or array expression, such as a Cil or *p is assigned 
and then used, without the possibility of being changed in the interim, we can 
take advantage of the situation to simplify the DAG. For example, in the 
code of Exercise 8.5.6, since p is not assigned between the second and fourth 
statements, the statement e = *p can be replaced by e = c, regardless of what 
p points to. Revise the DAG-construction algorithm to take advantage of such 
situations, and apply your algorithm to the code of Example 8.5.6. 

Exercise 8.5.8 : Suppose a basic block is formed from the C assignment state- 
ment s 

a) Give the three-address statements (only one addition per statement) for 
this block. 

b) Use the associative and commutative laws to modify the block to use the 
fewest possible number of instructions, assuming both x and y are live on 
exit from the block. 

8.6 A Simple Code Generator 

In this section, we shall consider an algorithm that generates code for a single 
basic block. It considers each three-address instruction in turn, and keeps track 
of what values are in what registers so it can avoid generating unnecessary loads 
and stores. 

One of the primary issues during code generation is deciding how to use 
registers to best advantage. There are four principal uses of registers: 

In most machine architectures, some or all of the operands of an operation 
must be in registers in order to perform the operation. 

Registers make good temporaries - places to hold the result of a subex- 
pression while a larger expression is being evaluated, or more generally, a 
place to hold a variable that is used only within a single basic block. 

https://hemanthrajhemu.github.io



8.6. A SIMPLE CODE GENERATOR 

Registers are used to hold (global) values that are computed in one basic 
block and used in other blocks, for example, a loop index that is incre- 
mented going around the loop and is used several times within the loop. 

Registers are often used to help with run-time storage management, for 
example, to manage the run-time stack, including the maintenance of 
stack pointers and possibly the top elements of the stack itself. 

These are competing needs, since the number of registers available is limited. 
The algorithm in this section assumes that some set of registers is available 

to hold the values that are used within the block. Typically, this set of regis- 
ters does not include all the registers of the machine, since some registers are 
reserved for global variables and managing the stack. We assume that the basic 
block has already been transformed into a preferred sequence of three-address 
instructions, by transformations such as combining common subexpressions. 
We further assume that for each operator, there is exactly one machine instruc- 
tion that takes the necessary operands in registers and performs that operation, 
leaving the result in a register. The machine instructions are of the form 

LD reg, mem 

ST mem, reg 

OP  reg, reg, reg 

8.6.1 Register and Address Descriptors 

Qur code-generation algorithm considers each three-address instruction in turn 
and decides what loads are necessary to get the needed operands into registers. 
After generating the loads, it generates the operation itself. Then, if there is a 
need to store the result into a memory location, it also generates that store. 

In order to make the needed decisions, we require a data structure that tells 
us what program variables currently have their value in a register, and which 
register or registers, if so. We also need to know whether the memory location 
for a given variable currently has the proper value for that variable, since a new 
value for the variable may have been computed in a register and not yet stored. 
The desired data structure has the following descriptors: 

1. For each available register, a register descriptor keeps track of the variable 
names whose current value is in that register. Since we shall use only those 
registers that are available for local use within a basic block, we assume 
that initially, all register descriptors are empty. As the code generation 
progresses, each register will hold the value of zero or more names. 

2. For each program variable, an address descriptor keeps track of the loca- 
tion or locations where the current value of that variable can be found. 
The location might be a register, a memory address, a stack location, or 
some set of more than one of these. The information can be stored in the 
symbol-table entry for that variable name. 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

8.6.2 The Code-Generation Algorithm 

An essential part of the algorithm is a function getReg(I), which selects regis- 
ters for each memory location associated with the three-address instruction I. 
Function getReg has access to the register and address descriptors for all the 
variables of the basic block, and may also have access to certain useful data-flow 
information such as the variables that are live on exit from the block. We shall 
discuss getReg after presenting the basic algorithm. While we do not know the 
total number of registers available for local data belonging to a basic block, we 
assume that there are enough registers so that, after freeing all available regis- 
ters by storing their values in memory, there are enough registers to accomplish 
any three-address operation. 

In a three-address instruction such as x = y + z, we shall treat + as a generic 
operator and ADD as the equivalent machine instruction. We do not, therefore, 
take advantage of commutativity of +. Thus, when we implement the operation, 
the value of y must be in the second register mentioned in the ADD instruction, 
never the third. A possible improvement to the algorithm is to generate code 
for both x = y + z and x = z + y whenever + is a commutative operator, and pick 
the better code sequence. 

Machine Instructions for Operations 

For a three-address instruction such as x = y + z, do the following: 

1. Use getReg(x = y + z) to select registers for x, y, and z. Call these R,, 
R,, and R,. 

2. If y is not in R, (according to the register descriptor for R,), then issue 
an instruction LD R,, y', where y' is one of the memory locations for y 
(according to the address descriptor for y). 

3. Similarly, if z is not in R,, issue and instruction LD R,, z', where z' is a 
location for x . 

4. Issue the instruction ADD R,, R, , RZ. 

Machine Instructions for Copy Statements 

There is an important special case: a three-address copy statement of the form 
x = y. We assume that getReg will always choose the same register for both 
x and y. If y is not already in that register R,, then generate the machine 
instruction LD R,, y. If y was already in R,, we do nothing. It is only necessary 
that we adjust the register description for R, so that it includes x as one of the 
values found there. 

https://hemanthrajhemu.github.io



8.6. A SIMPLE CODE GENERATOR 

Ending the Basic Block 

As we have described the algorithm, variables used by the block may wind up 
with their only location being a register. If the variable is a temporary used 
only within the block, that is fine; when the block ends, we can forget about 
the value of the temporary and assume its register is empty. However, if the 
variable is live on exit from the block, or if we don't know which variables are 
live on exit, then we need to assume that the value of the variable is needed 
later. In that case, for each variable x whose location descriptor does not say 
that its value is located in the memory location for x, we must generate the 
instruction ST x, R,  where R is a register in which x's value exists at the end of 
the block. 

Managing Register and Address Descriptors 

As the code-generation algorithm issues load, store, and other machine instruc- 
tions, it needs to update the register and address descriptors. The rules are as 
follows: 

1. For the instruction LD R, x 

(a) Change the register descriptor for register R so it holds only x. 

(b) Change the address descriptor for x by adding register R as an ad- 
ditional location. 

2. For the instruction ST x, R, change the address descriptor for x to include 
its own memory location. 

3. For an operation such as ADD Rx,  R,, R, implementing a three-address 
instruction x = y + x 
(a) Change the register descriptor for Rx so that it holds only x. 

(b) Change the address descriptor for x so that its only location is fix. 
Note that the memory location for x is not now in the address de- 
scriptor for x. 

(c) Remove Rx from the address descriptor of any variable other than 
x. 

4. When we process a copy statement x = y, after generating the load for y 
into register By, if needed, and after managing descriptors as for all load 
statements (per rule I): 

(a) Add x to the register descriptor for R,. 

(b) Change the address descriptor for x so that its only location is R, . 

Example 8.16 : Let us translate the basic block consisting of the three-address 
statements 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

Here we assume that t, u, and v are temporaries, local to the block, while a ,  b, 
c, and d are variables that are live on exit from the block. Since we have not 
yet discussed how the function getReg might work, we shall simply assume that 
there are as many registers as we need, but that when a register's value is no 
longer needed (for example, it holds only a temporary, all of whose uses have 
been passed), then we reuse its register. 

A summary of all the machine-code instructions generated is in Fig. 8.16. 
The figure also shows the register and address descriptors before and after the 
translation of each three-address instruction. 

R 1  R 2  R 3  a b c d t u v  

LD R 1 ,  a 
LD R 2 ,  b 
SUB R 2 ,  R 1 ,  R 2  

LD R 3 ,  c 
SUB R l ,  R i ,  R 3  

ADD R i ,  R 3 ,  R 1  

u  ( t  ( c  

I d  l a  ( v  1 I R 2 l b  l c  ( R 1 1  I R 3  I 
exit 

I a I b lc ,~31 d I R 2  1 R 1  1 1 

Figure 8.16: Instructions generated and the changes in the register and address 
descriptors 

v = t + u  
ADD R 3 ,  R 2 ,  R l  

For the first three-address instruction, t = a - b we need to issue three in- 
structions, since nothing is in a register initially. Thus, we see a and b loaded 

https://hemanthrajhemu.github.io



8.6. A SIMPLE CODE GENERATOR 547 

into registers R 1  and R2, and the value t produced in register R2. Notice that 
we can use R2 for t because the value b previously in R2  is not needed within 
the block. Since b is presumably live on exit from the block, had it not been 
in its own memory location (as indicated by its address descriptor), we would 
have had to store R2 into b first. The decision to do so, had we needed R2, 
would be taken by getReg. 

The second instruction, u = a - c, does not require a load of a, since it is 
already in register R1. Further, we can reuse R 1  for the result, u, since the value 
of a, previously in that register, is no longer needed within the block, and its 
value is in its own memory location if a is needed outside the block. Note that 
we change the address descriptor for a to indicate that it is no longer in R1,  but 
is in the memory location called a. 

The third instruction, v = t + u, requires only the addition. Further, we can 
use R3 for the result, v, since the value of c in that register is no longer needed 
within the block, and c has its value in its own memory location. 

The copy instruction, a = d, requires a load of d, since it is not in memory. 
We show register R2's descriptor holding both a and d. The addition of a to 
the register descriptor is the result of our processing the copy statement, and 
is not the result of any machine instruction. 

The fifth instruction, d = v + u, uses two values that are in registers. Since 
u is a temporary whose value is no longer needed, we have chosen to reuse its 
register R 1  for the new value of d. Notice that d is now in only R1,  and is not 
in its own memory location. The same holds for a, which is in R2 and not in 
the memory location called a. As a result, we need a "coda" to the machine 
code for the basic block that stores the live-on-exit variables a and d into their 
memory locations. We show these as the last two instructions. 

8.6.3 Design of the Function getReg 

Lastly, let us consider how to implement getReg(I), for a three-address in- 
struction I. There are many options, although there are also some absolute 
prohibitions against choices that lead to incorrect code due to the loss of the 
value of one or more live variables. We begin our examination with the case of 
an operation step, for which we again use x = y + x as the generic example. 
First, we must pick a register for y and a register for x .  The issues are the same, 
so we shall concentrate on picking register Ry for y.  The rules are as follows: 

1. If y is currently in a register, pick a register already containing y as R,. 
Do not issue a machine instruction to load this register, as none is needed. 

2. If y is not in a register, but there is a register that is currently empty, 
pick one such register as Ry . 

3. The difficult case occurs when y is not in a register, and there is no register 
that is currently empty. We need to pick one of the allowable registers 
anyway, and we need to make it safe to reuse. Let R be a candidate 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

register, and suppose v is one of the variables that the register descriptor 
for R says is in R. We need to make sure that v's value either is not really 
needed, or that there is somewhere else we can go to get the value of R. 
The possibilities are: 

(a) If the address descriptor for v says that v is somewhere besides R, 
then we are OK. 

(b) If v is x, the vaIue being computed by instruction I, and x is not 
also one of the other operands of instruction I (z in this example), 
then we are OK. The reason is that in this case, we know this value 
of x is never again going to be used, so we are free to ignore it. 

(c) Otherwise, if v is not used later (that is, after the instruction I, there 
are no further uses of v, and if v is live on exit from the block, then 
v is recomputed within the block), then we are OK. 

(d) If we are not OK by one of the first two cases, then we need to 
generate the store instruction ST v, R to place a copy of v in its own 
memory location. This operation is called a spill. 

Since R may hold several variables at the moment, we repeat the above 
steps for each such variable v. At the end, R's "score" is the number of 
store instructions we needed to generate. Pick one of the registers with 
the lowest score. 

Now, consider the selection of the register Rx. The issues and options are 
almost as for y, so we shall only mention the differences. 

1. Since a new value of x is being computed, a register that holds only x is 
always an acceptable choice for Rx. This statement holds even if x is one 
of y and z, since our machine instructions allows two registers to be the 
same in one instruction. 

2. If y is not used after instruction I ,  in the sense described for variable v in 
item (3c), and R, holds only y after being loaded, if necessary, then R, 
can also be used as Rx. A similar option holds regarding x and R,. 

The last matter to consider specially is the case when I is a copy instruction 
x = y. We pick the register R, as above. Then, we always choose Rx = R,. 

8.6.4 Exercises for Section 8.6 

Exercise 8.6.1 : For each of the following C assignment statements 

https://hemanthrajhemu.github.io



8.7. PEEPHOLE OPTIMIZATION 

generate three-address code, assuming that all array elements are integers tak- 
ing four bytes each. In parts (d) and (e), assume that a, b, and c are constants 
giving the location of the first (0th) elements of the arrays with those names, 
as in all previous examples of array accesses in this chapter. 

! Exercise 8.6.2 : Repeat Exercise 8.6.1 parts (d) and (e), assuming that the 
arrays a, b, and c are located via pointers, pa, pb, and pc, respectively, pointing 
to the locations of their respective first elements. 

Exercise 8.6.3 : Convert your three-address code from Exercise 8.6.1 into ma- 
chine code for the machine model of this section. You may use as many registers 
as you need. 

Exercise 8.6.4 : Convert your three-address code from Exercise 8.6.1 into ma- 
chine code, using the simple code-generation algorithm of this section, assuming 
three registers are available. Show the register and address descriptors after 
each step. 

Exercise 8.6.5: Repeat Exercise 8.6.4, but assuming only two registers are 
available. 

8.7 Peephole Optimization 

While most production compilers produce good code through careful instruc- 
tion selection and register allocation, a few use an alternative strategy: they 
generate naive code and then improve the quality of the target code by applying 
"optimizing" transformations to the target program. The term "optimizing" is 
somewhat misleading because there is no guarantee that the resulting code is 
optimal under any mathematical measure. Nevertheless, many simple transfor- 
mations can significantly improve the running time or space requirement of the 
target program. 

A simple but effective technique for locally improving the target code is 
peephole optimization, which is done by examining a sliding window of target 
instructions (called the peephole) and replacing instruction sequences within 
the peephole by a shorter or faster sequence, whenever possible. Peephole 
optimization can also be applied directly after intermediate code generation to 
improve the intermediate representation. 

The peephole is a small, sliding window on a program. The code in the 
peephole need not be contiguous, although some implementations do require 
this. It is characteristic of peephole optimization that each improvement may 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

spawn opportunities for additional improvements. In general, repeated passes 
over the target code are necessary to get the maximum benefit. In this sec- 
tion, we shall give the following examples of program transformations that are 
characteristic of peephole optimizations: 

Redundant-instruction elimination 

Flow-of-control optimizations 

Algebraic simplifications 

Use of machine idioms 

8.7.1 Eliminating Redundant Loads and Stores 

If we see the instruction sequence 

LD a, RO 
ST RO, a 

in a target program, we can delete the store instruction because whenever it is 
executed, the first instruction will ensure that the value of a has already been 
loaded into register RO. Note that if the store instruction had a label, we could 
not be sure that the first instruction is always executed before the second, so we 
could not remove the store instruction. Put another way, the two instructions 
have to be in the same basic block for this transformation to be safe. 

Redundant loads and stores of this nature would not be generated by the 
simple code generation algorithm of the previous section. However, a naive code 
generation algorithm like the one in Section 8.1.3 would generate redundant 
sequences such as these. 

8.7.2 Eliminating Unreachable Code 

Another opportunity for peephole optimization is the removal of unreachable 
instructions. An unlabeled instruction immediately following an unconditional 
jump may be removed. This operation can be repeated to eliminate a sequence 
of instructions. For example, for debugging purposes, a large program may 
have within it certain code fragments that are executed only if a variable debug 
is equal to 1. In the intermediate representation, this code may look like 

i f  debug == 1 goto L1 
got0 L2 

L I : print debugging information 
L2: 

One obvious peephole optimization is to eliminate jumps over jumps. Thus, 
no matter what the value of debug, the code sequence above can be replaced 
by 

https://hemanthrajhemu.github.io



8.7. PEEPHOLE OPTIMIZATION 

if debug != 1 goto  L2 
print debugging information 

L2: 

If debug is set to 0 at the beginning of the program, constant propagation 
would transform this sequence into 

if 0 != 1 goto  L2 
print debugging information 

L2: 

Now the argument of the first statement always evaluates to true, so the 
statement can be replaced by goto L2. Then all statements that print debug- 
ging information are unreachable and can be eliminated one at a time. 

8.7.3 Flow-of-Control Optimizations 

Simple intermediate code-generation algorithms frequently produce jumps to 
jumps, jumps to conditional jumps, or conditional jumps to jumps. These 
unnecessary jumps can be eliminated in either the intermediate code or the 
target code by the following types of peephole optimizations. We can replace 
the sequence 

go t0  L1 
... 

Ll: got0  L2 

by the sequence 

If there are now no jumps to L1, then it may be possible to eliminate the 
statement L1: goto L2 provided it is preceded by an unconditional jump. 

Similarly, the sequence 

can be replaced by the sequence 

Finally, suppose there is only one jump to L1 and L1 is preceded by an 
unconditional goto. Then the sequence 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

may be replaced by the sequence 

While the number of instructions in the two sequences is the same, we sometimes 
skip the unconditional jump in the second sequence, but never in the first. Thus, 
the second sequence is superior to the first in execution time. 

8.7.4 Algebraic Simplification and Reduction in Strength 

In Section 8.5 we discussed algebraic identities that could be used to simplify 
DAG's. These algebraic identities can also be used by a peephole optimizer to 
eliminate t hree-address statements such as 

in the peephole. 
Similarly, reduction-in-strength transformations can be applied in the peep- 

hole to replace expensive operations by equivalent cheaper ones on the target 
machine. Certain machine instructions are considerably cheaper than others 
and can often be used as special cases of more expensive operators. For ex- 
ample, x2 is invariably cheaper to implement as x * x than as a call to an 
exponentiation routine. Fixed-point multiplication or division by a power of 
two is cheaper to implement as a shift. Floating-point division by a constant 
can be approximated as multiplication by a constant, which may be cheaper. 

8.7.5 Use of Machine Idioms 

The target machine may have hardware'instructions to implement certain spe- 
cific operations efficiently. Detecting situations that permit the use of these 
instructions can reduce execution time significantly. For example, some ma- 
chines have auto-increment and auto-decrement addressing modes. These add 
or subtract one from an operand before or after using its value. The use of the 
modes greatly improves the quality of code when pushing or popping a stack, 
as in parameter passing. These modes can also be used in code for statements 
like x=x+l. 

https://hemanthrajhemu.github.io



8.8. REGISTER ALLOCATION AND ASSIGNMENT 

8.7.6 Exercises for Section 8.7 

Exercise 8.7.1 : Construct an algorithm that will perform redundant-instruc- 
tion elimination in a sliding peephole on target machine code. 

Exercise 8.7.2 : Construct an algorithm that will do flow-of-control optimiza- 
tions in a sliding peephole on target machine code. 

Exercise 8.7.3 : Construct an algorithm that will do simple algebraic simpli- 
fications and reductions in strength in a sliding peephole on target machine 
code. 

8.8 Register Allocation and Assignment 

Instructions involving only register operands are faster than those involving 
memory operands. On modern machines, processor speeds are often an order 
of magnitude or more faster than memory speeds. Therefore, efficient utilization 
of registers is vitally important in generating good code. This section presents 
various strategies for deciding at each point in a program what values should 
reside in registers (register allocation) and in which register each value should 
reside (register assignment). 

One approach to register allocation and assignment is to assign specific 
values in the target program to certain registers. For example, we could decide 
to assign base addresses to one group of registers, arithmetic computations to 
another, the top of the stack to a fixed register, and so on. 

This approach has the advantage that it simplifies the design of a code gener- 
ator. Its disadvantage is that, applied too strictly, it uses registers inefficiently; 
certain registers may go unused over substantial portions of code, while unnec- 
essary loads and stores are generated into the other registers. Nevertheless, it is 
reasonable in most computing environments to reserve a few registers for base 
registers, stack pointers, and the like, and to allow the remaining registers to 
be used by the code generator as it sees fit. 

8.8.1 Global Register Allocation 

The code generation algorithm in Section 8.6 used registers to hold values for 
the duration of a single basic block. However, all live variables were stored 
at the end of each block. To save some of these stores and corresponding 
loads, we might arrange to assign registers to frequently used variables and keep 
these registers consistent across block boundaries (globally). Since programs 
spend most of their time in inner loops, a natural approach to global register 
assignment is to try to keep a frequently used value in a fixed register throughout 
a loop. For the time being, assume that we know the loop structure of a flow 
graph, and that we know what values computed in a basic block are used outside 
that block. The next chapter covers techniques for computing this information. 

https://hemanthrajhemu.github.io



554 CHAPTER 8. CODE GENERATION 

One strategy for global register allocation is to assign some fixed number 
of registers to hold the most active values in each inner loop. The selected 
values may be different in different loops. Registers not already allocated may 
be used to hold values local to one block as in Section 8.6. This approach 
has the drawback that the fixed number of registers is not always the right 
number to make available for global register allocation. Yet the method is 
simple to implement and was used in Fortran H, the optimizing Fortran compiler 
developed by IBM for the 360-series machines in the late 1960s. 

With early C compilers, a programmer could do some register allocation 
explicitly by using register declarations to keep certain values in registers for 
the duration of a procedure. Judicious use of register declarations did speed 
up many programs, but programmers were encouraged to first profile their 
programs to determine the program's hotspots before doing their own register 
allocation. 

8.8.2 Usage Counts 

In this section we shall assume that the savings to be realized by keeping a 
variable x in a register for the duration of a loop L is one unit of cost for each 
reference to x if x is already in a register. However, if we use the approach in 
Section 8.6 to generate code for a block, there is a good chance that after x has 
been computed in a block it will remain in a register if there are subsequent 
uses of x in that block. Thus we count a savings of one for each use of x in 
loop L that is not preceded by an assignment to x in the same block. We also 
save two units if we can avoid a store of x at the end of a block. Thus, if x 
is allocated a register, we count a savings of two for each block in loop L for 
which x is live on exit and in which x is assigned a value. 

On the debit side, if x is live on entry to the loop header, we must load x 
into its register just before entering loop L. This load costs two units. Similarly, 
for each exit block B of loop L at which x is live on entry to some successor of 
B outside of L, we must store x at a cost of two. However, on the assumption 
that the loop is iterated many times, we may neglect these debits since they 
occur only once each time we enter the loop. Thus, an approximate formula for 
the benefit to be realized from allocating a register x within loop L is 

use($, B) + 2 * live(x, B) (8-1) 
blocks B in L 

where use(x, B) is the number of times x is used in B prior to any definition of 
x; lzue(x, B) is 1 if x is live on exit from B and is assigned a value in B ,  and 
live(x, B) is 0 otherwise. Note that (8.1) is approximate, because not all blocks 
in a loop are executed with equal frequency and also because (8.1) is based 
on the assumption that a loop is iterated many times. On specific machines a 
formula analogous to (8.1), but possibly quite different from it, would have to 
be developed. 

https://hemanthrajhemu.github.io



8.8. REGISTER ALLOCATION AND ASSIGNMENT 555 

Example 8.17 : Consider the the basic blocks in the inner loop depicted in 
Fig. 8.17, where jump and conditional jump statements have been omitted. 
Assume registers RO, R1 ,  and R2 are allocated to  hold values throughout the 
loop. Variables live on entry into and on exit from each block are shown in 
Fig. 8.17 for convenience, immediately above and below each block, respectively. 
There are some subtle points about live variables that we address in the next 
chapter. For example, notice that both e and f are live a t  the end of B1, but of 
these, only e is live on entry to B2 and only f on entry to  B3. In general, the 
variables live at the end of a block are the union of those live at the beginning 
of each of its successor blocks. 

acdef 

'7 cdef f live 

bcdef 

b, c ,  d, e, f live 

Figure 8.17: Flow graph of an inner loop 

To evaluate (8.1) for x = a, we observe that a is live on exit from B1 and 
is assigned a value there, but is not live on exit from B2, B3, or B4. Thus, 
CB in use(a, B) = 2. Hence the value of (8.1) for x = a is 4. That is, four 
units of cost can be saved by selecting a for one of the global registers. The 
values of (8.1) for b, c, d, e ,  and f are 5, 3, 6, 4, and 4, respectively. Thus, 
we may select a ,  b, and d for registers RO, R1 ,  and R2, respectively. Using RO 
for e or f instead of a would be another choice with the same apparent benefit. 
Figure 8.18 shows the assembly code generated from Fig. 8.17, assuming that 
the strategy of Section 8.6 is used to generate code for each block. We do not 
show the generated code for the omitted conditional or unconditional jumps 
that end each block in Fig. 8.17, and we therefore do not show the generated 
code as a single stream as it would appear in practice. 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

LD Rl, b 
LD R2, d 

Figure 8.18: Code sequence using global register assignment 

t 
I 

LD R3, c 
ADD ROY R1, R3 
SUB R2, R2, Rl 
LD R3, f 
ADD R3, ROY R3 
ST e, R3 

8.8.3 Register Assignment for Outer Loops 

LD R3, f 

SUB R3, ROY R2 ADD Rl, R2, R3 

ST f, R3 J32 LD R3, c 
SUB R3, ROY R3 
ST e, R3 

Having assigned registers and generated code for inner loops, we may apply the 
same idea to progressively larger enclosing loops. If an outer loop L1 contains 
an inner loop L2, the names allocated registers in L2 need not be allocated 
registers in L1 - L2. Similarly, if we choose to allocate x a register in L2 but 
not L1, we must load x on entrance to L2 and store x on exit from L2. We leave 
as an exercise the derivation of a criterion for selecting names to be allocated 
registers in an outer loop L, given that choices have already been made for all 

J33 

loops nested within L. 

8.8.4 Register Allocation by Graph Coloring 

LD R3, c 
B4 ADD R1, R2, R3 

When a register is needed for a computation but all available registers are in 
use, the contents of one of the used registers must be stored (spilled) into a 
memory location in order to free up a register. Graph coloring is a simple, 
systematic technique for allocating registers and managing register spills. 

In the method, two passes are used. In the first, target-machine instruc- 
tions are selected as though there are an infinite number of symbolic registers; 
in effect, names used in the intermediate code become names of registers and 

ST b y  Rl 
ST a, R2 

4 

https://hemanthrajhemu.github.io



8.8. REGISTER ALLOCATION AND ASSIGNMENT 

the three-address instructions become machine-language instructions. If ac- 
cess to variables requires instructions that use stack pointers, display pointers, 
base registers, or other quantities that assist access, then we assume that these 
quantities are held in registers reserved for each purpose. Normally, their use is 
directly translatable into an access mode for an address mentioned in a machine 
instruction. If access is more complex, the access must be broken into several 
machine instructions, and a temporary symbolic register (or several) may need 
to be created. 

Once the instructions have been selected, a second pass assigns physical 
registers to symbolic ones. The goal is to find an assignment that minimizes 
the cost of spills. 

In the second pass, for each procedure a register-interference graph is con- 
structed in which the nodes are symbolic registers and an edge connects two 
nodes if one is live at a point where the other is defined. For example, a register- 
interference graph for Fig. 8.17 would have nodes for names a and d. In block 
B1, a is live at  the second statement, which defines d; therefore, in the graph 
there would be an edge between the nodes for a and d. 

An attempt is made to color the register-interference graph using k colors, 
where k is the number of assignable registers. A graph is said to be colored if 
each node has been assigned a color in such a way that no two adjacent nodes 
have the same color. A color represents a register, and the color makes sure 
that no two symbolic registers that can interfere with each other are assigned 
the same physical register. 

Although the problem of determining whether a graph is k-colorable is NP- 
complete in general, the following heuristic technique can usually be used to do 
the coloring quickly in practice. Suppose a node n in a graph G has fewer than 
k neighbors (nodes connected to n by an edge). Remove n and its edges from 
G to obtain a graph GI. A k-coloring of GI can be extended to a k-coloring of 
G by assigning n a color not assigned to any of its neighbors. 

By repeatedly eliminating nodes having fewer than k edges from the register- 
interference graph, either we obtain the empty graph, in which case we can 
produce a k-coloring for the original graph by coloring the nodes in the reverse 
order in which they were removed, or we obtain a graph in which each node has 
k or more adjacent nodes. In the latter case a kcoloring is no longer possible. 
At this point a node is spilled by introducing code to store and reload the 
register. Chaitin has devised several heuristics for choosing the node to spill. 
A general rule is to avoid introducing spill code into inner loops. 

8.8.5 Exercisesfor Section 8.8 

Exercise 8.8.1 : Construct the register-interference graph for the program in 
Fig. 8.17. 

Exercise 8.8.2 : Devise a register-allocation strategy on the assumption that 
we automatically store all registers on the stack before each procedure call and 
restore them after the return. 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

8.9 Instruction Selection by Tree Rewriting 
Instruction selection can be a large combinatorial task, especially on machines 
that are rich in addressing modes, such as CISC machines, or on machines with 
special-purpose instructions, say, for signal processing. Even if we assume that 
the order of evaluation is given and that registers are allocated by a separate 
mechanism, instruction selection - the problem of selecting target-language 
instructions to implement the operators in the intermediate representation - 
remains a large combinatorial task. 

In this section, we treat instruction selection as a tree-rewriting problem. 
Tree representations of target instructions have been used effectively in code- 
generator generators, which automatically construct the instruction-selection 
phase of a code generator from a high-level specification of the target machine. 
Better code might be obtained for some machines by using DAG's rather than 
trees, but DAG matching is more complex than tree matching. 

8.9.1 Tree-Translation Schemes 

Throughout this section, the input to the code-generation process will be a 
sequence of trees at  the semantic level of the target machine. The trees are 
what we might get after inserting run- time addresses into the intermediate 
representation, as described in Section 8.3. In addition, the leaves of the trees 
contain information about the storage types of their labels. 

Example 8.18 : Figure 8.19 contains a tree for the assignment statement 
aCil = b +  1, where the array a is stored on the run-time stack and the vari- 
able b is a global in memory location Mb. The run-time addresses of locals a 
and i are given as constant offsets C, and Ci from SP, the register containing 
the pointer to the beginning of the current activation record. 

The assignment to a[i] is an indirect assignment in which the r-value of 
the location for a [il is set to the r-value of the expression b + 1. The addresses 
of array a and variable i are given by adding the values of the constant C, and 
Ci , respectively, to the contents of register SP . We simplify array-address calcu- 
lations by assuming that all values are one-byte characters. (Some instruction 
sets make special provisions for multiplications by constants, such as 2, 4, and 
8, during address calculations .) 

In the tree, the ind operator treats its argument as a memory address. As 
the left child of an assignment operator, the ind node gives the location into 
which the r-value on the right side of the assignment operator is to be stored. 
If an argument of a + or ind operator is a memory location or a register, then 
the contents of that memory location or register are taken as the value. The 
leaves in the tree are labeled with attributes; a subscript indicates the value of 
the attribute. 

The target code is generated by applying a sequence of tree-rewriting rules 
to reduce the input tree to a single node. Each tree-rewriting rule has the form 

https://hemanthrajhemu.github.io



8.9. INSTRUCTION SELECTION BY TREE R E  WRITING 

Figure 8.19: Intermediate-code tree for a [i] = b + 1 

replacement t template { action ) 

where replacement is a single node, template is a tree, and action is a code 
fragment, as in a syntax-directed translation scheme. 

A set of tree-rewriting rules is called a tree-translation scheme. 
Each tree-rewriting rule represents the translation of a portion of the tree 

given by the template. The translation consists of a possibly empty sequence of 
machine instructions that is emitted by the action associated with the template. 
The leaves of the template are attributes with subscripts, as in the input tree. 
Sometimes, certain restrictions apply to the values of the subscripts in the 
templates; these restrictions are specified as semantic predicates that must be 
satisfied before the template is said to match. For example, a predicate might 
specify that the value of a constant fall in a certain range. 

A tree-translation scheme is a convenient way to represent the instruction- 
selection phase of a code generator. As an example of a tree-rewriting rule, 
consider the rule for the register-to-register add instruction: 

Ri t { ADD Ri , Ri , R j  ) 

Ri 
/+\ 

R,i 

This rule is used as follows. If the input tree contains a subtree that matches 
this tree template, that is, a subtree whose root is labeled by the operator + 
and whose left and right children are quantities in registers i and j, then we 
can replace that subtree by a single node labeled Ri and emit the instruction 
ADD R i ,  R i ,  R j  as output. We call this replacement a tiling of the subtree. 
More than one template may match a subtree at a given time; we shall describe 
shortly some mechanisms for deciding which rule to apply in cases of conflict. 

Example 8.19 : Figure 8.20 contains tree-rewriting rules for a few instructions 
of our target machine. These rules will be used in a running example throughout 
this section. The first two rules correspond to load instructions, the next two 

https://hemanthrajhemu.github.io



560 CHAPTER 8. CODE GENERATION 

to store instructions, and the remainder to indexed loads and additions. Note 
that rule (8) requires the value of the constant to be 1. This condition would 
be specified by a semantic predicate. 

8.9.2 Code Generation by Tiling an Input Tree 

A tree-translation scheme works as follows. Given an input tree, the templates 
in the tree-rewriting rules are applied to tile its subtrees. If a template matches, 
the matching subtree in the input tree is replaced with the replacement node of 
the rule and the action associated with the rule is done. If the action contains a 
sequence of machine instructions, the instructions are emitted. This process is 
repeated until the tree is reduced to a single node, or until no more templates 
match. The sequence of machine instructions generated as the input tree is 
reduced to a single node constitutes the output of the tree-translation scheme 
on the given input tree. 

The process of specifying a code generator becomes similar to that of us- 
ing a syntax-directed translation scheme to specify a translator. We write a 
tree-translation scheme to describe the instruction set of a target machine. In 
practice, we would like to find a scheme that causes a minimal-cost instruction 
sequence to be generated for each input tree. Several tools are available to help 
build a code generator automatically from a tree-translation scheme. 

Example 8.20 : Let us use the tree-translation scheme in Fig. 8.20 to generate 
code for the input tree in Fig. 8.19. Suppose that the first rule is applied to 
load the constant Ca into register RO: 

The label of the leftmost leaf then changes from Ca to Ro and the instruction 
LD ROY #a is generated. The seventh rule now matches the leftmost subtree 
with root labeled +: 

7) 
R0 + /+\ 

{ ADD ROY R Q y  SP ) 

Ro RSP 

Using this rule, we rewrite this subtree as a single node labeled Ro and generate 
the instruction ADD ROY ROY SP. Now the tree looks like 

https://hemanthrajhemu.github.io



8.9. INSTRUCTION SELECTION BY TREE RE WRITING 

Ri t M z  I { LD R i ,  x ) 

Ri t c a  { LD R i ,  # a  ) 

4) 

Figure 8.20: Tree-rewriting rules for some target-machine instructions 

M t - 

/-\ 
ind Rj 

I 

6) 

7) 

8) 

Ri t 

Ri 
/+\  

ind 
I 

c a  

/+\  
Rj 

Ri t 

Ri 
/+\  

Rj 

Ri t 

/+\ 
Ri C1 

{ ADD R i ,  R i ,  a ( R j )  ) 

{ ADD R i ,  R i ,  R j  ) 

{ I N C  R i  ) 

https://hemanthrajhemu.github.io



562 CHAPTER 8. CODE GENERATION 

At this point, we could apply rule (5) to reduce the subtree 

ind 

to a single node labeled, say, R1. We could also use rule (6) to reduce the larger 
subtree 

Ro 
/ , \  

ind 
I 

to a single node labeled Ro and generate the instruction ADD ROY ROY i (SP) . 
Assuming that it is more efficient to use a single instruction to compute the 
larger subtree rather than the smaller one, we choose rule (6) to get 

ind / = \  + 
I 

Ro Mb 
/ \ c1 

In the right subtree, rule (2) applies to the leaf Mb. It generates an instruction 
to load b into register R1, say. Now, using rule (8) we can match the subtree 

and generate the increment instruction INC Rl. At this point, the input tree 
has been reduced to 

/ \ 
ind RI 

This remaining tree is matched by rule (4), which reduces the tree to a single 
node and generates the instruction ST *ROY R1. We generate the following code 
sequence: 

LD ROY #a 
ADD ROY ROY SP 
ADD ROY ROY i(SP) 
LD Rl, b 
INC R1 
ST *ROY Rl 

https://hemanthrajhemu.github.io



8.9. INSTRUCTION SELECTION BY TREE RET;VRITING 

in the process of reducing the tree to a single node. 

In order to implement the tree-reduction process in Example 8.18, we must 
address some issues related to tree-pattern matching: 

HOW is tree-pattern matching to be done? The efficiency of the code- 
generation process (at compile time) depends on the efficiency of the tree- 
matching algorithm. 

What do we do if more than one template matches at a given time? 
The efficiency of the generated code (at run time) may depend on the 
order in which templates are matched, since different match sequences 
will in general lead to different target-machine code sequences, some more 
efficient than others. 

If no template matches, then the code-generation process blocks. At the 
other extreme, we need to guard against the possibility of a single node being 
rewritten indefinitely, generating an infinite sequence of register move instruc- 
tions or an infinite sequence of loads and stores. 

To prevent blocking, we assume that each operator in the intermediate code 
can be implemented by one or more target-machine instructions. We further 
assume that there are enough registers to compute each tree node by itself. 
Then, no matter how the tree matching proceeds, the remaining tree can always 
be translated into target-machine instructions. 

8.9.3 Pattern Matching by Parsing 

Before considering general tree matching, we consider a specialized approach 
that uses an LR parser to do the pattern matching. The input tree can be 
treated as a string by using its prefix representation. For example, the prefix 
representation for the tree in Fig. 8.19 is 

= ind + + C, RSp ind + Ci RSp + Mb C1 

The tree-translation scheme can be converted into a synt ax-directed trans- 
lation scheme by replacing the tree-rewriting rules with the productions of a 
context-free grammar in which the right sides are prefix representations of the 
instruction templates. 

Example 8.21 : The syntax-directed translation scheme in Fig. 8.21 is based 
on the tree-translation scheme in Fig. 8.20. 

The nonterminals of the underlying grammar are R and M. The terminal 
m represents a specific memory location, such as the location for the global 
variable b in Example 8.18. The production M --+ m in Rule (10) can be 
thought of as matching M with m prior to using one of the templates involving 
M. Similarly, we introduce a terminal sp for register SP and add the production 
R --+ SP. Finally, terminal c represents constants. 

Using these terminals, the string for the input tree in Fig. 8.19 is 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

1) Ri --+ c ,  { L D  R i ,  # a )  
2) Ri + Mz { LD Ri, x ) 
3) M + = Mz Ri { S T  x ,  R i )  
4) M --+ = ind Ri Rj { S T  *Ri ,  R j  ) 
5) Ri --+ ind + c ,  Rj { LD R i ,  a ( R j )  ) 
6) Ri --+ +Riind + c,Rj { A D D  R i ,  R i ,  a ( R j ) )  
7) Ri i + Ri Rj { ADD R i ,  R i ,  R j  ) 
8) Ri + + Ri C I  { I N C  R i  ) 
9) R --+ sp 

10) M --+ m 

Figure 8.21: Syntax-directed translation scheme constructed from Fig. 8.20 

= ind + + c ,  sp ind + ci sp + mb cl 

From the productions of the translation scheme we build an LR parser using 
one of the LR-parser construction techniques of Chapter 4. The target code is 
generated by emitting the machine instruction corresponding to each reduction. 

A code-generation grammar is usually highly ambiguous, and some care 
needs to be given to how the parsing-action conflicts are resolved when the 
parser is constructed. In the absence of cost information, a general rule is to 
favor larger reductions over smaller ones. This means that in a reduce-reduce 
conflict, the longer reduction is favored; in a shift-reduce conflict, the shift 
move is chosen. This "maximal munch" approach causes a larger number of 
operations to be performed with a single machine instruction. 

There are some benefits to using LR parsing in code generation. First, 
the parsing method is efficient and well understood, so reliable and efficient 
code generators can be produced using the algorithms described in Chapter 4. 
Second, it is relatively easy to retarget the resulting code generator; a code 
selector for a new machine can be constructed by writing a grammar to describe 
the instructions of the new machine. Third, the quality of the code generated 
can be made efficient by adding special-case productions to take advantage of 
machine idioms. 

However, there are some challenges as well. A left-to-right order of evalua- 
tion is fixed by the parsing method. Also, for some machines with large numbers 
of addressing modes, the machine-description grammar and resulting parser can 
become inordinately large. As a consequence, specialized techniques are neces- 
sary to encode and process the machine-description grammars. We must also 
be careful that the resulting parser does not block (has no next move) while 
parsing an expression tree, either because the grammar does not handle some 
operator patterns or because the parser has made the wrong resolution of some 
parsing-action conflict. We must also make sure the parser does not get into an 

https://hemanthrajhemu.github.io



8.9. INSTRUCTION SELECTION BY T R E E  REWRITING 565 

infinite loop of reductions of productions with single symbols on the right side. 
The looping problem can be solved using a state-splitting technique at the time 
the parser tables are generated. 

8.9.4 Routines for Semantic Checking 

In a code-generation translation scheme, the same attributes appear as in an 
input tree, but often with restrictions on what values the subscripts can have. 
For example, a machine instruction may require that an attribute value fall in 
a certain range or that the values of two attributes be related. 

These restrictions on attribute values can be specified as predicates that are 
invoked before a reduction is made. In fact, the general use of semantic actions 
and predicates can provide greater flexibility and ease of description than a 
purely grammatical specification of a code generator. Generic templates can 
be used to represent classes of instructions and the semantic actions can then 
be used to pick instructions for specific cases. For example, two forms of the 
addition instruction can be represented with one template: 

{ if ( a  = 1) Ri t. 

/+\ else I N C  R i  
Ri CCL ADD R i ,  R i ,  #a ) 

Parsing-action conflicts can be resolved by disambiguating predicates that 
can allow different selection strategies to be used in different contexts. A 
smaller description of a target machine is possible because certain aspects of 
the machine architecture, such as addressing modes, can be factored into the 
attributes. The complication in this approach is that it may become difficult 
to verify the accuracy of the translation scheme as a faithful description of the 
target machine, although this problem is shared to some degree by all code 
generators. 

8.9.5 General Tree Matching 

The LR-parsing approach to pattern matching based on prefix representations 
favors the left operand of a binary operator. In a prefix representation op El E2, 
the limited-lookahead LR parsing decisions must be made on the basis of some 
prefix of El, since El can be arbitrarily long. Thus, pattern matching can miss 
nuances of the target-instruction set that are due to right operands. 

Instead prefix representation, we could use a postfix representation. But, 
then an LR-parsing approach to pattern matching would favor the right oper- 
and. 

For a hand-written code generator, we can use tree templates, as in Fig. 8.20, 
as a guide and write an ad-hoc matcher. For example, if the root of the input 
tree is labeled ind,  then the only pattern that could match is for rule (5); 
otherwise, if the root is labeled +, then the patterns that could match are for 
rules (6-8). 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

For a code-generator generator, we need a general tree-matching algorithm. 
An efficient top-down algorithm can be developed by extending the string- 
pattern-matching techniques of Chapter 3. The idea is to represent each tem- 
plate as a set of strings, where a string corresponds to a path from the root to 
a leaf in the template. We treat all operands equally by including the position 
number of a child, from left to right, in the strings. 

Example 8.22 : In building the set of strings for an instruction set, we shall 
drop the subscripts, since pattern matching is based on the attributes alone, 
not on their values. 

The templates in Fig. 8.22 have the following set of strings from the root to 
a leaf: 

The string C represents the template with C at the root. The string + 1 R 
represents the + and its left operand R in the two templates that have + at 
the root. 

Ri 
/ \ 

ind 

Figure 8.22: An instruction set for tree matching 

Using sets of strings as in Example 8.22, a tree-pattern matcher can be con- 
structed by using techniques for efficiently matching multiple strings in parallel. 

In practice, the tree-rewriting process can be implemented by running the 
tree-pattern matcher during a depth-first traversal of the input tree and per- 
forming the reductions as the nodes are visited for the last time. 

Instruction costs can be taken into account by associating with each tree- 
rewriting rule the cost of the sequence of machine instructions generated if that 
rule is applied. In Section 8.11, we discuss a dynamic programming algorithm 
that can be used in conjunction with tree-pattern matching. 

By running the dynamic programming algorithm concurrently, we can select 
an optimal sequence of matches using the cost information associated with 
each rule. We may need to defer deciding upon a match until the cost of all 
alternatives is known. Using this approach, a small, efficient code generator can 

https://hemanthrajhemu.github.io



8.10. OPTIMAL CODE GENERATION FOR EXPRESSlOlVS 567 

be constructed quickly from a tree-rewriting scheme. Moreover, the dynamic 
programming algorithm frees the code-generator designer from having to resolve 
conflicting matches or decide upon an order for the evaluation. 

8.9.6 Exercises for Section 8.9 

Exercise 8.9.1 : Construct syntax trees for each of the following statements 
assuming all nonconstant operands are in memory locations: 

Use the tree-rewriting scheme in Fig. 8.20 to generate code for each statement. 

Exercise 8.9.2 : Repeat Exercise 8.9.1 above using the syntax-directed trans- 
lation scheme in Fig. 8.21 in place of the tree-rewriting scheme. 

! Exercise 8.9.3: Extend the tree-rewriting scheme in Fig. 8.20 to apply to 
while-statements. 

! Exercise 8.9.4 : How would you extend tree rewriting to apply to DAG7s? 

8.10 Optimal Code Generation for Expressions 

We can choose registers optimally when a basic block consists of a single expres- 
sion evaluation, or if we accept that it is sufficient to generate code for a block 
one expression at a time. In the following algorithm, we introduce a numbering 
scheme for the nodes of an expression tree (a syntax tree for an expression) that 
allows us to generate optimal code for an expression tree when there is a fixed 
number of registers with which to evaluate the expression. 

8.10.1 Ershov Numbers 

We begin by assigning to the nodes of an expression tree a number that tells 
how many registers are needed to evaluate that node without storing any tern- 
poraries. These numbers are sometimes called Ershov numbers, after A. Ershov, 
who used a similar scheme for machines with a single arithmetic register. For 
our machine model, the rules are: 

1. Label any leaf 1. 

2. The label of an interior node with one child is the label of its child. 

3. The label of an interior node with two children is 

https://hemanthrajhemu.github.io



568 CHAPTER 8. CODE GENERATION 

(a) The larger of the labels of its children, if those labels are different. 

(b) One plus the label of its children if the labels are the same. 

Example 8.23 : In Fig. 8.23 we see an expression tree (with operators omitted) 
that might be the tree for expression ( a  - b) + e x (c + d) or the three-address 
code: 

Each of the five leaves is labeled 1 by rule (I).  Then, we can label the interior 
node for t 1 = a - b, since both of its children are labeled. Rule (3b) applies, so 
it gets label one more than the labels of its children, that is, 2. The same holds 
for the interior node for t2 = c + d. 

Figure 8.23: A tree labeled with Ershov numbers 

Now, we can work on the node for t 3 = e * t 2. Its children have labels 1 and 
2, so the label of the node for t3 is the maximum, 2, by rule (3a). Finally, the 
root, the node for t 4  = t 1 + t3, has two children with label 2, and therefore it 
gets label 3. 

8.10.2 Generating Code From Labeled Expression Trees 

It can be proved that, in our machine model, where all operands must be in 
registers, and registers can be used by both an operand and the result of an 
operation, the label of a node is the fewest registers with which the expression 
can be evaluated using no stores of temporary results. Since in this model, we 
are forced to load each operand, and we are forced to compute the result cor- 
responding to each interior node, the only thing that can make the generated 
code inferior to the optimal code is if there are unnecessary stores of tempo- 
raries. The argument for this claim is embedded in the following algorithm for 
generating code with no stores of temporaries, using a number of registers equal 
to the label of the root. 

Algorithm 8.24 : Generating code from a labeled expression tree. 

https://hemanthrajhemu.github.io



8.10. OPTIMAL CODE GENERATION FOR EXPRESSIONS 

INPUT: A labeled tree with each operand appearing once (that is, no common 
subexpressions) . 

OUTPUT: An optimal sequence of machine instructions to evaluate the root 
into a register. 

METHOD: The following is a recursive algorithm to generate the machine code. 
The steps below are applied, starting at the root of the tree. If the algorithm 
is applied to a node with label k, then only k registers will be used. However, 
there is a "base" b > 1 for the registers used so that the actual registers used 
are Rb, Rb+1,. . . Rb+k-l. The result always appears in RbSkUl. 

1. To generate machine code for an interior node with label k and two chil- 
dren with equal labels (which must be k - l) do the following: 

(a) Recursively generate code for the right child, using base b + 1. The 
result of the right child appears in register Rb+k. 

(b) Recursively generate code for the left child, using base b; the result 
appears in Rb+k-1. 

(c) Generate the instruction OP Rb+k, Rb+k-1, Rb+k, where OP is the 
appropriate operation for the interior node in question. 

2. Suppose we have an interior node with label k and children with unequal 
labels. Then one of the children, which we'll call the "big" child, has label 
k ,  and the other child, the "little" child, has some label m < k .  Do the 
following to generate code for this interior node, using base b: 

(a) Recursively generate code for the big child, using base b; the result 
appears in register Rb+k-l. 

(b) Recursively generate code for the small child, using base b; the result 
appears in register Rb+m-l. Note that since m < k, neither Rb+k-l 
nor any higher-numbered register is used. 

(c) Generate the instruction OP Rb+k-l, Rb+m-l, Rb+k-1 or the instruc- 
tion OP Rb+iE-l, Rb+k-l, Rb+mPl, depending on whether the big child 
is the right or left child, respectively. 

3. For a leaf representing operand x, if the base is b generate the instruction 
LD Rb, x. 

Example 8.25 : Let us apply Algorithm 8.24 to the tree of Fig. 8.23. Since 
the label of the root is 3, the result will appear in Rg,  and only R1, R2, and 
R3 will be used. The base for the root is b = 1. Since the root has children of 
equal labels, we generate code for the right child first, with base 2. 

When we generate code for the right child of the root, labeled t3, we find the 
big child is the right child and the little child is the left child. We thus generate 
code for the right child first, with b = 2. Applying the rules for equal-labeled 
children and leaves, we generate the following code for the node labeled t2: 

https://hemanthrajhemu.github.io



CHAPTER 8. CODE GENERATION 

LD R3, d 
LD R2, c 
ADD R3, R2, R3 

Next, we generate code for the left child of the right child of the root; this node 
is the leaf labeled e. Since b = 2, the proper instruction is 

Now we can complete the code for the right child of the root by adding the 
instruction 

MUL R3, R2, R3 

The algorithm proceeds to generate code for the left child of the root, leaving 
the result in R2, and with base 1. The complete sequence of instructions is 
shown in Fig. 8.24. 

LD R3, d 
LD R2, c 
ADD R3, R2, R3 
LD R2, e 
MUL R3, R2, R3 
LD R2, b 
LD RI, a 
SUB R2, RI, R2 
ADD R3, R2, R3 

Figure 8.24: Optimal three-register code for the tree of Fig. 8.23 

8.10.3 Evaluating Expressions with an Insufficient Supply 
of Registers 

When there are fewer registers available than the label of the root of the tree, 
we cannot apply Algorithm 8.24 directly. We need to introduce some store 
instructions that spill values of subtrees into memory, and we then need to load 
those values back into registers as needed. Here is the modified algorithm that 
takes into account a limitation on the number of registers. 

Algorithm 8.26 : Generating code from a labeled expression tree. 

INPUT: A labeled tree with each operand appearing once (i.e., no common 
subexpressions) and a number of registers r > 2. 

OUTPUT: An optimal sequence of machine instructions to evaluate the root into 
a register, using no more than r registers, which we assume are R1, Rz , . . . , R, . 

https://hemanthrajhemu.github.io



8.10. OPTIMAL CODE GENERATION FOR EXPRESSIONS 571 

METHOD: Apply the following recursive algorithm, starting at the root of the 
tree, with base b = 1. For a node N with label r or less, the algorithm is exactly 
the same as Algorithm 8.24, and we shall not repeat those steps here. However, 
for interior nodes with a label k > r ,  we need to work on each side of the tree 
separately and store the result of the larger subtree. That result is brought 
back into memory just before node N is evaluated, and the final step will take 
place in registers R,-l and R,. The modifications to the basic algorithm are 
as follows: 

1. Node N has at least one child with label r or greater. Pick the larger 
child (or either if their labels are the same) to be the "big" child and let 
the other child be the "little" child. 

2. Recursively generate code for the big child, using base b = 1. The result 
of this evaluation will appear in register R,. 

3. Generate the machine instruction ST tk, R,, where tk is a temporary vari- 
able used for temporary results used to help evaluate nodes with label 
k. 

4. Generate code for the little child as follows. If the little child has label r 
or greater, pick base b = 1. If the label of the little child is j < r, then 
pick b = r - j .  Then recursively apply this algorithm to the little child; 
the result appears in R,. 

5. Generate the instruction LD R,-l, tk. 

6. If the big child is the right child of N, then generate the instruction 
OP R,, R,, R,-l. If the big child is the left child, generate OP R,, R,-l, R,. 

Example 8.27 : Let us revisit the expression represented by Fig. 8.23, but now 
assume that r = 2; that is, only registers R1 and R2 are available to hold tem- 
poraries used in the evaluation of expressions. When we apply Algorithm 8.26 
to Fig. 8.23, we see that the root, with label 3, has a label that is larger than 
r = 2. Thus, we need to identify one of the children as the "big" child. Since 
they have equal labels, either would do. Suppose we pick the right child as the 
big child. 

Since the label of the big child of the root is 2, there are enough registers. 
We thus apply Algorithm 8.24 to this subtree, with b = 1 and two registers. 
The result looks very much like the code we generated in Fig. 8.24, but with 
registers Rl and R2 in place of R2 and R3. This code is 

LD R2, d 
LD Rl, c 
ADD R2, R1, R2 
LD R1, e 
MUL R2, R1, R2 

https://hemanthrajhemu.github.io



572 CHAPTER 8. CODE GENERATION 

Now, since we need both registers for the left child of the root, we need to 
generate the instruction 

Next, the left child of the root is handled. Again, the number of registers is 
sufficient for this child, and the code is 

LD R2, b 
LD Rl, a 
SUB R2, Rl, R2 

Finally, we reload the temporary that holds the right child of the root with the 
instruction 

and execute the operation at the root of the tree with the instruction 

ADD R2, R2, R1 

The complete sequence of instructions is shown in Fig. 8.25. 

LD R2, d 
LD R1, c 
ADD R2, R1, R2 
LD R1, e 
MUL R2, R1, R2 
ST t3, R2 
LD R2, b 
LD R1, a 
SUB R2, R1, R2 
LD Rl, t3 
ADD R2, R2, R1 

Figure 8.25: Optimal three-register code for the tree of Fig. 8.23, using only 
two registers 

8.10.4 Exercises for Section 8.10 

Exercise 8.10.1 : Compute Ershov numbers for the following expressions: 

a) a/(b+c) - d * (e + f ) .  

b) a + b * (c * (d + e)) . 

https://hemanthrajhemu.github.io



8.11. DYNAMIC PROGRAMMING CODE-GENERATION 

C) (-a + *p )  * ( ( b  - * q ) / ( - c +  * r ) ) .  

Exercise 8.10.2 : Generate optimal code using two registers for each of the 
expressions of Exercise 8.10.1. 

Exercise 8.10.3 : Generate optimal code using three registers for each of the 
expressions of Exercise 8.10.1. 

! Exercise 8.10.4 : Generalize the computation of Ershov numbers to expression 
trees with interior nodes with three or more children. 

! Exercise 8.10.5 : An assignment to an array element, such as a [i] = x, ap- 
pears to be an operator with three operands: a ,  i ,  and x. How would you modify 
the tree-labeling scheme to generate optimal code for this machine model? 

! Exercise 8.10.6 : The original Ershov numbers were used for a machine that 
allowed the right operand of an expression to be in memory, rather than a 
register. How would you modify the tree-labeling scheme to generate optimal 
code for this machine model? 

! Exercise 8.10.7: Some machines require two registers for certain single-pre- 
cision values. Suppose that the result of a multiplication of single-register quan- 
tities requires two consecutive registers, and when we divide a/b,  the value of 
a must be held in two consecutive registers. How would you modify the tree- 
labeling scheme to generate optimal code for this machine model? 

8.11 Dynamic Programming Code-Generation 

Algorithm 8.26 in Section 8.10 produces optimal code from an expression tree 
using an amount of time that is a linear function of the size of the tree. This 
procedure works for machines in which all computation is done in registers and 
in which instructions consist of an operator applied to two registers or to a 
register and a memory location. 

An algorithm based on the principle of dynamic programming can be used 
to extend the class of machines for which optimal code can be generated from 
expression trees in linear time. The dynamic programming algorithm applies 
to a broad class of register machines with complex instruction sets. 

The dynamic programming algorithm can be used to generate code for any 
machine with r interchangeable registers RO, R 1 , .  . . , Rr-1 and load, store, and 
add instructions. For simplicity, we assume every instruction costs one unit, 
although the dynamic programming algorithm can easily be modified to work 
even if each instruction has its own cost. 

https://hemanthrajhemu.github.io



574 CHAPTER 8. CODE GENERATION 

8.11.1 Contiguous Evaluation 

The dynamic programming algorithm partitions the problem of generating op- 
timal code for an expression into the subproblems of generating optimal code 
for the subexpressions of the given expression. As a simple example, consider 
an expression E of the form El + E2. An optimal program for E is formed by 
combining optimal programs for El and E2, in one or the other order, followed 
by code to  evaluate the operator +. The subproblems of generating optimal 
code for El and E2 are solved similarly. 

An optimal program produced by the dynamic programming algorithm has 
an important property. It evaluates an expression E = El op E2 "contigu- 
ously." We can appreciate what this means by looking at the syntax tree T for 
E :  

Here TI and T2 are trees for El and E2, respectively. 
We say a program P evaluates a tree T contiguously if it first evaluates those 

subtrees of T that need to be computed into memory. Then, it evaluates the 
remainder of T either in the order TI, T2, and then the root, or in the order 
T2, TI, and then the root, in either case using the previously computed values 
from memory whenever necessary. As an example of noncontiguous evaluation, 
P might first evaluate part of TI leaving the value in a register (instead of 
memory), next evaluate T2, and then return to  evaluate the rest of TI. 

For the register machine in this section, we can prove that given any mach- 
ine-language program P to evaluate an expression tree T ,  we can find an equiv- 
alent program P' such that 

1. P' is of no higher cost than P, 

2. P' uses no more registers than P, and 

3. P' evaluates the tree contiguously. 

This result implies that every expression tree can be evaluated optimally by 
a contiguous program. 

By way of contrast, machines with even-odd register pairs do not always have 
optimal contiguous evaluations; the x86 architecture uses register pairs for mul- 
tiplication and division. For such machines, we can give examples of expression 
trees in which an optimal machine language program must first evaluate into 
a register a portion of the left subtree of the root, then a portion of the right 
subtree, then another part of the left subtree, then another part of the right, 
and so on. This type of oscillation is unnecessary for an optimal evaluation of 
any expression tree using the machine in this section. 

https://hemanthrajhemu.github.io



8.11. DYNAMIC PROGRAMMING CODE-GENERATION 

The contiguous evaluation property defined above ensures that for any ex- 
pression tree T there always exists an optimal program that consists of optimal 
programs for subtrees of the root, followed by an instruction to  evaluate the 
root. This property allows us to  use a dynamic programming algorithm to 
generate an optimal program for T. 

8.1 1.2 The Dynamic Programming Algorithm 

The dynamic programming algorithm proceeds in three phases (suppose the 
target machine has r registers): 

1. Compute bottom-up for each node n of the expression tree T an array C 
of costs, in which the ith component C[i] is the optimal cost of computing 
the subtree S rooted at n into a register, assuming i registers are available 
for the computation, for 1 5 i 5 r .  

2. Traverse T ,  using the cost vectors to  determine which subtrees of T must 
be computed into memory. 

3. Traverse each tree using the cost vectors and associated instructions to  
generate the final target code. The code for the subtrees computed into 
memory locations is generated first. 

Each of these phases can be implemented to run in time linearly proportional 
to  the size of the expression tree. 

The cost of computing a node n includes whatever loads and stores are 
necessary to  evaluate S in the given number of registers. It  also includes the 
cost of computing the operator at the root of S. The zeroth component of 
the cost vector is the optimal cost of computing the subtree S into memory. 
The contiguous evaluation property ensures that an optimal program for S can 
be generated by considering combinations of optimal programs only for the 
subtrees of the root of S. This restriction reduces the number of cases that 
need to be considered. 

In order to  compute the costs C[i] at  node n,  we view the instructions as 
tree-rewriting rules, as in Section 8.9. Consider each template E that matches 
the input tree a t  node n. By examining the cost vectors at the corresponding 
descendants of n, determine the costs of evaluating the operands at the leaves 
of E. For those operands of E that are registers, consider all possible orders in 
which the corresponding subtrees of T can be evaluated into registers. In each 
ordering, the first subtree corresponding to a register operand can be evaluated 
using i available registers, the second using i - 1 registers, and so on. To account 
for node n,  add in the cost of the instruction associated with the template E. 
The value C[i] is then the minimum cost over all possible orders. 

The cost vectors for the entire tree T can be computed bottom up in time 
linearly proportional to  the number of nodes in T. It is convenient to  store at 
each node the instruction used to achieve the best cost for C[i] for each value 

https://hemanthrajhemu.github.io



576 CHAPTER 8. CODE GENERATION 

of i. The smallest cost in the vector for the root of T gives the minimum cost 
of evaluating T. 

Example 8.28 : Consider a machine having two registers RO and R l  , and the 
following instructions, each of unit cost: 

LD R i ,  Mj  // R i  = M j  
op R i ,  R i ,  R j  / / R i Z R i  o p R j  
op R i ,  R i ,  Mj  / / R i = R i  o p M j  
LD R i ,  R j  // R i  = R j  
ST M i ,  R j  / /  M i  = R j  

In these instructions, R i  is either RO or R l ,  and M j  is a memory location. The 
operator op corresponds to an arithmetic operators. 

Let us apply the dynamic programming algorithm to generate optimal code 
for the syntax tree in Fig 8.26. In the first phase, we coznpute the cost vectors 
shown at each node. To illustrate this cost computation, consider the cost 
vector at the leaf a. C[O], the cost of computing a into memory, is 0 since it is 
already there. C[l], the cost of computing a into a register, is 1 since we can 
load it into a register with the instruction LD RO , a. C[2], the cost of loading a 
into a register with two registers available, is the same as that with one register 
available. The cost vector at leaf' a is therefore (O,1,1). 

Figure 8.26: Syntax tree for (a-b) +c* (d/e) with cost vector at each node 

Consider the cost vector at the root. We first determine the minimum 
cost of computing the root with one and two registers available. The machine 
instruction ADD RO, RO, M matches the root, because the root is labeled with 
the operator +. Using this instruction, the minimum cost of evaluating the 
root with one register available is the minimum cost of computing its right 
subtree into memory, plus the minimum cost of computing its left subtree into 
the register, plus 1 for the instruction. No other way exists. The cost vectors at  
the right and left children of the root show that the minimum cost of computing 
the root with one register available is 5 + 2 + 1 = 8. 

Now consider the minimum cost of evaluating the root with two registers 
available. Three cases arise depending on which instruction is used to compute 
the root and in what order the left and right subtrees of the root are evaluated. 

https://hemanthrajhemu.github.io



8.11. DYNAMIC PROGRAMMING CODE-GENERATION 577 

1. Compute the left subtree with two registers available into register RO, 
compute the right subtree with one register available into register R1,  and 
use the instruction ADD ROY ROY R 1  to compute the root. This sequence 
has cost 2 + 5 + 1 = 8. 

2. Compute the right subtree with two registers available into R l ,  compute 
the left subtree with one register available into RO, and use the instruction 
ADD R O Y  ROY R1. This sequence has cost 4+2+1 = 7. 

3. Compute the right subtree into memory location M, compute the left sub- 
tree with two registers available into register RO, and use the instruction 
ADD ROY R O Y  M. This sequence has cost 5 + 2 + 1 = 8. 

The second choice gives the minimum cost 7. 
The minimum cost of computing the root into memory is determined by 

adding one to the minimum cost of computing the root with all registers avail- 
able; that is, we compute the root into a register and then store the result. The 
cost vector at the root is therefore (8,8,7). 

From the cost vectors we can easily construct the code sequence by making 
a traversal of the tree. From the tree in Fig. 8.26, assuming two registers are 
available, an optimal code sequence is 

LD R O Y  c / /  RO = c 
LD Rl, d / /  R 1  = d 
D I V  R1, R1, e // R 1  = R 1  / e 
MUL ROY ROY R1 // RO = RO * R 1  
LD R 1 ,  a // R 1  = a 
SUB R1, R1, b / /  R 1  = R 1  - b 
ADD Rl, R1, RO // R 1  = R 1  + RO 

Dynamic programming techniques have been used in a number of compilers, 
including the second version of the portable C compiler, PCC2. The technique 
facilitates retargeting because of the applicability of the dynamic programming 
technique to a broad class of machines. 

8.11.3 Exercises for Section 8.11 

Exercise 8.11.1 : Augment the tree-rewriting scheme in Fig. 8.20 with costs, 
and use dynamic programming and tree matching to generate code for the 
statements in Exercise 8.9.1. 

!! Exercise 8.1 1.2 : How would you extend dynamic programming to do optimal 
code generation on dags? 

https://hemanthrajhemu.github.io



5 78 CHAPTER 8. CODE GENERATION 

8.12 Summary of Chapter 8 

+ Code generation is the final phase of a compiler. The code generator maps 
the intermediate representation produced by the front end, or if there is a 
code optimization phase by the code optimizer, into the target program. 

+ Instruction selection is the process of choosing target-language instruc- 
tions for each IR statement. 

+ Register allocation is the process of deciding which IR values to keep 
in registers. Graph coloring is an effective technique for doing register 
allocation in compilers. 

+ Register assignment is the process of deciding which register should hold 
a given IR value. 

+ A retargetable compiler is one that can generate code for multiple instruc- 
tion sets. 

+ A virtual machine is an interpreter for a bytecode intermediate language 
produced by languages such as Java and C#. 

4 A C I S C  machine is typically a two-address machine with relatively few 
registers, several register classes, and variable-length instructions with 
complex addressing modes. 

+ A R I S C  machine is typically a three-address machine with many registers 
in which operations are done in registers. 

A basic block is a maximal sequence of consecutive three-address state- 
ments in which flow of control can only enter at the first statement of the 
block and leave at  the last statement without halting or branching except 
possibly at  the last statement in the basic block. 

+ A flow graph is a graphical representation of a program in which the nodes 
of the graph are basic blocks and the edges of the graph show how control 
can flow among the blocks. 

+ A loop in a flow graph is a strongly connected region with a single entry 
point called the loop header. 

+ A DAG representation of a basic block is a directed acyclic graph in which 
the nodes of the DAG represent the statements within the block and each 
child of a node corresponds to the statement that is the last definition of 
an operand used in the statement. 

+ Peephole optimizations are local code-improving transformations that can 
be applied to a program, usually through a sliding window. 

https://hemanthrajhemu.github.io



8.13. REFERENCES FOR CHAPTER 8 579 

+ Instruct ion selection can be done by a tree-rewriting process in which 
tree patterns corresponding to machine instructions are used to tile a 
syntax tree. We can associate costs with the tree-rewriting rules and 
apply dynamic programming to obtain an optimal tiling for useful classes 
of machines and expressions. 

+ An Ershov number tells how many registers are needed to evaluate an 
expression without storing any temporaries. 

+ Spill code is an instruction sequence that stores a value in a register into 
memory in order to make room to hold another value in that register. 

8.13 References for Chapter 8 

Many of the techniques covered in this chapter have their origins in the earliest 
compilers. Ershov7s labeling algorithm appeared in 1958 [7]. Sethi and Ullman 
[16] used this labeling in an algorithm that they prove generated optimal code 
for arithmetic expressions. Aho and Johnson [I] used dynamic programming 
to generate optimal code for expression trees on CISC machines. Hennessy 
and Patterson [12] has a good discussion on the evolution of CISC and RISC 
machine architectures and the tradeoffs involved in designing a good instruction 
set. 

RISC architectures became popular after 1990, although their origins go 
back to computers like the CDC 6600, first delivered in 1964. Many of the 
computers designed before 1990 were CISC machines, but most of the general- 
purpose computers installed after 1990 are still CISC machines because they are 
based on the Intel 80x86 architecture and its descendants, such as the Pentium. 
The Burroughs B5000 delivered in 1963 was an early stack-based machine. 

Many of the heuristics for code generation proposed in this chapter have been 
used in various compilers. Our strategy of allocating a fixed number of registers 
to hold variables for the duration of a loop was used in the implementation of 
Fortran H by Lowry and Medlock [13]. 

Efficient register allocation techniques have also been studied from the time 
of the earliest compilers. Graph coloring as a register-allocation technique was 
proposed by Cocke, Ershov [8], and Schwartz [15]. Many variants of graph- 
coloring algorithms have been proposed for register allocation. Our treatment 
of graph coloring follows Chaitin [3] [4]. Chow and Hennessy describe their 
priority-based coloring algorithm for register allocation in [5]. See [6] for a 
discussion of more recent graph-splitting and rewriting techniques for register 
allocation. 

Lexical analyzer and parser generators spurred the development of pattern- 
directed instruction selection. Glanville and Graham [ll] used LR-parser gen- 
eration techniques for automated instruction selection. Table-driven code gen- 
erators evolved into a variety of tree-pattern matching code-generation tools 
[14]. Aho, Ganapat hi, and Tjiang [2] combined efficient tree-pattern matching 

https://hemanthrajhemu.github.io



580 CHAPTER 8. CODE GENERATION 

techniques with dynamic programming in the code generation tool twig. Fraser, 
Hanson, and Proebsting [lo] further refined these ideas in their simple efficient 
code-generator generator. 

1. Aho, A. V. and S. C. Johnson, "Optimal code generation for expression 
trees," J. ACM 23:3, pp. 488-501. 

2. Aho, A. V., M. Ganapathi, and S. W. K. Tjiang, "Code generation using 
tree matching and dynamic programming," A CM Trans. Programming 
Languages and Systems 11:4 (1989), pp. 491-516. 

3. Chaitin, G. J., M. A. Auslander, A. K. Chandra, J .  Cocke, M. E. Hop- 
kins, and P. W. Markstein, "Register allocation via coloring," Computer 
Languages 6:l (1981), pp. 47-57. 

4. Chaitin, G. J., "Register allocation and spilling via graph coloring," A CM 
SIGPLAN Notices 17:6 (1982), pp. 201-207. 

5. Chow, F. and J. L. Hennessy, "The priority-based coloring approach to 
register allocation," ACM Trans. Programming Languages and Systems 
12:4 (1990), pp. 501-536. 

6. Cooper, K. D. and L. Torczon, Engineering a Compiler, Morgan Kauf- 
mann, San Francisco CA, 2004. 

7. Ershov, A. P., "On programming of arithmetic operations," Comm. A CM 
1% (1958), pp. 3-6. Also, Comm. ACM 1:9 (1958), p. 16. 

8. Ershov, A. P., The Alpha Automatic Programming System, Academic 
Press, New York, 1971. 

9. Fischer, C. N. and R. J .  LeBlanc, Crafting a Compiler with C, Benjamin- 
Cummings, Redwood City, CA, 1991. 

10. Fraser, C. W., D. R. Hanson, and T. A. Proebsting, "Engineering a sim- 
ple, efficient code generator generator," ACM Letters on Programming 
Languages and Systems 1:3 (1992), pp. 213-226. 

11. Glanville, R. S. and S. L. Graham, "A new method for compiler code gen- 
eration," Conf. Rec. Fifth ACM Symposium on Principles of Programming 
Languages (1978), pp. 231-240. 

12. Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quanti- 
tative Approach, Third Edition, Morgan Kaufman, San Francisco, 2003. 

13. Lowry, E. S. and C. W. Medlock, "Object code optimization," Comm. 
ACM 12:l (1969), pp. 13-22. 

https://hemanthrajhemu.github.io



8.13. REFERENCES FOR CHAPTER 8 581 

14. Pelegri-Llopart, E. and S. L. Graham, "Optimal code generation for ex- 
pressions trees: an application of BURS theory," Conf. Rec. Fifteenth An- 
nual ACM Symposium on Principles of Programming Languages (1988), 
pp. 294-308. 

15. Schwartz, J. T., On Programming: An Interim Report on the SETL 
Project, Technical Report, Courant Institute of Mathematical Sciences, 
New York, 1973. 

16. Sethi, R. and J. D. Ullman, "The generation of optimal code for arithmetic 
expressions," J. ACM 17:4 (1970), pp. 715-728. 

https://hemanthrajhemu.github.io



https://hemanthrajhemu.github.io


