Or
Visit : https://hemanthrajhemu.github.io

to All Study Materials according to VTU,
— Computer Science En

— Information Science E
ctronics and Communica
& MORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU TELEGRAM

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

htéps:/hemanthrajhemu.github.io

Contents

Chapter 1 Background 1

ud
1.2
13

1.4

Introduction 1

System Software and Machine Architecture 3
The Simplified Instructional Computer (SIC) 4
1.3.1 SIC Machine Architecture 5

1.3.2 SIC/XE Machine Architecture 7
1.3.3 SIC Programming Examples 12
Traditional (CISC) Machines 21

1.41 VAX Architecture 21

1.4.2 Pentium Pro Architecture 25

RISC Machines 29

1.5.1 UltraSPARC Architecture 29

1.5.2 PowerPC Architecture 33

1.5.3 Cray T3E Architecture 37

Exercises 40

Chapter2 Assemblers 43

2.1

2.2

213

24

25

Basic Assembler Functions 44
21.1 ASimple SIC Assembler 46
21.2 Assembler Algorithm and Data Structures 50

Machine-Dependent Assembler Features 52

221 Instruction Formats and Addressing Modes 57
222 Program Relocation 61
Machine-Independent Assembler Features 66
23.1 Literals 66

232 Symbol-Defining Statements 71

233 Expressions 75

234 Program Blocks 78

235 Control Sections and Program Linking 83
Assembler Design Options 92

241 One-Pass Assemblers 92

242 Multi-Pass Assemblers 98
Implementation Examples 102

251 MASM Assembler 103

252 SPARC Assembler 105

ix

he¢eps:/hemanthrajhemu.github.io

253 AIX Assembler 108
Exercises 111

Chapter 3 Loaders and Linkers 123

3.1 Basic Loader Functions 124
31 Design of an Absolute Loader 124
312 ASimple Bootstrap Loader 127

3.2 Machine-Dependent Loader Features 129

321 Relocation 130

3.22 Program Linking 134

323 Algorithm and Data Structures for a Linking Loader 141
3.3 Machine-Independent Loader Features 147

33.1 Automatic Library Search 147

33.2 Loader Options 149

3.4 Loader Design Options 151
341 Linkage Editors 152
342 Dynamic Linking 155
343 Bootstrap Loaders 158

3.5 Implementation Examples 159
3.5.1 MS-DOS Linker 160
352 SunOS Linkers 162
3.53 Cray MPP Linker 164

Exercises 166

Chapter 4 Macro Processors 175

41 Basic Macro Processor Functions 176
411 Macro Definition and Expansion 176
412 Macro Processor Algorithm and Data Structures 181

4.2 Machine-Independent Macro Processor Features 186
421 Concatenation of Macro Parameters 186
422 Generation of Unique Labels 187
423 Conditional Macro Expansion 189
424 Keyword Macro Parameters 196

4.3 Macro Processor Design Options 197

43.1 Recursive Macro Expansion 199

43.2 General-Purpose Macro Processors 202

43.3 Macro Processing within Language Translators 204
44 Implementation Examples 206

441 MASM Macro Processor 206
442 ANSIC Macro Language 209

heteps:/hemanthrajhemu.github.io

Chapter 1

Backgro‘u nd

This chapter contains a variety of information that serves as background for
the material presented later. Section 1.1 gives a brief introduction to system
software and an overview of the structure of this book. Section 1.2 begins a
discussion of the relationships between system software and machine architec-
ture, which continues throughout the text. Section 1.3 describes the Simplified
Instructional Computer (SIC) that is used to present fundamental software
concepts. Sections 1.4 and 1.5 provide an introduction to the architecture of
several computers that are used as examples throughout the text. Further in-
formation on most of the machine architecture topics discussed can be found
in Tabak (1995) and Patterson and Hennessy (1996).

Most of the material in this chapter is presented at a summary level, with
many details omitted. The level of detail given here is sufficient background
for the remainder of the text. You should not attempt to memorize the material
in this chapter, or be overly concerned with minor points. Instead, it is recom-
mended that you read through this material, and then use it for reference as
needed in later chapters. References are provided throughout the chapter for
readers who want further information.

1.1 INTRODUCTION

This text is an introduction to the design and implementation of system soft-
ware. System software consists of a variety of programs that support the opera-
tion of a computer. This software makes it possible for the user to focus on an
application or other problem to be solved, without needing to know the de-
tails of how the machine works internally.

When you took your first programming course, you were already using
many different types of system software. You probably wrote programs in a
high-level language like C++ or Pascal, using a fext editor to create and modify
the program. You translated these programs into machine language using a
compiler. The resulting machine language program was loaded into memory
and prepared for execution by a loader or linker. You may have used a debugger
to help detect errors in the program.

he¢eps:/hemanthrajhemu.github.io

Chapter 1 Background

-

In later courses, you probably wrote programs in assembler language. You
may have used macro instructions in these programs to read and write data,
or to perform other higher-level functions. You used an assembler, which prob-
ably included a macro processor, to translate these programs into machine lan-
guage. The translated programs were prepared for execution by the loader or
linker, and may have been tested using the debugger.

You controlled all of these processes by interacting with the operating sys-
tem of the computer. If you were using a system like UNIX or DOS, you proba-
bly typed commands at a keyboard. If you were using a system like MacOS or
Windows, you probably specified commands with menus and a point-and-
click interface. In either case, the operating system took care of all the ma-
chine-level details for you. Your computer may have been connected to a
network, or may have been shared by other users. It may have had many dif-
ferent kinds of storage devices, and several ways of performing input and out-
put. However, you did not need to be concerned with these issues. You could
concentrate on what you wanted to do, without worrying about how it was
accomplished.

As you read this book, you will learn about several important types of sys-
tem software. You will come to understand the processes that were going on
“behind the scenes” as you used the computer in previous courses. By under-
standing the system software, you will gain a deeper understanding of how
computers actually work.

The major topics covered in this book are assemblers, loaders and linkers,
macro processors, compilers, and operating systems; each of Chapters 2
through 6 is devoted to one of these subjects. We also consider implementa-
tions of these types of software on several real machines. One central theme of
the book is the relationship between system software and machine architec-
ture: the design of an assembler, operating system, etc., is influenced by the ar-
chitecture of the machine on which it is to run. Some of these influences are
discussed in the next section; many other examples appear throughout the
text.

Chapter 7 contains a survey of some other important types of system soft-
ware: database management systems, text editors, and interactive debugging
systems. Chapter 8 contains an introduction to software engineering concepts
and techniques, focusing on the use of such methods in writing system soft-
ware. This chapter can be read at any time after the introduction to assemblers
in Section 2.1.

The depth of treatment in this text varies considerably from one topic to
another. The chapters on assemblers, loaders and linkers, and macro proces-
sors contain enough implementation details to prepare the reader to write
these types of software for a real computer. Compilers and operating systems,
on the other hand, are very large topics; each has, by itself, been the subject of

———

heteps:/hemanthrajhemu.github.io

1.2 System Software and Machine Architecture

many complete books and courses. It is obviously impossible to provide a full
coverage of these subjects in a single chapter of any reasonable size. Instead,
we provide an introduction to the most important concepts and issues related
to compilers and operating systems, stressing the relationships between soft-
ware design and machine architecture. Other subtopics are discussed as space
permits, with references provided for readers who wish to explore these areas
further. Our goal is to provide a good overview of these subjects that can also
serve as background for students who will later take more advanced software
courses. This same approach is also applied to the other topics surveyed in
Chapter 7.

1.2 SYSTEM SOFTWARE AND
MACHINE ARCHITECTURE

One characteristic in which most system software differs from application soft-
ware is machine dependency. An application program is primarily concerned
with the solution of some problem, using the computer as a tool. The focus is
on the application, not on the computing system. System programs, on the
other hand, are intended to support the operation and use of the computer it-
self, rather than any particular application. For this reason, they are usually re-
lated to the architecture of the machine on which they are to run. For example,
assemblers translate mnemonic instructions into machine code; the instruction
formats, addressing modes, etc., are of direct concern in assembler design.
Similarly, compilers must generate machine language code, taking into ac-
count such hardware characteristics as the number and type of registers and
the machine instructions available. Operating systems are directly concerned
with the management of nearly all of the resources of a computing system.
Many other examples of such machine dependencies may be found through-
out this book.

On the other hand, there are some aspects of system software that do not
directly depend upon the type of computing system being supported. For
example, the general design and logic of an assembler is basically the same on
most computers. Some of the code optimization techniques used by compilers
are independent of the target machine (although there are also machine-
dependent optimizations). Likewise, the process of linking together indepen-
dently assembled subprograms does not usually depend on the computer
being used. We will also see many examples of such machine-independent
features in the chapters that follow.

Because most system software is machine-dependent, we must include real
machines and real pieces of software in our study. However, most real com-
puters have certain characteristics that are unusual or even unique. It can be

heteps:/hemanthrajhemu.github.io

Chapter 1 Background

difficult to distinguish between those features of the software that are truly
fundamental and those that depend solely on the idiosyncrasies of a particular
machine. To avoid this problem, we present the fundamental functions of each
piece of software through discussion of a Simplified Instructional Computer
(SIC). SIC is a hypothetical computer that has been carefully designed to in-
clude the hardware features most often found on real machines, while avoid-
ing unusual or irrelevant complexities. In this way, the central concepts of a
piece of system software can be clearly separated from the implementation de-
tails associated with a particular machine. This approach provides the reader
with a starting point from which to begin the design of system software for a
new or unfamiliar computer.

Each major chapter in this text first introduces the basic functions of
the type of system software being discussed. We then consider machine-
dependent and machine-independent extensions to these functions, and exam-
ples of implementations on actual machines. Specifically, the major chapters
are divided into the following sections:

1. Features that are fundamental, and that should be found in any
example of this type of software.

2. Features whose presence and character are closely related to the
machine architecture.

3. Other features that are commonly found in implementations of this
type of software, and that are relatively machine-independent.

4. Major design options for structuring a particular piece of software—
for example, single-pass versus multi-pass processing.

5. Examples of implementations on actual machines, stressing unusual
software features and those that are related to machine characteristics.

This chapter contains brief descriptions of SIC and of the real machines
that are used as examples. You are encouraged to read these descriptions now,
and refer to them as necessary when studying the examples in each chapter.

1.3 THE SIMPLIFIED INSTRUCTIONAL
COMPUTER (SIC)

In this section we describe the architecture of our Simplified Instructional
Computer (SIC). This machine has been designed to illustrate the most com-
monly encountered hardware features and concepts, while avoiding most of
the idiosyncrasies that are often found in real machines.

heteps:/hemanthrajhemu.github.io

1.3 The Simplified Instructional Computer (SIC)

Like many other products, SIC comes in two versions: the standard model
and an XE version (XE stands for “extra equipment,” or perhaps “extra expen-
sive”). The two versions have been designed to be upward compatible—that is,
an object program for the standard SIC machine will also execute properly on
a SIC/XE system. (Such upward compatibility is often found on real comput-
ers that are closely related to one another.) Section 1.3.1 summarizes the stan-
dard features of SIC. Section 1.3.2 describes the additional features that are
included in SIC/XE. Section 1.3.3 presents simple examples of SIC and
SIC/XE programming. These examples are intended to help you become more
familiar with the SIC and SIC/XE instruction sets and assembler language.
Practice exercises in SIC and SIC/XE programming can be found at the end of
this chapter.

1.3.1 SIC Machine Architecture

Memory

Memory consists of 8-bit bytes; any 3 consecutive bytes form a word (24 bits).
All addresses on SIC are byte addresses; words are addressed by the location
of their lowest numbered byte. There are a total of 32,768 (21°) bytes in the
computer memory.

Registers

There are five registers, all of which have special uses. Each register is 24 bits
in length. The following table indicates the numbers, mnemonics, and uses of
these registers. (The numbering scheme has been chosen for compatibility
with the XE version of SIC.)

Mnemonic Number Special use
A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing
Ii; 2 Linkage register; the Jump to Subroutine (JSUB)

instruction stores the return address
in this register

PC 8 Program counter; contains the address of the
next instruction to be fetched for execution

SW 9 Status word; contains a variety of
information, including a Condition Code (CC)

he¢eps:/hemanthrajhemu.github.io

Chapter 1 Background

Data Formats

Integers are stored as 24-bit binary numbers; 2’s complement representation is
used for negative values. Characters are stored using their 8-bit ASCII codes
(see Appendix B). There is no floating-point hardware on the standard version
of SIC.

Instruction Formats

All machine instructions on the standard version of SIC have the following
24-bit format:

8 1 15
opcode X address

The flag bit x is used to indicate indexed-addressing mode.

Addressing Modes

There are two addressing modes available, indicated by the setting of the x bit
in the instruction. The following table describes how the target address is calcu-
lated from the address given in the instruction. Parentheses are used to indi-
cate the contents of a register or a memory location. For example, (X)
represents the contents of register X.

Mode Indication Target address calculation
Direct x=0 TA = address
Indexed Yo — TA = address + (X)

Instruction Set

SIC provides a basic set of instructions that are sufficient for most simple
tasks. These include instructions that load and store registers (LDA, LDX, STA,
STX, etc.), as well as integer arithmetic operations (ADD, SUB, MUL, DIV). All
arithmetic operations involve register A and a word in memory, with the result
being left in the register. There is an instruction (COMP) that compares the
value in register A with a word in memory; this instruction sets a condition code
CC to indicate the result (<, =, or >). Conditional jump instructions (JLT, JEQ,
JGT) can test the setting of CC, and jump accordingly. Two instructions are

heteps:/hemanthrajhemu.github.io

1.3 The Simplified Instructional Computer (SIC)

provided for subroutine linkage. JSUB jumps to the subroutine, placing the
return address in register L; RSUB returns by jumping to the address con-
tained in register L. *

Appendix A gives a complete list of all SIC (and SIC/XE) instructions, with
their operation codes and a specification of the function performed by each.

Input and Output

On the standard version of SIC, input and output are performed by transfer-
ring 1 byte at a time to or from the rightmost 8 bits of register A. Each device is
assigned a unique 8-bit code. There are three I/O instructions, each of which
specifies the device code as an operand.

The Test Device (TD) instruction tests whether the addressed device is
ready to send or receive a byte of data. The condition code is set to indicate the
result of this test. (A setting of < means the device is ready to send or receive,
and = means the device is not ready.) A program needing to transfer data must
wait until the device is ready, then execute a Read Data (RD) or Write Data
(WD). This sequence must be repeated for each byte of data to be read or writ-
ten. The program shown in Fig. 2.1 (Chapter 2) illustrates this technique for
performing 1/0.

1.3.2 SIC/XE Machine Architecture

Memory

The memory structure for SIC/XE is the same as that previously described for
SIC. However, the maximum memory available on a SIC/XE system is
1 megabyte (220 bytes). This increase leads to a change in instruction formats
and addressing modes.

Registers
The following additional registers are provided by SIC /XE:

Mnemonic Number Special use

B 3 Base register; used for addressing

S + General working register—no special use
T 5 General working register—no special use
F 6 Floating-point accumulator (48 bits)

he¢eps:/hemanthrajhemu.github.io

Chapter 1 Background

Data Formats

SIC/XE provides the same data formats as the standard version. In addition,
there is a 48-bit floating-point data type with the following format:

1 11 36

exponent fraction

w

The fraction is interpreted as a value between 0 and 1; that is, the assumed bi-
nary point is immediately before the high-order bit. For normalized floating-
point numbers, the high-order bit of the fraction must be 1. The exponent is
interpreted as an unsigned binary number between 0 and 2047. If the exponent
has value e and the fraction has value f, the absolute value of the number rep-
resented is

£ *2(e-1024)

The sign of the floating-point number is indicated by the value of s (0 =
positive, 1 = negative). A value of zero is represented by setting all bits
(including sign, exponent, and fraction) to 0.

Instruction Formats

The larger memory available on SIC/XE means that an address will (in gen-
eral) no longer fit into a 15-bit field; thus the instruction format used on the
standard version of SIC is no longer suitable. There are two possible options—
either use some form of relative addressing, or extend the address field to 20
bits. Both of these options are included in SIC/XE (Formats 3 and 4 in the fol-
lowing description). In addition, SIC/XE provides some instructions that do
not reference memory at all. Formats 1 and 2 in the following description are
used for such instructions.

The new set of instruction formats is as follows. The settings of the flag bits
in Formats 3 and 4 are discussed under Addressing Modes. Bit ¢ is used to dis-
tinguish between Formats 3 and 4 (¢ = 0 means Format 3, ¢ = 1 means Format
4). Appendix A indicates the format to be used with each machine instruction.

Format 1 (1 byte):

8

op

heteps:/hemanthrajhemu.github.io

13 The Simplified Instructional Computer (SIC)

Format 2 (2 bytes):

8 4 4
op r r2

Format 3 (3 bytes):

6 A 12
op nli|x|blp|e disp

Format 4 (4 bytes):

6 1711 20
op n|i|x|b|ple address
Addressing Modes

Two new relative addressing modes are available for use with instructions
assembled using Format 3. These are described in the following table:

Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0 < disp < 4095)

Program-counter b=0,p=1 TA=(PC)+disp (-2048 <disp <2047)
relative

For base relative addressing, the displacement field disp in a Format 3 instruc-
tion is interpreted as a 12-bit unsigned integer. For program-counter relative ad-
dressing, this field is interpreted as a 12-bit signed integer, with negative
values represented in 2’s complement notation.

If bits b and p are both set to 0, the disp field from the Format 3 instruction
is taken to be the target address. For a Format 4 instruction, bits b and p are
normally set to 0, and the target address is taken from the address field of the
instruction. We will call this direct addressing, to distinguish it from the rela-
tive addressing modes described above.

Any of these addressing modes can also be combined with indexed ad-
dressing—if bit x is set to 1, the term (X) is added in the target address calcula-
tion. Notice that the standard version of the SIC machine uses only direct
addressing (with or without indexing).

heteps:/hemanthrajhemu.github.io

10

Chapter 1 Background

Bits / and n in Formats 3 and 4 are used to specify how the target address is
used. If bit i = 1 and n = 0, the target address itself is used as the operand
value; no memory reference is performed. This is called immediate addressing.
If bit i = 0 and n = 1, the word at the location given by the target address is
fetched; the value contained in this word is then taken as the address of the
operand value. This is called indirect addressing. If bits i and n are both 0 or
both 1, the target address is taken as the location of the operand; we will refer
to this as simple addressing. Indexing cannot be used with immediate or indi-
rect addressing modes.

Many authors use the term effective address to denote what we have called
the target address for an instruction. However, there is disagreement concern-
ing the meaning of effective address when referring to an instruction that uses
indirect addressing. To avoid confusion, we use the term target address
throughout this book.

SIC/XE instructions that specify neither immediate nor indirect addressing
are assembled with bits n and i both set to 1. Assemblers for the standard ver-
sion of SIC will, however, set the bits in both of these positions to 0. (This is be-
cause the 8-bit binary codes for all of the SIC instructions end in 00.) All
SIC/XE machines have a special hardware feature designed to provide the up-
ward compatibility mentioned earlier. If bits n and i are both 0, then bits b, p,
and e are considered to be part of the address field of the instruction (rather
than flags indicating addressing modes). This makes Instruction Format 3
identical to the format used on the standard version of SIC, providing the de-
sired compatibility.

Figure 1.1 gives examples of the different addressing modes available on
SIC/XE. Figure 1.1(a) shows the contents of registers B, PC, and X, and of se-
lected memory locations. (All values are given in hexadecimal.) Figure 1.1(b)
gives the machine code for a series of LDA instructions. The target address
generated by each instruction, and the value that is loaded into register A, are
also shown. You should carefully examine these examples, being sure you un-
derstand the different addressing modes illustrated.

For ease of reference, all of the SIC/XE instruction formats and addressing
modes are summarized in Appendix A.

Instruction Set

SIC/XE provides all of the instructions that are available on the standard
version. In addition, there are instructions to load and store the new registers
(LDB, STB, etc.) and to perform floating-point arithmetic operations (ADDF,

heteps:/hemanthrajhemu.github.io

1.3 The Simplified Instructional Computer (SIC) 11
(B) = 006000
L] .
- . (PC) = 003000
L] . ¥
. " (X) = 000090
3030 003600
L] .
L L]
L] L]
3600 103000
L] L]
. L]
L] L]
L] L]
L] .
6390 00C303
L] L]
. -
- L]
- -
L] -
. L]
C303 003030
- L]
L] L]
L] -
L] L]
(a)
Machine instruction Value
' 1 loaded
Hex Binary into
T == 1 Target register
op n i x b p e disp/address address A
032600 000000 1 1 0 0 1 0 0110 0000 0000 3600 103000
03C300 000000 1 1 1 1 0 0 0011 0000 0000 6320 00C303
022030 000000 1 0 0 0 1 0 0000 0011 0000 3030 103000
010030 000000 0 1 0 0 0 0 0000 0011 0000 30 000030
003600 000000 0 0 0 0 1 1 0110 0000 0000 3600 103000
0310C303 000000 1 1 0 a 0 1 0000 1100 0011 0000 0O11 C303 003030
(b)

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

12

he¢eps:/hemanthrajhemu.github.io

Chapter 1 Background

SUBF, MULF, DIVF). There are also instructions that take their operands from
registers. Besides the RMO (register move) instruction, these include
register-to-register arithmetic operations (ADDR, SUBR, MULR, DIVR). A spe-
cial supervisor call instruction (SVC) is provided. Executing this instruction
generates an interrupt that can be used for communication with the operating
system. (Supervisor calls and interrupts are discussed in Chapter 6.)

There are also several other new instructions. Appendix A gives a complete
list of all SIC/XE instructions, with their operation codes and a specification of
the function performed by each.

Input and Output

The I/0O instructions we discussed for SIC are also available on SIC/XE. In ad-
dition, there are 1/O channels that can be used to perform input and output
while the CPU is executing other instructions. This allows overlap of comput-
ing and I/0O, resulting in more efficient system operation. The instructions
SIO, TIO, and HIO are used to start, test, and halt the operation of I/O chan-
nels. (These concepts are discussed in detail in Chapter 6.)

1.3.3 SIC Programming Examples

This section presents simple examples of SIC and SIC/XE assembler language
programming. These examples are intended to help you become more familiar
with the SIC and SIC/XE instruction sets and assembler language. It is as-
sumed that the reader is already familiar with the assembler language of at
least one machine and with the basic ideas involved in assembly-level pro-
gramming.

The primary subject of this book is systems programming, not assembler
language programming. The following chapters contain discussions of various
types of system software, and in some cases SIC programs are used to illus-
trate the points being made. This section contains material that may help you
to understand these examples more easily. However, it does not contain any
new material on system software or systems programming. Thus, this section
can be skipped without any loss of continuity.

Figure 1.2 contains examples of data movement operations for SIC and
SIC/XE. There are no memory-to-memory move instructions; thus, all data
movement must be done using registers. Figure 1.2(a) shows two examples of
data movement. In the first, a 3-byte word is moved by loading it into register
A and then storing the register at the desired destination. Exactly the same
thing could be accomplished using register X (and the instructions LDX, STX)
or register L (LDL, STL). In the second example, a single byte of data is moved
using the instructions LDCH (Load Character) and STCH (Store Character).

heteps:/hemanthrajhemu.github.io

1.8 The Simplified Instructional Computer (SIC) 13

These instructions operate by loading or storing the rightmost 8-bit byte of
register A; the other bits in register A are not affected.

Figure 1.2(a) also shows four different ways of defining storage for data
items in the SIC assembler language. (These assembler directives are discussed
in more detail in Section 2.1.) The statement WORD reserves one word of stor-
age, which is initialized to a value defined in the operand field of the state-
ment. Thus the WORD statement in Fig. 1.2(a) defines a data word labeled
FIVE whose value is initialized to 5. The statement RESW reserves one or
more words of storage for use by the program. For example, the RESW state-
ment in Fig. 1.2(a) defines one word of storage labeled ALPHA, which will be
used to hold a value generated by the program.

The statements BYTE and RESB perform similar storage-definition func-
tions for data items that are characters instead of words. Thus in Fig. 1.2(a)
CHARZ is a 1-byte data item whose value is initialized to the character “Z”,
and C1 is a 1-byte variable with no initial value.

LDA FIVE LOAD CONSTANT 5 INTO REGISTER A
STA AT.PHA STORE IN ALPHA

LDCH CHARZ LOAD CHARACTER 'Z’ INTO REGISTER A
STCH Ccl STORE IN CHARACTER VARIAELE C1

ATLPHA RESW 4 ONE-WORD VARIABLE
FIVE WORD 5 ONE-WORD CONSTANT
CHARZ BYTE gz’ ONE-BYTE CONSTANT
. €1 RESB 1 ONE-BYTE VARIABLE
(a)
LDA #5 LOAD VALUE 5 INTO REGISTER A
STA ATPHA STORE IN ALPHA
LDA #90 LOAD ASCITI CODE FOR 'Z’ INTO REG A
STCH i STORE IN CHARACTER VARIABLE C1
ALPHA RESW 1 ONE-WORD VARIAELE
€l RESB it ONE-BYTE VARTABLE

(b)

Figure 1.2 Sample data movement operations for (a) SIC and
(b) SIC/XE.

14

heteps:/hemanthrajhemu.github.io

Chapter 1 Background

The instructions shown in Fig. 1.2(a) would also work on SIC/XE; how-
ever, they would not take advantage of the more advanced hardware features
available. Figure 1.2(b) shows the same two data-movement operations as
they might be written for SIC/XE. In this example, the value 5 is loaded into
register A using immediate addressing. The operand field for this instruction
contains the flag # (which specifies immediate addressing) and the data value
to be loaded. Similarly, the character “Z” is placed into register A by using im-
mediate addressing to load the value 90, which is the decimal value of the
ASCII code that is used internally to represent the character “Z".

Figure 1.3(a) shows examples of arithmetic instructions for SIC. All arith-
metic operations are performed using register A, with the result being left in
register A. Thus this sequence of instructions stores the value (ALPHA + INCR
—1) in BETA and the value (GAMMA + INCR - 1) in DELTA.

Figure 1.3(b) illustrates how the same calculations could be performed on
SIC/XE. The value of INCR is loaded into register S initially, and the register-
to-register instruction ADDR is used to add this value to register A when it is
needed. This avoids having to fetch INCR from memory each time it is used in
a calculation, which may make the program more efficient. Immediate ad-
dressing is used for the constant 1 in the subtraction operations.

Looping and indexing operations are illustrated in Fig. 1.4. Figure 1.4(a)
shows a loop that copies one 11-byte character string to another. The index
register (register X) is initialized to zero before the loop begins. Thus, during
the first execution of the loop, the target address for the LDCH instruction will
be the address of the first byte of STR1. Similarly, the STCH instruction will
store the character being copied into the first byte of STR2. The next instruc-
tion, TIX, performs two functions. First it adds 1 to the value in register X, and
then it compares the new value of register X to the value of the operand (in
this case, the constant value 11). The condition code is set to indicate the result
of this comparison. The JLT instruction jumps if the condition code is set to
“less than.” Thus, the JLT causes a jump back to the beginning of the loop if
the new value in register X is less than 11.

During the second execution of the loop, register X will contain the value
1. Thus, the target address for the LDCH instruction will be the second byte of
STR1, and the target address for the STCH instruction will be the second byte
of STR2. The TIX instruction will again add 1 to the value in register X, and the
loop will continue in this way until all 11 bytes have been copied from STR1 to
STR2. Notice that after the TIX instruction is executed, the value in register X
is equal to the number of bytes that have already been copied.

Figure 1.4(b) shows the same loop as it might be written for SIC/XE. The
main difference is that the instruction TIXR is used in place of TIX. TIXR
works exactly like TIX, except that the value used for comparison is taken
from another register (in this case, register T), not from memory. This makes

heteps:/hemanthrajhemu.github.io

1.8 The Simplified Instructional Computer (SIC) 15

the loop more efficient, because the value does not have to be fetched from
memory each time the loop is executed. Immediate addressing is used to ini-
tialize register T to the value 11 and to initialize register X to 0.

ALPHA
BETA

DELTA

ALPHA
BETA

DELTA

ADDR

STA

ADDR

STA

ALPHA
INCR
ONE
BETA
GAMMA
INCR
ONE
DELTA

(ol

[R R S O

ALPHA

S,A
#1

BETA

S,A
#1
DELTA

N T

LOAD ALPHA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN DELTA

ONE-WORD CONSTANT
ONE-WORD VARIABLES

(a)

LOAD VALUE OF INCR INTO REGISTER S
LOAD ALPHA INTO REGISTER A

ADD THE VALUE OF INCR

SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A

ADD THE VALUE OF INCR

SUBTRACT 1

STORE IN DELTA

ONE WORD VARIABLES

(b)

Figure 1.3 Sample arithmetic operations for (a) SIC and (b) SIC/XE.

16

heteps:/hemanthrajhemu.github.io

Chapter 1 Background

MOVECH

STR1
STR2
ZERO
ELEVEN

STR1
STR2

STCH
TIX

BYTE
RESB

BYTE
RESB

Figure 1.4
(b) SIC/XE.

ZERO INITIALIZE INDEX REGISTER TO 0
STR1,X LOAD CHARACTER FROM STR1 INTO REG A
STRZ2,X STORE CHARACTER INTO STR2

ELEVEN ADD 1 TO INDEX, COMPARE RESULT TO 11
MOVECH LOOP IF INDEX IS LESS THAN 11

C'TEST STRING' 11-BYTE STRING CONSTANT
£ 11-BYTE VARIABLE
ONE-WORD CONSTANTS

11
(a)

#11 INITIALIZE REGISTER T TO 11

#0 INITIALIZE INDEX REGISTER TO 0

STR1,X LOAD CHARACTER FROM STR1 INTO REG A

STR2,X STORE CHARACTER INTO STR2

T ADD 1 TO INDEX, COMPARE RESULT TO 11

MOVECH LOOP IF INDEX IS LESS THAN 11

C'TEST STRING' 11-BYTE STRING CONSTANT
11 11-BYTE VARIABLE

(b)

Sample looping and indexing operations for (a) SIC and

Figure 1.5 contains another example of looping and indexing operations.
The variables ALPHA, BETA, and GAMMA are arrays of 100 words each. In
this case, the task of the loop is to add together the corresponding elements of
ALPHA and BETA, storing the results in the elements of GAMMA. The gen-
eral principles of looping and indexing are the same as previously discussed.
However, the value in the index register must be incremented by 3 for each it-
eration of this loop, because each iteration processes a 3-byte (i.e., one-word)
element of the arrays. The TIX instruction always adds 1 to register X, so it is
not suitable for this program fragment. Instead, we use arithmetic and com-
parison instructions to handle the index value.

ADDLP

INDEX
ALPHA
BETA

ZERO
K300

ADDLP

ALPHA
BETA

hetcps:/hemanthrajhemu.github.io

ZERO
INDEX
INDEX
ALPHA, X
BETA, X
GAMMA, X
INDEX
THREE
INDEX
K300
ADDLP

100
100
100

300

#3

#300

#0
ALPHA, X
BETA, X
GAMMA, X
S, X

X,
ADDLP

100
100
100

1.3 The Simplified Instructional Computer (SIC) 17

INITIALIZE INDEX VALUE TO 0

LOAD INDEX VALUE INTO REGISTER X
LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300
LOOP IF INDEX IS LESS THAN 300

ONE-WORD VARTABLE FOR INDEX VALUE
ARRAY VARTIABLES--100 WORDS EACH

ONE-WORD CONSTANTS

(@)

INITTALIZE REGISTER S TO 3
INITIALIZE REGISTER T TO 300
INITIALTZE INDEX REGISTER TO 0

LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300

LOOP IF INDEX VALUE IS LESS THAN 300

ARRAY VARTABLES--100 WORDS EACH

(b)

Figure 1.5 Sample indexing and looping operations for (a) SIC and
(b) SIC/XE.

heteps:/hemanthrajhemu.github.io !

18 Chapter 1 Background

In Fig. 1.5(a), we define a variable INDEX that holds the value to be used
for indexing for each iteration of the loop. Thus, INDEX should be 0 for the
first iteration, 3 for the second, and so on. INDEX is initialized to 0 before the
start of the loop. The first instruction in the body of the loop loads the current
value of INDEX into register X so that it can be used for target address calcula-
tion. The next three instructions in the loop load a word from ALPHA, add the
corresponding word from BETA, and store the result in the corresponding -
word of GAMMA. The value of INDEX is then loaded into register A, incre-
mented by 3, and stored back into INDEX. After being stored, the new value of
INDEX is still present in register A. This value is then compared to 300 (the
length of the arrays in bytes) to determine whether or not to terminate the
loop. If the value of INDEX is less than 300, then all bytes of the arrays have
not yet been processed. In that case, the JLT instruction causes a jump back to
the beginning of the loop, where the new value of INDEX is loaded into regis- |
ter X. |

This particular loop is cumbersome on SIC, because register A must be
used for adding the array elements together and also for incrementing the in-
dex value. The loop can be written much more efficiently for SIC/XE, as
shown in Fig. 1.5(b). In this example, the index value is kept permanently in
register X. The amount by which to increment the index value (3) is kept in
register S, and the register-to-register ADDR instruction is used to add this in-
crement to register X. Similarly, the value 300 is kept in register T, and the in-
struction COMPR is used to compare registers X and T in order to decide
when to terminate the loop. .

Figure 1.6 shows a simple example of input and output on SIC; the same |
instructions would also work on SIC/XE. (The more advanced input and out-
put facilities available on SIC/XE, such as I/O channels and interrupts, are
discussed in Chapter 6.) This program fragment reads 1 byte of data from de-
vice F1 and copies it to device 05. The actual input of data is performed using .
the RD (Read Data) instruction. The operand for the RD is a byte in memory |
that contains the hexadecimal code for the input device (in this case, F1).
Executing the RD instruction transfers 1 byte of data from this device into the
rightmost byte of register A. If the input device is character-oriented (for ex-
ample, a keyboard), the value placed in register A is the ASCII code for the
character that was read.

Before the RD can be executed, however, the input device must be ready to
transmit the data. For example, if the input device is a keyboard, the operator ,
must have typed a character. The program checks for this by using the TD 1
(Test Device) instruction. When the TD is executed, the status of the addressed |
device is tested and the condition code is set to indicate the result of this test.

If the device is ready to transmit data, the condition code is set to “less than”;
if the device is not ready, the condition code is set to “equal.” As Fig. 1.6

he¢eps:/hemanthrajhemu.github.io

1.3 The Simplified Instructional Computer (SIC) 19
INLOQOP D INDEV TEST INFUT DEVICE
JEQ INLOOP LOOP UNTIL DEVICE IS READY
RD INDEV READ ONE BYTE INTO REGISTER A
STCH DATA STORE BYTE THAT WAS READ
OUTLP ™D OUTDEV TEST OUTPUT DEVICE
JEQ OUTLP LOCP UNTIL DEVICE IS READY
LDCH DATA LOAD DATA BYTE INTO REGISTER A
WD QUTDEV WRITE ONE BYTE TO OUTPUT DEVICE
INDEV BYTE X1 INPUT DEVICE NUMBER
OUTDEV BYTE X105 OUTPUT DEVICE NUMBER
DATA RESB 1 ONE-BYTE VARIABLE

Figure 1.6 Sample input and output operations for SIC.

illustrates, the program must execute the TD instruction and then check the
condition code by using a conditional jump. If the condition code is “equal”
(device not ready), the program jumps back to the TD instruction. This two-
instruction loop will continue until the device becomes ready; then the RD will
be executed.

Output is performed in the same way. First the program uses TD to check
whether the output device is ready to receive a byte of data. Then the byte to
be written is loaded into the rightmost byte of register A, and the WD (Write
Data) instruction is used to transmit it to the device.

Figure 1.7 shows how these instructions can be used to read a 100-byte
record from an input device into memory. The read operation in this example
is placed in a subroutine. This subroutine is called from the main program by
using the JSUB (Jump to Subroutine) instruction. At the end of the subroutine
there is an RSUB (Return from Subroutine) instruction, which returns control
to the instruction that follows the JSUB.

The READ subroutine itself consists of a loop. Each execution of this loop
reads 1 byte of data from the input device, using the same techniques illus-
trated in Fig. 1.6. The bytes of data that are read are stored in a 100-byte buffer
area labeled RECORD. The indexing and looping techniques that are used in
storing characters in this buffer are essentially the same as those illustrated in
Fig. 1.4(a).

Figure 1.7(b) shows the same READ subroutine as it might be written for
SIC/XE. The main differences from Fig. 1.7(a) are the use of immediate
addressing and the TIXR instruction, as was illustrated in Fig. 1.4(a).

20 Chapter 1

RLOOP

INDEV
RECORD

ZERO
K100

RLOOP

RECORD

JSUB

LDX
JEQ

STCH
TIX

JSUB

JEQ

STCH
TIXR

BYTE
RESB

Background

ZERO
INDEV
RLOOP
INDEV
RECORD, X
K100
RLOOP

X'Fl*
100

100

#0

#100
INDEV
RLOOP

RECORD, X

RLOOP

ZrPL!
100

he¢eps:/hemanthrajhemu.github.io

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO 0
TEST INPUT DEVICE

LOOFP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD
ONE-WORD CONSTANTS

(a)

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO 0
INITIALIZE REGISTER T TO 100

TEST INPUT DEVICE

LOCP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUEROUTINE

INPUT DEVICE NUMBER

.100-BYTE BUFFER FOR INPUT RECORD

(b)

Figure 1.7 Sample subroutine call and record input operations for
(a) SIC and (b) SIC/XE.

-k

https.llhemanthrajhemu.slthub.lo

1.4 Traditional (CISC) Machines

1.4 TRADITIONAL (CISC) MACHINES

This section introduces the architectures of two of the machines that will be
used as examples later in the text. Section 1.4.1 describes the VAX architecture,
and Section 1.4.2 describes the architecture of the Intel x86 family of proces-
sors.

The machines described in this section are classified as Complex Instruc-
tion Set Computers (CISC). CISC machines generally have a relatively large
and complicated instruction set, several different instruction formats and
lengths, and many different addressing modes. Thus the implementation of
such an architecture in hardware tends to be complex.

You may want to compare the examples in this section with the Reduced
Instruction Set Computer (RISC) examples in Section 1.5. Further discussion of
CISC versus RISC designs can be found in Tabak (1995).

1.4.1 VAX Architecture

The VAX family of computers was introduced by Digital Equipment
Corporation (DEC) in 1978. The VAX architecture was designed for compati-
bility with the earlier PDP-11 machines. A compatibility mode was provided at
the hardware level so that many PDP-11 programs could run unchanged on
the VAX. It was even possible for PDP-11 programs and VAX programs to
share the same machine in a multi-user environment.

This section summarizes some of the main characteristics of the VAX archi-
tecture. For further information, see Baase (1992).

Memory

The VAX memory consists of 8-bit bytes. All addresses used are byte ad-
dresses. Two consecutive bytes form a word; four bytes form a longword; eight
bytes form a quadword; sixteen bytes form an octaword. Some operations are
more efficient when operands are aligned in a particular way—for example, a
longword operand that begins at a byte address that is a multiple of 4.

All VAX programs operate in a virtual address space of 232 bytes. This vir-
tual memory allows programs to operate as though they had access to an ex-
tremely large memory, regardless of the amount of memory actually present
on the system. Routines in the operating system take care of the details of
memory management. We discuss virtual memory in connection with our
study of operating systems in Chapter 6. One half of the VAX virtual address
space is called system space, which contains the operating system, and is shared
by all programs. The other half of the address space is called process space, and

21

https.llhemanthrajhemu.slthub.lc

Chapter 1 Background

is defined separately for each program. A part of the hprocess space contains
stacks that are available to the program. Special registers and machine instruc-
tions aid in the use of these stacks.

Registers

There are 16 general-purpose registers on the VAX, denoted by R0 through
R15. Some of these registers, however, have special names and uses. All gen-
eral registers are 32 bits in length. Register R15 is the program counter, also
called PC. It is updated during instruction execution to point to the next in-
struction byte to be fetched. R14 is the stack pointer SP, which points to the cur-
rent top of the stack in the program’s process space. Although it is possible to
use other registers for this purpose, hardware instructions that implicitly use
the stack always use SP. R13 is the frame pointer FP. VAX procedure call con-
ventions build a data structure called a stack frame, and place its address in
FP. R12 is the argument pointer AP. The procedure call convention uses AP to
pass a list of arguments associated with the call.

Registers R6 through R11 have no special functions, and are available for
general use by the program. Registers R0 through R5 are likewise available for
general use; however, these registers are also used by some machine instruc-
tions.

In addition to the general registers, there is a processor status longword
(PSL), which contains state variables and flags associated with a process. The
PSL includes, among many other items of information, a condition code and a
flag that specifies whether PDP-11 compatibility mode is being used by a
process. There are also a number of control registers that are used to support
various operating system functions.

Data Formats

Integers are stored as binary numbers in a byte, word, longword, quadword,
or octaword; 2’s complement representation is used for negative values.
Characters are stored using their 8-bit ASCII codes.

There are four different floating-point data formats on the VAX, ranging in
length from 4 to 16 bytes. Two of these are compatible with those found on the
PDP-11, and are standard on all VAX processors. The other two are available
as options, and provide for an extended range of values by allowing more bits
in the exponent field. In each case, the principles are the same as those we dis-
cussed for SIC/XE: a floating-point value is represented as a fraction that is to
be multiplied by a specified power of 2.

VAX processors provide a packed decimal data format. In this format, each
byte represents two decimal digits, with each digit encoded using 4 bits of the
byte. The sign is encoded in the last 4 bits. There is also a numeric format that

https.llhemanthra;hemu.glthub.lo

1.4 Traditional (CISC) Machines

is used to represent numeric values with one digit per byte. In this format, the
sign may appear either in the last byte, or as a separate byte preceding the first
digit. These two variagtions are called trailing numeric and leading separate nu-
meric.

VAX also supports queues and variable-length bit strings. Data structures
such as these can, of course, be implemented on any machine; however, VAX
provides direct hardware support for them. There are single machine instruc-
tions that insert and remove entries in queues, and perform a variety of opera-
tions on bit strings. The existence of such powerful machine instructions and
complex primitive data types is one of the more unusual features of the VAX
architecture.

Instruction Formats

VAX machine instructions use a variable-length instruction format. Each in-
struction consists of an operation code (1 or 2 bytes) followed by up to six
operand specifiers, depending on the type of instruction. Each operand specifier
designates one of the VAX addressing modes and gives any additional infor-
mation necessary to locate the operand. (See the description of addressing
modes in the following section for further information.)

Addressing Modes

VAX provides a large number of addressing modes. With few exceptions, any
of these addressing modes may be used with any instruction. The operand it-
self may be in a register (register mode), or its address may be specified by a
register (register deferred mode). If the operand address is in a register, the reg-
ister contents may be automatically incremented or decremented by the
operand length (autoincrement and autodecrement modes). There are several
base relative addressing modes, with displacement fields of different lengths;
when used with register PC, these become program-counter relative modes.
All of these addressing modes may also include an index register, and many of
them are available in a form that specifies indirect addressing (called deferred
modes on VAX). In addition, there are immediate operands and several spe-
cial-purpose addressing modes. For further details, see Baase (1992).

Instruction Set

One of the goals of the VAX designers was to produce an instruction set that is
symmetric with respect to data type. Many instruction mnemonics are formed
by combining the following elements:

23

he¢eps:/hemanthrajhemu.github.io

24

Chapter 1 Background

1. a prefix that specifies the type of operation,
2. asuffix that specifies the data type of the operands,

3. a modifier (on some instructions) that gives the number of operands
involved.

For example, the instruction ADDW2 is an add operation with two operands,
each a word in length. Likewise, MULL3 is a multiply operation with three
longword operands, and CVTWL specifies a conversion from word to long-
word. (In the latter case, a two-operand instruction is assumed.) For a typical
instruction, operands may be located in registers, in memory, or in the instruc-
tion itself (immediate addressing). The same machine instruction code is used,
regardless of operand locations.

VAX provides all of the usual types of instructions for computation, data
movement and conversion, comparison, branching, etc. In addition, there are a
number of operations that are much more complex than the machine instruc-
tions found on most computers. These operations are, for the most part, hard-
ware realizations of frequently occurring sequences of code. They are
implemented as single instructions for efficiency and speed. For example, VAX
provides instructions to load and store multiple registers, and to manipulate
queues and variable-length bit fields. There are also powerful instructions for
calling and returning from procedures. A single instruction saves a designated
set of registers, passes a list of arguments to the procedure, maintains the
stack, frame, and argument pointers, and sets a mask to enable error traps for
arithmetic operations. For further information on all of the VAX instructions,
see Baase (1992).

Input and Output

Input and output on the VAX are accomplished by 1/0 device controllers.
Each controller has a set of control/status and data registers, which are as-
signed locations in the physical address space. The portion of the address
space into which the device controller registers are mapped is called I/O space.

No special instructions are required to access registers in 1/0O space. An
/O device driver issues commands to the device controller by storing values
into the appropriate registers, exactly as if they were physical memory loca-
tions. Likewise, software routines may read these registers to obtain status in-
formation. The association of an address in 1/O space with a physical register
in a device controller is handled by the memory management routines.

heteps:/hemanthrajhemu.github.io

1.4 Traditional (CISC) Machines

1.4.2 Pentium Pro Architecture

The Pentium Pro microprocessor, introduced near the end of 1995, is the latest
in the Intel x86 family. Other recent microprocessors in this family are the
80486 and Pentium. Processors of the x86 family are presently used in a major-
ity of personal computers, and there is a vast amount of software for these
processors. It is expected that additional generations of the x86 family will be
developed in the future.

The various x86 processors differ in implementation details and operating
speed. However, they share the same basic architecture. Each succeeding gen-
eration has been designed to be compatible with the earlier versions. This sec-
tion contains an overview of the x86 architecture, which will serve as
background for the examples to be discussed later in the book. Further infor-
mation about the x86 family can be found in Intel (1995), Anderson and
Shanley (1995), and Tabak (1995).

Memory

Memory in the x86 architecture can be described in at least two different ways.
At the physical level, memory consists of 8-bit bytes. All addresses used are
byte addresses. Two consecutive bytes form a word; four bytes form a double-
word (also called a dword). Some operations are more efficient when operands
are aligned in a particular way—for example, a doubleword operand that be-
gins at a byte address that is a multiple of 4.

However, programmers usually view the x86 memory as a collection of
segments. From this point of view, an address consists of two parts—a segment
number and an offset that points to a byte within the segment. Segments can
be of different sizes, and are often used for different purposes. For example,
some segments may contain executable instructions, and other segments may
be used to store data. Some data segments may be treated as stacks that can be
used to save register contents, pass parameters to subroutines, and for other
purposes.

It is not necessary for all of the segments used by a program to be in physi-
cal memory. In some cases, a segment can also be divided into pages. Some of
the pages of a segment may be in physical memory, while others may be
stored on disk. When an x86 instruction is executed, the hardware and the op-
erating system make sure that the needed byte of the segment is loaded into
physical memory. The segment/ offset address specified by the programmer is
automatically translated into a physical byte address by the x86 Memory

25

26

heteps:/hemanthrajhemu.github.io

Chapter 1 Background

-

Management Unit (MMU). Chapter 6 contains a brief discussion of methods
that can be used in this kind of address translation.

Registers

There are eight general-purpose registers, which are named EAX, EBX, ECX,
EDX, ESI, EDI, EBP, and ESP. Each general-purpose register is 32 bits long (i.e.,
one doubleword). Registers EAX, EBX, ECX, and EDX are generally used for
data manipulation; it is possible to access individual words or bytes from
these registers. The other four registers can also be used for data, but are more
commonly used to hold addresses. The general-purpose register set is identi-
cal for all members of the x86 family beginning with the 80386. This set is also
compatible with the more limited register sets found in earlier members of the
family.

There are also several different types of special-purpose registers in the x86
architecture. EIP is a 32-bit register that contains a pointer to the next instruc-
tion to be executed. FLAGS is a 32-bit register that contains many different bit
flags. Some of these flags indicate the status of the processor; others are used
to record the results of comparisons and arithmetic operations. There are also
six 16-bit segment registers that are used to locate segments in memory.
Segment register CS contains the address of the currently executing code seg-
ment, and SS contains the address of the current stack segment. The other seg-
ment registers (DS, ES, FS, and GS) are used to indicate the addresses of data
segments.

Floating-point computations are performed using a special floating-point
unit (FPU). This unit contains eight 80-bit data registers and several other con-
trol and status registers.

All of the registers discussed so far are available to application programs.
There are also a number of registers that are used only by system programs
such as the operating system. Some of these registers are used by the MMU to
translate segment addresses into physical addresses. Others are used to con-
trol the operation of the processor, or to support debugging operations.

Data Formats

The x86 architecture provides for the storage of integers, floating-point values,
characters, and strings. Integers are-normally stored as 8-, 16-, or 32-bit binary
numbers. Both signed and unsigned integers (also called ordinals) are sup-
ported; 2's complement is used for negative values. The FPU can also handle
64-bit signed integers. In memory, the least significant part of a numeric value
is stored at the lowest-numbered address. (This is commonly called

h¢tps:/hemanthrajhemu.github.io

1.4 Traditional (CISC) Machines

little-endian byte ordering, because the “little end” of the value comes first in
memory:.)

Integers can also ‘be stored in binary coded decimal (BCD). In the unpacked
BCD format, each byte represents one decimal digit. The value of this digit is
encoded (in binary) in the low-order 4 bits of the byte; the high-order bits are
normally zero. In the packed BCD format, each byte represents two decimal
digits, with each digit encoded using 4 bits of the byte.

There are three different floating-point data formats. The single-precision
format is 32 bits long. It stores 24 significant bits of the floating-point value,
and allows for a 7-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is 64
bits long. It stores 53 significant bits, and allows for a 10-bit exponent. The
extended-precision format is 80 bits long. It stores 64 significant bits, and
allows for a 15-bit exponent.

Characters are stored one per byte, using their 8-bit ASCII codes. Strings
may consist of bits, bytes, words, or doublewords; special instructions are
provided to handle each type of string.

Instruction Formats

All of the x86 machine instructions use variations of the same basic format.
This format begins with optional prefixes containing flags that modify the op-
eration of the instruction. For example, some prefixes specify a repetition
count for an instruction. Others specify a segment register that is to be used
for addressing an operand (overriding the normal default assumptions made
by the hardware). Following the prefixes (if any) is an opcode (1 or 2 bytes);
some operations have different opcodes, each specifying a different variant of
the operation. Following the opcode are a number of bytes that specify the
operands and addressing modes to be used. (See the description of addressing
modes in the next section for further information.)

The opcode is the only element that is always present in every instruction.
Other elements may or may not be present, and may be of different lengths,
depending on the operation and the operands involved. Thus, there are a large
number of different potential instruction formats, varying in length from
1 byte to 10 bytes or more.

Addressing Modes

The x86 architecture provides a large number of addressing modes. An
operand value may be specified as part of the instruction itself (immediate
mode), or it may be in a register (register mode).

27

28

heteps:/hemanthrajhemu.github.io

Chapter 1 Background

Operands stored in memory are often specified using variations of the gen-
eral target address calculation

TA = (base register) + (index register) * (scale factor) + displacement

Any general-purpose register may be used as a base register; any general-
purpose register except ESP can be used as an index register. The scale factor
may have the value 1, 2, 4, or 8, and the displacement may be an 8-, 16-, or 32-
bit value. The base and index register numbers, scale, and displacement are
encoded as parts of the operand specifiers in the instruction. Various combina-
tions of these items may be omitted, resulting in eight different addressing
modes. The address of an operand in memory may also be specified as an ab-
solute location (direct mode), or as a location relative to the EIP register (relative
mode).

Instruction Set

The x86 architecture has a large and complex instruction set, containing more
than 400 different machine instructions. An instruction may have zero, one,
two, or three operands. There are register-to-register instructions, register-to-
memory instructions, and a few memory-to-memory instructions. In some
cases, operands may also be specified in the instruction as immediate values.

Most data movement and integer arithmetic instructions can use operands
that are 1, 2, or 4 bytes long. String manipulation instructions, which use repe-
tition prefixes, can deal directly with variable-length strings of bytes, words,
or doublewords. There are many instructions that perform logical and bit ma-
nipulations, and support control of the processor and memory-management
systems.

The x86 architecture also includes special-purpose instructions to perform
operations frequently required in high-level programming languages—for ex-
ample, entering and leaving procedures and checking subscript values against
the bounds of an array.

Input and Output

Input is performed by instructions that transfer one byte, word, or double-
word at a time from an 1/O port into register EAX. Output instructions trans-
fer one byte, word, or doubleword from EAX to an I/O port. Repetition
prefixes allow these instructions to transfer an entire string in a single
operation.

heteps:/hemanthrajhemu.github.io

1.5 RISC Machines

1.5 RISC MACHINES

This section introducés the architectures of three RISC machines that will be
used as examples later in the text. Section 1.5.1 describes the architecture of the
SPARC family of processors. Section 1.5.2 describes the PowerPC family of mi-
croprocessors for personal computers. Section 1.5.3 describes the architecture
of the Cray T3E supercomputing system.

All of these machines are examples of RISC (Reduced Instruction Set
Computers), in contrast to traditional CISC (Complex Instruction Set
Computer) implementations such as Pentium and VAX. The RISC concept, de-
veloped in the early 1980s, was intended to simplify the design of processors.
This simplified design can result in faster and less expensive processor devel-
opment, greater reliability, and faster instruction execution times.

In general, a RISC system is characterized by a standard, fixed instruction
length (usually equal to one machine word), and single-cycle execution of
most instructions. Memory access is usually done by load and store instruc-
tions only. All instructions except for load and store are register-to-register op-
erations. There are typically a relatively large number of general-purpose
registers. The number of machine instructions, instruction formats, and ad-
dressing modes is relatively small.

The discussions in the following sections will illustrate some of these RISC
characteristics. Further information about the RISC approach, including its ad-
vantages and disadvantages, can be found in Tabak (1995).

1.5.1 UltraSPARC Architecture

The UltraSPARC processor, announced by Sun Microsystems in 1995, is the
latest member of the SPARC family. Other members of this family include a
variety of SPARC and SuperSPARC processors. The original SPARC architec-
ture was developed in the mid-1980s, and has been implemented by a number
of manufacturers. The name SPARC stands for scalable processor architecture.
This architecture is intended to be suitable for a wide range of implementa-
tions, from microcomputers to supercomputers.

Although SPARC, SuperSPARC, and UltraSPARC architectures differ
slightly, they are upward compatible and share the same basic structure. This
section contains an overview of the UltraSPARC architecture, which will serve
as background for the examples to be discussed later in the book. Further in-
formation about the SPARC family can be found in Tabak (1995) and Sun
Microsystems (1995a).

29

30

heteps:/hemanthrajhemu.github.io

Chapter 1 Background

Memory

Memory consists of 8-bit bytes; all addresses used are byte addresses. Two
consecutive bytes form a halfword; four bytes form a word; eight bytes form a
doubleword. Halfwords are stored in memory beginning at byte addresses that
are multiples of 2. Similarly, words begin at addresses that are multiples of 4,
and doublewords at addresses that are multiples of 8.

UltraSPARC programs can be written using a virtual address space of
264 bytes. This address space is divided into pages; multiple page sizes are sup-
ported. Some of the pages used by a program may be in physical memory,
while others may be stored on disk. When an instruction is executed, the hard-
ware and the operating system make sure that the needed page is loaded into
physical memory. The virtual address specified by the instruction is automati-
cally translated into a physical address by the UltraSPARC Memory Manage-
ment Unit (MMU). Chapter 6 contains a brief discussion of methods that can
be used in this kind of address translation.

Registers

The SPARC architecture includes a large register file that usually contains more
than 100 general-purpose registers. (The exact number varies from one imple-
mentation to another.) However, any procedure can access only 32 registers,
designated r0 through r31. The first eight of these registers (r0 through r7) are
global—that is, they can be accessed by all procedures on the system. (Register
r0 always contains the value zero.)

The other 24 registers available to a procedure can be visualized as a win-
dow through which part of the register file can be seen. These windows over-
lap, so some registers in the register file are shared between procedures. For
example, registers r8 through r15 of a calling procedure are physically the
same registers as r24 through r31 of the called procedure. This facilitates the
passing of parameters.

The SPARC hardware manages the windows into the register file. If a set of
concurrently running procedures needs more windows than are physically
available, a “window overflow” interrupt occurs. The operating system must
then save the contents of some registers in the file (and restore them later) to
provide the additional windows that are needed.

In the original SPARC architecture, the general-purpose registers were
32 bits long. Later implementations (including UltraSPARC) expanded these
registers to 64 bits. Some SPARC implementations provide several physically
different sets of global registers, for use by application procedures and by vari-
ous hardware and operating system functions.

Floating-point computations are performed using a special floating-point
unit (FPU). On UltraSPARC, this unit contains a file of 64 double-precision
floating-point registers, and several other control and status registers.

P S———

N—

heteps:/hemanthrajhemu.github.io

1.5 RISC Machines 31

Besides these register files, there are a program counter PC (which contains
the address of the next instruction to be executed), condition code registers,
and a number of othet control registers.

Data Formats

The UltraSPARC architecture provides for the storage of integers, floating-
point values, and characters. Integers are stored as 8-, 16-, 32-, or 64-bit binary
numbers. Both signed and unsigned integers are supported; 2's complement is
used for negative values. In the original SPARC architecture, the most signifi-
cant part of a numeric value is stored at the lowest-numbered address. (This is
commonly called big-endian byte ordering, because the “big end” of the value
comes first in memory.) UltraSPARC supports both big-endian and little-
endian byte orderings.

There are three different floating-point data formats. The single-precision
format is 32 bits long. It stores 23 significant bits of the floating-point value,
and allows for an 8-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is
64 bits long. It stores 52 significant bits, and allows for a 11-bit exponent. The
quad-precision format stores 63 significant bits, and allows for a 15-bit expo-
nent.

Characters are stored one per byte, using their 8-bit ASCII codes.

Instruction Formats

There are three basic instruction formats in the SPARC architecture. All of
these formats are 32 bits long; the first 2 bits of the instruction word identify
which format is being used. Format 1 is used for the Call instruction. Format 2
is used for branch instructions (and one special instruction that enters a value
into a register). The remaining instructions use Format 3, which provides for
register loads and stores, and three-operand arithmetic operations.

The fixed instruction length in the SPARC architecture is typical of RISC
systems, and is intended to speed the process of instruction fetching and de-
coding. Compare this approach with the complex variable-length instructions
found on CISC systems such as VAX and x86.

Addressing Modes

As in most architectures, an operand value may be specified as part of the in-
struction itself (immediate mode), or it may be in a register (register direct
mode). Operands in memory are addressed using one of the following three
modes:

https:/hemanthrajhemu.github.io l!

32 Chapter 1 Background
Mode Target address calculation
PC-relative . TA = (PC) + displacement {30 bits, signed)
Register indirect TA = (register) + displacement
with displacement {13 bits, signed|

Register indirect indexed TA = (register-1) + (register-2)

PC-relative mode is used only for branch instructions.
The relatively few addressing modes of SPARC allow for more efficient im-
plementations than the 10 or more modes found on CISC systems such as x86.

Instruction Set

The basic SPARC architecture has fewer than 100 machine instructions, reflect-
ing its RISC philosophy. (Compare this with the 300 to 400 instructions often
found in CISC systems.) The only instructions that access memory are loads
and stores. All other instructions are register-to-register operations.

Instruction execution on a SPARC system is pipelined—while one instruc-
tion is being executed, the next one is being fetched from memory and de-
coded. In most cases, this technique speeds instruction execution. However, an
ordinary branch instruction might cause the process to “stall.” The instruction
following the branch (which had already been fetched and decoded) would
have to be discarded without being executed.

To make the pipeline work more efficiently, SPARC branch instructions (in-
cluding subroutine calls) are delayed branches. This means that the instruction
immediately following the branch instruction is actually executed before the
branch is taken. For example, in the instruction sequence |

SUB $L0, 11, %L1
BA NEXT
MOV %L1, %03

the MOV instruction is executed before the branch BA. This MOV instruction
is said to be in the delay slot of the branch. The programmer must take this
characteristic into account when writing an assembler language program.
Further discussions and examples of the use of delayed branches can be found
in Section 2.5.2. '

The UltraSPARC architecture also includes special-purpose instructions to
provide support for operating systems and optimizing compilers. For exam-
ple, high-bandwidth block load and store operations can be used to speed

heteps:/hemanthrajhemu.github.io

1.5 RISC Machines

common operating system functions. Communication in a multi-processor
system is facilitated by special “atomic” instructions that can execute without
allowing other memoty accesses to intervene. Conditional move instructions
may allow a compiler to eliminate many branch instructions in order to opti-
mize program execution.

Input and Output

In the SPARC architecture, communication with I/O devices is accomplished
through memory. A range of memory locations is logically replaced by device
registers. Each I/0 device has a unique address, or set of addresses, assigned
to it. When a load or store instruction refers to this device register area of
memory, the corresponding device is activated. Thus input and output can be
performed with the regular instruction set of the computer, and no special /O
instructions are needed.

1.5.2 PowerPC Architecture

IBM first introduced the POWER architecture early in 1990 with the RS/6000.
(POWER is an acronym for Performance Optimization With Enhanced RISC.)
It was soon realized that this architecture could form the basis for a new fam-
ily of powerful and low-cost microprocessors. In October 1991, IBM, Apple,
and Motorola formed an alliance to develop and market such microprocessors,
which were named PowerPC. The first products using PowerPC chips were
delivered near the end of 1993. Recent implementations of the PowerPC archi-
tecture include the PowerPC 601, 603, and 604; others are expected in the near
future.

As its name implies, PowerPC is a RISC architecture. As we shall see, it has
much in common with other RISC systems such as SPARC. There are also a
few differences in philosophy, which we will note in the course of the discus-
sion. This section contains an overview of the PowerPC architecture, which
will serve as background for the examples to be discussed later in the book.
Further information about PowerPC can be found in IBM (1994a) and Tabak
(1995).

Memory

Memory consists of 8-bit bytes; all addresses used are byte addresses. Two
consecutive bytes form a halfword; four bytes form a word; eight bytes form a
doubleword; sixteen bytes form a quadword. Many instructions may execute

33

heteps:/hemanthrajhemu.github.io ‘

34 Chapter 1 Background

more efficiently if operands are aligned at a starting address that is a multiple
of their length.

PowerPC programs can be written using a virtual address space of 264
bytes. This address space is divided into fixed-length segments, which are 256
megabytes long. Each segment is divided into pages, which are 4096 bytes
long. Some of the pages used by a program may be in physical memory, while
others may be stored on disk. When an instruction is executed, the hardware
and the operating system make sure that the needed page is loaded into physi-
cal memory. The virtual address specified by the instruction is automatically
translated into a physical address. Chapter 6 contains a brief discussion of
methods that can be used in this kind of address translation.

Registers

There are 32 general-purpose registers, designated GPR0O through GPR31. In
the full PowerPC architecture, each register is 64 bits long. PowerPC can also
be implemented in a 32-bit subset, which uses 32-bit registers. The general-
purpose registers can be used to store and manipulate integer data and
addresses. |

Floating-point computations are performed using a special floating-point
unit (FPU). This unit contains thirty-two 64-bit floating-point registers, and a
status and control register. |

A 32-bit condition register reflects the result of certain operations, and can i
be used as a mechanism for testing and branching. This register is divided into
eight 4-bit subfields, named CRO through CR7. These subfields can be set and
tested individually by PowerPC instructions.

The PowerPC architecture includes a Link Register (LR) and a Count
Register (CR), which are used by some branch instructions. There is also a
Machine Status Register (MSR) and variety of other control and status regis-
ters, some of which are implementation dependent.

Data Formats

The PowerPC architecture provides for the storage of integers, floating-point
values, and characters. Integers are stored as 8-, 16-, 32-, or 64-bit binary num-
bers. Both signed and unsigned integers are supported; 2's complement is
used for negative values. By default, the most significant part of a numeric
value is stored at the lowest-numbered address (big-endian byte ordering). It
is possible to select little-endian byte ordering by setting a bit in a control
register.

hetcps:/hemanthrajhemu.github.io

1.5 RISC Machines

There are two different floating-point data formats. The single-precision
format is 32 bits long. It stores 23 significant bits of the floating-point value,
and allows for an 8-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is
64 bits long. It stores 52 significant bits, and allows for a 11-bit exponent.

Characters are stored one per byte, using their 8-bit ASCII codes.

Instruction Formats

There are seven basic instruction formats in the PowerPC architecture, some of
which have subforms. All of these formats are 32 bits long. Instructions must
be aligned beginning at a word boundary (i.e., a byte address that is a multiple
of 4). The first 6 bits of the instruction word always specify the opcode; some
instruction formats also have an additional “extended opcode” field.

The fixed instruction length in the PowerPC architecture is typical of RISC
systems. The variety and complexity of instruction formats is greater than that
found on most RISC systems (such as SPARC). However, the fixed length
makes instruction decoding faster and simpler than on CISC systems like VAX
and x86.

Addressing Modes

As in most architectures, an operand value may be specified as part of the in-
struction itself (immediate mode), or it may be in a register (register direct
mode). The only instructions that address memory are load and store opera-
tions, and branch instructions.

Load and store operations use one of the following three addressing
modes:

Mode Target address calculation

Register indirect TA = (register)

Register indirect with index = TA = (register-1) + (register-2)

Register indirect with TA = (register) + displacement
immediate index {16 bits, signed}

The register numbers and displacement are encoded as part of the instruction.

35

he¢eps:/hemanthrajhemu.github.io

36 Chapter 1 Background

-

Branch instructions use one of the following three addressing modes:

Mode Target address calculation

Absolute TA = actual address

Relative TA = current instruction address +
displacement {25 bits, signed|

Link Register TA = (LR)

Count Register TA = (CR)

The absolute address or displacement is encoded as part of the instruction.

Instruction Set

The PowerPC architecture has approximately 200 machine instructions. Some
instructions are more complex than those found in most RISC systems. For ex-
ample, load and store instructions may automatically update the index regis-
ter to contain the just-computed target address. There are floating-point
“multiply and add” instructions that take three input operands and perform a
multiplication and an addition in one instruction. Such instructions reflect the
PowerPC approach of using more powerful instructions, so fewer instructions
are required to perform a task. This is in contrast to the more usual RISC ap-
proach, which keeps instructions simple so they can be executed as fast as
possible.

In spite of this difference in philosophy, PowerPC is generally considered
to be a true RISC architecture. Further discussions of these issues can be found
in Smith and Weiss (1994).

Instruction execution on a PowerPC system is pipelined, as we discussed
for SPARC. However, the pipelining is more sophisticated than on the original
SPARC systems, with branch prediction used to speed execution. As a result,
the delayed branch technique we described for SPARC is not used on
PowerPC (and most other modern architectures). Further discussion of
pipelining and branch prediction can be found in Tabak (1995).

Input and Output

The PowerPC architecture provides two different methods for performing I/O
operations. In one approach, segments in the virtual address space are
mapped onto an external address space (typically an I/O bus). Segments that
are mapped in this way are called direct-store segments. This method is similar
to the approach used in the SPARC architecture.

heteéps:/hemanthrajhemu.github.io

1.5 RISC Machines

A reference to an address that is not in a direct-store segment represents a
normal virtual memory access. In this situation, I/O is performed using the
regular virtual memory management hardware and software.

1.5.3 Cray T3E Architecture

The T3E series of supercomputers was announced by Cray Research, Inc., near
the end of 1995. The T3E is a massively parallel processing (MPP) system, de-
signed for use on technical applications in scientific computing. The earlier
Cray T3D system had a similar (but not identical) architecture.

A T3E system contains a large number of processing elements (PE),
arranged in a three-dimensional network as illustrated in Fig. 1.8. This net-
work provides a path for transferring data between processors. It also imple-
ments control functions that are used to synchronize the operation of the PEs
used by a program. The interconnect network is circular in each dimension.
Thus PEs at “opposite” ends of the three-dimensional array are adjacent with
respect to the network. This is illustrated by the dashed lines in Fig. 1.8; for
simplicity, most of these “circular” connections have been omitted from the
drawing.

Each PE consists of a DEC Alpha EV5 RISC microprocessor (currently
model 21164), local memory, and performance-accelerating control logic devel-
oped by Cray. A T3E system may contain from 16 to 2048 processing elements.

This section contains an overview of the architecture of the T3E and the
DEC Alpha microprocessor. Sections 3.5.3 and 5.5.3 discuss some of the ways
programs can take advantage of the multiprocessor architecture of this ma-
chine. Further information about the T3E can be found in Cray Research
(1995c¢). Further information about the DEC Alpha architecture can be found in
Sites (1992) and Tabak (1995).

Memory

Each processing element in the T3E has its own local memory with a capacity
of from 64 megabytes to 2 gigabytes. The local memory within each PE is part

. »— Interconnect network
B

Figure 1.8 Overall T3E architecture.

37

38

he¢eps:/hemanthrajhemu.github.io

Chapter 1 Background

-

of a physically distributed, logically shared memory system. System memory
is physically distributed because each PE contains local memory. System mem-
ory is logically shared because the microprocessor in one PE can access the
memory of another PE without involving the microprocessor in that PE.

The memory within each processing element consists of 8-bit bytes; all
addresses used are byte addresses. Two consecutive bytes form a word; four
bytes form a longword; eight bytes form a quadword. Many Alpha instructions
may execute more efficiently if operands are aligned at a starting address that
is a multiple of their length. The Alpha architecture supports 64-bit virtual
addresses.

Registers

The Alpha architecture includes 32 general-purpose registers, designated R0
through R31; R31 always contains the value zero. Each general-purpose regis-
ter is 64 bits long. These general-purpose registers can be used to store and
manipulate integer data and addresses.

There are also 32 floating-point registers, designated FO through F31; F31
always contains the value zero. Each floating-point register is 64 bits long.

In addition to the general-purpose and floating-point registers, there is a
64-bit program counter PC and several other status and control registers.

Data Formats

The Alpha architecture provides for the storage of integers, floating-point val-
ues, and characters. Integers are stored as longwords or quadwords; 2's com-
plement is used for negative values. When interpreted as an integer, the bits of
a longword or quadword have steadily increasing significance beginning with
bit 0 (which is stored in the lowest-addressed byte).

There are two different types of floating-point data formats in the Alpha
architecture. One group of three formats is included for compatibility with the
VAX architecture. The other group consists of four IEEE standard formats,
which are compatible with those used on most modern systems.

Characters may be stored one per byte, using their 8-bit ASCII codes.
However, there are no byte load or store operations in the Alpha architecture;
only longwords and quadwords can be transferred between a register and
memory. As a consequence, characters that are to be manipulated separately
are usually stored one per longword.

he¢eps:/hemanthrajhemu.github.io

1.5 RISC Machines

Instruction Formats

There are five basic Instruction formats in the Alpha architecture, some of
which have subforms. All of these formats are 32 bits long. (As we have noted
before, this fixed length is typical of RISC systems.) The first 6 bits of the in-
struction word always specify the opcode; some instruction formats also have
an additional “function” field.

Addressing Modes

As in most architectures, an operand value may be specified as part of the in-
struction itself (immediate mode), or it may be in a register (register direct
mode). As in most RISC systems, the only instructions that address memory
are load and store operations, and branch instructions.

Operands in memory are addressed using one of the following two modes:

Mode Target address calculation
PC-relative TA = (PC) + displacement {23 bits, signed}
Register indirect TA = (register) + displacement

with displacement {16 bits, signed|

Register indirect with displacement mode is used for load and store opera-
tions and for subroutine jumps. PC-relative mode is used for conditional and
unconditional branches.

Instruction Set

The Alpha architecture has approximately 130 machine instructions, reflecting
its RISC orientation. The instruction set is designed so that an implementation
of the architecture can be as fast as possible. For example, there are no byte or
word load and store instructions. This means that the memory access interface
does not need to include shift-and-mask operations. Further discussion of this
approach can be found in Smith and Weiss (1994).

Input and Output

The T3E system performs I/O through multiple ports into one or more I/O
channels, which can be configured in a number of ways. These channels are

39

heéeps:/hemanthrajhemu.github.io l-

40 Chapter 1 Background

integrated into the network that interconnects the processing nodes. A system
may be configured with up to one I/O channel for every eight PEs. All chan-

-

nels are accessible and controllable from all PEs.

Further information about this “scalable” 1/0 architecture can be found in

Cray Research (1995¢).

EXERCISES

Section 1.3

Write a sequence of instructions for SIC to set ALPHA equal to the
product of BETA and GAMMA. Assume that ALPHA, BETA, and
GAMMA are defined as in Fig. 1.3(a).

Write a sequence of instructions for SIC/XE to set ALPHA equal to
4 * BETA - 9. Assume that ALPHA and BETA are defined as in Fig.
1.3(b). Use immediate addressing for the constants.

Write a sequence of instructions for SIC to set ALPHA equal to the
integer portion of BETA + GAMMA. Assume that ALPHA and BETA
are defined as in Fig. 1.3(a).

Write a sequence of instructions for SIC/XE to divide BETA by
GAMMA, setting ALPHA to the integer portion of the quotient and
DELTA to the remainder. Use register-to-register instructions to make
the calculation as efficient as possible.

Write a sequence of instructions for SIC/XE to divide BETA by
GAMMA, setting ALPHA to the value of the quotient, rounded to
the nearest integer. Use register-to-register instructions to make the
calculation as efficient as possible.

Write a sequence of instructions for SIC to clear a 20-byte string to all
blanks.

Write a sequence of instructions for SIC/XE to clear a 20-byte string
to all blanks. Use immediate addressing and register-to-register in-
structions to make the process as efficient as possible.

Suppose that ALPHA is an array of 100 words, as defined in Fig.
1.5(a). Write a sequence of instructions for SIC to set all 100 elements
of the array to 0.

Suppose that ALPHA is an array of 100 words, as defined in Fig.
1.5(b). Write a sequence of instructions for SIC/XE to set all 100

10.

11.

12

15

heteps:/hemanthrajhemu.github.io

Exercises

elements of the array to 0. Use immediate addressing and register-to-
register instructions to make the process as efficient as possible.

Suppose that RECORD contains a 100-byte record, as in Fig. 1.7(a).
Write a subroutine for SIC that will write this record onto device 05.

Suppose that RECORD contains a 100-byte record, as in Fig. 1.7(b).
Write a subroutine for SIC/XE that will write this record onto device
05. Use immediate addressing and register-to-register instructions to
make the subroutine as efficient as possible.

Write a subroutine for SIC that will read a record into a buffer, as in
Fig. 1.7(a). The record may be any length from 1 to 100 bytes. The
end of the record is marked with a “null” character (ASCII code 00).
The subroutine should place the length of the record read into a vari-
able named LENGTH.

Write a subroutine for SIC /XE that will read a record into a buffer, as
in Fig. 1.7(b). The record may be any length from 1 to 100 bytes. The
end of the record is marked with a “null” character (ASCII code 00).
The subroutine should place the length of the record read into a vari-
able named LENGTH. Use immediate addressing and register-to-
register instructions to make the subroutine as efficient as possible.

41

s
]

he¢eps:/hemanthrajhemu.github.io

he¢eps:/hemanthrajhemu.github.io

Chapter 2

Assemblers

In this chapter we discuss the design and implementation of assemblers. There
are certain fundamental functions that any assembler must perform, such as
translating mnemonic operation codes to their machine language equivalents
and assigning machine addresses to symbolic labels used by the programmer.
If we consider only these fundamental functions, most assemblers are very
much alike.

Beyond this most basic level, however, the features and design of an as-
sembler depend heavily upon the source language it translates and the ma-
chine language it produces. One aspect of this dependence is, of course, the
existence of different machine instruction formats and codes to accomplish
(for example) an ADD operation. As we shall see, there are also many subtler
ways that assemblers depend upon machine architecture. On the other hand,
there are some features of an assembler language (and the corresponding as-
sembler) that have no direct relation to machine architecture—they are, in a
sense, arbitrary decisions made by the designers of the language.

We begin by considering the design of a basic assembler for the standard
version of our Simplified Instructional Computer (SIC). Section 2.1 introduces
the most fundamental operations performed by a typical assembler, and de-
scribes common ways of accomplishing these functions. The algorithms and
data structures that we describe are shared by almost all assemblers. Thus this
level of presentation gives us a starting point from which to approach the
study of more advanced assembler features. We can also use this basic struc-
ture as a framework from which to begin the design of an assembler for a com-
pletely new or unfamiliar machine.

In Section 2.2, we examine some typical extensions to the basic assembler
structure that might be dictated by hardware considerations. We do this by
discussing an assembler for the SIC/XE machine. Although this SIC/XE as-
sembler certainly does not include all possible hardware-dependent features,
it does contain some of the ones most commonly found in real machines. The
principles and techniques should be easily applicable to other computers.

Section 2.3 presents a discussion of some of the most commonly encoun-
tered machine-independent assembler language features and their implemen-
tation. Once again, our purpose is not to cover all possible options, but rather

43

44

Chapter 2 Assemblers

to introduce concepts and techniques that can be used in new and unfamiliar
situations.

Section 2.4 examines some important alternative design schemes for an as-
sembler. These are features of an assembler that are not reflected in the assem-
bler language. For example, some assemblers process a source program in one
pass instead of two; other assemblers may make more than two passes. We are
concerned with the implementation of such assemblers, and also with the en-
vironments in which each might be useful.

Finally, in Section 2.5 we briefly consider some examples of actual assem-
blers for real machines. We do not attempt to discuss all aspects of these as-
semblers in detail. Instead, we focus on the most interesting features that are
introduced by hardware or software design decisions.

2.1 BASIC ASSEMBLER FUNCTIONS

Figure 2.1 shows an assembler language program for the basic version of SIC.
We use variations of this program throughout this chapter to show different
assembler features. The line numbers are for reference only and are not part of
the program. These numbers also help to relate corresponding parts of differ-
ent versions of the program. The mnemonic instructions used are those intro-
duced in Section 1.3.1 and Appendix A. Indexed addressing is indicated by
adding the modifier “, X" following the operand (see line 160). Lines beginning
with “.” contain comments only.

In addition to the mnemonic machine instructions, we have used the fol-
lowing assembler directives:

START Specify name and starting address for the program.

END Indicate the end of the source program and (optionally) specify
the first executable instruction in the program.

BYTE Generate character or hexadecimal constant, occupying as
many bytes as needed to represent the constant.

WORD Generate one-word integer constant.

RESB Reserve the indicated number of bytes for a data area.

RESW Reserve the indicated number of words for a data area.

The program contains a main routine that reads records from an input de-
vice (identified with device code F1) and copies them to an output device

(code 05). This main routine calls subroutine RDREC to read a record into a
buffer and subroutine WRREC to write the record from the buffer to the out-

hteéps:/hemanthrajhemu.github.io I

https.llhemanthrajhemu.glthub.lo

2.1 Basic Assembler Functions 45
Line Source statement
5 COPY START 1000 COPY FILE FROM INPUT TO OUTPUT

10 FIRST STL RETADR SAVE RETURN ADDRESS

15 CLOOP JSUB RDREC READ INPUT RECORD

20 LDA LENGTH TEST FOR EOF (LENGTH = 0)
25 COMP ZERO

30 JEQ ENDFIL EXIT IF EOF FOUND

35 JSUB WRREC WRITE OUTPUT RECORD

40 . CLOOP LOOP

45 ENDFIL LDA EOF INSERT END OF FILE MARKER
50 STA BUFFER

55 LDA THREE SET LENGTH = 3

60 STA LENGTH

65 JSUB WRREC WRITE EOF

70 LDL RETADR GET RETURN ADDRESS

75 RSUB RETUEN TO CALLER

80 EOF BYTE C'EOF'

85 THREE WORD 3

90 ZERO WORD 0

95 RETADR RESW 1
100 LENGTH RESW il LENGTH OF RECORD
105 BUFFER RESB 4096 4096-BYTE BUFFER AREA
110 ‘

115 " SUBROUTINE TO READ RECCORD INTC BUFFER

120 -

125 RDREC LDX ZERO CLEAR LOOP COUNTER

130 LDA ZERO CLEAR A TO ZERO

135 RLOOP D TNPUT TEST INPUT DEVICE

140 JEQ RLOOP LOOP UNTIL READY

145 RD INPUT READ CHARACTER INTO REGISTER A
150 COoMP ZERO TEST FOR END OF RECORD (X'00')
155 JEQ EXIT EXIT LOOP IF EOR

160 STCH BUFFER, X STORE CHARACTER IN BUFFER
165 TIX MAXLEN LOOP UNLESS MAX LENGTH
170 JLT RLOOP HAS BEEN REACHED

175 EXIT STX LENGTH SAVE RECORD LENGTH

180 RSUB RETURN TO CALLER

185 INPUT BYTE) el o CODE FOR INPUT DEVICE

190 MAXLEN WORD 4096
195 5

200 ! SUBROUTINE TC WRITE RECORD FROM BUFFER

205 .

210 WRREC LDX ZERO CLEAR LOOP COUNTER

215 WLOOP D OUTPUT TEST OUTPUT DEVICE

220 JEQ WLOOP LOOP UNTIL READY

225 LDCH BUFFER, X GET CHARACTER FRCM BUFFER
230 WD QUTPUT WRITE CHARACTER

235 TIX LENGTH LOOP UNTIL ALL CHARACTERS
240 JLT WLOOP HAVE BEEN WRITTEN

245 RSUB RETURN TO CALLER

250 OUTPUT BYTE X' 05! CODE FOR OUTPUT DEVICE
255 END FIRST

Figure 2.1 Example of a SIC assembler language program.

46

heteps:/hemanthrajhemu.github.io

Chapter 2 Assemblers

put device. Each subroutine must transfer the record one character at a time
because the only [/O instructions available are RD and WD. The buffer is nec-
essary because the 1/0O rates for the two devices, such as a disk and a slow
printing terminal, may be very different. (In Chapter 6, we see how to use
channel programs and operating system calls on a SIC/XE system to accom-
plish the same functions.) The end of each record is marked with a null charac-
ter (hexadecimal 00). If a record is longer than the length of the buffer (4096
bytes), only the first 4096 bytes are copied. (For simplicity, the program does
not deal with error recovery when a record containing 4096 bytes or more is
read.) The end of the file to be copied is indicated by a zero-length record.
When the end of file is detected, the program writes EOF on the output device
and terminates by executing an RSUB instruction. We assume that this pro-
gram was called by the operating system using a JSUB instruction; thus, the
RSUB will return control to the operating system.

2.1.1 A Simple SIC Assembler

Figure 2.2 shows the same program as in Fig. 2.1, with the generated object
code for each statement. The column headed Loc gives the machine address
(in hexadecimal) for each part of the assembled program. We have assumed
that the program starts at address 1000. (In an actual assembler listing, of
course, the comments would be retained; they have been eliminated here to
save space.)

The translation of source program to object code requires us to accomplish
the following functions (not necessarily in the order given):

1. Convert mnemonic operation codes to their machine language
equivalents—e.g., translate STL to 14 (line 10).

2. Convert symbolic operands to their equivalent machine addresses—
e.g., translate RETADR to 1033 (line 10).

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their
internal machine representations—e.g., translate EOF to 454F46 (line
80).

5. Write the object program and the assembly listing.
All of these functions except number 2 can easily be accomplished by sequen-
tial processing of the source program, one line at a time. The translation of

addresses, however, presents a problem. Consider the statement

10 1000 FIRST STL RETADR 141033

heteps:/hemanthrajhemu.github.io

' 2.1 Basic Assembler Functions 47
Line Loc Source statement Object code
5 1000 COPY START 1000
10 1000 FIRST STL RETADR 141033
15 1003 CLOOP JSUB RDREC 482039
20 1006 LDA LENGTH 001036
25 1009 COMP ZERO 281030
30 100C JEQ ENDFIL 301015
35 100F JSUB WRREC 482061
40 1012 J CLOOP 3C1003
45 1015 ENDFIL LDA EQF 00102A
50 1018 STA BUFFER 0c1039
55 101B LDA THREE 00102D
60 101E STA LENGTH 0C1036
65 1021 JSUB WRREC 482061
70 1024 LDL RETADR 081033
75 1027 RSUB 4C0000
80 102a EOF BYTE C’EOF’ 454F46
85 102D THREE WORD 3 000003
90 1030 ZERO WORD 0 000000
95 1033 RETADR RESW 1
100 1036 LENGTH RESW 1
105 1039 BUFFER RESB 4096
110 .
115 : SUBROUTINE TO READ RECORD INTO BUFFER
120 -
125 2039 RDREC LDX ZERO 041030
130 203C LDA ZERO 001030
135 203F RLOOP D INPUT E0205D
140 2042 JEQ RLOCP 30203F
145 2045 RD INPUT D8205D
150 2048 COoMP ZERO 281030
155 204B JEQ EXIT 302057
160 204E STCH BUFFER, X 549039
165 2051 TIX MAXLEN 2C205E
170 2054 JLT RLOOP 38203F
175 2057 EXIT STX LENGTH 101036
180 205A RSUB 4C0000
185 205D INPUT BYTE X'F1! Fl
190 205E MAXIEN WORD 4096 001000
195 -
200 : SUBROUTINE TO WRITE RECORD FROM BUFFER
205 -
210 2061 WRREC LDX ZERO 041030
215 2064 WLOOP TD OUTPUT E02079
220 2067 JEQ WLOOP 302064
225 206A LDCH BUFFER, X 509039
230 206D WD OUTPUT DC2079
235 2070 TIX LENGTH 2C1036
240 2073 JLT WLOOP 382064
245 2076 RSUB 4C0000
250 2079 OUTPUT BYTE X'05” 05
255 END FIRST

Figure 2.2 Program from Fig. 2.1 with object code.

heteps:/hemanthrajhemu.github.io |

48 Chapter 2 Assemblers)

This instruction contains a forward reference—that is,ba reference to a label
(RETADR) that is defined later in the program. If we attempt to translate the
program line by line, we will be unable to process this statement because we

do not know the address that will be assigned to RETADR. Because of this,
most assemblers make two passes over the source program. The first pass |
does little more than scan the source program for label definitions and assign
addresses (such as those in the Loc column in Fig. 2.2). The second pass per-
forms most of the actual translation previously described.

In addition to translating the instructions of the source program, the assem-
bler must process statements called assembler directives (or pseudo-instructions).
These statements are not translated into machine instructions (although they
may have an effect on the object program). Instead, they provide instructions
to the assembler itself. Examples of assembler directives are statements like
BYTE and WORD, which direct the assembler to generate constants as part of |
the object program, and RESB and RESW, which instruct the assembler to re- ,
serve memory locations without generating data values. The other assembler
directives in our sample program are START, which specifies the starting
memory address for the object program, and END, which marks the end of the
program.

Finally, the assembler must write the generated object code onto some out-
put device. This object program will later be loaded into memory for execution.
The simple object program format we use contains three types of records:
Header, Text, and End. The Header record contains the program name, start-
ing address, and length. Text records contain the translated (i.e., machine
code) instructions and data of the program, together with an indication of the
addresses where these are to be loaded. The End record marks the end of the
object program and specifies the address in the program where execution is to
begin. (This is taken from the operand of the program’s END statement. If no
operand is specified, the address of the first executable instruction is used.)

The formats we use for these records are as follows. The details of the for-
mats (column numbers, etc.) are arbitrary; however, the information contained
in these records must be present (in some form) in the object program.

e e

Header record:
Col. 1 H
Col. 2-7 Program name
Col. 8-13 Starting address of object program (hexadecimal)
Col. 14-19 Length of object program in bytes (hexadecimal)

https.llhemanthrajhemu.slthub.lo

2.1 Basic Assembler Functions

Text record:

Col. 1 4,

Col. 2-7 étarting address for object code in this record(hexadecimal)

Col. 8-9 Length of object code in this record in bytes (hexadecimal)

Col. 10-69 Object code, represented in hexadecimal (2 columns per
byte of object code)

End record:

Col. 1 E

Col. 2-7 Address of first executable instruction in object program
(hexadecimal)

To avoid confusion, we have used the term column rather than byte to refer to
positions within object program records. This is not meant to imply the use of
any particular medium for the object program.

Figure 2.3 shows the object program corresponding to Fig. 2.2, using this
format. In this figure, and in the other object programs we display, the symbol
A is used to separate fields visually. Of course, such symbols are not present in
the actual object program. Note that there is no object code corresponding to
addresses 1033-2038. This storage is simply reserved by the loader for use by
the program during execution. (Chapter 3 contains a detailed discussion of the
operation of the loader.)

We can now give a general description of the functions of the two passes of
our simple assembler.

HCOPY 001000001074

'I;\OOIOOOII,\IEAIQI033!\&82039"\001036,\281030,\3010l5;\5182061A3C.l003‘,\00102@9(21039‘\00102]3

'i'nODlO 1 P}\l 5{,\001036’,{!8206 IAOB 1033A&COOOOAJI54F46A000003A000000

Tﬁ°02039!\1En0ﬁ 1030h00 1 0SOAE{]205DA30203§\D820501\28 1039“302057}\54903%\202052}\38203}‘

TnOOZOS?NlCnl 01036“400000,\5‘ IAOO 1 000n04 1030nE0207 9A302064..'\5090393\1102079:\20 1036
100207 JnO?A382064AﬂCOOGDA05
EAOOIOOO

Figure 2.3 Object program corresponding to Fig. 2.2.

49

T T T e

heteps:/hemanthrajhemu.github.io

50

Chapter 2 Assemblers

Pass 1 (define symbols):
1. Assign addresses to all statements in the program.
2. Save the values (addresses) assigned to all labels for use in Pass 2.
3

Perform some processing of assembler directives. (This includes
processing that affects address assignment, such as determining
the length of data areas defined by BYTE, RESW, etc.)

Pass 2 (assemble instructions and generate object program):

1. Assemble instructions (translating operation codes and looking
up addresses).

2. Generate data values defined by BYTE, WORD, etc.
Perform processing of assembler directives not done during Pass 1.

4. Write the object program and the assembly listing.

In the next section we discuss these functions in more detail, describe the in-
ternal tables required by the assembler, and give an overall description of the
logic flow of each pass.

2.1.2 Assembler Algorithm and Data Structures

Our simple assembler uses two major internal data structures: the Operation
Code Table (OPTAB) and the Symbol Table (SYMTAB). OPTAB is used to look
up mnemonic operation codes and translate them to their machine language
equivalents. SYMTAB is used to store values (addresses) assigned to labels.

We also need a Location Counter LOCCTR. This is a variable that is used
to help in the assignment of addresses. LOCCTR is initialized to the beginning
address specified in the START statement. After each source statement is
processed, the length of the assembled instruction or data area to be generated
is added to LOCCTR. Thus whenever we reach a label in the source program,
the current value of LOCCTR gives the address to be associated with that
label.

The Operation Code Table must contain (at least) the mnemonic operation
code and its machine language equivalent. In more complex assemblers, this
table also contains information about instruction format and length. During
Pass 1, OPTAB is used to look up and validate operation codes in the source
program. In Pass 2, it is used to translate the operation codes to machine lan-
guage. Actually, in our simple SIC assembler, both of these processes could be
done together in either Pass 1 or Pass 2. However, for a machine (such as
SIC/XE) that has instructions of different lengths, we must search OPTAB in
the first pass to find the instruction length for incrementing LOCCTR.

https.llhemanthrajhemu.slthub.lo

2.1 Basic Assembler Functions

Likewise, we must have the information from OPTAB in Pass 2 to tell us
which instruction format to use in assembling the instruction, and any pecu-
liarities of the object cqde instruction. We have chosen to retain this structure
in the current discussion because it is typical of most real assemblers.

OPTAB is usually organized as a hash table, with mnemonic operation
code as the key. (The information in OPTAB is, of course, predefined when the
assembler itself is written, rather than being loaded into the table at execution
time.) The hash table organization is particularly appropriate, since it provides
fast retrieval with a minimum of searching. In most cases, OPTAB is a static
table—that is, entries are not normally added to or deleted from it. In such
cases it is possible to design a special hashing function or other data structure
to give optimum performance for the particular set of keys being stored. Most
of the time, however, a general-purpose hashing method is used. Further in-
formation about the design and construction of hash tables may be found in
any good data structures text, such as Lewis and Denenberg (1991) or Knuth
(1973).

The symbol table (SYMTAB) includes the name and value (address) for
each label in the source program, together with flags to indicate error condi-
tions (e.g., a symbol defined in two different places). This table may also con-
tain other information about the data area or instruction labeled—for example,
its type or length. During Pass 1 of the assembler, labels are entered into
SYMTAB as they are encountered in the source program, along with their as-
signed addresses (from LOCCTR). During Pass 2, symbols used as operands
are looked up in SYMTAB to obtain the addresses to be inserted in the assem-
bled instructions.

SYMTARB is usually organized as a hash table for efficiency of insertion and
retrieval. Since entries are rarely (if ever) deleted from this table, efficiency of
deletion is not an important consideration. Because SYMTAB is used heavily
throughout the assembly, care should be taken in the selection of a hashing
function. Programmers often select many labels that have similar characteris-
tics—for example, labels that start or end with the same characters (like
LOOP1, LOOP2, LOOFA) or are of the same length (like A, X, Y, Z). It is im-
portant that the hashing function used perform well with such non-random
keys. Division of the entire key by a prime table length often gives good
results.

It is possible for both passes of the assembler to read the original source
program as input. However, there is certain information (such as location
counter values and error flags for statements) that can or should be communi-
cated between the two passes. For this reason, Pass 1 usually writes an inter-
mediate file that contains each source statement together with its assigned
address, error indicators, etc. This file is used as the input to Pass 2. This work-
ing copy of the source program can also be used to retain the results of certain

51

heteps:/hemanthrajhemu.github.io l

52

Chapter 2 Assemblers

operations that may be performed during Pass 1 (such as scanning the
operand field for symbols and addressing flags), so these need not be per-
formed again during Pass 2. Similarly, pointers into OPTAB and SYMTAB may
be retained for each operation code and symbol used. This avoids the need to
repeat many of the table-searching operations.

Figures 2.4(a) and (b) show the logic flow of the two passes of our assem-
bler. Although described for the simple assembler we are discussing, this is
also the underlying logic for more complex two-pass assemblers that we con-
sider later. We assume for simplicity that the source lines are written in a fixed
format with fields LABEL, OPCODE, and OPERAND. If one of these fields
contains a character string that represents a number, we denote its numeric
value with the prefix # (for example, # OPERAND]).

At this stage, it is very important for you to understand thoroughly the al-
gorithms in Fig. 2.4. You are strongly urged to follow through the logic in
these algorithms, applying them by hand to the program in Fig. 2.1 to produce
the object program of Fig. 2.3.

Much of the detail of the assembler logic has, of course, been left out to
emphasize the overall structure and main concepts. You should think about
these details for yourself, and you should also attempt to identify those func-
tions of the assembler that should be implemented as separate procedures or
modules. (For example, the operations “search symbol table” and “read input
line” might be good candidates for such implementation.) This kind of
thoughtful analysis should be done before you make any attempt to actually
implement an assembler or any other large piece of software.

Chapter 8 contains an introduction to software engineering tools and tech-
niques, and illustrates the use of such techniques in designing and implement-
ing a simple assembler. You may want to read this material now to gain
further insight into how an assembler might be constructed.

2.2 MACHINE-DEPENDENT
ASSEMBLER FEATURES

In this section, we consider the design and implementation of an assembler for
the more complex XE version of SIC. In doing so, we examine the effect of the
extended hardware on the structure and functions of the assembler. Many real
machines have certain architectural features that are similar to those we con-
sider here. Thus our discussion applies in large part to these machines as well
as to SIC/XE.

Figure 2.5 shows the example program from Fig. 2.1 as it might be rewrit-
ten to take advantage of the SIC/XE instruction set. In our assembler lan-
guage, indirect addressing is indicated by adding the prefix @ to the operand

heteps:/hemanthrajhemu.github.io

2.2 Machine-Dependent Assembler Features

Pass 1:

begin
read first input line
if OPCODE = ‘START’ then
begin
save #[0OPERAND] as starting address
initialize LOCCTR to starting address
write line to intermediate file
read next input line
end (if START}
else
initialize LOCCTR to 0O
while OPCODE # ‘END’ do
begin
if this i1s not a comment line then
begin

if there is a symbol in the LABEL field then

begin
search SYMTAB for LABEL
if found then
set error flag (duplicate symbol)
else
insert (LABEL,LOCCTR) into SYMTAE
end {if symbol}
search OPTAE for OPCODE
if found then
add 3 {instruction length} to LOCCTR
else if OPCODE = ‘WORD’ then
add 3 to LOCCTR
else if OPCODE = ‘RESW’ then
add 3 * #[OPERAND] to LOCCTR
else if OPCODE = ‘RESB’' then
add #[OPERAND] to LOCCTR
else if OPCODE = ‘BYTE’ then
begin
find length of constant in bytes
add length to LOCCTR
end {if BYTE)}
else
set error flag (invalid operation code)
end {if not a comment}
write line to intermediate file
read next input line
end {while not END}
write last line to intermediate file
save (LOCCTR - starting address) as program length
end {Pass 1}

Figure 2.4(a) Algorithm for Pass 1 of assembler.

53

he¢eps:/hemanthrajhemu.github.io

54 Chapter 2 Assemblers

Pass 2:

begin
read first input line {from intermediate file}
if OPCODE = ‘START' then
begin
write listing line
read next input line
end {if START}
write Header record to object program
initialize first Text record
while OPCODE # ‘END’ do
begin
if this is not a comment line then
begin
search OPTAB for OPCODE
if found then

begin
if there is a symbol in OPERAND field then
begin
search SYMTAB for OPERAND
if found then
store symbol value as operand address
else
begin
store 0 as operand address
set error flag (undefined symbol)
end
end {if symbol}
else

store 0 as operand address
assemble the object code instruction
end {if opcode found}
else if OPCODE = ‘BYTE’ or ‘WORD’ then
convert constant to object code

if object code will not fit into the current Text record then

begin
write Text record to object program
initialize new Text record
end
add object code to Text record
end {if not comment}
write listing line
read next input line
end {while not END}
write last Text record to object program
write End record to object program
write last listing line -
end {Pass 2}

Figure 2.4(b) Algorithm for Pass 2 of assembler.

Line

10
12
13
15
20
25
30
35
40
45
50
55
60
65
70
80
95
100
105
110
115
120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
195
200
205
210
212
215
220
225
230
235
240
245
250
255

heéeps:/hemanthrajhemu.github.io

Source statement

COPY
FIRST

CLOOP

ENDFIL

RETADR
LENGTH
BUFFER

RDREC

RIOOP

EXTIT

WLOOP

OUTPUT

ST@\RT
STL
LDB
BASE
+JSUB
LDA
COMP
JEQ
+JSUB
J
LDA
STA
LDA
STA
+JSUB
J
BYTE
RESW
RESW
RESB

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
EOF
BUFFER
#3
LENGTH
WRREC
@RETADR
€ EQF
1
I
4096

*2.2 Machine-Dependent Assembler Features bb

COPY FILE FROM INPUT TO GCUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EQOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

SUBROUTINE TO READ RECORD INTO BUFFER

CLEAR
CLEAR
CLEAR
+L.0OT
D
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX
RSUB
BYTE

X
A

BUFFER, X
T

RLOOP
LENGTH

X'F1'

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X’'00")
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

SUEROUTINE TO WRITE RECORD FROM BUFFER

CLEAR
LoT
TD
JEQ
LDCH
WD
TIXR
JLT
RSUB
BYTE
END

X

LENGTH
OUTPUT
WLOOP
BUFFER, X
OUTPUT

i

WLOOP

X 05"
FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

CODE FOR OUTPUT DEVICE

Figure 2.5 Example of a SIC/XE program.

heteps:/hemanthrajhemu.github.io

56

Chapter 2 Assemblers

>

(see line 70). Immediate operands are denoted with the prefix # (lines 25, 55,
133). Instructions that refer to memory are normally assembled using either
the program-counter relative or the base relative mode. The assembler direc-
tive BASE (line 13) is used in conjunction with base relative addressing. (See
Section 2.2.1 for a discussion and examples.) If the displacements required for
both program-counter relative and base relative addressing are too large to fit
into a 3-byte instruction, then the 4-byte extended format (Format 4) must be
used. The extended instruction format is specified with the prefix + added to
the operation code in the source statement (see lines 15, 35, 65). It is the pro-
grammer’s responsibility to specify this form of addressing when it is re-
quired.

The main differences between this version of the program and the version
in Fig. 2.1 involve the use of register-to-register instructions (in place of regis-
ter-to-memory instructions) wherever possible. For example, the statement on
line 150 is changed from COMP ZERO to COMPR A,S. Similarly, line 165 is
changed from TIX MAXLEN to TIXR T. In addition, immediate and indirect
addressing have been used as much as possible (for example, lines 25, 55, and
70).

These changes take advantage of the more advanced SIC/XE architecture
to improve the execution speed of the program. Register-to-register instruc-
tions are faster than the corresponding register-to-memory operations because
they are shorter, and, more importantly, because they do not require another
memory reference. (Fetching an operand from a register is much faster than re-
trieving it from main memory.) Likewise, when using immediate addressing,
the operand is already present as part of the instruction and need not be
fetched from anywhere. The use of indirect addressing often avoids the need
for another instruction (as in the “return” operation on line 70). You may no-
tice that some of the changes require the addition of other instructions to the
program. For example, changing COMP to COMPR on line 150 forces us to
add the CLEAR instruction on line 132. This still results in an improvement in
execution speed. The CLEAR is executed only once for each record read,
whereas the benefits of COMPR (as opposed to COMP) are realized for every
byte of data transferred.

In Section 2.2.1, we examine the assembly of this SIC/XE program, focus-
ing on the differences in the assembler that are required by the new addressing
modes. (You may want to briefly review the instruction formats and target ad-
dress calculations described in Section 1.3.2.) These changes are direct conse-
quences of the extended hardware-functions.

Section 2.2.2 discusses an indirect consequence of the change to SIC/XE.
The larger main memory of SIC/XE means that we may have room to load
and run several programs at the same time. This kind of sharing of the ma-
chine between programs is called multiprogramming. Such sharing often results
in more productive use of the hardware. (We discuss this concept, and its

heteps:/hemanthrajhemu.github.io

* 2.2 Machine-Dependent Assembler Features

implications for operating systems, in Chapter 6.) To take full advantage of
this capability, however, we must be able to load programs into memory wher-
ever there is room, rather than specifying a fixed address at assembly time.
Section 2.2.2 introduces the idea of program relocation and discusses its impli-
cations for the assembler.

2.2.1 Instruction Formats and Addressing Modes

Figure 2.6 shows the object code generated for each statement in the program
of Fig. 2.5. In this section we consider the translation of the source statements,
paying particular attention to the handling of different instruction formats and
different addressing modes. Note that the START statement now specifies a
beginning program address of 0. As we discuss in the next section, this indi-
cates a relocatable program. For the purposes of instruction assembly, how-
ever, the program will be translated exactly as if it were really to be loaded at
machine address 0.

Translation of register-to-register instructions such as CLEAR (line 125)
and COMPR (line 150) presents no new problems. The assembler must simply
convert the mnemonic operation code to machine language (using OPTAB)
and change each register mnemonic to its numeric equivalent. This translation
is done during Pass 2, at the same point at which the other types of instruc-
tions are assembled. The conversion of register mnemonics to numbers can be
done with a separate table; however, it is often convenient to use the symbol
table for this purpose. To do this, SYMTAB would be preloaded with the regis-
ter names (A, X, etc.) and their values (0, 1, etc.).

Most of the register-to-memory instructions are assembled using either
program-counter relative or base relative addressing. The assembler must, in
either case, calculate a displacement to be assembled as part of the object in-
struction. This is computed so that the correct target address results when the
displacement is added to the contents of the program counter (PC) or the base
register (B). Of course, the resulting displacement must be small enough to fit
in the 12-bit field in the instruction. This means that the displacement must be
between 0 and 4095 (for base relative mode) or between —2048 and +2047 (for
program-counter relative mode).

If neither program-counter relative nor base relative addressing can be
used (because the displacements are too large), then the 4-byte extended in-
struction format (Format 4) must be used. This 4-byte format contains a 20-bit
address field, which is large enough to contain the full memory address. In
this case, there is no displacement to be calculated. For example, in the instruc-
tion

15 0006 CLOOP +JSUB RDREC 4B101036

57

58

htéps:/hemanthrajhemu.github.io

Chapter 2 Assemblers

Line

10
i
13
15
20
25
30
35
40
45
50
55
60
65
70
80
g5
100
105
110
115
120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
195
200
205
210
212
215
220
225
230
235
240
245
250
255

Loc

0000
0000
0003

0006
000A
000D
0010
0013
0017
001a
001D
0020
0023
0026
002a
002D
0030
0033
0036

1036
1038
103A
103¢
1040
1043
1046
1049
1048
104E
1051
1053
1056
1059
105C

105D
105F
1062
10865
1068
106B
106E
1070
1073
1076

Figure 2.6 Program from Fig. 2.5 with object code.

Source statement

COPY START
FIRST STL
LDB
BASE
+JSUB
LDA
COMP
JEQ
+JSURB
J
ENDFIL LDA
———7STA
LDA
STA
+JSUB
i
EOF BYTE
RETADR RESW
LENGTH RESW
BUFFER RESB

CLOOP

0

RETADR
#LENGTH

LENGTH

LENGTH
#0
ENDFIL
WRREC
CLOOP

BUFFER
#3

LENGTH

WRREC
@RETADR

C“EOE*

1

1

4096

-

SUEBROUTINE TO READ RECORD

RDREC CLEAR
CLEAR
CLEAR

+LDT

RLOOP D

JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
EXIT STX
RSUB
INPUT BYTE

SUBROUTINE TO WEITE RECORD FROM BUFFER

CLEAR
LpT
WLOOP TD

QUTPUT BYTE

X

A

S
#4096
INPUT
RLOOP
INPUT
A,S
EXTT
BUFFER, X
1
RLOOP
LENGTH

X'F1’

X

LENGTH
CUTPUT
WLOOP
BUFFER, X
QUTPUT

iy

WLOOP

X'05'
FIRST

Object code

17202D
69202D

481010386
032026
290000
332007
4B10105D
3F2FEC
032010
0F2016
010003
0F200D
4B10105D
3E2003
454F46

INTO BUFFER

B410
B400
B440
75101000
E32019
332FFA
DB2013
2004
332008
57C003
B850
3B2FEA
134000
4F0000
F1

B410
774000
E32011
332FFA
53C003
DF2008
B850
3B2FEF
4F0000
05

heteps:/hemanthrajhemu.github.io

" 2.2 Machine-Dependent Assembler Features

the operand address is 1036. This full address is stored in the instruction, with
bit e set to 1 to indicate extended instruction format.

Note that the programmer must specify the extended format by using the
prefix + (as on line 15). If extended format is not specified, our assembler first
attempts to translate the instruction using program-counter relative address-
ing. If this is not possible (because the required displacement is out of range),
the assembler then attempts to use base relative addressing. If neither form of
relative addressing is applicable and extended format is not specified, then the
instruction cannot be properly assembled. In this case, the assembler must
generate an error message.

We now examine the details of the displacement calculation for program-
counter relative and base relative addressing modes. The computation that the
assembler needs to perform is essentially the target address calculation in
reverse. You may want to review this from Section 1.3.2.

The instruction

10 0000 FIRST STL RETADR 17202D

is a typical example of program-counter relative assembly. During execution
of instructions on SIC (as in most computers), the program counter is ad-
vanced after each instruction is fetched and before it is executed. Thus during
the execution of the STL instruction, PC will contain the address of the next in-
struction (that is, 0003). From the Loc column of the listing, we see that
RETADR (line 95) is assigned the address 0030. (The assembler would, of
course, get this address from SYMTAB.) The displacement we need in the in-
struction is 30 — 3 = 2D. At execution time, the target address calculation per-
formed will be (PC) + disp, resulting in the correct address (0030). Note that
bit p is set to 1 to indicate program-counter relative addressing, making the
last 2 bytes of the instruction 202D. Also note that bits # and i are both set to 1,
indicating neither indirect nor immediate addressing; this makes the first byte
17 instead of 14. (See Fig. 1.1 in Section 1.3.2 for a review of the location and
setting of the addressing-mode bit flags.)
Another example of program-counter relative assembly is the instruction

40 0017 J CLOOP 3F2FEC

Here the operand address is 0006. During instruction execution, the program
counter will contain the address 0001A. Thus the displacement required is
6 — 1A = -14. This is represented (using 2’s complement for negative numbers) in
a 12-bit field as FEC, which is the displacement assembled into the object code.
The displacement calculation process for base relative addressing is much
the same as for program-counter relative addressing. The main difference is

59

60

hteps:/hemanthrajhemu.github.io

Chapter 2 Assemblers

-

that the assembler knows what the contents of the program counter will be at
execution time. The base register, on the other hand, is under control of the
programmer. Therefore, the programmer must tell the assembler what the
base register will contain during execution of the program so that the assem-
bler can compute displacements. This is done in our example with the assem-
bler directive BASE. The statement BASE LENGTH (line 13) informs the
assembler that the base register will contain the address of LENGTH. The pre-
ceding instruction (LDB #LENGTH) loads this value into the register during
program execution. The assembler assumes for addressing purposes that reg-
ister B contains this address until it encounters another BASE statement. Later
in the program, it may be desirable to use register B for another purpose (for
example, as temporary storage for a data value). In such a case, the program-
mer must use another assembler directive (perhaps NOBASE) to inform the
assembler that the contents of the base register can no longer be relied upon
for addressing.

It is important to understand that BASE and NOBASE are assembler direc-
tives, and produce no executable code. The programmer must provide instruc-
tions that load the proper value into the base register during execution. If this
is not done properly, the target address calculation will not produce the correct
operand address.

The instruction

160 104E STCH BUFFER, X 57C003

is a typical example of base relative assembly. According to the BASE state-
ment, register B will contain 0033 (the address of LENGTH) during execution.
The address of BUFFER is 0036. Thus the displacement in the instruction must
be 36 — 33 = 3. Notice that bits x and b are set to 1 in the assembled instruction
to indicate indexed and base relative addressing. Another example is the in-
struction STX LENGTH on line 175. Here the displacement calculated is 0.

Notice the difference between the assembly of the instructions on lines 20
and 175. On line 20, LDA LENGTH is assembled with program-counter rela-
tive addressing. On line 175, STX LENGTH uses base relative addressing, as
noted previously. (If you calculate the program-counter relative displacement
that would be required for the statement on line 175, you will see that it is too
large to fit into the 12-bit displacement field.) The statement on line 20 could
also have used base relative mode. In our assembler, however, we have arbi-
trarily chosen to attempt program-counter relative assembly first.

The assembly of an instruction that specifies immediate addressing is sim-
pler because no memory reference is involved. All that is necessary is to con-
vert the immediate operand to its internal representation and insert it into the
instruction. The instruction

https://hemanthrajhemu.github.io

2.2 Machine-Dependent Assembler Features

55 0020 LDA #3 010003

is a typical example of this, with the operand stored in the instruction as 003,
and bit 7 set to 1 to indicate immediate addressing. Another example can be
found in the instruction

133 103C +LDT #4096 75101000

In this case the operand (4096) is too large to fit into the 12-bit displacement
field, so the extended instruction format is called for. (If the operand were too
large even for this 20-bit address field, immediate addressing could not be
used.)

A different way of using immediate addressing is shown in the instruction

12 0003 LDB #LENGTH 69202D

In this statement the immediate operand is the symbol LENGTH. Since the
value of this symbol is the address assigned to it, this immediate instruction has
the effect of loading register B with the address of LENGTH. Note here that
we have combined program-counter relative addressing with immediate ad-
dressing. Although this may appear unusual, the interpretation is consistent
with our previous uses of immediate operands. In general, the target address
calculation is performed; then, if immediate mode is specified, the target ad-
dress (not the contents stored at that address) becomes the operand. (In the
LDA statement on line 55, for example, bits x, b, and p are all 0. Thus the target
address is simply the displacement 003.)

The assembly of instructions that specify indirect addressing presents
nothing really new. The displacement is computed in the usual way to pro-
duce the target address desired. Then bit # is set to indicate that the contents
stored at this location represent the address of the operand, not the operand it-
self. Line 70 shows a statement that combines program-counter relative and
indirect addressing in this way.

2.2.2 Program Relocation

As we mentioned before, it is often desirable to have more than one program
at a time sharing the memory and other resources of the machine. If we knew
in advance exactly which programs were to be executed concurrently in this
way, we could assign addresses when the programs were assembled so that
they would fit together without overlap or wasted space. Most of the time,
however, it is not practical to plan program execution this closely. (We usually
do not know exactly when jobs will be submitted, exactly how long they will

61

he¢eps:/hemanthrajhemu.github.io

62 Chapter 2 Assemblers

run, etc.) Because of this, it is desirable to be able to load a program into mem-
ory wherever there is room for it. In such a situation the actual starting ad-
dress of the program is not known until load time.

The program we considered in Section 2.1 is an example of an absolute
program (or absolute assembly). This program must be loaded at address 1000
(the address that was specified at assembly time) in order to execute properly.
To see this, consider the instruction

55 101B LDA THREE 00102D

from Fig. 2.2. In the object program (Fig. 2.3), this statement is translated as
00102D, specifying that register A is to be loaded from memory address 102D.
Suppose we attempt to load and execute the program at address 2000 instead
of address 1000. If we do this, address 102D will not contain the value that we
expect—in fact, it will probably be part of some other user’s program.

Obviously we need to make some change in the address portion of this in-
struction so we can load and execute our program at address 2000. On the
other hand, there are parts of the program (such as the constant 3 generated
from line 85) that should remain the same regardless of where the program is
loaded. Looking at the object code alone, it is in general not possible to tell
which values represent addresses and which represent constant data items.

Since the assembler does not know the actual location where the program
will be loaded, it cannot make the necessary changes in the addresses used by
the program. However, the assembler can identify for the loader those parts of
the object program that need modification. An object program that contains
the information necessary to perform this kind of modification is called a relo-
catable program.

To look at this in more detail, consider the program from Figs. 2.5 and 2.6.
In the preceding section, we assembled this program using a starting address
of 0000. Figure 2.7(a) shows this program loaded beginning at address 0000.
The JSUB instruction from line 15 is loaded at address 0006. The address field
of this instruction contains 01036, which is the address of the instruction la-
beled RDREC. (These addresses are, of course, the same as those assigned by
the assembler.)

Now suppose that we want to load this program beginning at address
5000, as shown in Fig. 2.7(b). The address of the instruction labeled RDREC is
then 6036. Thus the JSUB instruction must be modified as shown to contain
this new address. Likewise, if we loaded the program beginning at address
7420 (Fig. 2.7¢), the JSUB instruction would need to be changed to 4B108456 to
correspond to the new address of RDREC.

heteps:/hemanthrajhemu.github.io

Sectioh 2.2 Machine-Dependent Assembler Features 63
0000 :
0006 | 4B101036 |(+JSUB RDREC)
: : .
1036 | B410 «—RDREC
1076 :
5000 :
50:06 4B10:6036 (+JSUB RDREC)
6036 | B410 e— RDREC
6076 :

7420

7426 | 4B108456 | (+JSUB RDREC)

<— RDREC

L+]
§ asass g--
o]
g
ey
sensns O ssnee

(a) (b) (c)

Figure 2.7 Examples of program relocation.

Note that no matter where the program is loaded, RDREC is always 1036
bytes past the starting address of the program. This means that we can solve
the relocation problem in the following way:

1. When the assembler generates the object code for the JSUB instruc-
tion we are considering, it will insert the address of RDREC relative to
the start of the program. (This is the reason we initialized the location
counter to 0 for the assembly.)

2. The assembler will also produce a command for the loader, instruct-
ing it to add the beginning address of the program to the address
field in the JSUB instruction at load time.

he¢eps:/hemanthrajhemu.github.io

64 Chapter 2 Assemblers

-

The command for the loader, of course, must also be a part of the object pro-
gram. We can accomplish this with a Modification record having the following
format:

Modification record:

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, rel-
ative to the beginning of the program (hexadecimal)

Col. 8-9 Length of the address field to be modified, in half-

bytes (hexadecimal)

The length is stored in half-bytes (rather than bytes) because the address
field to be modified may not occupy an integral number of bytes. (For exam-
ple, the address field in the JSUB instruction we considered above occupies 20
bits, which is 5 half-bytes.) The starting location is the location of the byte con-
taining the leftmost bits of the address field to be modified. If this field occu-
pies an odd number of half-bytes, it is assumed to begin in the middle of the
first byte at the starting location. These conventions are, of course, closely re-
lated to the architecture of SIC/XE. For other types of machines, the half-byte
approach might not be appropriate (see Exercise 2.2.9).

For the JSUB instruction we are using as an example, the Modification
record would be

MO00000705

This record specifies that the beginning address of the program is to be added
to a field that begins at address 000007 (relative to the start of the program)
and is 5 half-bytes in length. Thus in the assembled instruction 4B101036, the
first 12 bits (4B1) will remain unchanged. The program load address will be
added to the last 20 bits (01036) to produce the correct operand address. (You
should check for yourself that this gives the results shown in Fig. 2.7.)

Exactly the same kind of relocation must be performed for the instructions
on lines 35 and 65 in Fig. 2.6. The rest of the instructions in the program, how-
ever, need not be modified when the program is loaded. In some cases this is
because the instruction operand is not a memory address at all (e.g., CLEAR S
or LDA #3). In other cases no modification is needed because the operand is
specified using program-counter relative or base relative addressing. For ex-
ample, the instruction on line 10 (STL RETADR) is assembled using program-
counter relative addressing with displacement 02D. No matter where the
program is loaded in memory, the word labeled RETADR will always be 2D

hetcps:/hemanthrajhemu.github.io

Section 2.2 Machine-Dependent Assembler Features

bytes away from the STL instruction; thus no instruction modification is
needed. When the STL is executed, the program counter will contain the (ac-
tual) address of the next instruction. The target address calculation process
will then produce the correct (actual) operand address corresponding to
RETADR.

Similarly the distance between LENGTH and BUFFER will always be
3 bytes. Thus the displacement in the base relative instruction on line 160 will
be correct without modification. (The contents of the base register will, of
course, depend upon where the program is loaded. However, this will be
taken care of automatically when the program-counter relative instruction
LDB #LENGTH is executed.)

By now it should be clear that the only parts of the program that require
modification at load time are those that specify direct (as opposed to relative)
addresses. For this SIC/XE program, the only such direct addresses are found
in extended format (4-byte) instructions. This is an advantage of relative ad-
dressing—if we were to attempt to relocate the program from Fig. 2.1, we
would find that almost every instruction required modification.

Figure 2.8 shows the complete object program corresponding to the source
program of Fig. 2.5. Note that the Text records are exactly the same as those
that would be produced by an absolute assembler (with program starting ad-
dress of 0). However, the load addresses in the Text records are interpreted as
relative, rather than absolute, locations. (The same is, of course, true of the ad-
dresses in the Modification and End records.) There is one Modification record
for each address field that needs to be changed when the program is relocated
(in this case, the three +JSUB instructions). You should verify these Modifica-
tion records yourself and make sure you understand the contents of each. In
Chapter 3 we consider in detail how the loader performs the required program
modification. It is important that you understand the concepts involved now,
however, because we build on these concepts in the next section.

HCOPY II,9'.']00(}0‘,\(301(;! 77
TnUUGUUOAU)nl7202!)‘,\69202]}_;\‘13l01036A032026A290000A33200?{"\43IOIDSDn3F2FECn032010
ThOOOOIDAI 3A0F2016‘,\0.lOOOBADFZOODA&B10105DA3£2003A4541’46

TAOO.I.OBGAI la\lll; IUAB&{JD,péﬁOn? 5101000E3201 9ﬂ332FFA{PBZOI 3;\“0041\332008;\57(:003,\5850
T0010531 D‘,\332 FEAL 34000},{!1"0000&}']hnll 10A771100(.}\E320 1 1{\332FFA/@3C003ADF2008ABB50
1001 070‘&07‘\3B2FEFA&F0000!\05

400000705

}I’POOOI-‘nnOS

1‘3,900027}\05

E000000

Figure 2.8 Object program corresponding to Fig. 2.6.

65

he¢cps:/hemanthrajhemu.github.io

66

Chapter 2 Assemblers

2.3 MACHINE-INDEPENDENT
ASSEMBLER FEATURES

In this section, we discuss some common assembler features that are not
closely related to machine architecture. Of course, more advanced machines
tend to have more complex software; therefore the features we consider are
more likely to be found on larger and more complex machines. However, the
presence or absence of such capabilities is much more closely related to issues
such as programmer convenience and software environment than it is to
machine architecture.

In Section 2.3.1 we discuss the implementation of literals within an assem-
bler, including the required data structures and processing logic. Section 2.3.2
discusses two assembler directives (EQU and ORG) whose main function is
the definition of symbols. Section 2.3.3 briefly examines the use of expressions
in assembler language statements, and discusses the different types of expres-
sions and their evaluation and use.

In Sections 2.3.4 and 2.3.5 we introduce the important topics of program
blocks and control sections. We discuss the reasons for providing such capabil-
ities and illustrate some different uses with examples. We also introduce a set
of assembler directives for supporting these features and discuss their imple-
mentation.

2.3.1 Literals

It is often convenient for the programmer to be able to write the value of a
constant operand as a part of the instruction that uses it. This avoids having to
define the constant elsewhere in the program and make up a label for it. Such
an operand is called a literal because the value is stated “literally” in the in-
struction. The use of literals is illustrated by the program in Fig. 2.9. The object
code generated for the statements of this program is shown in Fig. 2.10. (This
program is a modification of the one in Fig. 2.5; other changes are discussed
later in Section 2.3.)

In our assembler language notation, a literal is identified with the prefix =,
which is followed by a specification of the literal value, using the same nota-
tion as in the BYTE statement. Thus the literal in the statement

45 001A ENDFIL LDA = =C'EOF’ 032010

specifies a 3-byte operand whose value is the character string EOF. Likewise
the statement

215 1062 WLOOP D =X'05" E32011

100
105
106
107
110
115
120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
5
200
205
210
212
215
220
225
230
235
240
245
255

https:llhemanthi'ajhemu.sithub.io

Source statement

COPY
FIRST

CLOOP

ENDFIL

RETADR
LENGTH
BUFFER
BUFEND
MAXTLEN

RDREC

RLOOP

EXIT
INPUT
WRREC

WLOOP

SPART
STL
LDB
BASE
+JSUB
LDA
COMP

RESB
EQU
EQU

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C'ECF’
BUFFER
#3
LENGTH
WRREC
@RETADR

4096

*

2.3 Machine-Independent Assembler Features 67

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD
TEST FOR EOF (LENGTH = 0}

EXIT IF EQF FOUND

WRITE CUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

BUFEND-BUFFER MAXTMUM RECORD LENGTH

SUBROUTINE TO READ RECORD INTCO BUFFER

CLEAR
CLEAR
CLEAR

+1.DT
™

BYTE

X

A

5
#MAXT.EN
INPUT
RLOOP
INFUT
4,5
EXIT
BUFFER, X
P
RLOCP
LENGTH

X'F1Y

CLEAR LOOP COUNTER
CLEAR A TC ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X*00')
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOCP UNLESS MAX LENGTH
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

SUBROUTINE TO WRITE RECORD FROM BUFFER

CLEAR
1oT

FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FRCOM BUFFER

WRITE CHARACTER

LOOP UNTIL ALLx CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

Figure 2.9 Program demonstrating additional assembler features.

heteps:/hemanthrajhemu.github.io

68 Chapter 2 Assemblers
Line Loc Source statement Object code
5 0000 COPY START 0
10 0000 FIRST STL RETADR 17202D
13 0003 LoB #LENGTH 69202D
14 BASE LENGTH
15 0006 CLOOP +JSUB RDREC 4B101036
20 oooa LDA LENGTH 032026
25 000D COoMP #0 290000
30 0010 JEQ ENDFIL 332007
35 0013 +JSUB WRREC 4B10105D
40 0017 J CLOOP 3F2FEC
45 001A ENDFIL LDA =C'EOF' 032010
50 001D STA BUFFER 0F2016
55 0020 LDA #3 010003
60 0023 STA LENGTH 0F200D
65 0026 +JSUB WRREC 4B10105D
70 0022 J @RETADR 3E2003
923 LTORG
002D = =C’ECF”’ 454F46
95 0030 RETADR RESW 1
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
106 1036 BUFEND EQU]
107 1000 MAXLEN EQU BUFEND-BUFFER
110 -
115 : SUBROUTINE TO READ RECORD INTO BUFFER
120 -
125 1036 RDREC CLEAR X B410
130 1038 CLEAR A B400
132 103a CLEAR S B440
133 103C +LDT #MAXLEN 75101000
135 1040 RLOOP D INPUT E32019
140 1043 JEQ RLOOP 332FFA
145 1046 RD INPUT DB2013
150 1049 COMPR A8 ADO4
155 104B JEQ EXIT 332008
160 104E STCH BUFFER, X 57C003
165 1051 TIXR e B850
170 1053 JLT RLOOP 3B2FEA
175 1056 EXIT STX LENGTH 134000
180 1059 RSUB 4F0000
185 105C INPUT BYTE X'F1’ F1
185 g
200 : SUBROUTINE TO WRITE RECORD FROM BUFFER
205 :
210 105D WRREC CLEAR X B410
212 105F DT LENGTH 774000
215 1062 WLOOP D =X'05" E32011
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
> 230 106B WD =X'05’ DF2008
235 106E TIXR . T B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
255 END FIRST
1076 ¥ =X'05" 05

Figure 2.10 Program from Fig. 2.9 with object code.

heteps:/hemanthrajhemu.github.io

L) =, -
2.3 Machine-Independent Assembler Features

specifies a 1-byte literal with the hexadecimal value 05. The notation used for
literals varies from assembler to assembler; however, most assemblers use
some symbol (as we have used =) to make literal identification easier.

It is important to understand the difference between a literal and an imme-
diate operand. With immediate addressing, the operand value is assembled as
part of the machine instruction. With a literal, the assembler generates the
specified value as a constant at some other memory location. The address of
this generated constant is used as the target address for the machine instruc-
tion. The effect of using a literal is exactly the same as if the programmer had
defined the constant explicitly and used the label assigned to the constant as
the instruction operand. (In fact, the generated object code for lines 45 and 215
in Fig. 2.10 is identical to the object code for the corresponding lines in
Fig. 2.6.) You should compare the object instructions generated for lines 45 and
55 in Fig. 2.10 to make sure you understand how literals and immediate
operands are handled.

All of the literal operands used in a program are gathered together into
one or more literal pools. Normally literals are placed into a pool at the end of
the program. The assembly listing of a program containing literals usually in-
cludes a listing of this literal pool, which shows the assigned addresses and
the generated data values. Such a literal pool listing is shown in Fig. 2.10 im-
mediately following the END statement. In this case, the pool consists of the
single literal =X"05".

In some cases, however, it is desirable to place literals into a pool at some
other location in the object program. To allow this, we introduce the assembler
directive LTORG (line 93 in Fig. 2.9). When the assembler encounters a LTORG
statement, it creates a literal pool that contains all of the literal operands used
since the previous LTORG (or the beginning of the program). This literal pool
is placed in the object program at the location where the LTORG directive was
encountered (see Fig. 2.10). Of course, literals placed in a pool by LTORG will
not be repeated in the pool at the end of the program.

If we had not used the LTORG statement on line 93, the literal =C'EOF’
would be placed in the pool at the end of the program. This literal pool would
begin at address 1073. This means that the literal operand would be placed too
far away from the instruction referencing it to allow program-counter relative
addressing. The problem, of course, is the large amount of storage reserved for
BUFFER. By placing the literal pool before this buffer, we avoid having to use
extended format instructions when referring to the literals. The need for an as-
sembler directive such as LTORG usually arises when it is desirable to keep
the literal operand close to the instruction that uses it.

Most assemblers recognize duplicate literals—that is, the same literal used
in more than one place in the program—and store only one copy of the speci-
fied data value. For example, the literal =X’05’ is used in our program on lines

69

70

== =

he¢eps:/hemanthrajhemu.github.io

Chapter 2 Assemblers

215 and 230. However, only one data area with this value is generated. Both
instructions refer to the same address in the literal pool for their operand.

The easiest way to recognize duplicate literals is by comparison of the
character strings defining them (in this case, the string =X'05’). Sometimes a
slight additional saving is possible if we look at the generated data value in-
stead of the defining expression. For example, the literals =C’EOF’ and
=X"454F46" would specify identical operand values. The assembler might
avoid storing both literals if it recognized this equivalence. However, the bene-
fits realized in this way are usually not great enough to justify the additional
complexity in the assembler.

If we use the character string defining a literal to recognize duplicates, we
must be careful of literals whose value depends upon their location in the pro-
gram. Suppose, for example, that we allow literals that refer to the current
value of the location counter (often denoted by the symbol *). Such literals are
sometimes useful for loading base registers. For example, the statements

BASE =
LDB =*

as the first lines of a program would load the beginning address of the pro-
gram into register B. This value would then be available for base relative ad-
dressing.

Such a notation can, however, cause a problem with the detection of dupli-
cate literals. If a literal =* appeared on line 13 of our example program, it
would specify an operand with value 0003. If the same literal appeared on line
55, it would specify an operand with value 0020. In such a case, the literal
operands have identical names; however, they have different values, and both
must appear in the literal pool. The same problem arises if a literal refers to
any other item whose value changes between one point in the program and
another.

Now we are ready to describe how the assembler handles literal operands.
The basic data structure needed is a literal table LITTAB. For each literal used,
this table contains the literal name, the operand value and length, and the ad-
dress assigned to the operand when it is placed in a literal pool. LITTAB is of-
ten organized as a hash table, using the literal name or value as the key.

As each literal operand is recognized during Pass 1, the assembler searches
LITTAB for the specified literal name (or value). If the literal is already present
in the table, no action is needed; if it is not present, the literal is added to LIT-
TAB (leaving the address unassigned). When Pass 1 encounters a LTORG
statement or the end of the program, the assembler makes a scan of the literal
table. At this time each literal currently in the table is assigned an address (un-
less such an address has already been filled in). As these addresses are as-

R EE=—————

he¢eps:/hemanthrajhemu.github.io

., .
2.3 Machine-Independent Assembler Features

signed, the location counter is updated to reflect the number of bytes occupied
by each literal.

During Pass 2, the*operand address for use in generating object code is ob-
tained by searching LITTAB for each literal operand encountered. The data
values specified by the literals in each literal pool are inserted at the appropri-
ate places in the object program exactly as if these values had been generated
by BYTE or WORD statements. If a literal value represents an address in the
program (for example, a location counter value), the assembler must also gen-
erate the appropriate Modification record.

To be sure you understand how LITTAB is created and used by the assem-
bler, you may want to apply the procedure we just described to the source
statements in Fig. 2.9. The object code and literal pools generated should be
the same as those in Fig. 2.10.

2.3.2 Symbol-Defining Statements

Up to this point the only user-defined symbols we have seen in assembler lan-
guage programs have appeared as labels on instructions or data areas. The
value of such a label is the address assigned to the statement on which it ap-
pears. Most assemblers provide an assembler directive that allows the pro-
grammer to define symbols and specify their values. The assembler directive
generally used is EQU (for “equate”). The general form of such a statement is

symbol EQU value

This statement defines the given symbol (i.e., enters it into SYMTAB) and as-
signs to it the value specified. The value may be given as a constant or as any
expression involving constants and previously defined symbols. We discuss
the formation and use of expressions in the next section.

One common use of EQU is to establish symbolic names that can be used
for improved readability in place of numeric values. For example, on line 133
of the program in Fig. 2.5 we used the statement

+LDT #4096
to load the value 4096 into register T. This value represents the maximum-
length record we could read with subroutine RDREC. The meaning is not,

however, as clear as it might be. If we include the statement

MAXT.FN EQU 4096

71

72

heteps:/hemanthrajhemu.github.io

Chapter 2 Assemblers

in the program, we can write line 133 as
+LDT #MAXLEN

When the assembler encounters the EQU statement, it enters MAXLEN into
SYMTAB (with value 4096). During assembly of the LDT instruction, the as-
sembler searches SYMTAB for the symbol MAXLEN, using its value as the
operand in the instruction. The resulting object code is exactly the same as in
the original version of the instruction; however, the source statement is easier
to understand. It is also much easier to find and change the value of MAXLEN
if this becomes necessary—we would not have to search through the source
code looking for places where #4096 is used.

Another common use of EQU is in defining mnemonic names for registers.
We have assumed that our assembler recognizes standard mnemonics for reg-
isters—A, X, L, etc. Suppose, however, that the assembler expected register
numbers instead of names in an instruction like RMO. This would require the
programmer to write (for example) RMO 0,1 instead of RMO A X. In such a
case the programmer could include a sequence of EQU statements like

A EQU 0
X EQU 1
7 EQU 2

These statements cause the symbols A, X, L,... to be entered into SYMTAB with
their corresponding values 0, 1, 2,... . An instruction like RMO A X would then
be allowed. The assembler would search SYMTAB, finding the values 0 and 1
for the symbols A and X, and assemble the instruction.

On a machine like SIC, there would be little point in doing this—it is just
as easy to have the standard register mnemonics built into the assembler.
Furthermore, the standard names (base, index, etc.) reflect the usage of the
registers. Consider, however, a machine that has general-purpose registers.
These registers are typically designated by 0, 1, 2,... (or RO, R1, R2,...). In a par-
ticular program, however, some of these may be used as base registers, some
as index registers, some as accumulators, etc. Furthermore, this usage of regis-
ters changes from one program to the next. By writing statements like

BASE EQU R1
COUNT EQU R2
INDEX EQU R3

the programmer can establish and use names that reflect the logical function
of the registers in the program.

hetcps:/hemanthrajhemu.github.io

L
2.3 Machine-Independent Assembler Features

There is another common assembler directive that can be used to indirectly
assign values to symbols. This directive is usually called ORG (for “origin”).

Its form is .

ORG value

where wvalue is a constant or an expression involving constants and previously
defined symbols. When this statement is encountered during assembly of a
program, the assembler resets its location counter (LOCCTR) to the specified
value. Since the values of symbols used as labels are taken from LOCCTR, the
ORG statement will affect the values of all labels defined until the next ORG.
Of course the location counter is used to control assignment of storage in
the object program; in most cases, altering its value would result in an incor-
rect assembly. Sometimes, however, ORG can be useful in label definition.
Suppose that we were defining a symbol table with the following structure:

SYMBOL VALUE FLAGS

STAB
(100 entries)

In this table, the SYMBOL field contains a 6-byte user-defined symbol; VALUE
is a one-word representation of the value assigned to the symbol; FLAGS is a
2-byte field that specifies symbol type and other information.

We could reserve space for this table with the statement

STAB RESB 1100

We might want to refer to entries in the table using indexed addressing (plac-
ing in the index register the offset of the desired entry from the beginning of
the table). Of course, we want to be able to refer to the fields SYMBOL,
VALUE, and FLAGS individually, so we must also define these labels. One
way of doing this would be with EQU statements:

SYMBOL EQU STAB
VALUE EQU STAB+6
FLAGS EQU STAB+9

73

' |
he¢eps:/hemanthrajhemu.github.io

74 Chapter 2 Assemblers

This would allow us to write, for example,
LDA VALUE, X

to fetch the VALUE field from the table entry indicated by the contents of reg-
ister X. However, this method of definition simply defines the labels; it does
not make the structure of the table as clear as it might be.

We can accomplish the same symbol definition using ORG in the following

way:
STAB RESE 1100
ORG STAB
SYMBOL RESB 6
VALUE RESW i
FLAGS RESB 2
ORG STAB+1100

The first ORG resets the location counter to the value of STAB (i.e., the begin-
ning address of the table). The label on the following RESB statement defines
SYMBOL to have the current value in LOCCTR; this is the same address as-
signed to SYMTAB. LOCCTR is then advanced so the label on the RESW state-
ment assigns to VALUE the address (STAB+6), and so on. The result is a set of
labels with the same values as those defined with the EQU statements above.
This method of definition makes it clear, however, that each entry in STAB
consists of a 6-byte SYMBOL, followed by a one-word VALUE, followed by a
2-byte FLAGS.

The last ORG statement is very important. It sets LOCCTR back to its pre-
vious value—the address of the next unassigned byte of memory after the
table STAB. This is necessary so that any labels on subsequent statements,
which do not represent part of STAB, are assigned the proper addresses. In
some assemblers the previous value of LOCCTR is automatically remembered,
so we can simply write

ORG

(with no value specified) to return to the normal use of LOCCTR.

The descriptions of the EQU and ORG statements contain restrictions that
are common to all symbol-defining assembler directives. In the case of EQU,
all symbols used on the right-hand side of the statement—that is, all terms
used to specify the value of the new symbol—must have been defined previ-
ously in the program. Thus, the sequence [

ALPHA RESW 1
BETA EQU ALPHA

heteps:/hemanthrajhemu.github.io

23 Machine-Independent Assembler Features

would be allowed, whereas the sequence

BETA EQU ¥ ATLPHA
ALPHA RESW il

would not. The reason for this is the symbol definition process. In the second
example above, BETA cannot be assigned a value when it is encountered dur-
ing Pass 1 of the assembly (because ALPHA does not yet have a value).
However, our two-pass assembler design requires that all symbols be defined
during Pass 1.

A similar restriction applies to ORG: all symbols used to specify the new
location counter value must have been previously defined. Thus, for example,
the sequence

ORG ALPHA
BYTE1 RESE i}
BYTE2 RESB 1
BYTE3 RESB 1

ORG
ATPHA RESB 1)

could not be processed. In this case, the assembler would not know (during
Pass 1) what value to assign to the location counter in response to the first
ORG statement. As a result, the symbols BYTE1, BYTE2, and BYTE3 could not
be assigned addresses during Pass 1.

It may appear that this restriction is a result of the particular way in which
we defined the two passes of our assembler. In fact, it is a more general prod-
uct of the forward-reference problem. You can easily see, for example, that the
sequence of statements

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

cannot be resolved by an ordinary two-pass assembler regardless of how the
work is divided between the passes. In Section 2.4.2, we briefly consider ways
of handling such sequences in a more complex assembler structure.

2.3.3 Expressions

Our previous examples of assembler language statements have used single
terms (labels, literals, etc.) as instruction operands. Most assemblers allow the

75

heteps:/hemanthrajhemu.github.io

76

Chapter 2 Assemblers

use of expressions wherever such a single operand is ﬁermitted. Each such ex-
pression must, of course, be evaluated by the assembler to produce a single
operand address or value.

Assemblers generally allow arithmetic expressions formed according to
the normal rules using the operators +, —, *, and /. Division is usually defined
to produce an integer result. Individual terms in the expression may be con-
stants, user-defined symbols, or special terms. The most common such special
term is the current value of the location counter (often designated by *). This
term represents the value of the next unassigned memory location. Thus in
Fig. 2.9 the statement

106 BUFEND EQU i

gives BUFEND a value that is the address of the next byte after the buffer area.

In Section 2.2 we discussed the problem of program relocation. We saw
that some values in the object program are relative to the beginning of the pro-
gram, while others are absolute (independent of program location). Similarly,
the values of terms and expressions are either relative or absolute. A constant
is, of course, an absolute term. Labels on instructions and data areas, and ref-
erences to the location counter value, are relative terms. A symbol whose value
is given by EQU (or some similar assembler directive) may be either an ab-
solute term or a relative term depending upon the expression used to define
its value.

Expressions are classified as either absolute expressions or relative expressions
depending upon the type of value they produce. An expression that contains
only absolute terms is, of course, an absolute expression. However, absolute
expressions may also contain relative terms provided the relative terms occur
in pairs and the terms in each such pair have opposite signs. It is not necessary
that the paired terms be adjacent to each other in the expression; however, all
relative terms must be capable of being paired in this way. None of the relative
terms may enter into a multiplication or division operation.

A relative expression is one in which all of the relative terms except one
can be paired as described above; the remaining unpaired relative term must
have a positive sign. As before, no relative term may enter into a multiplica-
tion or division operation. Expressions that do not meet the conditions given
for either absolute or relative expressions should be flagged by the assembler
as errors.

Although the rules given above may seem arbitrary, they are actually quite
reasonable. The expressions that are legal under these definitions include ex-
actly those expressions whose value remains meaningful when the program is
relocated. A relative term or expression represents some value that may be
written as (S+ r), where S is the starting address of the program and r is the

heteps:/hemanthrajhemu.github.io

2.3 Machine-Independent Assembler Features

value of the term or expression relative to the starting address. Thus a relative
term usually represents some location within the program. When relative
terms are paired with epposite signs, the dependency on the program starting
address is canceled out; the result is an absolute value. Consider, for example,
the program of Fig. 2.9. In the statement

107 MAXT.EN EQU BUFEND-BUFFER

both BUFEND and BUFFER are relative terms, each representing an address
within the program. However, the expression represents an absolute value: the
difference between the two addresses, which is the length of the buffer area in
bytes. Notice that the assembler listing in Fig. 2.10 shows the value calculated
for this expression (hexadecimal 1000) in the Loc column. This value does not
represent an address, as do most of the other entries in that column. However,
it does show the value that is associated with the symbol that appears in the
source statement (MAXLEN).

Expressions such as BUFEND + BUFFER, 100 — BUFFER, or 3 * BUFFER
represent neither absolute values nor locations within the program. The values
of these expressions depend upon the program starting address in a way that
is unrelated to anything within the program itself. Because such expressions
are very unlikely to be of any use, they are considered errors.

To determine the type of an expression, we must keep track of the types of
all symbols defined in the program. For this purpose we need a flag in the
symbol table to indicate type of value (absolute or relative) in addition to the
value itself. Thus for the program of Fig. 2.10, some of the symbol table entries
might be

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

With this information the assembler can easily determine the type of each ex-
pression used as an operand and generate Modification records in the object
program for relative values.

In Section 2.3.5 we consider programs that consist of several parts that can
be relocated independently of each other. As we discuss in the later section,
our rules for determining the type of an expression must be modified in such
instances.

77

he¢cps:/hemanthrajhemu.github.io

78

Chapter 2 Assemblers

2.3.4 Program Blocks

In all of the examples we have seen so far the program being assembled was
treated as a unit. The source programs logically contained subroutines, data
areas, etc. However, they were handled by the assembler as one entity, result-
ing in a single block of object code. Within this object program the generated
machine instructions and data appeared in the same order as they were writ-
ten in the source program.

Many assemblers provide features that allow more flexible handling of the
source and object programs. Some features allow the generated machine in-
structions and data to appear in the object program in a different order from
the corresponding source statements. Other features result in the creation of
several independent parts of the object program. These parts maintain their
identity and are handled separately by the loader. We use the term program
blocks to refer to segments of code that are rearranged within a single object
program unit, and control sections to refer to segments that are translated into
independent object program units. (This terminology is, unfortunately, far
from uniform. As a matter of fact, in some systems the same assembler lan-
guage feature is used to accomplish both of these logically different functions.)
In this section we consider the use of program blocks and how they are han-
dled by the assembler. Section 2.3.5 discusses control sections and their uses.

Figure 2.11 shows our example program as it might be written using pro-
gram blocks. In this case three blocks are used. The first (unnamed) program
block contains the executable instructions of the program. The second (named
CDATA) contains all data areas that are a few words or less in length. The
third (named CBLKS) contains all data areas that consist of larger blocks of
memory. Some possible reasons for making such a division are discussed later
in this section.

The assembler directive USE indicates which portions of the source pro-
gram belong to the various blocks. At the beginning of the program, state-
ments are assumed to be part of the unnamed (default) block; if no USE
statements are included, the entire program belongs to this single block. The
USE statement on line 92 signals the beginning of the block named CDATA.
Source statements are associated with this block until the USE statement on
line 103, which begins the block named CBLKS. The USE statement may also
indicate a continuation of a previously begun block. Thus the statement on
line 123 resumes the default block, and the statement on line 183 resumes the
block named CDATA.)

As we can see, each program block may actually contain several separate
segments of the source program. The assembler will (logically) rearrange these
segments to gather together the pieces of each block. These blocks will then be
assigned addresses in the object program, with the blocks appearing in the

252
253
255

heteps:/hemanthrajhemu.github.io

2.3 Machine-Independent Assembler Features

Source statement

coPY START

FIRST STL ,

CLOOP JSUB
LDA
CoMP

ENDFIL LDA

JSUB

USE
RETADR RESW
LENGTH RESW

USE
BUFFER RESB
BUFEND EQU
MAXTEN EQU

0

RETADR

RDREC

LENGTH
#0

CBLES
4096

*

BUFEND-BUFFER

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS

READ INPUT RECORD

TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3

WRITE EOF

RETURN TO CALLER
LENGTH OF RECORD
4096-BYTE BUFFER AREA

FIRST LOCATION AFTER BUFFER
MAXTMUM RECORD LENGTH

SUBROUTINE TO READ RECORD INTO BUFFER

USE
RDREC CLEAR
CLEAR
CLEAR
+LDT
RLOOP D

EXIT STX

INPUT BYTE

70 -

#MAXT.EN

RLOOP

A, S

EXTIT
BUFFER, X
3 4

RLOOP
LENGTH

CDATA
X'F1”

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'00")
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH

HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER

CODE FOR INPUT DEVICE

= SUBROUTINE TO WRITE RECORD FROM BUFFER

USE
WRREC CLEAR

LoT
WLOOP TD

X

LENGTH
=X'05"
WLOOP
BUFFER, X
=X'05"

b

WLOCP

CDATA

FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

Figure 2.11 Example of a program with multiple program blocks.

79

heteps:/hemanthrajhemu.github.io

80

Chapter 2 Assemblers

same order in which they were first begun in the source program. The result is
the same as if the programmer had physically rearranged the source state-
ments to group together all the source lines belonging to each block.

The assembler accomplishes this logical rearrangement of code by main-
taining, during Pass 1, a separate location counter for each program block. The
location counter for a block is initialized to 0 when the block is first begun. The
current value of this location counter is saved when switching to another
block, and the saved value is restored when resuming a previous block. Thus
during Pass 1 each label in the program is assigned an address that is relative
to the start of the block that contains it. When labels are entered into the sym-
bol table, the block name or number is stored along with the assigned relative
address. At the end of Pass 1 the latest value of the location counter for each
block indicates the length of that block. The assembler can then assign to each
block a starting address in the object program (beginning with relative loca-
tion 0).

For code generation during Pass 2, the assembler needs the address for
each symbol relative to the start of the object program (not the start of an indi-
vidual program block). This is easily found from the information in SYMTAB.
The assembler simply adds the location of the symbol, relative to the start of
its block, to the assigned block starting address.

Figure 2.12 demonstrates this process applied to our sample program. The
column headed Loc/Block shows the relative address (within a program
block) assigned to each source line and a block number indicating which pro-
gram block is involved (0 = default block, 1 = CDATA, 2 = CBLKS). This is es-
sentially the same information that is stored in SYMTAB for each symbol.
Notice that the value of the symbol MAXLEN (line 107) is shown without a
block number. This indicates that MAXLEN is an absolute symbol, whose
value is not relative to the start of any program block.

At the end of Pass 1 the assembler constructs a table that contains the start-
ing addresses and lengths for all blocks. For our sample program, this table
looks like

Block name Block number Address Length

(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

Now consider the instruction

20 0006 O LDA LENGTH 032060

| he¢eps:/hemanthrajhemu.github.io

|
|
i Line Loc/Block Source statement Object code
: 5 0000 0 COPY START 0
f 10 0000 O FIRST STL RETADR 172063
15 0003 O CLOOP JSUB RDREC 4B2021
. 20 0006 0O : LDA LENGTH 032060
| 25 0009 0 COMP #0 290000
; 30 000C 0 JEQ ENDFIL 332006
i 35 000F © JSUB WRREC 4B203B
: 40 0012 0 J CLOOP 3F2FEE
; 45 0015 0 ENDFIL LDA =C'EOF' 032055
50 0018 © STA BUFFER 0F2056
55 001B © LDA #3 010003
60 001E O STA LENGTH 0F2048
65 0021 O JSUB WRREC 4B2029
70 0024 0O J @RETADR 3E203F
92 0000 1 USE CDATA
95 0000 1 RETADR RESW i
100 0003 1 LENGTH RESW 1
103 0000 2 USE CBLKS
105 0000 2 BUFFER RESB 4096
106 1000 2 BUFEND EQU *
107 1000 MAXILEN EQU BUFEND-BUFFER
110 .
115 : SUBROUTINE TO READ RECORD INTO BUFFER
120
123 0027 0 USE
125 0027 O RDREC CLEAR X B410
130 0029 0 CLEAR A B400
132 0028 0 CLEAR S B440
133 002D 0 +LDT #MAXLEN 75101000
135 0031 0 RLOOP D INPUT E32038
140 0034 0 JEQ RLOOP 332FFA
145 0037 0 RD INPUT DB2032
- 150 003a O COMPR A,S 2004
; 155 003C 0 JEQ EXIT 332008
i 160 003F 0 STCH BUFFER, X 57A02F
: 165 0042 0 TIXR T B850
! 170 0044 0 JLT RLOOP 3B2FEA
175 0047 0O EXIT STX LENGTH 13201F
180 004A 0 RSUB AF0000
183 0006 1 USE CDATA
185 0006 1 INPUT BYTE X'F1’ F1
195 .
200 ; SUBROUTINE TO WRITE RECORD FROM BUFFER
205
208 004D 0 USE
210 004D 0 WRREC CLEAR X B410
212 004F 0 LDT LENGTH 772017
215 0052 0 WLOOP D =X'05" E3201B
220 0055 O JEQ WLOOP 332FFA
225 0058 0 LDCH BUFFER, X 534016
230 005B 0 WD =X'05’ DF2012
235 D0SE O TIXR T B850
240 0060 O JLT WLOOP 3B2FEF
245 0063 0O RSUB 4F0000
252 0007 1 USE CDATA
253 LTORG
0007 1 * =C'EOF 454F46
000A 1 * =X'05’ 05
255 END FIRST

Figure 2.12 Program from Fig. 2.11 with object code.

he¢eps:/hemanthrajhemu.github.io

82

Chapter 2 Assemblers

SYMTAB shows the value of the operand (the symbol LENGTH) as relative lo-
cation 0003 within program block 1 (CDATA). The starting address for CDATA
is 0066. Thus the desired target address for this instruction is 0003 + 0066 =
0069. The instruction is to be assembled using program-counter relative ad-
dressing. When the instruction is executed, the program counter contains the
address of the following instruction (line 25). The address of this instruction is
relative location 0009 within the default block. Since the default block starts at
location 0000, this address is simply 0009. Thus the required displacement is
0069 — 0009 = 60. The calculation of the other addresses during Pass 2 follows a
similar pattern.

We can immediately see that the separation of the program into blocks has
considerably reduced our addressing problems. Because the large buffer area
is moved to the end of the object program, we no longer need to use extended
format instructions on lines 15, 35, and 65. Furthermore, the base register is no
longer necessary; we have deleted the LDB and BASE statements previously
on lines 13 and 14. The problem of placement of literals (and literal references)
in the program is also much more easily solved. We simply include a LTORG
statement in the CDATA block to be sure that the literals are placed ahead of
any large data areas.

Of course the use of program blocks has not accomplished anything we
could not have done by rearranging the statements of the source program. For
example, program readability is often improved if the definitions of data areas
are placed in the source program close to the statements that reference them.
This could be accomplished in a long subroutine (without using program
blocks) by simply inserting data areas in any convenient position. However,
the programmer would need to provide Jump instructions to branch around
the storage thus reserved.

In the situation just discussed, machine considerations suggested that the
parts of the object program appear in memory in a particular order. On the
other hand, human factors suggested that the source program should be in a
different order. The use of program blocks is one way of satisfying both of
these requirements, with the assembler providing the required reorganization.

It is not necessary to physically rearrange the generated code in the object
program to place the pieces of each program block together. The assembler can
simply write the object code as it is generated during Pass 2 and insert the
proper load address in each Text record. These load addresses will, of course,
reflect the starting address of the block as well as the relative location of the
code within the block. This process is illustrated in Fig. 2.13. The first two Text
records are generated from the source program lines 5 through 70. When the
USE statement on line 92 is recognized, the assembler writes out the current
Text record (even though there is still room left in it). The assembler then pre-
pares to begin a new Text record for the new program block. As it happens, the
statements on lines 95 through 105 result in no generated code, so no new Text

he¢ecps:/hemanthrajhemu.github.io

23 Machine-Independent Assembler Features

H

:{:OPY nOOOOGOI,\O{} 1071

A
TﬁOOOOIEAOg\OFZO-’eSAéB202 S3E203F
0000271 E\ch 1 0}400,\]3&40’\75 101000E32038332FFADB2032A0043 32008(\574\02!}\33 50
00004&h09h3B2FEAh1 320 11‘;\&F0000
00006(2“0];\171
TAOOODME\]%‘BQ10A77201?\E320U;\332FFA’\5 31\01GhDF2012n5850A332FEF‘\4 FO00OO0
Tﬂ00006?\04h&5ﬁ}‘ﬁ6n05
EnOOOOOO

M

>H

>+

Figure 2.13 Object program corresponding to Fig. 2.11.

records are created. The next two Text records come from lines 125 through
180. This time the statements that belong to the next program block do result
in the generation of object code. The fifth Text record contains the single byte
of data from line 185. The sixth Text record resumes the default program block
and the rest of the object program continues in similar fashion.

It does not matter that the Text records of the object program are not in se-
quence by address; the loader will simply load the object code from each
record at the indicated address. When this loading is completed, the generated
code from the default block will occupy relative locations 0000 through 0065;
the generated code and reserved storage for CDATA will occupy locations
0066 through 0070; and the storage reserved for CBLKS will occupy locations
0071 through 1070. Figure 2.14 traces the blocks of the example program
through this process of assembly and loading. Notice that the program seg-
ments marked CDATA(1) and CBLKS(1) are not actually present in the object
program. Because of the way the addresses are assigned, storage will automat-
ically be reserved for these areas when the program is loaded.

You should carefully examine the generated code in Fig. 2.12, and work
through the assembly of several more instructions to be sure you understand
how the assembler handles multiple program blocks. To understand how the
pieces of each program block are gathered together, you may also want to sim-
ulate (by hand) the loading of the object program of Fig. 2.13.

2.3.5 Control Sections and Program Linking

In this section, we discuss the handling of programs that consist of multiple
control sections. A control section is a part of the program that maintains its
identity after assembly; each such control section can be loaded and relocated
independently of the others. Different control sections are most often used for
subroutines or other logical subdivisions of a program. The programmer can
assemble, load, and manipulate each of these control sections separately. The

TDOOOOOAIE&??.O&%\&BZOz1A032060A290000n332006*5203Bn3F2FEEA032055A0F2056A010003

83

he¢eps:/hemanthrajhemu.github.io

84 Chapter 2 Assemblers
" Program loaded
Source program Object program in memory
_ Relative
Line address
5 ' 0000
/ Default(1) | Default(1)
Default(1) 0027
Default(2) - Default(2)
%
004D
CDATA(2)
CDATA(1) | Default(3)
100
125 S CDATA(1)
CDATA(3) \ CDATA(2) 006C
006D
Default(2) oAt
0071
180
185| CDATA(2)
210
CBLKS(1)
Default(3)
245
253| CDATA(3)
1070

Figure 2.14 Program blocks from Fig. 2.11 traced through the assem-
bly and loading processes.

resulting flexibility is a major benefit of using control sections. We consider ex-
amples of this when we discuss linkage editors in Chapter 3.

When control sections form logically related parts of a program, it is neces-
sary to provide some means for linking them together. For example, instruc-
tions in one control section might need to refer to instructions or data located
in another section. Because control sections are independently loaded and re-
located, the assembler is unable to process these references in the usual way.
The assembler has no idea where any other control section will be located at
execution time. Such references between control sections are called external ref-
erences. The assembler generates information for each external reference that
will allow the loader to perform the required linking. In this section we de-
scribe how external references are handled by our assembler. Chapter 3 dis-
cusses in detail how the actual linking is performed.

hetéps:/hemanthrajhemu.github.io

Section 2.3 Machine-Independent Assembler Features

Figure 2.15 shows our example program as it might be written using multi-
ple control sections. In this case there are three control sections: one for the
main program and ong for each subroutine. The START statement identifies
the beginning of the assembly and gives a name (COPY) to the first control
section. The first section continues until the CSECT statement on line 109. This
assembler directive signals the start of a new control section named RDREC.
Similarly, the CSECT statement on line 193 begins the control section named
WRREC. The assembler establishes a separate location counter (beginning at
0) for each control section, just as it does for program blocks.

Control sections differ from program blocks in that they are handled sepa-
rately by the assembler. (It is not even necessary for all control sections in a
program to be assembled at the same time.) Symbols that are defined in one
control section may not be used directly by another control section; they must
be identified as external references for the loader to handle. Figure 2.15 shows
the use of two assembler directives to identify such references: EXTDEF (exter-
nal definition) and EXTREF (external reference). The EXTDEF statement in a
control section names symbols, called external symbols, that are defined in this
control section and may be used by other sections. Control section names (in
this case COPY, RDREC, and WRREC) do not need to be named in an EXTDEF
statement because they are automatically considered to be external symbols.
The EXTREF statement names symbols that are used in this control section
and are defined elsewhere. For example, the symbols BUFFER, BUFEND, and
LENGTH are defined in the control section named COPY and made available
to the other sections by the EXTDEF statement on line 6. The third control sec-
tion (WRREC) uses two of these symbols, as specified in its EXTREF statement
(line 207). The order in which symbols are listed in the EXTDEF and EXTREF
statements is not significant.

Now we are ready to look at how external references are handled by the
assembler. Figure 2.16 shows the generated object code for each statement in
the program. Consider first the instruction

15 0003 CLOOP +JSUB RDREC 4B100000

The operand (RDREC) is named in the EXTREF statement for the control sec-
tion, so this is an external reference. The assembler has no idea where the con-
trol section containing RDREC will be loaded, so it cannot assemble the
address for this instruction. Instead the assembler inserts an address of zero
and passes information to the loader, which will cause the proper address to
be inserted at load time. The address of RDREC will have no predictable rela-
tionship to anything in this control section; therefore relative addressing is not
possible. Thus an extended format instruction must be used to provide room
for the actual address to be inserted. This is true of any instruction whose
operand involves an external reference.

85

heteps:/hemanthrajhemu.github.io

Line

5

6

7
10
15
20
25
30
35
40
45
50
55
60
65
70
95
100
103
105
106
107

109
110
115
120
122
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
150

193
195
200
205
207
210
212
215
220
225
230
235
240
245
255

86

Source statement

COPY

FIRST
CLOOP

ENDFIL

RETADR
LENGTH

BUFFER
BUFEND
MAXT.EN

RLOOP

EXIT

MAXT.EN

WRREC

WLOOP

START
EXTDEF
EXTREF
STL
+JSUB

CSECT

0

6OPY FILE FROM INPUT TO OUTEUT

BUFFER, BUFEND, LENGTH

RDREC, WRREC
RETADR
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C'EQF’
BUFFER
#3
LENGTH
WERREC
@RETADR
1
1

4096

*

BUFEND-BUFFER

SAVE RETURN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EQOF FOUND

WRITE QUTPUT RECORD

LOOP

INSERT END OF FILE MARKER
SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096-BYTE BUFFER AREA

SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF
CLEAR
CLEAR
CLEAR
LDT
TD
JEQ
RD
COMPR
JEQ
+STCH
TIXR
JLT
+S5TX
RSUB
BYTE
WORD

CSECT

BUFFER, LENGTH, BUFEND

X

A

S
MAXTEN
INPUT
RL.OOP
INPUT
A,S
EXIT
BUFFER, X
1%
RLOOP
LENGTH

XI'F1’f
BUFEND-BUFFER

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECCRD (X'00")
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF

CLEAR
+LDT

TD

LENGTH, BUFFER
X
LENGTH

=X a6
WLOOP
BUFFER, X

=X’ 05"
T
WLOOP

FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

Figure 2.15 lllustration of control sections and program linking.

155
160
165
170
175
180
185
190

193
195
200
205
207
210
212
215
220
225
230
235
240
245
255

hetcps:/hemanthrajhemu.github.io

Loc
0000

0000
0003
0007
000A
000D
0010
0014
0017
001a
001D
0020
0023
0027
002a
002D

0030
0033
1033
1000

0000

0000
0002
0004
0006
0009
000c
000F
0012
0014
0017
001B
001D
0020
0024
0027
0028

0000

0000
0002
0006
0009
gooc
0010
0013
0015
0018

001B

Figure 2.16 Program from Fig. 2.15 with object code.

Source statement

COPY START
EXTDEF
EXTREF

FIRST STL

CLOOP +JSUB

ENDFIL LDA

RETADR RESW
LENGTH RESW
LTORG
* =C'EOF'
BUFFER RESB
BUFEND EQU
MAXLEN EQU

RDREC CSECT

0

Object code

BUFFER, BUFEND, LENGTH

RDREC , WRREC
RETADR
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C'EOF"’
BUFFER
#3
LENGTH
WRREC
@RETADR
L

L

4096

*

BUFEND-BUFFER

172027
4B100000
032023
290000
332007
48100000
3F2FEC
032016
0F2016
010003
OF200A
48100000
3E2000

454F46

SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF
CLEAR
CLEAR
CLEAR
LoT
RLOOP TD
JEQ
RD
COMPR
JEQ
+STCH
TIXR
JLT
EXIT +STX
RSUB
INPUT BYTE
MAXT.EN WORD

WRREC CSECT

BUFFER, LENGTH, BUFEND

X

A

S
MAXT.EN
INPUT
RLOOP
INPUT
A,S
EXIT
BUFFER, X
i
RLOCP
LENGTH

XL
BUFEND-BUFFER

B410
B400
B440
77201F
E3201B
332FFA
DB2015
AQ04
332009
57900000
B850
JE2FEQ
13100000
4F0000
Fl
000000

SUERQUTINE TO WRITE RECORD FRCM BUFFER

EXTREF
CLEAR
+LDT

WLOOP TD
JEQ
+LDCH
WD
TIXR
JLT
RSUB
END

2 =X'05"

LENGTH, BUFFER
X

LENGTH

=X'05"

WLOOP
BUFFER, X
=X'05"

il

WLOOP

FIRST

B410
77100000
E32012
332FFA
53900000
DF2008
B850
3B2FEE
4F0000

05

87

T N
heteps:/hemanthrajhemu.github.io

88 Chapter 2 Assemblers

Similarly, the instruction
160 0017 +STCH BUFFER, X 57900000

makes an external reference to BUFFER. The instruction is assembled using
extended format with an address of zero. The x bit is set to 1 to indicate in-
dexed addressing, as specified by the instruction. The statement

1590 0028 MAXT.EN WORD BUFEND-BUFFER 000000

is only slightly different. Here the value of the data word to be generated is
specified by an expression involving two external references: BUFEND and
BUFFER. As before, the assembler stores this value as zero. When the program
is loaded, the loader will add to this data area the address of BUFEND and
subtract from it the address of BUFFER, which results in the desired value.

Note the difference between the handling of the expression on line 190 and
the similar expression on line 107. The symbols BUFEND and BUFFER are
defined in the same control section with the EQU statement on line 107. Thus
the value of the expression can be calculated immediately by the assembler.
This could not be done for line 190; BUFEND and BUFFER are defined in an-
other control section, so their values are unknown at assembly time.

As we can see from the above discussion, the assembler must remember
(via entries in SYMTAB) in which control section a symbol is defined. Any
attempt to refer to a symbol in another control section must be flagged as an
error unless the symbol is identified (using EXTREF) as an external reference.
The assembler must also allow the same symbol to be used in different control
sections. For example, the conflicting definitions of MAXLEN on lines 107 and
190 should cause no problem. A reference to MAXLEN in the control section
COPY would use the definition on line 107, whereas a reference to MAXLEN
in RDREC would use the definition on line 190.

So far we have seen how the assembler leaves room in the object code for
the values of external symbols. The assembler must also include information
in the object program that will cause the loader to insert the proper values
where they are required. We need two new record types in the object program
and a change in a previously defined record type. As before, the exact format
of these records is arbitrary; however, the same information must be passed to
the loader in some form.

The two new record types are Define and Refer. A Define record gives in-
formation about external symbols that are defined in this control section—that
is, symbols named by EXTDEF. A Refer record lists symbols that are used as
external references by the control section—that is, symbols named by EXTREFE.
The formats of these records are as follows.

heteps:/hemanthrajhemu.github.io

Section 2.3 Machine-Independent Assembler Features

Define record:
Col. 1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address of symbol within this control section
(hexadecimal)
Col. 14-73 Repeat information in Col. 2-13 for other external
symbols
Refer record:
Col. 1 R
Col. 2-7 Name of external symbol referred to in this control
section
Col. 8-73 Names of other external reference symbols

The other information needed for program linking is added to the
Modification record type. The new format is as follows.

Modification record (revised):

Col. 1 M

Col. 2-7 Starting address of the field to be modified, relative to
the beginning of the control section (hexadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexa-
decimal)

Col. 10 Modification flag (+ or -)

Col. 11-16 External symbol whose value is to be added to or sub-

tracted from the indicated field

The first three items in this record are the same as previously discussed. The
two new items specify the modification to be performed: adding or subtract-
ing the value of some external symbol. The symbol used for modification may
be defined either in this control section or in another one.

Figure 2.17 shows the object program corresponding to the source in Fig.
2.16. Notice that there is a separate set of object program records (from Header
through End) for each control section. The records for each control section are
exactly the same as they would be if the sections were assembled separately.

The Define and Refer records for each control section include the symbols
named in the EXTDEF and EXTREF statements. In the case of Define, the
record also indicates the relative address of each external symbol within the
control section. For EXTREF symbols, no address information is available.
These symbols are simply named in the Refer record.

89

heteps:/hemanthrajhemu.github.io

90 Chapter 2 Assemblers

HCOPY nOODOUOﬂOOlGZi} |
DABUFFERADDOO33hBUFENDﬂ001033ALENGTHA00002D

P)\RDREC ’\HRREC -
TAOO(JUOO“IDA172027*8100000},@32023ﬂ290000A33200?‘,\1’43l00000A3F2FEC|,\932016n0F2016
TnUOOGlD‘,\ODII,\OI0003!\0?200&!{‘3100000‘,\3E2000

'Ih000030ﬁ03n-'¢54!'46

H,POOUD&SS:RDREC

HhOOOOI L0 5ﬂ+HRREC

HPOODZ&ADERPHRREC

EnOOUDOO

HRDREC !QOOOOOADOODZB

%PUFFEE*.ENGT]%BUFEND

T’\OODOODnlank 1 DnBM}OnBﬁﬁOn? 7201 13\23201 BA332FFWBZO 1 %\"‘00",\3320091\57900009\3850
TﬁOUGO 1 2\05\3521‘39# 3 IOOOODnGFODDOhFlAOOOOOO

M00001 8A05A+BUI-‘FER

H’\O 0002 1A05h+LENGTH

!‘[,?00028}\06}\+BUFEND

WDOOzﬁhﬂbh—BUFFER

E

HAHRREC Loo000000001cC

RLENGTHBUFFER

'IAOOOOOOAI CnBlo 1 0A77 1000013\]5320 1 2ﬁ33ZFFAAS3900000_,\DF2008nBB50!\332FEE‘\4F0000‘\05
%000003}\05;1.2116'1‘3

HAOOOOODAOSIBHFFER

E

Figure 2.17 Object program corresponding to Fig. 2.15.

Now let us examine the process involved in linking up external references,
beginning with the source statements we discussed previously. The address
field for the JSUB instruction on line 15 begins at relative address 0004. Its ini-
tial value in the object program is zero. The Modification record

MO0000405+RDREC

in control section COPY specifies that the address of RDREC is to be added to
this field, thus producing the correct machine instruction for execution. The
other two Modification records in COPY perform similar functions for the

heteps:/hemanthrajhemu.github.io

2.3 Machine-Independent Assembler Features

instructions on lines 35 and 65. Likewise, the first Modification record in con-
trol section RDREC fills in the proper address for the external reference on
line 160. .

The handling of the data word generated by line 190 is only slightly differ-
ent. The value of this word is to be BUFEND-BUFFER, where both BUFEND
and BUFFER are defined in another control section. The assembler generates
an initial value of zero for this word (located at relative address 0028 within
control section RDREC). The last two Modification records in RDREC direct
that the address of BUFEND be added to this field, and the address of
BUFFER be subtracted from it. This computation, performed at load time, re-
sults in the desired value for the data word.

In Chapter 3 we discuss in detail how the required modifications are per-
formed by the loader. At this time, however, you should be sure that you un-
derstand the concepts involved in the linking process. You should carefully
examine the other Modification records in Fig. 2.17, and reconstruct for your-
self how they were generated from the source program statements.

Note that the revised Modification record may still be used to perform pro-
gram relocation. In the case of relocation, the modification required is adding
the beginning address of the control section to certain fields in the object pro-
gram. The symbol used as the name of the control section has as its value the
required address. Since the control section name is automatically an external
symbol, it is available for use in Modification records. Thus, for example, the
Modification records from Fig. 2.8 are changed from

M00000705
M00001405
M00002705

to

MO0000705+COPY
MO0001405+COFPY
MO0002705+COPY

In this way, exactly the same mechanism can be used for program relocation
and for program linking. There are more examples in the next chapter.

The existence of multiple control sections that can be relocated indepen-
dently of one another makes the handling of expressions slightly more compli-
cated. Our earlier definitions required that all of the relative terms in an
expression be paired (for an absolute expression), or that all except one be
paired (for a relative expression). We must now extend this restriction to spec-
ify that both terms in each pair must be relative within the same control sec-

91

heteps:/hemanthrajhemu.github.io I

92 Chapter 2 Assemblers

-

tion. The reason is simple—if the two terms represent relative locations in the
same control section, their difference is an absolute value (regardless of where
the control section is located): On the other hand, if they are in different con-
trol sections, their difference has a value that is unpredictable (and therefore
probably useless). For example, the expression

BUFEND-BUFFER

has as its value the length of BUFFER in bytes. On the other hand, the value of
the expression

RDREC-COPY

is the difference in the load addresses of the two control sections. This value
depends on the way run-time storage is allocated; it is unlikely to be of any
use whatsoever to an application program.

When an expression involves external references, the assembler cannot in
general determine whether or not the expression is legal. The pairing of rela-
tive terms to test legality cannot be done without knowing which of the terms
occur in the same control sections, and this is unknown at assembly time. In
such a case, the assembler evaluates all of the terms it can, and combines these
to form an initial expression value. It also generates Modification records so
the loader can finish the evaluation. The loader can then check the expression
for errors. We discuss this further in Chapter 3 when we examine the design of

a linking loader.

2.4 ASSEMBLER DESIGN OPTIONS

In this section we discuss two alternatives to the standard two-pass assembler
logic. Section 2.4.1 describes the structure and logic of one-pass assemblers.
These assemblers are used when it is necessary or desirable to avoid a second
pass over the source program. Section 2.4.2 introduces the notion of a multi-
pass assembler, an extension to the two-pass logic that allows an assembler to
handle forward references during symbol definition.

2.4.1 One-Pass Assemblers

In this section we examine the structure and design of one-pass assemblers. As
we discussed in Section 2.1, the main problem in trying to assemble a program
in one pass involves forward references. Instruction operands often are sym-
bols that have not yet been defined in the source program. Thus the assembler
does not know what address to insert in the translated instruction.

-

htecps:/hemanthrajhemu.github.io

2.4 Assembler Design Options

It is easy to eliminate forward references to data items; we can simply re-
quire that all such areas be defined in the source program before they are ref-
erenced. This restriction is not too severe. The programmer merely places all
storage reservation statements at the start of the program rather than at the
end. Unfortunately, forward references to labels on instructions cannot be
eliminated as easily. The logic of the program often requires a forward jump—
for example, in escaping from a loop after testing some condition. Requiring
that the programmer eliminate all such forward jumps would be much too re-
strictive and inconvenient. Therefore, the assembler must make some special
provision for handling forward references. To reduce the size of the problem,
many one-pass assemblers do, however, prohibit (or at least discourage) for-
ward references to data items.

There are two main types of one-pass assembler. One type produces object
code directly in memory for immediate execution; the other type produces the
usual kind of object program for later execution. We use the program in Fig.
2.18 to illustrate our discussion of both types. This example is the same as in
Fig. 2.2, with all data item definitions placed ahead of the code that references
them. The generated object code shown in Fig. 2.18 is for reference only; we
will discuss how each type of one-pass assembler would actually generate the
object program required.

We first discuss one-pass assemblers that generate their object code in
memory for immediate execution. No object program is written out, and no
loader is needed. This kind of load-and-go assembler is useful in a system that
is oriented toward program development and testing. A university computing
system for student use is a typical example of such an environment. In such a
system, a large fraction of the total workload consists of program translation.
Because programs are re-assembled nearly every time they are run, efficiency
of the assembly process is an important consideration. A load-and-go assem-
bler avoids the overhead of writing the object program out and reading it back
in. This can be accomplished with either a one- or a two-pass assembler.
However, a one-pass assembler also avoids the overhead of an additional pass
over the source program.

Because the object program is produced in memory rather than being writ-
ten out on secondary storage, the handling of forward references becomes less
difficult. The assembler simply generates object code instructions as it scans
the source program. If an instruction operand is a symbol that has not yet been
defined, the operand address is omitted when the instruction is assembled.
The symbol used as an operand is entered into the symbol table (unless such
an entry is already present). This entry is flagged to indicate that the symbol is
undefined. The address of the operand field of the instruction that refers to the
undefined symbol is added to a list of forward references associated with the
symbol table entry. When the definition for a symbol is encountered, the for-
ward reference list for that symbol is scanned (if one exists), and the proper
address is inserted into any instructions previously generated.

93

..

he¢eps:/hemanthrajhemu.github.io |

94

Chapter 2 Assemblers

Line

oUWl = o

220
225
230
235
240
245
255

Loc

1000
1000
1003
1006
1009
100C
100F

200F
2012
2015
2018
201B
201E
2021
2024
2027
202A
202D
2030
2033
2036

2039
203a

203D
2040
2043
2046
2049
204cC
204F
2052
2055
2058
205B
205E

2061

2062
2065
2068
206B
206E
2071
2074
2077

Source statement

COPY
EOF
THREE
ZERO
RETADR
LENGTH
BUFFER
FIRST
CLOOP

ENDFIL

RLOOP

EXIT

OUTPUT

WLOOP

START
BYTE
WORD
WORD
RESW
RESW
RESB

STL
JSUB
LDA
COoMP
JEQ
JSUB
J
LDA
STA
LDA
STA
JSUB
LDL
RSUB

1000
C’EOF’

EOF
BUFFER
THREE
LENGTH
WRREC
RETADR

Object code

454F46
000003
000000

141009
48203D
00100C
281006
302024
482062
302012
001000
0C100F
001003
0c100c
482062
081009
4C0000

SUBROUTINE TO READ RECORD INTO BUFFER

BYTE
WORD

LDX
LDA
TD
JEQ
RD
COMP
JEQ
STCH
TIX
JLT
STX
RSUB

X'F1°'
4096

ZERO
ZERO
INPUT
RLOOP
INPUT
ZERO
EXTT
BUFFER, X
MAXT.EN
RLOOP
LENGTH

Fi
001000

041006
001006
E02039
302043
D82039
281006
30205B
54900F
2C203A
382043
10100C
4C0000

SUBROUTINE TO WRITE RECORD FROM BUFFER

BYTE

LDX
TD
JEQ
LDCH
WD .
TIX
JLT
RSUB
END

X'05"'

ZERO
OUTPUT
WLOOP
BUFFER, X
OUTPUT
LENGTH
WLOOP

FIRST

05

041006
E02061
302065
50900F
DC2061
2c100¢c
382065
4C0000

Figure 2.18 Sample program for a one-pass assembler.

htéps:/hemanthrajhemu.github.io

2.4 Assembler Design Options

An example should help to make this process clear. Figure 2.19(a) shows
the object code and symbol table entries as they would be after scanning line
40 of the program in Fig. 2.18. The first forward reference occurred on line 15.
Since the operand (RDREC) was not yet defined, the instruction was assem-
bled with no value assigned as the operand address (denoted in the figure by
----). RDREC was then entered into SYMTAB as an undefined symbol (indi-
cated by *); the address of the operand field of the instruction (2013) was in-
serted in a list associated with RDREC. A similar process was followed with
the instructions on lines 30 and 35.

Now consider Fig. 2.19(b), which corresponds to the situation after scan-
ning line 160. Some of the forward references have been resolved by this time,
while others have been added. When the symbol ENDFIL was defined (line
45), the assembler placed its value in the SYMTAB entry; it then inserted this
value into the instruction operand field (at address 201C) as directed by the
forward reference list. From this point on, any references to ENDFIL would
not be forward references, and would not be entered into a list. Similarly, the
definition of RDREC (line 125) resulted in the filling in of the operand address
at location 2013. Meanwhile, two new forward references have been added: to
WRREC (line 65) and EXIT (line 155). You should continue tracing through
this process to the end of the program to show yourself that all of the forward

Memory

address Contents Symbol Value

1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C

1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX RDREC =l 1=l »| 2013
: THREE | 1003
L]

2000 XXXXXXXX XXXXXXXX XXXXXXXX XXXxxxl4 ZERO 1006

2010 100948— —00100C 28100630 ——48—

2020 —3C2012 WRREC | * | e<—p 201F
: EOF 1000
5 ENDFIL | * | e— 201C

RETADR |1009

BUFFER |[100F

CLOOP (2012
FIRST 200F

Figure 2.19(a) Object code in memory and symbol table entries for
the program in Fig. 2.18 after scanning line 40.

95

heteps:/hemanthrajhemu.github.io

96 Chapter 2 Assemblers
Memory Symbol Value
address Contents LENGTH | 100C

1000 454F4600 00030000 OOXXXXXX XXXXXXXX RDREC 203D

1010 XXAAXKXX AXAAAXAX XAXAXXXXX XXXAXXXX

= THREE 1003

L]

. ZERO 1006

2000 XAXANKXX XXXXXXXX XXXXXXXX xxxxxxld

2010 10094820 3D00100C 28100630 202448 WRREG |* | 1—9i 201F 2031

2020 —3C2012 0010000C 100F0010 030Cl00C EOF 1000

2030 48-—-08 10094C00 O0OFl0010 00041006

2040 O01006E0 20393020 43D82039 28100630 ENDFIL 2024

2050 ——5490 OF

o RETADR | 1009

L]

& BUFFER | 100F
CLOOP 2012
FIRST 200F
MAXLEN | 203A
INPUT 2039
EXIT ¥ | o 2050 | @
RLOOP |2043

Figure 2.19(b) Object code in memory and symbol table entries for
the program in Fig. 2.18 after scanning line 160.

references will be filled in properly. At the end of the program, any SYMTAB
entries that are still marked with * indicate undefined symbols. These should
be flagged by the assembler as errors.

When the end of the program is encountered, the assembly is complete. If
no errors have occurred, the assembler searches SYMTAB for the value of the
symbol named in the END statement (in this case, FIRST) and jumps to this lo-
cation to begin execution of the assembled program.

We used an absolute program as our example because, for a load-and-go
assembler, the actual address must be known at assembly time. Of course it is
not necessary for this address to be specified by the programmer; it might be
assigned by the system. In either case, however, the assembly process would
be the same—the location counter would be initialized to the actual program
starting address.

One-pass assemblers that produce object programs as output are often
used on systems where external working-storage devices (for the intermediate
file between the two passes) are not available. Such assemblers may also be

he¢eps:/hemanthrajhemu.github.io

2.4 Assembler Design Options

useful when the external storage is slow or is inconvenient to use for some
other reason. One-pass assemblers that produce object programs follow a
slightly different procédure from that previously described. Forward refer-
ences are entered into lists as before. Now, however, when the definition of a
symbol is encountered, instructions that made forward references to that sym-
bol may no longer be available in memory for modification. In general, they
will already have been written out as part of a Text record in the object pro-
gram. In this case the assembler must generate another Text record with the
correct operand address. When the program is loaded, this address will be in-
serted into the instruction by the action of the loader.

Figure 2.20 illustrates this process. The second Text record contains the ob-
ject code generated from lines 10 through 40 in Fig. 2.18. The operand ad-
dresses for the instructions on lines 15, 30, and 35 have been generated as
0000. When the definition of ENDFIL on line 45 is encountered, the assembler
generates the third Text record. This record specifies that the value 2024 (the
address of ENDFIL) is to be loaded at location 201C (the operand address field
of the JEQ instruction on line 30). When the program is loaded, therefore, the
value 2024 will replace the 0000 previously loaded. The other forward refer-
ences in the program are handled in exactly the same way. In effect, the ser-
vices of the loader are being used to complete forward references that could
not be handled by the assembler. Of course, the object program records must
be kept in their original order when they are presented to the loader.

In this section we considered only simple one-pass assemblers that han-
dled absolute programs. Instruction operands were assumed to be single sym-
bols, and the assembled instructions contained the actual (not relative)
addresses of the operands. More advanced assembler features such as literals

H?\COPY !?01 ODOAOO 107A

T001 000;\09;\45"F"6A000003A00°000

’IAOOZOOILJ. 5A141 009’\&80000‘,\00 1 OOChZB 1006’\300000!\&80000“302012

T00201 9\02‘,\2024

‘1:,\002024A1 9’\00 1 DOOnOC 1 00!;\001003A0C100CnliSOOOOAO81009{000000;1{\00 1000
TJ\OOZO 13A0%\203D

’1:,\00203DAIEhOklOOBnODl 006;\3020393\302043;\]}3203%\23 1006A300000A5QQDOF‘,\ZCZOL%\SBZO&B

T’\002050’\02A2055

TOOZOSBAGTJTAIOIOOCAACOOOle'\05

T0020 IPA02A2062

T;\OOZO:”.\O%\ZOGZ

TA002062A1 SAOQ 1OOGAEO2061"\302065‘,\50900!;\DC206 130100%382065}\600000
EAOOZOOF

>0 >

Figure 2.20 Object program from one-pass assembler for program
in Fig. 2.18.

97

heteps:/hemanthrajhemu.github.io

98

Chapter 2 Assemblers

-

were not allowed. You are encouraged to think about ways of removing some
of these restrictions (see the Exercises for this section for some suggestions).

2.4.2 Multi-Pass Assemblers

In our discussion of the EQU assembler directive, we required that any symbol
used on the right-hand side (i.e., in the expression giving the value of the new
symbol) be defined previously in the source program. A similar requirement
was imposed for ORG. As a matter of fact, such a restriction is normally
applied to all assembler directives that (directly or indirectly) define symbols.

The reason for this is the symbol definition process in a two-pass assem-
bler. Consider, for example, the sequence

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 3

The symbol BETA cannot be assigned a value when it is encountered during
the first pass because DELTA has not yet been defined. As a result, ALPHA
cannot be evaluated during the second pass. This means that any assembler
that makes only two sequential passes over the source program cannot resolve
such a sequence of definitions.

Restrictions such as prohibiting forward references in symbol definition
are not normally a serious inconvenience for the programmer. As a matter of
fact, such forward references tend to create difficulty for a person reading the
program as well as for the assembler. Nevertheless, some assemblers are de-
signed to eliminate the need for such restrictions. The general solution is a
multi-pass assembler that can make as many passes as are needed to process
the definitions of symbols. It is not necessary for such an assembler to make
more than two passes over the entire program. Instead, the portions of the
program that involve forward references in symbol definition are saved dur-
ing Pass 1. Additional passes through these stored definitions are made as the
assembly progresses. This process is followed by a normal Pass 2.

There are several ways of accomplishing the task outlined above. The
method we describe involves storing those symbol definitions that involve for-
ward references in the symbol table. This table also indicates which symbols
are dependent on the values of others, to facilitate symbol evaluation.

Figure 2.21(a) shows a sequence of symbol-defining statements that in-
volve forward references; the other parts of the source program are not impor-
tant for our discussion, and have been omitted. The following parts of Fig. 2.21
show information in the symbol table as it might appear after processing each
of the source statements shown.

Figure 2.21(b) displays symbol table entries resulting from Pass 1 process-
ing of the statement

P e S — .y

heteps:/hemanthrajhemu.github.io

2.4 Assembler Design Options

HALFSZ EQU MAXLEN/2

MAXLEN has not yet*been defined, so no value for HALFSZ can be com-
puted. The defining expression for HALFSZ is stored in the symbol table in
place of its value. The entry &1 indicates that one symbol in the defining ex-
pression is undefined. In an actual implementation, of course, this definition
might be stored at some other location. SYMTAB would then simply contain a
pointer to the defining expression. The symbol MAXLEN is also entered in the
symbol table, with the flag * identifying it as undefined. Associated with this
entry is a list of the symbols whose values depend on MAXLEN (in this case,
HALFSZ). (Note the similarity to the way we handled forward references in a
one-pass assembler.)

HALFSZ EQU MAXTEN/2
MAXT.EN EQU BUFEND-BUFFER
= PREVET EQU BUFFER-1
4 BUFFER EESB 4096
5 BUFEND EQU =
(a)
HALFSZ |&1| MAXLEN/2 0
MAXLEN | % o—p| HALFSZ | 0
(b)

Figure 2.21 Example of multi-pass assembler operation.

99

he¢eps:/hemanthrajhemu.github.io

100 Chapter 2 Assemblers

BUFEND | * o—p MAXLEN

HALFSZ |[&1| MAXLEN/2 0

MAXLEN |&2| BUFEND-BUFFER &r—p HALFSZ

BUFFER | * o4+—| MAXLEN
(c)

BUFEND | * o—+—»1 MAXLEN

HALFSZ |&1]| MAXLEN/2 0

PREVBT |&1|BUFFER-1 0

MAXLEN (&2 | BUFEND-BUFFER o—+— HALFSZ

BUFFER | * o—+—p| MAXLEN PREVBT
(d)

Figure 2.21 (contd)

heteps:/hemanthrajhemu.github.io

2.4 Assembler Design Options

BUFEND

1 MAXLEN | @

HALFSZ

&

i

MAXLEN/2

PREVBT

1033

MAXLEN

e

&

BUFEND-BUFFER

— HALFSZ | 0

BUFFER

1034

(e)

BUFEND

2034

HALFSZ

800

PREVBT

1033

MAXLEN

1000

BUFFER

Figure 2.21 (con'd)

101

heéeps:/hemanthrajhemu.github.io !l

102 Chapter 2 Assentblers |

-

i
The same procedure is followed with the definition of MAXLEN [see |
Fig. 2.21(c)]. In this case there are two undefined symbols involved in the defi-
nition: BUFEND and BUFFER. Both of these are entered into SYMTAB with =
lists indicating the dependence of MAXLEN upon them. Similarly, the defini- |
tion of PREVBT causes this symbol to be added to the list of dependencies on
BUFFER [as shown in Fig. 2.21(d)].

So far we have simply been saving symbol definitions for later processing.
The definition of BUFFER on line 4 lets us begin evaluation of some of these
symbols. Let us assume that when line 4 is read, the location counter contains
the hexadecimal value 1034. This address is stored as the value of BUFFER.
The assembler then examines the list of symbols that are dependent on
BUFFER. The symbol table entry for the first symbol in this list (MAXLEN) I
shows that it depends on two currently undefined symbols; therefore,
MAXLEN cannot be evaluated immediately. Instead, the &2 is changed to &1
to show that only one symbol in the definition (BUFEND) remains undefined.
The other symbol in the list (PREVBT) can be evaluated because it depends
only on BUFFER. The value of the defining expression for PREVBT is calcu-
lated and stored in SYMTAB. The result is shown in Fig. 2.21(e).

The remainder of the processing follows the same pattern. When BUFEND
is defined by line 5, its value is entered into the symbol table. The list associ-
ated with BUFEND then directs the assembler to evaluate MAXLEN, and en-
tering a value for MAXLEN causes the evaluation of the symbol in its list
(HALFSZ). As shown in Fig. 2.21(f), this completes the symbol definition
process. If any symbols remained undefined at the end of the program, the as-
sembler would flag them as errors.

The procedure we have just described applies to symbols defined by as-
sembler directives like EQU. You are encouraged to think about how this
method could be modified to allow forward references in ORG statements as
well.

e ~—s——

2.5 IMPLEMENTATION EXAMPLES

We discussed many of the most common assembler features in the preceding
sections. However, the variety of machines and assembler languages is very
great. Most assemblers have at least some unusual features that are related to
machine architecture or language design. In this section we discuss three ex-
amples of assemblers for real machines. We are obviously unable to give a full
description of any of these in the space available. Instead we focus on some of
the most interesting or unusual features of each assembler. We are also partic-
ularly interested in areas where the assembler design differs from the basic al-
gorithm and data structures described earlier.

heteps:/hemanthrajhemu.github.io

2.5 Implementation Examples

The assembler examples we discuss are for the Pentium (x86), SPARC, and
PowerPC architectures. You may want to review the descriptions of these
architectures in Chaptér 1 before proceeding.

2.5.1 MASM Assembler

This section describes some of the features of the Microsoft MASM assembler
for Pentium and other x86 systems. Further information about MASM can be
found in Barkakati (1992).

As we discussed in Section 1.4.2, the programmer of an x86 system views
memory as a collection of segments. An MASM assembler language program
is written as a collection of segments. Each segment is defined as belonging to
a particular class, corresponding to its contents. Commonly used classes are
CODE, DATA, CONST, and STACK.

During program execution, segments are addressed via the x86 segment
registers. In most cases, code segments are addressed using register CS, and
stack segments are addressed using register SS. These segment registers are
automatically set by the system loader when a program is loaded for execu-
tion. Register CS is set to indicate the segment that contains the starting label
specified in the END statement of the program. Register SS is set to indicate
the last stack segment processed by the loader.

Data segments (including constant segments) are normally addressed us-
ing DS, ES, FS, or GS. The segment register to be used can be specified explic-
itly by the programmer (by writing it as part of the assembler language
instruction). If the programmer does not specify a segment register, one is se-
lected by the assembler.

By default, the assembler assumes that all references to data segments use
register DS. This assumption can be changed by the assembler directive
ASSUME. For example, the directive

ASSUME ES:DATASEG2

tells the assembler to assume that register ES indicates the segment
DATASEG2. Thus, any references to labels that are defined in DATASEG2 will
be assembled using register ES. It is also possible to collect several segments
into a group and use ASSUME to associate a segment register with the group.

Registers DS, ES, FS and GS must be loaded by the program before they
can be used to address data segments. For example, the instructions

MOV AX, DATASEG2
MOV ES,AX

103

he¢eps:/hemanthrajhemu.github.io

104

Chapter 2 Assemblers

-

would set ES to indicate the data segment DATASEG2. Notice the similarities
between the ASSUME directive and the BASE directive we discussed for
SIC/XE. The BASE directive tells a SIC/XE assembler the contents of register
B; the programmer must provide executable instructions to load this value
into the register. Likewise, ASSUME tells MASM the contents of a segment
register; the programmer must provide instructions to load this register when
the program is executed.

Jump instructions are assembled in two different ways, depending on
whether the target of the jump is in the same code segment as the jump in-
struction. A near jump is a jump to a target in the same code segment; a far jump
is a jump to a target in a different code segment. A near jump is assembled us-
ing the current code segment register CS. A far jump must be assembled using
a different segment register, which is specified in an instruction prefix. The as-
sembled machine instruction for a near jump occupies 2 or 3 bytes (depending
upon whether the jump address is within 128 bytes of the current instruction).
The assembled instruction for a far jump requires 5 bytes.

Forward references to labels in the source program can cause problems.
For example, consider a jump instruction like

JMP TARGET

If the definition of the label TARGET occurs in the program before the JMP in-
struction, the assembler can tell whether this is a near jump or a far jump.
However, if this is a forward reference to TARGET, the assembler does not
know how many bytes to reserve for the instruction.

By default, MASM assumes that a forward jump is a near jump. If the tar-
get of the jump is in another code segment, the programmer must warn the
assembler by writing

JMP FAR PTR TARGET

If the jump address is within 128 bytes of the current instruction, the program-
mer can specify the shorter (2-byte) near jump by writing

JMP SHORT TARGET

If the JMP to TARGET is a far jump, and the programmer does not specify FAR
PTR, a problem occurs. During Pass 1, the assembler reserves 3 bytes for the
jump instruction. However, the actual assembled instruction requires 5 bytes.
In the earlier versions of MASM, this caused an assembly error (called a phase

heteps:/hemanthrajhemu.github.io

2.5 Implementation Examples

error). In later versions of MASM, the assembler can repeat Pass 1 to generate
the correct location counter values.

Notice the similarifies between the far jump and the forward references in
SIC/XE that require the use of extended format instructions.

There are also many other situations in which the length of an assembled
instruction depends on the operands that are used. For example, the operands
of an ADD instruction may be registers, memory locations, or immediate
operands. Immediate operands may occupy from 1 to 4 bytes in the instruc-
tion. An operand that specifies a memory location may take varying amounts
of space in the instruction, depending upon the location of the operand.

This means that Pass 1 of an x86 assembler must be considerably more
complex than Pass 1 of a SIC assembler. The first pass of the x86 assembler
must analyze the operands of an instruction, in addition to looking at the op-
eration code. The operation code table must also be more complicated, since it
must contain information on which addressing modes are valid for each
operand.

Segments in an MASM source program can be written in more than one
part. If a SEGMENT directive specifies the same name as a previously defined
segment, it is considered to be a continuation of that segment. All of the parts
of a segment are gathered together by the assembly process. Thus, segments
can perform a similar function to the program blocks we discussed for
SIC/XE.

References between segments that are assembled together are automati-
cally handled by the assembler. External references between separately assem-
bled modules must be handled by the linker. The MASM directive PUBLIC
has approximately the same function as the SIC/XE directive EXTDEF. The
MASM directive EXTRN has approximately the same function as EXTREF. We
will consider the action of the linker in more detail in the next chapter.

The object program from MASM may be in several different formats, to
allow easy and efficient execution of the program in a variety of operating
environments. MASM can also produce an instruction timing listing that
shows the number of clock cycles required to execute each machine instruc-
tion. This allows the programmer to exercise a great deal of control in optimiz-
ing timing-critical sections of code.

2.5.2 SPARC Assembler

This section describes some of the features of the SunOS SPARC assembler.
Further information about this assembler can be found in Sun Microsystems
(1994a).

105

he¢eps:/hemanthrajhemu.github.io

106

Chapter 2 Assemblers

A SPARC assembler language program is divided into units called sections.
The assembler provides a set of predefined section names. Some examples of
these are

.TEXT Executable instructions
.DATA Initialized read /write data
.RODATA Read-only data

.BSS Uninitialized data areas

It is also possible to define other sections, specifying section attributes such as
“executable” and “writeable.”

The programmer can switch between sections at any time in the source
program by using assembler directives. The assembler maintains a separate lo-
cation counter for each named section. Each time the assembler switches to a
different section, it also switches to the location counter associated with that
section. In this way, sections are similar to the program blocks we discussed
for SIC. However, references between different sections are resolved by the
linker, not by the assembler.

By default, symbols used in a source program are assumed to be local to
that program. (However, a section may freely refer to local symbols defined in
another section of the same program.) Symbols that are used in linking sepa-
rately assembled programs may be declared to be either global or weak. A
global symbol is either a symbol that is defined in the program and made ac-
cessible to others, or a symbol that is referenced in a program and defined ex-
ternally. (Notice that this combines the functions of the EXTDEF and EXTREF
directives we discussed for SIC.) A weak symbol is similar to a global symbol.
However, the definition of a weak symbol may be overridden by a global sym-
bol with the same name. Also, weak symbols may remain undefined when the
program is linked, without causing an error.

The object file written by the SPARC assembler contains translated ver-
sions of the segments of the program and a list of relocation and linking opera-
tions that need to be performed. References between different segments of the
same program are resolved when the program is linked. The object program
also includes a symbol table that describes the symbols used during relocation
and linking (global symbols, weak symbols, and section names).

SPARC assembler language has an unusual feature that is directly related
to the machine architecture. As we discussed in Section 1.5.1, SPARC branch
instructions (including subroutine calls) are delayed branches. The instruction
immediately following a branch instruction is actually executed before the
branch is taken. For example, in the instruction sequence

heteps:/hemanthrajhemu.github.io

2.5 [Implementation Examples 107

cMP sL0, 10
BLE LOCOP
ADD 852, ®L3, %L4

the ADD instruction is executed before the conditional branch BLE. This ADD
instruction is said to be in the delay slot of the branch; it is executed regardless
of whether or not the conditional branch is taken.

To simplify debugging, SPARC assembly language programmers often
place NOP (no-operation) instructions in delay slots when a program is writ-
ten. The code is later rearranged to move useful instructions into the delay
slots. For example, the instruction sequence illustrated above might originally

have been
LOOP:
ADD sL2, %L3, %L4
CMP $L0O, 10
ELE LOOP
NOP

Moving the ADD instruction into the delay slot would produce the version
discussed earlier. (Notice that the CMP instruction could not be moved into
the delay slot, because it sets the condition codes that must be tested by the

BLE.)

However, there is another possibility. Suppose that the original version of
the loop had been

LOOP: ADD $L2, %L3, %L4

cMP sL0, 10

E

l BLE LOOP
; NOP

|

I

Now the ADD instruction is logically the first instruction in the loop. It could
still be moved into the delay slot, as previously described. However, this
would create a problem. On the last execution of the loop, the ADD instruction
(which is the beginning of the next loop iteration) should not be executed.

The SPARC architecture defines a solution to this problem. A conditional
branch instruction like BLE can be annulled. If a branch is annulled, the in-
struction in its delay slot is executed if the branch is taken, but not executed if

- the branch is not taken. Annulled branches are indicated in SPARC assembler

he¢eps:/hemanthrajhemu.github.io

108

Chapter 2 Assemblers

language by writing “,A” following the operation code. Thus the loop just dis-
cussed could be rewritten as

LOCP:

CMP $L0O, 10

BLE, A LOOP
ADD 3L2, %L3, %L4

The SPARC assembler provides warning messages to alert the programmer to
possible problems with delay slots. For example, a label on an instruction in a
delay slot usually indicates an error. A segment that ends with a branch in-
struction (with nothing in the delay slot) is also likely to be incorrect. Before
the branch is executed, the machine will attempt to execute whatever happens
to be stored at the memory location immediately following the branch.

2.5.3 AIX Assembler

This section describes some of the features of the AIX assembler for PowerPC
and other similar systems. Further information about this assembler can be
found in IBM (1994b).

The AIX assembler includes support for various models of PowerPC mi-
croprocessors, as well as earlier machines that implement the original POWER
architecture. The programmer can declare which architecture is being used
with the assembler directive MACHINE. The assembler automatically checks
for POWER or PowerPC instructions that are not valid for the specified envi-
ronment. When the object program is generated, the assembler includes a flag
that indicates which processors are capable of running the program. This flag
depends on which instructions are actually used in the program, not on the
.MACHINE directive. For example, a PowerPC program that contains only in-
structions that are also in the original POWER architecture would be exe-
cutable on either type of system.

As we discussed in Section 1.5.2, PowerPC load and store instructions use
a base register and a displacement value to specify an address in memory. Any
of the general-purpose registers (except GPR0) can be used as a base register.
Decisions about which registers to use in this way are left to the programmer.
In a long program, it is not unusual to have several different base registers in
use at the same time. The programmer specifies which registers are available
for use as base registers, and the contents of these registers, with the .USING

h¢tps:/hemanthrajhemu.github.io

2.5 Implementation Examples

assembler directive. This is similar in function to the BASE statement in our
SIC/XE assembler language. Thus the statements

.USING LENGTH, 1

.USTING BUFFER, 4

would identify GPR1 and GPR4 as base registers. GPR1 would be assumed to
contain the address of LENGTH, and GPR4 would be assumed to contain the
address of BUFFER. As with SIC/XE, the programmer must provide instruc-
tions to place these values into the registers at execution time. Additional
{USING statements may appear at any point in the program. If a base register
is to be used later for some other purpose, the programmer indicates with the
.DROP statement that this register is no longer available for addressing
purposes.

This additional flexibility in register usage means more work for the as-
sembler. A base register table is used to remember which of the general-purpose
registers are currently available as base registers, and what base addresses
they contain. Processing a .USING statement causes an entry to be made in
this table (or an existing entry to be modified); processing a .DROP statement
removes the corresponding table entry. For each instruction whose operand is
an address in memory, the assembler scans the table to find a base register that
can be used to address that operand. If more than one register can be used, the
assembler selects the base register that results in the smallest signed displace-
ment. If no suitable base register is available, the instruction cannot be assem-
bled. The process of displacement calculation is the same as we described for
SIC/XE.

The AIX assembler language also allows the programmer to write base
registers and displacements explicitly in the source program. For example, the
instruction

L 2,8(4)

specifies an operand address that is 8 bytes past the address contained in
GPR4. This form of addressing may be useful when some register is known to
contain the starting address of a table or data record, and the programmer
wishes to refer to a fixed location within that table or record. The assembler
simply inserts the specified values into the object code instruction: in this case
base register GPR4 and displacement 8. The base register table is not involved,
and the register used in this way need not have appeared in a .USING state-
ment.

109

he¢cps:/hemanthrajhemu.github.io

110

Chapter 2 Assemblers

An AIX assembler language program can be divided into control sections
using the .CSECT assembler directive. Each control section has an associated
storage mapping class that describes the kind of data it contains. Some of the
most commonly used storage mapping classes are PR (executable instruc-
tions), RO (read-only data), RW (read/write data), and BS (uninitialized
read /write data). AIX control sections combine some of the features of the SIC
control sections and program blocks that we discussed in Section 2.3. One con-
trol section may consist of several different parts of the source program. These
parts are gathered together by the assembler, as with SIC program blocks. The
control sections themselves remain separate after assembly, and are handled
independently by the loader or linkage editor.

The AIX assembler language provides a special type of control section
called a dummy section. Data items included in a dummy section do not actu-
ally become part of the object program; they serve only to define labels within
the section. Dummy sections are most commonly used to describe the layout
of a record or table that is defined externally. The labels define symbols that
can be used to address fields in the record or table (after an appropriate base
register is established). AIX also provides common blocks, which are uninitial-
ized blocks of storage that can be shared between independently assembled
programs.

Linking of control sections can be accomplished using methods like the
ones we discussed for SIC. The assembler directive .GLOBL makes a symbol
available to the linker, and the directive .EXTERN declares that a symbol is
defined in another source module. These directives are essentially the same as
the SIC directives EXTDEF and EXTREE Expressions that involve relocatable
and external symbols are classified and handled using rules similar to those
discussed in Sections 2.3.3 and 2.3.5.

The AIX assembler also provides a different method for linking control sec-
tions. By using assembler directives, the programmer can create a table of con-
tents (TOC) for the assembled program. The TOC contains addresses of control
sections and global symbols defined within the control sections. To refer to one
of these symbols, the program retrieves the needed address from the TOC, and
then uses that address to refer to the needed data item or procedure. (Some
types of frequently used data items can be stored directly in the TOC for effi-
ciency of retrieval.) If all references to external symbols are done in this way,
then the TOC entries are the only parts of the program involved in relocation
and linking when the program is loaded.

The AIX assembler itself has a-two-pass structure similar to the one we dis-
cussed for SIC. However, there are some significant differences. The first pass
of the AIX assembler writes a listing file that contains warnings and error mes-
sages. If errors are found during the first pass, the assembler terminates and

https:llhemanthi'ajhemu.sithub.io

Exercises 111

does not continue to the second pass. In this case, the assembly listing contains
only errors that could be detected during Pass 1.

If no errors are detected during the first pass, the assembler proceeds to
Pass 2. The second pass reads the source program again, instead of using an
intermediate file as we discussed for SIC. This means that location counter val-
ues must be recalculated during Pass 2. It also means that any warning mes-
sages that were generated during Pass 1 (but were not serious enough to
terminate the assembly) are lost. The assembly listing will contain only errors
and warnings that are generated during Pass 2.

Assembled control sections are placed into the object program according to
their storage mapping class. Executable instructions, read-only data, and vari-
ous kinds of debugging tables are assigned to an object program section
~ named .TEXT. Read/write data and TOC entries are assigned to an object pro-
gram section named .DATA. Uninitialized data is assigned to a section named
.BSS. When the object program is generated, the assembler first writes all of
the .TEXT control sections, followed by all of the .DATA control sections ex-
cept for the TOC. The TOC is written after the other .DATA control sections.
Relocation and linking operations are specified by entries in a relocation table,
similar to the Modification records we discussed for SIC.

EXERCISES
Section 2.1

1. Apply the algorithm described in Fig. 2.4 to assemble the source pro-
gram in Fig. 2.1. Your results should be the same as those shown in
Figs. 2.2 and 2.3.

2. Apply the algorithm described in Fig. 2.4 to assemble the following
SIC source program:

SUM START 4000
FIRST 1DX ZERO
1DA ZERO
LOOP ADD TABLE, X
TIX COUNT
JLT LOOP
STA TOTAL
RSUB
! TABLE RESW 2000
[COUNT RESW i
ZERO WORD 0
TOTAL RESW 1

l END FIRST

he¢eps:/hemanthrajhemu.github.io

112

Chapter 2 Assemblers

As mentioned in the text, a number of operations in the algorithm of
Fig. 2.4 are not explicitly spelled out. (One example would be scan-
ning the instruction operand field for the modifier “,X".) List as
many of these implied operations as you can, and think about how
they might be implemented.

Suppose that you are to write a “disassembler”—that is, a system
program that takes an ordinary object program as input and pro-
duces a listing of the source version of the program. What tables and
data structures would be required, and how would they be used?
How many passes would be needed? What problems would arise in
recreating the source program?

Many assemblers use free-format input. Labels must start in Column
1 of the source statement, but other fields (opcode, operands, com-
ments) may begin in any column. The various fields are separated by
blanks. How could our assembler logic be modified to allow this?

The algorithm in Fig. 2.4 provides for the detection of some assembly
errors; however, there are many more such errors that might occur.
List error conditions that might arise during the assembly of a SIC
program. When and how would each type of error be detected, and
what action should the assembler take for each?

Suppose that the SIC assembler language is changed to include a
new form of the RESB statement, such as

RESB n'c!

which reserves 1 bytes of memory and initializes all of these bytes to
the character ‘c’. For example, line 105 in Fig. 2.5 could be changed to

BUFFER RESB 408%6" '

This feature could be implemented by simply generating the re-
quired number of bytes in Text records. However, this could lead to a
large increase in the size of the object program—for example, the ob-
ject program in Fig. 2.8 would be about 40 times its previous size.
Propose a way to implement this new form of RESB without such a
large increase in object program size.

Suppose that you have a two-pass assembler that is written accord-
ing to the algorithm in Fig. 2.4. In the case of a duplicate symbol,

https:llhemqnthrajhemu.github.io

Exercises

this assembler would give an error message only for the second (i.e.,
duplicate) definition. For example, it would give an error message
only for line 5 of the program below.

1 P3 START 1000

2 LDA ALPHA
< STA ALPHA
4 ALPHA RESW i

5 ALPHA WORD 0

6 END

Suppose that you want to change the assembler to give error mes-
sages for all definitions of a doubly defined symbol (e.g., lines 4 and
5), and also for all references to a doubly defined symbol (e.g., lines 2
and 3). Describe the changes you would make to accomplish this. In
making this modification, you should change the existing assembler
as little as possible.

. Suppose that you have a two-pass assembler that is written accord-

ing to the algorithm in Fig. 2.4. You want to change this assembler so
that it gives a warning message for labels that are not referenced in
the program, as illustrated by the following example.

P3 START 1000
LDA DELTA
ADD BETA
LooP STA DELTA
Warning: label is never referenced
RSUB
AL PHA RESW 1
Warning: label is never referenced
BETA RESW 1
DELTA RESW i -
END

The warning messages should appear in the assembly listing directly
below the line that contains the unreferenced label, as shown above.
Describe the changes you would make in the assembler to add this

113

heteps:/hemanthrajhemu.github.io

Chapter 2 Assemblers

new diagnostic feature. In making this modification, you should
change the existing assembler as little as possible.

Section 2.2

1. Could the assembler decide for itself which instructions need to be

assembled using extended format? (This would avoid the necessity
for the programmer to code + in such instructions.)

. As we have described it, the BASE statement simply gives informa-
tion to the assembler. The programmer must also write an instruction
like LDB to load the correct value into the base register. Could the as-
sembler automatically generate the LDB instruction from the BASE
statement? If so, what would be the advantages and disadvantages
of doing this?

. Generate the object code for each statement in the following SIC/XE
program:

SuM START 0
FIRST ILDX #0
LDA #0
+LDB #TABLE2
BASE TABLE2
LOOP ADD TABLE, X
ADD TABLEZ2, X
TIX COUNT
JLT LOOP
+STA TOTAL
RSUB
COUNT RESW 1
TABLE RESW 2000
TABLE2 RESW 2000
TOTAL RESW K
END FIRST

4. Generate the complete object program for the source program given

in Exercise 3.

. Modify the algorithm described in Fig. 2.4 to handle all of the
SIC/XE addressing modes discussed. How would these modifica-
tions be reflected in the assembler designs discussed in Chapter 8?

6.

10.

heteps:/hemanthrajhemu.github.io

Exercises 115

Modify the algorithm described in Fig. 2.4 to handle relocatable pro-
grams. How would these modifications be reflected in the assembler
designs discussed in Chapter 8?

Suppose that you are writing a disassembler for SIC/XE (see Exercise
2.1.4.) How would your disassembler deal with the various address-
ing modes and instruction formats?

Our discussion of SIC/XE Format 4 instructions specified that the
20-bit “address” field should contain the actual target address, and
that addressing mode bits b and p should be set to 0. (That is, the in-
struction should contain a direct address—it should not use base rel-
ative or program-counter relative addressing.)

However, it would be possible to use program-counter relative ad-
dressing with Format 4. In that case, the “address” field would actu-
ally contain a displacement, and bit p would be set to 1. For example,
the instruction on line 15 in Fig. 2.6 could be assembled as

0006 CLOOP +JSUB RDREC 4B30102C

(using program-counter relative addressing with displacement
102C).

What would be the advantages (if any) of assembling Format 4
instructions in this way? What would be the disadvantages (if any)?
Are there any situations in which it would not be possible to assem-
ble a Format 4 instruction using program-counter relative address-
ing?

Our Modification record format is well suited for SIC/XE programs
because all address fields in instructions and data words fall neatly
into half-bytes. What sort of Modification record could we use if this
were not the case (that is, if address fields could begin anywhere
within a byte and could be of any length)?

Suppose that we made the program in Fig. 2.1 a relocatable program.
This program is written for the standard version of SIC, so all operand
addresses are actual addresses, and there is only one instruction for-
mat. Nearly every instruction in the object program would need to
have its operand address modified at load time. This would mean a
large number of Modification records (more than doubling the size of
the object program). How could we include the required relocation
information without this large increase in object program size?

he¢eps:/hemanthrajhemu.github.io

116

Chapter 2 Assemblers

11.

12.

Suppose that you are writing an assembler for a machine that has
only program-counter relative addressing. (That is, there are no di-
rect-addressing instruction formats and no base relative addressing.)
Suppose that you wish to assemble an instruction whose operand is
an absolute address in memory—for example,

LDA 100

to load register A from address (hexadecimal) 100 in memory. How
might such an instruction be assembled in a relocatable program?
What relocation operations would be required?

Suppose that you are writing an assembler for a machine on which
the length of an assembled instruction depends upon the type of the
operand. Consider, for example, the following three fragments of
code:

a. ADD ALPHA

ALPHA DC I(3)

b. ADD ALPHA

ALPHA DC DR ()

C. ADD ALPHA

ALPHA IDC D(3.14159)

In case (a), ALPHA is an integer operand; the ADD instruction gener-
ates 2 bytes of object code. In case (b), ALPHA is a single-precision
floating-point operand; the ADD instruction generates 3 bytes of ob-
ject code. In case (c), ALPHA is a double-precision floating-point
operand; the ADD instruction generates 4 bytes of object code.

What special problems does such a machine present for an assem-
bler? Briefly describe how you would solve these problems—that is,
how your assembler for this machine would be different from the
assembler structure described in Section 2.1.

heteps:/hemanthrajhemu.github.io

Exercises 117

Section 2.3

1. Modify the algogithm described in Fig. 2.4 to handle literals.

2. In the program of Fig. 2.9, could we have used literals on lines 135
and 145? Why might we prefer not to use a literal here?

3. With a minor extension to our literal notation, we could write the in-
struction on line 55 of Fig. 2.9 as

LDA =W’'3’

specifying as the literal operand a word with the value 3. Would this
be a good idea?

4. Immediate operands and literals are both ways of specifying an
operand value in a source statement. What are the advantages and
disadvantages of each? When might each be preferable to the other?

5. Suppose that you have a two-pass SIC/XE assembler that does not
support literals. Now you want to modify the assembler to handle
literals. However, you want to place the literal pool at the beginning
of the assembled program, not at the end as is commonly done. (You
do not have to worry about LTORG statements—your assembler
should always place all literals in a pool at the beginning of the pro-
gram.) Describe how you could accomplish this. If possible, you
should do so without adding another pass to the assembler. Be sure
to describe any data structures that you may need, and explain how
they are used in the assembler.

6. Suppose we made the following changes to the program in Fig. 2.9:
a. Delete the LTORG statement on line 93.
b. Change the statement on line 45 to +LDA....

c. Change the operands on lines 135 and 145 to use literals (and
delete line 185).

Show the resulting object code for lines 45, 135, 145, 215, and 230.
Also show the literal pool with addresses and data values. Note: you
do not need to retranslate the entire program to do this.

7. Assume that the symbols ALPHA and BETA are labels in a source
program. What is the difference between the following two
sequences of statements?

T TV
heteps:/hemanthrajhemu.github.io

118 Chapter 2 Assemblers

LDA ALPHA-BETA

LDA ALPHA
SUB BETA
8. What is the difference between the following sequences of state-
ments?
a. LDA #3

b. THREE EQU 3

LDA #THREE
¢. THREE EQU 3

LDA THREE

9. Modify the algorithm described in Fig. 2.4 to handle multiple pro-
gram blocks.

10. Modify the algorithm described in Fig. 2.4 to handle multiple control
sections.

11. Suppose all the features we described in Section 2.3 were to be im-
plemented in an assembler. How would the symbol table required be
different from the one discussed in Section 2.1?

12. Which of the features described in Section 2.3 would create addi-
tional problems in the writing of a disassembler (see Exercise 2.1.4)?
Describe these problems, and discuss possible solutions.

13. When different control sections are assembled together, some refer-
ences between them could be handled by the assembler (instead of
being passed on to the loader). In the program of Fig. 2.15, for exam-
ple, the expression on line 190 could be evaluated directly by the as-
sembler because its symbol table contains all of the required
information. What would be the advantages and disadvantages of
doing this?

14. In the program of Fig. 2.11, suppose we used only two program
blocks: the default block and CBLKS. Assume that the data items in
CDATA are to be included in the default block. What changes in the
source program would accomplish this? Show the object program
(corresponding to Fig. 2.13) that would result.

15.

16.

17

heteps:/hemanthrajhemu.github.io

Exercises

Suppose that for some reason it is desirable to separate the parts of
an assembler language program that require initialization (e.g., in-
structions and data items defined with WORD or BYTE) from the
parts that do not require initialization (e.g., storage reserved with
RESW or RESB). Thus, when the program is loaded for execution it
should look like

Instructions and
initialized data items

Reserved storage
(uninitialized data items)

Suppose that it is considered too restrictive to require the program-
mer to perform this separation. Instead, the assembler should take
the source program statements in whatever order they are written,
and automatically perform the rearrangement as described above.

Describe a way in which this separation of the program could be ac-
complished by a two-pass assembler.

Suppose LENGTH is defined as in the program of Fig. 2.9. What
would be the difference between the following sequences of state-
ments?

a. LDA LENGTH
SUB #1
b. LDA LENGTH-1

Referring to the definitions of symbols in Fig. 2.10, give the value,
type, and intuitive meaning (if any) of each of the following expres-
sions:

a. BUFFER-FIRST

b. BUFFER+4095

c. MAXLEN-1

d. BUFFER+MAXLEN-1
e. BUFFER-MAXLEN

f. 2*LENGTH

119

heteps:/hemanthrajhemu.github.io

120

Chapter 2 Assemblers

18.

19.

20.

20

22,

23.

g. 2*MAXLEN-1
h. MAXLEN-BUFFER
i. FIRST+BUFFER

j- FIRST-BUFFER+BUFEND

In the program of Fig. 2.9, what is the advantage of writing (on line
107)

MAXT.EN EQU BUFEND-BUFFER

instead of

MAXTLEN EQU 4096 ?

In the program of Fig. 2.15, could we change line 190 to
MAXLEN EQU BUFEND-BUFFER

and line 133 to
+LDT #MAXLEN

as we did in Fig. 2.9?

The assembler could simply assume that any reference to a symbol
not defined within a control section is an external reference. This
change would eliminate the need for the EXTREF statement. Would
this be a good idea?

How could an assembler that allows external references avoid the
need for an EXTDEF statement? What would be the advantages and
disadvantages of doing this?

The assembler could automatically use extended format for instruc-
tions whose operands involve external references. This would elimi-
nate the need for the programmer to code + in such statements. What
would be the advantages and disadvantages of doing this?

On some systems, control sections can be composed of several differ-
ent parts, just as program blocks can. What problems does this pose
for the assembler? How might these problems be solved?

"

https:llhemanthi'ajhemu.github.io

Exercises 121

24. Assume that the symbols RDREC and COPY are defined as in Fig.
2.15. According to our rules, the expression

v

RDREC-COPY

would be illegal (that is, the assembler and/or the loader would re-
ject it). Suppose that for some reason the program really needs the
value of this expression. How could such a thing be accomplished
without changing the rules for expressions?

25. We discussed a large number of assembler directives, and many
more could be implemented in an actual assembler. Checking for
them one at a time using comparisons might be quite inefficient.
How could we use a table, perhaps similar to OPTAB, to speed
recognition and handling of assembler directives? (Hint: the answer
to this problem may depend upon the language in which the assem-
bler itself is written.)

26. Other than the listing of the source program with generated object
code, what assembler outputs might be useful to the programmer?
Suggest some optional listings that might be generated and discuss
any data structures or algorithms involved in producing them.

Section 2.4

1. The process of fixing up a few forward references should involve
less overhead than making a complete second pass of the source
program. Why don’t all assemblers use the one-pass technique for
efficiency?

2. Suppose we wanted our assembler to produce a cross-reference list-
ing for all symbols used in the program. For the program of Fig. 2.5,

such a listing might look like

Symbol Defined on line Used on lines
COFPY 5

FIRST 10 255

CLOOP 15 40

ENDFIL 45 30

EOF 80 45

RETADR 95 10,70

LENGTH 100 125 13, 200605 175 =212

heteps:/hemanthrajhemu.github.io

122

Chapter 2 Assemblers

10.

How might this be done by the assembler? Indicate changes to the
logic and tables discussed in Section 2.1 that would be required.

Could a one-pass assembler produce a relocatable object program
and handle external references? Describe the processing logic that
would be involved and identify any potential difficulties.

How could literals be implemented in a one-pass assembler?

We discussed one-pass assemblers as though instruction operands
could only be single symbols. How could a one-pass assembler han-
dle an instruction like

JEQ ENDFIL+3

where ENDFIL has not yet been defined?
Outline the logic flow for a simple one-pass load-and-go assembler.

Using the methods outlined in Chapter 8, develop a modular design
for a one-pass assembler that produces object code in memory.

Suppose that an instruction involving a forward reference is to be as-
sembled using program-counter relative addressing. How might this
be handled by a one-pass assembler?

The process of fixing up forward references in a one-pass assembler
that produces an object program is very similar to the linking process
described in Section 2.3.5. Why didn’t we just use Modification
records to fix up the forward references?

How could we extend the methods of Section 2.4.2 to handle forward
references in ORG statements?

Section 2.5

1.

2.

Consider the description of the VAX architecture in Section 1.4.1.
What characteristics would you expect to find in a VAX assembler?

Consider the description of the T3E architecture in Section 1.5.3.
What characteristics would you expect to find in a T3E assembler?

https:llhemanthrajhemu.sithub.io

Chapter 4

Macro Processors

In this chapter we study the design and implementation of macro processors.
A macro instruction (often abbreviated to macro) is simply a notational conve-
nience for the programmer. A macro represents a commonly used group of
statements in the source programming language. The macro processor re-
places each macro instruction with the corresponding group of source lan-
guage statements. This is called expanding the macros. Thus macro instructions
allow the programmer to write a shorthand version of a program, and leave
the mechanical details to be handled by the macro processor.

For example, suppose that it is necessary to save the contents of all regis-
ters before calling a subprogram. On SIC/XE, this would require a sequence of
seven instructions (STA, STB, etc.). Using a macro instruction, the programmer
could simply write one statement like SAVEREGS. This macro instruction
would be expanded into the seven assembler language instructions needed to
save the register contents. A similar macro instruction (perhaps named LOAD-
REGS) could be used to reload the register contents after returning from the
subprogram.

The functions of a macro processor essentially involve the substitution of
one group of characters or lines for another. Except in a few specialized cases,
the macro processor performs no analysis of the text it handles. The design
and capabilities of a macro processor may be influenced by the form of the pro-
gramming language statements involved. However, the meaning of these state-
ments, and their translation into machine language, are of no concern
whatsoever during macro expansion. This means that the design of a macro
processor is not directly related to the architecture of the computer on which it
is to run.

The most common use of macro processors is in assembler language pro-
gramming. We use SIC assembler language examples to illustrate most of the
concepts being discussed. However, macro processors can also be used with
high-level programming languages, operating system command languages,
etc. In addition, there are general-purpose macro processors that are not tied
to any particular language. In the later sections of this chapter, we briefly dis-
cuss these more general uses of macros.

175

he¢eps:/hemanthrajhemu.github.io

176

Chapter 4 Macro Processors

Section 4.1 introduces the basic concepts of macro processing, including
macro definition and expansion. We also present an algorithm for a simple
macro processor. Section 4.2 discusses extended features that are commonly
found in macro processors. These features include the generation of unique la-
bels within macro expansions, conditional macro expansion, and the use of
keyword parameters in macros. All these features are machine-independent.
Because the macro processor is not directly related to machine architecture,
this chapter contains no section on machine-dependent features.

Section 4.3 describes some macro processor design options. One of these
options (recursive macro expansion) involves the internal structure of the
macro processor itself. The other options are concerned with how the macro
processor is related to other pieces of system software such as assemblers or
compilers.

Finally, Section 4.4 briefly presents three examples of actual macro proces-
sors. One of these is a macro processor designed for use by assembler lan-
guage programmers. Another is intended to be used with a high-level
programming language. The third is a general-purpose macro processor,
which is not tied to any particular language. Additional examples may be
found in the references cited throughout this chapter.

4.1 BASIC MACRO PROCESSOR FUNCTIONS

In this section we examine the fundamental functions that are common to all
macro processors. Section 4.1.1 discusses the processes of macro definition, in-
vocation, and expansion with substitution of parameters. These functions are
illustrated with examples using the SIC/XE assembler language. Section 4.1.2
presents a one-pass algorithm for a simple macro processor together with a
description of the data structures needed for macro processing. Later sections
in this chapter discuss extensions to the basic capabilities introduced in this
section.

4.1.1 Macro Definition and Expansion

Figure 4.1 shows an example of a SIC/XE program using macro instructions.
This program has the same functions and logic as the sample program in Fig.
2.5; however, the numbering scheme used for the source statements has been
changed. :

- —__

https:llhemanthi'ajhemu.sithub.io

' 4.1 Basic Macro Processor Functions

This program defines and uses two macro instructions, RDBUFF and
WRBUFF. The functions and logic of the RDBUFF macro are similar to those of
the RDREC subrouting, in Fig. 2.5; likewise, the WRBUFF macro is similar to
the WRREC subroutine. The definitions of these macro instructions appear in
the source program following the START statement.

Two new assembler directives (MACRO and MEND) are used in macro de-
finitions. The first MACRO statement (line 10) identifies the beginning of a
macro definition. The symbol in the label field (RDBUFF) is the name of the
macro, and the entries in the operand field identify the parameters of the macro
instruction. In our macro language, each parameter begins with the character
&, which facilitates the substitution of parameters during macro expansion.
The macro name and parameters define a pattern or prototype for the macro in-
structions used by the programmer. Following the MACRO directive are the
statements that make up the body of the macro definition (lines 15 through 90).
These are the statements that will be generated as the expansion of the macro.
The MEND assembler directive (line 95) marks the end of the macro defini-
tion. The definition of the WRBUFF macro (lines 100 through 160) follows a
similar pattern.

The main program itself begins on line 180. The statement on line 190 is a
macro invocation statement that gives the name of the macro instruction being
invoked and the arguments to be used in expanding the macro. (A macro invo-
cation statement is often referred to as a macro call. To avoid confusion with the
call statements used for procedures and subroutines, we prefer to use the term
invocation. As we shall see, the processes of macro invocation and subroutine
call are quite different.) You should compare the logic of the main program in
Fig. 4.1 with that of the main program in Fig. 2.5, remembering the similarities
in function between RDBUFF and RDREC and between WRBUFF and
WRREC.

The program in Fig. 4.1 could be supplied as input to a macro processor.
Figure 4.2 shows the output that would be generated. The macro instruction
definitions have been deleted since they are no longer needed after the macros
are expanded. Each macro invocation statement has been expanded into the
statements that form the body of the macro, with the arguments from the
macro invocation substituted for the parameters in the macro prototype. The
arguments and parameters are associated with one another according to their
positions. The first argument in the macro invocation corresponds to the first
parameter in the macro prototype, and so on. In expanding the macro invoca-
tion on line 190, for example, the argument F1 is substituted for the parameter
&INDEV wherever it occurs in the body of the macro. Similarly, BUFFER is
substituted for &BUFADR, and LENGTH is substituted for &RECLTH.

177

hteps:/hemanthrajhemu.github.io

Line Source statement
5 COPY START 0 COPY FILE FROM INPUT TO OUTPUT
10 RDBUFF MACRO &INDEV, &8BUFADR, &RECLTH i
15 .
20) MACRO TO READ RECORD INTO BUFFER
25 : I
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
40 CLEAR S
45 +LDT #4096 SET MAXTMUM RECORD LENGTH
50 TD =X'&INDEV' TEST INPUT DEVICE
55 JEQ A3 LOOFP UNTIL READY
60 ED =X'&INDEV"' READ CHARACTER INTO REG A
65 COMPR A, S TEST FOR END OF RECORD
70 JEQ *+11 EXTIT LOOP IF EOR
75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT *-19 HAS BEEN REACHED
90 STX &RECLTH SAVE RECORD LENGTH
95 MEND
100 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
105 :
110 . MACRO TO WRITE RECORD FROM BUFFER
115 .
120 CLEAR X CLEAR LOOP COUNTER
125 LoT &RECLTH
130 LDCH &BUFADR, X GET CHARACTER FROM BUFFER
135 TD =X'&0OUTDEV ' TEST OQUTPUT DEVICE
140 JEQ *-3 LOOP UNTIL READY
145 WD =X "&OUTDEV" WRITE CHARACTER
150 TIXR H LOOP UNTIL ALL CHARACTERS
155 JLT *-14 HAVE BEEN WRITTEN
160 MEND
165 :
170 ‘ MATN PROGRAM
175 :
180 FIRST STL RETADR SAVE RETURN ADDRESS
190 CLOOP RDBUFF F1,BUFFER, LENGTH READ RECORD INTO BUFFER
195 LDA LENGTH TEST FOR END OF FILE
200 COMP #0
205 JEQ ENDFIL EXIT IF EOF FOUND
210 WRBUFF 05, BUFFER, LENGTH WRITE OUTPUT RECORD
215 J CLOOP LOOP
220 ENDFIL WRBUFF 05, EOF , THREE INSERT EOF MARKER
225 J ERETADR
230 EOF BYTE C*'EQF'
235 THREE WORD 3
240 RETADR RESW 1
245 LENGTH RESW 1 o LENGTH OF RECORD
250 BUFFER RESB 4096 4096-BYTE BUFFER AREA
255 END FIRST

178 Figure 4.1 Use of macros in a SIC/XE program.

Line

180
190
190a
190b
1%0¢c
190d
190e
190f
190g
190h
19041
1903
190k
1901
190m
195
200
205
210
210a
210b
210c
210d
210e
210f
210g
210h
215
220
220a
220b
220c
220d
. 220e
220f
. 220g
220h
225
230
235
240
245
250
255

https:llhemanthi'ajhemu.sithub.io

COPY FILE FROM INPUT TQ OUTPUT
SAVE RETURN ADDRESS

READ RECORD INTO BUFFER

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH
TEST INPUT DEVICE

READ CHARACTER INTO REG A

TEST FOR END CF RECORD

EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

TEST FOR END COF FILE

IF EQF FOUND

WRITE OUTPUT RECORD

CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL ALL CHARACTERS

HAVE BEEN WRITTEN

INSERT EOF MARKER
CLEAR LOOP COUNTER

GET CHARACTER FEOM BUFFER
TEST OUTPUT DEVICE

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

4096-BYTE BUFFER AREA

Source statement
COPY START 0
FIRST STL RETADR
.CLOOP. RDBUFF F1,BUFFER, LENGTH
CLOOP CLERR X
CLEAR A
CLEAR S
+LDT #4096
TD —aial
JEQ *=3 LOOP UNTIL READY
RD = Ll
COMPR A,S
JEQ *411 EXIT LOOP IF
STCH BUFFER, X
TIXR i
JLT x-19
STX LENGTH
LDA LENGTH
COMP 40
JEQ ENDFIL EXIT
WRBUFF 05, BUFFER, LENGTH
CLEAR X
LDT LENGTH
LDCH BUFFER, X
D —ehOn
JEQ *-3 LOOP UNTIL READY
WD = s WRITE CHARACTER
TIZR '
JLT *-14
J CLOOP LOOP
.ENDFIL WRBUFF 05, EOF, THREE
ENDFIL. CLEAR X
LDT THREE
LDCH EOF, X
TD =l
JEQ *-3 LOOP UNTIL READY
) =X'05" WRITE CHARACTER
TIXR T
JLT *-14
J @RETADR
EOF BYTE C'EOF'
THREE WORD 3
RETADR RESW 1
LENGTH RESW 1 LENGTH OF RECORD
BUFFER RESB 4096
END FIRST
Figure 4.2 Program from Fig. 4.1 with macros expanded.

179

he¢eps:/hemanthrajhemu.github.io

180

Chapter 4 Macro Processors

Lines 190a through 190m show the complete expansion of the macro invo-
cation on line 190. The comment lines within the macro body have been
deleted, but comments on individual statements have been retained. Note that
the macro invocation statement itself has been included as a comment line.
This serves as documentation of the statement written by the programmer.
The label on the macro invocation statement (CLOOP) has been retained as a
label on the first statement generated in the macro expansion. This allows the
programmer to use a macro instruction in exactly the same way as an assem-
bler language mnemonic. The macro invocations on lines 210 and 220 are ex-
panded in the same way. Note that the two invocations of WRBUFF specify
different arguments, so they produce different expansions.

After macro processing, the expanded file (Fig. 4.2) can be used as input to
the assembler. The macro invocation statements will be treated as comments,
and the statements generated from the macro expansions will be assembled
exactly as though they had been written directly by the programmer.

A comparison of the expanded program in Fig. 4.2 with the program in
Fig. 2.5 shows the most significant differences between macro invocation
and subroutine call. In Fig. 4.2, the statements from the body of the macro
WRBUFF are generated twice: lines 210a through 210h and lines 220a through
220h. In the program of Fig. 2.5, the corresponding statements appear only
once: in the subroutine WRREC (lines 210 through 240). In general, the state-
ments that form the expansion of a macro are generated (and assembled) each
time the macro is invoked. Statements in a subroutine appear only once, re-
gardless of how many times the subroutine is called.

Note also that our macro instructions have been written so that the body of
the macro contains no labels. In Fig. 4.1, for example, line 140 contains the
statement “JEQ *-3” and line 155 contains “JLT *-14.” The corresponding
statements in the WRREC subroutine (Fig. 2.5) are “JEQ WLOOP” and “JLT
WLOOP,” where WLOOP is a label on the TD instruction that tests the output
device. If such a label appeared on line 135 of the macro body, it would be gen-
erated twice—on lines 210d and 220d of Fig. 4.2. This would result in an error
(a duplicate label definition) when the program is assembled. To avoid dupli-
cation of symbols, we have eliminated labels from the body of our macro defi-
nitions.

The use of statements like “JLT *-14” is generally considered to be a poor
programming practice. It is somewhat less objectionable within a macro defin-
ition; however, it is still an inconvenient and error-prone method. In Section
4.2.2 we discuss ways of avoiding this problem.

—

https:llhemanthi'ajhemu.sithub.io

’ 4.1 Basic Macro Processor Functions

4.1.2 Macro Processor Algorithm and Data Structures

It is easy to design a two-pass macro processor in which all macro definitions
are processed during the first pass, and all macro invocation statements are ex-
panded during the second pass. However, such a two-pass macro processor
would not allow the body of one macro instruction to contain definitions of
other macros (because all macros would have to be defined during the first
pass before any macro invocations were expanded).

Such definitions of macros by other macros can be useful in certain cases.
Consider, for example, the two macro instruction definitions in Fig. 4.3. The
body of the first macro (MACROS) contains statements that define RDBUFF,
WRBUFF, and other macro instructions for a SIC system (standard version).
The body of the second macro instruction (MACROX) defines these same
macros for a SIC/XE system. A program that is to be run on a standard SIC
system could invoke MACROS to define the other utility macro instructions. A
program for a SIC/XE system could invoke MACROX to define these same
macros in their XE versions. In this way, the same program could run on either
a standard SIC machine or a SIC/XE machine (taking advantage of the ex-
tended features). The only change required would be the invocation of either
MACROS or MACROX. It is important to understand that defining MACROS
or MACROX does not define RDBUFF and the other macro instructions. These
definitions are processed only when an invocation of MACROS or MACROX
is expanded.

A one-pass macro processor that can alternate between macro definition
and macro expansion is able to handle macros like those in Fig. 4.3. In this sec-
tion we present an algorithm and a set of data structures for such a macro
processor. Because of the one-pass structure, the definition of a macro must
appear in the source program before any statements that invoke that macro.
This restriction does not create any real inconvenience for the programmer. In
fact, a macro invocation statement that preceded the definition of the macro
would be confusing for anyone reading the program.

There are three main data structures involved in our macro processor. The
macro definitions themselves are stored in a definition table (DEFTAB), which
contains the macro prototype and the statements that make up the macro body
(with a few modifications). Comment lines from the macro definition are not
entered into DEFTAB because they will not be part of the macro expansion.
References to the macro instruction parameters are converted to a positional
notation for efficiency in substituting arguments. The macro names are also
entered into NAMTAB, which serves as an index to DEFTAB. For each macro
instruction defined, NAMTAB contains pointers to the beginning and end of
the definition in DEFTAB.

181

heteps:/hemanthrajhemu.github.io

182

Chapter 4 Macro Processors

1 MACROS MACRO {Defines SIC standard version macros}

2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH
{SIC standard version}

3 MEND {End of RDBUFF}

4 WRBUFF MACRO &0OUTDEV, &BUFADR, &RECLTH
{SIC standard version}

5 MEND {End of WRBUFF}

6 ME!ND {End of MACROS}

(a)

1 MACROX MACRO {Defines SIC/XE macros}

2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH
{SIC/XE version}

3 MEND {End of RDBUFF}

4 WRBUFF MACRO &0OUTDEV , &BUFADR, &RECLTH
{SIC/XE version}

5 MEND (End of WRBUFF)

6 M'END {End of MACROX}

(b)

Figure 4.3 Example of the definition of macros within a macro body.

The third data structure is an argument table (ARGTAB), which is used
during the expansion of macro invocations. When a macro invocation state-
ment is recognized, the arguments are stored in ARGTAB according to their
position in the argument list. As the macro is expanded, arguments from
ARGTARB are substituted for the corresponding parameters in the macro body.

Figure 4.4 shows portions of the contents of these tables during the pro-
cessing of the program in Fig. 4.1. Figure 4.4(a) shows the definition of
RDBUFF stored in DEFTAB, with an entry in NAMTAB identifying the begin-
ning and end of the definition. Note the positional notation that has been used

https:llhemanthi'ajhemu.sithub.io

. 4.1 Basic Macro Processor Functions 183
NAMTAB DEFTAB
=,]
: : 5
: __.--""""'-‘A' RDBUFF &INDEV, &BUFADR, &RECLTH
CLEAR X
RDBUFF o
CLEAR A
i CLEAR S
. +LDT #4096
TD =X’'?1"
JEQ *-3
RD —X"23!
COMPR A.S
JEQ %411
STCH 29X
TIXR i
JLT *_19
STX 23
»| MEND
L]
ARGTAB (@)
1| F1
2| BUFFER
3| LENGTH

(b)

Figure 4.4 Contents of macro processor tables for the program in
Fig. 4.1: (a) entries in NAMTAB and DEFTAB defining macro RDBUFF,
(b) entries in ARGTAB for invocation of RDBUFF on line 190.

for the parameters: the parameter &INDEV has been converted to ?1 (indicating
the first parameter in the prototype), &BUFADR has been converted to 72, and
so on. Figure 4.4(b) shows ARGTAB as it would appear during expansion of
the RDBUFF statement on line 190. For this invocation, the first argument is
F1, the second is BUFFER, etc. This scheme makes substitution of macro argu-
ments much more efficient. When the ?n notation is recognized in a line from
DEFTAB, a simple indexing operation supplies the proper argument from
ARGTAB.

htéps:/hemanthrajhemu.github.io

184

Chapter 4 Macro Processors

The macro processor algorithm itself is presented‘in Fig. 4.5. The proce-
dure DEFINE, which is called when the beginning of a macro definition is rec-
ognized, makes the appropriate entries in DEFTAB and NAMTAB. EXPAND is
called to set up the argument values in ARGTAB and expand a macro invoca-
tion statement. The procedure GETLINE, which is called at several points in
the algorithm, gets the next line to be processed. This line may come from
DEFTAB (the next line of a macro being expanded), or from the input file,
depending upon whether the Boolean variable EXPANDING is set to TRUE or
FALSE.

One aspect of this algorithm deserves further comment: the handling of
macro definitions within macros (as illustrated in Fig. 4.3). When a macro def-
inition is being entered into DEFTAB, the normal approach would be to con-
tinue until an MEND directive is reached. This would not work for the
example in Fig. 4.3, however. The MEND on line 3 (which actually marks the
end of the definition of RDBUFF) would be taken as the end of the definition
of MACROS. To solve this problem, our DEFINE procedure maintains a
counter named LEVEL. Each time a MACRO directive is read, the value of
LEVEL is increased by 1; each time an MEND directive is read, the value of
LEVEL is decreased by 1. When LEVEL reaches 0, the MEND that corre-
sponds to the original MACRO directive has been found. This process is very
much like matching left and right parentheses when scanning an arithmetic
expression.

begin {macro processor}
EXPANDING := FALSE
while OPCODE # ‘END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = 'MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor.

!

https:llhemanthi'ajhemu.sithub.io

¥ 4.1 Basic Macro Processor Functions 185

procedure DEFINE
begin
enter macyro name into NAMTARB
enter macro prototype into DEFTAB
LEVEL := 1
while LEVEL > 0 do
begin
GETLINE
if this is not a comment line then
begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO’ then
IEVEL := LEVEL + 1
else if OPCODE = 'MEND’ then
LEVEL: := LEVEL - 1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFINE}

procedure EXPAND
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB
set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
FROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

procedure GETLINE

begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positicnal notation
end {if}
else

read next line from input file
end {GETLINE}

Figure 4.5 (contd)

heteps:/hemanthrajhemu.github.io

186

Chapter 4 Macro Processors

-

You may want to apply this algorithm by hand to the program in Fig. 4.1
to be sure you understand its operation. The result should be the same as
shown in Fig. 4.2.

Most macro processors allow the definitions of commonly used macro in-
structions to appear in a standard system library, rather than in the source pro-
gram. This makes the use of such macros much more convenient. Definitions
are retrieved from this library as they are needed during macro processing.
The extension of the algorithm in Fig. 4.5 to include this sort of processing
appears as an exercise at the end of this chapter.

4.2 MACHINE-INDEPENDENT MACRO
PROCESSOR FEATURES

In this section we discuss several extensions to the basic macro processor func-
tions presented in Section 4.1. As we have mentioned before, these extended
features are not directly related to the architecture of the computer for which
the macro processor is written. Section 4.2.1 describes a method for concate-
nating macro instruction parameters with other character strings. Section 4.2.2
discusses one method for generating unique labels within macro expansions,
which avoids the need for extensive use of relative addressing at the source
statement level. Section 4.2.3 introduces the important topic of conditional
macro expansion and illustrates the concepts involved with several examples.
This ability to alter the expansion of a macro by using control statements
makes macro instructions a much more powerful and useful tool for the pro-
grammer. Section 4.2.4 describes the definition and use of keyword parameters
in macro instructions.

4.2.1 Concatenation of Macro Parameters

Most macro processors allow parameters to be concatenated with other char-
acter strings. Suppose, for example, that a program contains one series of vari-
ables named by the symbols XA1, XA2, XA3, ..., another series named by XBI,
XB2, XB3, ..., etc. If similar processing is to be performed on each series of vari-
ables, the programmer might want to incorporate this processing into a macro
instruction. The parameter to such a macro instruction could specify the series
of variables to be operated on (A, B, etc.). The macro processor would use this
parameter to construct the symbols required in the macro expansion (XAl,
XB1, etc.).

